WorldWideScience

Sample records for automated molecular mechanics

  1. Work Planing Automation at Mechanical Subdivision

    OpenAIRE

    Dzindzelėta, Vytautas

    2005-01-01

    Work planing automation, installation possibilities and future outlook at mechanical subdivision. To study how the work planing has changed before and after automation process and to analyse automation process methodology.

  2. Ten years of R&D and full automation in molecular diagnosis.

    Science.gov (United States)

    Greub, Gilbert; Sahli, Roland; Brouillet, René; Jaton, Katia

    2016-01-01

    A 10-year experience of our automated molecular diagnostic platform that carries out 91 different real-time PCR is described. Progresses and future perspectives in molecular diagnostic microbiology are reviewed: why automation is important; how our platform was implemented; how homemade PCRs were developed; the advantages/disadvantages of homemade PCRs, including the critical aspects of troubleshooting and the need to further reduce the turnaround time for specific samples, at least for defined clinical settings such as emergencies. The future of molecular diagnosis depends on automation, and in a novel perspective, it is time now to fully acknowledge the true contribution of molecular diagnostic and to reconsider the indication for PCR, by also using these tests as first-line assays.

  3. The Molecular Industrial Revolution: Automated Synthesis of Small Molecules.

    Science.gov (United States)

    Trobe, Melanie; Burke, Martin D

    2018-04-09

    Today we are poised for a transition from the highly customized crafting of specific molecular targets by hand to the increasingly general and automated assembly of different types of molecules with the push of a button. Creating machines that are capable of making many different types of small molecules on demand, akin to that which has been achieved on the macroscale with 3D printers, is challenging. Yet important progress is being made toward this objective with two complementary approaches: 1) Automation of customized synthesis routes to different targets by machines that enable the use of many reactions and starting materials, and 2) automation of generalized platforms that make many different targets using common coupling chemistry and building blocks. Continued progress in these directions has the potential to shift the bottleneck in molecular innovation from synthesis to imagination, and thereby help drive a new industrial revolution on the molecular scale. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The cobas® 6800/8800 System: a new era of automation in molecular diagnostics.

    Science.gov (United States)

    Cobb, Bryan; Simon, Christian O; Stramer, Susan L; Body, Barbara; Mitchell, P Shawn; Reisch, Natasa; Stevens, Wendy; Carmona, Sergio; Katz, Louis; Will, Stephen; Liesenfeld, Oliver

    2017-02-01

    Molecular diagnostics is a key component of laboratory medicine. Here, the authors review key triggers of ever-increasing automation in nucleic acid amplification testing (NAAT) with a focus on specific automated Polymerase Chain Reaction (PCR) testing and platforms such as the recently launched cobas® 6800 and cobas® 8800 Systems. The benefits of such automation for different stakeholders including patients, clinicians, laboratory personnel, hospital administrators, payers, and manufacturers are described. Areas Covered: The authors describe how molecular diagnostics has achieved total laboratory automation over time, rivaling clinical chemistry to significantly improve testing efficiency. Finally, the authors discuss how advances in automation decrease the development time for new tests enabling clinicians to more readily provide test results. Expert Commentary: The advancements described enable complete diagnostic solutions whereby specific test results can be combined with relevant patient data sets to allow healthcare providers to deliver comprehensive clinical recommendations in multiple fields ranging from infectious disease to outbreak management and blood safety solutions.

  5. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  6. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination

    International Nuclear Information System (INIS)

    Panjikar, Santosh; Parthasarathy, Venkataraman; Lamzin, Victor S.; Weiss, Manfred S.; Tucker, Paul A.

    2009-01-01

    The combination of molecular replacement and single-wavelength anomalous diffraction improves the performance of automated structure determination with Auto-Rickshaw. A combination of molecular replacement and single-wavelength anomalous diffraction phasing has been incorporated into the automated structure-determination platform Auto-Rickshaw. The complete MRSAD procedure includes molecular replacement, model refinement, experimental phasing, phase improvement and automated model building. The improvement over the standard SAD or MR approaches is illustrated by ten test cases taken from the JCSG diffraction data-set database. Poor MR or SAD phases with phase errors larger than 70° can be improved using the described procedure and a large fraction of the model can be determined in a purely automatic manner from X-ray data extending to better than 2.6 Å resolution

  7. Safety of mechanical devices. Safety of automation systems

    International Nuclear Information System (INIS)

    Pahl, G.; Schweizer, G.; Kapp, K.

    1985-01-01

    The paper deals with the classic procedures of safety engineering in the sectors mechanical engineering, electrical and energy engineering, construction and transport, medicine technology and process technology. Particular stress is laid on the safety of automation systems, control technology, protection of mechanical devices, reactor safety, mechanical constructions, transport systems, railway signalling devices, road traffic and protection at work in chemical plans. (DG) [de

  8. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    Science.gov (United States)

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  9. A method for automated processing of measurement information during mechanical drilling

    Energy Technology Data Exchange (ETDEWEB)

    Samonenko, V.I.; Belinkov, V.G.; Romanova, L.A.

    1984-01-01

    An algorithm is cited for a developed method for automated processing of measurement information during mechanical drilling. Its use in conditions of operation of an automated control system (ASU) from drilling will make it possible to precisely identify a change in the lithology, the physical and mechanical and the abrasive properties, in the stratum (pore) pressure in the rock being drilled out during mechanical drilling, which along with other methods for testing the drilling process will increase the reliability of the decisions made.

  10. Automated processing of data generated by molecular dynamics

    International Nuclear Information System (INIS)

    Lobato Hoyos, Ivan; Rojas Tapia, Justo; Instituto Peruano de Energia Nuclear, Lima

    2008-01-01

    A new integrated tool for automated processing of data generated by molecular dynamics packages and programs have been developed. The program allows to calculate important quantities such as pair correlation function, the analysis of common neighbors, counting nanoparticles and their size distribution, conversion of output files between different formats. The work explains in detail the modules of the tool, the interface between them. The uses of program are illustrated in application examples in the calculation of various properties of silver nanoparticles. (author)

  11. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning

    DEFF Research Database (Denmark)

    Ejsing, Christer S.; Duchoslav, Eva; Sampaio, Julio

    2006-01-01

    We report a method for the identification and quantification of glycerophospholipid molecular species that is based on the simultaneous automated acquisition and processing of 41 precursor ion spectra, specific for acyl anions of common fatty acids moieties and several lipid class-specific fragment...... of glycerophospholipids. The automated analysis of total lipid extracts was powered by a robotic nanoflow ion source and produced currently the most detailed description of the glycerophospholipidome....

  12. Pitfall in quantum mechanical/molecular mechanical molecular dynamics simulation of small solutes in solution.

    Science.gov (United States)

    Hu, Hao; Liu, Haiyan

    2013-05-30

    Developments in computing hardware and algorithms have made direct molecular dynamics simulation with the combined quantum mechanical/molecular mechanical methods affordable for small solute molecules in solution, in which much improved accuracy can be obtained via the quantum mechanical treatment of the solute molecule and even sometimes water molecules in the first solvation shell. However, unlike the conventional molecular mechanical simulations of large molecules, e.g., proteins, in solutions, special care must be taken in the technical details of the simulation, including the thermostat of the solute/solvent system, so that the conformational space of the solute molecules can be properly sampled. We show here that the common setup for classical molecular mechanical molecular dynamics simulations, such as the Berendsen or single Nose-Hoover thermostat, and/or rigid water models could lead to pathological sampling of the solutes' conformation. In the extreme example of a methanol molecule in aqueous solution, improper and sluggish setups could generate two peaks in the distribution of the O-H bond length. We discuss the factors responsible for this somewhat unexpected result and evoke a simple and ancient technical fix-up to resolve this problem.

  13. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.

    Science.gov (United States)

    Fot, Evgenia V; Izotova, Natalia N; Yudina, Angelika S; Smetkin, Aleksei A; Kuzkov, Vsevolod V; Kirov, Mikhail Y

    2017-01-01

    The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode. Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning ( n  = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning ( n  = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm. Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO 2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group ( p  ventilation in a more protective way, reduces the

  14. Performance assessment of semiempirical molecular orbital methods in describing halogen bonding: quantum mechanical and quantum mechanical/molecular mechanical-molecular dynamics study.

    Science.gov (United States)

    Ibrahim, Mahmoud A A

    2011-10-24

    The performance of semiempirical molecular-orbital methods--MNDO, MNDO-d, AM1, RM1, PM3 and PM6--in describing halogen bonding was evaluated, and the results were compared with molecular mechanical (MM) and quantum mechanical (QM) data. Three types of performance were assessed: (1) geometrical optimizations and binding energy calculations for 27 halogen-containing molecules complexed with various Lewis bases (Two of the tested methods, AM1 and RM1, gave results that agree with the QM data.); (2) charge distribution calculations for halobenzene molecules, determined by calculating the solvation free energies of the molecules relative to benzene in explicit and implicit generalized Born (GB) solvents (None of the methods gave results that agree with the experimental data.); and (3) appropriateness of the semiempirical methods in the hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme, investigated by studying the molecular inhibition of CK2 protein by eight halobenzimidazole and -benzotriazole derivatives using hybrid QM/MM molecular-dynamics (MD) simulations with the inhibitor described at the QM level by the AM1 method and the rest of the system described at the MM level. The pure MM approach with inclusion of an extra point of positive charge on the halogen atom approach gave better results than the hybrid QM/MM approach involving the AM1 method. Also, in comparison with the pure MM-GBSA (generalized Born surface area) binding energies and experimental data, the calculated QM/MM-GBSA binding energies of the inhibitors were improved by replacing the G(GB,QM/MM) solvation term with the corresponding G(GB,MM) term.

  15. Use of automation and mechanization elements in welding and surfacing nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Bartak, J.; Elckner, J.

    1986-01-01

    The problems are discussed of automation and mechanization of individual operations in the production cycle of pressure vessels whose manufacture cannot for its great exactingness be automated as a whole. Examples are given of workplaces and single-purpose welding facilities with a high level of automation. The present state of the development and implementation of automation of arc welding is described and further development is indicated of the automation of welding processes in the manufacture of nuclear facilities. (J.C.)

  16. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    Science.gov (United States)

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  17. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    Science.gov (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  18. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism

    DEFF Research Database (Denmark)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik

    2016-01-01

    )-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers......The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R...... indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site...

  19. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  20. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data.

    Science.gov (United States)

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S; Windus, Theresa L; Dick-Perez, Marilu

    2017-03-27

    A newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides, important for metal extraction chemistry, are parametrized using ParFit. ParFit is in an open source program available for free on GitHub ( https://github.com/fzahari/ParFit ).

  1. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM).

    Science.gov (United States)

    Sinitskiy, Anton V; Voth, Gregory A

    2018-01-07

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  2. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM)

    Science.gov (United States)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2018-01-01

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  3. DG-AMMOS: a new tool to generate 3d conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening.

    Science.gov (United States)

    Lagorce, David; Pencheva, Tania; Villoutreix, Bruno O; Miteva, Maria A

    2009-11-13

    Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  4. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  5. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling.

    Directory of Open Access Journals (Sweden)

    Daniel P Riordan

    Full Text Available Characterization of the molecular attributes and spatial arrangements of cells and features within complex human tissues provides a critical basis for understanding processes involved in development and disease. Moreover, the ability to automate steps in the analysis and interpretation of histological images that currently require manual inspection by pathologists could revolutionize medical diagnostics. Toward this end, we developed a new imaging approach called multidimensional microscopic molecular profiling (MMMP that can measure several independent molecular properties in situ at subcellular resolution for the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical staining, imaging, and signal removal, which ultimately can generate information analogous to a multidimensional flow cytometry analysis on intact tissue sections. We performed a MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsupervised analysis of MMMP data, and visualization of the resulting classifications, identified molecular profiles that were associated with functional tissue features. We then directly annotated H&E images from this MMMP series such that canonical histological features of interest (e.g. blood vessels, epithelium, red blood cells were individually labeled. By integrating image annotation data, we identified molecular signatures that were associated with specific histological annotations and we developed statistical models for automatically classifying these features. The classification accuracy for automated histology labeling was objectively evaluated using a cross-validation strategy, and significant accuracy (with a median per-pixel rate of 77% per feature from 15 annotated samples for de novo feature prediction was obtained. These results suggest that high-dimensional profiling may advance the

  6. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    Science.gov (United States)

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  7. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    Science.gov (United States)

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.

  8. Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodium-Catalyzed Asymmetric Hydrogenation.

    Science.gov (United States)

    Guan, Yanfei; Wheeler, Steven E

    2017-07-24

    A computational toolkit (AARON: An automated reaction optimizer for new catalysts) is described that automates the density functional theory (DFT) based screening of chiral ligands for transition-metal-catalyzed reactions with well-defined reaction mechanisms but multiple stereocontrolling transition states. This is demonstrated for the Rh-catalyzed asymmetric hydrogenation of (E)-β-aryl-N-acetyl enamides, for which a new C 2 -symmetric phosphorus ligand is designed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Molecular mechanics calculations on cobalt phthalocyanine dimers

    NARCIS (Netherlands)

    Heuts, J.P.A.; Schipper, E.T.W.M.; Piet, P.; German, A.L.

    1995-01-01

    In order to obtain insight into the structure of cobalt phthalocyanine dimers, molecular mechanics calculations were performed on dimeric cobalt phthalocyanine species. Molecular mechanics calculations are first presented on monomeric cobalt(II) phthalocyanine. Using the Tripos force field for the

  10. DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening

    Directory of Open Access Journals (Sweden)

    Villoutreix Bruno O

    2009-11-01

    Full Text Available Abstract Background Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Results Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. Conclusion DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  11. Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics

    International Nuclear Information System (INIS)

    Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.

    1992-09-01

    Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs

  12. Molecular Mechanisms of Preeclampsia

    Directory of Open Access Journals (Sweden)

    N. Vitoratos

    2012-01-01

    Full Text Available Preeclampsia is one of the leading causes of maternal morbidity/mortality. The pathogenesis of preeclampsia is still under investigation. The aim of this paper is to present the molecular mechanisms implicating in the pathway leading to preeclampsia.

  13. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.

    Science.gov (United States)

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  14. Molecular machines with bio-inspired mechanisms.

    Science.gov (United States)

    Zhang, Liang; Marcos, Vanesa; Leigh, David A

    2018-02-26

    The widespread use of molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular machines-which by and large function as switches-and the machines of the macroscopic world, which utilize the synchronized behavior of integrated components to perform more sophisticated tasks than is possible with any individual switch. Should we try to make molecular machines of greater complexity by trying to mimic machines from the macroscopic world or instead apply unfamiliar (and no doubt have to discover or invent currently unknown) mechanisms utilized by biological machines? Here we try to answer that question by exploring some of the advances made to date using bio-inspired machine mechanisms.

  15. Molecular mechanisms in compatibility and mechanical properties of Polyacrylamide/Polyvinyl alcohol blends.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Che, Yu; Yang, Mingming; Li, Xinpei; Zhang, Yingfeng

    2017-01-01

    The objectives of this study were to develop a computational model based on molecular dynamics technique to investigate the compatibility and mechanical properties of Polyacrylamide (PAM)/Polyvinyl alcohol (PVA) blends. Five simulation models of PAM/PVA with different composition ratios (4/0, 3/1, 2/2, 1/3, 0/4) were constructed and simulated by using molecular dynamics (MD) simulation. The interaction mechanisms of molecular chains in PAM/PVA blend system were elaborated from the aspects of the compatibility, mechanical properties, binding energy and pair correlation function, respectively. The computed values of solubility parameters for PAM and PVA indicate PAM has a good miscibility with PVA. The results of the static mechanical analysis, based on the equilibrium structures of blends with differing component ratios, shows us that the elastic coefficient, engineering modulus, and ductility are increased with the addition of PVA content, which is 4/0 PAM/PVAPVAPVAPVAPVA. Moreover, binding energy results indicate that a stronger interaction exists among PVA molecular chains comparing with PAM molecular chains, which is why the mechanical properties of blend system increasing with the addition of PVA content. Finally, the results of pair correlation functions (PCFs) between polar functional groups and its surrounding hydrogen atoms, indicated they interact with each other mainly by hydrogen bonds, and the strength of three types of polar functional groups has the order of O(-OH)>O(-C=O)>N(-NH 2 ). This further elaborates the root reason why the mechanical properties of blend system increase with the addition of PVA content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening

    Directory of Open Access Journals (Sweden)

    Pajeva Ilza

    2008-10-01

    Full Text Available Abstract Background Virtual or in silico ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods. To address some of these points, we developed the program AMMOS for refining both, the 3D structures of the small molecules present in chemical libraries and the predicted receptor-ligand complexes through allowing partial to full atom flexibility through molecular mechanics optimization. Results The program AMMOS carries out an automatic procedure that allows for the structural refinement of compound collections and energy minimization of protein-ligand complexes using the open source program AMMP. The performance of our package was evaluated by comparing the structures of small chemical entities minimized by AMMOS with those minimized with the Tripos and MMFF94s force fields. Next, AMMOS was used for full flexible minimization of protein-ligands complexes obtained from a mutli-step virtual screening. Enrichment studies of the selected pre-docked complexes containing 60% of the initially added inhibitors were carried out with or without final AMMOS minimization on two protein targets having different binding pocket properties. AMMOS was able to improve the enrichment after the pre-docking stage with 40 to 60% of the initially added active compounds found in the top 3% to 5% of the entire compound collection

  17. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Kraus, Jodi; Gupta, Rupal; Yehl, Jenna; Lu, Manman; Case, David A; Gronenborn, Angela M; Akke, Mikael; Polenova, Tatyana

    2018-03-22

    Magic angle spinning NMR spectroscopy is uniquely suited to probe the structure and dynamics of insoluble proteins and protein assemblies at atomic resolution, with NMR chemical shifts containing rich information about biomolecular structure. Access to this information, however, is problematic, since accurate quantum mechanical calculation of chemical shifts in proteins remains challenging, particularly for 15 N H . Here we report on isotropic chemical shift predictions for the carbohydrate recognition domain of microcrystalline galectin-3, obtained from using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations, implemented using an automated fragmentation approach, and using very high resolution (0.86 Å lactose-bound and 1.25 Å apo form) X-ray crystal structures. The resolution of the X-ray crystal structure used as an input into the AF-NMR program did not affect the accuracy of the chemical shift calculations to any significant extent. Excellent agreement between experimental and computed shifts is obtained for 13 C α , while larger scatter is observed for 15 N H chemical shifts, which are influenced to a greater extent by electrostatic interactions, hydrogen bonding, and solvation.

  18. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)

    2017-04-15

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  19. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Natsuki, Jun

    2017-01-01

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  20. Mini-review: Molecular mechanisms of antifouling compounds

    KAUST Repository

    Qian, Pei-Yuan

    2013-04-01

    Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed. © 2013 Copyright Taylor and Francis Group, LLC.

  1. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  2. Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.

    Science.gov (United States)

    Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori

    2016-10-11

    The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an S N 1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.

  3. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    Science.gov (United States)

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Application of DEN refinement and automated model building to a difficult case of molecular-replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum.

    Science.gov (United States)

    Brunger, Axel T; Das, Debanu; Deacon, Ashley M; Grant, Joanna; Terwilliger, Thomas C; Read, Randy J; Adams, Paul D; Levitt, Michael; Schröder, Gunnar F

    2012-04-01

    Phasing by molecular replacement remains difficult for targets that are far from the search model or in situations where the crystal diffracts only weakly or to low resolution. Here, the process of determining and refining the structure of Cgl1109, a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum, at ∼3 Å resolution is described using a combination of homology modeling with MODELLER, molecular-replacement phasing with Phaser, deformable elastic network (DEN) refinement and automated model building using AutoBuild in a semi-automated fashion, followed by final refinement cycles with phenix.refine and Coot. This difficult molecular-replacement case illustrates the power of including DEN restraints derived from a starting model to guide the movements of the model during refinement. The resulting improved model phases provide better starting points for automated model building and produce more significant difference peaks in anomalous difference Fourier maps to locate anomalous scatterers than does standard refinement. This example also illustrates a current limitation of automated procedures that require manual adjustment of local sequence misalignments between the homology model and the target sequence.

  5. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus. a molecular mechanics and molecular dynamics study

    DEFF Research Database (Denmark)

    da Graça Thrige, D; Buur, J R; Jørgensen, Flemming Steen

    1997-01-01

    cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme-substrate complex was determined by evaluation of nonbonded interaction energies between...... water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations...... the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular...

  6. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    Science.gov (United States)

    Barbault, Florent; Maurel, François

    2015-10-01

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  7. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    Science.gov (United States)

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  8. 21 CFR 111.30 - What requirements apply to automated, mechanical, or electronic equipment?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What requirements apply to automated, mechanical, or electronic equipment? 111.30 Section 111.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING...

  9. U.S. technology for mechanized/automated fabrication of fast reactor fuel

    International Nuclear Information System (INIS)

    Nyman, D.H.; Bennett, D.W.; Claudson, T.T.; Dahl, R.E.; Graham, R.A.; Keating, J.J.; Yatabe, J.M.

    1978-01-01

    The status of the U.S. fast reactor Fuel Fabrication Development Program is discussed. The objectives of the program are to develop and evaluate a high throughput pilot fuel fabrication line including close-coupled chemistry and wet scrap recycle operations. The goals of the program are to demonstrate by mechanized/automated and remote processes: reduced personnel exposure, enhanced safegurads/accountability, improved fuel performance, representative fabrication rates and reduced fuel costs

  10. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    Science.gov (United States)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  11. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    Science.gov (United States)

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  12. Molecular mechanisms of fear learning and memory.

    Science.gov (United States)

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Molecular Mechanisms of Renal Ischemic Conditioning Strategies

    DEFF Research Database (Denmark)

    Kierulf-Lassen, Casper; Nieuwenhuijs-Moeke, Gertrude J; Krogstrup, Nicoline V

    2015-01-01

    summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many...

  14. [Neonatal hyperbilirubinemia and molecular mechanisms of jaundice].

    Science.gov (United States)

    Jirsa, M; Sticová, E

    2013-07-01

    The introductory summarises the classical path of heme degradation and classification of jaundice. Subsequently, a description of neonatal types of jaundice is given, known as Crigler Najjar, Gilberts, DubinJohnson and Rotor syndromes, emphasising the explanation of the molecular mechanisms of these metabolic disorders. Special attention is given to a recently discovered molecular mechanism of the Rotor syndrome. The mechanism is based on the inability of the liver to retrospectively uptake the conjugated bilirubin fraction primarily excreted into the blood, not bile. A reduced ability of the liver to uptake the conjugated bilirubin contributes to the development of hyperbilirubinemia in common disorders of the liver and bile ducts and to the toxicity of xenobiotics and drugs using transport proteins for conjugated bilirubin.

  15. Automated cloning methods.; TOPICAL

    International Nuclear Information System (INIS)

    Collart, F.

    2001-01-01

    Argonne has developed a series of automated protocols to generate bacterial expression clones by using a robotic system designed to be used in procedures associated with molecular biology. The system provides plate storage, temperature control from 4 to 37 C at various locations, and Biomek and Multimek pipetting stations. The automated system consists of a robot that transports sources from the active station on the automation system. Protocols for the automated generation of bacterial expression clones can be grouped into three categories (Figure 1). Fragment generation protocols are initiated on day one of the expression cloning procedure and encompass those protocols involved in generating purified coding region (PCR)

  16. Molecular pathogenesis and mechanisms of thyroid cancer

    Science.gov (United States)

    Xing, Mingzhao

    2013-01-01

    Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. PMID:23429735

  17. MO-FG-303-04: A Smartphone Application for Automated Mechanical Quality Assurance of Medical Accelerators

    International Nuclear Information System (INIS)

    Kim, H; Lee, H; Choi, K; Ye, S

    2015-01-01

    Purpose: The mechanical quality assurance (QA) of medical accelerators consists of a time consuming series of procedures. Since most of the procedures are done manually – e.g., checking gantry rotation angle with the naked eye using a level attached to the gantry –, it is considered to be a process with high potential for human errors. To remove the possibilities of human errors and reduce the procedure duration, we developed a smartphone application for automated mechanical QA. Methods: The preparation for the automated process was done by attaching a smartphone to the gantry facing upward. For the assessments of gantry and collimator angle indications, motion sensors (gyroscope, accelerator, and magnetic field sensor) embedded in the smartphone were used. For the assessments of jaw position indicator, cross-hair centering, and optical distance indicator (ODI), an optical-image processing module using a picture taken by the high-resolution camera embedded in the smartphone was implemented. The application was developed with the Android software development kit (SDK) and OpenCV library. Results: The system accuracies in terms of angle detection error and length detection error were < 0.1° and < 1 mm, respectively. The mean absolute error for gantry and collimator rotation angles were 0.03° and 0.041°, respectively. The mean absolute error for the measured light field size was 0.067 cm. Conclusion: The automated system we developed can be used for the mechanical QA of medical accelerators with proven accuracy. For more convenient use of this application, the wireless communication module is under development. This system has a strong potential for the automation of the other QA procedures such as light/radiation field coincidence and couch translation/rotations

  18. MO-FG-303-04: A Smartphone Application for Automated Mechanical Quality Assurance of Medical Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H [Interdisciplinary Program in Radiation applied Life Science, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Lee, H; Choi, K [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Ye, S [Interdisciplinary Program in Radiation applied Life Science, College of Medicine, Seoul National University, Seoul (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The mechanical quality assurance (QA) of medical accelerators consists of a time consuming series of procedures. Since most of the procedures are done manually – e.g., checking gantry rotation angle with the naked eye using a level attached to the gantry –, it is considered to be a process with high potential for human errors. To remove the possibilities of human errors and reduce the procedure duration, we developed a smartphone application for automated mechanical QA. Methods: The preparation for the automated process was done by attaching a smartphone to the gantry facing upward. For the assessments of gantry and collimator angle indications, motion sensors (gyroscope, accelerator, and magnetic field sensor) embedded in the smartphone were used. For the assessments of jaw position indicator, cross-hair centering, and optical distance indicator (ODI), an optical-image processing module using a picture taken by the high-resolution camera embedded in the smartphone was implemented. The application was developed with the Android software development kit (SDK) and OpenCV library. Results: The system accuracies in terms of angle detection error and length detection error were < 0.1° and < 1 mm, respectively. The mean absolute error for gantry and collimator rotation angles were 0.03° and 0.041°, respectively. The mean absolute error for the measured light field size was 0.067 cm. Conclusion: The automated system we developed can be used for the mechanical QA of medical accelerators with proven accuracy. For more convenient use of this application, the wireless communication module is under development. This system has a strong potential for the automation of the other QA procedures such as light/radiation field coincidence and couch translation/rotations.

  19. Resveratrol and Calcium Signaling: Molecular Mechanisms and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Audrey E. McCalley

    2014-06-01

    Full Text Available Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol’s mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol’s actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  20. Quantum chemical approaches: semiempirical molecular orbital and hybrid quantum mechanical/molecular mechanical techniques.

    Science.gov (United States)

    Bryce, Richard A; Hillier, Ian H

    2014-01-01

    The use of computational quantum chemical methods to aid drug discovery is surveyed. An overview of the various computational models spanning ab initio, density function theory, semiempirical molecular orbital (MO), and hybrid quantum mechanical (QM)/molecular mechanical (MM) methods is given and their strengths and weaknesses are highlighted, focussing on the challenge of obtaining the accuracy essential for them to make a meaningful contribution to drug discovery. Particular attention is given to hybrid QM/MM and semiempirical MO methods which have the potential to yield the necessary accurate predictions of macromolecular structure and reactivity. These methods are shown to have advanced the study of many aspects of substrate-ligand interactions relevant to drug discovery. Thus, the successful parametrization of semiempirical MO methods and QM/MM methods can be used to model noncovalent substrate-protein interactions, and to lead to improved scoring functions. QM/MM methods can be used in crystal structure refinement and are particularly valuable for modelling covalent protein-ligand interactions and can thus aid the design of transition state analogues. An extensive collection of examples from the areas of metalloenzyme structure, enzyme inhibition, and ligand binding affinities and scoring functions are used to illustrate the power of these techniques.

  1. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study.

    Science.gov (United States)

    Zwaenepoel, Karen; Merkle, Dennis; Cabillic, Florian; Berg, Erica; Belaud-Rotureau, Marc-Antoine; Grazioli, Vittorio; Herelle, Olga; Hummel, Michael; Le Calve, Michele; Lenze, Dido; Mende, Stefanie; Pauwels, Patrick; Quilichini, Benoit; Repetti, Elena

    2015-02-01

    In the past several years we have observed a significant increase in our understanding of molecular mechanisms that drive lung cancer. Specifically in the non-small cell lung cancer sub-types, ALK gene rearrangements represent a sub-group of tumors that are targetable by the tyrosine kinase inhibitor Crizotinib, resulting in significant reductions in tumor burden. Phase II and III clinical trials were performed using an ALK break-apart FISH probe kit, making FISH the gold standard for identifying ALK rearrangements in patients. FISH is often considered a labor and cost intensive molecular technique, and in this study we aimed to demonstrate feasibility for automation of ALK FISH testing, to improve laboratory workflow and ease of testing. This involved automation of the pre-treatment steps of the ALK assay using various protocols on the VP 2000 instrument, and facilitating automated scanning of the fluorescent FISH specimens for simplified enumeration on various backend scanning and analysis systems. The results indicated that ALK FISH can be automated. Significantly, both the Ikoniscope and BioView system of automated FISH scanning and analysis systems provided a robust analysis algorithm to define ALK rearrangements. In addition, the BioView system facilitated consultation of difficult cases via the internet. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    Science.gov (United States)

    Bayse, Craig A; Merz, Kenneth M

    2014-08-05

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  3. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations.

    Science.gov (United States)

    Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra

    2015-09-24

    Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.

  4. Molecular mechanics of silk nanostructures under varied mechanical loading.

    Science.gov (United States)

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  5. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    Science.gov (United States)

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  6. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  7. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    Science.gov (United States)

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  8. STATINS AND MYOPATHY: MOLECULAR MECHANISMS

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2012-01-01

    Full Text Available The safety of statin therapy is considered. In particular the reasons of a complication such as myopathy are discussed in detail. The molecular mechanisms of statin myopathy , as well as its risk factors are presented. The role of coenzyme Q10 in the myopathy development and coenzyme Q10 application for the prevention of this complication are considered. 

  9. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Saif Ahmad

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1 gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a regulation of SMN gene expression and (b degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.

  10. A pseudobond parametrization for improved electrostatics in quantum mechanical/molecular mechanical simulations of enzymes.

    Science.gov (United States)

    Parks, Jerry M; Hu, Hao; Cohen, Aron J; Yang, Weitao

    2008-10-21

    The pseudobond method is used in quantum mechanical/molecular mechanical (QM/MM) simulations in which a covalent bond connects the quantum mechanical and classical subsystems. In this method, the molecular mechanical boundary atom is replaced by a special quantum mechanical atom with one free valence that forms a bond with the rest of the quantum mechanical subsystem. This boundary atom is modified through the use of a parametrized effective core potential and basis set. The pseudobond is designed to reproduce the properties of the covalent bond that it has replaced, while invoking as small a perturbation as possible on the system. Following the work of Zhang [J. Chem. Phys. 122, 024114 (2005)], we have developed new pseudobond parameters for use in the simulation of enzymatic systems. Our parameters yield improved electrostatics and deprotonation energies, while at the same time maintaining accurate geometries. We provide parameters for C(ps)(sp(3))-C(sp(3)), C(ps)(sp(3))-C(sp(2),carbonyl), and C(ps)(sp(3))-N(sp(3)) pseudobonds, which allow the interface between the quantum mechanical and molecular mechanical subsystems to be constructed at either the C(alpha)-C(beta) bond of a given amino acid residue or along the peptide backbone. In addition, we demonstrate the efficiency of our parametrization method by generating residue-specific pseudobond parameters for a single amino acid. Such an approach may enable higher accuracy than general purpose parameters for specific QM/MM applications.

  11. Molecular dynamics and Monte Carlo calculations in statistical mechanics

    International Nuclear Information System (INIS)

    Wood, W.W.; Erpenbeck, J.J.

    1976-01-01

    Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references

  12. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    Science.gov (United States)

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Molecular mechanisms of fluoride toxicity.

    Science.gov (United States)

    Barbier, Olivier; Arreola-Mendoza, Laura; Del Razo, Luz María

    2010-11-05

    Halfway through the twentieth century, fluoride piqued the interest of toxicologists due to its deleterious effects at high concentrations in human populations suffering from fluorosis and in in vivo experimental models. Until the 1990s, the toxicity of fluoride was largely ignored due to its "good reputation" for preventing caries via topical application and in dental toothpastes. However, in the last decade, interest in its undesirable effects has resurfaced due to the awareness that this element interacts with cellular systems even at low doses. In recent years, several investigations demonstrated that fluoride can induce oxidative stress and modulate intracellular redox homeostasis, lipid peroxidation and protein carbonyl content, as well as alter gene expression and cause apoptosis. Genes modulated by fluoride include those related to the stress response, metabolic enzymes, the cell cycle, cell-cell communications and signal transduction. The primary purpose of this review is to examine recent findings from our group and others that focus on the molecular mechanisms of the action of inorganic fluoride in several cellular processes with respect to potential physiological and toxicological implications. This review presents an overview of the current research on the molecular aspects of fluoride exposure with emphasis on biological targets and their possible mechanisms of involvement in fluoride cytotoxicity. The goal of this review is to enhance understanding of the mechanisms by which fluoride affects cells, with an emphasis on tissue-specific events in humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. The molecular mechanism of gene-radiotherapy of tumor

    International Nuclear Information System (INIS)

    Zhu Xian

    2004-01-01

    Gene-radiotherapy of tumor is a new method which is induced by ionizing radiation. The molecular mechanism is to activate various molecular target by many ways and induce the apoptosis of tumor cell. It is a gene therapy based on the radiation-inducible property of the Egr-1 gene. It has good application prospect in therapy of tumor

  15. Contribution of maintenance group towards automation/mechanization in natural uranium fuel plants

    International Nuclear Information System (INIS)

    Banerjee, P.K.

    1997-01-01

    Competition in an increasingly global economy has created new benchmarks. Developing successful efforts to continuously improve performance is becoming a key responsibility of engineers and managers in all organisations. Recent studies have shown that maintenance has got great impact on the overall performance and profitability of the organisations. Development of mechanization and automation in existing equipment has a direct bearing on the available manpower, production requirement, quality specification for raw material, energy consumption and working environment

  16. Computational exploration of single-protein mechanics by steered molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sotomayor, Marcos [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio (United States)

    2015-12-31

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.

  17. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective.

    Science.gov (United States)

    Bartoli, Claudia; Roux, Fabrice; Lamichhane, Jay Ram

    2016-02-01

    The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human- and plant-pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant-pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant-pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  18. Molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, Roland; Melk, Anette

    2017-09-01

    Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of acute kidney injury and chronic kidney disease. The aging kidney undergoes complex changes that predispose to renal pathology. The underlying molecular mechanisms could be the target of therapeutic strategies in the future. Here, we summarize recent insight into cellular and molecular processes that have been shown to contribute to the renal aging phenotype.The main clinical finding of renal aging is the decrease in glomerular filtration rate, and its structural correlate is the loss of functioning nephrons. Mechanistically, this has been linked to different processes, such as podocyte hypertrophy, glomerulosclerosis, tubular atrophy, and gradual microvascular rarefaction. Renal functional recovery after an episode of acute kidney injury is significantly worse in elderly patients. This decreased regenerative potential, which is a hallmark of the aging process, may be caused by cellular senescence. Accumulation of senescent cells could explain insufficient repair and functional loss, a view that has been strengthened by recent studies showing that removal of senescent cells results in attenuation of renal aging. Other potential mechanisms are alterations in autophagy as an important component of a disturbed renal stress response and functional differences in the inflammatory system. Promising therapeutic measures to counteract these age-related problems include mimetics of caloric restriction, pharmacologic renin-angiotensin-aldosterone system inhibition, and novel strategies of senotherapy with the goal of reducing the number of senescent cells to decrease aging-related disease in the kidney. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. RBioplot: an easy-to-use R pipeline for automated statistical analysis and data visualization in molecular biology and biochemistry

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-09-01

    Full Text Available Background Statistical analysis and data visualization are two crucial aspects in molecular biology and biology. For analyses that compare one dependent variable between standard (e.g., control and one or multiple independent variables, a comprehensive yet highly streamlined solution is valuable. The computer programming language R is a popular platform for researchers to develop tools that are tailored specifically for their research needs. Here we present an R package RBioplot that takes raw input data for automated statistical analysis and plotting, highly compatible with various molecular biology and biochemistry lab techniques, such as, but not limited to, western blotting, PCR, and enzyme activity assays. Method The package is built based on workflows operating on a simple raw data layout, with minimum user input or data manipulation required. The package is distributed through GitHub, which can be easily installed through one single-line R command. A detailed installation guide is available at http://kenstoreylab.com/?page_id=2448. Users can also download demo datasets from the same website. Results and Discussion By integrating selected functions from existing statistical and data visualization packages with extensive customization, RBioplot features both statistical analysis and data visualization functionalities. Key properties of RBioplot include: -Fully automated and comprehensive statistical analysis, including normality test, equal variance test, Student’s t-test and ANOVA (with post-hoc tests; -Fully automated histogram, heatmap and joint-point curve plotting modules; -Detailed output files for statistical analysis, data manipulation and high quality graphs; -Axis range finding and user customizable tick settings; -High user-customizability.

  20. Molecular models of zinc phthalocyanines: semi-empirical molecular orbital computations and physicochemical properties studied by molecular mechanics simulations

    International Nuclear Information System (INIS)

    Gantchev, Tsvetan G.; van Lier, Johan E.; Hunting, Darel J.

    2005-01-01

    To build 3D-molecular models of Zinc-phthalocyanines (ZnPc) and to study their diverse chemical and photosensitization properties, we performed quantum mechanical molecular orbital (MO) semi-empirical (AM1) computations of the ground, excited singlet and triplet states as well as free radical (ionic) species. RHF and UHF (open shell) geometry optimizations led to near-perfect symmetrical ZnPc. Predicted ionization potentials (IP), electron affinities (EA) and lowest electronic transitions of ZnPc are in good agreement with the published experimental and theoretical data. The computation-derived D 4h /D 2h -symmetry 3D-structures of ground and excited states and free radicals of ZnPc, together with the frontier orbital energies and Mulliken electron population analysis enabled us to build robust molecular models. These models were used to predict important chemical-reactivity entities such as global electronegativity (χ), hardness (η) and local softness based on Fukui-functions analysis. Examples of molecular mechanics (MM) applications of the 3D-molecular models are presented as approaches to evaluate solvation free energy (ΔG 0 ) solv and to estimate ground- and excited- state oxidation/reduction potentials as well as intermolecular interactions and stability of ground and excited state dimers (exciplexes) and radical ion-pairs

  1. A coordinated molecular 'fishing' mechanism in heterodimeric kinesin

    International Nuclear Information System (INIS)

    Hou, Ruizheng; Wang, Zhisong

    2010-01-01

    Kar3 is a kinesin motor that facilitates chromosome segregation during cell division. Unlike many members of the kinesin superfamily, Kar3 forms a heterodimer with non-motor protein Vik1 or Cik1 in vivo. The heterodimers show ATP-driven minus-end directed motility along a microtubule (MT) lattice, and also serve as depolymerase at the MT ends. The molecular mechanisms behind this dual functionality remain mysterious. Here, a molecular mechanical model for the Kar3/Vik1 heterodimer based on structural, kinetic and motility data reveals a long-range chemomechanical transmission mechanism that resembles a familiar fishing tactic. By this molecular 'fishing', ATP-binding to Kar3 dissociates catalytically inactive Vik1 off MT to facilitate minus-end sliding of the dimer on the MT lattice. When the dimer binds the frayed ends of MT, the fishing channels ATP hydrolysis energy into MT deploymerization by a mechanochemical effect. The molecular fishing thus provides a unified mechanistic ground for Kar3's dual functionality. The fishing-promoted depolymerization differs from the depolymerase mechanisms found in homodimeric kinesins. The fishing also enables intermolecular coordination with a chemomechanical coupling feature different from the paradigmatic pattern of homodimeric motors. This study rationalizes some puzzling experimental observation, and suggests new experiments for further elucidation of the fishing mechanism

  2. Mechanisms of two-color laser-induced field-free molecular orientation.

    Science.gov (United States)

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally.

  3. Molecular Mechanisms of Neuroplasticity: An Expanding Universe.

    Science.gov (United States)

    Gulyaeva, N V

    2017-03-01

    Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different "hot points" in the research area of biochemical mechanisms supporting neuroplasticity.

  4. Hyperinsulinemic Hypoglycemia ? The Molecular Mechanisms

    OpenAIRE

    Nessa, Azizun; Rahman, Sofia A.; Hussain, Khalid

    2016-01-01

    Under normal physiological conditions, pancreatic β-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5–5.5 mmol/L. In hyperinsulinemic hypoglycemia (HH), this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycemia. HH may be due to genetic causes (congenital) or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretio...

  5. Molecular mechanisms of curcumin action: gene expression.

    Science.gov (United States)

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  6. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of

  7. Automated synthesis with HPLC purification of 18F-FMISO as specific molecular imaging probe of tumor hypoxia

    International Nuclear Information System (INIS)

    Wang Mingwei; Zhang Yingjian; Zhang Yongping

    2012-01-01

    An improved automated synthesis of 1-H-1-(3-[ 18 F] fluoro-2-hydroxypropyl)-2-nitro-imidazole ( 18 F-FMISO), a specific molecular imaging probe of tumor hypoxia, was developed using an upgraded Explora GN module integrated with Explora LC for HPLC purification in this study. The radiochemical synthesis of 18 F-FMISO was started with precursor 1-( 2'-nitro-1'-imidazolyl)-2-O-tetrahydropyranyl-3-O-tosyl-propanediol (NITTP) and included nucleophilic [ 18 F] radio-fluorination at 120℃ for 5 min and hydrolysis at 130℃ for 8 min. The automated synthesis of 18 F-FMISO, presenting fast, reliable and multi-run features, could be completed with the total synthesis time of less than 65 min and radiochemical yield of 25%∼35% (without decay correction). The quality control of 18 F-FMISO was identical with the radiopharmaceutical requirements, especially the radiochemical purity of greater than 99% and high chemical purity and specific activity own to HPLC purification. (authors)

  8. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.

    Directory of Open Access Journals (Sweden)

    Kamfai Chan

    Full Text Available Most molecular diagnostic assays require upfront sample preparation steps to isolate the target's nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer's heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs. Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers.

  9. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection

    Science.gov (United States)

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A.; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A.; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424

  10. A Molecular Dynamics (MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) Study on Ornithine Cyclodeaminase (OCD): A Tale of Two Iminiums

    Science.gov (United States)

    Ion, Bogdan F.; Bushnell, Eric A. C.; De Luna, Phil; Gauld, James W.

    2012-01-01

    Ornithine cyclodeaminase (OCD) is an NAD+-dependent deaminase that is found in bacterial species such as Pseudomonas putida. Importantly, it catalyzes the direct conversion of the amino acid L-ornithine to L-proline. Using molecular dynamics (MD) and a hybrid quantum mechanics/molecular mechanics (QM/MM) method in the ONIOM formalism, the catalytic mechanism of OCD has been examined. The rate limiting step is calculated to be the initial step in the overall mechanism: hydride transfer from the L-ornithine’s Cα–H group to the NAD+ cofactor with concomitant formation of a Cα=NH2 + Schiff base with a barrier of 90.6 kJ mol−1. Importantly, no water is observed within the active site during the MD simulations suitably positioned to hydrolyze the Cα=NH2 + intermediate to form the corresponding carbonyl. Instead, the reaction proceeds via a non-hydrolytic mechanism involving direct nucleophilic attack of the δ-amine at the Cα-position. This is then followed by cleavage and loss of the α-NH2 group to give the Δ1-pyrroline-2-carboxylate that is subsequently reduced to L-proline. PMID:23202934

  11. A Molecular Dynamics (MD and Quantum Mechanics/Molecular Mechanics (QM/MM Study on Ornithine Cyclodeaminase (OCD: A Tale of Two Iminiums

    Directory of Open Access Journals (Sweden)

    James W. Gauld

    2012-10-01

    Full Text Available Ornithine cyclodeaminase (OCD is an NAD+-dependent deaminase that is found in bacterial species such as Pseudomonas putida. Importantly, it catalyzes the direct conversion of the amino acid L-ornithine to L-proline. Using molecular dynamics (MD and a hybrid quantum mechanics/molecular mechanics (QM/MM method in the ONIOM formalism, the catalytic mechanism of OCD has been examined. The rate limiting step is calculated to be the initial step in the overall mechanism: hydride transfer from the L-ornithine’s Cα–H group to the NAD+ cofactor with concomitant formation of a Cα=NH2+ Schiff base with a barrier of 90.6 kJ mol−1. Importantly, no water is observed within the active site during the MD simulations suitably positioned to hydrolyze the Cα=NH2+ intermediate to form the corresponding carbonyl. Instead, the reaction proceeds via a non-hydrolytic mechanism involving direct nucleophilic attack of the δ-amine at the Cα-position. This is then followed by cleavage and loss of the α-NH2 group to give the Δ1-pyrroline-2-carboxylate that is subsequently reduced to L-proline.

  12. Molecular mechanism of Endosulfan action in mammals

    Indian Academy of Sciences (India)

    Keywords. DNA damage; double-strand break; genomic instability; infertility; MMEJ; NHEJ; pesticides. Abstract. Endosulfan is a broad-spectrum organochlorine pesticide, speculated to be detrimental to human health in areas ofactive exposure. However, the molecular insights to its mechanism of action remain poorly ...

  13. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    Science.gov (United States)

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  14. Diagnostic performance of automated liquid culture and molecular line probe assay in smear-negative pulmonary tuberculosis.

    Science.gov (United States)

    Kotwal, Aarti; Biswas, Debasis; Raghuvanshi, Shailendra; Sindhwani, Girish; Kakati, Barnali; Sharma, Shweta

    2017-04-01

    The diagnosis of smear-negative pulmonary tuberculosis (PTB) is particularly challenging, and automated liquid culture and molecular line probe assays (LPA) may prove particularly useful. The objective of our study was to evaluate the diagnostic potential of automated liquid culture (ALC) technology and commercial LPA in sputum smear-negative PTB suspects. Spot sputum samples were collected from 145 chest-symptomatic smear-negative patients and subjected to ALC, direct drug susceptibility test (DST) testing and LPA, as per manufacturers' instructions. A diagnostic yield of 26.2% was observed among sputum smear-negative TB suspects with 47.4% of the culture isolates being either INH- and/or rifampicin-resistant. Complete agreement was observed between the results of ALC assay and LPA except for two isolates which demonstrated sensitivity to INH and rifampicin at direct DST but were rifampicin-resistant in LPA. Two novel mutations were also detected among the multidrug isolates by LPA. In view of the diagnostic challenges associated with the diagnosis of TB in sputum smear-negative patients, our study demonstrates the applicability of ALC and LPA in establishing diagnostic evidence of TB.

  15. Chemical and mechanical efficiencies of molecular motors and implications for motor mechanisms

    International Nuclear Information System (INIS)

    Wang Hongyun

    2005-01-01

    Molecular motors operate in an environment dominated by viscous friction and thermal fluctuations. The chemical reaction in a motor may produce an active force at the reaction site to directly move the motor forward. Alternatively a molecular motor may generate a unidirectional motion by rectifying thermal fluctuations using free energy barriers established in the chemical reaction. The reaction cycle has many occupancy states, each having a different effect on the motor motion. The average effect of the chemical reaction on the motor motion can be characterized by the motor potential profile. The biggest advantage of studying the motor potential profile is that it can be reconstructed from the time series of motor positions measured in single-molecule experiments. In this paper, we use the motor potential profile to express the Stokes efficiency as the product of the chemical efficiency and the mechanical efficiency. We show that both the chemical and mechanical efficiencies are bounded by 100% and, thus, are properly defined efficiencies. We discuss implications of high efficiencies for motor mechanisms: a mechanical efficiency close to 100% implies that the motor potential profile is close to a constant slope; a chemical efficiency close to 100% implies that (i) the chemical transitions are not slower than the mechanical motion and (ii) the equilibrium constant of each chemical transition is close to one

  16. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules.

    Science.gov (United States)

    Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús

    2015-01-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-β-lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Sgrignani, Jacopo; Grazioso, Giovanni; De Amici, Marco

    2016-09-13

    The fast and constant development of drug resistant bacteria represents a serious medical emergency. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this work, we investigated, at the atomistic level, the mechanisms of hydrolysis of Meropenem by OXA-23, a class D β-lactamase, combining unbiased classical molecular dynamics and umbrella sampling simulations with classical force field-based and quantum mechanics/molecular mechanics potentials. Our calculations provide a detailed structural and dynamic picture of the molecular steps leading to the formation of the Meropenem-OXA-23 covalent adduct, the subsequent hydrolysis, and the final release of the inactive antibiotic. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements, validating the expected reaction path.

  18. Molecular mechanisms of canalization: Hsp90 and beyond

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-26

    Mar 26, 2007 ... clients are essential nodes in signal transduction pathways and regulatory circuits, accounting for the .... respective contributions of genetics versus epigenetics ... authors succeeded in elucidating the molecular mechanism.

  19. Symposium on molecular and cellular mechanisms of mutagenesis

    International Nuclear Information System (INIS)

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents

  20. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.

    Science.gov (United States)

    Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier

    2013-02-19

    Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of

  1. Molecular mechanisms for protein-encoded inheritance

    Science.gov (United States)

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  2. Symposium on molecular and cellular mechanisms of mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  3. Multiscale simulations in face-centered cubic metals: A method coupling quantum mechanics and molecular mechanics

    International Nuclear Information System (INIS)

    Yu Xiao-Xiang; Wang Chong-Yu

    2013-01-01

    An effective multiscale simulation which concurrently couples the quantum-mechanical and molecular-mechanical calculations based on the position continuity of atoms is presented. By an iterative procedure, the structure of the dislocation core in face-centered cubic metal is obtained by first-principles calculation and the long-range stress is released by molecular dynamics relaxation. Compared to earlier multiscale methods, the present work couples the long-range strain to the local displacements of the dislocation core in a simpler way with the same accuracy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. High-resolution monitoring of marine protists based on an observation strategy integrating automated on-board filtration and molecular analyses

    Science.gov (United States)

    Metfies, Katja; Schroeder, Friedhelm; Hessel, Johanna; Wollschläger, Jochen; Micheller, Sebastian; Wolf, Christian; Kilias, Estelle; Sprong, Pim; Neuhaus, Stefan; Frickenhaus, Stephan; Petersen, Wilhelm

    2016-11-01

    Information on recent biomass distribution and biogeography of photosynthetic marine protists with adequate temporal and spatial resolution is urgently needed to better understand the consequences of environmental change for marine ecosystems. Here we introduce and review a molecular-based observation strategy for high-resolution assessment of these protists in space and time. It is the result of extensive technology developments, adaptations and evaluations which are documented in a number of different publications, and the results of the recently completed field testing which are introduced in this paper. The observation strategy is organized at four different levels. At level 1, samples are collected at high spatiotemporal resolution using the remotely controlled automated filtration system AUTOFIM. Resulting samples can either be preserved for later laboratory analyses, or directly subjected to molecular surveillance of key species aboard the ship via an automated biosensor system or quantitative polymerase chain reaction (level 2). Preserved samples are analyzed at the next observational levels in the laboratory (levels 3 and 4). At level 3 this involves molecular fingerprinting methods for a quick and reliable overview of differences in protist community composition. Finally, selected samples can be used to generate a detailed analysis of taxonomic protist composition via the latest next generation sequencing technology (NGS) at level 4. An overall integrated dataset of the results based on the different analyses provides comprehensive information on the diversity and biogeography of protists, including all related size classes. At the same time the cost of the observation is optimized with respect to analysis effort and time.

  5. DMPD: Molecular mechanisms of the anti-inflammatory functions of interferons. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18086388 Molecular mechanisms of the anti-inflammatory functions of interferons. Ko....csml) Show Molecular mechanisms of the anti-inflammatory functions of interferons. PubmedID 18086388 Title ...Molecular mechanisms of the anti-inflammatory functions of interferons. Authors K

  6. Molecular mechanisms in radiation damage to DNA: Final report

    International Nuclear Information System (INIS)

    Osman, R.

    1996-01-01

    The objectives of this work were to elucidate the molecular mechanisms that were responsible for radiation-induced DNA damage. The studies were based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA

  7. Automated assembly of micro mechanical parts in a Microfactory setup

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Hansen, Hans Nørgaard; Gegeckaite, Asta

    2006-01-01

    Many micro products in use today are manufactured using semi-automatic assembly. Handling, assembly and transport of the parts are especially labour intense processes. Automation of these processes holds a large potential, especially if flexible, modular microfactories can be developed. This paper...... focuses on the issues that have to be taken into consideration in order to go from a semi-automatic production into an automated microfactory. The application in this study is a switch consisting of 7 parts. The development of a microfactory setup to take care of the automated assembly of the switch...

  8. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    Science.gov (United States)

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  9. Molecular mechanisms of cisplatin resistance in cervical cancer

    Directory of Open Access Journals (Sweden)

    Zhu H

    2016-06-01

    Full Text Available Haiyan Zhu, Hui Luo, Wenwen Zhang, Zhaojun Shen, Xiaoli Hu, Xueqiong Zhu Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China Abstract: Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%–20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer. Keywords: cisplatin, epithelial–mesenchymal transition, microRNA, molecular mechanism, resistance

  10. Combined quantum and molecular mechanics (QM/MM).

    Science.gov (United States)

    Friesner, Richard A

    2004-12-01

    We describe the current state of the art of mixed quantum mechanics/molecular mechanics (QM/MM) methodology, with a particular focus on modeling of enzymatic reactions. Over the past decade, the effectiveness of these methods has increased dramatically, based on improved quantum chemical methods, advances in the description of the QM/MM interface, and reductions in the cost/performance of computing hardware. Two examples of pharmaceutically relevant applications, cytochrome P450 and class C β-lactamase, are presented.: © 2004 Elsevier Ltd . All rights reserved.

  11. Optimization and benchmarking of a perturbative Metropolis Monte Carlo quantum mechanics/molecular mechanics program.

    Science.gov (United States)

    Feldt, Jonas; Miranda, Sebastião; Pratas, Frederico; Roma, Nuno; Tomás, Pedro; Mata, Ricardo A

    2017-12-28

    In this work, we present an optimized perturbative quantum mechanics/molecular mechanics (QM/MM) method for use in Metropolis Monte Carlo simulations. The model adopted is particularly tailored for the simulation of molecular systems in solution but can be readily extended to other applications, such as catalysis in enzymatic environments. The electrostatic coupling between the QM and MM systems is simplified by applying perturbation theory to estimate the energy changes caused by a movement in the MM system. This approximation, together with the effective use of GPU acceleration, leads to a negligible added computational cost for the sampling of the environment. Benchmark calculations are carried out to evaluate the impact of the approximations applied and the overall computational performance.

  12. Automated Methods of Corrosion Measurements

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    1997-01-01

    . Mechanical control, recording, and data processing must therefore be automated to a high level of precision and reliability. These general techniques and the apparatus involved have been described extensively. The automated methods of such high-resolution microscopy coordinated with computerized...

  13. Molecular mechanism of Danshensu on platelet antiaggregation

    Science.gov (United States)

    Yu, Chen; Geng, Feng; Fan, Hua-Ying; Luan, Hai-Yun; Liu, Yue; Ji, Kai; Fu, Feng-Hua

    2018-04-01

    In this study, we detected the effect of Danshensu on PARs-PLCβsignaling pathway to elucidate molecular mechanism of Danshensu on platelet anti-aggregation. Our results demonstrate that Danshensu is able to decrease the levels of IP3, Ca2+ and AA secretion, which indicate that Danshensu may involve in PARs-PLCβ signaling pathways. Molecular docking study shows that Danshesu has similar polar interactions with PAR1 receptors as BMS200261 at the same position. The findings from our study enable a better understanding of Danshensu biological properties, which could ultimately lead to the development of multi-target antiplatelet natural medicine for the treatment and/or prevention of some thrombotic diseases.

  14. Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Madsen, D.E.; Esbensen, A.L.

    2004-01-01

    of the (gg, gt and tg) rotamers of methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol. respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second...... for monosaccharide carbohydrate benchmark systems. Selected results are: (i) The interaction energy of the alpha-D-alucopyranose-H2O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error...

  15. Automating the CMS DAQ

    International Nuclear Information System (INIS)

    Bauer, G; Darlea, G-L; Gomez-Ceballos, G; Bawej, T; Chaze, O; Coarasa, J A; Deldicque, C; Dobson, M; Dupont, A; Gigi, D; Glege, F; Gomez-Reino, R; Hartl, C; Hegeman, J; Masetti, L; Behrens, U; Branson, J; Cittolin, S; Holzner, A; Erhan, S

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90% and to even improve it to 95% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  16. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  17. [Molecular Biology on the Mechanisms of Autism Spectrum Disorder for Clinical Psychiatrists].

    Science.gov (United States)

    Makinodan, Manabu

    2015-01-01

    While, in general, a certain number of clinical psychiatrists might not be familiar with molecular biology, the mechanisms of mental illnesses have been uncovered by molecular biology for decades. Among mental illnesses, even biological psychiatrists and neuroscientists have paid less attention to the biological treatment of autism spectrum disorder (ASD) than Alzheimer's disease and schizophrenia since ASD has been regarded as a developmental disorder that was seemingly untreatable. However, multifaceted methods of molecular biology have revealed the mechanisms that would lead to the medication of ASD. In this article, how molecular biology dissects the pathobiology of ASD is described in order to announce the possibilities of biological treatment for clinical psychiatrists.

  18. Molecular mechanisms of the sleep wake cycle : therapeutic applications to insomnia

    OpenAIRE

    Grima, Melanie; Hunter, Therese; Zhang, Yimeng

    2017-01-01

    The aim of this review is to explore the molecular mechanism and genetic components of the sleepwake cycle and insomnia. Moreover, we wanted to review the correlation between primary insomnia and its comorbidities. With this aim, a systematic review of recent evidence of the molecular and genetic mechanisms involved in the causation of primary insomnia, along with associations between primary insomnia and other diseases were conducted. Primary insomnia is a complex disorder which accounts for...

  19. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    Science.gov (United States)

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Cis-to- Trans Isomerization of Azobenzene Derivatives Studied with Transition Path Sampling and Quantum Mechanical/Molecular Mechanical Molecular Dynamics.

    Science.gov (United States)

    Muždalo, Anja; Saalfrank, Peter; Vreede, Jocelyne; Santer, Mark

    2018-04-10

    Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of

  1. Graph-drawing algorithms geometries versus molecular mechanics in fullereness

    Science.gov (United States)

    Kaufman, M.; Pisanski, T.; Lukman, D.; Borštnik, B.; Graovac, A.

    1996-09-01

    The algorithms of Kamada-Kawai (KK) and Fruchterman-Reingold (FR) have been recently generalized (Pisanski et al., Croat. Chem. Acta 68 (1995) 283) in order to draw molecular graphs in three-dimensional space. The quality of KK and FR geometries is studied here by comparing them with the molecular mechanics (MM) and the adjacency matrix eigenvectors (AME) algorithm geometries. In order to compare different layouts of the same molecule, an appropriate method has been developed. Its application to a series of experimentally detected fullerenes indicates that the KK, FR and AME algorithms are able to reproduce plausible molecular geometries.

  2. Crosstalk between Apoptosis and Autophagy: Molecular Mechanisms and Therapeutic Strategies in Cancer

    Directory of Open Access Journals (Sweden)

    Abdelouahid El-Khattouti

    2013-01-01

    Full Text Available Both apoptosis and autophagy are highly conserved processes that besides their role in the maintenance of the organismal and cellular homeostasis serve as a main target of tumor therapeutics. Although their important roles in the modulation of tumor therapeutic strategies have been widely reported, the molecular actions of both apoptosis and autophagy are counteracted by cancer protective mechanisms. While apoptosis is a tightly regulated process that is implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in lysosomal degradation and recycling of proteins and organelles, and thereby is considered an important survival/protective mechanism for cancer cells in response to metabolic stress or chemotherapy. Although the relationship between autophagy and cell death is very complicated and has not been characterized in detail, the molecular mechanisms that control this relationship are considered to be a relevant target for the development of a therapeutic strategy for tumor treatment. In this review, we focus on the molecular mechanisms of apoptosis, autophagy, and those of the crosstalk between apoptosis and autophagy in order to provide insight into the molecular mechanisms that may be essential for the balance between cell survival and death as well as their role as targets for the development of novel therapeutic approaches.

  3. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    Science.gov (United States)

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  4. 21 CFR 866.2170 - Automated colony counter.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony counter. (a) Identification. An automated colony counter is a mechanical device intended for medical...

  5. Mechanical and molecular studies of biocomposites filled with oil palm empty fruit bunches microfibers

    Science.gov (United States)

    Nikmatin, S.; Saepulloh, D. R.; Irmansyah; Syafiuddin, A.

    2017-05-01

    The present work aims to investigate mechanical and molecular characteristics of acrylonitrile butadiene styrene (ABS) composites filled with oil palm empty fruit bunches (OPEFB) microfibers. OPEFB microfibers were produced using mechanical milling. Composite granules were fabricated using single screw extruder. These composites were then used for fabricating helmet according to the Indonesian National Standard (SNI). Mechanical testing confirms that the helmet produced using this biocomposites are suitable to the SNI. Molecular interaction between matrix with OPEFB can be described using orbital hybridization theory. In general, this study has successfully investigated mechanical and molecular properties of the biocomposites.

  6. A knowledge- and model-based system for automated weaning from mechanical ventilation: technical description and first clinical application.

    Science.gov (United States)

    Schädler, Dirk; Mersmann, Stefan; Frerichs, Inéz; Elke, Gunnar; Semmel-Griebeler, Thomas; Noll, Oliver; Pulletz, Sven; Zick, Günther; David, Matthias; Heinrichs, Wolfgang; Scholz, Jens; Weiler, Norbert

    2014-10-01

    To describe the principles and the first clinical application of a novel prototype automated weaning system called Evita Weaning System (EWS). EWS allows an automated control of all ventilator settings in pressure controlled and pressure support mode with the aim of decreasing the respiratory load of mechanical ventilation. Respiratory load takes inspired fraction of oxygen, positive end-expiratory pressure, pressure amplitude and spontaneous breathing activity into account. Spontaneous breathing activity is assessed by the number of controlled breaths needed to maintain a predefined respiratory rate. EWS was implemented as a knowledge- and model-based system that autonomously and remotely controlled a mechanical ventilator (Evita 4, Dräger Medical, Lübeck, Germany). In a selected case study (n = 19 patients), ventilator settings chosen by the responsible physician were compared with the settings 10 min after the start of EWS and at the end of the study session. Neither unsafe ventilator settings nor failure of the system occurred. All patients were successfully transferred from controlled ventilation to assisted spontaneous breathing in a mean time of 37 ± 17 min (± SD). Early settings applied by the EWS did not significantly differ from the initial settings, except for the fraction of oxygen in inspired gas. During the later course, EWS significantly modified most of the ventilator settings and reduced the imposed respiratory load. A novel prototype automated weaning system was successfully developed. The first clinical application of EWS revealed that its operation was stable, safe ventilator settings were defined and the respiratory load of mechanical ventilation was decreased.

  7. Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.

    Science.gov (United States)

    König, Gerhard; Mei, Ye; Pickard, Frank C; Simmonett, Andrew C; Miller, Benjamin T; Herbert, John M; Woodcock, H Lee; Brooks, Bernard R; Shao, Yihan

    2016-01-12

    A recently developed MESS-E-QM/MM method (multiple-environment single-system quantum mechanical molecular/mechanical calculations with a Roothaan-step extrapolation) is applied to the computation of hydration free energies for the blind SAMPL4 test set and for 12 small molecules. First, free energy simulations are performed with a classical molecular mechanics force field using fixed-geometry solute molecules and explicit TIP3P solvent, and then the non-Boltzmann-Bennett method is employed to compute the QM/MM correction (QM/MM-NBB) to the molecular mechanical hydration free energies. For the SAMPL4 set, MESS-E-QM/MM-NBB corrections to the hydration free energy can be obtained 2 or 3 orders of magnitude faster than fully converged QM/MM-NBB corrections, and, on average, the hydration free energies predicted with MESS-E-QM/MM-NBB fall within 0.10-0.20 kcal/mol of full-converged QM/MM-NBB results. Out of five density functionals (BLYP, B3LYP, PBE0, M06-2X, and ωB97X-D), the BLYP functional is found to be most compatible with the TIP3P solvent model and yields the most accurate hydration free energies against experimental values for solute molecules included in this study.

  8. Molecular Mechanisms in Exercise-Induced Cardioprotection

    Directory of Open Access Journals (Sweden)

    Saeid Golbidi

    2011-01-01

    Full Text Available Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.

  9. A quantum mechanical/molecular mechanical study of the hydroxylation of phenol and halogeneted derivatives by phenol hydroxylase

    NARCIS (Netherlands)

    Ridder, L.; Mulholland, A.J.; Rietjens, I.M.C.M.; Vervoort, J.

    2000-01-01

    A combined quantum mechanical and molecular mechanical (QM/MM) method (AM1/CHARMM) was used to investigate the mechanism of the aromatic hydroxylation of phenol by a flavin dependent phenol hydroxylase (PH), an essential reaction in the degradation of a wide range of aromatic compounds. The model

  10. Survival under stress: molecular mechanisms of metabolic rate ...

    African Journals Online (AJOL)

    Studies in my laboratory are analysing the molecular mechanisms and regulatory events that underlie transitions to and from hypometabolic states In systems including anoxia-tolerant turtles and molluscs, estivating snails and toads, hibernating small mammals, and freeze tolerant frogs and insects. Our newest research ...

  11. Identifying novel drug indications through automated reasoning.

    Directory of Open Access Journals (Sweden)

    Luis Tari

    Full Text Available With the large amount of pharmacological and biological knowledge available in literature, finding novel drug indications for existing drugs using in silico approaches has become increasingly feasible. Typical literature-based approaches generate new hypotheses in the form of protein-protein interactions networks by means of linking concepts based on their cooccurrences within abstracts. However, this kind of approaches tends to generate too many hypotheses, and identifying new drug indications from large networks can be a time-consuming process.In this work, we developed a method that acquires the necessary facts from literature and knowledge bases, and identifies new drug indications through automated reasoning. This is achieved by encoding the molecular effects caused by drug-target interactions and links to various diseases and drug mechanism as domain knowledge in AnsProlog, a declarative language that is useful for automated reasoning, including reasoning with incomplete information. Unlike other literature-based approaches, our approach is more fine-grained, especially in identifying indirect relationships for drug indications.To evaluate the capability of our approach in inferring novel drug indications, we applied our method to 943 drugs from DrugBank and asked if any of these drugs have potential anti-cancer activities based on information on their targets and molecular interaction types alone. A total of 507 drugs were found to have the potential to be used for cancer treatments. Among the potential anti-cancer drugs, 67 out of 81 drugs (a recall of 82.7% are indeed known cancer drugs. In addition, 144 out of 289 drugs (a recall of 49.8% are non-cancer drugs that are currently tested in clinical trials for cancer treatments. These results suggest that our method is able to infer drug indications (original or alternative based on their molecular targets and interactions alone and has the potential to discover novel drug indications for

  12. Understanding the molecular mechanisms of reprogramming

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Marie N. [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); University Hospital of Würzburg, Department of Pediatrics, 2 Josef-Schneiderstrasse, 97080 Würzburg (Germany); Sancho-Martinez, Ignacio [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); Centre for Stem Cells and Regenerative Medicine, King' s College London, 28th Floor, Tower Wing, Guy' s Hospital, Great Maze Pond, London (United Kingdom); Izpisua Belmonte, Juan Carlos, E-mail: belmonte@salk.edu [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States)

    2016-05-06

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called “Pioneer TFs”, play an important role during the stochastic phase of iPSC reprogramming [2–6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. - Highlights: • Pioneer transcription factor activity underlies the initial steps of iPSC generation. • Reprogramming can occur by cis- and/or trans- reprogramming events. • Cis-reprogramming implies remodeling of the chromatin for enabling TF accessibility. • Trans-reprogramming encompasses direct binding of Tfs to their target gene promoters.

  13. Imaging features of automated breast volume scanner: Correlation with molecular subtypes of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Feng-Yang, E-mail: fyzheng16@fudan.edu.cn [Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032 (China); Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Lu, Qing, E-mail: lu.qing@zs-hospital.sh.cn [Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032 (China); Huang, Bei-Jian, E-mail: huang.beijian@zs-hospital.sh.cn [Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032 (China); Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Xia, Han-Sheng, E-mail: zs12036@126.com [Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032 (China); Yan, Li-Xia, E-mail: dndyanlixia@163.com [Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032 (China); Wang, Xi, E-mail: wang.xi@zs-hospital.sh.cn [Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032 (China); Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Yuan, Wei, E-mail: yuan.wei@zs-hospital.sh.cn [Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032 (China); Wang, Wen-Ping, E-mail: wang.wenping@zs-hospital.sh.cn [Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032 (China); Shanghai Institute of Medical Imaging, Shanghai 200032 (China)

    2017-01-15

    Highlights: • ABVS imaging features have a strong correlation with breast cancer molecular subtypes. • Retraction phenomenon on the coronal planes was the most important predictor for Luminal A and Triple Negative subtypes. • ABVS expand the scope of ultrasound in identifying breast cancer molecular subtypes. - Abstract: Objectives: To investigate the correlation between the imaging features obtained by an automated breast volume scanner (ABVS) and molecular subtypes of breast cancer. Methods: We examined 303 malignant breast tumours by ABVS for specific imaging features and by immunohistochemical analysis to determine the molecular subtype. ABVS imaging features, including retraction phenomenon, shape, margins, echogenicity, post-acoustic features, echogenic halo, and calcifications were analysed by univariate and multivariate logistic regression analyses to determine the significant predictive factors of the molecular subtypes. Results: By univariate logistic regression analysis, the predictive factors of the Luminal-A subtype (n = 128) were retraction phenomenon (odds ratio [OR] = 10.188), post-acoustic shadowing (OR = 5.112), and echogenic halo (OR = 3.263, P < 0.001). The predictive factors of the Human-epidermal-growth-factor-receptor-2-amplified subtype (n = 39) were calcifications (OR = 6.210), absence of retraction phenomenon (OR = 4.375), non-mass lesions (OR = 4.286, P < 0.001), absence of echogenic halo (OR = 3.851, P = 0.035), and post-acoustic enhancement (OR = 3.641, P = 0.008). The predictors for the Triple-Negative subtype (n = 47) were absence of retraction phenomenon (OR = 5.884), post-acoustic enhancement (OR = 5.255, P < 0.001), absence of echogenic halo (OR = 4.138, P = 0.002), and absence of calcifications (OR = 3.363, P = 0.001). Predictors for the Luminal-B subtype (n = 89) had a relatively lower association (OR ≤ 2.328). By multivariate logistic regression analysis, retraction phenomenon was the strongest independent predictor for

  14. Imaging features of automated breast volume scanner: Correlation with molecular subtypes of breast cancer

    International Nuclear Information System (INIS)

    Zheng, Feng-Yang; Lu, Qing; Huang, Bei-Jian; Xia, Han-Sheng; Yan, Li-Xia; Wang, Xi; Yuan, Wei; Wang, Wen-Ping

    2017-01-01

    Highlights: • ABVS imaging features have a strong correlation with breast cancer molecular subtypes. • Retraction phenomenon on the coronal planes was the most important predictor for Luminal A and Triple Negative subtypes. • ABVS expand the scope of ultrasound in identifying breast cancer molecular subtypes. - Abstract: Objectives: To investigate the correlation between the imaging features obtained by an automated breast volume scanner (ABVS) and molecular subtypes of breast cancer. Methods: We examined 303 malignant breast tumours by ABVS for specific imaging features and by immunohistochemical analysis to determine the molecular subtype. ABVS imaging features, including retraction phenomenon, shape, margins, echogenicity, post-acoustic features, echogenic halo, and calcifications were analysed by univariate and multivariate logistic regression analyses to determine the significant predictive factors of the molecular subtypes. Results: By univariate logistic regression analysis, the predictive factors of the Luminal-A subtype (n = 128) were retraction phenomenon (odds ratio [OR] = 10.188), post-acoustic shadowing (OR = 5.112), and echogenic halo (OR = 3.263, P < 0.001). The predictive factors of the Human-epidermal-growth-factor-receptor-2-amplified subtype (n = 39) were calcifications (OR = 6.210), absence of retraction phenomenon (OR = 4.375), non-mass lesions (OR = 4.286, P < 0.001), absence of echogenic halo (OR = 3.851, P = 0.035), and post-acoustic enhancement (OR = 3.641, P = 0.008). The predictors for the Triple-Negative subtype (n = 47) were absence of retraction phenomenon (OR = 5.884), post-acoustic enhancement (OR = 5.255, P < 0.001), absence of echogenic halo (OR = 4.138, P = 0.002), and absence of calcifications (OR = 3.363, P = 0.001). Predictors for the Luminal-B subtype (n = 89) had a relatively lower association (OR ≤ 2.328). By multivariate logistic regression analysis, retraction phenomenon was the strongest independent predictor for

  15. Home automation as an example of construction innovation

    NARCIS (Netherlands)

    Vlies, R.D. van der; Bronswijk, J.E.M.H. van

    2009-01-01

    Home automation can contribute to the health of (older) adults. Home automation covers a broad field of ‘intelligent’ electronic or mechanical devices in the home (domestic) environment. Realizing home automation is technically possible, though still not common. In this paper main influential

  16. Programmed necrosis and necroptosis – molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Agata Giżycka

    2015-12-01

    Full Text Available Programmed necrosis has been proven vital for organism development and homeostasis maintenance. Its regulatory effects on functional activity of the immune system, as well as on pathways regulating the death mechanisms in cells with diminished apoptotic activity, including malignant cells, have been confirmed. There is also increasing evidence indicating necrosis involvement in many human pathologies. Contrary to previous beliefs, necrosis is not only a passive, pathological, gene-independent process. However, the current knowledge regarding molecular regulation of programmed necrosis is scarce. In part this is due to the multiplicity and complexity of signaling pathways involved in programmed necrosis, as well as the absence of specific cellular markers identifying this process, but also the ambiguous and imprecise international terminology. This review presents the current state of the art on molecular mechanisms of programmed necrosis. In particular, its specific and frequent form, necroptosis, is discussed. The role of RIP1 and RIP3 kinases in this process is presented, as well as the diverse pathways induced by ligation of tumor necrosis factor α, to its receptor, TNFR1, i.e. cell survival, apoptosis or necroptosis.

  17. Advances on molecular mechanism of the adaptive evolution of Chiroptera (bats).

    Science.gov (United States)

    Yunpeng, Liang; Li, Yu

    2015-01-01

    As the second biggest animal group in mammals, Chiroptera (bats) demonstrates many unique adaptive features in terms of flight, echolocation, auditory acuity, feeding habit, hibernation and immune defense, providing an excellent system for understanding the molecular basis of how organisms adapt to the living environments encountered. In this review, we summarize the researches on the molecular mechanism of the adaptive evolution of Chiroptera, especially the recent researches at the genome levels, suggesting a far more complex evolutionary pattern and functional diversity than previously thought. In the future, along with the increasing numbers of Chiroptera species genomes available, new evolutionary patterns and functional divergence will be revealed, which can promote the further understanding of this animal group and the molecular mechanism of adaptive evolution.

  18. Drugs meeting the molecular basis of diabetic kidney disease: bridging from molecular mechanism to personalized medicine.

    Science.gov (United States)

    Lambers Heerspink, Hiddo J; Oberbauer, Rainer; Perco, Paul; Heinzel, Andreas; Heinze, Georg; Mayer, Gert; Mayer, Bernd

    2015-08-01

    Diabetic kidney disease (DKD) is a complex, multifactorial disease and is associated with a high risk of renal and cardiovascular morbidity and mortality. Clinical practice guidelines for diabetes recommend essentially identical treatments for all patients without taking into account how the individual responds to the instituted therapy. Yet, individuals vary widely in how they respond to medications and therefore optimal therapy differs between individuals. Understanding the underlying molecular mechanisms of variability in drug response will help tailor optimal therapy. Polymorphisms in genes related to drug pharmacokinetics have been used to explore mechanisms of response variability in DKD, but with limited success. The complex interaction between genetic make-up and environmental factors on the abundance of proteins and metabolites renders pharmacogenomics alone insufficient to fully capture response variability. A complementary approach is to attribute drug response variability to individual variability in underlying molecular mechanisms involved in the progression of disease. The interplay of different processes (e.g. inflammation, fibrosis, angiogenesis, oxidative stress) appears to drive disease progression, but the individual contribution of each process varies. Drugs at the other hand address specific targets and thereby interfere in certain disease-associated processes. At this level, biomarkers may help to gain insight into which specific pathophysiological processes are involved in an individual followed by a rational assessment whether a specific drug's mode of action indeed targets the relevant process at hand. This article describes the conceptual background and data-driven workflow developed by the SysKid consortium aimed at improving characterization of the molecular mechanisms underlying DKD at the interference of the molecular impact of individual drugs in order to tailor optimal therapy to individual patients. © The Author 2015. Published by

  19. Self-renewal molecular mechanisms of colorectal cancer stem cells.

    Science.gov (United States)

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2017-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer.

  20. Process development for automated solar-cell and module production. Task 4. Automated array assembly. Quarterly report No. 3

    Energy Technology Data Exchange (ETDEWEB)

    Hagerty, J. J.; Gifford, M.

    1981-04-15

    The Automated Lamination Station is mechanically complete and is currently undergoing final wiring. The high current driver and isolator boards have been completed and installed, and the main interface board is under construction. The automated vacuum chamber has had a minor redesign to increase stiffness and improve the cover open/close mechanism. Design of the Final Assembly Station has been completed and construction is underway.

  1. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The general atomic and molecular electronic structure system HONDO: Version 7.0

    International Nuclear Information System (INIS)

    Dupuis, M.; Watts, J.D.; Villar, H.O.; Hurst, G.J.B.

    1989-01-01

    We describe a computer program for ab initio quantum mechanical calculations of atomic and molecular wavefunctions and energies. Capabilities for the calculation of energy gradients and second derivatives with respect to nuclear coordinates are provided for several types of wavefunctions. Calculations of many molecular properties based on the electron density are possible. The program contains automated algorithms for the determination of equilibrium structures, saddle points, reaction pathways, vibrational spectra including infrared and Raman intensities. We illustrate the capabilities of the program by highlighting research problems recently investigated with the present program. (orig.)

  3. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    Science.gov (United States)

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  4. Nanostructure and molecular mechanics of spider dragline silk protein assemblies

    Science.gov (United States)

    Keten, Sinan; Buehler, Markus J.

    2010-01-01

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre. PMID:20519206

  5. Molecular mechanisms in gliomagenesis

    DEFF Research Database (Denmark)

    Hulleman, Esther; Helin, Kristian

    2005-01-01

    Glioma, and in particular high-grade astrocytoma termed glioblastoma multiforme (GBM), is the most common primary tumor of the brain. Primarily because of its diffuse nature, there is no effective treatment for GBM, and relatively little is known about the processes by which it develops. Therefore......, in order to design novel therapies and treatments for GBM, research has recently intensified to identify the cellular and molecular mechanisms leading to GBM formation. Modeling of astrocytomas by genetic manipulation of mice suggests that deregulation of the pathways that control gliogenesis during normal...... brain development, such as the differentiation of neural stem cells (NSCs) into astrocytes, might contribute to GBM formation. These pathways include growth factor-induced signal transduction routes and processes that control cell cycle progression, such as the p16-CDK4-RB and the ARF-MDM2-p53 pathways...

  6. Forcefields based molecular modeling on the mechanical and physical properties of emeraldine base polyaniline

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, K.Y.; Zhang, G.Q.

    2010-01-01

    Molecular dynamics (MD) and molecular mechanical (MM) analysis are carried out to provide reliable and accurate model for emeraldine base polyaniline. This study validate the forcefields and model with the physical and mechanical properties of the polyaniline. The temperature effects on non-bond

  7. A quantum-mechanics molecular-mechanics scheme for extended systems

    International Nuclear Information System (INIS)

    Hunt, Diego; Scherlis, Damián A; Sanchez, Veronica M

    2016-01-01

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car–Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO 2 anatase (1 0 1) solid–liquid interface. This investigation suggests that the inclusion of a second monolayer of H 2 O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces. (paper)

  8. A quantum-mechanics molecular-mechanics scheme for extended systems.

    Science.gov (United States)

    Hunt, Diego; Sanchez, Veronica M; Scherlis, Damián A

    2016-08-24

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  9. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis

    Science.gov (United States)

    Yang, Oneyeol; Kim, Hye Lim; Weon, Jong-Il; Seo, Young Rok

    2015-01-01

    Endocrine disruptors are known to cause harmful effects to human through various exposure routes. These chemicals mainly appear to interfere with the endocrine or hormone systems. As importantly, numerous studies have demonstrated that the accumulation of endocrine disruptors can induce fatal disorders including obesity and cancer. Using diverse biological tools, the potential molecular mechanisms related with these diseases by exposure of endocrine disruptors. Recently, pathway analysis, a bioinformatics tool, is being widely used to predict the potential mechanism or biological network of certain chemicals. In this review, we initially summarize the major molecular mechanisms involved in the induction of the above mentioned diseases by endocrine disruptors. Additionally, we provide the potential markers and signaling mechanisms discovered via pathway analysis under exposure to representative endocrine disruptors, bisphenol, diethylhexylphthalate, and nonylphenol. The review emphasizes the importance of pathway analysis using bioinformatics to finding the specific mechanisms of toxic chemicals, including endocrine disruptors. PMID:25853100

  10. Using molecular mechanics to predict bulk material properties of fibronectin fibers.

    Directory of Open Access Journals (Sweden)

    Mark J Bradshaw

    Full Text Available The structural proteins of the extracellular matrix (ECM form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional

  11. Molecular medicine of fragile X syndrome: based on known molecular mechanisms.

    Science.gov (United States)

    Luo, Shi-Yu; Wu, Ling-Qian; Duan, Ran-Hui

    2016-02-01

    Extensive research on fragile X mental retardation gene knockout mice and mutant Drosophila models has largely expanded our knowledge on mechanism-based treatment of fragile X syndrome (FXS). In light of these findings, several clinical trials are now underway for therapeutic translation to humans. Electronic literature searches were conducted using the PubMed database and ClinicalTrials.gov. The search terms included "fragile X syndrome", "FXS and medication", "FXS and therapeutics" and "FXS and treatment". Based on the publications identified in this search, we reviewed the neuroanatomical abnormalities in FXS patients and the potential pathogenic mechanisms to monitor the progress of FXS research, from basic studies to clinical trials. The pathological mechanisms of FXS were categorized on the basis of neuroanatomy, synaptic structure, synaptic transmission and fragile X mental retardation protein (FMRP) loss of function. The neuroanatomical abnormalities in FXS were described to motivate extensive research into the region-specific pathologies in the brain responsible for FXS behavioural manifestations. Mechanism-directed molecular medicines were classified according to their target pathological mechanisms, and the most recent progress in clinical trials was discussed. Current mechanism-based studies and clinical trials have greatly contributed to the development of FXS pharmacological therapeutics. Research examining the extent to which these treatments provided a rescue effect or FMRP compensation for the developmental impairments in FXS patients may help to improve the efficacy of treatments.

  12. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    Science.gov (United States)

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  13. Automated building of organometallic complexes from 3D fragments.

    Science.gov (United States)

    Foscato, Marco; Venkatraman, Vishwesh; Occhipinti, Giovanni; Alsberg, Bjørn K; Jensen, Vidar R

    2014-07-28

    A method for the automated construction of three-dimensional (3D) molecular models of organometallic species in design studies is described. Molecular structure fragments derived from crystallographic structures and accurate molecular-level calculations are used as 3D building blocks in the construction of multiple molecular models of analogous compounds. The method allows for precise control of stereochemistry and geometrical features that may otherwise be very challenging, or even impossible, to achieve with commonly available generators of 3D chemical structures. The new method was tested in the construction of three sets of active or metastable organometallic species of catalytic reactions in the homogeneous phase. The performance of the method was compared with those of commonly available methods for automated generation of 3D models, demonstrating higher accuracy of the prepared 3D models in general, and, in particular, a much wider range with respect to the kind of chemical structures that can be built automatically, with capabilities far beyond standard organic and main-group chemistry.

  14. Illustrating the Molecular Origin of Mechanical Stress in Ductile Deformation of Polymer Glasses.

    Science.gov (United States)

    Li, Xiaoxiao; Liu, Jianning; Liu, Zhuonan; Tsige, Mesfin; Wang, Shi-Qing

    2018-02-16

    New experiments show that tensile stress vanishes shortly after preyield deformation of polymer glasses while tensile stress after postyield deformation stays high and relaxes on much longer time scales, thus hinting at a specific molecular origin of stress in ductile cold drawing: chain tension rather than intersegmental interactions. Molecular dynamics simulation based on a coarse-grained model for polystyrene confirms the conclusion that the chain network plays an essential role, causing the glassy state to yield and to respond with a high level of intrachain retractive stress. This identification sheds light on the future development regarding an improved theoretical account for molecular mechanics of polymer glasses and the molecular design of stronger polymeric materials to enhance their mechanical performance.

  15. Illustrating the Molecular Origin of Mechanical Stress in Ductile Deformation of Polymer Glasses

    Science.gov (United States)

    Li, Xiaoxiao; Liu, Jianning; Liu, Zhuonan; Tsige, Mesfin; Wang, Shi-Qing

    2018-02-01

    New experiments show that tensile stress vanishes shortly after preyield deformation of polymer glasses while tensile stress after postyield deformation stays high and relaxes on much longer time scales, thus hinting at a specific molecular origin of stress in ductile cold drawing: chain tension rather than intersegmental interactions. Molecular dynamics simulation based on a coarse-grained model for polystyrene confirms the conclusion that the chain network plays an essential role, causing the glassy state to yield and to respond with a high level of intrachain retractive stress. This identification sheds light on the future development regarding an improved theoretical account for molecular mechanics of polymer glasses and the molecular design of stronger polymeric materials to enhance their mechanical performance.

  16. Nuclear Magnetic Shielding Constants from Quantum Mechanical/Molecular Mechanical Calculations Using Polarizable Embedding: Role of the Embedding Potential

    DEFF Research Database (Denmark)

    Steinmann, Casper; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2014-01-01

    We present NMR shielding constants obtained through quantum mechanical/molecular mechanical (QM/MM) embedding calculations. Contrary to previous reports, we show that a relatively small QM region is sufficient, provided that a high-quality embedding potential is used. The calculated averaged NMR...... shielding constants of both acrolein and acetone solvated in water are based on a number of snapshots extracted from classical molecular dynamics simulations. We focus on the carbonyl chromophore in both molecules, which shows large solvation effects, and we study the convergence of shielding constants...

  17. Molecular Mechanisms Behind the Chemopreventive Effects of Anthocyanidins

    Directory of Open Access Journals (Sweden)

    De-Xing Hou

    2004-01-01

    Full Text Available Anthocyanins are polyphenolic ring-based flavonoids, and are widespread in fruits and vegetables of red-blue color. Epidemiological investigations and animal experiments have indicated that anthocyanins may contribute to cancer chemoprevention. The studies on the mechanism have been done recently at molecular level. This review summarizes current molecular bases for anthocyanidins on several key steps involved in cancer chemoprevention: (i inhibition of anthocyanidins in cell transformation through targeting mitogen-activated protein kinase (MAPK pathway and activator protein 1 (AP-1 factor; (ii suppression of anthocyanidins in inflammation and carcinogenesis through targeting nuclear factor kappa B (NF-κB pathway and cyclooxygenase 2 (COX-2 gene; (iii apoptotic induction of cancer cells by anthocyanidins through reactive oxygen species (ROS / c-Jun NH2-terminal kinase (JNK-mediated caspase activation. These data provide a first molecular view of anthocyanidins contributing to cancer chemoprevention.

  18. Molecular mechanisms in radiation damage to DNA

    International Nuclear Information System (INIS)

    Osman, R.

    1991-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypothesis regarding the processes of impairment of regulation of gene expression, alternation in DNA repair, and damage to DNA structure involved in cell death or cancer

  19. Disassembly automation automated systems with cognitive abilities

    CERN Document Server

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  20. Combined quantum mechanical and molecular mechanical reaction pathway calculation for aromatic hydroxylation by p-hydroxybenzoate-3-hydroxylase

    NARCIS (Netherlands)

    Ridder, L.; Mulholland, A.; Rietjens, I.M.C.M.; Vervoort, J.

    1999-01-01

    The reaction pathway for the aromatic 3-hydroxylation of p-hydroxybenzoate by the reactive C4a-hydroperoxyflavin cofactor intermediate in p-hydroxybenzoate hydroxylase (PHBH) has been investigated by a combined quantum mechanical and molecular mechanical (QM/MM) method. A structural model for the

  1. Molecular Mechanism of Somite Development

    Directory of Open Access Journals (Sweden)

    Gulfidan Coskun

    2013-06-01

    Full Text Available From third week of gestation, notochord and the neural folds begin to gather at the center of the embryo to form the paraxial mesoderm. Paraxial mesoderm separates into blocks of cells called somitomers at the lateral sides of the neural tube of the head region. At the beginning of the third week somitomeres take ring shapes and form blocks of somites from occipital region to caudal region. Although somites are transient structures, they are extremely important in organizing the segmental pattern of vertebrate embryos. Somites give rise to the cells that form the vertebrae and ribs, the dermis of the dorsal skin, the skeletal muscles of the back, and the skeletal muscles of the body wall and limbs. Somitogenesis are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt and fibroblast growth factor signaling pathways. The prevailing model of the mechanism governing somitogenesis is the “clock and wave front”. Somitogenesis has components of periodicity, separation, epithelialization and axial specification. According to this model, the clock causes cells to undergo repeated oscillations, with a particular phase of each oscillation defining the competency of cells in the presomitic mesoderm to form a somite. Any disruption in this mechanism can be cause of severe segmentation defects of the vertebrae and congenital anomalies. In this review, we discuss the molecular mechanisms underlying the somitogenesis which is an important part of morphogenesis. [Archives Medical Review Journal 2013; 22(3.000: 362-376

  2. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  3. Molecular dynamics simulations of graphoepitaxy of organic semiconductors, sexithiophene, and pentacene: Molecular-scale mechanisms of organic graphoepitaxy

    Science.gov (United States)

    Ikeda, Susumu

    2018-03-01

    Molecular dynamics (MD) simulations of the organic semiconductors α-sexithiophene (6T) and pentacene were carried out to clarify the mechanism of organic graphoepitaxy at the molecular level. First, the models of the grooved substrates were made and the surfaces of the inside of the grooves were modified with -OH or -OSi(CH3)3, making the surfaces hydrophilic or hydrophobic. By the MD simulations of 6T, it was found that three stable azimuthal directions exist (0, ˜45, and 90° the angle that the c-axis makes with the groove), being consistent with experimental results. MD simulations of deposition processes of 6T and pentacene were also carried out, and pentacene molecules showed the spontaneous formation of herringbone packing during deposition. Some pentacene molecules stood on the surface and formed a cluster whose a-axis was parallel to the groove. It is expected that a deep understanding of the molecular-scale mechanisms will lead graphoepitaxy to practical applications, improving the performance of organic devices.

  4. Radiative and mechanical feedback into the molecular gas of NGC 253

    NARCIS (Netherlands)

    Rosenberg, M. J. F.; Kazandjian, M. V.; van der Werf, P. P.; Israel, F. P.; Meijerink, R.; Weiß, A.; Requena-Torres, M. A.; Güsten, R.

    Starburst galaxies are galaxies or regions of galaxies undergoing intense periods of star formation. Understanding the heating and cooling mechanisms in these galaxies can give us insight to the driving mechanisms that fuel the starburst. Molecular emission lines play a crucial role in the cooling

  5. INITIATORS AND TRIGGERING CONDITIONS FOR ADAPTIVE AUTOMATION IN ADVANCED SMALL MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Katya L Le Blanc; Johanna h Oxstrand

    2014-04-01

    It is anticipated that Advanced Small Modular Reactors (AdvSMRs) will employ high degrees of automation. High levels of automation can enhance system performance, but often at the cost of reduced human performance. Automation can lead to human out-of the loop issues, unbalanced workload, complacency, and other problems if it is not designed properly. Researchers have proposed adaptive automation (defined as dynamic or flexible allocation of functions) as a way to get the benefits of higher levels of automation without the human performance costs. Adaptive automation has the potential to balance operator workload and enhance operator situation awareness by allocating functions to the operators in a way that is sensitive to overall workload and capabilities at the time of operation. However, there still a number of questions regarding how to effectively design adaptive automation to achieve that potential. One of those questions is related to how to initiate (or trigger) a shift in automation in order to provide maximal sensitivity to operator needs without introducing undesirable consequences (such as unpredictable mode changes). Several triggering mechanisms for shifts in adaptive automation have been proposed including: operator initiated, critical events, performance-based, physiological measurement, model-based, and hybrid methods. As part of a larger project to develop design guidance for human-automation collaboration in AdvSMRs, researchers at Idaho National Laboratory have investigated the effectiveness and applicability of each of these triggering mechanisms in the context of AdvSMR. Researchers reviewed the empirical literature on adaptive automation and assessed each triggering mechanism based on the human-system performance consequences of employing that mechanism. Researchers also assessed the practicality and feasibility of using the mechanism in the context of an AdvSMR control room. Results indicate that there are tradeoffs associated with each

  6. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  7. Epidemiological bases and molecular mechanisms linking obesity, diabetes, and cancer.

    Science.gov (United States)

    Gutiérrez-Salmerón, María; Chocarro-Calvo, Ana; García-Martínez, José Manuel; de la Vieja, Antonio; García-Jiménez, Custodia

    2017-02-01

    The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Molecular Mechanisms of Induced Pluripotency

    Science.gov (United States)

    Muchkaeva, I.A.; Dashinimaev, E.B.; Terskikh, V.V.; Sukhanov, Y.V.; Vasiliev, A.V.

    2012-01-01

    In this review the distinct aspects of somatic cell reprogramming are discussed. The molecular mechanisms of generation of induced pluripotent stem (iPS) cells from somatic cells via the introduction of transcription factors into adult somatic cells are considered. Particular attention is focused on the generation of iPS cells without genome modifications via the introduction of the mRNA of transcription factors or the use of small molecules. Furthermore, the strategy of direct reprogramming of somatic cells omitting the generation of iPS cells is considered. The data concerning the differences between ES and iPS cells and the problem of epigenetic memory are also discussed. In conclusion, the possibility of using iPS cells in regenerative medicine is considered. PMID:22708059

  9. Dependence of mechanical characteristics from composition and structure and optimization of mechanical fracture energy of polymer composite material based on high-molecular rubbers

    Directory of Open Access Journals (Sweden)

    E. Nurullaev

    2017-07-01

    Full Text Available By means of numerical experiment the authors investigate dependence of conventional rupturing stress and mechanical fracture energy at uniaxial tension from fractional composition of dispersed filler, plasticizer volume fraction in polymer binder, effective density of transverse bonds, applied to development of covering for different purposes and with advanced service life in temperature range from 223 to 323 K. They compare mechanical characteristics of polymer composite materials (PCMs based on high- and low-molecular rubbers. It was shown that rupturing stress of high-molecular rubber-based PCM is of a higher magnitude than the stress of low-molecular rubber-based one at almost invariable rupturing deformation. Numerical simulation by variation of composition parameters and molecular structure enables evaluation of its maximum fracture energy which is 1000 times higher than mechanical fracture energy of similar composites based on low-molecular rubbers.

  10. Molecular mechanisms of fertilization: the role of male factor

    Directory of Open Access Journals (Sweden)

    Ewa Maria Kratz

    2011-11-01

    Full Text Available Fertilization, the fusion of male and female gametes, is an incompletely known, multistep, complex process, in which many factors participate. Fertilization is a precisely regulated, species-specific process, but some cellular mechanisms are similar for many mammal species. The studies of mechanisms of male and female gamete production enable understanding of fertilization issues and, as a result, make the analysis of the causes of infertility possible. Male and female infertility is a progressive phenomenon. The development of laboratory medicine enables the analysis of molecular aspects of the reactions between gametes, which may result in better diagnosis of many infertility cases and indicate the direction of therapeutic management. The fertilization process is accompanied by many biochemical reactions, in which glycoproteins present in human ejaculate play a very important role. Glycan structures enable glycoproteins to participate in the interactions between cells, including those between gametes. The analysis of the glycosylation profile and degree of ejaculate glycoproteins not only contributes to deepening the knowledge about mechanisms accompanying the fertilization process, but also may be useful as an additional diagnostic marker of male infertility.The aim of the present review is to approach selected molecular mechanisms occurring in the male genital tract, related to the fertilization process, as well as to analyze their influence on male fertility.

  11. What molecular mechanism is adapted by plants during salt stress ...

    African Journals Online (AJOL)

    What molecular mechanism is adapted by plants during salt stress tolerance? ... Salt stress harmfully shocks agricultural yield throughout the world affecting production whether it is for subsistence or economic outcomes. ... from 32 Countries:.

  12. Molecular Dynamics Simulation for the Mechanical Properties of CNT/Polymer Nanocomposites

    International Nuclear Information System (INIS)

    Yang, Seung Hwa; Cho, Maeg Hyo

    2007-01-01

    In order to obtain mechanical properties of CNT/Polymer nano-composites, molecular dynamics simulation is performed. Overall system was modeled as a flexible unit cell in which carbon nanotubes are embedded into a polyethylene matrix for N σ T ensemble simulation. COMPASS force field was chosen to describe inter and intra molecular potential and bulk effect was achieved via periodic boundary conditions. In CNT-polymer interface, only Lennard-Jones non-bond potential was considered. Using Parrinello-Rahman fluctuation method, mechanical properties of orthotropic nano-composites under various temperatures were successfully obtained. Also, we investigated thermal behavior of the short CNT reinforced nanocomposites system with predicting glass transition temperature

  13. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.

    Science.gov (United States)

    Rosnik, Andreana M; Curutchet, Carles

    2015-12-08

    Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra (Pieper et al. J. Phys. Chem. B 2011, 115 (14), 4042-4052). Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis.

  14. Bioprocessing automation in cell therapy manufacturing: Outcomes of special interest group automation workshop.

    Science.gov (United States)

    Ball, Oliver; Robinson, Sarah; Bure, Kim; Brindley, David A; Mccall, David

    2018-04-01

    Phacilitate held a Special Interest Group workshop event in Edinburgh, UK, in May 2017. The event brought together leading stakeholders in the cell therapy bioprocessing field to identify present and future challenges and propose potential solutions to automation in cell therapy bioprocessing. Here, we review and summarize discussions from the event. Deep biological understanding of a product, its mechanism of action and indication pathogenesis underpin many factors relating to bioprocessing and automation. To fully exploit the opportunities of bioprocess automation, therapeutics developers must closely consider whether an automation strategy is applicable, how to design an 'automatable' bioprocess and how to implement process modifications with minimal disruption. Major decisions around bioprocess automation strategy should involve all relevant stakeholders; communication between technical and business strategy decision-makers is of particular importance. Developers should leverage automation to implement in-process testing, in turn applicable to process optimization, quality assurance (QA)/ quality control (QC), batch failure control, adaptive manufacturing and regulatory demands, but a lack of precedent and technical opportunities can complicate such efforts. Sparse standardization across product characterization, hardware components and software platforms is perceived to complicate efforts to implement automation. The use of advanced algorithmic approaches such as machine learning may have application to bioprocess and supply chain optimization. Automation can substantially de-risk the wider supply chain, including tracking and traceability, cryopreservation and thawing and logistics. The regulatory implications of automation are currently unclear because few hardware options exist and novel solutions require case-by-case validation, but automation can present attractive regulatory incentives. Copyright © 2018 International Society for Cellular Therapy

  15. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lik-ho Tam

    2017-10-01

    Full Text Available The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.

  16. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites.

    Science.gov (United States)

    Tam, Lik-Ho; Wu, Chao

    2017-10-13

    The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.

  17. Automation, consolidation, and integration in autoimmune diagnostics.

    Science.gov (United States)

    Tozzoli, Renato; D'Aurizio, Federica; Villalta, Danilo; Bizzaro, Nicola

    2015-08-01

    Over the past two decades, we have witnessed an extraordinary change in autoimmune diagnostics, characterized by the progressive evolution of analytical technologies, the availability of new tests, and the explosive growth of molecular biology and proteomics. Aside from these huge improvements, organizational changes have also occurred which brought about a more modern vision of the autoimmune laboratory. The introduction of automation (for harmonization of testing, reduction of human error, reduction of handling steps, increase of productivity, decrease of turnaround time, improvement of safety), consolidation (combining different analytical technologies or strategies on one instrument or on one group of connected instruments) and integration (linking analytical instruments or group of instruments with pre- and post-analytical devices) opened a new era in immunodiagnostics. In this article, we review the most important changes that have occurred in autoimmune diagnostics and present some models related to the introduction of automation in the autoimmunology laboratory, such as automated indirect immunofluorescence and changes in the two-step strategy for detection of autoantibodies; automated monoplex immunoassays and reduction of turnaround time; and automated multiplex immunoassays for autoantibody profiling.

  18. Molecular Mechanisms of Breast Cancer Metastasis and Potential Anti-metastatic Compounds.

    Science.gov (United States)

    Tungsukruthai, Sucharat; Petpiroon, Nalinrat; Chanvorachote, Pithi

    2018-05-01

    Throughout the world, breast cancer is among the major causes of cancer-related death and is the most common cancer found in women. The development of cancer molecular knowledge has surpassed the novel concept of cancer biology and unraveled principle targets for anticancer drug developments and treatment strategies. Metastatic breast cancer cells acquire their aggressive features through several mechanisms, including augmentation of survival, proliferation, tumorigenicity, and motility-related cellular pathways. Clearly, natural product-derived compounds have since long been recognized as an important source for anticancer drugs, several of which have been shown to have promising anti-metastasis activities by suppressing key molecular features supporting such cell aggressiveness. This review provides the essential details of breast cancer, the molecular-based insights into metastasis, as well as the effects and mechanisms of potential compounds for breast cancer therapeutic approaches. As the abilities of cancer cells to invade and metastasize are addressed as the hallmarks of cancer, compounds possessing anti-metastatic effects, together with their defined molecular drug action could benefit the development of new drugs as well as treatment strategies. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Mechanically controllable break junctions for molecular electronics.

    Science.gov (United States)

    Xiang, Dong; Jeong, Hyunhak; Lee, Takhee; Mayer, Dirk

    2013-09-20

    A mechanically controllable break junction (MCBJ) represents a fundamental technique for the investigation of molecular electronic junctions, especially for the study of the electronic properties of single molecules. With unique advantages, the MCBJ technique has provided substantial insight into charge transport processes in molecules. In this review, the techniques for sample fabrication, operation and the various applications of MCBJs are introduced and the history, challenges and future of MCBJs are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantum Mechanics/Molecular Mechanics Modeling of Enzymatic Processes: Caveats and Breakthroughs.

    Science.gov (United States)

    Quesne, Matthew G; Borowski, Tomasz; de Visser, Sam P

    2016-02-18

    Nature has developed large groups of enzymatic catalysts with the aim to transfer substrates into useful products, which enables biosystems to perform all their natural functions. As such, all biochemical processes in our body (we drink, we eat, we breath, we sleep, etc.) are governed by enzymes. One of the problems associated with research on biocatalysts is that they react so fast that details of their reaction mechanisms cannot be obtained with experimental work. In recent years, major advances in computational hardware and software have been made and now large (bio)chemical systems can be studied using accurate computational techniques. One such technique is the quantum mechanics/molecular mechanics (QM/MM) technique, which has gained major momentum in recent years. Unfortunately, it is not a black-box method that is easily applied, but requires careful set-up procedures. In this work we give an overview on the technical difficulties and caveats of QM/MM and discuss work-protocols developed in our groups for running successful QM/MM calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hardware-in-loop simulation of electric vehicles automated mechanical transmission system

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Wu, Y.; Wang, L. [Chinese Academy of Sciences, Beijing (China). Inst. of Electrical Engineering

    2009-03-11

    Automated mechanical transmission (AMT) can be used to enhance the performance of hybrid electric vehicles. In this study, hardware-in-loop (HIL) simulations were used to develop an AMT control system. HIL was used to simulate the running and fault status of the system as well as to optimize its performance. HIL was combined with a commercial simulation tool and an automatic code generation technology in a real time environment tool to develop the AMT control system. A hybrid vehicle system dynamics model was generated and then simulated in various real time operating vehicle environments. Virtual instrument technology was used to develop real time monitoring, parameter matching calibration, data acquisition and offline analyses for the optimization of the control system. Results of the analyses demonstrated that the AMT control system can be used to optimize the performance of hybrid electric vehicles. 5 refs., 9 figs.

  2. Proceedings. Fourth international symposium on mine mechanisation and automation

    Energy Technology Data Exchange (ETDEWEB)

    Gurgenci, H.; Hood, M. [eds.

    1997-12-31

    Papers in the first volume are presented under the following session headings: drilling; mining robotics; machine monitoring; mine automation systems; reliability and maintenance; mine automation - communications mechanical excavation of medium-strength rock; and new mining equipment technologies. The second volume covers: mechanical excavation of hard rock; autonomous vehicles; mechanical excavation industry experience; machine guidance; applications of rock mechanics, mine planning management and scheduling; orebody delineation; and safety. Selected papers have been abstracted separately for the IEA Coal Research databases available on CD-ROM and the worldwide web.

  3. [Comparison of manual and automated (MagNA Pure) nucleic acid isolation methods in molecular diagnosis of HIV infections].

    Science.gov (United States)

    Alp, Alpaslan; Us, Dürdal; Hasçelik, Gülşen

    2004-01-01

    Rapid quantitative molecular methods are very important for the diagnosis of human immunodeficiency virus (HIV) infections, assessment of prognosis and follow up. The purpose of this study was to compare and evaluate the performances of conventional manual extraction method and automated MagNA Pure system, for the nucleic acid isolation step which is the first and most important step in molecular diagnosis of HIV infections. Plasma samples of 35 patients in which anti-HIV antibodies were found as positive by microparticule enzyme immunoassay and confirmed by immunoblotting method, were included in the study. The nucleic acids obtained simultaneously by manual isolation kit (Cobas Amplicor, HIV-1 Monitor Test, version 1.5, Roche Diagnostics) and automated system (MagNA Pure LC Total Nucleic Acid Isolation Kit, Roche Diagnostics), were amplified and detected in Cobas Amplicor (Roche Diagnostics) instrument. Twenty three of 35 samples (65.7%) were found to be positive, and 9 (25.7%) were negative by both of the methods. The agreement between the methods were detected as 91.4%, for qualitative results. Viral RNA copies detected by manual and MagNA Pure isolation methods were found between 76.0-7.590.000 (mean: 487.143) and 113.0-20.300.0000 (mean: 2.174.097) copies/ml, respectively. When both of the overall and individual results were evaluated, the number of RNA copies obtained with automatized system, were found higher than the manual method (p<0.05). Three samples which had low numbers of nucleic acids (113, 773, 857, respectively) with MagNA Pure, yielded negative results with manual method. In conclusion, the automatized MagNA Pure system was found to be a reliable, rapid and practical method for the isolation of HIV-RNA.

  4. Mechatronic Design Automation

    DEFF Research Database (Denmark)

    Fan, Zhun

    successfully design analogue filters, vibration absorbers, micro-electro-mechanical systems, and vehicle suspension systems, all in an automatic or semi-automatic way. It also investigates the very important issue of co-designing plant-structures and dynamic controllers in automated design of Mechatronic...

  5. Routinely automated production of 3'-deoxy-3'-[18F] fluorothymidine as a specific molecular imaging probe of tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang Mingwei; Zhang Yingjian; Zhang Yongping

    2011-01-01

    This work was aimed at developing a routine for automated production of 3'-deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT), a specific molecular imaging probe of tumor cell proliferation, using one-pot two-step strategy and an upgraded Explora GN module integrated with a semi-preparative HPLC system. Firstly, the nucleophilic [ 18 F] radiofluorination of precursor BDNT with activated 18 F ion was carried out at 120 degree C for 5 min to yield the labeled intermediate 18 F-BDFT. Secondly, the acidic hydrolysis of 18 F-BDFT was run at 110 degree C for 5 min to produce 18 F-FLT after addition of HCl, and 18 F-FLT was purified by HPLC. This automated production of 18 F-FLT is of fast, reliable and multi-run features, being completed within 65 min with radiochemical yield of 15%-25% (without decay correction). The quality control of 18 F-FLT was identical with the radiopharmaceutical requirements, especiallly the radiochemical purity of greater than 99% and high chemical purity and specific activity own to HPLC purification. (authors)

  6. Sexual polyploidization in plants--cytological mechanisms and molecular regulation.

    Science.gov (United States)

    De Storme, Nico; Geelen, Danny

    2013-05-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  7. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  8. Molecular mechanisms of aging and immune system regulation in Drosophila.

    Science.gov (United States)

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.

  9. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  10. Atomistic mechanism of microRNA translation upregulation via molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Wei Ye

    Full Text Available MicroRNAs are endogenous 23-25 nt RNAs that play important gene-regulatory roles in animals and plants. Recently, miR369-3 was found to upregulate translation of TNFα mRNA in quiescent (G0 mammalian cell lines. Knock down and immunofluorescence experiments suggest that microRNA-protein complexes (with FXR1 and AGO2 are necessary for the translation upregulation. However the molecular mechanism of microRNA translation activation is poorly understood. In this study we constructed the microRNA-mRNA-AGO2-FXR1 quadruple complex by bioinformatics and molecular modeling, followed with all atom molecular dynamics simulations in explicit solvent to investigate the interaction mechanisms for the complex. A combined analysis of experimental and computational data suggests that AGO2-FXR1 complex relocalize microRNA:mRNA duplex to polysomes in G0. The two strands of dsRNA are then separated upon binding of AGO2 and FXR1. Finally, polysomes may improve the translation efficiency of mRNA. The mutation research confirms the stability of microRNA-mRNA-FXR1 and illustrates importance of key residue of Ile304. This possible mechanism can shed more light on the microRNA-dependent upregulation of translation.

  11. Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method.

    Science.gov (United States)

    Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi

    2017-07-21

    In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.

  12. A sensor-based automation system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool

  13. Measuring the mechanical properties of molecular conformers

    Science.gov (United States)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  14. DMPD: Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the receptor complex. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14609719 Molecular mechanisms of macrophage activation and deactivation bylipopolys...acol Ther. 2003 Nov;100(2):171-94. (.png) (.svg) (.html) (.csml) Show Molecular mechanisms of macrophage act...medID 14609719 Title Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: ro

  15. Insights into the catalytic mechanism of dehydrogenase BphB: A quantum mechanics/molecular mechanics study.

    Science.gov (United States)

    Zhang, Ruiming; Shi, Xiangli; Sun, Yanhui; Zhang, Qingzhu; Wang, Wenxing

    2018-05-17

    The present study delineated the dehydrogenation mechanism of cis-2,3-dihydro-2,3-dihydroxybiphenyl (2,3-DDBPH) and cis-2,3-dihydro-2,3-dihydroxy-4,4'-dichlorobiphenyl (2,3-DD-4,4'-DBPH) by Pandoraea pnomenusa strain B-356 cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) in atomistic detail. The enzymatic process was investigated by a combined quantum mechanics/molecular mechanics (QM/MM) approach. Five different snapshots were extracted and calculated, which revealed that the Boltzmann-weighted average barriers of 2,3-DDBPH and 2,3-DD-4,4'-DBPH dehydrogenation processes are 10.7 and 11.5 kcal mol -1 , respectively. The established dehydrogenation mechanism provides new insight into the degradation processes of other chlorinated 2,3-DDBPH. In addition to Asn115, Ser142, and Lys149, the importance of Ile 89, Asn143, Pro184, Met 187, Thr189, and Lue 191 during the dehydrogenation process of 2,3-DDBPH and 2,3-DD-4,4'-DBPH were also highlighted to search for promising mutation targets for improving the catalytic efficiency of BphB. Copyright © 2018. Published by Elsevier Ltd.

  16. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism: Mexiletine N-Hydroxylation by Cytochrome P450 1A2.

    Science.gov (United States)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik; Harvey, Jeremy N; Mulholland, Adrian J

    2016-06-20

    The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site, but this is not a prerequisite for reaction via either mechanism. Several active site residues play a role in the binding of mexiletine in the active site, including Thr124 and Phe226. This work reveals key details of the N-hydroxylation of mexiletine and further demonstrates that mechanistic studies using QM/MM methods are useful for understanding drug metabolism.

  17. Molecular Mechanisms of Bacterial Pathogenicity

    Science.gov (United States)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  18. Elucidation of Molecular Pathogenic Mechanisms of Norrie Disease

    OpenAIRE

    Luhmann, Ulrich F.O.

    2010-01-01

    Summary Norrie disease (ND) is a rare X-linked recessive congenital blindness, sometimes associated with deafness and mental retardation. In this thesis the molecular pathogenic mechanisms of this syndrome should be elucidated using the Ndph knockout mouse model. Gene expression studies but also histology and protein biochemistry were used to characterize the affected organs, eye and brain. Gene expression analyses of eyes at p21 using cDNA subtrac...

  19. 2015 Chinese Intelligent Automation Conference

    CERN Document Server

    Li, Hongbo

    2015-01-01

    Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.

  20. Exploiting large-pore metal-organic frameworks for separations through entropic molecular mechanisms

    NARCIS (Netherlands)

    Torres-Knoop, A.; Dubbeldam, D.

    2015-01-01

    We review the molecular mechanisms behind adsorption and the separations of mixtures in metal-organic frameworks and zeolites. Separation mechanisms can be based on differences in the affinity of the adsorbate with the framework and on entropic effects. To develop next-generation adsorbents, the

  1. Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus

    DEFF Research Database (Denmark)

    Galli, Andrea; Bukh, Jens

    2014-01-01

    Genetic recombination is an important evolutionary mechanism for RNA viruses. The significance of this phenomenon for hepatitis C virus (HCV) has recently become evident, with the identification of circulating recombinant forms in HCV-infected individuals and by novel data from studies permitted...... by advances in HCV cell culture systems and genotyping protocols. HCV is readily able to produce viable recombinants, using replicative and non-replicative molecular mechanisms. However, our knowledge of the required molecular mechanisms remains limited. Understanding how HCV recombines might be instrumental...... for a better monitoring of global epidemiology, to clarify the virus evolution, and evaluate the impact of recombinant forms on the efficacy of oncoming combination drug therapies. For the latter, frequency and location of recombination events could affect the efficacy of multidrug regimens. This review...

  2. Agent-based Modeling Automated: Data-driven Generation of Innovation Diffusion Models

    NARCIS (Netherlands)

    Jensen, T.; Chappin, E.J.L.

    2016-01-01

    Simulation modeling is useful to gain insights into driving mechanisms of diffusion of innovations. This study aims to introduce automation to make identification of such mechanisms with agent-based simulation modeling less costly in time and labor. We present a novel automation procedure in which

  3. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  4. Molecular mechanisms of action of bacterial exotoxins.

    Science.gov (United States)

    Balfanz, J; Rautenberg, P; Ullmann, U

    1996-07-01

    Toxins are one of the inventive strategies that bacteria have developed in order to survive. As virulence factors, they play a major role in the pathogenesis of infectious diseases. Recent discoveries have once more highlighted the effectiveness of these precisely adjusted bacterial weapons. Furthermore, toxins have become an invaluable tool in the investigation of fundamental cell processes, including regulation of cellular functions by various G proteins, cytoskeletal dynamics and neural transmission. In this review, the bacterial toxins are presented in a rational classification based on the molecular mechanisms of action.

  5. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics.

    Science.gov (United States)

    Szydzik, C; Gavela, A F; Herranz, S; Roccisano, J; Knoerzer, M; Thurgood, P; Khoshmanesh, K; Mitchell, A; Lechuga, L M

    2017-08-08

    A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.

  6. Robust automated classification of first-motion polarities for focal mechanism determination with machine learning

    Science.gov (United States)

    Ross, Z. E.; Meier, M. A.; Hauksson, E.

    2017-12-01

    Accurate first-motion polarities are essential for determining earthquake focal mechanisms, but are difficult to measure automatically because of picking errors and signal to noise issues. Here we develop an algorithm for reliable automated classification of first-motion polarities using machine learning algorithms. A classifier is designed to identify whether the first-motion polarity is up, down, or undefined by examining the waveform data directly. We first improve the accuracy of automatic P-wave onset picks by maximizing a weighted signal/noise ratio for a suite of candidate picks around the automatic pick. We then use the waveform amplitudes before and after the optimized pick as features for the classification. We demonstrate the method's potential by training and testing the classifier on tens of thousands of hand-made first-motion picks by the Southern California Seismic Network. The classifier assigned the same polarity as chosen by an analyst in more than 94% of the records. We show that the method is generalizable to a variety of learning algorithms, including neural networks and random forest classifiers. The method is suitable for automated processing of large seismic waveform datasets, and can potentially be used in real-time applications, e.g. for improving the source characterizations of earthquake early warning algorithms.

  7. Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

    OpenAIRE

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-01-01

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon...

  8. SAMPL4 & DOCK3.7: lessons for automated docking procedures

    Science.gov (United States)

    Coleman, Ryan G.; Sterling, Teague; Weiss, Dahlia R.

    2014-03-01

    The SAMPL4 challenges were used to test current automated methods for solvation energy, virtual screening, pose and affinity prediction of the molecular docking pipeline DOCK 3.7. Additionally, first-order models of binding affinity were proposed as milestones for any method predicting binding affinity. Several important discoveries about the molecular docking software were made during the challenge: (1) Solvation energies of ligands were five-fold worse than any other method used in SAMPL4, including methods that were similarly fast, (2) HIV Integrase is a challenging target, but automated docking on the correct allosteric site performed well in terms of virtual screening and pose prediction (compared to other methods) but affinity prediction, as expected, was very poor, (3) Molecular docking grid sizes can be very important, serious errors were discovered with default settings that have been adjusted for all future work. Overall, lessons from SAMPL4 suggest many changes to molecular docking tools, not just DOCK 3.7, that could improve the state of the art. Future difficulties and projects will be discussed.

  9. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    Science.gov (United States)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  10. New insights into the molecular mechanism of intestinal fatty acid absorption.

    Science.gov (United States)

    Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H

    2013-11-01

    Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  11. A novel fully automated molecular diagnostic system (AMDS for colorectal cancer mutation detection.

    Directory of Open Access Journals (Sweden)

    Shiro Kitano

    Full Text Available BACKGROUND: KRAS, BRAF and PIK3CA mutations are frequently observed in colorectal cancer (CRC. In particular, KRAS mutations are strong predictors for clinical outcomes of EGFR-targeted treatments such as cetuximab and panitumumab in metastatic colorectal cancer (mCRC. For mutation analysis, the current methods are time-consuming, and not readily available to all oncologists and pathologists. We have developed a novel, simple, sensitive and fully automated molecular diagnostic system (AMDS for point of care testing (POCT. Here we report the results of a comparison study between AMDS and direct sequencing (DS in the detection of KRAS, BRAF and PI3KCA somatic mutations. METHODOLOGY/PRINCIPAL FINDING: DNA was extracted from a slice of either frozen (n = 89 or formalin-fixed and paraffin-embedded (FFPE CRC tissue (n = 70, and then used for mutation analysis by AMDS and DS. All mutations (n = 41 among frozen and 27 among FFPE samples detected by DS were also successfully (100% detected by the AMDS. However, 8 frozen and 6 FFPE samples detected as wild-type in the DS analysis were shown as mutants in the AMDS analysis. By cloning-sequencing assays, these discordant samples were confirmed as true mutants. One sample had simultaneous "hot spot" mutations of KRAS and PIK3CA, and cloning assay comfirmed that E542K and E545K were not on the same allele. Genotyping call rates for DS were 100.0% (89/89 and 74.3% (52/70 in frozen and FFPE samples, respectively, for the first attempt; whereas that of AMDS was 100.0% for both sample sets. For automated DNA extraction and mutation detection by AMDS, frozen tissues (n = 41 were successfully detected all mutations within 70 minutes. CONCLUSIONS/SIGNIFICANCE: AMDS has superior sensitivity and accuracy over DS, and is much easier to execute than conventional labor intensive manual mutation analysis. AMDS has great potential for POCT equipment for mutation analysis.

  12. Molecular mechanisms of mutagenesis determined by the recombinant DNA technology

    International Nuclear Information System (INIS)

    Lee, W.R.

    1985-01-01

    A study of the alteration of the DNA in the mutant gene can determine mechanisms of mutation by distinguishing between mutations induced by transition, transversion, frameshifts of a single base and deletions involving many base pairs. The association of a specific pattern of response with a mutagen will permit detecting mutants induced by the mutagen with a reduced background by removing mutations induced by other mechanisms from the pool of potential mutants. From analyses of studies that have been conducted, it is quite apparent that there are substantial differences among mutagens in their modes of action. Of 31 x-ray induced mutants, 20 were large deletions while only 3 showed normal Southern blots. Only one mutant produced a sub-unit polypeptide of normal molecular weight and charge in the in vivo test whereas in vitro synthesis produced a second one. In contrast, nine of thirteen EMS induced mutants produced cross-reacting proteins with sub-unit polypeptide molecular weights equivalent to wild type. Two of three ENU induced mutants recently analyzed in our laboratory produced protein with sub-unit polypeptide molecular weight and electrical charge similar to the wild type stock in which the mutants were induced. One ENU induced mutation is a large deletion. 21 refs., 1 fig

  13. Molecular mechanisms in lithium-associated renal disease: a systematic review.

    Science.gov (United States)

    Rej, Soham; Pira, Shamira; Marshe, Victoria; Do, André; Elie, Dominique; Looper, Karl J; Herrmann, Nathan; Müller, Daniel J

    2016-11-01

    Lithium is an essential treatment in bipolar disorder and treatment-resistant depression; however, its use has been limited by concerns regarding its renal adverse effects. An improved understanding of potential molecular mechanisms can help develop prevention and treatment strategies for lithium-associated renal disease. We conducted a systematic literature search using MEDLINE, Embase, and PsychINFO including English-language original research articles published prior to November 2015 that specifically investigated lithium's effects on nephrogenic diabetes insipidus (NDI) and chronic kidney disease (CKD), using molecular markers. From a total of 3510 records, 71 pre-clinical studies and two relevant clinical studies were identified. Molecular alterations were reported in calcium signaling, inositol monophosphate, extracellular-regulated, prostaglandin, sodium/solute transport, G-protein-coupled receptors, nitric oxide, vasopressin/aquaporin, and inflammation-related pathways in lithium-associated renal disease. The majority of studies found that these mechanisms were implicated in NDI, while few studies had examined CKD. Future studies will have to focus on (1) validating the present findings in human subjects and (2) examining CKD, which is the most clinically relevant lithium-associated renal effect. This will improve our understanding of lithium's biological effects, as well as inform a personalized medicine approach, which could lead to safer lithium prescribing and less renal adverse events.

  14. A system-level approach to automation research

    Science.gov (United States)

    Harrison, F. W.; Orlando, N. E.

    1984-01-01

    Automation is the application of self-regulating mechanical and electronic devices to processes that can be accomplished with the human organs of perception, decision, and actuation. The successful application of automation to a system process should reduce man/system interaction and the perceived complexity of the system, or should increase affordability, productivity, quality control, and safety. The expense, time constraints, and risk factors associated with extravehicular activities have led the Automation Technology Branch (ATB), as part of the NASA Automation Research and Technology Program, to investigate the use of robots and teleoperators as automation aids in the context of space operations. The ATB program addresses three major areas: (1) basic research in autonomous operations, (2) human factors research on man-machine interfaces with remote systems, and (3) the integration and analysis of automated systems. This paper reviews the current ATB research in the area of robotics and teleoperators.

  15. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches.

    Science.gov (United States)

    Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan

    2017-02-14

    In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.

  16. Quantum Mechanics/Molecular Mechanics Simulations Identify the Ring-Opening Mechanism of Creatininase.

    Science.gov (United States)

    Jitonnom, Jitrayut; Mujika, Jon I; van der Kamp, Marc W; Mulholland, Adrian J

    2017-12-05

    Creatininase catalyzes the conversion of creatinine (a biosensor for kidney function) to creatine via a two-step mechanism: water addition followed by ring opening. Water addition is common to other known cyclic amidohydrolases, but the precise mechanism for ring opening is still under debate. The proton donor in this step is either His178 or a water molecule bound to one of the metal ions, and the roles of His178 and Glu122 are unclear. Here, the two possible reaction pathways have been fully examined by means of combined quantum mechanics/molecular mechanics simulations at the SCC-DFTB/CHARMM22 level of theory. The results indicate that His178 is the main catalytic residue for the whole reaction and explain its role as proton shuttle during the ring-opening step. In the first step, His178 provides electrostatic stabilization to the gem-diolate tetrahedral intermediate. In the second step, His178 abstracts the hydroxyl proton of the intermediate and delivers it to the cyclic amide nitrogen, leading to ring opening. The latter is the rate-limiting step with a free energy barrier of 18.5 kcal/mol, in agreement with the experiment. We find that Glu122 must be protonated during the enzyme reaction, so that it can form a stable hydrogen bond with its neighboring water molecule. Simulations of the E122Q mutant showed that this replacement disrupts the H-bond network formed by three conserved residues (Glu34, Ser78, and Glu122) and water, increasing the energy barrier. Our computational studies provide a comprehensive explanation for previous structural and kinetic observations, including why the H178A mutation causes a complete loss of activity but the E122Q mutation does not.

  17. Molecular mechanism of the Syk activation switch.

    Science.gov (United States)

    Tsang, Emily; Giannetti, Anthony M; Shaw, David; Dinh, Marie; Tse, Joyce K Y; Gandhi, Shaan; Ho, Hoangdung; Wang, Sandra; Papp, Eva; Bradshaw, J Michael

    2008-11-21

    Many immune signaling pathways require activation of the Syk tyrosine kinase to link ligation of surface receptors to changes in gene expression. Despite the central role of Syk in these pathways, the Syk activation process remains poorly understood. In this work we quantitatively characterized the molecular mechanism of Syk activation in vitro using a real time fluorescence kinase assay, mutagenesis, and other biochemical techniques. We found that dephosphorylated full-length Syk demonstrates a low initial rate of substrate phosphorylation that increases during the kinase reaction due to autophosphorylation. The initial rate of Syk activity was strongly increased by either pre-autophosphorylation or binding of phosphorylated immune tyrosine activation motif peptides, and each of these factors independently fully activated Syk. Deletion mutagenesis was used to identify regions of Syk important for regulation, and residues 340-356 of the SH2 kinase linker region were identified to be important for suppression of activity before activation. Comparison of the activation processes of Syk and Zap-70 revealed that Syk is more readily activated by autophosphorylation than Zap-70, although both kinases are rapidly activated by Src family kinases. We also studied Syk activity in B cell lysates and found endogenous Syk is also activated by phosphorylation and immune tyrosine activation motif binding. Together these experiments show that Syk functions as an "OR-gate" type of molecular switch. This mechanism of switch-like activation helps explain how Syk is both rapidly activated after receptor binding but also sustains activity over time to facilitate longer term changes in gene expression.

  18. Molecular Mechanisms of Survival Strategies in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Federica Migliardo

    2012-12-01

    Full Text Available Today, one of the major challenges in biophysics is to disclose the molecular mechanisms underlying biological processes. In such a frame, the understanding of the survival strategies in extreme conditions received a lot of attention both from the scientific and applicative points of view. Since nature provides precious suggestions to be applied for improving the quality of life, extremophiles are considered as useful model-systems. The main goal of this review is to present an overview of some systems, with a particular emphasis on trehalose playing a key role in several extremophile organisms. The attention is focused on the relation among the structural and dynamic properties of biomolecules and bioprotective mechanisms, as investigated by complementary spectroscopic techniques at low- and high-temperature values.

  19. The Role of Automation in Education: Now and in the Future

    Science.gov (United States)

    Scandura, Joseph M.

    2010-01-01

    According to Wikipedia "Automation is a step beyond mechanism." Whereas mechanization provided human operators with machinery to assist them with the muscular requirements of work, automation greatly reduces the need for human sensory and mental requirements as well. In this context, Artificial Intelligence (AI) was founded on the claim that a…

  20. Principles of control automation of soil compacting machine operating mechanism

    Science.gov (United States)

    Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly

    2018-03-01

    The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.

  1. Computer automated mass spectrometer for isotope analysis on gas samples

    International Nuclear Information System (INIS)

    Pamula, A.; Kaucsar, M.; Fatu, C.; Ursu, D.; Vonica, D.; Bendea, D.; Muntean, F.

    1998-01-01

    A low resolution, high precision instrument was designed and realized in the mass spectrometry laboratory of the Institute of Isotopic and Molecular Technology, Cluj-Napoca. The paper presents the vacuum system, the sample inlet system, the ion source, the magnetic analyzer and the ion collector. The instrument is almost completely automated. There are described the analog-to-digital conversion circuits, the local control microcomputer, the automation systems and the performance checking. (authors)

  2. Automated Structure Solution with the PHENIX Suite

    Energy Technology Data Exchange (ETDEWEB)

    Zwart, Peter H.; Zwart, Peter H.; Afonine, Pavel; Grosse-Kunstleve, Ralf W.; Hung, Li-Wei; Ioerger, Tom R.; McCoy, A.J.; McKee, Eric; Moriarty, Nigel; Read, Randy J.; Sacchettini, James C.; Sauter, Nicholas K.; Storoni, L.C.; Terwilliger, Tomas C.; Adams, Paul D.

    2008-06-09

    Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix.refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.

  3. Automated structure solution with the PHENIX suite

    Energy Technology Data Exchange (ETDEWEB)

    Terwilliger, Thomas C [Los Alamos National Laboratory; Zwart, Peter H [LBNL; Afonine, Pavel V [LBNL; Grosse - Kunstleve, Ralf W [LBNL

    2008-01-01

    Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution, and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution, and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template- and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix. refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.

  4. Ab initio study of structural and mechanical property of solid molecular hydrogens

    Science.gov (United States)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  5. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Science.gov (United States)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  6. Laboratory automation in clinical bacteriology: what system to choose?

    Science.gov (United States)

    Croxatto, A; Prod'hom, G; Faverjon, F; Rochais, Y; Greub, G

    2016-03-01

    Automation was introduced many years ago in several diagnostic disciplines such as chemistry, haematology and molecular biology. The first laboratory automation system for clinical bacteriology was released in 2006, and it rapidly proved its value by increasing productivity, allowing a continuous increase in sample volumes despite limited budgets and personnel shortages. Today, two major manufacturers, BD Kiestra and Copan, are commercializing partial or complete laboratory automation systems for bacteriology. The laboratory automation systems are rapidly evolving to provide improved hardware and software solutions to optimize laboratory efficiency. However, the complex parameters of the laboratory and automation systems must be considered to determine the best system for each given laboratory. We address several topics on laboratory automation that may help clinical bacteriologists to understand the particularities and operative modalities of the different systems. We present (a) a comparison of the engineering and technical features of the various elements composing the two different automated systems currently available, (b) the system workflows of partial and complete laboratory automation, which define the basis for laboratory reorganization required to optimize system efficiency, (c) the concept of digital imaging and telebacteriology, (d) the connectivity of laboratory automation to the laboratory information system, (e) the general advantages and disadvantages as well as the expected impacts provided by laboratory automation and (f) the laboratory data required to conduct a workflow assessment to determine the best configuration of an automated system for the laboratory activities and specificities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Application of magnetic sensors in automation control

    Energy Technology Data Exchange (ETDEWEB)

    Hou Chunhong [AMETEK Inc., Paoli, PA 19301 (United States); Qian Zhenghong, E-mail: zqian@hdu.edu.cn [Center For Integrated Spintronic Devices (CISD), Hangzhou Dianzi University, Hangzhou, ZJ 310018 (China)

    2011-01-01

    Controls in automation need speed and position feedback. The feedback device is often referred to as encoder. Feedback technology includes mechanical, optical, and magnetic, etc. All advance with new inventions and discoveries. Magnetic sensing as a feedback technology offers certain advantages over other technologies like optical one. With new discoveries like GMR (Giant Magneto-Resistance), TMR (Tunneling Magneto-Resistance) becoming feasible for commercialization, more and more applications will be using advanced magnetic sensors in automation. This paper offers a general review on encoder and applications of magnetic sensors in automation control.

  8. Review on Molecular Mechanisms of Antifouling Compounds: An Update since 2012.

    Science.gov (United States)

    Chen, Lianguo; Qian, Pei-Yuan

    2017-08-28

    Better understanding of the mechanisms of antifouling compounds is recognized to be of high value in establishing sensitive biomarkers, allowing the targeted optimization of antifouling compounds and guaranteeing environmental safety. Despite vigorous efforts to find new antifouling compounds, information about the mechanisms of antifouling is still scarce. This review summarizes the progress into understanding the molecular mechanisms underlying antifouling activity since 2012. Non-toxic mechanisms aimed at specific targets, including inhibitors of transmembrane transport, quorum sensing inhibitors, neurotransmission blockers, adhesive production/release inhibitors and enzyme/protein inhibitors, are put forward for natural antifouling products or shelf-stable chemicals. Several molecular targets show good potential for use as biomarkers in future mechanistic screening, such as acetylcholine esterase for neurotransmission, phenoloxidase/tyrosinase for the formation of adhesive plaques, N -acyl homoserine lactone for quorum sensing and intracellular Ca 2+ levels as second messenger. The studies on overall responses to challenges by antifoulants can be categorized as general targets, including protein expression/metabolic activity regulators, oxidative stress inducers, neurotransmission blockers, surface modifiers, biofilm inhibitors, adhesive production/release inhibitors and toxic killing. Given the current situation and the knowledge gaps regarding the development of alternative antifoulants, a basic workflow is proposed that covers the indispensable steps, including preliminary mechanism- or bioassay-guided screening, evaluation of environmental risks, field antifouling performance, clarification of antifouling mechanisms and the establishment of sensitive biomarkers, which are combined to construct a positive feedback loop.

  9. Molecular mechanism and potential targets for bone metastasis

    International Nuclear Information System (INIS)

    Iguchi, Haruo

    2007-01-01

    The incidence of bone metastasis has been increasing in all cancers in recent years. Bone metastasis is associated with substantial morbidity, including bone pain, pathological fracture, neurological deficit and/or hypercalcemia. Thus, the management of bone metastasis in patients is a clinically significant issue. In the process of bone metastasis, the primary mechanism responsible for bone destruction is cancer cell-mediated stimulation of osteoclastic bone resorption, which results in osteolysis and release of various growth factors from the bone matrix. These growth factors are prerequisites for successful colonization and subsequent invasive growth of cancer cells in bone, which is called a 'vicious cycle.' Thus, it is important to elucidate what molecules are involved in this step of bone destruction, and the understanding of these molecular mechanisms could lead to develop molecular-target therapies for bone metastasis. Bisphosphonates introduced in the treatment for bone metastasis have been shown to reduce skeletal morbidity. In Japan, the most potent bisphosphonate, zoledronate (ZOMETA), was introduced in this past April, and a phase III clinical trial of humanized anti-receptor activator of NF-κB ligand (RANKL) monoclonal antibody (Denosumab) against bone metastasis is under way as a global study. These new agents, which are targeted to osteoclasts, are considered to be standard management in the care of bone metastasis patients in combination with chemotherapy and/or hormone therapy. (author)

  10. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Probing the molecular mechanism behind the cognitive impairment induced by THC

    Czech Academy of Sciences Publication Activity Database

    Botta, J.; Cordomi, A.; Bondar, Alexey; Lazar, Josef; Pardo, L.; McCormick, P. J.

    2017-01-01

    Roč. 121, č. 2 (2017), s. 11-12 ISSN 1742-7835 Institutional support: RVO:67179843 Keywords : THC * molecular mechanism * cognitive impairment Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Toxicology Impact factor: 3.176, year: 2016

  12. Molecular mechanisms of methicillin resistance in Staphylococcus aureus.

    Science.gov (United States)

    Domínguez, M A; Liñares, J; Martín, R

    1997-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.

  13. Lignin biodegradation: experimental evidence, molecular, biochemical and physiological mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Monties, B

    1985-01-01

    A critical review is presented of English, French and some German language literature, mainly from 1983 onwards. It examines experimental evidence on the behaviour as barriers to biodegradation of lignins and phenolic polymers such as tannins and suberins. The different molecular mechanisms of lignolysis by fungi (mainly), actinomycetes and bacteria are examined. A new biochemical approach to the physiological mechanism of regulation of lignolytic activities is suggested based on the discoveries of ligniolytic enzymes: effects of nitrogen, oxygen and substrate are discussed. It is concluded that a better knowledge of the structure and reactivity of phenolic barriers is needed in order to control the process of lignolysis.

  14. Homeostasis-altering molecular processes as mechanisms of inflammasome activation.

    Science.gov (United States)

    Liston, Adrian; Masters, Seth L

    2017-03-01

    The innate immune system uses a distinct set of germline-encoded pattern recognition receptors (PRRs) to initiate downstream inflammatory cascades. This recognition system is in stark contrast to the adaptive immune system, which relies on highly variable, randomly generated antigen receptors. A key limitation of the innate immune system's reliance on fixed PRRs is its inflexibility in responding to rapidly evolving pathogens. Recent advances in our understanding of inflammasome activation suggest that the innate immune system also has sophisticated mechanisms for responding to pathogens for which there is no fixed PRR. This includes the recognition of debris from dying cells, known as danger-associated molecular patterns (DAMPs), which can directly activate PRRs in a similar manner to pathogen-associated molecular patterns (PAMPs). Distinct from this, emerging data for the inflammasome components NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and pyrin suggest that they do not directly detect molecular patterns, but instead act as signal integrators that are capable of detecting perturbations in cytoplasmic homeostasis, for example, as initiated by infection. Monitoring these perturbations, which we term 'homeostasis-altering molecular processes' (HAMPs), provides potent flexibility in the capacity of the innate immune system to detect evolutionarily novel infections; however, HAMP sensing may also underlie the sterile inflammation that drives chronic inflammatory diseases.

  15. Antiproliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eko Supriyanto

    2012-05-01

    Full Text Available Phenolic phytochemicals are a broad class of nutraceuticals found in plants which have been extensively researched by scientists for their health-promoting potential. One such a compound which has been comprehensively used is eugenol (4-allyl-2-methoxyphenol, which is the active component of Syzigium aromaticum (cloves. Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature showed eugenol possesses antioxidant, antimutagenic, antigenotoxic, anti-inflammatory and anticancer properties. Molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented. This review article will highlight the antiproliferative activity and molecular mechanism of the eugenol induced apoptosis against the cancer cells and animal models.

  16. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.

    Science.gov (United States)

    Gupta, Rakesh; Rai, Beena

    2018-04-30

    Skin electroporation has been used significantly to increase the drug permeation. However, molecular mechanism, which resulted in enhancement of flux through skin, is still not known. In this study, extensive atomistic molecular dynamics simulation of skin lipids (made up of ceramide (CER), cholesterol (CHOL) and free fatty acid (FFA)) have been performed at various external electric field. We show for the first time the pore formation in the skin lipid bilayer during the electroporation. We show the effect of applied external electrical field on the pore formation dynamics in lipid bilayer of different size and composition. The pore formation and resealing kinetics were different and was found to be highly dependent on the composition of skin lipid bilayer. The pore formation time decreased with increase in the bilayer size. The pore sustaining electric field was found to be in the range of 0.20-0.25 V/nm for equimolar CER, CHOL and FFA lipid bilayer. The skin lipid bilayer (1:1:1), sealed itself within 20 ns after the removal of external electric field. We also present the molecular mechanism of enhancement of drug permeation in the presence of external field as compared to the passive diffusion. The molecular level understanding obtained here could help in optimizing/designing the electroporation experiments for effective drug delivery. For a given skin composition and size of drug molecule, the combination of pore formation time and pore growth model can be used to know aproiri the desired electric field and time for application of electric field.

  17. Spiers Memorial Lecture. Molecular mechanics and molecular electronics.

    Science.gov (United States)

    Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R

    2006-01-01

    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.

  18. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    Science.gov (United States)

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  19. Molecular mechanisms of cognitive dysfunction following traumatic brain injury.

    Science.gov (United States)

    Walker, Kendall R; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  20. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis.

    Science.gov (United States)

    Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro

    2012-10-15

    There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.

  1. ANLIZE: a molecular mechanics force field visualization tool and its application to 18-crown-6.

    Science.gov (United States)

    Stolworthy, L D; Shirts, R B

    1997-03-01

    We describe a software tool that allows one to visualize and analyze the importance of each individual steric interaction in a molecular mechanics force field. ANLIZE is presently implemented for the Dreiding force field for use with the Cerius2 software package, but could be implemented in any molecular mechanics package with a graphical user interface. ANLIZE calculates individual interactions in the force field, sorts them by size, and displays them in several ways from a menu of choices. This allows the user to scan through selected interactions to visualize which interactions are the primary determinants of preferred conformations. The features of ANLIZE are illustrated using 18-crown-6 as an example, and the factors governing conformational preference in 18-crown-6 are demonstrated. Users of molecular mechanics packages are encouraged to demand this functionality from commercial software producers.

  2. Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds

    Science.gov (United States)

    Dotti, N.; Heintze, E.; Slota, M.; Hübner, R.; Wang, F.; Nuss, J.; Dressel, M.; Bogani, L.

    2016-04-01

    We investigate the conduction mechanisms of nitronyl-nitroxide (NIT) molecular radicals, as useful for the creation of nanoscopic molecular spintronic devices, finding that it does not correspond to standard Mott behavior, as previously postulated. We provide a complete investigation using transport measurements, low-energy, sub-THz spectroscopy and introducing differently substituted phenyl appendages. We show that a nontrivial surface-charge-limited regime is present in addition to the standard low-voltage Ohmic conductance. Scaling analysis allows one to determine all the main transport parameters for the compounds and highlights the presence of charge-trapping effects. Comparison among the different compounds shows the relevance of intermolecular stacking between the aromatic ring of the phenyl appendix and the NIT motif in the creation of useful electron transport channels. The importance of intermolecular pathways is further highlighted by electronic structure calculations, which clarify the nature of the electronic channels and their effect on the Mott character of the compounds.

  3. Radiotracer studies on molecular mechanisms of death and resuscitation

    International Nuclear Information System (INIS)

    Nikulin, V.J.; Pogossova, A.V.; Konikova, A.S.

    1980-01-01

    Tracer techniques and artificial circulation were applied to rabbits after death by anoxia and deep hypothermia in order to study molecular mechanisms. 60 min after death the biosynthesis and disintegration of protein RNA and DNA practically stopped in all organs. In animals cooled post mortem the process of biosynthesis and degradation of protein, RNA and DNA, as well as the physiological functions of the whole organism, were restored. (author)

  4. Self-renewal molecular mechanisms of colorectal cancer stem cells

    OpenAIRE

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2016-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth facto...

  5. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  6. Systematic study of imidazoles inhibiting IDO1 via the integration of molecular mechanics and quantum mechanics calculations.

    Science.gov (United States)

    Zou, Yi; Wang, Fang; Wang, Yan; Guo, Wenjie; Zhang, Yihua; Xu, Qiang; Lai, Yisheng

    2017-05-05

    Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as an attractive target for cancer immunotherapy. To rationalize the detailed interactions between IDO1 and its inhibitors at the atomic level, an integrated computational approach by combining molecular mechanics and quantum mechanics methods was employed in this report. Specifically, the binding modes of 20 inhibitors was initially investigated using the induced fit docking (IFD) protocol, which outperformed other two docking protocols in terms of correctly predicting ligand conformations. Secondly, molecular dynamics (MD) simulations and MM/PBSA free energy calculations were employed to determine the dynamic binding process and crucial residues were confirmed through close contact analysis, hydrogen-bond analysis and binding free energy decomposition calculations. Subsequent quantum mechanics and nonbonding interaction analysis were carried out to provide in-depth explanations on the critical role of those key residues, and Arg231 and 7-propionate of the heme group were major contributors to ligand binding, which lowed a great amount of interaction energy. We anticipate that these findings will be valuable for enzymatic studies and rational drug design. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Study of effect of gamma radiation on molecular weight and mechanical properties of PHB and PHNV

    International Nuclear Information System (INIS)

    Fechine, Guilhermino J.M.; Terence, Mauro C.; Rabello, M.S.; Willen, Renate M.R.

    2011-01-01

    The effect of gamma radiation on molecular weight and mechanical properties (tensile and flexural) of PHB and PHBV samples was investigated. The values of stress and strain at the break point for both mechanical properties indicated that scission molecular reactions were predominant in PHB and PHBV samples submitted to gamma radiation. These results were confirmed by Size Exclusion Chromatography (SEC) analysis. (author)

  8. Home Automation System Using Capacitive Touchscreen

    OpenAIRE

    Yash Inaniya; Naresh Kumari

    2014-01-01

    Technology has been constantly evolving and with the advent of touchscreen in human life , devices are much easier and simple to operate. This work is mainly focused on building home automation system which is more user friendly and thus can be operated by anyone. Earlier home automation systems were completely mechanically operated and thus required a lot of maintenance and were costly also. Now that human and computer interaction has been developed into a more wide and sophi...

  9. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.

    Science.gov (United States)

    Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan

    2015-12-03

    Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches.

  10. Molecular mechanisms in radiation damage to DNA. Progress report

    International Nuclear Information System (INIS)

    Osman, R.

    1994-01-01

    The objectives of this work are to elucidate the molecular mechanisms that are responsible for radiation-induced DNA damage. The overall goal is to understand the relationship between the chemical and structural changes produced by ionizing radiation in DNA and the resulting impairment of biological function expressed as carcinogenesis or cell death. The studies are based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA. These mechanistic explorations should lead to the formulation of testable hypotheses regarding the processes of impairment of regulation of gene expression, alteration in DNA repair, and damage to DNA structure involved in cell death or cancer

  11. Bioinformatics analysis on molecular mechanism of rheum officinale in treatment of jaundice

    Science.gov (United States)

    Shan, Si; Tu, Jun; Nie, Peng; Yan, Xiaojun

    2017-01-01

    Objective: To study the molecular mechanism of Rheum officinale in the treatment of Jaundice by building molecular networks and comparing canonical pathways. Methods: Target proteins of Rheum officinale and related genes of Jaundice were searched from Pubchem and Gene databases online respectively. Molecular networks and canonical pathways comparison analyses were performed by Ingenuity Pathway Analysis (IPA). Results: The molecular networks of Rheum officinale and Jaundice were complex and multifunctional. The 40 target proteins of Rheum officinale and 33 Homo sapiens genes of Jaundice were found in databases. There were 19 common pathways both related networks. Rheum officinale could regulate endothelial differentiation, Interleukin-1B (IL-1B) and Tumor Necrosis Factor (TNF) in these pathways. Conclusions: Rheum officinale treat Jaundice by regulating many effective nodes of Apoptotic pathway and cellular immunity related pathways.

  12. Space station automation study: Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The electroepitaxial process and the Very Large Scale Integration (VLSI) circuits (chips) facilities were chosen because each requires a very high degree of automation, and therefore involved extensive use of teleoperators, robotics, process mechanization, and artificial intelligence. Both cover a raw materials process and a sophisticated multi-step process and are therfore highly representative of the kinds of difficult operation, maintenance, and repair challenges which can be expected for any type of space manufacturing facility. Generic areas were identified which will require significant further study. The initial design will be based on terrestrial state-of-the-art hard automation. One hundred candidate missions were evaluated on the basis of automation portential and availability of meaning ful knowldege. The design requirements and unconstrained design concepts developed for the two missions are presented.

  13. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  14. A dissociative quantum mechanical/molecular mechanical molecular dynamics simulation and infrared experiments reveal characteristics of the strongly hydrolytic arsenic(III).

    Science.gov (United States)

    Canaval, Lorenz R; Lutz, Oliver M D; Weiss, Alexander K H; Huck, Christian W; Hofer, Thomas S

    2014-11-17

    This work presents a hybrid ab initio quantum mechanical/molecular mechanical simulation at the RI-MP2 level of theory investigating the hydrolysis process of arsenic(III), ultimately leading to arsenous acid (H3AsO3). A newly implemented dissociative water model has been applied to treat the interactions in the classical region, which is capable of describing non-neutral water species such as hydroxide and oxonium ions. Three stages of hydrolysis have been observed during the simulation and besides profound dynamical considerations, detailed insights into structural changes and atomic partial charge shifts are presented. In particular, the geometrical properties of H-bonds involved in each of the three proton transfer events and subsequent proton hopping reactions are discussed. A Laguerre tessellation analysis has been employed to estimate the molecular volume of H3AsO3. Estimations of pKa values of the arsenic(III)-aquo-complexes have been obtained at the G4 and CBS-Q//B3 levels of theory using a thermodynamic cycle, whereas rate constants for the final hydrolysis step have been determined via reaction path optimization and transition state theory. Newly recorded Fourier transform infrared (FT-IR) spectroscopy measurements have been compared to power spectra obtained from the simulation data, confirming its quality. The simulation findings, as well as results from computational spectroscopic calculations utilizing the PT2-VSCF methodology, proved valuable for the interpretation of the experimental FT-IR data, elucidating the particularities of the strongly observed IR Raman noncoincidence effect.

  15. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  16. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    Science.gov (United States)

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  17. Molecular mechanisms of cisplatin resistance in cervical cancer.

    Science.gov (United States)

    Zhu, Haiyan; Luo, Hui; Zhang, Wenwen; Shen, Zhaojun; Hu, Xiaoli; Zhu, Xueqiong

    2016-01-01

    Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%-20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer.

  18. The Human Factor - Introducing Game Mechanics to Computerized Home Automation Systems : User experience as a method for reducing consumption in domestic buildings

    NARCIS (Netherlands)

    Cohen, I.; Turrin, M.; Heinzelmann, F.; Welzner, I.

    2013-01-01

    A method of integration of game mechanics and game dynamics into a user interface for a home automation system as means of reducing the inhabitant’s environmental footprint is described and detailed up to the point of proof of concept. In detail, the paper describes the game framework and the method

  19. Molecular mechanisms of FK506-induced hypertension in solid organ transplantation patients

    Institute of Scientific and Technical Information of China (English)

    Wang Jianglin; Guo Ren; Liu Shikun; Chen Qingjie; Zuo Shanru; Yang Meng; Zuo Xiaocong

    2014-01-01

    Objective Tacrolimus (FK506) is an immunosuppressive drug,which is widely used to prevent rejection of transplanted organs.However,chronic administration of FK506 leads to hypertension in solid organ transplantation patients,and its molecular mechanisms are much more complicated.In this review,we will discuss the above-mentioned molecular mechanisms of FK506-induced hypertension in solid organ transplantation subjects.Data sources The data analyzed in this review were mainly from relevant articles without restriction on the publication date reported in PubMed.The terms "FK506" or "tacrolimus" and "hypertension"were used for the literature search.Study selection Original articles with no limitation of research design and critical reviews containing data relevant to FK506-induced hypertension and its molecular mechanisms were retrieved,reviewed and analyzed.Results There are several molecular mechanisms attributed to FK506-induced hypertension in solid organ transplantation subjects.First,FK506 binds FK506 binding protein 12 and its related isoform 12.6 (FKBP12/12.6) and removes them from intracellular ryanodine receptors that induce a calcium ion leakage from the endoplasmic/sarcoplasmic reticulum.The conventional protein kinase C beta II (cPKCβⅡ)-mediated phosphorylation of endothelial nitric oxide (NO) synthase at Thr495,which reduces the production of NO,was activated by calcium ion leakage.Second,transforming growth factor receptor/SMAD2/3 signaling activation plays an important role in Treg/Th17 cell imbalance in T cells which toget converge to cause inflammation,endothelial dysfunction,and hypertension following tacrolimus treatment.Third,the activation of with-no-K(Lys) kinases/STE20/SPS1-related proline/alanine-rich kinase/thiazide-sensitive sodium chloride co-transporter (WNKs/SPAK/NCC) pathway has a central role in tacrolimus-induced hypertension.Finally,the enhanced activity of renal renin-angiotensin-aldosterone system seems to play a crucial role in

  20. Dynamics of ligand exchange mechanism at Cu(II) in water: an ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S; Weiss, Alexander K H; Rode, Bernd M

    2013-07-07

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment.

  1. Dynamics of ligand exchange mechanism at Cu(II) in water: An ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region

    International Nuclear Information System (INIS)

    Moin, Syed Tarique; Hofer, Thomas S.; Weiss, Alexander K. H.; Rode, Bernd M.

    2013-01-01

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment

  2. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ngaojampa, C.; Nimmanpipug, P. [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.t [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Lee, V.S., E-mail: vannajan@gmail.co [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2011-02-15

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  3. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    International Nuclear Information System (INIS)

    Ngaojampa, C.; Nimmanpipug, P.; Yu, L.D.; Anuntalabhochai, S.; Lee, V.S.

    2011-01-01

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  4. Molecular Mechanisms of Insulin Resistance Development

    Directory of Open Access Journals (Sweden)

    Vsevolod Arsen'evich Tkachuk

    2014-05-01

    Full Text Available Insulin resistance (IR is a phenomenon associated with an impaired ability of insulin to stimulate glucose uptake by target cells and to reduce the blood glucose level. A response increase in insulin secretion by the pancreas and hyperinsulinemia are compensatory reactions of the body. The development of IR leads to the inability of target cells to respond to insulin that results in developing type 2 diabetes mellitus (T2DM and metabolic syndrome. For this reason, the metabolic syndrome is defined in practice as a combination of IR with one or more pathologies such as T2DM, arterial hypertension, dyslipidemia, abdominal obesity, non-alcoholic fatty liver disease, and some others. However, a combination of high blood glucose and insulin levels always serves as its physiological criterion.IR should be considered as a systemic failure of the endocrine regulation in the body. Physiological causes of IR are diverse. The main ones are nutritional overload and accumulation of certain lipids and their metabolites in cells, low physical activity, chronic inflammation and stress of various nature, including oxidative and endoplasmic reticulum stress (impairment of damaged protein degradation in the cell. Recent studies have demonstrated that these physiological mechanisms likely act through a single intracellular scenario. This is the impairment of signal transduction from the insulin receptor to its targets via the negative feedback mechanism in intracellular insulin-dependent signaling cascades.This review describes the physiological and intracellular mechanisms of insulin action and focuses on their abnormalities upon IR development. Finally, feasible trends in early molecular diagnosis and therapy of IR are discussed.

  5. Unraveling the mechanism of molecular doping in organic semiconductors.

    Science.gov (United States)

    Mityashin, Alexander; Olivier, Yoann; Van Regemorter, Tanguy; Rolin, Cedric; Verlaak, Stijn; Martinelli, Nicolas G; Beljonne, David; Cornil, Jérôme; Genoe, Jan; Heremans, Paul

    2012-03-22

    The mechanism by which molecular dopants donate free charge carriers to the host organic semiconductor is investigated and is found to be quite different from the one in inorganic semiconductors. In organics, a strong correlation between the doping concentration and its charge donation efficiency is demonstrated. Moreover, there is a threshold doping level below which doping simply has no electrical effect. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cellular and Molecular Mechanisms in Perioperative Hepatic Protection: A Review of Current Interventions

    Directory of Open Access Journals (Sweden)

    Zahra Talebi

    2017-05-01

    Full Text Available Liver is one of the most important organs needing great concern during the perioperative period. There are a number of different mechanisms that interact with liver cells and might affect their integrity and cell live. Though these mechanisms are not all the same, there is a great common point: all affect the metabolic pathways of the liver. Ischemia, anesthetic drug effects and other perioperative insults may affect the liver. Disturbance in an organ’s blood flow is an inherent part of diverse surgical procedures, which leads to lack of oxygen and nutrient supply. These ischemic periods can be particularly long in case of liver surgeries, such as resection of large hepatic tumors, management of hepatic trauma and liver transplant. Once the blood flow and oxygen supply are restored, the interruption of blood flow affects the oxygen dependent cells in liver, which require mitochondrial oxidative phosphorylation for their metabolism. Molecular mechanisms such as Redox status, ionic interchange disturbances as well as different mediators and cells like KC, SEC, dendritic cells, leukocytes, and lymphocytes, are involved in the process ultimately leading to cell death by apoptosis and necrosis. This review provides an overview on the cellular and molecular mechanisms involved in liver injuries, categorizing these mechanisms in 3 different classes: preoperative mechanisms, intraoperative mechanisms and postoperative mechanisms. Each of them are discussed in a different part of the manuscript

  7. Molecular mechanism of allosteric communication in Hsp70 revealed by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Federica Chiappori

    Full Text Available Investigating ligand-regulated allosteric coupling between protein domains is fundamental to understand cell-life regulation. The Hsp70 family of chaperones represents an example of proteins in which ATP binding and hydrolysis at the Nucleotide Binding Domain (NBD modulate substrate recognition at the Substrate Binding Domain (SBD. Herein, a comparative analysis of an allosteric (Hsp70-DnaK and a non-allosteric structural homolog (Hsp110-Sse1 of the Hsp70 family is carried out through molecular dynamics simulations, starting from different conformations and ligand-states. Analysis of ligand-dependent modulation of internal fluctuations and local deformation patterns highlights the structural and dynamical changes occurring at residue level upon ATP-ADP exchange, which are connected to the conformational transition between closed and open structures. By identifying the dynamically responsive protein regions and specific cross-domain hydrogen-bonding patterns that differentiate Hsp70 from Hsp110 as a function of the nucleotide, we propose a molecular mechanism for the allosteric signal propagation of the ATP-encoded conformational signal.

  8. Deformation mechanisms in nanotwinned copper by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Su, Lihong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Zhan, Lihua [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)

    2017-02-27

    Nanotwinned materials exhibit simultaneous ultrahigh strength and high ductility which is attributed to the interactions between dislocations and twin boundaries but the specific deformation mechanisms are rarely seen in experiments at the atomic level. Here we use large scale molecular dynamics simulations to explore this intricate interplay during the plastic deformation of nanotwinned Cu. We demonstrate that the dominant deformation mechanism transits dynamically from slip transfer to twin boundary migration to slip-twin interactions as the twin boundary orientation changes from horizontal to slant, and then to a vertical direction. Building on the fundamental physics of dislocation processes from computer simulations and combining the available experimental investigations, we unravel the underlying deformation mechanisms for nanotwinned Cu, incorporating all three distinct dislocation processes. Our results give insights into systematically engineering the nanoscale twins to fabricate nanotwinned metals or alloys that have high strength and considerable ductility.

  9. Development of nuclear power plant automated remote patrol system

    International Nuclear Information System (INIS)

    Nakayama, R.; Kubo, K.; Sato, K.; Taguchi, J.

    1984-01-01

    An Automated Remote Patrol System was developed for a remote inspection, observation and monitoring of nuclear power plant's components. This automated remote patrol system consists of; a vehicle moving along a monorail; three rails mounted in a monorail for data transmission and for power supply; an image fiber connected to a TV camera; an arm type mechanism (manipulator) for moving image fiber; a computer for control and data processing and operator's console. Special features of this Automated Remote Patrol System are as follows: The inspection vehicle runs along horizontal and vertical (up/down) monorails. The arm type mechanism (manipulator) on the vehicle is used to move image fiber. Slide type electric collectors are used for data transmission and power supply. Time-division multiplexing is adapted for data transmission. Voice communication is used for controlling mechanisms. Pattern recognition is used for data processing. The experience that has been obtained from a series of various tests is summarized. (author)

  10. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  11. Molecular Signature and Mechanisms of Hepatitis D Virus-Associated Hepatocellular Carcinoma.

    Science.gov (United States)

    Diaz, Giacomo; Engle, Ronald E; Tice, Ashley; Melis, Marta; Montenegro, Stephanie; Rodriguez-Canales, Jaime; Hanson, Jeffrey; Emmert-Buck, Michael R; Bock, Kevin W; Moore, Ian N; Zamboni, Fausto; Govindarajan, Sugantha; Kleiner, David; Farci, Patrizia

    2018-06-01

    There is limited data on the molecular mechanisms whereby hepatitis D virus (HDV) promotes liver cancer. Therefore, serum and liver specimens obtained at the time of liver transplantation from well-characterized patients with HDV-HCC (n-5) and with non-HCC HDV cirrhosis (n=7) were studied using an integrated genomic approach. Transcriptomic profiling was performed using laser capture-microdissected (LCM) malignant and non-malignant hepatocytes, tumorous and non-tumorous liver tissue from patients with HDV-HCC, and liver tissue from patients with non-HCC HDV cirrhosis. HDV-HCC was also compared with hepatitis B virus (HBV) HBV-HCC alone and hepatitis C virus (HCV) HCV-HCC. HDV malignant hepatocytes were characterized by an enrichment of up-regulated transcripts associated with pathways involved in cell cycle/DNA replication, damage and repair (sonic hedgehog, GADD45, DNA-damage-induced 14-3-3σ, cyclins and cell cycle regulation, cell cycle: G2/M DNA-damage checkpoint regulation, and hereditary breast cancer). Moreover, a large network of genes identified functionally relate to DNA repair, cell cycle, mitotic apparatus and cell division, including 4 cancer testis antigen genes, attesting to the critical role of genetic instability in this tumor. Besides being over-expressed, these genes were also strongly co-regulated. Gene co-regulation was high not only when compared to non-malignant hepatocytes, but also to malignant hepatocytes from HBV-HCC alone or HCV-HCC. Activation and co-regulation of genes critically associated with DNA replication, damage, and repair point to genetic instability as an important mechanism of HDV hepatocarcinogenesis. This specific HDV-HCC trait emerged also from the comparison of the molecular pathways identified for each hepatitis virus-associated HCC. Despite the dependence of HDV on HBV, these findings suggest that HDV and HBV promote carcinogenesis by distinct molecular mechanisms. This study identifies a molecular signature of HDV

  12. Separating grain boundary migration mechanisms in molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ulomek, Felix; Mohles, Volker

    2016-01-01

    In molecular dynamics (MD) simulations of grain boundary (GB) migration it is quite common to find a temperature dependence of GB mobility that deviates strongly from an Arrhenius-type dependence. This usually indicates that more than one mechanism is actually active. With the goal to separate different GB migration mechanisms we investigate a Σ7 <111> 38.2° GB by MD using an EAM potential for aluminium. To drive the GB with a well-known and adjustable force, the energy conserving orientational driving force (ECO DF) is used that had been introduced recently. The magnitude of the DF and the temperature are varied. This yielded a high and a low temperature range for the GB velocity, with a transition temperature that depends on the magnitude of the DF. A method is introduced which allows both a visual and a statistical characterization of GB motion on a per atom basis. These analyses reveal that two mechanisms are active in this GB, a shuffling mechanism and its initiation. These mechanisms operate in a sequential, coupled manner. Based on this, a simple model is introduced that describes all simulated GB velocities (and hence the mobility) very well, including the transition between the dominating mechanisms.

  13. Quantum Interactomics and Cancer Molecular Mechanisms: I. Report Outline

    CERN Document Server

    Baianu, I C

    2004-01-01

    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quant...

  14. The molecular mechanism and physiological role of cytoplasmic streaming.

    Science.gov (United States)

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Molecular Mechanism of Gastric Carcinogenesis in Helicobacter pylori-Infected Rodent Models

    Directory of Open Access Journals (Sweden)

    Takeshi Toyoda

    2014-06-01

    Full Text Available Since the discovery of Helicobacter pylori (H. pylori, many efforts have been made to establish animal models for the investigation of the pathological features and molecular mechanisms of gastric carcinogenesis. Among the animal models, Mongolian gerbils and mice are particularly useful for the analysis of H. pylori-associated inflammatory reactions and gastric cancer development. Inhibitors of oxidative stress, cyclooxygenase-2 (COX-2 and nuclear factor-κB, exert preventive effects on chronic gastritis and the development of adenocarcinomas in H. pylori-infected gerbils. Genetically-modified mouse models, including transgenic and knockout mice, have also revealed the importance of p53, COX-2/prostaglandin, Wnt/β-catenin, proinflammatory cytokines, gastrin and type III mucin in the molecular mechanisms of gastric carcinogenesis. Microarray technology is available for comprehensive gene analysis in the gastric mucosa of mouse models, and epigenetics, such as DNA methylation, could be an alternative approach to correlate the observations in animal models with the etiology in humans.

  16. Study of the Mechanical Properties and Vibration Isolation Performance of a Molecular Spring Isolator

    Directory of Open Access Journals (Sweden)

    Muchun Yu

    2016-01-01

    Full Text Available Molecular Spring Isolator (MSI is a novel passive vibration isolation technique, providing High-Static-Low-Dynamic (HSLD stiffness based on the use of molecular spring material. The molecular spring material is a solid-liquid mixture consisting of water and hydrophobic nanoporous materials. Under a certain level of external pressure, water molecules can intrude into the hydrophobic pores of nanoporous materials, developing an additional solid-liquid interface. Such interfaces are able to store, release, and transform mechanical energy, providing properties like mechanical spring. Having been only recently developed, the basic mechanic properties of a MSI have not been studied in depth. This paper focuses on the stiffness influence factors, the dynamic frequency response, and the vibration isolation performance of a MSI; these properties help engineers to design MSIs for different engineering applications. First, the working mechanism of a MSI is introduced from a three-dimensional general view of the water infiltration massive hydrophobic nanoporous pores. Next, a wide range of influence factors on the stiffness properties of MSI are studied. In addition, the frequency response functions (FRFs of the MSI vibration isolation system are studied utilizing the matching method based on equivalent piecewise linear (EPL system. Finally, the vibration isolation properties of MSI are evaluated by force transmissibility.

  17. Structure and dynamics of hydrated Fe(II) and Fe(III) ions. Quantum mechanical and molecular mechanical simulations

    International Nuclear Information System (INIS)

    Remsungnen, T.

    2002-11-01

    Classical molecular dynamics (MD) and combined em ab initio quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations have been performed to investigate structural, dynamical and energetical properties of Fe(II), and Fe(III) transition metal ions in aqueous solution. In the QM/MM-MD simulations the ion and its first hydration sphere were treated at the Hartree-Fock ab initio quantum mechanical level, while ab initio generated pair plus three-body potentials were employed for the remaining system. For the classical MD simulation the pair plus three-body potential were employed for all ion-water interactions. The coordination number of the first hydration shell is 100 % of 6 in both cases. The number of waters in the second hydration shell obtained from classical simulations are 13.4 and 15.1 for Fe(II) and Fe(III), respectively, while QM/MM-MD gives the values of 12.4 and 13.4 for Fe(II) and Fe(III). The energies of hydration obtained from MD and QM/MM-MD for Fe(II) are 520 and 500 kcal/mol, and for Fe(III) 1160 and 1100 kcal/mol respectively. The mean residence times of water in the second shell obtained from QM/MM-MD are 24 and 48 ps for Fe(II) and Fe(III), respectively. In contrast to the data obtained from classical MD simulation, the QM/MM-MD values are all in good agreement with the experimental data available. These investigations and results clearly indicate that many-body effects are essential for the proper description of all properties of the aqueous solution of both Fe(II) and Fe(III) ions. (author)

  18. Methodologies for conformational studies of oligo- and poly-glucans: crystallography and molecular mechanics

    International Nuclear Information System (INIS)

    Tran, Huu Vinh

    1983-01-01

    After some considerations on the conformational analysis of polysaccharides, this research thesis outlines the interest of molecular mechanics as a method to study these components. Technical aspects are presented. The author reports the prediction of the conformations of some specific cyclic oligomers (glucans, glucore), the use of X-ray diffraction to study glucides (and the limitations of this method). He reports the search for another investigation method: relationships between X rays and molecular mechanics, situation with respect to other crystallographic methods, presentation of principle of the 'Packing' method, and applications. He reports the study of regular conformations of polysaccharides, the study of the statistic configuration of polymer chains and the application to alpha-glucans

  19. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  20. Molecular mechanisms of radioadaptive responses in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Kakimoto, Ayana; Taki, Keiko; Nakajima, Tetsuo

    2008-01-01

    Radioadaptive response is a biodefensive response observed in a variety of mammalian cells and animals where exposure to low dose radiation induces resistance against the subsequent high dose radiation. Elucidation of its mechanisms is important for risk estimation of low dose radiation because the radioadaptive response implies that low dose radiation affects cells/individuals in a different manner from high dose radiation. In the present study, we explored the molecular mechanisms of the radioadaptive response in human lymphoblastoid cells AHH-1 in terms of mutation at the hypoxanthine phosphoribosyltransferase (HPRT) gene locus. First we observed that preexposure to the priming dose in the range from 0.02 Gy to 0.2 Gy significantly reduced mutation frequency at HPRT gene locus after irradiation with 3 Gy of X rays. As no significant adaptive response was observed with the priming dose of 0.005 Gy, it was indicated that the lower limit of the priming dose to induce radioadaptive response may be between 0.005 Gy and 0.02 Gy. Second, we examined the effect of 3-amino-benzamide (3AB), an inhibitor of poly(ADP-ribose)polymerase1, which has been reported to inhibit the radioadaptive response in terms of chromosome aberration. However we could observe significant radioadaptive responses in terms of mutation even in the presence of 3AB. These findings suggested that molecular mechanisms of the radioadaptive response in terms of mutation may be different from that for radioadaptive responses in terms of chromosomal aberration, although we could not exclude a possibility that the differential effects of 3AB was due to cell type difference. Finally, by performing a comprehensive analysis of alterations in gene expression using high coverage expression profiling (HiCEP), we could identify 17 genes whose expressions were significantly altered 6 h after irradiation with 0.02 Gy. We also found 17 and 20 genes, the expressions of which were different with or without priming

  1. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer.

    Science.gov (United States)

    Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José

    2016-11-03

    The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.

  2. HBV DNA Integration: Molecular Mechanisms and Clinical Implications

    Science.gov (United States)

    Tu, Thomas; Budzinska, Magdalena A.; Shackel, Nicholas A.; Urban, Stephan

    2017-01-01

    Chronic infection with the Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality. One peculiar observation in cells infected with HBV (or with closely‑related animal hepadnaviruses) is the presence of viral DNA integration in the host cell genome, despite this form being a replicative dead-end for the virus. The frequent finding of somatic integration of viral DNA suggests an evolutionary benefit for the virus; however, the mechanism of integration, its functions, and the clinical implications remain unknown. Here we review the current body of knowledge of HBV DNA integration, with particular focus on the molecular mechanisms and its clinical implications (including the possible consequences of replication-independent antigen expression and its possible role in hepatocellular carcinoma). HBV DNA integration is likely to influence HBV replication, persistence, and pathogenesis, and so deserves greater attention in future studies. PMID:28394272

  3. 2013 Chinese Intelligent Automation Conference

    CERN Document Server

    Deng, Zhidong

    2013-01-01

    Proceedings of the 2013 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’13, held in Yangzhou, China. The topics include e.g. adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, and reconfigurable control. Engineers and researchers from academia, industry, and government can gain an inside view of new solutions combining ideas from multiple disciplines in the field of intelligent automation.   Zengqi Sun and Zhidong Deng are professors at the Department of Computer Science, Tsinghua University, China.

  4. 2013 Chinese Intelligent Automation Conference

    CERN Document Server

    Deng, Zhidong

    2013-01-01

    Proceedings of the 2013 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’13, held in Yangzhou, China. The topics include e.g. adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, and reconfigurable control. Engineers and researchers from academia, industry, and government can gain an inside view of new solutions combining ideas from multiple disciplines in the field of intelligent automation. Zengqi Sun and Zhidong Deng are professors at the Department of Computer Science, Tsinghua University, China.

  5. Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells' Adipocyte Differentiation.

    Science.gov (United States)

    Xie, Qiang; Tian, Taoran; Chen, Zhaozhao; Deng, Shuwen; Sun, Ke; Xie, Jing; Cai, Xiaoxiao

    2016-01-01

    Regenerative medicine plays an indispensable role in modern medicine and many trials and researches have therefore been developed to fit our medical needs. Tissue engineering has proven that adipose tissue can widely be used and brings advantages to regenerative medicine. Moreover, a trait of adipose stem cells being isolated and grown in vitro is a cornerstone to various applications. Since the adipose tissue has been widely used in regenerative medicine, numerous studies have been conducted to seek methods for gaining more adipocytes. To investigate molecular mechanism for adipocyte differentiation, peroxisome proliferator-activated receptor (PPAR) has been widely studied to find out its functional mechanism, as a key factor for adipocyte differentiation. However, the precise molecular mechanism is still unknown. This review thus summarizes recent progress on the study of molecular mechanism and role of PPAR in adipocyte differentiation.

  6. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets

    Science.gov (United States)

    Safi, Sher Zaman; Kumar, Selva; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  7. Automated installation methods for photovoltaic arrays

    Science.gov (United States)

    Briggs, R.; Daniels, A.; Greenaway, R.; Oster, J., Jr.; Racki, D.; Stoeltzing, R.

    1982-11-01

    Since installation expenses constitute a substantial portion of the cost of a large photovoltaic power system, methods for reduction of these costs were investigated. The installation of the photovoltaic arrays includes all areas, starting with site preparation (i.e., trenching, wiring, drainage, foundation installation, lightning protection, grounding and installation of the panel) and concluding with the termination of the bus at the power conditioner building. To identify the optimum combination of standard installation procedures and automated/mechanized techniques, the installation process was investigated including the equipment and hardware available, the photovoltaic array structure systems and interfaces, and the array field and site characteristics. Preliminary designs of hardware for both the standard installation method, the automated/mechanized method, and a mix of standard installation procedures and mechanized procedures were identified to determine which process effectively reduced installation costs. In addition, costs associated with each type of installation method and with the design, development and fabrication of new installation hardware were generated.

  8. Molecular mechanism of extreme mechanostability in a pathogen adhesin.

    Science.gov (United States)

    Milles, Lukas F; Schulten, Klaus; Gaub, Hermann E; Bernardi, Rafael C

    2018-03-30

    High resilience to mechanical stress is key when pathogens adhere to their target and initiate infection. Using atomic force microscopy-based single-molecule force spectroscopy, we explored the mechanical stability of the prototypical staphylococcal adhesin SdrG, which targets a short peptide from human fibrinogen β. Steered molecular dynamics simulations revealed, and single-molecule force spectroscopy experiments confirmed, the mechanism by which this complex withstands forces of over 2 nanonewtons, a regime previously associated with the strength of a covalent bond. The target peptide, confined in a screwlike manner in the binding pocket of SdrG, distributes forces mainly toward the peptide backbone through an intricate hydrogen bond network. Thus, these adhesins can attach to their target with exceptionally resilient mechanostability, virtually independent of peptide side chains. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Active mechanics in living oocytes reveal molecular-scale force kinetics

    Science.gov (United States)

    Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo

    Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.

  10. Large - scale Rectangular Ruler Automated Verification Device

    Science.gov (United States)

    Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie

    2018-03-01

    This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.

  11. Molecular modifications-mechanical behaviour relationships for gamma irradiated LLDPE/PA6 blends

    International Nuclear Information System (INIS)

    Valenza, A.; Spadaro, G.; Calderaro, E.

    1994-01-01

    The molecular modifications, due to γ radiation under vacuum, of linear low density polyethylene/polyamide 6 blends are presented and related to their mechanical behaviour. Solubility and melt viscosity tests indicate that in blends the polyethylene component undergoes mainly crosslinking phenomena, whereas the main effect on polyamide is chain branching. According to these molecular modifications, the most relevant effect is the increase of the tensile modulus for the polyethylene rich blends and the increase of the impact strength for the polyamide rich blends. (author)

  12. Molecular mechanisms of foliar water uptake in a desert tree.

    Science.gov (United States)

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-11-12

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. Published by Oxford University Press on behalf of the Annals of Botany Company.

  13. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications.

    Science.gov (United States)

    Silvestre, Jean-Sébastien; Smadja, David M; Lévy, Bernard I

    2013-10-01

    After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.

  14. New insights on molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, R; Melk, A

    2012-11-01

    Long-term transplant outcome is importantly influenced by the age of the organ donor. The mechanisms how age carries out its pathophysiological impact on graft survival are still not understood. One major contributing factor for the observed poor performance of old donor kidneys seems in particular the age-related loss in renal regenerative capacity. In this review, we will summarize recent findings about the molecular basis of renal aging with specific focus on the potential role of somatic cellular senescence and mitochondrial aging in renal transplant outcome. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer

    Science.gov (United States)

    Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping

    2015-01-01

    Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957

  16. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Dawei Xue

    2017-04-01

    Full Text Available Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.

  17. Altering user' acceptance of automation through prior automation exposure.

    Science.gov (United States)

    Bekier, Marek; Molesworth, Brett R C

    2017-06-01

    Air navigation service providers worldwide see increased use of automation as one solution to overcome the capacity constraints imbedded in the present air traffic management (ATM) system. However, increased use of automation within any system is dependent on user acceptance. The present research sought to determine if the point at which an individual is no longer willing to accept or cooperate with automation can be manipulated. Forty participants underwent training on a computer-based air traffic control programme, followed by two ATM exercises (order counterbalanced), one with and one without the aid of automation. Results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation ('tipping point') decreased; suggesting it is indeed possible to alter automation acceptance. Practitioner Summary: This paper investigates whether the point at which a user of automation rejects automation (i.e. 'tipping point') is constant or can be manipulated. The results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation decreased; suggesting it is possible to alter automation acceptance.

  18. Unraveling the molecular mechanisms of nitrogenase conformational protection against oxygen in diazotrophic bacteria.

    Science.gov (United States)

    Lery, Letícia M S; Bitar, Mainá; Costa, Mauricio G S; Rössle, Shaila C S; Bisch, Paulo M

    2010-12-22

    G. diazotrophicus and A. vinelandii are aerobic nitrogen-fixing bacteria. Although oxygen is essential for the survival of these organisms, it irreversibly inhibits nitrogenase, the complex responsible for nitrogen fixation. Both microorganisms deal with this paradox through compensatory mechanisms. In A. vinelandii a conformational protection mechanism occurs through the interaction between the nitrogenase complex and the FeSII protein. Previous studies suggested the existence of a similar system in G. diazotrophicus, but the putative protein involved was not yet described. This study intends to identify the protein coding gene in the recently sequenced genome of G. diazotrophicus and also provide detailed structural information of nitrogenase conformational protection in both organisms. Genomic analysis of G. diazotrophicus sequences revealed a protein coding ORF (Gdia0615) enclosing a conserved "fer2" domain, typical of the ferredoxin family and found in A. vinelandii FeSII. Comparative models of both FeSII and Gdia0615 disclosed a conserved beta-grasp fold. Cysteine residues that coordinate the 2[Fe-S] cluster are in conserved positions towards the metallocluster. Analysis of solvent accessible residues and electrostatic surfaces unveiled an hydrophobic dimerization interface. Dimers assembled by molecular docking presented a stable behaviour and a proper accommodation of regions possibly involved in binding of FeSII to nitrogenase throughout molecular dynamics simulations in aqueous solution. Molecular modeling of the nitrogenase complex of G. diazotrophicus was performed and models were compared to the crystal structure of A. vinelandii nitrogenase. Docking experiments of FeSII and Gdia0615 with its corresponding nitrogenase complex pointed out in both systems a putative binding site presenting shape and charge complementarities at the Fe-protein/MoFe-protein complex interface. The identification of the putative FeSII coding gene in G. diazotrophicus genome

  19. Molecular Mechanisms of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2012-01-01

    Full Text Available Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.

  20. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-09-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.

  1. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    International Nuclear Information System (INIS)

    Swygenhoven, H. van; Caro, A.

    1997-01-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young's modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs

  2. Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map.

    Science.gov (United States)

    Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kim, Jihye; Kang, Jaewoo; Tan, Aik Choon

    2018-04-04

    Traditional Chinese Medicine (TCM) has been practiced over thousands of years in China and other Asian countries for treating various symptoms and diseases. However, the underlying molecular mechanisms of TCM are poorly understood, partly due to the "multi-component, multi-target" nature of TCM. To uncover the molecular mechanisms of TCM, we perform comprehensive gene expression analysis using connectivity map. We interrogated gene expression signatures obtained 102 TCM components using the next generation Connectivity Map (CMap) resource. We performed systematic data mining and analysis on the mechanism of action (MoA) of these TCM components based on the CMap results. We clustered the 102 TCM components into four groups based on their MoAs using next generation CMap resource. We performed gene set enrichment analysis on these components to provide additional supports for explaining these molecular mechanisms. We also provided literature evidence to validate the MoAs identified through this bioinformatics analysis. Finally, we developed the Traditional Chinese Medicine Drug Repurposing Hub (TCM Hub) - a connectivity map resource to facilitate the elucidation of TCM MoA for drug repurposing research. TCMHub is freely available in http://tanlab.ucdenver.edu/TCMHub. Molecular mechanisms of TCM could be uncovered by using gene expression signatures and connectivity map. Through this analysis, we identified many of the TCM components possess diverse MoAs, this may explain the applications of TCM in treating various symptoms and diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Methods for automated semantic definition of manufacturing structures (mBOM) in mechanical engineering companies

    Science.gov (United States)

    Stekolschik, Alexander, Prof.

    2017-10-01

    The bill of materials (BOM), which involves all parts and assemblies of the product, is the core of any mechanical or electronic product. The flexible and integrated management of engineering (Engineering Bill of Materials [eBOM]) and manufacturing (Manufacturing Bill of Materials [mBOM]) structures is the key to the creation of modern products in mechanical engineering companies. This paper presents a method framework for the creation and control of e- and, especially, mBOM. The requirements, resulting from the process of differentiation between companies that produce serialized or engineered-to-order products, are considered in the analysis phase. The main part of the paper describes different approaches to fully or partly automated creation of mBOM. The first approach is the definition of part selection rules in the generic mBOM templates. The mBOM can be derived from the eBOM for partly standardized products by using this method. Another approach is the simultaneous use of semantic rules, options, and parameters in both structures. The implementation of the method framework (selection of use cases) in a standard product lifecycle management (PLM) system is part of the research.

  4. Supramolecular Structure and Mechanical Characteristics of Ultrahigh-Molecular-Weight Polyethylene-Inorganic Nanoparticle Nanocomposites

    International Nuclear Information System (INIS)

    Okhlopkova, T. A.; Borisova, R. V.; Nikiforov, L. A.; Spiridonov, A. M.; Okhlopkova, A. A.; Cho, Jin-Ho; Jeong, Dae-Yong

    2016-01-01

    We investigated the mechanical properties and structure of polymeric nanocomposites (PNCs) with anultrahigh-molecular-weight polyethylene (UHMWPE) matrix and aluminum and silicon oxide and nitride nanoparticle (NP) fillers. Mixing with a paddle mixer or by joint mechanical activation in a planetary mill was used for the PNC preparation. Joint mechanical activation afforded PNCs with better mechanical properties than paddle mixing. Scanning electron microscopy suggested that the poorer mechanical properties can be attributed to the disordered regions and imperfect spherulites in the PNC supramolecular structure arising from paddle mixing. The better mechanical properties observed with joint mechanical activation may derive from the uniform NP distribution in the polymer matrix and absence of disordered regions.

  5. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  6. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  7. CCD characterization and measurements automation

    Czech Academy of Sciences Publication Activity Database

    Kotov, I.V.; Frank, J.; Kotov, A.I.; Kubánek, Petr; O´Connor, P.; Prouza, Michael; Radeka, V.; Takacs, P.

    2012-01-01

    Roč. 695, Dec (2012), 188-192 ISSN 0168-9002 R&D Projects: GA MŠk ME09052 Institutional research plan: CEZ:AV0Z10100502 Keywords : CCD * characterization * test automation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.142, year: 2012

  8. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    Science.gov (United States)

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-02-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

  9. Molecular Mechanisms of Mouse Skin Tumor Promotion

    International Nuclear Information System (INIS)

    Rundhaug, Joyce E.; Fischer, Susan M.

    2010-01-01

    Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion

  10. Molecular Mechanisms of DNA Replication Checkpoint Activation

    Directory of Open Access Journals (Sweden)

    Bénédicte Recolin

    2014-03-01

    Full Text Available The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.

  11. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology

    Directory of Open Access Journals (Sweden)

    Jose A. Santiago

    2017-05-01

    Full Text Available Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer’s (AD, Parkinson’s (PD and Huntington’s diseases (HD. We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications.

  12. Molecular mechanism of Mg2+-dependent gating in CorA

    Science.gov (United States)

    Dalmas, Olivier; Sompornpisut, Pornthep; Bezanilla, Francisco; Perozo, Eduardo

    2014-04-01

    CorA is the major transport system responsible for Mg2+ uptake in bacteria and can functionally substitute for its homologue Mrs2p in the yeast inner mitochondrial membrane. Although several CorA crystal structures are available, the molecular mechanism of Mg2+ uptake remains to be established. Here we use electron paramagnetic resonance spectroscopy, electrophysiology and molecular dynamic simulations to show that CorA is regulated by cytoplasmic Mg2+ acting as a ligand and elucidate the basic conformational rearrangements responsible for Mg2+-dependent gating. Mg2+ unbinding at the divalent cation sensor triggers a conformational change that leads to the inward motion of the stalk helix, which propagates to the pore-forming transmembrane helix TM1. Helical tilting and rotation in TM1 generates an iris-like motion that increases the diameter of the permeation pathway, triggering ion conduction. This work establishes the molecular basis of a Mg2+-driven negative feedback loop in CorA as the key physiological event controlling Mg2+ uptake and homeostasis in prokaryotes.

  13. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao

    2014-01-01

    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  14. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    International Nuclear Information System (INIS)

    Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao

    2009-01-01

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  15. Molecular toxicity mechanism of nanosilver

    Directory of Open Access Journals (Sweden)

    Danielle McShan

    2014-03-01

    Full Text Available Silver is an ancient antibiotic that has found many new uses due to its unique properties on the nanoscale. Due to its presence in many consumer products, the toxicity of nanosilver has become a hot topic. This review summarizes recent advances, particularly the molecular mechanism of nanosilver toxicity. The surface of nanosilver can easily be oxidized by O2 and other molecules in the environmental and biological systems leading to the release of Ag+, a known toxic ion. Therefore, nanosilver toxicity is closely related to the release of Ag+. In fact, it is difficult to determine what portion of the toxicity is from the nano-form and what is from the ionic form. The surface oxidation rate is closely related to the nanosilver surface coating, coexisting molecules, especially thiol-containing compounds, lighting conditions, and the interaction of nanosilver with nucleic acids, lipid molecules, and proteins in a biological system. Nanosilver has been shown to penetrate the cell and become internalized. Thus, nanosilver often acts as a source of Ag+ inside the cell. One of the main mechanisms of toxicity is that it causes oxidative stress through the generation of reactive oxygen species and causes damage to cellular components including DNA damage, activation of antioxidant enzymes, depletion of antioxidant molecules (e.g., glutathione, binding and disabling of proteins, and damage to the cell membrane. Several major questions remain to be answered: (1 the toxic contribution from the ionic form versus the nano-form; (2 key enzymes and signaling pathways responsible for the toxicity; and (3 effect of coexisting molecules on the toxicity and its relationship to surface coating.

  16. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin.

    Science.gov (United States)

    Sogo, Takayuki; Terahara, Norihiko; Hisanaga, Ayami; Kumamoto, Takuma; Yamashiro, Takaaki; Wu, Shusong; Sakao, Kozue; Hou, De-Xing

    2015-01-01

    Delphinidin 3-sambubioside (Dp3-Sam), a Hibiscus anthocyanin, was isolated from the dried calices of Hibiscus sabdariffa L, which has been used for folk beverages and herbal medicine although the molecular mechanisms are poorly defined. Based on the properties of Dp3-Sam and the information of inflammatory processes, we investigated the anti-inflammatory activity and molecular mechanisms in both cell and animal models in the present study. In the cell model, Dp3-Sam and Delphinidin (Dp) reduced the levels of inflammatory mediators including iNOS, NO, IL-6, MCP-1, and TNF-α induced by LPS. Cellular signaling analysis revealed that Dp3-Sam and Dp downregulated NF-κB pathway and MEK1/2-ERK1/2 signaling. In animal model, Dp3-Sam and Dp reduced the production of IL-6, MCP-1 and TNF-α and attenuated mouse paw edema induced by LPS. Our in vitro and in vivo data demonstrated that Hibiscus Dp3-Sam possessed potential anti-inflammatory properties. © 2015 International Union of Biochemistry and Molecular Biology.

  17. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    Science.gov (United States)

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  18. Complacency and Automation Bias in the Use of Imperfect Automation.

    Science.gov (United States)

    Wickens, Christopher D; Clegg, Benjamin A; Vieane, Alex Z; Sebok, Angelia L

    2015-08-01

    We examine the effects of two different kinds of decision-aiding automation errors on human-automation interaction (HAI), occurring at the first failure following repeated exposure to correctly functioning automation. The two errors are incorrect advice, triggering the automation bias, and missing advice, reflecting complacency. Contrasts between analogous automation errors in alerting systems, rather than decision aiding, have revealed that alerting false alarms are more problematic to HAI than alerting misses are. Prior research in decision aiding, although contrasting the two aiding errors (incorrect vs. missing), has confounded error expectancy. Participants performed an environmental process control simulation with and without decision aiding. For those with the aid, automation dependence was created through several trials of perfect aiding performance, and an unexpected automation error was then imposed in which automation was either gone (one group) or wrong (a second group). A control group received no automation support. The correct aid supported faster and more accurate diagnosis and lower workload. The aid failure degraded all three variables, but "automation wrong" had a much greater effect on accuracy, reflecting the automation bias, than did "automation gone," reflecting the impact of complacency. Some complacency was manifested for automation gone, by a longer latency and more modest reduction in accuracy. Automation wrong, creating the automation bias, appears to be a more problematic form of automation error than automation gone, reflecting complacency. Decision-aiding automation should indicate its lower degree of confidence in uncertain environments to avoid the automation bias. © 2015, Human Factors and Ergonomics Society.

  19. Trends in nanoscale mechanics mechanics of carbon nanotubes, graphene, nanocomposites and molecular dynamics

    CERN Document Server

    2014-01-01

    This book contains a collection of the state-of-the-art reviews written by the leading researchers in the areas of nanoscale mechanics, molecular dynamics, nanoscale modeling of nanocomposites and mechanics of carbon nanotubes. No other book has reviews of the recent discoveries such as a nanoscale analog of the Pauli’s principle, i.e., effect of the spatial exclusion of electrons or the SEE effect, a new Registry Matrix Analysis for the nanoscale interfacial sliding and new data on the effective viscosity of interfacial electrons in nanoscale stiction at the interfaces. This volume is also an exceptional resource on the well tested nanoscale modeling of carbon nanotubes and nanocomposites, new nanoscale effects, unique evaluations of the effective thickness of carbon nanotubes under different loads, new data on which size of carbon nanotubes is safer and many other topics. Extensive bibliography concerning all these topics is included along with the lucid short reviews. Numerous illustrations are provided...

  20. A molecular dynamics investigation into the mechanisms of alectinib resistance of three ALK mutants.

    Science.gov (United States)

    He, Muyang; Li, Weikang; Zheng, Qingchuan; Zhang, Hongxing

    2018-01-11

    Alectinib, a highly selective next-genetation anaplastic lymphoma kinase (ALK) inhibitor, has demonstrated promising antitumor activity in patients with ALK-positive non-small cell lung carcinomas (NSCLC). However, the therapeutic benefits of alectinib is inescapably hampered by the development of acquired resistant mutations in ALK. Despite the availability of ample experimental mutagenesis data, the molecular origin and the structural motifs under alectinib binding affinity deficiencies are still ambiguous. Here, molecular dynamics (MD) simulations and molecular mechanics generalized born surface area (MM-GBSA) calculation approaches were employed to elucidate the mechanisms of alectinib resistance induced by the mutations I1171N, V1180L, and L1198F. The MD results reveal that the studied mutations could trigger the dislocation of alectinib as well as conformational changes at the inhibitor binding site, thus induce the interactional changes between alectinib and mutants. The most influenced regions are the ligand binding entrance and the hinge region, which are considered to be the dominant binding motifs accounting for the binding affinity loss in mutants. The "key and lock mechanism" between the ethyl group at position 9 of alectinib and a recognition cavity in the hinge region of ALK is presented to illustrate the major molecular origin of drug resistance. Our results provide mechanistic insight into the effect of ALK mutations resistant to alectinib, which could contribute to further rational design of inhibitors to combat the acquired resistance. © 2018 Wiley Periodicals, Inc.

  1. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.

    Science.gov (United States)

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2016-01-22

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. © 2016 American Heart Association, Inc.

  2. Molecular mechanisms of disorders of lipid metabolism in chronic kidney disease.

    Science.gov (United States)

    Moradi, Hamid; Vaziri, Nosratola D

    2018-01-01

    Chronic kidney disease (CKD) is a progressive condition marked by protracted kidney damage which over time can lead to end stage renal disease (ESRD). CKD can be categorized into different stages based on the extent of renal damage and degree of renal dysfunction with ESRD requiring renal replacement therapy considered the final stage. It is important to note that CKD in all of its forms is associated with accelerated atherosclerosis, cardiovascular (CV) disease and poor CV outcomes. While a number of factors contribute to the high risk of CV mortality in this patient population, dyslipidemia is considered to be a key player in the pathogenesis of CV disease in CKD. Molecular mechanisms responsible for CKD-associated lipid disorders are unique and greatly influenced by the stage of renal disease, presence and degree of proteinuria and in patients with ESRD, modality of renal replacement therapy. This article provides a detailed overview of the molecular mechanisms which cause dyslipidemia and the nature of lipid disorders associated with CKD and ESRD.

  3. Automated builder and database of protein/membrane complexes for molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Sunhwan Jo

    2007-09-01

    Full Text Available Molecular dynamics simulations of membrane proteins have provided deeper insights into their functions and interactions with surrounding environments at the atomic level. However, compared to solvation of globular proteins, building a realistic protein/membrane complex is still challenging and requires considerable experience with simulation software. Membrane Builder in the CHARMM-GUI website (http://www.charmm-gui.org helps users to build such a complex system using a web browser with a graphical user interface. Through a generalized and automated building process including system size determination as well as generation of lipid bilayer, pore water, bulk water, and ions, a realistic membrane system with virtually any kinds and shapes of membrane proteins can be generated in 5 minutes to 2 hours depending on the system size. Default values that were elaborated and tested extensively are given in each step to provide reasonable options and starting points for both non-expert and expert users. The efficacy of Membrane Builder is illustrated by its applications to 12 transmembrane and 3 interfacial membrane proteins, whose fully equilibrated systems with three different types of lipid molecules (DMPC, DPPC, and POPC and two types of system shapes (rectangular and hexagonal are freely available on the CHARMM-GUI website. One of the most significant advantages of using the web environment is that, if a problem is found, users can go back and re-generate the whole system again before quitting the browser. Therefore, Membrane Builder provides the intuitive and easy way to build and simulate the biologically important membrane system.

  4. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation

    OpenAIRE

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-01

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal ...

  5. Home made FPGA based instrumentation development for linac automation at IUAC

    International Nuclear Information System (INIS)

    Antony, J.; Mathuria, D.S.; Sacharias, J.

    2011-01-01

    In order to make the Inter-University Accelerator Centre (IUAC) linac operation with less human intervention and with minimum effort, different mechanisms of automation are being thought of and are being implemented. Among the various projects in the automation, the first one is the development of a 16-channel digital linearizer unit for RF power read-backs and control. In another development, 8 channel programmable pulse generators (PPG) were designed, developed and used at the time of RF pulse conditioning of the SC resonators. As a third project of linac automation, a computer controlled drive probe controller was developed to control the movement of 8 drive couplers of the resonator along with position sensor read back mechanisms. (author)

  6. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Thomas A. Milne

    2012-09-01

    Full Text Available Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  7. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ballabio, Erica; Milne, Thomas A., E-mail: thomas.milne@imm.ox.ac.uk [MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital Headington, Oxford OX3 9DS (United Kingdom)

    2012-09-10

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  8. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    International Nuclear Information System (INIS)

    Ballabio, Erica; Milne, Thomas A.

    2012-01-01

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis

  9. Insights into the Reaction Mechanism of Aromatic Ring Cleavage by Homogentisate Dioxygenase: A Quantum Mechanical/Molecular Mechanical Study.

    Science.gov (United States)

    Qi, Yue; Lu, Jiarui; Lai, Wenzhen

    2016-05-26

    To elucidate the reaction mechanism of the ring cleavage of homogentisate by homogentisate dioxygenase, quantum mechanical/molecular mechanical (QM/MM) calculations were carried out by using two systems in different protonation states of the substrate C2 hydroxyl group. When the substrate C2 hydroxyl group is ionized (the ionized pathway), the superoxo attack on the substrate is the rate-limiting step in the catalytic cycle, with a barrier of 15.9 kcal/mol. Glu396 was found to play an important role in stabilizing the bridge species and its O-O cleavage product by donating a proton via a hydrogen-bonded water molecule. When the substrate C2 hydroxyl group is not ionized (the nonionized pathway), the O-O bond cleavage of the bridge species is the rate-limiting step, with a barrier of 15.3 kcal/mol. The QM/MM-optimized geometries for the dioxygen and alkylperoxo complexes using the nonionized model (for the C2 hydroxyl group) are in agreement with the experimental crystal structures, suggesting that the C2 hydroxyl group is more likely to be nonionized.

  10. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations.

    Science.gov (United States)

    Anandakrishnan, Ramu; Aguilar, Boris; Onufriev, Alexey V

    2012-07-01

    The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.

  11. Evolutionary traces decode molecular mechanism behind fast pace of myosin XI

    Directory of Open Access Journals (Sweden)

    Syamaladevi Divya P

    2011-09-01

    Full Text Available Abstract Background Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues. Results To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation viz. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program. Conclusion Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI.

  12. Natural agents: cellular and molecular mechanisms of photoprotection.

    Science.gov (United States)

    Afaq, Farrukh

    2011-04-15

    The skin is the largest organ of the body that produces a flexible and self-repairing barrier and protects the body from most common potentially harmful physical, environmental, and biological insults. Solar ultraviolet (UV) radiation is one of the major environmental insults to the skin and causes multi-tiered cellular and molecular events eventually leading to skin cancer. The past decade has seen a surge in the incidence of skin cancer due to changes in life style patterns that have led to a significant increase in the amount of UV radiation that people receive. Reducing excessive exposure to UV radiation is desirable; nevertheless this approach is not easy to implement. Therefore, there is an urgent need to develop novel strategies to reduce the adverse biological effects of UV radiation on the skin. A wide variety of natural agents have been reported to possess substantial skin photoprotective effects. Numerous preclinical and clinical studies have elucidated that natural agents act by several cellular and molecular mechanisms to delay or prevent skin cancer. In this review article, we have summarized and discussed some of the selected natural agents for skin photoprotection. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Advanced in study of cellular and molecular mechanisms of radiation effects on central nervous system

    International Nuclear Information System (INIS)

    Zhang Wei; Tu Yu; Wang Lili

    2008-01-01

    Along with radiation treatment extensively applied, radiation injury also is valued gradually. The effect of radiation to the cellular and molecular of central nervous system (CNS) is a complicated and moderately advanced process and the mechanism is remains incompletely clear yet. Inquiring into the possible mechanism of the CNS including the injury and the restoration of neuron, neuroglia cells, endotheliocyte cell and blood-brain barrier and the molecular level of change induced by radiation, so as to provide beneficial thought for preventing and curing radiation injury clinically. Some neuroprotective strategies are also addressed in the review. (authors)

  14. Automated Online Solid-Phase Derivatization for Sensitive Quantification of Endogenous S-Nitrosoglutathione and Rapid Capture of Other Low-Molecular-Mass S-Nitrosothiols.

    Science.gov (United States)

    Wang, Xin; Garcia, Carlos T; Gong, Guanyu; Wishnok, John S; Tannenbaum, Steven R

    2018-02-06

    S-Nitrosothiols (RSNOs) constitute a circulating endogenous reservoir of nitric oxide and have important biological activities. In this study, an online coupling of solid-phase derivatization (SPD) with liquid chromatography-mass spectrometry (LC-MS) was developed and applied in the analysis of low-molecular-mass RSNOs. A derivatizing-reagent-modified polymer monolithic column was prepared and adapted for online SPD-LC-MS. Analytes from the LC autosampler flowed through the monolithic column for derivatization and then directly into the LC-MS for analysis. This integration of the online derivatization, LC separation, and MS detection facilitated system automation, allowing rapid, laborsaving, and sensitive detection of RSNOs. S-Nitrosoglutathione (GSNO) was quantified using this automated online method with good linearity (R 2 = 0.9994); the limit of detection was 0.015 nM. The online SPD-LC-MS method has been used to determine GSNO levels in mouse samples, 138 ± 13.2 nM of endogenous GSNO was detected in mouse plasma. Besides, the GSNO concentrations in liver (64.8 ± 11.3 pmol/mg protein), kidney (47.2 ± 6.1 pmol/mg protein), heart (8.9 ± 1.8 pmol/mg protein), muscle (1.9 ± 0.3 pmol/mg protein), hippocampus (5.3 ± 0.9 pmol/mg protein), striatum (6.7 ± 0.6 pmol/mg protein), cerebellum (31.4 ± 6.5 pmol/mg protein), and cortex (47.9 ± 4.6 pmol/mg protein) were also successfully quantified. When the derivatization was performed within 8 min, followed by LC-MS detection, samples could be rapidly analyzed compared with the offline manual method. Other low-molecular-mass RSNOs, such as S-nitrosocysteine and S-nitrosocysteinylglycine, were captured by rapid precursor-ion scanning, showing that the proposed method is a potentially powerful tool for capture, identification, and quantification of RSNOs in biological samples.

  15. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mathiazhagan, S., E-mail: smathi.research@gmail.com; Anup, S., E-mail: anupiist@gmail.com

    2016-08-19

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  16. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    International Nuclear Information System (INIS)

    Mathiazhagan, S.; Anup, S.

    2016-01-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models. - Highlights: • The deformation behaviour of staggered nanocomposites is studied. • Stair-wise staggered model has high stiffness and strength, but low toughness. • Rapid crack growth in overlap region causes this low toughness. • Toughness could be enhanced by arresting interfacial crack in the overlap.

  17. Multiresolution molecular mechanics: Implementation and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Biyikli, Emre; To, Albert C., E-mail: albertto@pitt.edu

    2017-01-01

    Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3–8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.

  18. Multilevel Quantum Mechanics Theories and Molecular Mechanics Calculations of the Cl- + CH3I Reaction in Water.

    Science.gov (United States)

    Liu, Peng; Li, Chen; Wang, Dunyou

    2017-10-19

    The Cl - + CH 3 I → CH 3 Cl + I - reaction in water was studied using combined multilevel quantum mechanism theories and molecular mechanics with an explicit water solvent model. The study shows a significant influence of aqueous solution on the structures of the stationary points along the reaction pathway. A detailed, atomic-level evolution of the reaction mechanism shows a concerted one-bond-broken and one-bond-formed mechanism, as well as a synchronized charge-transfer process. The potentials of mean force calculated with the CCSD(T) and DFT treatments of the solute produce a free activation barrier at 24.5 and 19.0 kcal/mol, respectively, which agrees with the experimental one at 22.0 kcal/mol. The solvent effects have also been quantitatively analyzed: in total, the solvent effects raise the activation energy by 20.2 kcal/mol, which shows a significant impact on this reaction in water.

  19. The Role of Mechanical Force in Molecular and Cellular during Orthodontic Tooth Movement

    Directory of Open Access Journals (Sweden)

    Ida Bagus Narmada

    2012-10-01

    Full Text Available Application of mechanical force on abnormally positioned tooth, cause changes in tooth location and transmitted to the bone ia the periodontal ligament (PDL produce orthodontic tooth movement. This force application is further way that remodeling in the area occurs. In order to develop biological strategies for enhancing this movement of teeth in bone, the underlying mechanisms of bone resorption and apposition should be understood in detail. Analysis of gingival crevicular fluid (GCF may be a good means of examining the on going molecular and cellular process associated with gingival and bone turnover during orthodontic tooth movement. If it could be possible to biologically monitor and predict the outcome of orthodontic force, then the appliance management could be based on dividual tissue response and the effectiveness of the treatment could be improved and understanding their biology is critical to finding ways to modify bone biology to move teeth faster. The present article reviewed a short introduction to some mayors advanced mechanical force in molecular and cellular biology during orthodontic tooth movement.DOI: 10.14693/jdi.v15i3.30

  20. Structural insights into the molecular mechanisms of myasthenia gravis and their therapeutic implications

    Energy Technology Data Exchange (ETDEWEB)

    Noridomi, Kaori; Watanabe, Go; Hansen, Melissa N.; Han, Gye Won; Chen, Lin (USC)

    2017-04-25

    The nicotinic acetylcholine receptor (nAChR) is a major target of autoantibodies in myasthenia gravis (MG), an autoimmune disease that causes neuromuscular transmission dysfunction. Despite decades of research, the molecular mechanisms underlying MG have not been fully elucidated. Here, we present the crystal structure of the nAChR α1 subunit bound by the Fab fragment of mAb35, a reference monoclonal antibody that causes experimental MG and competes with ~65% of antibodies from MG patients. Our structures reveal for the first time the detailed molecular interactions between MG antibodies and a core region on nAChR α1. These structures suggest a major nAChR-binding mechanism shared by a large number of MG antibodies and the possibility to treat MG by blocking this binding mechanism. Structure-based modeling also provides insights into antibody-mediated nAChR cross-linking known to cause receptor degradation. Our studies establish a structural basis for further mechanistic studies and therapeutic development of MG.

  1. Improving the driver-automation interaction: an approach using automation uncertainty.

    Science.gov (United States)

    Beller, Johannes; Heesen, Matthias; Vollrath, Mark

    2013-12-01

    The aim of this study was to evaluate whether communicating automation uncertainty improves the driver-automation interaction. A false system understanding of infallibility may provoke automation misuse and can lead to severe consequences in case of automation failure. The presentation of automation uncertainty may prevent this false system understanding and, as was shown by previous studies, may have numerous benefits. Few studies, however, have clearly shown the potential of communicating uncertainty information in driving. The current study fills this gap. We conducted a driving simulator experiment, varying the presented uncertainty information between participants (no uncertainty information vs. uncertainty information) and the automation reliability (high vs.low) within participants. Participants interacted with a highly automated driving system while engaging in secondary tasks and were required to cooperate with the automation to drive safely. Quantile regressions and multilevel modeling showed that the presentation of uncertainty information increases the time to collision in the case of automation failure. Furthermore, the data indicated improved situation awareness and better knowledge of fallibility for the experimental group. Consequently, the automation with the uncertainty symbol received higher trust ratings and increased acceptance. The presentation of automation uncertaintythrough a symbol improves overall driver-automation cooperation. Most automated systems in driving could benefit from displaying reliability information. This display might improve the acceptance of fallible systems and further enhances driver-automation cooperation.

  2. Safety motion increase of trains by improvement diagnostics process devices of railway automation

    Directory of Open Access Journals (Sweden)

    B.M.Bondarenko

    2012-12-01

    Full Text Available The complex use of methods of nondestructive check for the automated diagnostics electromagnetic relays of railway automation the first class reliability is offered. The methods determination of their mechanical parameters are resulted, that allows to exclude a human factor from the control, promote reliability of devices railway automation and safety motion of railway transport.

  3. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    Science.gov (United States)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1999-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  4. Modeling and Proposed Molecular Mechanism of Hydroxyurea Through Docking and Molecular Dynamic Simulation to Curtail the Action of Ribonucleotide Reductase.

    Science.gov (United States)

    Iman, Maryam; Khansefid, Zeynab; Davood, Asghar

    2016-01-01

    Ribonucleotide Reductase (RNR) is an important anticancer chemotherapy target. It has main key role in DNA synthesis and cell growth. Therefore several RNR inhibitors, such as hydroxyurea, have entered the clinical trials. Based on our proposed mechanism, radical site of RNR protein reacts with hydroxyurea in which hydroxyurea is converted into its oxidized form compound III, and whereby the tyrosyl radical is converted into a normal tyrosine residue. In this study, docking and molecular dynamics simulations were used for proposed molecular mechanism of hydroxyurea in RNR inhibition as anticancer agent. The binding affinity of hydroxyurea and compound III to RNR was studied by docking method. The docking study was performed for the crystal structure of human RNR with the radical scavenger Hydroxyurea and its oxidized form to inhibit the human RNR. hydroxyurea and compound III bind at the active site with Tyr-176, which are essential for free radical formation. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2. To confirm the binding mode of inhibitors, the molecular dynamics (MD) simulations were performed using GROMACS 4.5.5, based upon the docked conformation of inhibitors. Both of the studied compounds stayed in the active site. The results of MD simulations confirmed the binding mode of ligands, accuracy of docking and the reliability of active conformations which were obtained by AutoDock. MD studies confirm our proposed mechanism in which compound III reacts with the active site residues specially Tyr-176, and inhibits the radical generation and subsequently inhibits the RNR enzyme.

  5. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H [Institute for Molecular Science, Okazaki, Aichi (Japan)

    1982-06-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience.

  6. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    International Nuclear Information System (INIS)

    Kashiwagi, H.

    1982-01-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience. (orig.)

  7. Part-task training in the context of automation: current and future directions.

    Science.gov (United States)

    Gutzwiller, Robert S; Clegg, Benjamin A; Blitch, John G

    2013-01-01

    Automation often elicits a divide-and-conquer outlook. By definition, automation has been suggested to assume control over a part or whole task that was previously performed by a human (Parasuraman & Riley, 1997). When such notions of automation are taken as grounds for training, they readily invoke a part-task training (PTT) approach. This article outlines broad functions of automation as a source of PTT and reviews the PTT literature, focusing on the potential benefits and costs related to using automation as a mechanism for PTT. The article reviews some past work in this area and suggests a path to move beyond the type of work captured by the "automation as PTT" framework. An illustrative experiment shows how automation in training and PTT are actually separable issues. PTT with automation has some utility but ultimately remains an unsatisfactory framework for the future broad potential of automation during training, and we suggest that a new conceptualization is needed.

  8. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingcheng, E-mail: qiy9@pitt.edu; To, Albert C., E-mail: albertto@pitt.edu

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), ) is applied to capture surface effect for nanosized structures by designing a surface summation rule SR{sup S} within the framework of MMM. Combined with previously proposed bulk summation rule SR{sup B}, the MMM summation rule SR{sup MMM} is completed. SR{sup S} and SR{sup B} are consistently formed within SR{sup MMM} for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SR{sup MMM} lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SR{sup S} and SR{sup B} are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SR{sup MMM} accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SR{sup MMM} with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SR{sup MMM} that is analogous to numerical integration error with quadrature rule in FEM is very small. - Highlights:

  9. Automated nutrient analyses in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.

    1981-02-01

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)

  10. Automating dChip: toward reproducible sharing of microarray data analysis

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2008-05-01

    Full Text Available Abstract Background During the past decade, many software packages have been developed for analysis and visualization of various types of microarrays. We have developed and maintained the widely used dChip as a microarray analysis software package accessible to both biologist and data analysts. However, challenges arise when dChip users want to analyze large number of arrays automatically and share data analysis procedures and parameters. Improvement is also needed when the dChip user support team tries to identify the causes of reported analysis errors or bugs from users. Results We report here implementation and application of the dChip automation module. Through this module, dChip automation files can be created to include menu steps, parameters, and data viewpoints to run automatically. A data-packaging function allows convenient transfer from one user to another of the dChip software, microarray data, and analysis procedures, so that the second user can reproduce the entire analysis session of the first user. An analysis report file can also be generated during an automated run, including analysis logs, user comments, and viewpoint screenshots. Conclusion The dChip automation module is a step toward reproducible research, and it can prompt a more convenient and reproducible mechanism for sharing microarray software, data, and analysis procedures and results. Automation data packages can also be used as publication supplements. Similar automation mechanisms could be valuable to the research community if implemented in other genomics and bioinformatics software packages.

  11. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    Science.gov (United States)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  12. Application of fluorescence-based semi-automated AFLP analysis in barley and wheat

    DEFF Research Database (Denmark)

    Schwarz, G.; Herz, M.; Huang, X.Q.

    2000-01-01

    of semi-automated codominant analysis for hemizygous AFLP markers in an F-2 population was too low, proposing the use of dominant allele-typing defaults. Nevertheless, the efficiency of genetic mapping, especially of complex plant genomes, will be accelerated by combining the presented genotyping......Genetic mapping and the selection of closely linked molecular markers for important agronomic traits require efficient, large-scale genotyping methods. A semi-automated multifluorophore technique was applied for genotyping AFLP marker loci in barley and wheat. In comparison to conventional P-33...

  13. Studies on Molecular Mechanisms Underlying Spinocerebellar Ataxia Type 3

    DEFF Research Database (Denmark)

    Kristensen, Line Vildbrad

    . Even though a range of mechanisms contributing to polyQ diseases have been uncovered, there is still no treatment available. One of the more common polyQ diseases is SCA3, which is caused by a polyQ expansion in the ataxin-3 protein that normally functions as a deubiquitinating enzyme involved...... in protein quality control. In SCA3 patients polyQ expanded ataxin-3 forms intranuclear inclusions in various brain areas, but why the polyQ expansion of ataxin-3 leads to neuronal dysfunction is still not well understood. This thesis describes molecular biological investigations of ataxin-3 biology, aimed...... at furthering our understanding of SCA3 disease mechanisms. In manuscript I, we investigated if post-translational modifications of ataxin-3 were changed by the polyQ expansion. The ubiquitin chain topology and ubiquitination pattern of ataxin-3 were unaltered by the polyQ expansion. In contrast...

  14. Automation in control laboratory and related information management system

    International Nuclear Information System (INIS)

    Gopalan, B.; Syamsundar, S.

    1997-01-01

    In the field of technology, the word automation is often employed to indicate many types of mechanized operations, though in the strict sense it means those operations which involve application of an element of knowledge or decision making without the intervention of human mind. In laboratory practice for example, the use of multi-sample array turret and millivolt recorder connected to a spectrophotometer represents a situation of mechanized operation as these gadgets help eliminating human muscle power. If a micro processor or a computer is connected to the above equipment for interpreting the measured parameters and establishing calibration graphs or display concentration results, then a real automated situation results where the application of human mind is eliminated. The state of the art of modern laboratory analysis abounds in the employment of automatic analytical equipment thanks to the development in the field of VLSI, computer, software etc. and this has given rise to the concept of laboratory automation

  15. Arduino-based automation of a DNA extraction system.

    Science.gov (United States)

    Kim, Kyung-Won; Lee, Mi-So; Ryu, Mun-Ho; Kim, Jong-Won

    2015-01-01

    There have been many studies to detect infectious diseases with the molecular genetic method. This study presents an automation process for a DNA extraction system based on microfluidics and magnetic bead, which is part of a portable molecular genetic test system. This DNA extraction system consists of a cartridge with chambers, syringes, four linear stepper actuators, and a rotary stepper actuator. The actuators provide a sequence of steps in the DNA extraction process, such as transporting, mixing, and washing for the gene specimen, magnetic bead, and reagent solutions. The proposed automation system consists of a PC-based host application and an Arduino-based controller. The host application compiles a G code sequence file and interfaces with the controller to execute the compiled sequence. The controller executes stepper motor axis motion, time delay, and input-output manipulation. It drives the stepper motor with an open library, which provides a smooth linear acceleration profile. The controller also provides a homing sequence to establish the motor's reference position, and hard limit checking to prevent any over-travelling. The proposed system was implemented and its functionality was investigated, especially regarding positioning accuracy and velocity profile.

  16. Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-02-11

    For semiconducting polymers, such as regioregular poly(3-hexylthiophene-2, 5-diyl) (rr-P3HT), the molecular weight has been correlated to charge carrier field-effect mobilities, surface morphology, and gelation rates in solution and therefore has important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion of the photoactive layer using micromechanical testing techniques. Cohesive values ranged from ∼0.5 to ∼17 J m -2, following the general trend of greater cohesion with increasing molecular weight. Using nanodynamic mechanical analysis, we attribute the increase in cohesion to increased plasticity which helps dissipate the applied energy. Finally, we correlate photovoltaic efficiency with cohesion to assess the device physics pertinent to optimizing device reliability. This research elucidates the fundamental parameters which affect both the mechanical stability and efficiency of polymer solar cells. © 2014 American Chemical Society.

  17. Automation Framework for Flight Dynamics Products Generation

    Science.gov (United States)

    Wiegand, Robert E.; Esposito, Timothy C.; Watson, John S.; Jun, Linda; Shoan, Wendy; Matusow, Carla

    2010-01-01

    XFDS provides an easily adaptable automation platform. To date it has been used to support flight dynamics operations. It coordinates the execution of other applications such as Satellite TookKit, FreeFlyer, MATLAB, and Perl code. It provides a mechanism for passing messages among a collection of XFDS processes, and allows sending and receiving of GMSEC messages. A unified and consistent graphical user interface (GUI) is used for the various tools. Its automation configuration is stored in text files, and can be edited either directly or using the GUI.

  18. Neuroprotection and its molecular mechanism following spinal cord injury☆

    Science.gov (United States)

    Liu, Nai-Kui; Xu, Xiao-Ming

    2012-01-01

    Acute spinal cord injury initiates a complex cascade of molecular events termed ‘secondary injury’, which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury. PMID:25624837

  19. Molecular Mechanisms Underlying the Epileptogenesis and Seizure Progression in Tuberous Sclerosis Complex 1 Deficient Mouse Models

    Science.gov (United States)

    2016-10-01

    dysregulation in epileptogenesis in the developing brain? 2) What are the molecular mechanisms downstream of mTOR hyperactivation that trigger epileptogenesis...underlying epilepsy. Hopefully, a knowledge of these mechanisms will aid in a rational development of therapies. KEYWORDS Tuberous Sclerosis, Epilepsy

  20. Molecular mechanisms of intrauterine growth restriction.

    Science.gov (United States)

    Gurugubelli Krishna, Rao; Vishnu Bhat, B

    2017-07-10

    Intrauterine growth restriction (IUGR) is a pregnancy specific disease characterized by decreased growth rate of fetus than the normal growth potential at particular gestational age. In the current scenario it is a leading cause of fetal and neonatal morbidity and mortality. In the last decade exhilarating experimental studies from several laboratories have provided fascinating proof for comprehension of molecular basis of IUGR. Atypical expression of enzymes governed by TGFβ causes the placental apoptosis and altered expression of TGFβ due to hyper alimentation causes impairment of lung function. Crosstalk of cAMP with protein kinases plays a prominent role in the regulation of cortisol levels. Increasing levels of NOD1 proteins leads to development of IUGR by increasing the levels of inflammatory mediators. Increase in leptin synthesis in placental trophoblast cells is associated with IUGR. In this review, we emphasize on the regulatory mechanisms of IUGR and its associated diseases. They may help improve the in-utero fetal growth and provide a better therapeutic intervention for prevention and treatment of IUGR.

  1. Latent memory facilitates relearning through molecular signaling mechanisms that are distinct from original learning.

    Science.gov (United States)

    Menges, Steven A; Riepe, Joshua R; Philips, Gary T

    2015-09-01

    A highly conserved feature of memory is that it can exist in a latent, non-expressed state which is revealed during subsequent learning by its ability to significantly facilitate (savings) or inhibit (latent inhibition) subsequent memory formation. Despite the ubiquitous nature of latent memory, the mechanistic nature of the latent memory trace and its ability to influence subsequent learning remains unclear. The model organism Aplysia californica provides the unique opportunity to make strong links between behavior and underlying cellular and molecular mechanisms. Using Aplysia, we have studied the mechanisms of savings due to latent memory for a prior, forgotten experience. We previously reported savings in the induction of three distinct temporal domains of memory: short-term (10min), intermediate-term (2h) and long-term (24h). Here we report that savings memory formation utilizes molecular signaling pathways that are distinct from original learning: whereas the induction of both original intermediate- and long-term memory in naïve animals requires mitogen activated protein kinase (MAPK) activation and ongoing protein synthesis, 2h savings memory is not disrupted by inhibitors of MAPK or protein synthesis, and 24h savings memory is not dependent on MAPK activation. Collectively, these findings reveal that during forgetting, latent memory for the original experience can facilitate relearning through molecular signaling mechanisms that are distinct from original learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Nanoparticles and potential neurotoxicity: focus on molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Davide Lovisolo

    2018-01-01

    Full Text Available The last decades have seen an explosive increase in the development of nanoparticles and in their use in consumer, industrial and medical applications. Their fast diffusion has also raised widespread concern about the potential toxic effects on living organisms, including humans: at the nanoscale, they can interact with subcellular components such as membranes, proteins, lipids, nucleic acids, thus inducing unpredicted functional perturbations in cells and tissues. The nervous tissue is a particular sensitive target, because its cellular components (mainly neurons and glial cells are tightly regulated and metabolically exigent biological entities. While the literature on the potential toxicity of nanoparticles has grown in parallel with their utilization, the available data on neurotoxicity are less abundant. In particular, information on the neuronal molecular targets of nanoparticles is still largely incomplete. A better understanding of this issue is highly relevant for the rational and controlled design of nanoparticles, both for their general utilization and more specifically for their use in the promising field of nanoneuromedicine. In this review, we will discuss the available information on the mechanisms involved in the interaction between nanoobjects and cells of the nervous system, focusing on the known molecular actors, both at the plasma membrane and in intracellular compartments.

  3. Molecular imaging and the unification of multilevel mechanisms and data in medical physics

    International Nuclear Information System (INIS)

    Nikiforidis, George C.; Sakellaropoulos, George C.; Kagadis, George C.

    2008-01-01

    Molecular imaging (MI) constitutes a recently developed approach of imaging, where modalities and agents have been reinvented and used in novel combinations in order to expose and measure biologic processes occurring at molecular and cellular levels. It is an approach that bridges the gap between modalities acquiring data from high (e.g., computed tomography, magnetic resonance imaging, and positron-emitting isotopes) and low (e.g., PCR, microarrays) levels of a biological organization. While data integration methodologies will lead to improved diagnostic and prognostic performance, interdisciplinary collaboration, triggered by MI, will result in a better perception of the underlying biological mechanisms. Toward the development of a unifying theory describing these mechanisms, medical physicists can formulate new hypotheses, provide the physical constraints bounding them, and consequently design appropriate experiments. Their new scientific and working environment calls for interventions in their syllabi to educate scientists with enhanced capabilities for holistic views and synthesis.

  4. Development of design principles for automated systems in transport control.

    Science.gov (United States)

    Balfe, Nora; Wilson, John R; Sharples, Sarah; Clarke, Theresa

    2012-01-01

    This article reports the results of a qualitative study investigating attitudes towards and opinions of an advanced automation system currently used in UK rail signalling. In-depth interviews were held with 10 users, key issues associated with automation were identified and the automation's impact on the signalling task investigated. The interview data highlighted the importance of the signallers' understanding of the automation and their (in)ability to predict its outputs. The interviews also covered the methods used by signallers to interact with and control the automation, and the perceived effects on their workload. The results indicate that despite a generally low level of understanding and ability to predict the actions of the automation system, signallers have developed largely successful coping mechanisms that enable them to use the technology effectively. These findings, along with parallel work identifying desirable attributes of automation from the literature in the area, were used to develop 12 principles of automation which can be used to help design new systems which better facilitate cooperative working. The work reported in this article was completed with the active involvement of operational rail staff who regularly use automated systems in rail signalling. The outcomes are currently being used to inform decisions on the extent and type of automation and user interfaces in future generations of rail control systems.

  5. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.

    Science.gov (United States)

    Nauton, Lionel; Hélaine, Virgil; Théry, Vincent; Hecquet, Laurence

    2016-04-12

    We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately.

  6. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Towards a Better Understanding of the Molecular Mechanisms Involved in Sunlight-Induced Melanoma

    Directory of Open Access Journals (Sweden)

    Williams Mandy

    2005-01-01

    Full Text Available Although much less prevalent than its nonmelanoma skin cancer counterparts, cutaneous malignant melanoma (CMM is the most lethal human skin cancer. Epidemiological and biological studies have established a strong link between lifetime exposure to ultraviolet (UV light, particularly sunburn in childhood, and the development of melanoma. However, the specific molecular targets of this environmental carcinogen are not known. Data obtained from genetic and molecular studies over the last few years have identified the INK4a/ARF locus as the “gatekeeper” melanoma suppressor, encoding two tumour suppressor proteins in human, p16 INK4a and p14 ARF . Recent developments in molecular biotechnology and research using laboratory animals have made a significant gene breakthrough identifying the components of the p16 INK4a /Rb pathway as the principal and rate-limiting targets of UV radiation actions in melanoma formation. This review summarizes the current knowledge of the molecular mechanisms involved in melanoma development and its relationship to sunlight UV radiation.

  8. Longwall automation 2

    Energy Technology Data Exchange (ETDEWEB)

    David Hainsworth; David Reid; Con Caris; J.C. Ralston; C.O. Hargrave; Ron McPhee; I.N. Hutchinson; A. Strange; C. Wesner [CSIRO (Australia)

    2008-05-15

    This report covers a nominal two-year extension to the Major Longwall Automation Project (C10100). Production standard implementation of Longwall Automation Steering Committee (LASC) automation systems has been achieved at Beltana and Broadmeadow mines. The systems are now used on a 24/7 basis and have provided production benefits to the mines. The LASC Information System (LIS) has been updated and has been implemented successfully in the IT environment of major coal mining houses. This enables 3D visualisation of the longwall environment and equipment to be accessed on line. A simulator has been specified and a prototype system is now ready for implementation. The Shearer Position Measurement System (SPMS) has been upgraded to a modular commercial production standard hardware solution.A compact hardware solution for visual face monitoring has been developed, an approved enclosure for a thermal infrared camera has been produced and software for providing horizon control through faulted conditions has been delivered. The incorporation of the LASC Cut Model information into OEM horizon control algorithms has been bench and underground tested. A prototype system for shield convergence monitoring has been produced and studies to identify techniques for coal flow optimisation and void monitoring have been carried out. Liaison with equipment manufacturers has been maintained and technology delivery mechanisms for LASC hardware and software have been established.

  9. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    Science.gov (United States)

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed.

  10. Understanding the molecular mechanisms involved in the interfacial self-healing of supramolecular rubbers

    NARCIS (Netherlands)

    Bose, R.K.; Garcia Espallargas, S.J.; Van der Zwaag, S.

    2013-01-01

    Supramolecular rubbers based on 2-aminoethylimidazolidone and fatty acids with epoxy crosslinks have been shown to self-heal via multiple hydrogen bonding sites. In this work, several tools are used to investigate the molecular mechanisms taking place at the interface to understand cohesive healing

  11. Automated computation of autonomous spectral submanifolds for nonlinear modal analysis

    Science.gov (United States)

    Ponsioen, Sten; Pedergnana, Tiemo; Haller, George

    2018-04-01

    We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.

  12. Molecular Mechanisms for Age-Associated Mitochondrial Deficiency in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Akira Wagatsuma

    2012-01-01

    Full Text Available The abundance, morphology, and functional properties of mitochondria decay in skeletal muscle during the process of ageing. Although the precise mechanisms remain to be elucidated, these mechanisms include decreased mitochondrial DNA (mtDNA repair and mitochondrial biogenesis. Mitochondria possess their own protection system to repair mtDNA damage, which leads to defects of mtDNA-encoded gene expression and respiratory chain complex enzymes. However, mtDNA mutations have shown to be accumulated with age in skeletal muscle. When damaged mitochondria are eliminated by autophagy, mitochondrial biogenesis plays an important role in sustaining energy production and physiological homeostasis. The capacity for mitochondrial biogenesis has shown to decrease with age in skeletal muscle, contributing to progressive mitochondrial deficiency. Understanding how these endogenous systems adapt to altered physiological conditions during the process of ageing will provide a valuable insight into the underlying mechanisms that regulate cellular homeostasis. Here we will summarize the current knowledge about the molecular mechanisms responsible for age-associated mitochondrial deficiency in skeletal muscle. In particular, recent findings on the role of mtDNA repair and mitochondrial biogenesis in maintaining mitochondrial functionality in aged skeletal muscle will be highlighted.

  13. Low cost automation

    International Nuclear Information System (INIS)

    1987-03-01

    This book indicates method of building of automation plan, design of automation facilities, automation and CHIP process like basics of cutting, NC processing machine and CHIP handling, automation unit, such as drilling unit, tapping unit, boring unit, milling unit and slide unit, application of oil pressure on characteristics and basic oil pressure circuit, application of pneumatic, automation kinds and application of process, assembly, transportation, automatic machine and factory automation.

  14. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  15. Molecular mechanisms of maternal vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Goulopoulou, Styliani; Davidge, Sandra T

    2015-02-01

    In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Molecular mechanism for inhibition of twinfilin by phosphoinositides

    DEFF Research Database (Denmark)

    Hakala, Markku; Kalimeri, Maria; Enkavi, Giray

    2018-01-01

    actin-depolymerizing factor (ADF)/cofilin-like ADF homology domains of twinfilin bind phosphoinositides only with low affinity. Mutagenesis and biochemical experiments combined with atomistic molecular dynamics simulations reveal that the C-terminal tail of twinfilin interacts with membranes through......Membrane phosphoinositides control organization and dynamics of the actin cytoskeleton by regulating the activities of several key actin-binding proteins. Twinfilin is an evolutionarily conserved protein that contributes to cytoskeletal dynamics by interacting with actin monomers, filaments......, and the heterodimeric capping protein. Twinfilin also binds phosphoinositides, which inhibit its interactions with actin, but the underlying mechanism has remained unknown. Here, we show that the high-affinity binding site of twinfilin for phosphoinositides is located at the C-terminal tail region, whereas the two...

  17. Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage

    Science.gov (United States)

    Redgrove, Kate A.; McLaughlin, Eileen A.

    2017-01-01

    In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte. PMID:29312475

  18. Automated tool for virtual screening and pharmacology-based pathway prediction and analysis

    Directory of Open Access Journals (Sweden)

    Sugandh Kumar

    2017-10-01

    Full Text Available The virtual screening is an effective tool for the lead identification in drug discovery. However, there are limited numbers of crystal structures available as compared to the number of biological sequences which makes (Structure Based Drug Discovery SBDD a difficult choice. The current tool is an attempt to automate the protein structure modelling and automatic virtual screening followed by pharmacology-based prediction and analysis. Starting from sequence(s, this tool automates protein structure modelling, binding site identification, automated docking, ligand preparation, post docking analysis and identification of hits in the biological pathways that can be modulated by a group of ligands. This automation helps in the characterization of ligands selectivity and action of ligands on a complex biological molecular network as well as on individual receptor. The judicial combination of the ligands binding different receptors can be used to inhibit selective biological pathways in a disease. This tool also allows the user to systemically investigate network-dependent effects of a drug or drug candidate.

  19. Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal-Water Interfaces.

    Science.gov (United States)

    Faheem, Muhammad; Heyden, Andreas

    2014-08-12

    We report the development of a quantum mechanics/molecular mechanics free energy perturbation (QM/MM-FEP) method for modeling chemical reactions at metal-water interfaces. This novel solvation scheme combines planewave density function theory (DFT), periodic electrostatic embedded cluster method (PEECM) calculations using Gaussian-type orbitals, and classical molecular dynamics (MD) simulations to obtain a free energy description of a complex metal-water system. We derive a potential of mean force (PMF) of the reaction system within the QM/MM framework. A fixed-size, finite ensemble of MM conformations is used to permit precise evaluation of the PMF of QM coordinates and its gradient defined within this ensemble. Local conformations of adsorbed reaction moieties are optimized using sequential MD-sampling and QM-optimization steps. An approximate reaction coordinate is constructed using a number of interpolated states and the free energy difference between adjacent states is calculated using the QM/MM-FEP method. By avoiding on-the-fly QM calculations and by circumventing the challenges associated with statistical averaging during MD sampling, a computational speedup of multiple orders of magnitude is realized. The method is systematically validated against the results of ab initio QM calculations and demonstrated for C-C cleavage in double-dehydrogenated ethylene glycol on a Pt (111) model surface.

  20. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Fang, E-mail: jfwang@gordonlifescience.org [Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235 (China); Gordon Life Science Institute, 13784 Torrey Del Mar Drive, San Diego, CA 92130 (United States); Chou, Kuo-Chen [Gordon Life Science Institute, 13784 Torrey Del Mar Drive, San Diego, CA 92130 (United States)

    2009-12-18

    Rab5a is currently a most interesting target because it is responsible for regulating the early endosome fusion in endocytosis and possibly the budding process. We utilized longtime-scale molecular dynamics simulations to investigate the internal motion of the wild-type Rab5a and its A30P mutant. It was observed that, after binding with GTP, the global flexibility of the two proteins is increasing, while the local flexibility in their sensitive sites (P-loop, switch I and II regions) is decreasing. Also, the mutation of Ala30 to Pro30 can cause notable flexibility variations in the sensitive sites. However, this kind of variations is dramatically reduced after binding with GTP. Such a remarkable feature is mainly caused by the water network rearrangements in the sensitive sites. These findings might be of use for revealing the profound mechanism of the displacements of Rab5a switch regions, as well as the mechanism of the GDP dissociation and GTP association.

  1. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    Science.gov (United States)

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  2. Recent advances in agent-based complex automated negotiation

    CERN Document Server

    Ito, Takayuki; Zhang, Minjie; Fujita, Katsuhide; Robu, Valentin

    2016-01-01

    This book covers recent advances in Complex Automated Negotiations as a widely studied emerging area in the field of Autonomous Agents and Multi-Agent Systems. The book includes selected revised and extended papers from the 7th International Workshop on Agent-Based Complex Automated Negotiation (ACAN2014), which was held in Paris, France, in May 2014. The book also includes brief introductions about Agent-based Complex Automated Negotiation which are based on tutorials provided in the workshop, and brief summaries and descriptions about the ANAC'14 (Automated Negotiating Agents Competition) competition, where authors of selected finalist agents explain the strategies and the ideas used by them. The book is targeted to academic and industrial researchers in various communities of autonomous agents and multi-agent systems, such as agreement technology, mechanism design, electronic commerce, related areas, as well as graduate, undergraduate, and PhD students working in those areas or having interest in them.

  3. Atom Tunneling in the Hydroxylation Process of Taurine/α-Ketoglutarate Dioxygenase Identified by Quantum Mechanics/Molecular Mechanics Simulations.

    Science.gov (United States)

    Álvarez-Barcia, Sonia; Kästner, Johannes

    2017-06-01

    Taurine/α-ketoglutarate dioxygenase is one of the most studied α-ketoglutarate-dependent dioxygenases (αKGDs), involved in several biotechnological applications. We investigated the key step in the catalytic cycle of the αKGDs, the hydrogen transfer process, by a quantum mechanics/molecular mechanics approach (B3LYP/CHARMM22). Analysis of the charge and spin densities during the reaction demonstrates that a concerted mechanism takes place, where the H atom transfer happens simultaneously with the electron transfer from taurine to the Fe═O cofactor. We found the quantum tunneling of the hydrogen atom to increase the rate constant by a factor of 40 at 5 °C. As a consequence, a quite high kinetic isotope effect close to 60 is obtained, which is consistent with the experimental value.

  4. Molecular mechanics and quantum mechanical modeling of hexane soot structure and interactions with pyrene

    Directory of Open Access Journals (Sweden)

    Kubicki JD

    2000-09-01

    Full Text Available Molecular simulations (energy minimizations and molecular dynamics of an n-hexane soot model developed by Smith and co-workers (M. S. Akhter, A. R. Chughtai and D. M. Smith, Appl. Spectrosc., 1985, 39, 143; ref. 1 were performed. The MM+ (N. L. Allinger, J. Am. Chem. Soc., 1977, 395, 157; ref. 2 and COMPASS (H. Sun, J. Phys. Chem., 1998, 102, 7338; ref. 3 force fields were tested for their ability to produce realistic soot nanoparticle structure. The interaction of pyrene with the model soot was simulated. Quantum mechanical calculations on smaller soot fragments were carried out. Starting from an initial 2D structure, energy minimizations are not able to produce the observed layering within soot with either force field. Results of molecular dynamics simulations indicate that the COMPASS force field does a reasonably accurate job of reproducing observations of soot structure. Increasing the system size from a 683 to a 2732 atom soot model does not have a significant effect on predicted structures. Neither does the addition of water molecules surrounding the soot model. Pyrene fits within the soot structure without disrupting the interlayer spacing. Polycyclic aromatic hydrocarbons (PAH, such as pyrene, may strongly partition into soot and have slow desorption kinetics because the PAH-soot bonding is similar to soot–soot interactions. Diffusion of PAH into soot micropores may allow the PAH to be irreversibly adsorbed and sequestered so that they partition slowly back into an aqueous phase causing dis-equilibrium between soil organic matter and porewater.

  5. Cisplatin in cancer therapy: molecular mechanisms of action

    Science.gov (United States)

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-01-01

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is given to its molecular mechanisms of action, and its undesirable side effects. PMID:25058905

  6. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    Science.gov (United States)

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  7. Study on the mechanism of chiral recognition with molecularly imprinted polymers

    International Nuclear Information System (INIS)

    Lu Yan; Li Chenxi; Zhang Hesheng; Liu Xiaohang

    2003-01-01

    This study aimed at elucidating the chiral recognition mechanism with molecularly imprinted polymers (MIPs) in aqueous environment. The system used ethylene glycol dimethacrylate (EGDMA), methacrylic acid (MAA), and 4-L-phenylalanylamino-pyridine (4-L-PheNHPy) as the cross-linking monomer, functional monomer and template, respectively, to assemble the imprinted polymer. A self-assembly mechanism, which includes the pre-organizing functional monomers around template before polymerization process, was proposed. This mechanism was supported by 1 H NMR titration test. Interactions between functional monomer and template were observed using UV-Vis spectroscopy of solutions of these components as well. These studies indicated a 1:2 molecular complex dominantly formed between 4-L-PheNHPy and MAA. Association constant was estimated to be 97,000 M -2 . Based on these results, a model mainly involving two-spot interaction was proposed evolving from our reported concept of exact placement of functional group. Ionic interaction between the primary amino group of 4-L-PheNHPy and carboxylic acid group inside the microcavity on MIPs was believed to play a predominate role in the enantioselectivity as supported by the observation of the relationship between the retention factor of 4-L-PheNHPy and the pH of mobile phase. While thermodynamic study at different pH revealed that, the interaction between the pyridyl group of 4-L-PheNHPy and the carboxylic acid group on the MIPs is also strong, implying that it also plays a profound role in determining the highly chiral selectivity of MIPs

  8. Azobenzene as a photoregulator covalently attached to RNA: a quantum mechanics/molecular mechanics-surface hopping dynamics study.

    Science.gov (United States)

    Mondal, Padmabati; Granucci, Giovanni; Rastädter, Dominique; Persico, Maurizio; Burghardt, Irene

    2018-05-28

    The photoregulation of nucleic acids by azobenzene photoswitches has recently attracted considerable interest in the context of emerging biotechnological applications. To understand the mechanism of photoinduced isomerisation and conformational control in these complex biological environments, we employ a Quantum Mechanics/Molecular Mechanics (QM/MM) approach in conjunction with nonadiabatic Surface Hopping (SH) dynamics. Two representative RNA-azobenzene complexes are investigated, both of which contain the azobenzene chromophore covalently attached to an RNA double strand via a β-deoxyribose linker. Due to the pronounced constraints of the local RNA environment, it is found that trans -to- cis isomerization is slowed down to a time scale of ∼10-15 picoseconds, in contrast to 500 femtoseconds in vacuo , with a quantum yield reduced by a factor of two. By contrast, cis -to- trans isomerization remains in a sub-picosecond regime. A volume-conserving isomerization mechanism is found, similarly to the pedal-like mechanism previously identified for azobenzene in solution phase. Strikingly, the chiral RNA environment induces opposite right-handed and left-handed helicities of the ground-state cis -azobenzene chromophore in the two RNA-azobenzene complexes, along with an almost completely chirality conserving photochemical pathway for these helical enantiomers.

  9. Automated Layup of Sheet Prepregs on Complex Moulds

    OpenAIRE

    Elkington, Michael P; Ward, Carwyn; Potter, Kevin D

    2016-01-01

    A new two-stage method for the automated manufacture of high performance composites components is presented which aims to combine the capacity for forming complex shapes of Hand Layup with the speed of existing automated systems. In the first stage of the new process plies are formed into the approximate shape of the mould using a press mechanism. They are then passed onto a layup stage which uses multiple end effectors controlled by a single six axis robot to stick the plies down onto the mo...

  10. Autonomy and Automation

    Science.gov (United States)

    Shively, Jay

    2017-01-01

    A significant level of debate and confusion has surrounded the meaning of the terms autonomy and automation. Automation is a multi-dimensional concept, and we propose that Remotely Piloted Aircraft Systems (RPAS) automation should be described with reference to the specific system and task that has been automated, the context in which the automation functions, and other relevant dimensions. In this paper, we present definitions of automation, pilot in the loop, pilot on the loop and pilot out of the loop. We further propose that in future, the International Civil Aviation Organization (ICAO) RPAS Panel avoids the use of the terms autonomy and autonomous when referring to automated systems on board RPA. Work Group 7 proposes to develop, in consultation with other workgroups, a taxonomy of Levels of Automation for RPAS.

  11. Multi-level quantum mechanics theories and molecular mechanics study of the double-inversion mechanism of the F- + CH3I reaction in aqueous solution.

    Science.gov (United States)

    Liu, Peng; Zhang, Jingxue; Wang, Dunyou

    2017-06-07

    A double-inversion mechanism of the F - + CH 3 I reaction was discovered in aqueous solution using combined multi-level quantum mechanics theories and molecular mechanics. The stationary points along the reaction path show very different structures to the ones in the gas phase due to the interactions between the solvent and solute, especially strong hydrogen bonds. An intermediate complex, a minimum on the potential of mean force, was found to serve as a connecting-link between the abstraction-induced inversion transition state and the Walden-inversion transition state. The potentials of mean force were calculated with both the DFT/MM and CCSD(T)/MM levels of theory. Our calculated free energy barrier of the abstraction-induced inversion is 69.5 kcal mol -1 at the CCSD(T)/MM level of theory, which agrees with the one at 72.9 kcal mol -1 calculated using the Born solvation model and gas-phase data; and our calculated free energy barrier of the Walden inversion is 24.2 kcal mol -1 , which agrees very well with the experimental value at 25.2 kcal mol -1 in aqueous solution. The calculations show that the aqueous solution makes significant contributions to the potentials of mean force and exerts a big impact on the molecular-level evolution along the reaction pathway.

  12. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    Science.gov (United States)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  13. Quantum-Mechanical Calculations on Molecular Substructures Involved in Nanosystems

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2014-09-01

    Full Text Available In this review article, four ideas are discussed: (a aromaticity of fullerenes patched with flowers of 6-and 8-membered rings, optimized at the HF and DFT levels of theory, in terms of HOMA and NICS criteria; (b polybenzene networks, from construction to energetic and vibrational spectra computations; (c quantum-mechanical calculations on the repeat units of various P-type crystal networks and (d construction and stability evaluation, at DFTB level of theory, of some exotic allotropes of diamond D5, involved in hyper-graphenes. The overall conclusion was that several of the yet hypothetical molecular nanostructures herein described are serious candidates to the status of real molecules.

  14. Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity.

    Science.gov (United States)

    Monnery, Bryn D; Wright, Michael; Cavill, Rachel; Hoogenboom, Richard; Shaunak, Sunil; Steinke, Joachim H G; Thanou, Maya

    2017-04-15

    The mechanism of polycation cytotoxicity and the relationship to polymer molecular weight is poorly understood. To gain an insight into this important phenomenon a range of newly synthesised uniform (near monodisperse) linear polyethylenimines, commercially available poly(l-lysine)s and two commonly used PEI-based transfectants (broad 22kDa linear and 25kDa branched) were tested for their cytotoxicity against the A549 human lung carcinoma cell line. Cell membrane damage assays (LDH release) and cell viability assays (MTT) showed a strong relationship to dose and polymer molecular weight, and increasing incubation times revealed that even supposedly "non-toxic" low molecular weight polymers still damage cell membranes. The newly proposed mechanism of cell membrane damage is acid catalysed hydrolysis of lipidic phosphoester bonds, which was supported by observations of the hydrolysis of DOPC liposomes. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Proceedings of the international conference on advancements in automation, robotics and sensing: souvenir

    International Nuclear Information System (INIS)

    Vinod, B.; Sundaram, M.; Sujatha, K.S.; Brislin, J. Joe; Prabhakarab, S.

    2016-01-01

    Robotics and automation is a thriving domain in the field of engineering, comprising of major areas like electrical, electronics, mechanical, automation, computer and robotics engineering. This conference address issues related to technical advances in all these fields. Papers relevant to INIS are indexed separately

  16. 1st Latin American Congress on Automation and Robotics

    CERN Document Server

    Baca, José; Moreno, Héctor; Carrera, Isela; Cardona, Manuel

    2017-01-01

    This book contains the proceedings of the 1st Latin American Congress on Automation and Robotics held at Panama City, Panama in February 2017. It gathers research work from researchers, scientists, and engineers from academia and private industry, and presents current and exciting research applications and future challenges in Latin American. The scope of this book covers a wide range of themes associated with advances in automation and robotics research encountered in engineering and scientific research and practice. These topics are related to control algorithms, systems automation, perception, mobile robotics, computer vision, educational robotics, robotics modeling and simulation, and robotics and mechanism design. LACAR 2017 has been sponsored by SENACYT (Secretaria Nacional de Ciencia, Tecnologia e Inovacion of Panama).

  17. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    Kubitschek, H.E.; Derstine, P.L.; Griego, V.M.; Matsushita, T.; Peak, J.G.; Peak, M.J.; Reynolds, P.R.; Webb, R.B.; Williams-Hill, D.

    1981-01-01

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  18. Molecular mechanism and genetic determinants of buprofezin degradation.

    Science.gov (United States)

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-07-14

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and non-target insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond and the release of the heterocyclic ring 2- tert -butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. Comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin. bfzA3A4A1A2 encodes a novel Rieske non-heme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; bfzB is involved in dehydrogenation, and bfzC is in charge of benzene ring cleavage. Furthermore, the products of bfzBA3A4A1A2C can also catalyze dihydroxylation, dehydrogenation and aromatic ring cleavage of biphenyl, flavanone, flavone and bifenthrin. In addition, a transcriptional study revealed that bfzBA3A4A1A2C is organized in one transcriptional unit that is constitutively expressed in strain YL-1. Importance There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in natural environment

  19. Molecular mechanism of ligand recognition by membrane transport protein, Mhp1

    Science.gov (United States)

    Simmons, Katie J; Jackson, Scott M; Brueckner, Florian; Patching, Simon G; Beckstein, Oliver; Ivanova, Ekaterina; Geng, Tian; Weyand, Simone; Drew, David; Lanigan, Joseph; Sharples, David J; Sansom, Mark SP; Iwata, So; Fishwick, Colin WG; Johnson, A Peter; Cameron, Alexander D; Henderson, Peter JF

    2014-01-01

    The hydantoin transporter Mhp1 is a sodium-coupled secondary active transport protein of the nucleobase-cation-symport family and a member of the widespread 5-helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed events of substrate binding, through a combination of crystallography, molecular dynamics, site-directed mutagenesis, biochemical/biophysical assays, and the design and synthesis of novel ligands. We show precisely where 5-substituted hydantoin substrates bind in an extended configuration at the interface of the bundle and hash domains. They are recognised through hydrogen bonds to the hydantoin moiety and the complementarity of the 5-substituent for a hydrophobic pocket in the protein. Furthermore, we describe a novel structure of an intermediate state of the protein with the external thin gate locked open by an inhibitor, 5-(2-naphthylmethyl)-L-hydantoin, which becomes a substrate when leucine 363 is changed to an alanine. We deduce the molecular events that underlie acquisition and transport of a ligand by Mhp1. PMID:24952894

  20. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Samuel Hertig

    2016-06-01

    Full Text Available Molecular dynamics (MD simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.

  1. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  2. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations.

    Science.gov (United States)

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-07

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r(-1) term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions.

  3. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen

    2002-01-01

    The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium...... and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling...... sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins...

  4. Benchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transfer.

    Science.gov (United States)

    Świderek, Katarzyna; Arafet, Kemel; Kohen, Amnon; Moliner, Vicent

    2017-03-14

    Given the ubiquity of hydride-transfer reactions in enzyme-catalyzed processes, identifying the appropriate computational method for evaluating such biological reactions is crucial to perform theoretical studies of these processes. In this paper, the hydride-transfer step catalyzed by thymidylate synthase (TSase) is studied by examining hybrid quantum mechanics/molecular mechanics (QM/MM) potentials via multiple semiempirical methods and the M06-2X hybrid density functional. Calculations of protium and tritium transfer in these reactions across a range of temperatures allowed calculation of the temperature dependence of kinetic isotope effects (KIE). Dynamics and quantum-tunneling effects are revealed to have little effect on the reaction rate, but are significant in determining the KIEs and their temperature dependence. A good agreement with experiments is found, especially when computed for RM1/MM simulations. The small temperature dependence of quantum tunneling corrections and the quasiclassical contribution term cancel each other, while the recrossing transmission coefficient seems to be temperature-independent over the interval of 5-40 °C.

  5. An Automated Sample Processing System for Planetary Exploration

    Science.gov (United States)

    Soto, Juancarlos; Lasnik, James; Roark, Shane; Beegle, Luther

    2012-01-01

    An Automated Sample Processing System (ASPS) for wet chemistry processing of organic materials on the surface of Mars has been jointly developed by Ball Aerospace and the Jet Propulsion Laboratory. The mechanism has been built and tested to demonstrate TRL level 4. This paper describes the function of the system, mechanism design, lessons learned, and several challenges that were overcome.

  6. Spectroscopical analysis and molecular mechanics calculation of 8,9-Seco-lanostane; Analise espectroscopica e calculos de mecanica molecular de 8,9-seco-lanostanos

    Energy Technology Data Exchange (ETDEWEB)

    Rehder, Vera G; Fujiwara, Fred Y; Marsaioli, Anita J [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica

    1992-12-31

    8.9-Seco-lanostane derivatives have been synthesized visualizing their application as intermediates in chiral building block syntheses and we are here presenting their spectroscopy analyses and MM2 molecular mechanic calculations. (author) 5 refs., 4 figs.

  7. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction

    Science.gov (United States)

    Engleman, Eric A.; Katner, Simon N.; Neal-Beliveau, Bethany S.

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH’s effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system–dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine

  8. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.

    Science.gov (United States)

    Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission

  9. A parametric study of surface roughness and bonding mechanisms of aluminum alloys with epoxies: a molecular dynamics simulation

    Science.gov (United States)

    Timilsina, Rajendra; Termaath, Stephanie

    The marine environment is highly aggressive towards most materials. However, aluminium-magnesium alloys (Al-Mg, specifically, 5xxx series) have exceptionally long service life in such aggressive marine environments. For instance, an Al-Mg alloy, AA5083, is extensively used in naval structures because of its good mechanical strength, formability, seawater corrosion resistance and weldability. However, bonding mechanisms of these alloys with epoxies in a rough surface environment are not fully understood yet. It requires a rigorous investigation at molecular or atomic levels. We performed a molecular dynamics simulation to study an adherend surface preparation and surface bonding mechanisms of Al-Mg alloy (AA5083) with different epoxies by developing several computer models. Various distributions of surface roughness are introduced in the models and performed molecular dynamics simulations. Formation of a beta phase (Al3Mg2) , microstructures, bonding energies at the interface, bonding strengths and durability are investigated. Office of Naval Research.

  10. Coarse-grained simulation of molecular mechanisms of recovery in thermally activated shape-memory polymers

    Science.gov (United States)

    Abberton, Brendan C.; Liu, Wing Kam; Keten, Sinan

    2013-12-01

    Thermally actuated shape-memory polymers (SMPs) are capable of being programmed into a temporary shape and then recovering their permanent reference shape upon exposure to heat, which facilitates a phase transition that allows dramatic increase in molecular mobility. Experimental, analytical, and computational studies have established empirical relations of the thermomechanical behavior of SMPs that have been instrumental in device design. However, the underlying mechanisms of the recovery behavior and dependence on polymer microstructure remain to be fully understood for copolymer systems. This presents an opportunity for bottom-up studies through molecular modeling; however, the limited time-scales of atomistic simulations prohibit the study of key performance metrics pertaining to recovery. In order to elucidate the effects of phase fraction, recovery temperature, and deformation temperature on shape recovery, here we investigate the shape-memory behavior in a copolymer model with coarse-grained potentials using a two-phase molecular model that reproduces physical crosslinking. Our simulation protocol allows observation of upwards of 90% strain recovery in some cases, at time-scales that are on the order of the timescale of the relevant relaxation mechanism (stress relaxation in the unentangled soft-phase). Partial disintegration of the glassy phase during mechanical deformation is found to contribute to irrecoverable strain. Temperature dependence of the recovery indicates nearly full elastic recovery above the trigger temperature, which is near the glass-transition temperature of the rubbery switching matrix. We find that the trigger temperature is also directly correlated with the deformation temperature, indicating that deformation temperature influences the recovery temperatures required to obtain a given amount of shape recovery, until the plateau regions overlap above the transition region. Increasing the fraction of glassy phase results in higher strain

  11. Understanding the Catalytic Mechanism and the Nature of the Transition State of an Attractive Drug-Target Enzyme (Shikimate Kinase) by Quantum Mechanical/Molecular Mechanical (QM/MM) Studies.

    Science.gov (United States)

    Yao, Jianzhuang; Wang, Xia; Luo, Haixia; Gu, Pengfei

    2017-11-16

    Shikimate kinase (SK) is the fifth bacterial enzyme involved in the shikimate pathway for biosynthesis of life-indispensable components, such as aromatic amino acids. The absence of the shikimate pathway in humans makes SK an attractive target for the rational design of drugs aimed at pathogenesis bacteria, such as Mycobacterium tuberculosis and Helicobacter pylori. However, an effective inhibitor of SK (e.g., a transition-state analogue) is still not available on the market due, at least in part, to a lack of knowledge on the catalytic mechanism and the nature of the rate-limiting transition state. Herein, quantum mechanical/molecular mechanical (QM/MM) reaction coordinate, molecular dynamics (MD), and free-energy simulations have been performed to answer these questions. The results presented herein demonstrate that the phosphoryl-transfer process, which is the rate-limiting step of SK-catalyzed phosphorylation of shikimic acid (SKM), is a concerted one-step reaction proceeding through a loose transition state. The computational results agree well with those of experimental studies, specifically NMR results, X-ray crystal structure observation, and activation free-energy barrier. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Molecular and cellular mechanisms of aortic stenosis.

    Science.gov (United States)

    Yetkin, Ertan; Waltenberger, Johannes

    2009-06-12

    Calcific aortic stenosis is the most common cause of aortic valve replacement in developed countries, and this condition increases in prevalence with advancing age. The fibrotic thickening and calcification are common eventual endpoint in both non-rheumatic calcific and rheumatic aortic stenoses. New observations in human aortic valves support the hypothesis that degenerative valvular aortic stenosis is the result of active bone formation in the aortic valve, which may be mediated through a process of osteoblast-like differentiation in these tissues. Additionally histopathologic evidence suggests that early lesions in aortic valves are not just a disease process secondary to aging, but an active cellular process that follows the classical "response to injury hypothesis" similar to the situation in atherosclerosis. Although there are similarities with the risk factor and as well as with the process of atherogenesis, not all the patients with coronary artery disease or atherosclerosis have calcific aortic stenosis. This review mainly focuses on the potential vascular and molecular mechanisms involved in the pathogenesis of aortic valve stenosis. Namely extracellular matrix remodeling, angiogenesis, inflammation, and eventually osteoblast-like differentiation resulting in bone formation have been shown to play a role in the pathogenesis of calcific aortic stenosis. Several mediators related to underlying mechanisms, including growth factors especially transforming growth factor-beta1 and vascular endothelial growth factors, angiogenesis, cathepsin enzymes, adhesion molecules, bone regulatory proteins and matrix metalloproteinases have been demonstrated, however the target to be attacked is not defined yet.

  13. Molecular mechanisms in radiation carcinogenesis: introduction

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1975-01-01

    Molecular studies of radiation carcinogenesis are discussed in relation to theories for extrapolating from cellular and animal models to man. Skin cancer is emphasized because of sunlight-induced photochemical damage to DNA. It is emphasized that cellular and animal models are needed as well as molecular theories for quantitative evaluation of hazardous environmental agents. (U.S.)

  14. Home Automation

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

  15. Molecular Mechanisms of Liver Fibrosis in HIV/HCV Coinfection

    Directory of Open Access Journals (Sweden)

    Claudio M. Mastroianni

    2014-05-01

    Full Text Available Chronic hepatitis C virus (HCV infection is an important cause of morbidity and mortality in people coinfected with human immunodeficiency virus (HIV. Several studies have shown that HIV infection promotes accelerated HCV hepatic fibrosis progression, even with HIV replication under full antiretroviral control. The pathogenesis of accelerated hepatic fibrosis among HIV/HCV coinfected individuals is complex and multifactorial. The most relevant mechanisms involved include direct viral effects, immune/cytokine dysregulation, altered levels of matrix metalloproteinases and fibrosis biomarkers, increased oxidative stress and hepatocyte apoptosis, HIV-associated gut depletion of CD4 cells, and microbial translocation. In addition, metabolic alterations, heavy alcohol use, as well drug use, may have a potential role in liver disease progression. Understanding the pathophysiology and regulation of liver fibrosis in HIV/HCV co-infection may lead to the development of therapeutic strategies for the management of all patients with ongoing liver disease. In this review, we therefore discuss the evidence and potential molecular mechanisms involved in the accelerated liver fibrosis seen in patients coinfected with HIV and HCV.

  16. Use of noncrystallographic symmetry for automated model building at medium to low resolution.

    Science.gov (United States)

    Wiegels, Tim; Lamzin, Victor S

    2012-04-01

    A novel method is presented for the automatic detection of noncrystallographic symmetry (NCS) in macromolecular crystal structure determination which does not require the derivation of molecular masks or the segmentation of density. It was found that throughout structure determination the NCS-related parts may be differently pronounced in the electron density. This often results in the modelling of molecular fragments of variable length and accuracy, especially during automated model-building procedures. These fragments were used to identify NCS relations in order to aid automated model building and refinement. In a number of test cases higher completeness and greater accuracy of the obtained structures were achieved, specifically at a crystallographic resolution of 2.3 Å or poorer. In the best case, the method allowed the building of up to 15% more residues automatically and a tripling of the average length of the built fragments.

  17. Molecular Dynamics Simulation of Nanoindentation-induced Mechanical Deformation and Phase Transformation in Monocrystalline Silicon

    Directory of Open Access Journals (Sweden)

    Jian Sheng-Rui

    2008-01-01

    Full Text Available AbstractThis work presents the molecular dynamics approach toward mechanical deformation and phase transformation mechanisms of monocrystalline Si(100 subjected to nanoindentation. We demonstrate phase distributions during loading and unloading stages of both spherical and Berkovich nanoindentations. By searching the presence of the fifth neighboring atom within a non-bonding length, Si-III and Si-XII have been successfully distinguished from Si-I. Crystallinity of this mixed-phase was further identified by radial distribution functions.

  18. Optimization of automation: I. Estimation method of cognitive automation rates reflecting the effects of automation on human operators in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Min; Kim, Jong Hyun; Seong, Poong Hyun

    2014-01-01

    Highlights: • We propose an estimation method of the automation rate by taking the advantages of automation as the estimation measures. • We conduct the experiments to examine the validity of the suggested method. • The higher the cognitive automation rate is, the greater the decreased rate of the working time will be. • The usefulness of the suggested estimation method is proved by statistical analyses. - Abstract: Since automation was introduced in various industrial fields, the concept of the automation rate has been used to indicate the inclusion proportion of automation among all work processes or facilities. Expressions of the inclusion proportion of automation are predictable, as is the ability to express the degree of the enhancement of human performance. However, many researchers have found that a high automation rate does not guarantee high performance. Therefore, to reflect the effects of automation on human performance, this paper proposes a new estimation method of the automation rate that considers the effects of automation on human operators in nuclear power plants (NPPs). Automation in NPPs can be divided into two types: system automation and cognitive automation. Some general descriptions and characteristics of each type of automation are provided, and the advantages of automation are investigated. The advantages of each type of automation are used as measures of the estimation method of the automation rate. One advantage was found to be a reduction in the number of tasks, and another was a reduction in human cognitive task loads. The system and the cognitive automation rate were proposed as quantitative measures by taking advantage of the aforementioned benefits. To quantify the required human cognitive task loads and thus suggest the cognitive automation rate, Conant’s information-theory-based model was applied. The validity of the suggested method, especially as regards the cognitive automation rate, was proven by conducting

  19. A density functional theory study on the molecular mechanism of the cycloaddition between (E)-methyl cinnamate and cyclopentadiene

    International Nuclear Information System (INIS)

    Alves, C.N.; Camilo, F.F.; Gruber, J.; Silva, A.B.F. da

    2004-01-01

    The molecular mechanism of the Diels-Alder reaction between (E)-methyl cinnamate and cyclopentadiene has been characterized by means of density functional theory method at the B3LYP/6-31G* theory level. Stationary points for two reactive channels, endo-cis and exo-cis, on potential energy surfaces, have been characterized. Three Lewis acids, boron trifluoride (BF 3 ), aluminum trichloride (AlCl 3 ) and catechol boron bromide (CBB), have been used as catalysts taking into account the formation of a complex between the boron or aluminum atom and the carbonyl oxygen of (E)-methyl cinnamate. The molecular mechanism of the uncatalyzed reaction corresponds to a concerted process. In the presence of BF 3 and AlCl 3 , enhancement of both the asynchronicity and charge transfer between diene and the dienophile, with small decreased energy barriers, were obtained. With CBB, the molecular mechanism changes and the reaction takes place along a stepwise mechanism. The inclusion of the CBB catalyst drastically decreases the energy barrier associated with the carbon-carbon bond formation of the first step relative to the concerted process. The results obtained in this work are compared with experimental data and AM1 semiempirical calculation

  20. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, Hitoshi; Fukuma, Takeshi [Frontier Science Organization, Kanazawa University, Kakuma-machi, 920-1192 Kanazawa (Japan)], E-mail: hi_asa@staff.kanazawa-u.ac.jp, E-mail: fukuma@staff.kanazawa-u.ac.jp

    2009-07-01

    Cholesterols play key roles in controlling molecular fluidity in a biological membrane, yet little is known about their molecular-scale arrangements in real space. In this study, we have directly imaged lipid-cholesterol complexes in a model biological membrane consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterols by frequency modulation atomic force microscopy (FM-AFM) in phosphate buffer solution. FM-AFM images of a DPPC/cholesterol bilayer in the liquid-ordered phase showed higher energy dissipation values compared to those measured on a nanoscale DPPC domain in the gel phase, reflecting the increased molecular fluidity due to the insertion of cholesterols. Molecular-resolution FM-AFM images of a DPPC/cholesterol bilayer revealed the existence of a rhombic molecular arrangement (lattice constants: a = 0.46 nm, b = 0.71 nm) consisting of alternating rows of DPPC and cholesterols as well as the increased defect density and reduced molecular ordering. The mechanical strength of a DPPC/cholesterol bilayer was quantitatively evaluated by measuring a loading force required to penetrate the membrane with an AFM tip. The result revealed the significant decrease of mechanical strength upon insertion of cholesterols. Based on the molecular-scale arrangement found in this study, we propose a model to explain the reduced mechanical strength in relation to the formation of lipid-ion networks.

  1. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid

    International Nuclear Information System (INIS)

    Asakawa, Hitoshi; Fukuma, Takeshi

    2009-01-01

    Cholesterols play key roles in controlling molecular fluidity in a biological membrane, yet little is known about their molecular-scale arrangements in real space. In this study, we have directly imaged lipid-cholesterol complexes in a model biological membrane consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterols by frequency modulation atomic force microscopy (FM-AFM) in phosphate buffer solution. FM-AFM images of a DPPC/cholesterol bilayer in the liquid-ordered phase showed higher energy dissipation values compared to those measured on a nanoscale DPPC domain in the gel phase, reflecting the increased molecular fluidity due to the insertion of cholesterols. Molecular-resolution FM-AFM images of a DPPC/cholesterol bilayer revealed the existence of a rhombic molecular arrangement (lattice constants: a = 0.46 nm, b = 0.71 nm) consisting of alternating rows of DPPC and cholesterols as well as the increased defect density and reduced molecular ordering. The mechanical strength of a DPPC/cholesterol bilayer was quantitatively evaluated by measuring a loading force required to penetrate the membrane with an AFM tip. The result revealed the significant decrease of mechanical strength upon insertion of cholesterols. Based on the molecular-scale arrangement found in this study, we propose a model to explain the reduced mechanical strength in relation to the formation of lipid-ion networks.

  2. Cisplatin in cancer therapy: molecular mechanisms of action.

    Science.gov (United States)

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-10-05

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is paid to its molecular mechanisms of action, and its undesirable side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. DEVELOPMENT OF AN AUTOMATED BATCH-PROCESS SOLAR ...

    African Journals Online (AJOL)

    One of the shortcomings of solar disinfection of water (SODIS) is the absence of a feedback mechanism indicating treatment completion. This work presents the development of an automated batch-process water disinfection system aimed at solving this challenge. Locally sourced materials in addition to an Arduinomicro ...

  4. Molecular-level mechanisms of vibrational frequency shifts in a polar liquid.

    Science.gov (United States)

    Morales, Christine M; Thompson, Ward H

    2011-06-16

    A molecular-level analysis of the origins of the vibrational frequency shifts of the CN stretching mode in neat liquid acetonitrile is presented. The frequency shifts and infrared spectrum are calculated using a perturbation theory approach within a molecular dynamics simulation and are in good agreement with measured values reported in the literature. The resulting instantaneous frequency of each nitrile group is decomposed into the contributions from each molecule in the liquid and by interaction type. This provides a detailed picture of the mechanisms of frequency shifts, including the number of surrounding molecules that contribute to the shift, the relationship between their position and relative contribution, and the roles of electrostatic and van der Waals interactions. These results provide insight into what information is contained in infrared (IR) and Raman spectra about the environment of the probed vibrational mode. © 2011 American Chemical Society

  5. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies.

    Directory of Open Access Journals (Sweden)

    Hongwei Chu

    Full Text Available Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE. Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor". Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1 located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.

  6. Mechanism by which DHA inhibits the aggregation of KLVFFA peptides: A molecular dynamics study

    Science.gov (United States)

    Zhou, Hong; Liu, Shengtang; Shao, Qiwen; Ma, Dongfang; Yang, Zaixing; Zhou, Ruhong

    2018-03-01

    Docosahexaenoic acid (DHA) is one of the omega-3 polyunsaturated fatty acids, which has shown promising applications in lowering Aβ peptide neurotoxicity in vitro by preventing aggregation of Aβ peptides and relieving accumulation of Aβ fibrils. Unfortunately, the underlying molecular mechanisms of how DHA interferes with the aggregation of Aβ peptides remain largely enigmatic. Herein, aggregation behaviors of amyloid-β(Aβ)16-21 peptides (KLVFFA) with or without the presence of a DHA molecule were comparatively studied using extensive all-atom molecular dynamics simulations. We found that DHA could effectively suppress the aggregation of KLVFFA peptides by redirecting peptides to unstructured oligomers. The highly hydrophobic and flexible nature of DHA made it randomly but tightly entangled with Leu-17, Phe-19, and Phe-20 residues to form unstructured but stable complexes. These lower-ordered unstructured oligomers could eventually pass through energy barriers to form ordered β-sheet structures through large conformational fluctuations. This study depicts a microscopic picture for understanding the role and mechanism of DHA in inhibition of aggregation of Aβ peptides, which is generally believed as one of the important pathogenic mechanisms of Alzheimer's disease.

  7. Molecular Level Investigation of Staphylococci’s Resistance Mechanisms to Antibiotics

    Directory of Open Access Journals (Sweden)

    Lavinia Lorena PRUTEANU

    2017-09-01

    Full Text Available Polymerase chain reaction (PCR techniques development allows elaboration of many assays for identification of bacteria’s resistance mechanisms to antibiotics. Following this idea, the results of molecular level investigation of bacteria’s resistance mechanisms to antibiotics may give many opportunities to find more rapid methods for identifying the genes which are responsible for antibiotic resistance induction. The aim of this study was to investigate antibiotic resistance genes in Staphylococcus bacteria on molecular level. As classes of antibiotics it was used macrolides-lincosamides-streptogramin B (MLSB and beta-lactams. In the proposed study the bacterial strains are represented by 50 isolates of Staphylococcus. The bacterial strains were analyzed using polymerase chain reaction to identify the nuc, tuf, tst, sea, pathogenic activity genes. After this, the bacteria were tested for ermA, ermB, ermC genes and for mecA, femA which are involved in resistance to macrolides, lincosamides, streptogramin B and to beta-lactams, respectively. The presence or the absence of these genes confirms that tested strains are resistant to specific antibiotic or not. Bacteria pathogenic activity was emphasized by genes as follows: sea (enterotoxin which was found at all isolates, tst (toxic shock toxin gene was not detected in any of isolates and tuf gene (elongation factor was obtained with one pair of primers. Resistance to beta-lactams was evidenced by the presence of mecA in all isolates and femA in some strains. Each of ermC, ermA and ermB, macrolides-lincosamides-streptogramin B resistance genes, were detected.

  8. Control and automation of the Pegasus multi-point Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Bodner, G. M., E-mail: gbodner@wisc.edu; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Rodriguez Sanchez, C.; Schlossberg, D. J. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  9. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases.

    Science.gov (United States)

    Ruiz, Patricia; Perlina, Ally; Mumtaz, Moiz; Fowler, Bruce A

    2016-07-01

    A number of epidemiological studies have identified statistical associations between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding underlying molecular mechanisms to explain these linkages have not been published. We assessed the underlying mechanisms of POPs that have been associated with metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene (p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses and to guide laboratory-based research studies into underlying mechanisms by which this POP mixture could produce or exacerbate metabolic diseases. For our searches, we used proprietary systems biology software (MetaCore™/MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed by directional network construction to identify common mechanisms for these POPs within two or fewer interaction steps downstream of their primary targets. These common downstream pathways belong to various cytokine and chemokine families with experimentally well-documented causal associations with type 2 diabetes. Our systems biology approach allowed identification of converging pathways leading to activation of common downstream targets. To our knowledge, this is the first study to propose an integrated global set of step-by-step molecular mechanisms for a combination of three common POPs using a systems biology approach, which may link POP exposure to diseases. Experimental evaluation of the proposed pathways may lead to development of predictive biomarkers of the effects of POPs, which could translate into disease prevention and effective clinical treatment strategies. Ruiz P, Perlina A, Mumtaz M, Fowler BA. 2016. A systems biology approach reveals converging molecular mechanisms that link different POPs to common metabolic diseases. Environ

  10. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    Science.gov (United States)

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.

  11. Automated Motion Estimation for 2D Cine DENSE MRI

    Science.gov (United States)

    Gilliam, Andrew D.; Epstein, Frederick H.

    2013-01-01

    Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669

  12. Automation and mechanization of in-service inspection of selected equipment in FRG's nuclear power plants

    International Nuclear Information System (INIS)

    Metke, E.

    1988-01-01

    The procedures and equipment are described for the automation and mechanization of in-service inspection in nuclear power plants in the FRG, used by the KWU company. Checks of the pressure vessel are done by visual means using a colour tv camera, the method of eddy currents and the ultrasonic method. An analysis is made of the time schedule of ultrasonic inspections, and the central column manipulator is described which allows to check all internal regions of the pressure vessel. Attention is also devoted to other devices, e.g., those for prestressing shanks, cleaning shanks, cleaning thread apertures, etc. A combined probe using the ultrasonic method and the eddy current method serves the inspection of heat exchange tubes in the steam generator. For inspecting the primary circuit the KWU company uses devices for checking and working the inner surface of pipes. Briefly described are examples of using KWU equipment in nuclear power plants in CMEA countries. (Z.M.). 11 figs., 6 refs

  13. An algorithm for automated layout of process description maps drawn in SBGN.

    Science.gov (United States)

    Genc, Begum; Dogrusoz, Ugur

    2016-01-01

    Evolving technology has increased the focus on genomics. The combination of today's advanced techniques with decades of molecular biology research has yielded huge amounts of pathway data. A standard, named the Systems Biology Graphical Notation (SBGN), was recently introduced to allow scientists to represent biological pathways in an unambiguous, easy-to-understand and efficient manner. Although there are a number of automated layout algorithms for various types of biological networks, currently none specialize on process description (PD) maps as defined by SBGN. We propose a new automated layout algorithm for PD maps drawn in SBGN. Our algorithm is based on a force-directed automated layout algorithm called Compound Spring Embedder (CoSE). On top of the existing force scheme, additional heuristics employing new types of forces and movement rules are defined to address SBGN-specific rules. Our algorithm is the only automatic layout algorithm that properly addresses all SBGN rules for drawing PD maps, including placement of substrates and products of process nodes on opposite sides, compact tiling of members of molecular complexes and extensively making use of nested structures (compound nodes) to properly draw cellular locations and molecular complex structures. As demonstrated experimentally, the algorithm results in significant improvements over use of a generic layout algorithm such as CoSE in addressing SBGN rules on top of commonly accepted graph drawing criteria. An implementation of our algorithm in Java is available within ChiLay library (https://github.com/iVis-at-Bilkent/chilay). ugur@cs.bilkent.edu.tr or dogrusoz@cbio.mskcc.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  14. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms

    Directory of Open Access Journals (Sweden)

    Xin-Ping Wu

    2018-05-01

    Full Text Available Combined quantum mechanical and molecular mechanical (QM/MM methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM−MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM−MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM−MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  15. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms.

    Science.gov (United States)

    Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G

    2018-05-30

    Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  16. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    International Nuclear Information System (INIS)

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures

  17. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  18. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities.

    Science.gov (United States)

    Gajarsa, Jason J; Kloner, Robert A

    2011-01-01

    As more patients survive myocardial infarctions, the incidence of heart failure increases. After an infarction, the human heart undergoes a series of structural changes, which are governed by cellular and molecular mechanisms in a pathological metamorphosis termed "remodeling." This review will discuss the current developments in our understanding of these molecular and cellular events in remodeling and the various pharmacological, cellular and device therapies used to treat, and potentially retard, this condition. Specifically, this paper will examine the neurohormonal activity of the renin-angiotensin-aldosterone axis and its molecular effects on the heart. The emerging understanding of the extra-cellular matrix and the various active molecules within it, such as the matrix metalloproteinases, elicits new appreciation for their role in cardiac remodeling and as possible future therapeutic targets. Cell therapy with stem cells is another recent therapy with great potential in improving post-infarcted hearts. Lastly, the cellular and molecular effects of left ventricular assist devices on remodeling will be reviewed. Our increasing knowledge of the cellular and molecular mechanisms underlying cardiac remodeling enables us not only to better understand how our more successful therapies, like angiotensin-converting enzyme inhibitors, work, but also to explore new therapies of the future.

  19. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    Science.gov (United States)

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  20. Exploring the Interaction Mechanism Between Cyclopeptide DC3 and Androgen Receptor Using Molecular Dynamics Simulations and Free Energy Calculations

    Directory of Open Access Journals (Sweden)

    Huimin Zhang

    2018-04-01

    Full Text Available Androgen receptor (AR is a key target in the discovery of anti-PCa (Prostate Cancer drugs. Recently, a novel cyclopeptide Diffusa Cyclotide-3 (DC3, isolated from Hedyotisdiffusa, has been experimentally demonstrated to inhibit the survival and growth of LNCap cells, which typically express T877A-mutated AR, the most frequently detected point mutation of AR in castration-resistant prostate cancer (CRPC. But the interaction mechanism between DC3 and AR is not clear. Here in this study we aim to explore the possible binding mode of DC3 to T877A-mutated AR from molecular perspective. Firstly, homology modeling was employed to construct the three-dimensional structure of the cyclopeptide DC3 using 2kux.1.A as the template. Then molecular docking, molecular dynamics (MD simulations, and molecular mechanics/generalized Born surface area (MM-GBSA methods were performed to determine the bind site and explore the detailed interaction mechanism of DC3-AR complex. The obtained results suggested that the site formed by H11, loop888-893, and H12 (site 2 was the most possible position of DC3 binding to AR. Besides, hydrogen bonds, hydrophobic, and electrostatic interactions play dominant roles in the recognition and combination of DC3-AR complex. The essential residues dominant in each interaction were specifically revealed. This work facilitates our understanding of the interaction mechanism of DC3 binding to AR at the molecular level and contributes to the rational cyclopeptide drug design for prostate cancer.

  1. Quantum mechanical force fields for condensed phase molecular simulations

    Science.gov (United States)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  2. The buzz on caffeine in invertebrates: effects on behavior and molecular mechanisms

    OpenAIRE

    Mustard, Julie A.

    2013-01-01

    A number of recent studies from as diverse fields as plant-pollinator interactions, analyses of caffeine as an environmental pollutant, and the ability of caffeine to provide protection against neurodegenerative diseases have generated interest in understanding the actions of caffeine in invertebrates. This review summarizes what is currently known about the effects of caffeine on behavior and its molecular mechanisms in invertebrates. Caffeine appears to have similar effects on locomotion an...

  3. Process automation

    International Nuclear Information System (INIS)

    Moser, D.R.

    1986-01-01

    Process automation technology has been pursued in the chemical processing industries and to a very limited extent in nuclear fuel reprocessing. Its effective use has been restricted in the past by the lack of diverse and reliable process instrumentation and the unavailability of sophisticated software designed for process control. The Integrated Equipment Test (IET) facility was developed by the Consolidated Fuel Reprocessing Program (CFRP) in part to demonstrate new concepts for control of advanced nuclear fuel reprocessing plants. A demonstration of fuel reprocessing equipment automation using advanced instrumentation and a modern, microprocessor-based control system is nearing completion in the facility. This facility provides for the synergistic testing of all chemical process features of a prototypical fuel reprocessing plant that can be attained with unirradiated uranium-bearing feed materials. The unique equipment and mission of the IET facility make it an ideal test bed for automation studies. This effort will provide for the demonstration of the plant automation concept and for the development of techniques for similar applications in a full-scale plant. A set of preliminary recommendations for implementing process automation has been compiled. Some of these concepts are not generally recognized or accepted. The automation work now under way in the IET facility should be useful to others in helping avoid costly mistakes because of the underutilization or misapplication of process automation. 6 figs

  4. An automated wavelength selection for flame spectroscopy

    International Nuclear Information System (INIS)

    Hurteau, M.; Mislan, J.P.; Ashley, R.W.

    1976-01-01

    A simple electro-mechanical programming system is described for use with a flame spectrophotometer. Its application for automated sequential multi-element analysis is illustrated. Reproducibility of wavelength settings are within +-0.5 A. Precision and sensitivities are at least as good as those obtained for single element determinations. (author)

  5. New Insight in Understanding the mechanical responses of polymer glasses using molecular dynamic simulation

    Science.gov (United States)

    Zheng, Yexin; Wang, Shi-Qing; Tsige, Mesfin

    The Kremer-Grest bead-spring model has been the standard model in molecular dynamics simulation of polymer glasses. However, due to current computational limitations in accessing relevant time scales in polymer glasses in a reasonable amount of CPU time, simulation of mechanical response of polymer glasses in molecular dynamic simulations requires a much higher quenching rate and deformation rate than used in experiments. Despite several orders of magnitude difference in time scale between simulation and experiment, previous studies have shown that simulations can produce meaningful results that can be directly compared with experimental results. In this work we show that by tuning the quenching rate and deformation rate relative to the segmental relaxation times, a reasonable mechanical response shows up in the glassy state. Specifically, we show a younger glass prepared with a faster quenching rate shows glassy responses only when the imposed deformation rate is proportionally higher. the National Science Foundation (DMR-1444859 and DMR-1609977).

  6. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches

    KAUST Repository

    Jiang, Hanlun

    2016-12-06

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  7. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches.

    Science.gov (United States)

    Jiang, Hanlun; Zhu, Lizhe; Héliou, Amélie; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2017-01-01

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  8. Investigation of the CH3Cl + CN(-) reaction in water: Multilevel quantum mechanics/molecular mechanics study.

    Science.gov (United States)

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    2015-06-28

    The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  9. Mechanical properties of pillared-graphene nanostructures using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Chih-Hao; Fang, Te-Hua; Sun, Wei-Li

    2014-01-01

    The deformation behaviour and mechanical properties of three-dimensional (3D) pillared graphene are investigated using molecular dynamics simulations. The Tersoff–Brenner many-body potential model is employed to evaluate the interactions between 3D pillared-graphene carbon atoms and nanotube carbons. The Lennard-Jones potential model is used to compute the interactions between a conical indenter and 3D pillared-graphene carbon atoms. The effects of the size and geometric structure of 3D pillared-graphene are evaluated in terms of the indentation force and contact stiffness. The simulation results for an armchair nanotube of 3D pillared graphene show that the contact stiffness increases with increasing chiral vector of the 3D-pillared graphene. However, the adhesive force sharply decreases with increasing chiral vector of the 3D-pillared graphene. A zigzag nanotube of 3D-pillared graphene exhibits better mechanical properties compared with those of the armchair nanotube. (paper)

  10. Molecular and Microbial Mechanisms Increasing Soil C Storage Under Future Rates of Anthropogenic N Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zak, Donald R. [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-11-17

    A growing body of evidence reveals that anthropogenic N deposition can reduce the microbial decay of plant detritus and increase soil C storage across a wide range of terrestrial ecosystems. This aspect of global change has the potential to constrain the accumulation of anthropogenic CO2 in the Earth’s atmosphere, and hence slow the pace of climate warming. The molecular and microbial mechanisms underlying this biogeochemical response are not understood, and they are not a component of any coupled climate-biogeochemical model estimating ecosystem C storage, and hence, the future climate of an N-enriched Earth. Here, we report the use of genomic-enabled approaches to identify the molecular underpinnings of the microbial mechanisms leading to greater soil C storage in response to anthropogenic N deposition, thereby enabling us to better anticipate changes in soil C storage.

  11. Effect of Terminal Modification on the Molecular Assembly and Mechanical Properties of Protein-Based Block Copolymers.

    Science.gov (United States)

    Jacobsen, Matthew M; Tokareva, Olena S; Ebrahimi, Davoud; Huang, Wenwen; Ling, Shengjie; Dinjaski, Nina; Li, David; Simon, Marc; Staii, Cristian; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y

    2017-09-01

    Accurate prediction and validation of the assembly of bioinspired peptide sequences into fibers with defined mechanical characteristics would aid significantly in designing and creating materials with desired properties. This process may also be utilized to provide insight into how the molecular architecture of many natural protein fibers is assembled. In this work, computational modeling and experimentation are used in tandem to determine how peptide terminal modification affects a fiber-forming core domain. Modeling shows that increased terminal molecular weight and hydrophilicity improve peptide chain alignment under shearing conditions and promote consolidation of semicrystalline domains. Mechanical analysis shows acute improvements to strength and elasticity, but significantly reduced extensibility and overall toughness. These results highlight an important entropic function that terminal domains of fiber-forming peptides exhibit as chain alignment promoters, which ultimately has notable consequences on the mechanical behavior of the final fiber products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Possible roles of transglutaminases in molecular mechanisms responsible for human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Nicola Gaetano Gatta

    2016-11-01

    Full Text Available Transglutaminases are a family of Ca2+-dependent enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted/crosslinked adducts or –OH groups (to form ester linkages. In absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. Transglutaminase activity has been suggested to be involved in molecular mechanisms responsible for both physiological or pathological processes. In particular, transglutaminase activity has been shown to be responsible for human autoimmune diseases, Celiac Disease is just one of them. Interestingly, neurodegenerative diseases, such as Alzheimer’s Disease, Parkinson’s Disease, supranuclear palsy, Huntington’s Disease and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This review describes the possible molecular mechanisms by which these enzymes could be responsible for such diseases and the possible use of transglutaminase inhibitors for patients with diseases characterized by aberrant transglutaminase activity.

  13. Automated system for calibration and control of the CHSPP-800 multichannel γ detector parameters

    International Nuclear Information System (INIS)

    Avvakumov, N.A.; Belikov, N.I.; Goncharenko, Yu.M.

    1987-01-01

    An automated system for adjustment, calibration and control of total absorption Cherenkov spectrometer is described. The system comprises a mechanical platform, capable of moving in two mutually perpendicular directions; movement detectors and limit switches; power unit, automation unit with remote control board. The automated system can operate both in manual control regime with coordinate control by a digital indicator, and in operation regime with computer according to special programs. The platform mounting accuracy is ± 0.1 mm. Application of the automated system has increased the rate of the course of the counter adjustment works 3-5 times

  14. Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores

    Science.gov (United States)

    Chen, Jie; Wang, FengChao; Liu, He; Wu, HengAn

    2017-01-01

    Understanding the adsorption and desorption behavior of methane has received considerable attention since it is one of the crucial aspects of the exploitation of shale gas. Unexpectedly, obvious hysteresis is observed from the ideally reversible physical sorption of methane in some experiments. However, the underlying mechanism still remains an open problem. In this study, Monte Carlo (MC) and molecular dynamics (MD) simulations are carried out to explore the molecular mechanisms of adsorption/desorption hysteresis. First, a detailed analysis about the capillary condensation of methane in micropores is presented. The influence of pore width, surface strength, and temperature on the hysteresis loop is further investigated. It is found that a disappearance of hysteresis occurs above a temperature threshold. Combined with the phase diagram of methane, we explicitly point out that capillary condensation is inapplicable for the hysteresis of shale gas under normal temperature conditions. Second, a new mechanism, variation of pore throat size, is proposed and studied. For methane to pass through the throat, a certain energy is required due to the repulsive interaction. The required energy increases with shrinkage of the throat, such that the originally adsorbed methane cannot escape through the narrowed throat. These trapped methane molecules account for the hysteresis. Furthermore, the hysteresis loop is found to increase with the increasing pressure and decreasing temperature. We suggest that the variation of pore throat size can explain the adsorption/desorption hysteresis of shale gas. Our conclusions and findings are of great significance for guiding the efficient exploitation of shale gas.

  15. Characterization of the Structural, Mechanical, and Electronic Properties of Fullerene Mixtures: A Molecular Simulations Description

    KAUST Repository

    Tummala, Naga Rajesh

    2017-10-06

    We investigate mixtures of fullerenes and fullerene derivatives, the most commonly used electron accepting materials in organic solar cells, by using a combination of molecular dynamics and density functional theory methods. Our goal is to describe how mixing affects the molecular packing, mechanical properties, and electronic parameters (site energy disorder, electronic couplings) of interest for solar-cell applications. Specifically, we consider mixtures of: (i) C60 and C70; (ii) C60, C70, and C84, and (iii) PC61BM and PC71BM.

  16. Investigation of the Hydroxylation Mechanism of Noncoupled Copper Oxygenases by Ab Initio Molecular Dynamics Simulations

    Czech Academy of Sciences Publication Activity Database

    Meliá, C.; Ferrer, S.; Řezáč, Jan; Parisel, O.; Reinaud, O.; Moliner, V.; de la Lande, A.

    2013-01-01

    Roč. 19, č. 51 (2013), s. 17328-17337 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * copper * electron transfer * enzymes * molecular dynamics * reaction mechanisms Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  17. Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution.

    Science.gov (United States)

    Melkikh, Alexey V; Khrennikov, Andrei

    2017-11-01

    A review of the mechanisms of speciation is performed. The mechanisms of the evolution of species, taking into account the feedback of the state of the environment and mechanisms of the emergence of complexity, are considered. It is shown that these mechanisms, at the molecular level, cannot work steadily in terms of classical mechanics. Quantum mechanisms of changes in the genome, based on the long-range interaction potential between biologically important molecules, are proposed as one of possible explanation. Different variants of interactions of the organism and environment based on molecular recognition and leading to new species origins are considered. Experiments to verify the model are proposed. This bio-physical study is completed by the general operational model of based on quantum information theory. The latter is applied to model of epigenetic evolution. We briefly present the basics of the quantum-like approach to modeling of bio-informational processes. This approach is illustrated by the quantum-like model of epigenetic evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Density functional theory and quantum mechanics/molecular mechanics study of cysteine protease inhibition by nitrile-based inhibitors.

    Directory of Open Access Journals (Sweden)

    Sam P De Visser

    2013-12-01

    Full Text Available Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical versus electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism.

  19. Quantum control of a chiral molecular motor driven by femtosecond laser pulses: Mechanisms of regular and reverse rotations

    International Nuclear Information System (INIS)

    Yamaki, M.; Hoki, K.; Kono, H.; Fujimura, Y.

    2008-01-01

    Rotational mechanisms of a chiral molecular motor driven by femtosecond laser pulses were investigated on the basis of results of a quantum control simulation. A chiral molecule, (R)-2-methyl-cyclopenta-2,4-dienecarboaldehyde, was treated as a molecular motor within a one-dimensional model. It was assumed that the motor is fixed on a surface and driven in the low temperature limit. Electric fields of femtosecond laser pulses driving both regular rotation of the molecular motor with a plus angular momentum and reverse rotation with a minus one were designed by using a global control method. The mechanism of the regular rotation is similar to that obtained by a conventional pump-dump pulse method: the direction of rotation is the same as that of the initial wave packet propagation on the potential surface of the first singlet (nπ*) excited state S 1 . A new control mechanism has been proposed for the reverse rotation that cannot be driven by a simple pump-dump pulse method. In this mechanism, a coherent Stokes pulse creates a wave packet localized on the ground state potential surface in the right hand side. The wave packet has a negative angular momentum to drive reverse rotation at an early time

  20. Measuring the Mechanical Properties of Plant Cell Walls

    Directory of Open Access Journals (Sweden)

    Hannes Vogler

    2015-03-01

    Full Text Available The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM, and its automated successor, real-time CFM (RT-CFM.

  1. [Ginseng prescription rules and molecular mechanism in treating coronary heart disease based on data mining and integrative pharmacology].

    Science.gov (United States)

    Li, Sen; Tang, Shi-Huan; Liu, Jin-Ling; Su, Jin; He, Fu-Yuan

    2018-04-01

    The ancient dragon Materia Medica, Compendium of Materia Medica and other works recorded that the main effect of ginseng is tonifying qi. It is reported that the main active ingredient of ginseng is ginsenoside. Modern studies have found that ginseng mono saponins are effective for cardiovascular related diseases. This paper preliminary clarified the efficacy of traditional ginseng-nourishing qi and cardiovascular disease through the traditional Chinese medicine (TCM) inheritance auxiliary platform and integration platform of association of pharmacology. With the help of TCM inheritance auxiliary platform-analysis of "Chinese medicine database", Chinese medicine treatment of modern diseases that ginseng rules, so the traditional effect associated with modern medicine and pharmacology; application integration platform enrichment analysis on the target of drug and gene function, metabolic pathway, to further explore the molecular mechanism of ginseng in the treatment of coronary heart disease, aimed at mining the molecular mechanism of ginseng in the treatment of coronary heart disease. Chinese medicine containing ginseng 307 prescriptions, 87 kinds of disease indications, western medicine disease Chinese medicine therapy for ginseng main coronary heart disease; analysis of molecular mechanism of ginseng pharmacology integration platform for the treatment of coronary heart disease. Ginsenosides(Ra₁, Ra₂, Rb₁, Rb₂, Rg₁, Ro) bind these targets, PRKAA1, PRKAA2, NDUFA4, COX5B, UQCRC1, affect chemokines, non-alcoholic fatty liver, gonadotropin, carbon metabolism, glucose metabolism and other pathways to treat coronary heart disease indirectly. The molecular mechanism of Panax ginseng's multi-component, multi-target and synergistic action is preliminarily elucidated in this paper. Copyright© by the Chinese Pharmaceutical Association.

  2. [Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.

    Science.gov (United States)

    Ying, Bin-Wu

    2016-11-01

    Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.

  3. Automated, parallel mass spectrometry imaging and structural identification of lipids

    DEFF Research Database (Denmark)

    Ellis, Shane R.; Paine, Martin R.L.; Eijkel, Gert B.

    2018-01-01

    We report a method that enables automated data-dependent acquisition of lipid tandem mass spectrometry data in parallel with a high-resolution mass spectrometry imaging experiment. The method does not increase the total image acquisition time and is combined with automatic structural assignments....... This lipidome-per-pixel approach automatically identified and validated 104 unique molecular lipids and their spatial locations from rat cerebellar tissue....

  4. A Hybrid Imperative and Functional Molecular Mechanics Application

    Directory of Open Access Journals (Sweden)

    Thomas Deboni

    1996-01-01

    Full Text Available Molecular mechanics applications model the interactions among large ensembles of discrete particles. They are used where probabilistic methods are inadequate, such as drug chemistry. This methodology is difficult to parallelize with good performance, due to its poor locality, uneven partitions, and dynamic behavior. Imperative programs have been written that attempt this on shared and distributed memory machines. Given such a program, the computational kernel can be rewritten in Sisal, a functional programming language, and integrated with the rest of the imperative program under the Sisal Foreign Language Interface. This allows minimal effort and maximal return from parallelization work, and leaves the work appropriate to imperative implementation in its original form. We describe such an effort, focusing on the parts of the application that are appropriate for Sisal implementation, the specifics of mixed-language programming, and the complex performance behavior of the resulting hybrid code.

  5. Molecular mechanism of bacterial Hsp90 pH-dependent ATPase activity.

    Science.gov (United States)

    Jin, Yi; Hoxie, Reyal S; Street, Timothy O

    2017-06-01

    Hsp90 is a dimeric molecular chaperone that undergoes an essential and highly regulated open-to-closed-to-open conformational cycle upon ATP binding and hydrolysis. Although it has been established that a large energy barrier to closure is responsible for Hsp90's low ATP hydrolysis rate, the specific molecular contacts that create this energy barrier are not known. Here we discover that bacterial Hsp90 (HtpG) has a pH-dependent ATPase activity that is unique among other Hsp90 homologs. The underlying mechanism is a conformation-specific electrostatic interaction between a single histidine, H255, and bound ATP. H255 stabilizes ATP only while HtpG adopts a catalytically inactive open configuration, resulting in a striking anti-correlation between nucleotide binding affinity and chaperone activity over a wide range of pH. Linkage analysis reveals that the H255-ATP salt bridge contributes 1.5 kcal/mol to the energy barrier of closure. This energetic contribution is structurally asymmetric, whereby only one H255-ATP salt-bridge per dimer of HtpG controls ATPase activation. We find that a similar electrostatic mechanism regulates the ATPase of the endoplasmic reticulum Hsp90, and that pH-dependent activity can be engineered into eukaryotic cytosolic Hsp90. These results reveal site-specific energetic information about an evolutionarily conserved conformational landscape that controls Hsp90 ATPase activity. © 2017 The Protein Society.

  6. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    International Nuclear Information System (INIS)

    Lohmann, Bernd; Grum-Grzhimailo, Alexei N.; Kleinpoppen, Hans

    2013-01-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is, until today, hardly to perform

  7. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Bernd [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Grum-Grzhimailo, Alexei N. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Kleinpoppen, Hans

    2013-07-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is

  8. The Molecular Mechanisms of Thalidomide Teratogenicity and Implications for Modern Medicine.

    Science.gov (United States)

    Knobloch, J; Jungck, D; Koch, A

    2017-01-01

    Thalidomide is a teratogen that affects many organs but primarily induces limb truncations like phocomelia. Rodents are thalidomide resistant. In the 1950s, this has led to misinterpretations of animal tests and to the fatal assumption that the drug was safe for pregnant women to use against morning sickness. The result was one of the biggest scandals in medical history: 10.000 and more infants with birth defects in Europe. Nonetheless, thalidomide still has its place in modern medicine as it has strong therapeutic potential: it has been approved by the FDA for multiple myeloma and erythema nodosum leprosum, and its anti-inflammatory, immunomodulatory and antiangiogenic activities are considered in many other refractory diseases. The aim is to develop derivatives that are not teratogenic but maintain the therapeutic potential. This requires detailed knowledge about the underlying molecular mechanisms. Much progress has been made in deciphering the teratogenic mechanisms in the last decade. Here, we summarize these mechanisms, explain thalidomide resistance of rodents, and discuss possible mechanisms that could explain why the drug primarily targets the developing limb in the embryo. We also summarize the most important therapeutic mechanisms. Finally, we discuss which therapeutic and teratogenic mechanisms do and do not overlap, and if there is a chance for the development of non-teratogenic thalidomide derivatives with therapeutic potential. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Molecular Mechanisms of Preeclampsia

    OpenAIRE

    N. Vitoratos; D. Hassiakos; C. Iavazzo

    2012-01-01

    Preeclampsia is a pregnancy-specific disease characterized by new onset hypertension and proteinuria after 20 wk of gestation. It is a leading cause of maternal and fetal morbidity and mortality worldwide. Exciting discoveries in the last decade have contributed to a better understanding of the molecular basis of this disease. Epidemiological, experimental, and therapeutic studies from several laboratories have provided compelling evidence that an antiangiogenic state owing to alterations in ...

  10. The mechanism of selective molecular capture in carbon nanotube networks.

    Science.gov (United States)

    Wan, Yu; Guan, Jun; Yang, Xudong; Zheng, Quanshui; Xu, Zhiping

    2014-07-28

    Recently, air pollution issues have drawn significant attention to the development of efficient air filters, and one of the most promising materials for this purpose is nanofibers. We explore here the mechanism of selective molecular capture of volatile organic compounds in carbon nanotube networks by performing atomistic simulations. The results are discussed with respect to the two key parameters that define the performance of nanofiltration, i.e. the capture efficiency and flow resistance, which demonstrate the advantages of carbon nanotube networks with high surface-to-volume ratio and atomistically smooth surfaces. We also reveal the important roles of interfacial adhesion and diffusion that govern selective gas transport through the network.

  11. Mixed 2D molecular systems: Mechanic, thermodynamic and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Beno, Juraj [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia); Weis, Martin [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia)], E-mail: Martin.Weis@stuba.sk; Dobrocka, Edmund [Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19-SK Bratislava (Slovakia); Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 841 04-SK Bratislava (Slovakia); Hasko, Daniel [International Laser Centre, Ilkovicova 3, 812 19-SK Bratislava (Slovakia)

    2008-08-15

    Study of Langmuir monolayers consisting of stearic acid (SA) and dipalmitoylphosphatidylcholine (DPPC) molecules was done by surface pressure-area isotherms ({pi}-A), the Maxwell displacement current (MDC) measurement, X-ray reflectivity (XRR) and atomic force microscopy (AFM) to investigate the selected mechanic, thermodynamic and dielectric properties based on orientational structure of monolayers. On the base of {pi}-A isotherms analysis we explain the creation of stable structures and found optimal monolayer composition. The dielectric properties represented by MDC generated monolayers were analyzed in terms of excess dipole moment, proposing the effect of dipole-dipole interaction. XRR and AFM results illustrate deposited film structure and molecular ordering.

  12. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Directory of Open Access Journals (Sweden)

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  13. Identification of key genes and molecular mechanisms associated with dedifferentiated liposarcoma based on bioinformatic methods

    Directory of Open Access Journals (Sweden)

    Yu H

    2017-06-01

    Full Text Available Hongliang Yu,1 Dong Pei,2 Longyun Chen,2 Xiaoxiang Zhou,2 Haiwen Zhu2 1Department of Radiation Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 2Department of Radiation Oncology, Yancheng Third People’s Hospital, Yancheng, Jiangsu, People’s Republic of China Background: Dedifferentiated liposarcoma (DDLPS is one of the most deadly types of soft tissue sarcoma. To date, there have been few studies dedicated to elucidating the molecular mechanisms behind the disease; therefore, the molecular mechanisms behind this malignancy remain largely unknown.Materials and methods: Microarray profiles of 46 DDLPS samples and nine normal fat controls were extracted from Gene Expression Omnibus (GEO. Quality control for these microarray profiles was performed before analysis. Hierarchical clustering and principal component analysis were used to distinguish the general differences in gene expression between DDLPS samples and the normal fat controls. Differentially expressed genes (DEGs were identified using the Limma package in R. Next, the enriched Gene Ontology (GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways were obtained using the online tool DAVID (http://david.abcc.ncifcrf.gov/. A protein–protein interaction (PPI network was constructed using the STRING database and Cytoscape software. Furthermore, the hub genes within the PPI network were identified.Results: All 55 microarray profiles were confirmed to be of high quality. The gene expression pattern of DDLPS samples was significantly different from that of normal fat controls. In total, 700 DEGs were identified, and 83 enriched GO terms and three KEGG pathways were obtained. Specifically, within the DEGs of DDLPS samples, several pathways were identified as being significantly enriched, including the PPAR signaling pathway, cell cycle pathway, and pyruvate metabolism pathway

  14. Phosphorelay of non-orthodox two component systems functions through a bi-molecular mechanism in vivo

    DEFF Research Database (Denmark)

    Jovanovic, Goran; Sheng, Xia; Ale, Angelique

    2015-01-01

    the functional relevance of the dimerization of a non-orthodox or hybrid histidine kinase along which the phosphorelay takes place has been a subject of debate. We use a combination of molecular and genetic approaches, coupled to mathematical and statistical modelling, to demonstrate that the different possible...... intra- and inter-molecular mechanisms of phosphotransfer are formally non-identifiable in Escherichia coli expressing the ArcB non-orthodox histidine kinase used in anoxic redox control. In order to resolve this issue we further analyse the mathematical model in order to identify discriminatory...

  15. On the existence of the H3 tautomer of adenine in aqueous solution. Rationalizations based on hybrid quantum mechanics/molecular mechanics predictions

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Mikkelsen, Kurt V; Kongsted, Jacob

    2010-01-01

    The (15)N NMR spectrum of adenine in aqueous solution has been modeled using high-level combined density functional theory/molecular mechanics techniques coupled to a dynamical averaging scheme. The explicit consideration of the three lowest-energy tautomers of adenine-H9, H7 and H3-allows...

  16. Datafication of Automated (Legal) Decisions

    DEFF Research Database (Denmark)

    Schaumburg-Müller, Sten

    Even though I maintain that it is a misconception to state that states are “no longer” the only actors, since they never were, indeed it makes sense to “shed light on the impact of (…) new tendencies on legal regulatory mechanisms (…)” One regulatory tendency is obviously the automation of (legal......) decisions which has implications for legal orders, legal actors and legal research, not to mention legal legitimacy as well as personal autonomy and democracy. On the one hand automation may facilitate better, faster, more predictable and more coherent decisions and leave cumbersome and time consuming...... a substantial part of the components of the decisions are prefabricated. With a risk of misplacing the responsibility, this may be called the “google syndrome”. The hidden algorithms may also constitute the basis for decisions concerning individuals (the passive aspect), the “profiling syndrome”. Based on big...

  17. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  18. Molecular mechanics and microcalorimetric investigations of the effects of molecular water on the aggregation of asphaltenes in solutions

    DEFF Research Database (Denmark)

    Murgich, J.; Lira-Galeana, C.; Garcia, Daniel Merino

    2002-01-01

    The interaction of two model asphaltene molecules from the Athabasca sand oil with a water molecule in a toluene solution was studied by means of molecular mechanics calculations. It was found that water forms bridging H bonds between the heteroatoms of asphaltenes with a considerable span...... in energies. The stronger H bond found has energies higher than those corresponding to the stacking of the aromatic areas of the same asphaltene molecules. This shows that the water molecule may generate additional mechanisms of aggregation of asphaltenes in toluene solution, as found experimentally. The H...... by titration calorimetry. A simple dimer dissociation model was used to derive the information about the heat and the constant of dissociation from asphaltenes of Mexico and Alaska obtained from the calorimetric data. The association enthalpies calculated were found to be in excellent agreement with those...

  19. A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Meo, M.; Rossi, M.

    2007-01-01

    The aim of this work was to develop a finite element model based on molecular mechanics to predict the ultimate strength and strain of single wallet carbon nanotubes (SWCNT). The interactions between atoms was modelled by combining the use of non-linear elastic and torsional elastic spring. In particular, with this approach, it was tried to combine the molecular mechanics approach with finite element method without providing any not-physical data on the interactions between the carbon atoms, i.e. the CC-bond inertia moment or Young's modulus definition. Mechanical properties as Young's modulus, ultimate strength and strain for several CNTs were calculated. Further, a stress-strain curve for large deformation (up to 70%) is reported for a nanotube Zig-Zag (9,0). The results showed that good agreement with the experimental and numerical results of several authors was obtained. A comparison of the mechanical properties of nanotubes with same diameter and different chirality was carried out. Finally, the influence of the presence of defects on the strength and strain of a SWNT was also evaluated. In particular, the stress-strain curve a nanotube with one-vacancy defect was evaluated and compared with the curve of a pristine one, showing a reduction of the ultimate strength and strain for the defected nanotube. The FE model proposed demonstrate to be a reliable tool to simulate mechanical behaviour of carbon nanotubes both in the linear elastic field and the non-linear elastic field

  20. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    Science.gov (United States)

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  1. Nonlinear Hamiltonian mechanics applied to molecular dynamics theory and computational methods for understanding molecular spectroscopy and chemical reactions

    CERN Document Server

    Farantos, Stavros C

    2014-01-01

    This brief presents numerical methods for describing and calculating invariant phase space structures, as well as solving the classical and quantum equations of motion for polyatomic molecules. Examples covered include simple model systems to realistic cases of molecules spectroscopically studied. Vibrationally excited and reacting molecules are nonlinear dynamical systems, and thus, nonlinear mechanics is the proper theory to elucidate molecular dynamics by investigating invariant structures in phase space. Intramolecular energy transfer, and the breaking and forming of a chemical bond have now found a rigorous explanation by studying phase space structures.

  2. Analysis of the mechanical behavior of single wall carbon nanotubes by a modified molecular structural mechanics model incorporating an advanced chemical force field

    Science.gov (United States)

    Eberhardt, Oliver; Wallmersperger, Thomas

    2018-03-01

    The outstanding properties of carbon nanotubes (CNTs) keep attracting the attention of researchers from different fields. CNTs are promising candidates for applications e.g. in lightweight construction but also in electronics, medicine and many more. The basis for the realization of the manifold applications is a detailed knowledge of the material properties of the carbon nanotubes. In particular for applications in lightweight constructions or in composites, the knowledge of the mechanical behavior of the CNTs is of vital interest. Hence, a lot of effort is put into the experimental and theoretical determination of the mechanical material properties of CNTs. Due to their small size, special techniques have to be applied. In this research, a modified molecular structural mechanics model for the numerical determination of the mechanical behavior of carbon nanotubes is presented. It uses an advanced approach for the geometrical representation of the CNT structure while the covalent bonds in the CNTs are represented by beam elements. Furthermore, the model is specifically designed to overcome major drawbacks in existing molecular structural mechanics models. This includes energetic consistency with the underlying chemical force field. The model is developed further to enable the application of a more advanced chemical force field representation. The developed model is able to predict, inter alia, the lateral and radial stiffness properties of the CNTs. The results for the lateral stiffness are given and discussed in order to emphasize the progress made with the presented approach.

  3. Molecular aspects of glucose homeostasis in skeletal muscle--A focus on the molecular mechanisms of insulin resistance.

    Science.gov (United States)

    Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R

    2015-12-05

    Among all the varied actions of insulin, regulation of glucose homeostasis is the most critical and intensively studied. With the availability of glucose from nutrient metabolism, insulin action in muscle results in increased glucose disposal via uptake from the circulation and storage of excess, thereby maintaining euglycemia. This major action of insulin is executed by redistribution of the glucose transporter protein, GLUT4 from intracellular storage sites to the plasma membrane and storage of glucose in the form of glycogen which also involves modulation of actin dynamics that govern trafficking of all the signal proteins of insulin signal transduction. The cellular mechanisms responsible for these trafficking events and the defects associated with insulin resistance are largely enigmatic, and this review provides a consolidated overview of the various molecular mechanisms involved in insulin-dependent glucose homeostasis in skeletal muscle, as insulin resistance at this major peripheral site impacts whole body glucose homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Bin Song

    2016-04-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS, apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.

  5. Lean automation development : applying lean principles to the automation development process

    OpenAIRE

    Granlund, Anna; Wiktorsson, Magnus; Grahn, Sten; Friedler, Niklas

    2014-01-01

    By a broad empirical study it is indicated that automation development show potential of improvement. In the paper, 13 lean product development principles are contrasted to the automation development process and it is suggested why and how these principles can facilitate, support and improve the automation development process. The paper summarises a description of what characterises a lean automation development process and what consequences it entails. Main differences compared to current pr...

  6. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    Science.gov (United States)

    Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against the epidermal growth factor receptor (EGFR) is one of the most promising molecular therapeutics for head and neck squamous cell carcinoma (HNSCC). EGFR is overexpressed in a wide range of malignancies, including HNSCC, and initiates important signal transduction pathways in HNSCC carcinogenesis. However, primary and acquired resistance are serious problems and are responsible for low single-agent response rate and tumor recurrence. Therefore, an improved understanding of the molecular mechanisms of resistance to EGFR inhibitors may provide valuable indications to identify biomarkers that can be used clinically to predict response to EGFR blockade and to establish new treatment options to overcome resistance. To date, no predictive biomarker for HNSCC is available in the clinic. Therapeutic resistance to anti-EGFR therapy may arise from mechanisms that can compensate for reduced EGFR signaling and/or mechanisms that can modulate EGFR-dependent signaling. In this review, we will summarize some of these molecular mechanisms and describe strategies to overcome that resistance. PMID:23821327

  7. Facts and Fiction: The Impact of Hypothermia on Molecular Mechanisms following Major Challenge

    Directory of Open Access Journals (Sweden)

    Michael Frink

    2012-01-01

    Full Text Available Numerous multiple trauma and surgical patients suffer from accidental hypothermia. While induced hypothermia is commonly used in elective cardiac surgery due to its protective effects, accidental hypothermia is associated with increased posttraumatic complications and even mortality in severely injured patients. This paper focuses on protective molecular mechanisms of hypothermia on apoptosis and the posttraumatic immune response. Although information regarding severe trauma is limited, there is evidence that induced hypothermia may have beneficial effects on the posttraumatic immune response as well as apoptosis in animal studies and certain clinical situations. However, more profound knowledge of mechanisms is necessary before randomized clinical trials in trauma patients can be initiated.

  8. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    Science.gov (United States)

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  9. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies

    Science.gov (United States)

    Xiao, Xueliang; Hu, Jinlian

    2016-05-01

    Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.

  10. The Rotary Zone Thermal Cycler: A Low-Power System Enabling Automated Rapid PCR

    Science.gov (United States)

    Bartsch, Michael S.; Renzi, Ronald F.; Van de Vreugde, James L.; Kim, Hanyoup; Knight, Daniel L.; Sinha, Anupama; Branda, Steven S.; Patel, Kamlesh D.

    2015-01-01

    Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis. PMID:25826708

  11. The rotary zone thermal cycler: a low-power system enabling automated rapid PCR.

    Directory of Open Access Journals (Sweden)

    Michael S Bartsch

    Full Text Available Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC, a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR amplification, and second strand cDNA synthesis.

  12. Automation of scanning technique by gamma radiation

    International Nuclear Information System (INIS)

    Aamira, Yahya

    2011-01-01

    The gamma scan technique is a nuclear test allowing the analysis of the internal mechanical properties of distillation columns used in petrochemical industries. Such technique is performed manually. So we propose in this work to automate the gamma scan procedure test by using a PLC. In addition, supervision and data acquisition interfaces are proposed.

  13. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Wei-Ming Xu

    2018-01-01

    Full Text Available Background: Ischemic heart disease (IHD has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated.Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures.Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules. These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620 and Renin-angiotensin system (hsa04614, with the molecular functions of angiotensin maturation (GO:0002003 and response to bacterium (GO:0009617, which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO and published biomedical literatures.Conclusion: A network medicine

  14. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease.

    Science.gov (United States)

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine

  15. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease

    Science.gov (United States)

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine

  16. Quantum Mechanics and Molecular Mechanics Study of the Catalytic Mechanism of Human AMSH-LP Domain Deubiquitinating Enzymes.

    Science.gov (United States)

    Zhu, Wenyou; Liu, Yongjun; Ling, Baoping

    2015-08-25

    Deubiquitinating enzymes (DUBs) catalyze the cleavage of the isopeptide bond in polyubiquitin chains to control and regulate the deubiquitination process in all known eukaryotic cells. The human AMSH-LP DUB domain specifically cleaves the isopeptide bonds in the Lys63-linked polyubiquitin chains. In this article, the catalytic mechanism of AMSH-LP has been studied using a combined quantum mechanics and molecular mechanics method. Two possible hydrolysis processes (Path 1 and Path 2) have been considered. Our calculation results reveal that the activation of Zn(2+)-coordinated water molecule is the essential step for the hydrolysis of isopeptide bond. In Path 1, the generated hydroxyl first attacks the carbonyl group of Gly76, and then the amino group of Lys63 is protonated, which is calculated to be the rate limiting step with an energy barrier of 13.1 kcal/mol. The energy barrier of the rate limiting step and the structures of intermediate and product are in agreement with the experimental results. In Path 2, the protonation of amino group of Lys63 is prior to the nucleophilic attack of activated hydroxyl. The two proton transfer processes in Path 2 correspond to comparable overall barriers (33.4 and 36.1 kcal/mol), which are very high for an enzymatic reaction. Thus, Path 2 can be ruled out. During the reaction, Glu292 acts as a proton transfer mediator, and Ser357 mainly plays a role in stabilizing the negative charge of Gly76. Besides acting as a Lewis acid, Zn(2+) also influences the reaction by coordinating to the reaction substrates (W1 and Gly76).

  17. Automation of the control scheme for IUAC Linac

    International Nuclear Information System (INIS)

    Sahu, B.K.; Dutt, R.N.; Antony, J.; Mathuria, D.S.; Pandey, A.; Singh, K.; Ahuja, R.; Chowdhury, G.K.; Rai, A.; Patra, P.; Ghosh, S.; Ajithkumar, B.P.; Kanjilal, D.; Roy, A.

    2011-01-01

    Improvement of the Linac control scheme is undertaken for automation with minimum human intervention during beam acceleration. Python language interface with the present control scheme is used in writing automation routines to monitor the status of the phase/amplitude lock during operation and shut-down the locking mechanism to reduce the RF power, if required. Simultaneous pulse conditioning of the resonators is made possible by using dedicated hardware interfaced and Python based client interface. Movement of the drive coupler is enabled from operation console with position read back. The manual control of the slow-tuner electronics module to bring the frequency close to reference during phase locking is interfaced with the present control scheme for remote operation. Monitoring of amplitude and absolute phase of each cavity is made possible from operation console. An alternate tuning mechanism using piezoelectric actuator and stepper motor combination has been successfully tested in the test cryostat. (author)

  18. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  19. DNA replication stress: from molecular mechanisms to human disease.

    Science.gov (United States)

    Muñoz, Sergio; Méndez, Juan

    2017-02-01

    The genome of proliferating cells must be precisely duplicated in each cell division cycle. Chromosomal replication entails risks such as the possibility of introducing breaks and/or mutations in the genome. Hence, DNA replication requires the coordinated action of multiple proteins and regulatory factors, whose deregulation causes severe developmental diseases and predisposes to cancer. In recent years, the concept of "replicative stress" (RS) has attracted much attention as it impinges directly on genomic stability and offers a promising new avenue to design anticancer therapies. In this review, we summarize recent progress in three areas: (1) endogenous and exogenous factors that contribute to RS, (2) molecular mechanisms that mediate the cellular responses to RS, and (3) the large list of diseases that are directly or indirectly linked to RS.

  20. Both Automation and Paper.

    Science.gov (United States)

    Purcell, Royal

    1988-01-01

    Discusses the concept of a paperless society and the current situation in library automation. Various applications of automation and telecommunications are addressed, and future library automation is considered. Automation at the Monroe County Public Library in Bloomington, Indiana, is described as an example. (MES)