WorldWideScience

Sample records for autologous epidermal cell

  1. Oral mucosa: an alternative epidermic cell source to develop autologous dermal-epidermal substitutes from diabetic subjects

    Directory of Open Access Journals (Sweden)

    Daniela GUZMÁN-URIBE

    Full Text Available Abstract Oral mucosa has been highlighted as a suitable source of epidermal cells due to its intrinsic characteristics such as its higher proliferation rate and its obtainability. Diabetic ulcers have a worldwide prevalence that is variable (1%-11%, meanwhile treatment of this has been proven ineffective. Tissue-engineered skin plays an important role in wound care focusing on strategies such autologous dermal-epidermal substitutes. Objective The aim of this study was to obtain autologous dermal-epidermal skin substitutes from oral mucosa from diabetic subjects as a first step towards a possible clinical application for cases of diabetic foot. Material and Methods Oral mucosa was obtained from diabetic and healthy subjects (n=20 per group. Epidermal cells were isolated and cultured using autologous fibrin to develop dermal-epidermal in vitro substitutes by the air-liquid technique with autologous human serum as a supplement media. Substitutes were immunocharacterized with collagen IV and cytokeratin 5-14 as specific markers. A Student´s t- test was performed to assess the differences between both groups. Results It was possible to isolate epidermal cells from the oral mucosa of diabetic and healthy subjects and develop autologous dermal-epidermal skin substitutes using autologous serum as a supplement. Differences in the expression of specific markers were observed and the cytokeratin 5-14 expression was lower in the diabetic substitutes, and the collagen IV expression was higher in the diabetic substitutes when compared with the healthy group, showing a significant difference. Conclusion Cells from oral mucosa could be an alternative and less invasive source for skin substitutes and wound healing. A difference in collagen production of diabetic cells suggests diabetic substitutes could improve diabetic wound healing. More research is needed to determine the crosstalk between components of these skin substitutes and damaged tissues.

  2. Outcome of burns treated with autologous cultured proliferating epidermal cells: a prospective randomized multicenter intrapatient comparative trial

    NARCIS (Netherlands)

    Gardien, K.L.M.; Marck, R.E.; Bloemen, M.C.T.; Waaijman, T.; Gibbs, S.; Uhlrich, M.M.W.; Middelkoop, E.

    2016-01-01

    Standard treatment for large burns is transplantation with meshed split skin autografts (SSGs). A disadvantage of this treatment is that healing is accompanied by scar formation. Application of autologous epidermal cells (keratinocytes and melanocytes) may be a suitable therapeutic alternative,

  3. Bioengineering of cultured epidermis from adult epidermal stem cells using Mebio gel sutable as autologous graft material

    Directory of Open Access Journals (Sweden)

    Lakshmana K Yerneni

    2007-01-01

    Full Text Available Closure of burn wound is the primary requirement in order to reduce morbidity and mortality that are otherwise very high due to non-availability of permanent wound covering materials. Sheets of cultured epidermis grown from autologous epidermal keratinocyte stem cells are accepted world over as one of the best wound covering materials. In a largely populated country like ours where burn casualties occur more frequently due to inadequate safety practices, there is a need for indigenous research inputs to develop such methodologies. The technique to culturing epidermal sheets in vitro involves the basic Reheinwald-Green method with our own beneficial inputs. The technique employs attenuated 3T3 cells as feeders for propagating keratinocyte stem cells that are isolated from the epidermis of an initial skin biopsy of about 5 cm2 from the patient. The cultures are then maintained in Dulbecco's modified Eagle's medium strengthened with Ham's F12 formula, bovine fetal serum and various specific growth-promoting agents and factors in culture flasks under standard culture conditions. The primary cultures thus established would be serially passaged to achieve the required expansion. Our major inputs are into the establishment of (1 an efficient differential trypsinization protocol to isolate large number epidermal keratinocytes from the skin biopsy, (2 a highly specific, unique and foolproof attenuation protocol for 3T3 cells and (3 a specialized and significant decontamination protocol. The fully formed epidermal sheet as verified by immuno-histochemical and light & electron microscopic studies, is lifted on to paraffin gauze by incubating in a neutral protease. The graft is then ready to be transported to the operating theatre for autologous application. We have a capability of growing cultured epidermal sheets sufficient enough to cover 40 per cent burn wound in 28 days. The preliminary small area clinical applications undertaken so far revealed

  4. Immune sensitization against epidermal antigens in polymorphous light eruption

    International Nuclear Information System (INIS)

    Gonzalez-Amaro, R.; Baranda, L.; Salazar-Gonzalez, J.F.; Abud-Mendoza, C.; Moncada, B.

    1991-01-01

    To get further insight into the pathogenesis of polymorphous light eruption, we studied nine patients with polymorphous light eruption and six healthy persons. Two skin biopsy specimens were obtained from each person, one from previously ultraviolet light-irradiated skin and another one from unirradiated skin. An epidermal cell suspension, skin homogenate, or both were prepared from each specimen. Autologous cultures were made with peripheral blood mononuclear cells combined with irradiated or unirradiated skin homogenate and peripheral blood mononuclear cells combined with irradiated or unirradiated epidermal cell suspension. Cell proliferation was assessed by 3H-thymidine incorporation assay. The response of peripheral blood mononuclear cells to unirradiated epidermal cells or unirradiated skin homogenate was similar in both patients and controls. However, peripheral blood mononuclear cells from patients with polymorphous light eruption showed a significantly increased proliferative response to both irradiated epidermal cells and irradiated skin homogenate. Our results indicate that ultraviolet light increases the stimulatory capability of polymorphous light eruption epidermal cells in a unidirectional mixed culture with autologous peripheral blood mononuclear cells. This suggests that an immune sensitization against autologous ultraviolet light-modified skin antigens occurs in polymorphous light eruption

  5. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin.

    Science.gov (United States)

    Pellegrini, G; Ranno, R; Stracuzzi, G; Bondanza, S; Guerra, L; Zambruno, G; Micali, G; De Luca, M

    1999-09-27

    Cell therapy is an emerging therapeutic strategy aimed at replacing or repairing severely damaged tissues with cultured cells. Epidermal regeneration obtained with autologous cultured keratinocytes (cultured autografts) can be life-saving for patients suffering from massive full-thickness burns. However, the widespread use of cultured autografts has been hampered by poor clinical results that have been consistently reported by different burn units, even when cells were applied on properly prepared wound beds. This might arise from the depletion of epidermal stem cells (holoclones) in culture. Depletion of holoclones can occur because of (i) incorrect culture conditions, (ii) environmental damage of the exposed basal layer of cultured grafts, or (iii) use of new substrates or culture technologies not pretested for holoclone preservation. The aim of this study was to show that, if new keratinocyte culture technologies and/or "delivery systems" are proposed, a careful evaluation of epidermal stem cell preservation is essential for the clinical performance of this life-saving technology. Fibrin was chosen as a potential substrate for keratinocyte cultivation. Stem cells were monitored by clonal analysis using the culture system originally described by Rheinwald and Green as a reference. Massive full-thickness burns were treated with the composite allodermis/cultured autograft technique. We show that: (i) the relative percentage of holoclones, meroclones, and paraclones is maintained when keratinocytes are cultivated on fibrin, proving that fibrin does not induce clonal conversion and consequent loss of epidermal stem cells; (ii) the clonogenic ability, growth rate, and long-term proliferative potential are not affected by the new culture system; (iii) when fibrin-cultured autografts bearing stem cells are applied on massive full-thickness burns, the "take" of keratinocytes is high, reproducible, and permanent; and (iv) fibrin allows a significant reduction of the cost

  6. Chimeric Human Skin Substitute Tissue: A Novel Treatment Option for the Delivery of Autologous Keratinocytes.

    Science.gov (United States)

    Rasmussen, Cathy A; Allen-Hoffmann, B Lynn

    2012-04-01

    For patients suffering from catastrophic burns, few treatment options are available. Chimeric coculture of patient-derived autologous cells with a "carrier" cell source of allogeneic keratinocytes has been proposed as a means to address the complex clinical problem of severe skin loss. Currently, autologous keratinocytes are harvested, cultured, and expanded to form graftable epidermal sheets. However, epidermal sheets are thin, are extremely fragile, and do not possess barrier function, which only develops as skin stratifies and matures. Grafting is typically delayed for up to 4 weeks to propagate a sufficient quantity of the patient's cells for application to wound sites. Fully stratified chimeric bioengineered skin substitutes could not only provide immediate wound coverage and restore barrier function, but would simultaneously deliver autologous keratinocytes to wounds. The ideal allogeneic cell source for this application would be an abundant supply of clinically evaluated, nontumorigenic, pathogen-free, human keratinocytes. To evaluate this potential cell-based therapy, mixed populations of a green fluorescent protein-labeled neonatal human keratinocyte cell line (NIKS) and unlabeled primary keratinocytes were used to model the allogeneic and autologous components of chimeric monolayer and organotypic cultures. Relatively few autologous keratinocytes may be required to produce fully stratified chimeric skin substitute tissue substantially composed of autologous keratinocyte-derived regions. The need for few autologous cells interspersed within an allogeneic "carrier" cell population may decrease cell expansion time, reducing the time to patient application. This study provides proof of concept for utilizing NIKS keratinocytes as the allogeneic carrier for the generation of bioengineered chimeric skin substitute tissues capable of providing immediate wound coverage while simultaneously supplying autologous human cells for tissue regeneration.

  7. [Progress in epidermal stem cells].

    Science.gov (United States)

    Wang, Li-Juan; Wang, You-Liang; Yang, Xiao

    2010-03-01

    Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.

  8. Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, Simona, E-mail: s.salerno@itm.cnr.it [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); Messina, Antonietta [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); Giordano, Francesca [Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, (CS) (Italy); Bader, Augustinus [Biomedical-Biotechnological Center, BBZ, University of Leipzig, D-04103 Leipzig (Germany); Drioli, Enrico [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy); WCU Energy Engineering Department, Hanyang University, Seoul (Korea, Republic of); De Bartolo, Loredana, E-mail: l.debartolo@itm.cnr.it [Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, via P. Bucci cubo 17/C, I-87036, Rende (CS) (Italy)

    2017-02-01

    Dermal-epidermal membrane systems were developed by co-culturing human keratinocytes with Skin derived Stem Cells (SSCs), which are Mesenchymal Stem Cells (MSCs) isolated from dermis, on biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT and PCL. The membranes display physico-chemical, morphological, mechanical and biodegradation properties that could satisfy and fulfil specific requirements in skin tissue engineering. CHT membrane exhibits an optimal biodegradation rate for acute wounds; CHT-PCL for the chronic ones. On the other hand, PCL membrane in spite of its very slow biodegradation rate exhibits mechanical properties similar to in vivo dermis, a lower hydrophilic character, and a surface roughness, all properties that make it able to sustain cell adhesion and proliferation for in vitro skin models. Both CHT–PCL and PCL membranes guided epidermal and dermal differentiation of SSCs as pointed out by the expression of cytokeratins and the deposition of the ECM protein fibronectin, respectively. In the dermal-epidermal membrane systems, a more suitable microenvironment for the SSCs differentiation was promoted by the interactions and the mutual interplay with keratinocytes. Being skin tissue-biased stem cells committed to their specific final dermal and/or epidermal cell differentiation, SSCs are more suitable for skin tissue engineering than other adult MSCs with different origin. For this reason, they represent a useful autologous cell source for engineering skin substitutes for both in vivo and in vitro applications.

  9. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    Science.gov (United States)

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  10. Autologous bone marrow purging with LAK cells.

    Science.gov (United States)

    Giuliodori, L; Moretti, L; Stramigioli, S; Luchetti, F; Annibali, G M; Baldi, A

    1993-12-01

    In this study we will demonstrate that LAK cells, in vitro, can lyse hematologic neoplastic cells with a minor toxicity of the staminal autologous marrow cells. In fact, after bone marrow and LAK co-culture at a ratio of 1/1 for 8 hours, the inhibition on the GEMM colonies resulted to be 20% less compared to the untreated marrow. These data made LAK an inviting agent for marrow purging in autologous bone marrow transplantation.

  11. Epidermal stem cells: location, potential and contribution to cancer.

    Science.gov (United States)

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  12. Evaluation of treatment response to autologous transplantation of noncultured melanocyte/keratinocyte cell suspension in patients with stable vitiligo.

    Science.gov (United States)

    Ramos, Mariana Gontijo; Ramos, Daniel Gontijo; Ramos, Camila Gontijo

    2017-01-01

    Vitiligo is a chronic disease characterized by the appearance of achromic macules caused by melanocyte destruction. Surgical treatments with melanocyte transplantation can be used for stable vitiligo cases. To evaluate treatment response to the autologous transplantation of noncultured epidermal cell suspension in patients with stable vitiligo. Case series study in patients with stable vitiligo submitted to noncultured epidermal cell suspension transplantation and evaluated at least once, between 3 and 6 months after the procedure, to observe repigmentation and possible adverse effects. The maximum follow-up period for some patients was 24 months. Of the 20 patients who underwent 24 procedures, 25% showed an excellent rate of repigmentation, 50% good repigmentation, 15% regular, and 10% poor response. The best results were observed in face and neck lesions, while the worst in extremity lesions (88% and 33% of satisfactory responses, respectively). Patients with segmental vitiligo had a better response (84%) compared to non-segmental ones (63%). As side effects were observed hyperpigmentation of the treated area and the appearance of Koebner phenomenon in the donor area. Some limitations of the study included the small number of patients, a subjective evaluation, and the lack of long-term follow-up on the results. CONCLUSION: Noncultured epidermal cell suspension transplantation is efficient and well tolerated for stable vitiligo treatment, especially for segmental vitiligo on the face and neck.

  13. Biochemistry of epidermal stem cells.

    Science.gov (United States)

    Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace

    2013-02-01

    The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Inflammatory effects of autologous, genetically modified autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses.

    Science.gov (United States)

    Pigott, J H; Ishihara, A; Wellman, M L; Russell, D S; Bertone, A L

    2013-01-01

    To compare the clinical and inflammatory joint responses to intra-articular injection of bone marrow-derived mesenchymal stem cells (MSC) including autologous, genetically modified autologous, allogeneic, or xenogeneic cells in horses. Six five-year-old Thoroughbred mares had one fetlock joint injected with Gey's balanced salt solution as the vehicle control. Each fetlock joint of each horse was subsequently injected with 15 million MSC from the described MSC groups, and were assessed for 28 days for clinical and inflammatory parameters representing synovitis, joint swelling, and pain. There were not any significant differences between autologous and genetically modified autologous MSC for synovial fluid total nucleated cell count, total protein, interleukin (IL)-6, IL-10, fetlock circumference, oedema score, pain-free range-of-motion, and soluble gene products that were detected for at least two days. Allogeneic and xenogeneic MSC produced a greater increase in peak of inflammation at 24 hours than either autologous MSC group. Genetically engineered MSC can act as vehicles to deliver gene products to the joint; further investigation into the therapeutic potential of this cell therapy is warranted. Intra-articular MSC injection resulted in a moderate acute inflammatory joint response that was greater for allogeneic and xenogeneic MSC than autologous MSC. Clinical management of this response may minimize this effect.

  15. Clinical Allogeneic and Autologous Islet Cell Transplantation: Update

    Directory of Open Access Journals (Sweden)

    Shinichi Matsumoto

    2011-06-01

    Full Text Available Islet cell transplantation is categorized as a β-cell replacement therapy for diabetic patients who lack the ability to secrete insulin. Allogeneic islet cell transplantation is for the treatment of type 1 diabetes, and autologous islet cell transplantation is for the prevention of surgical diabetes after a total pancreatectomy. The issues of allogeneic islet cell transplantation include poor efficacy of islet isolation, the need for multiple donor pancreata, difficulty maintaining insulin independence and undesirable side effects of immunosuppressive drugs. Those issues have been solved step by step and allogeneic islet cell transplantation is almost ready to be the standard therapy. The donor shortage will be the next issue and marginal and/or living donor islet cell transplantation might alleviate the issue. Xeno-islet cell transplantation, β-cell regeneration from human stem cells and gene induction of the naïve pancreas represent the next generation of β-cell replacement therapy. Autologous islet cell transplantation after total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain is the standard therapy, even though only limited centers are able to perform this treatment. Remote center autologous islet cell transplantation is an attractive option for hospitals performing total pancreatectomies without the proper islet isolation facilities.

  16. Lymphoscintigraphy and autologous stem cell implantation

    International Nuclear Information System (INIS)

    Peña, Yamile; Batista, Juan F.; Perera, Alejandro; Torres, Leonel A.; Sánchez, Elvia L.; Sánchez, Yolaine; Ducat, Luis; Prats, Anais; Hernández, Porfirio; Romero, Susana; Goicochea, Pedro; Quintela, Ana M.

    2016-01-01

    Lymphoscintigraphy is the criterion standard technique for the diagnosis of lymphedema. Advances of the application of autologous hematopoietic stem cells in ischemic disorders of lower limbs have increased the attention of researchers in this field. Aim: To determine the usefulness of lymphoscintigraphy for the assessment the efficacy of autologous stem cell implantation in patients with chronic lymphedema of the upper and lower limbs. Methods: Sixty-five patients were included. Clinical evaluation and lymphoscintigraphy were performed before and six months after stem cells implantation. The stem cells implantations were carried out by multiple superficial and deep injections in the trajectory of the lymphatic vessels and also in the inguinal region. A volume of 0.75 to 1.00 mL of cell suspension (1.0-2.2 x 109 stem cells) was administered in each injection site. Lymphoscintigraphy: Whole-body scans were acquired at 20 minutes, 1 hour, and 3 hours after administration of 185 to 259 MBq (5–7mCi) of 99m Tc-albumin nanocolloids in the interdigital space of both limbs. The anatomy and function of the lymphatic system were evaluated. Results: Functional assessment before implantation of stem cells showed that 69.2% of the patients had severe lymphatic insufficiency. The 61.5% of patients showed clinical improvement, confirmed by the results of the lymphoscintigraphy. The 46.1% of the cases evaluated showed a clear improvement. The study showed that the isotopic lymphography can evaluate the therapeutic response and its intensity. Conclusion: Lymphoscintigraphy is a useful technique for the evaluation and monitoring of autologous stem cell transplantation in patients with chronic lymphedema. (author)

  17. Autologous Cell Delivery to the Skin-Implant Interface via the Lumen of Percutaneous Devices in vitro

    Directory of Open Access Journals (Sweden)

    Antonio Peramo

    2010-11-01

    Full Text Available Induced tissue regeneration around percutaneous medical implants could be a useful method to prevent the failure of the medical device, especially when the epidermal seal around the implant is disrupted and the implant must be maintained over a long period of time. In this manuscript, a novel concept and technique is introduced in which autologous keratinocytes were delivered to the interfacial area of a skin-implant using the hollow interior of a fixator pin as a conduit. Full thickness human skin explants discarded from surgeries were cultured at the air-liquid interface and were punctured to fit at the bottom of hollow cylindrical stainless steel fixator pins. Autologous keratinocytes, previously extracted from the same piece of skin and cultured separately, were delivered to the specimens thorough the interior of the hollow pins. The delivered cells survived the process and resembled undifferentiated epithelium, with variations in size and shape. Viability was demonstrated by the lack of morphologic evidence of necrosis or apoptosis. Although the cells did not form organized epithelial structures, differentiation toward a keratinocyte phenotype was evident immunohistochemically. These results suggest that an adaptation of this technique could be useful for the treatment of complications arising from the contact between skin and percutaneous devices in vivo.

  18. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala

    2010-04-28

    The Joint Commission for Health Care Organizations recently declared the shortage of transplantable organs and tissues a public health crisis. As such, there is about one death every 30 seconds due to organ failure. Complications and rejection are still significant albeit underappreciated problems. It is often overlooked that organ transplantation results in the patient being placed on an immune suppression regimen that will ultimate shorten their life span. Patients facing reconstruction often find that surgery is difficult or impossible due to the shortage of healthy autologous tissue. In many cases, autografting is a compromise between the condition and the cure that can result in substantial diminution of quality of life. The national cost of caring for persons who might benefit from engineered tissues or organs has reached $600 billion annually. Autologous tissue technologies have been developed as an alternative to transplantation or reconstructive surgery. Autologous tissues derived from the patient's own cells are capable of correcting numerous pathologies and injuries. The use of autologous cells eliminates the risks of rejection and immunological reactions, drastically reduces the time that patients must wait for lifesaving surgery, and negates the need for autologous tissue harvest, thereby eliminating the associated morbidities. In fact, the use of autologous tissues to create functional organs is one of the most important and groundbreaking steps ever taken in medicine. Although the basic premise of creating tissues in the laboratory has progressed dramatically, only a limited number of tissue developments have reached the patients to date. This is due, in part, to the several major technological challenges that require solutions. To that end, we have been in pursuit of more efficient ways to expand cells in vitro, methods to improve vascular support so that relevant volumes of engineered tissues can be grown, and constructs that can mimic the

  19. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

    Science.gov (United States)

    Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina

    2018-03-27

    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

  20. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  1. Autologous Hematopoietic Stem Cell Transplantation to Prevent Antibody Mediated Rejection After Vascularized Composite Allotransplantation

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-16-1-0664 TITLE: Autologous Hematopoietic Stem Cell Transplantation to Prevent Antibody-Mediated Rejection after...Annual 3. DATES COVERED 15 Sep 2016 – 14 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Autologous Hematopoietic Stem Cell Transplantation to...sensitization, autologous hematopoietic stem cell transplantation, antibody mediated rejection, donor specific antibodies 16. SECURITY CLASSIFICATION OF

  2. Maturational steps of bone marrow-derived dendritic murine epidermal cells. Phenotypic and functional studies on Langerhans cells and Thy-1+ dendritic epidermal cells in the perinatal period.

    Science.gov (United States)

    Elbe, A; Tschachler, E; Steiner, G; Binder, A; Wolff, K; Stingl, G

    1989-10-15

    The adult murine epidermis harbors two separate CD45+ bone marrow (BM)-derived dendritic cell systems, i.e., Ia+, ADPase+, Thy-1-, CD3- Langerhans cells (LC) and Ia-, ADPase-, Thy-1+, CD3+ dendritic epidermal T cells (DETC). To clarify whether the maturation of these cells from their ill-defined precursors is already accomplished before their entry into the epidermis or, alternatively, whether a specific epidermal milieu is required for the expression of their antigenic determinants, we studied the ontogeny of CD45+ epidermal cells (EC). In the fetal life, there exists a considerable number of CD45+, Ia-, ADPase+ dendritic epidermal cells. When cultured, these cells become Ia+ and, in parallel, acquire the potential of stimulating allogeneic T cell proliferation. These results imply that CD45+, Ia-, ADPase+ fetal dendritic epidermal cells are immature LC precursors and suggest that the epidermis plays a decisive role in LC maturation. The day 17 fetal epidermis also contains a small population of CD45+, Thy-1+, ADPase-, CD3- round cells. Over the course of 2 to 3 wk, they are slowly replaced by an ever increasing number of round and, finally, dendritic CD45+, Thy-1+, CD3+ EC. Thus, CD45+, Thy-1+, ADPase-, CD3- fetal EC may either be DETC precursors or, alternatively, may represent a distinctive cell system of unknown maturation potential. According to this latter theory, these cells would be eventually outnumbered by newly immigrating CD45+, Thy-1+, CD3+ T cells--the actual DETC.

  3. Autologous Dendritic Cells Pulsed with Allogeneic Tumor Cell Lysate in Mesothelioma: From Mouse to Human.

    Science.gov (United States)

    Aerts, Joachim G J V; de Goeje, Pauline L; Cornelissen, Robin; Kaijen-Lambers, Margaretha E H; Bezemer, Koen; van der Leest, Cor H; Mahaweni, Niken M; Kunert, André; Eskens, Ferry A L M; Waasdorp, Cynthia; Braakman, Eric; van der Holt, Bronno; Vulto, Arnold G; Hendriks, Rudi W; Hegmans, Joost P J J; Hoogsteden, Henk C

    2018-02-15

    Purpose: Mesothelioma has been regarded as a nonimmunogenic tumor, which is also shown by the low response rates to treatments targeting the PD-1/PD-L1 axis. Previously, we demonstrated that autologous tumor lysate-pulsed dendritic cell (DC) immunotherapy increased T-cell response toward malignant mesothelioma. However, the use of autologous tumor material hampers implementation in large clinical trials, which might be overcome by using allogeneic tumor cell lines as tumor antigen source. The purpose of this study was to investigate whether allogeneic lysate-pulsed DC immunotherapy is effective in mice and safe in humans. Experimental Design: First, in two murine mesothelioma models, mice were treated with autologous DCs pulsed with either autologous or allogeneic tumor lysate or injected with PBS (negative control). Survival and tumor-directed T-cell responses of these mice were monitored. Results were taken forward in a first-in-human clinical trial, in which 9 patients were treated with 10, 25, or 50 million DCs per vaccination. DC vaccination consisted of autologous monocyte-derived DCs pulsed with tumor lysate from five mesothelioma cell lines. Results: In mice, allogeneic lysate-pulsed DC immunotherapy induced tumor-specific T cells and led to an increased survival, to a similar extent as DC immunotherapy with autologous tumor lysate. In the first-in-human clinical trial, no dose-limiting toxicities were established and radiographic responses were observed. Median PFS was 8.8 months [95% confidence interval (CI), 4.1-20.3] and median OS not reached (median follow-up = 22.8 months). Conclusions: DC immunotherapy with allogeneic tumor lysate is effective in mice and safe and feasible in humans. Clin Cancer Res; 24(4); 766-76. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Recovery of autologous sickle cells by hypotonic wash.

    Science.gov (United States)

    Wilson, Emily; Kezeor, Kelly; Crosby, Monica

    2018-01-01

    It is important to isolate autologous red blood cells (RBCs) from transfused RBCs in samples from recently transfused patients to ensure that accurate serologic results are obtained. Typically, this isolation can be performed using methods that separate patient reticulocytes from transfused, older donor RBCs. Patients with sickle cell disease (SCD), however, characteristically have RBCs with altered membrane and morphological features, causing their RBCs to take on a sickle-shape appearance different from the biconcave disc-shape appearance of "normal" RBCs. These characteristics enable the use of hypotonic saline solution to lyse normal RBCs while allowing "sickle cells" to remain intact. Because many patients with SCD undergo frequent transfusions to treat their condition, the use of hypotonic saline solution provides a rapid method to obtain autologous RBCs for serologic testing from this patient population using standard laboratory equipment and supplies.

  5. Vaccination with apoptosis colorectal cancer cell pulsed autologous ...

    African Journals Online (AJOL)

    To investigate vaccination with apoptosis colorectal cancer (CRC) cell pulsed autologous dendritic cells (DCs) in advanced CRC, 14 patients with advanced colorectal cancer (CRC) were enrolled and treated with DCs vaccine to assess toxicity, tolerability, immune and clinical responses to the vaccine. No severe toxicity ...

  6. Autologous bone marrow mononuclear cell delivery to dilated ...

    African Journals Online (AJOL)

    Autologous bone marrow mononuclear cell delivery to dilated cardiomyopathy patients: A clinical trial. PLN Kaparthi, G Namita, LK Chelluri, VSP Rao, PK Shah, A Vasantha, SK Ratnakar, K Ravindhranath ...

  7. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    International Nuclear Information System (INIS)

    Puente, Pilar de la; Ludeña, Dolores; López, Marta; Ramos, Jennifer; Iglesias, Javier

    2013-01-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  8. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  9. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells.

    Science.gov (United States)

    Burkhardt, Ute E; Hainz, Ursula; Stevenson, Kristen; Goldstein, Natalie R; Pasek, Mildred; Naito, Masayasu; Wu, Di; Ho, Vincent T; Alonso, Anselmo; Hammond, Naa Norkor; Wong, Jessica; Sievers, Quinlan L; Brusic, Ana; McDonough, Sean M; Zeng, Wanyong; Perrin, Ann; Brown, Jennifer R; Canning, Christine M; Koreth, John; Cutler, Corey; Armand, Philippe; Neuberg, Donna; Lee, Jeng-Shin; Antin, Joseph H; Mulligan, Richard C; Sasada, Tetsuro; Ritz, Jerome; Soiffer, Robert J; Dranoff, Glenn; Alyea, Edwin P; Wu, Catherine J

    2013-09-01

    Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity. We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF-secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated. At a median follow-up of 2.9 (range, 1-4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%-94%) and 88% (95% CI, 59%-97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%-33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens. Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT. Clinicaltrials.gov NCT00442130. NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.

  10. [Construction of a capsular tissue-engineered ureteral stent seeded with autologous urothelial cells].

    Science.gov (United States)

    Tan, Haisong; Fu, Weijun; Li, Jianqiang; Wang, Zhongxin; Li, Gang; Ma, Xin; Dong, Jun; Gao, Jiangping; Wang, Xiaoxiong; Zhang, Xu

    2013-01-01

    To investigate the feasibility of constructing a capsular poly L-lactic acid (PLLA) ureteral stent seeded with autologous urothelial cells using tissue engineering methods. The capsular ureteral stent was constructed by subcutaneously embedding PLLA ureteral stent in the back of beagles for 3 weeks to induce the formation of connective tissue on the surfaces. After decellularization of the stent, the expanded autologous urothelial cells were seeded on the stent. The surface structure and cell adhesion of the stent were observed using HE staining, scanning electron microscope (SEM) and immunocytochemical staining. MTT assay was used to evaluate urothelial cell proliferation on the capsular PLLA ureteral stent and on circumferential small intestinal submucosa graft. HE staining and VIII factor immunohistochemistry revealed numerous capillaries in the connective tissue encapsulating the stent without obvious local inflammatory response. The results of SEM and immunocytochemical staining showed that the capsule contained rich collagenic fibers forming three-dimensional structures, and the seeded autologous urothelial cells could adhere and well aligned on the surface. MTT assay showed normal growth of the cells on the stent as compared with the cells grown on circumferential small intestinal submucosa graft. The capsular PLLA ureteral stent allows adhesion and proliferation of autologous urothelial cells and shows a potential in applications of constructing tissue-engineered ureter.

  11. Epidermal cell death in frogs with chytridiomycosis

    Directory of Open Access Journals (Sweden)

    Laura A. Brannelly

    2017-02-01

    Full Text Available Background Amphibians are declining at an alarming rate, and one of the major causes of decline is the infectious disease chytridiomycosis. Parasitic fungal sporangia occur within epidermal cells causing epidermal disruption, but these changes have not been well characterised. Apoptosis (planned cell death can be a damaging response to the host but may alternatively be a mechanism of pathogen removal for some intracellular infections. Methods In this study we experimentally infected two endangered amphibian species Pseudophryne corroboree and Litoria verreauxii alpina with the causal agent of chytridiomycosis. We quantified cell death in the epidermis through two assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL and caspase 3/7. Results Cell death was positively associated with infection load and morbidity of clinically infected animals. In infected amphibians, TUNEL positive cells were concentrated in epidermal layers, correlating to the localisation of infection within the skin. Caspase activity was stable and low in early infection, where pathogen loads were light but increasing. In animals that recovered from infection, caspase activity gradually returned to normal as the infection cleared. Whereas, in amphibians that did not recover, caspase activity increased dramatically when infection loads peaked. Discussion Increased cell death may be a pathology of the fungal parasite, likely contributing to loss of skin homeostatic functions, but it is also possible that apoptosis suppression may be used initially by the pathogen to help establish infection. Further research should explore the specific mechanisms of cell death and more specifically apoptosis regulation during fungal infection.

  12. Calculations for reproducible autologous skin cell-spray grafting.

    Science.gov (United States)

    Esteban-Vives, Roger; Young, Matthew T; Zhu, Toby; Beiriger, Justin; Pekor, Chris; Ziembicki, Jenny; Corcos, Alain; Rubin, Peter; Gerlach, Jörg C

    2016-12-01

    Non-cultured, autologous cell-spray grafting is an alternative to mesh grafting for larger partial- and deep partial-thickness burn wounds. The treatment uses a suspension of isolated cells, from a patient's donor site skin tissue, and cell-spray deposition onto the wound that facilitates re-epithelialization. Existing protocols for therapeutic autologous skin cell isolation and cell-spray grafting have defined the donor site area to treatment area ratio of 1:80, substantially exceeding the coverage of conventional mesh grafting. However, ratios of 1:100 are possible by maximizing the wound treatment area with harvested cells from a given donor site skin tissue according to a given burn area. Although cell isolation methods are very well described in the literature, a rational approach addressing critical aspects of these techniques are of interest in planning clinical study protocols. We considered in an experimental study the cell yield as a function of the donor site skin tissue, the cell density for spray grafting, the liquid spray volume, the sprayed distribution area, and the percentage of surface coverage. The experimental data was then used for the development of constants and mathematical equations to give a rationale for the cell isolation and cell-spray grafting processes and in planning for clinical studies. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  13. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    Science.gov (United States)

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  14. Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells.

    Science.gov (United States)

    Veltri, Anthony; Lang, Christopher; Lien, Wen-Hui

    2018-01-01

    Mammalian skin and its appendages constitute the integumentary system forming a barrier between the organism and its environment. During development, skin epidermal cells divide rapidly and stratify into a multilayered epithelium, as well as invaginate downward in the underlying mesenchyme to form hair follicles (HFs). In postnatal skin, the interfollicular epidermal (IFE) cells continuously proliferate and differentiate while HFs undergo cycles of regeneration. Epidermal regeneration is fueled by epidermal stem cells (SCs) located in the basal layer of the IFE and the outer layer of the bulge in the HF. Epidermal development and SC behavior are mainly regulated by various extrinsic cues, among which Wnt-dependent signaling pathways play crucial roles. This review not only summarizes the current knowledge of Wnt signaling pathways in the regulation of skin development and governance of SCs during tissue homeostasis, but also discusses the potential crosstalk of Wnt signaling with other pathways involved in these processes. Stem Cells 2018;36:22-35. © 2017 AlphaMed Press.

  15. Enrichment of unlabeled human Langerhans cells from epidermal cell suspensions by discontinuous density gradient centrifugation

    NARCIS (Netherlands)

    Teunissen, M. B.; Wormmeester, J.; Kapsenberg, M. L.; Bos, J. D.

    1988-01-01

    In this report we introduce an alternative procedure for enrichment of human epidermal Langerhans cells (LC) from epidermal cell suspensions of normal skin. By means of discontinuous Ficoll-Metrizoate density gradient centrifugation, a fraction containing high numbers of viable, more than 80% pure

  16. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    Science.gov (United States)

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  17. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice.

    Science.gov (United States)

    Wang, D; Fløisand, Y; Myklebust, C V; Bürgler, S; Parente-Ribes, A; Hofgaard, P O; Bogen, B; Taskén, K; Tjønnfjord, G E; Schjesvold, F; Dalgaard, J; Tveita, A; Munthe, L A

    2017-10-01

    Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole BM aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.

  18. Epidermal stem cells - role in normal, wounded and pathological psoriatic and cancer skin

    DEFF Research Database (Denmark)

    Kamstrup, M.; Faurschou, A.; Gniadecki, R.

    2008-01-01

    In this review we focus on epidermal stem cells in the normal regeneration of the skin as well as in wounded and psoriatic skin. Furthermore, we discuss current data supporting the idea of cancer stem cells in the pathogenesis of skin carcinoma and malignant melanoma. Epidermal stem cells present...... or transit amplifying cells constitute a primary pathogenetic factor in the epidermal hyperproliferation seen in psoriasis. In cutaneous malignancies mounting evidence supports a stem cell origin in skin carcinoma and malignant melanoma and a possible existence of cancer stem cells Udgivelsesdato: 2008/5...

  19. [Enhanced lymphocyte proliferation in the presence of epidermal cells of HIV-infected patients in vitro].

    Science.gov (United States)

    Kappus, R P; Berger, S; Thomas, C A; Ottmann, O G; Ganser, A; Stille, W; Shah, P M

    1992-07-01

    Clinical observations show that the HIV infection is often associated with affections of the skin. In order to examine the involvement of the epidermal immune system in the HIV infection, we determined accessory cell function of epidermal cells from HIV-1-infected patients. For this we measured the proliferative response of enriched CD(4+)-T-lymphocytes from HIV-infected patients and noninfected controls to stimulation with anti-CD3 and IL-2 in the presence of epidermal cells; the enhancement of the response is dependent on the presence of functionally intact accessory cells. The capacity of epidermal cells to increase the anti-CD3-stimulated T-cell proliferative response was significantly enhanced in HIV patients (CDC III/IVA) as compared with noninfected donors. It is discussed, whether the increased activity of epidermal cells from HIV-infected patients may be responsible for several of the dermal lesions in the course of an HIV infection as due to an enhanced production and release of epidermal cell-derived cytokines.

  20. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    Science.gov (United States)

    Papiorek, Sarah; Junker, Robert R; Lunau, Klaus

    2014-01-01

    Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.

  1. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    Directory of Open Access Journals (Sweden)

    Sarah Papiorek

    Full Text Available Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of

  2. Effects of Wnt3a on proliferation and differentiation of human epidermal stem cells

    International Nuclear Information System (INIS)

    Jia Liwei; Zhou Jiaxi; Peng Sha; Li Juxue; Cao Yujing; Duan Enkui

    2008-01-01

    Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis

  3. Epigenetic Regulation of Epidermal Stem Cell Biomarkers and Their Role in Wound Healing

    Directory of Open Access Journals (Sweden)

    Sabita N. Saldanha

    2015-12-01

    Full Text Available As an actively renewable tissue, changes in skin architecture are subjected to the regulation of stem cells that maintain the population of cells responsible for the formation of epidermal layers. Stems cells retain their self-renewal property and express biomarkers that are unique to this population. However, differential regulation of the biomarkers can initiate the pathway of terminal cell differentiation. Although, pockets of non-clarity in stem cell maintenance and differentiation in skin still exist, the influence of epigenetics in epidermal stem cell functions and differentiation in skin homeostasis and wound healing is clearly evident. The focus of this review is to discuss the epigenetic regulation of confirmed and probable epidermal stem cell biomarkers in epidermal stratification of normal skin and in diseased states. The role of epigenetics in wound healing, especially in diseased states of diabetes and cancer, will also be conveyed.

  4. Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Mazzini, Letizia; Mareschi, Katia; Ferrero, Ivana; Vassallo, Elena; Oliveri, Giuseppe; Boccaletti, Riccardo; Testa, Lucia; Livigni, Sergio; Fagioli, Franca

    2006-07-01

    Our study was aimed to evaluate the feasibility and safety of intraspinal cord implantation of autologous mesenchymal stem cells (MSCs) in a few well-monitored amyotrophic lateral sclerosis (ALS) patients. Seven patients affected by definite ALS were enrolled in the study and two patients were treated for compassionate use and monitored for at least 3 years. Bone marrow was collected from the posterior iliac crest according to the standard procedure and MSCs were expanded ex vivo according to Pittenger's protocol. The cells were suspended in 2 ml autologous cerebrospinal fluid and transplanted into the spinal cord by a micrometric pump injector. The in vitro expanded MSCs did not show any bacterial o fungal contamination, hemopoietic cell contamination, chromosomic alterations and early cellular senescence. No patient manifested major adverse events such as respiratory failure or death. Minor adverse events were intercostal pain irradiation and leg sensory dysesthesia, both reversible after a mean period of 6 weeks. No modification of the spinal cord volume or other signs of abnormal cell proliferation were observed. A significant slowing down of the linear decline of the forced vital capacity was evident in four patients 36 months after MSCs transplantation. Our results demonstrate that direct injection of autologous expanded MSCs into the spinal cord of ALS patients is safe, with no significant acute or late toxicity, and well tolerated. The clinical results seem to be encouraging.

  5. Autologous stem cell transplantation in refractory Asherman′s syndrome: A novel cell based therapy

    Directory of Open Access Journals (Sweden)

    Neeta Singh

    2014-01-01

    Full Text Available Background : There is substantial evidence that adult stem cell populations exist in human endometrium, and hence it is suggested that either endogenous endometrial stem/progenitor cells can be activated or bone marrow derived stem cells can be transplanted in the uterine cavity for endometrial regeneration in Asherman′s syndrome (AS. Aims and Objectives : The objective was to evaluate the role of sub-endometrial autologous stem cell implantation in women with refractory AS in attaining menstruation and fertility. Setting : Tertiary care referral center. DESIGN: Prospective case series. Materials and Methods : Six cases of refractory AS with failed standard treatment option of hysteroscopic adhesiolysis in the past were included. Mononuclear stem cells (MNCs were implanted in sub-endometrial zone followed by exogenous oral estrogen therapy. Endometrial thickness (ET was assessed at 3, 6, and 9 months. RESULTS: Descriptive statistics and statistical analysis of study variables was carried out using STATA version 9.0. The mean MNC count was 103.3 × 106 (±20.45 with mean CD34+ count being 203,642 (±269,274. Mean of ET (mm at 3 months (4.05 ± 1.40, 6 months (5.46 ± 1.36 and 9 months (5.48 ± 1.14 were significantly (P < 0.05 increased from pretreatment level (1.38 ± 0.39. Five out of six patients resumed menstruation. Conclusion : The autologous stem cell implantation leads to endometrial regeneration reflected by restoration of menstruation in five out of six cases. Autologous stem cell implantation is a promising novel cell based therapy for refractory AS.

  6. Research progresses in treating diabetic foot with autologous stem cell transplantation

    International Nuclear Information System (INIS)

    Qin Hanlin; Gao Bin

    2010-01-01

    Because the distal arteries of lower extremities become narrowed or even occluded in diabetic foot, the clinical therapeutic results for diabetic foot have been unsatisfactory so far. Autologous stem cell transplantation that has emerged in recent years is a new, safe and effective therapy for diabetic foot, which achieves its excellent clinical success in restoring the blood supply of ischemic limb by way of therapeutic angiogenesis. Now autologous stem cell transplantation has become one of the hot points in medical research both at home and abroad, moreover, it has brought a new hope of cure to the patients with diabetic foot. (authors)

  7. Autologous blood cell therapies from pluripotent stem cells

    Science.gov (United States)

    Lengerke, Claudia; Daley, George Q.

    2010-01-01

    Summary The discovery of human embryonic stem cells (hESCs) raised promises for a universal resource for cell based therapies in regenerative medicine. Recently, fast-paced progress has been made towards the generation of pluripotent stem cells (PSCs) amenable for clinical applications, culminating in reprogramming of adult somatic cells to autologous PSCs that can be indefinitely expanded in vitro. However, besides the efficient generation of bona fide, clinically safe PSCs (e.g. without the use of oncoproteins and gene transfer based on viruses inserting randomly into the genome), a major challenge in the field remains how to efficiently differentiate PSCs to specific lineages and how to select for cells that will function normally upon transplantation in adults. In this review, we analyse the in vitro differentiation potential of PSCs to the hematopoietic lineage discussing blood cell types that can be currently obtained, limitations in derivation of adult-type HSCs and prospects for clinical application of PSCs-derived blood cells. PMID:19910091

  8. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  9. Infusion of Autologous Retrodifferentiated Stem Cells into Patients with Beta-Thalassemia

    Directory of Open Access Journals (Sweden)

    Ilham Saleh Abuljadayel

    2006-01-01

    Full Text Available Beta-thalassemia is a genetic, red blood cell disorder affecting the beta-globin chain of the adult hemoglobin gene. This results in excess accumulation of unpaired alpha-chain gene products leading to reduced red blood cell life span and the development of severe anemia. Current treatment of this disease involves regular blood transfusion and adjunct chelation therapy to lower blood transfusion–induced iron overload. Fetal hemoglobin switching agents have been proposed to treat genetic blood disorders, such as sickle cell anemia and beta-thalassemia, in an effort to compensate for the dysfunctional form of the beta-globin chain in adult hemoglobin. The rationale behind this approach is to pair the excess normal alpha-globin chain with the alternative fetal gamma-chain to promote red blood cell survival and ameliorate the anemia. Reprogramming of differentiation in intact, mature, adult white blood cells in response to inclusion of monoclonal antibody CR3/43 has been described. This form of retrograde development has been termed “retrodifferentiation”, with the ability to re-express a variety of stem cell markers in a heterogeneous population of white blood cells. This form of reprogramming, or reontogeny, to a more pluripotent stem cell state ought to recapitulate early hematopoiesis and facilitate expression of a fetal and/or adult program of hemoglobin synthesis or regeneration on infusion and subsequent redifferentiation. Herein, the outcome of infusion of autologous retrodifferentiated stem cells (RSC into 21 patients with beta-thalassemia is described. Over 6 months, Infusion of 3-h autologous RSC subjected to hematopoietic-conducive conditions into patients with beta-thalassemia reduced mean blood transfusion requirement, increased mean fetal hemoglobin synthesis, and significantly lowered mean serum ferritin. This was always accompanied by an increase in mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH, and mean

  10. Evolution of the clonogenic potential of human epidermal stem/progenitor cells with age

    Directory of Open Access Journals (Sweden)

    Zobiri O

    2012-02-01

    Full Text Available Olivia Zobiri, Nathalie Deshayes, Michelle Rathman-JosserandDepartment of Biological Research, L'Oréal Advanced Research, Clichy Cedex, FranceAbstract: A number of clinical observations have indicated that the regenerative potential and overall function of the epidermis is modified with age. The epidermis becomes thinner, repairs itself less efficiently after wounding, and presents modified barrier function recovery. In addition, the dermal papillae flatten out with increasing age, suggesting a modification in the interaction between epidermal and dermal compartments. As the epidermal regenerative capacity is dependent upon stem and progenitor cell function, it is naturally of interest to identify and understand age-related changes in these particular keratinocyte populations. Previous studies have indicated that the number of stem cells does not decrease with age in mouse models but little solid evidence is currently available concerning human skin. The objective of this study was to evaluate the clonogenic potential of keratinocyte populations isolated from the epidermis of over 50 human donors ranging from 18 to 71 years old. The data indicate that the number of epidermal cells presenting high regenerative potential does not dramatically decline with age in human skin. The authors believe that changes in the microenvironment controlling epidermal basal cell activity are more likely to explain the differences in epidermal function observed with increasing age.Keywords: skin, epidermal stem cells, aging, colony-forming efficiency test

  11. Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors

    Science.gov (United States)

    Beckhove, Philipp; Feuerer, Markus; Dolenc, Mathias; Schuetz, Florian; Choi, Carmen; Sommerfeldt, Nora; Schwendemann, Jochen; Ehlert, Katrin; Altevogt, Peter; Bastert, Gunther; Schirrmacher, Volker; Umansky, Viktor

    2004-01-01

    Bone marrow of breast cancer patients was found to contain CD8+ T cells specific for peptides derived from breast cancer–associated proteins MUC1 and Her-2/neu. Most of these cells had a central or effector memory phenotype (CD45RA–CD62L+ or CD45RA–CD62L–, respectively). To test their in vivo function, we separated bone marrow–derived CD45RA+ naive or CD45RA–CD45RO+ memory T cells, stimulated them with autologous dendritic cells pulsed with tumor lysate, and transferred them into NOD/SCID mice bearing autologous breast tumors and normal skin transplants. CD45RA– memory but not CD45RA+ naive T cells infiltrated autologous tumor but not skin tissues after the transfer. These tumor-infiltrating cells had a central or effector memory phenotype and produced perforin. Many of them expressed the P-selectin glycoprotein ligand 1 and were found around P-selectin+ tumor endothelium. Tumor infiltration included cluster formation in tumor tissue by memory T cells with cotransferred dendritic cells. It was associated with the induction of tumor cell apoptosis and significant tumor reduction. We thus demonstrate selective homing of memory T cells to human tumors and suggest that tumor rejection is based on the recognition of tumor-associated antigens on tumor cells and dendritic cells by autologous specifically activated central and effector memory T cells. PMID:15232613

  12. Micromorphology and development of the epicuticular structure on the epidermal cell of ginseng leaves

    Directory of Open Access Journals (Sweden)

    Kyounghwan Lee

    2015-04-01

    Conclusion: The outwardly projected cuticle and epidermal cell wall (i.e., an epicuticular wrinkle acts as a major barrier to block out sunlight in ginseng leaves. The small vesicles in the peripheral region of epidermal cells may suppress the cuticle and parts of epidermal wall, push it upward, and consequently contribute to the formation of the epicuticular structure.

  13. Use of autologous tissue engineered skin to treat porcine full-thickness skin defects

    Institute of Scientific and Technical Information of China (English)

    CAI Xia; CAO Yi-lin; CUI Lei; LIU Wei; GUAN Wen-xiang

    2005-01-01

    Objective: To explore a feasible method to repair full-thickness skin defects utilizing tissue engineered techniques. Methods: The Changfeng hybrid swines were used and the skin specimens were cut from the posterior limb girdle region, from which the keratinocytes and fibroblasts were isolated and harvested by trypsin, EDTA, and type II collagenase. The cells were seeded in Petri dishes for primary culture. When the cells were in logarithmic growth phase, they were treated with trypsin to separate them from the floor of the tissue culture dishes. A biodegradable material, Pluronic F-127, was prefabricated and mixed with these cells, and then the cell-Pluronic compounds were seeded evenly into a polyglycolic acid (PGA). Then the constructs were replanted to the autologous animals to repair the full-thickness skin defects. Histology and immunohistochemistry of the neotissue were observed in 1, 2, 4, and 8 postoperative weeks. Results: The cell-Pluronic F-127-PGA compounds repaired autologous full-thickness skin defects 1 week after implantation. Histologically, the tissue engineered skin was similar to the normal skin with stratified epidermis overlying a moderately thick collageneous dermis. Three of the structural proteins in the epidermal basement membrane zone, type IV collagen, laminin, and type VII collagen were detected using immunohistochemical methods. Conclusions: By studying the histology and immunohistochemistry of the neotissue, the bioengineered skin graft holds great promise for improving healing of the skin defects.

  14. Autologous Bone Marrow Stem Cell Infusion (AMBI therapy for Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Rajkumar JS

    2007-01-01

    Full Text Available Liver Cirrhosis is the end stage of chronic liver disease which may happen due to alcoholism, viral infections due to Hepatitis B, Hepatitis C viruses and is difficult to treat. Liver transplantation is the only available definitive treatment which is marred by lack of donors, post operative complications such as rejection and high cost. Autologous bone marrow stem cells have shown a lot of promise in earlier reported animal studies and clinical trials. We have in this study administered in 22 patients with chronic liver disease, autologous bone marrow stem cell whose results are presented herewith.

  15. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells

    Directory of Open Access Journals (Sweden)

    Harpa Marius Mihai

    2015-12-01

    Full Text Available Background: We hypothesized that an ideal heart valve replacement would be acellular valve root scaffolds seeded with autologous stem cells. To test this hypothesis, we prepared porcine acellular pulmonary valves, seeded them with autologous adipose derived stem cells (ADSCs and implanted them in sheep and compared them to acellular valves.

  16. High dose therapy with autologous stem cell support in malignant disorders

    International Nuclear Information System (INIS)

    Holte, H.; Kvaloey, S.O.; Engan, T.

    1996-01-01

    New biomedical knowledge may improve the diagnostic procedures and treatment provided by the Health Services, but at additional cost. In a social democratic health care system, the hospital budgets have no room for expensive, new procedures or treatments, unless these are funded through extra allocation from the central authorities. High dose therapy with autologous stem cell support in malignant disorders is an example of a new and promising, but rather expensive treatment, but its role in cancer therapy has yet to be established. The indications for testing high dose therapy with autologous stem cell support in various malignancies are discussed, with emphasis on the principles for deciding which categories of disease should have priority. The authors suggest some malignant disorder for which high dose therapy with stem cell support should be explored versus conventional treatment in randomized prospective trials. 8 refs., 1 tab

  17. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity

    Directory of Open Access Journals (Sweden)

    Campana Dario

    2010-10-01

    Full Text Available Abstract Background The possibility that autologous NK cells could serve as an effective treatment modality for solid tumors has long been considered. However, implementation is hampered by (i the small number of NK cells in peripheral blood, (ii the difficulties associated with large-scale production of GMP compliant cytolytic NK cells, (iii the need to activate the NK cells in order to induce NK cell mediated killing and (iv the constraints imposed by autologous inhibitory receptor-ligand interactions. To address these issues, we determined (i if large numbers of NK cells could be expanded from PBMC and GMP compliant cell fractions derived by elutriation, (ii their ability to kill allogeneic and autologous tumor targets by direct cytotoxitiy and by antibody-mediated cellular cytotoxicity and (iii defined NK cell specific receptor-ligand interactions that mediate tumor target cell killing. Methods Human NK cells were expanded during 14 days. Expansion efficiency, NK receptor repertoire before and after expansion, expression of NK specific ligands, cytolytic activity against allogeneic and autologous tumor targets, with and without the addition of chimeric EGFR monoclonal antibody, were investigated. Results Cell expansion shifted the NK cell receptor repertoire towards activation and resulted in cytotoxicity against various allogeneic tumor cell lines and autologous gastric cancer cells, while sparing normal PBMC. Blocking studies confirmed that autologous cytotoxicity is established through multiple activating receptor-ligand interactions. Importantly, expanded NK cells also mediated ADCC in an autologous and allogeneic setting by antibodies that are currently being used to treat patients with select solid tumors. Conclusion These data demonstrate that large numbers of cytolytic NK cells can be generated from PBMC and lymphocyte-enriched fractions obtained by GMP compliant counter current elutriation from PBMC, establishing the preclinical

  18. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    International Nuclear Information System (INIS)

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul; Kang, Keon Wook

    2011-01-01

    Highlights: → Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. → UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. → UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation (λ = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm 2 ) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.

  19. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Science.gov (United States)

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-01-01

    Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs) with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years. PMID:21151652

  20. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Directory of Open Access Journals (Sweden)

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  1. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  2. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  3. Persistent seropositivity for yellow fever in a previously vaccinated autologous hematopoietic stem cell transplantation recipient.

    Science.gov (United States)

    Hayakawa, Kayoko; Takasaki, Tomohiko; Tsunemine, Hiroko; Kanagawa, Shuzo; Kutsuna, Satoshi; Takeshita, Nozomi; Mawatari, Momoko; Fujiya, Yoshihiro; Yamamoto, Kei; Ohmagari, Norio; Kato, Yasuyuki

    2015-08-01

    The duration of a protective level of yellow fever antibodies after autologous hematopoietic stem cell transplantation in a previously vaccinated person is unclear. The case of a patient who had previously been vaccinated for yellow fever and who remained seropositive for 22 months after autologous peripheral blood stem cell transplantation for malignant lymphoma is described herein. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2013-10-01

    Full Text Available AIM: To observe the clinical effectiveness and practicality the autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium.METHODS: Of the 53 recurrent pterygium patients(57 eyes, after all pathological tissues were removed, underwent the autologous conjunctiva transplantation with stem cells on edge of cornea which were locked above conjunctival transplantation of the operated eye.RESULTS: Postopretive follow-up was 1-12 months for all 57 eyes, of which 3 eyes(5%relapsed. The corneoscleral autolysis was occurred in one eye and surgery treatment was conducted. Corneal wounds were healing and transplantations survived well for the remaining 53 patients without obvious surgical marks. Cure rate was 93%.CONCLUSION: Autologous conjunctiva transplantation with stem cells on edge of cornea for recurrent pterygium can meet the aesthetic requirements of the some patients, with the advantages of obtaining material easily, faster wound healing, lower postoperative recurrence rate, meeting the aesthetic needs of some patients and improving postoperative results. Thus, it is an ideal surgery and is worthy of applying on primary hospital.

  5. [Human herpesvirus-6 pneumonitis following autologous peripheral blood stem cell transplantation].

    Science.gov (United States)

    Saitoh, Yuu; Gotoh, Moritaka; Yoshizawa, Seiichiro; Akahane, Daigo; Fujimoto, Hiroaki; Ito, Yoshikazu; Ohyashiki, Kazuma

    2018-01-01

    A-46-year-old man was diagnosed with peripheral T cell lymphoma, not otherwise specified. He achieved a complete remission after pirarubicin, cyclophosphamide, vincristine, and prednisolone (THP-COP) therapy and successful autologous peripheral blood stem-cell transplantation (AutoSCT). However, 6 months post AutoSCT, he complained of fever. Chest computed tomography of the patient displayed bilateral interstitial pneumonitis. Human herpesvirus-6 (HHV-6) DNA was detected in his bronchoalveolar lavage fluid. Therefore, the patient was confirmed for HHV-6 pneumonitis. The treatment with foscarnet was effective, and no relapse was noticed in the patient. Besides, we have experienced pneumonitis of unknown origin in some patients after autologous or allogeneic stem-cell transplantations. Moreover, most of the above patients were clinically diagnosed using serum or plasma markers. Therefore, examining respiratory symptoms after AutoSCT would enable a more accurate diagnosis as well as treatment of patients with HHV-6 pneumonitis.

  6. Intra-arterial Autologous Bone Marrow Cell Transplantation in a Patient with Upper-extremity Critical Limb Ischemia

    International Nuclear Information System (INIS)

    Madaric, Juraj; Klepanec, Andrej; Mistrik, Martin; Altaner, Cestmir; Vulev, Ivan

    2013-01-01

    Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.

  7. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Marie, Melanie

    2013-01-01

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  8. Examination of tetrachlorosalicylanilide (TCSA) photoallergy using in vitro photohapten-modified Langerhans cell-enriched epidermal cells

    International Nuclear Information System (INIS)

    Gerberick, G.F.; Ryan, C.A.; Von Bargen, E.C.; Stuard, S.B.; Ridder, G.M.

    1991-01-01

    Lymphocytes from BALB/c mice photosensitized in vivo to tetrachlorosalicylanilide (TCSA) were investigated to determine whether they could be stimulated to proliferate when cultured with Langerhans cell-enriched cultured epidermal cells (LC-EC) photohapten-modified in vitro with TCSA + UVA radiation. Cultured LC-EC were photohapten-modified in vitro by irradiation in TCSA-containing medium using a 1000-watt solar simulator equipped with filters to deliver primarily UVA radiation (320-400 nm). Lymphocytes from TCSA-photosensitized mice were incubated with LC-EC that had been treated in vitro with 0.1 mM TCSA and 2 J/cm2 UVA radiation (TCSA + UVA). Responder lymphocytes demonstrated a significant increase in their blastogenesis response compared to lymphocytes that were incubated with LC-EC irradiated with UVA prior to treatment with TCSA (UVA/TCSA) or with LC-EC that had received no treatment. Lymphocytes from naive mice or mice photosensitized with musk ambrette (MA) demonstrated a significantly lower response to LC-EC modified with TCSA + UVA, indicating the specificity of the response. Maximum blastogenesis response was achieved when LC-EC were treated with 0.1 mM TCSA and a UVA radiation dose of at least 0.5 J/cm2. Epidermal cells depleted of LC by treatment with anti-Ia antibody plus complement or by an adherence procedure were unable to stimulate this blastogenesis response. Epidermal cells treated in vitro with TCSA + UVA demonstrated enhanced fluorescence compared to control cells. The fluorescence observed was not restricted to any specific epidermal cell type; however, fluorescence microscopy studies revealed that dendritic Ia-positive cells, presumably LC, were also TCSA fluorescent

  9. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  10. Autologous dental pulp stem cells in periodontal regeneration: a case report.

    Science.gov (United States)

    Aimetti, Mario; Ferrarotti, Francesco; Cricenti, Luca; Mariani, Giulia Maria; Romano, Federica

    2014-01-01

    Histologic findings in animal models suggest that the application of dental pulp stem cells (DPSCs) may promote periodontal regeneration in infrabony defects. This case report describes the clinical and radiographic regenerative potential of autologous DPSCs in the treatment of human noncontained intraosseous defects. A chronic periodontitis patient with one vital third molar requiring extraction was surgically treated. The third molar was extracted and used as an autologous DPSCs source to regenerate the infrabony defect on the mandibular right second premolar. At the 1-year examination, the defect was completely filled with bonelike tissue as confirmed through the reentry procedure.

  11. Rapid cell separation with minimal manipulation for autologous cell therapies

    Science.gov (United States)

    Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  12. Fatal Metastatic Cutaneous Squamous Cell Carcinoma Evolving from a Localized Verrucous Epidermal Nevus

    Directory of Open Access Journals (Sweden)

    Hassan Riad

    2013-10-01

    Full Text Available A malignant transformation is known to occur in many nevi such as a sebaceous nevus or a basal cell nevus, but a verrucous epidermal nevus has only rarely been associated with neoplastic changes. Keratoacanthoma, multifocal papillary apocrine adenoma, multiple malignant eccrine poroma, basal cell carcinoma and cutaneous squamous cell carcinoma (CSCC have all been reported to develop from a verrucous epidermal nevus. CSCC has also been reported to arise from other nevoid lesions like a nevus comedonicus, porokeratosis, a sebaceous nevus, an oral sponge nevus and an ichthyosiform nevus with CHILD syndrome. Here we report a case of progressive poorly differentiated CSCC arising from a localized verrucous epidermal nevus, which caused both spinal cord and brain metastasis.

  13. Grafting of human epidermal cells, presence and perspectives

    Czech Academy of Sciences Publication Activity Database

    Smetana, Karel; Dvořánková, B.; Labský, Jiří; Vacík, Jiří; Holíková, Z.

    2001-01-01

    Roč. 102, č. 1 (2001), s. 1-6 ISSN 0036-5327 R&D Projects: GA ČR GA203/00/1310; GA AV ČR IBS4050005; GA MZd ND6340; GA MŠk LN00A065; GA AV ČR KSK4055109 Institutional research plan: CEZ:AV0Z4050913 Keywords : cell therapy-keratinocyte-epidermal stem cell * skin defect Subject RIV: CD - Macromolecular Chemistry

  14. Similar effect of autologous and allogeneic cell therapy for ischemic heart disease : Systematic review and meta-analysis of large animal studies

    NARCIS (Netherlands)

    Jansen of Lorkeers, Sanne J.; Eding, Joep Egbert Coenraad; Vesterinen, Hanna Mikaela; van der Spoel, Tycho Ids Gijsbert; Sena, Emily Shamiso; Duckers, Henricus Johannes; Doevendans, Pieter Adrianus; Macleod, Malcolm Robert; Chamuleau, Steven Anton Jozef

    2015-01-01

    Rationale: In regenerative therapy for ischemic heart disease, use of both autologous and allogeneic stem cells has been investigated. Autologous cell can be applied without immunosuppression, but availability is restricted, and cells have been exposed to risk factors and aging. Allogeneic cell

  15. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products.

    Science.gov (United States)

    Hourd, Paul; Chandra, Amit; Alvey, David; Ginty, Patrick; McCall, Mark; Ratcliffe, Elizabeth; Rayment, Erin; Williams, David J

    2014-01-01

    Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.

  16. Simplified non-cultured non-trypsinised epidermal cell graft technique followed by psoralen and ultraviolet a light therapy for stable vitiligo

    Directory of Open Access Journals (Sweden)

    Dilip Kachhawa

    2017-01-01

    Full Text Available Background and Aims: Stable vitiligo can be treated by various surgical procedures. Non-cultured melanocyte grafting techniques were developed to overcome the time-consuming process of culture while at the same time providing acceptable results. All the techniques using non-cultured melanocyte transfer involve trypsinisation as an integral step. Jodhpur technique used by the author is autologous, non-cultured, non-trypsinised, epidermal cell grafting. Settings and Design: The study was conducted on patients visiting the dermatology outpatient department of a tertiary health centre in Western Rajasthan. Materials and Methods: At the donor site, mupirocin ointment was applied and dermabrasion was done with the help of micromotor dermabrader till pinpoint bleeding was seen. The paste-like material obtained by this procedure containing melanocytes and keratinocytes admixed with the ointment base was harvested with spatula and was subsequently spread over the recipient area. Recipient site was prepared in the same manner by dermabrasion. After 10 days, dressing at both sites was removed taking utmost care at the recipient site as there was a theoretical risk of dislodging epidermal cells. Results: In a study of 437 vitiligo patches, more than 75% re-pigmentation (excellent improvement was seen in 41% of the patches. Lesions on thigh (100%, face (75% and trunk (50% showed maximal excellent improvement, whereas patches on joints and acral areas did not show much improvement. Conclusions: This technique is a simplified, cost effective, less time-consuming alternative to other techniques which involve tryspsinisation of melanocytes and at the same time provides satisfactory uniform pigmentation.

  17. Autologous Bone Marrow Mononuclear Cells Intrathecal Transplantation in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2014-01-01

    Full Text Available Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.

  18. Pre-emptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma

    DEFF Research Database (Denmark)

    Andersen, Niels S; Pedersen, Lone B; Laurell, Anna

    2009-01-01

    PURPOSE: Minimal residual disease (MRD) is predictive of clinical progression in mantle-cell lymphoma (MCL). According to the Nordic MCL-2 protocol we prospectively analyzed the efficacy of pre-emptive treatment using rituximab to MCL patients in molecular relapse after autologous stem cell...

  19. Specific Factors Influence the Success of Autologous and Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Thissiane L. Gonçalves

    2009-01-01

    Full Text Available Successful hematopoietic stem cell transplantation (HSCT, both autologous and allogeneic, requires a rapid and durable engraftment, with neutrophil (>500/µL and platelet (>20,000/µL reconstitution. Factors influencing engraftment after autologous or allogeneic HSCT were investigated in 65 patients: 25 autologous peripheral stem cell transplantation (PBSCT and 40 allogeneic bone marrow transplantation (BMT patients. The major factor affecting engraftment was the graft source for HSCT. Neutrophil and platelet recovery were more rapid in autologous PBSCT than in allogeneic BMT [neutrophil occurring in median on day 10.00 (09.00/11.00 and 19.00 (16.00/23.00 and platelet on day 11.00 (10.00/13.00 and 21.00 (18.00/25.00, respectively; p < 0.0001]. The type of disease also affected engraftment, where multiple myeloma (MM and lymphoma showed faster engraftment when compared with leukemia, syndrome myelodysplastic (SMD and aplastic anemia (AA and MM presented the best overall survival (OS in a period of 12 months. Other factors included the drug used in the conditioning regimen (CR, where CBV, melphalan (M-200 and FluCy showed faster engraftment and M-200 presented the best OS, in a period of 12 months and age, where 50–59 years demonstrated faster engraftment. Sex did not influence neutrophil and platelet recovery.

  20. Intrathecal application of autologous bone marrow cell preparations in parkinsonian syndromes

    DEFF Research Database (Denmark)

    Storch, Alexander; Csoti, Ilona; Eggert, Karla

    2012-01-01

    A growing number of patients is treated with intrathecal application of autologous bone marrow cells (aBMCs), but clinical data are completely lacking in movement disorders. We provide first clinical data on efficacy and safety of this highly experimental treatment approach in parkinsonian...

  1. Gastrocnemius tendon strain in a dog treated with autologous mesenchymal stem cells and a custom orthosis.

    Science.gov (United States)

    Case, J Brad; Palmer, Ross; Valdes-Martinez, Alex; Egger, Erick L; Haussler, Kevin K

    2013-05-01

    To report clinical findings and outcome in a dog with gastrocnemius tendon strain treated with autologous mesenchymal stem cells and a custom orthosis. Clinical report. A 4-year-old spayed female Border Collie. Bone-marrow derived, autologous mesenchymal stem cells were transplanted into the tendon core lesion. A custom, progressive, dynamic orthosis was fit to the tarsus. Serial orthopedic examinations and ultrasonography as well as long-term force-plate gait analysis were utilized for follow up. Lameness subjectively resolved and peak vertical force increased from 43% to 92% of the contralateral pelvic limb. Serial ultrasonographic examinations revealed improved but incomplete restoration of normal linear fiber pattern of the gastrocnemius tendon. Findings suggest that autologous mesenchymal stem cell transplantation with custom, progressive, dynamic orthosis may be a viable, minimally invasive technique for treatment of calcaneal tendon injuries in dogs. © Copyright 2013 by The American College of Veterinary Surgeons.

  2. Reactivity of inducer cell subsets and T8-cell activation during the human autologous mixed lymphocyte reaction.

    Science.gov (United States)

    Romain, P L; Morimoto, C; Daley, J F; Palley, L S; Reinherz, E L; Schlossman, S F

    1984-01-01

    To characterize the responding T cells in the autologous mixed lymphocyte reaction (AMLR), T cells were fractionated into purified subpopulations employing monoclonal antibodies and a variety of separation techniques including fluorescence-activated cell sorting. It was found that isolated T4 cells, but not T8 cells, proliferated in response to autologous non-T cells. More importantly, within the T4 subset, the autoreactive population was greatly enriched in a fraction reactive with an autoantibody from patients with juvenile chronic arthritis (JRA) or the monoclonal antibody anti-TQ1. Although T8 cells themselves were unable to proliferate in the AMLR, they could be induced to respond in the presence of either T4 cells or exogenous IL-2 containing medium. This was demonstrated by direct measurement of tritiated thymidine uptake by T8 cells during the course of the AMLR as well as by analysis of their relative DNA content. Taken together, these data indicate that the AMLR represents a complex pattern of immune responsiveness distinct from that observed in response to soluble antigen or alloantigen. The precise function of this T-cell circuit remains to be determined.

  3. TNP-specific Lyt-2+ cytolytic T cell clones preferentially respond to TNP-conjugated epidermal cells

    International Nuclear Information System (INIS)

    Shimada, S.; Katz, S.I.

    1985-01-01

    A most effective method for the induction of hapten-specific allergic contact sensitivity (CS) is via epicutaneous application of the hapten. Another effective method is by the administration of haptenated epidermal cells (EC) subcutaneously. The latter method induces more intense and longer lasting CS than does the subcutaneous administration of haptenated spleen cells (SC). Thus, there may be something unique about EC which, when haptenated, allows them to generate effector cells more effectively than do SC. The authors therefore, attempted to generate T cell clones that were both hapten- and epidermal-specific. Four days after painting mice with 7% trinitrochlorobenzene, draining lymph node cells were obtained and T cells were purified. These cells were co-cultured with trinitrophenylated (TNP) Langerhans cell-enriched EC. After 4 days, cells were harvested and rested on non-TNP-conjugated EC. The cells were restimulated and rested three times, and were then cloned by limiting dilution with added interleukin 2, which was then continually added. Proliferation of T cells was assessed by [ 3 H]-thymidine incorporation. Cytotoxicity assays utilized TNP-conjugated concanavalin A SC blasts or EC as targets. Clones A-2 and E-4 are Thy-1+, Lyt-2+, and L3T4-, and TNP-specific. In contrast to noncloned TNP-specific T cells, the clones proliferate preferentially in response to TNP-EC rather than TNP-SC. Also in contrast to noncloned T cells, the clones were preferentially cytotoxic for TNP-EC; compared to TNP-SC, there was an eight- to 32-fold increase in killing when TNP-EC were used as targets. Clones A-2 and E-4 therefore exhibit hapten and epidermal specificity

  4. Adding a Piece to the Leaf Epidermal Cell Shape Puzzle.

    Science.gov (United States)

    von Wangenheim, Daniel; Wells, Darren M; Bennett, Malcolm J

    2017-11-06

    The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    Science.gov (United States)

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  6. Autodegradation of 125I-labeled human epidermal cell surface proteins

    International Nuclear Information System (INIS)

    Hashimoto, K.; Singer, K.H.; Lazarus, G.S.

    1982-01-01

    Triton X-100 extracts of cultured human epidermal cells exhibited proteolytic activity as measured by the hydrolysis of [ 3 H]-casein at neutral pH. The majority of endogenous proteolytic activity was inhibited by parahydroxy mercuribenzoate and by mersalyl acid, indicating the enzyme(s) was a thiol class proteinase(s). Crude Triton X-100 extracts were prepared from epidermal cells following labeling of proteins with 125 I. Autodegradation of labeled proteins at 37 degrees C was detected as early as 1 hr and reached a plateau level by 4 hr. Degradation was inhibited by thiol class proteinase inhibitors. Among the detergent-solubilized radiolabeled proteins a polypeptide chain of Mr 155,000 was particularly sensitive to degradation by endogenous thiol proteinase(s)

  7. Radiosensitivity of normal human epidermal cells in culture

    International Nuclear Information System (INIS)

    Dover, R.; Potten, C.S.

    1983-01-01

    Using an in vitro culture system the authors have derived #betta#-radiation survival curves over a dose range 0-8 Gy for the clonogenic cells of normal human epidermis. The culture system used allows the epidermal cells to stratify and form a multi-layered sheet of keratinizing cells. The cultures appear to be a very good model for epidermis in vivo. The survival curves show a population which is apparently more sensitive than murine epidermis in vivo. It remains unclear whether this is an intrinsic difference between the species or is a consequence of the in vitro cultivation of the human cells. (author)

  8. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  9. Comparison of the Fenwal Amicus and Fresenius Com.Tec cell separators for autologous peripheral blood progenitor cell collection.

    Science.gov (United States)

    Altuntas, Fevzi; Kocyigit, Ismail; Ozturk, Ahmet; Kaynar, Leylagul; Sari, Ismail; Oztekin, Mehmet; Solmaz, Musa; Eser, Bulent; Cetin, Mustafa; Unal, Ali

    2007-04-01

    Peripheral blood progenitor cells (PBPC) are commonly used as a stem cell source for autologous transplantation. This study was undertaken to evaluate blood cell separators with respect to separation results and content of the harvest. Forty autologous PBPC collections in patients with hematological malignancies were performed with either the Amicus or the COM.TEC cell separators. The median product volume was lower with the Amicus compared to the COM.TEC (125 mL vs. 300 mL; p < 0.001). There was no statistically significant difference in the median number of CD34+ cell/kg in product between the Amicus and the COM.TEC (3.0 x 10(6) vs. 4.1 x 10(6); p = 0.129). There was a statistically higher mean volume of ACD used in collections on the Amicus compared to the COM.TEC (1040 +/- 241 mL vs. 868 +/- 176 mL; p = 0.019). There was a statistical difference in platelet (PLT) contamination of the products between the Amicus and the COM.TEC (0.3 x 10(11) vs. 1.1 x 10(11); p < 0.001). The median % decrease in PB PLT count was statistically higher in the COM.TEC compared to the Amicus instruments (18.5% vs. 9.5%; p = 0.028). In conclusion, both instruments collected PBPCs efficiently. However, Amicus has the advantage of lower PLT contamination in the product, and less decrease in PB platelet count with lower product volume in autologous setting.

  10. Manufacturing models permitting roll out/scale out of clinically led autologous cell therapies: regulatory and scientific challenges for comparability.

    Science.gov (United States)

    Hourd, Paul; Ginty, Patrick; Chandra, Amit; Williams, David J

    2014-08-01

    Manufacturing of more-than-minimally manipulated autologous cell therapies presents a number of unique challenges driven by complex supply logistics and the need to scale out production to multiple manufacturing sites or near the patient within hospital settings. The existing regulatory structure in Europe and the United States imposes a requirement to establish and maintain comparability between sites. Under a single market authorization, this is likely to become an unsurmountable burden beyond two or three sites. Unless alternative manufacturing approaches can be found to bridge the regulatory challenge of comparability, realizing a sustainable and investable business model for affordable autologous cell therapy supply is likely to be extremely demanding. Without a proactive approach by the regulators to close this "translational gap," these products may not progress down the development pipeline, threatening patient accessibility to an increasing number of clinician-led autologous cellular therapies that are already demonstrating patient benefits. We propose three prospective manufacturing models for the scale out/roll out of more-than-minimally manipulated clinically led autologous cell therapy products and test their prospects for addressing the challenge of product comparability with a selected expert reference panel of US and UK thought leaders. This paper presents the perspectives and insights of the panel and identifies where operational, technological and scientific improvements should be prioritized. The main purpose of this report is to solicit feedback and seek input from key stakeholders active in the field of autologous cell therapy in establishing a consensus-based manufacturing approach that may permit the roll out of clinically led autologous cell therapies. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Intraurethral Injection of Autologous Minced Skeletal Muscle

    DEFF Research Database (Denmark)

    Gräs, Søren; Klarskov, Niels; Lose, Gunnar

    2014-01-01

    noted. CONCLUSIONS: Intraurethral injection of minced autologous muscle tissue is a simple surgical procedure that appears safe and moderately effective in women with uncomplicated stress urinary incontinence. It compares well to a more complicated regenerative strategy using in vitro expanded muscle......PURPOSE: Intraurethral injection of in vitro expanded autologous skeletal muscle derived cells is a new regenerative therapy for stress urinary incontinence. We examined the efficacy and safety of a simpler alternative strategy using freshly harvested, minced autologous skeletal muscle tissue...... with its inherent content of regenerative cells. MATERIALS AND METHODS: A total of 20 and 15 women with uncomplicated and complicated stress urinary incontinence, respectively, received intraurethral injections of minced autologous skeletal muscle tissue and were followed for 1 year. Efficacy was assessed...

  12. Skin Stem Cells: At the Frontier Between the Laboratory and Clinical Practice. Part 1: Epidermal Stem Cells.

    Science.gov (United States)

    Pastushenko, I; Prieto-Torres, L; Gilaberte, Y; Blanpain, C

    2015-11-01

    Stem cells are characterized by their ability to self-renew and differentiate into the different cell lineages of their tissue of origin. The discovery of stem cells in adult tissues, together with the description of specific markers for their isolation, has opened up new lines of investigation, expanding the horizons of biomedical research and raising new hope in the treatment of many diseases. In this article, we review in detail the main characteristics of the stem cells that produce the specialized cells of the skin (epidermal, mesenchymal, and melanocyte stem cells) and their potential implications and applications in diseases affecting the skin. Part I deals with the principal characteristics and potential applications of epidermal stem cells in dermatology. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  13. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-08-01

    Full Text Available This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs and homogenized extracellular matrix (ECM in the form of adipose stromal vascular fraction (SVF, along with hyaluronic acid (HA and platelet-rich plasma (PRP activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI data, functional rating index, range of motion (ROM, and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees.

  14. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    Science.gov (United States)

    2017-07-01

    with autologous mesenchymal stem cells . Exp Neurol. 2007 Apr; 204(2):658-66. 19. Dezawa M., et al., Sciatic nerve regeneration in rats induced by...36 23. Mimura T., et al., Peripheral nerve regeneration by transplantation of bone marrow stromal cell -derived Schwann cells in adult rats. J...AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve

  15. Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion

    DEFF Research Database (Denmark)

    Piwko-Czuchra, Aleksandra; Koegel, Heidi; Meyer, Hannelore

    2009-01-01

    BACKGROUND: There is a major discrepancy between the in vitro and in vivo results regarding the role of beta1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of beta1 integrins suggested that epidermis can form and be maintained in thei...... of increased keratinocyte proliferation such as wound healing. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that expression of beta1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis....... that developed similar, but less severe defects than mice with beta1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of beta1 integrin expression. A similar phenomenon...... was observed in aged mice with a complete, skin-specific ablation of the beta1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of beta1 integrin expressing keratinocytes was even further accelerated in situations...

  16. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    Directory of Open Access Journals (Sweden)

    Delfina Costa

    2018-05-01

    Full Text Available Mesenchymal stromal cells (MSC present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF] can exert immunosuppressive effects on T and natural killer (NK lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16. In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR; thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy.

  17. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    Science.gov (United States)

    Costa, Delfina; Venè, Roberta; Benelli, Roberto; Romairone, Emanuele; Scabini, Stefano; Catellani, Silvia; Rebesco, Barbara; Mastracci, Luca; Grillo, Federica; Minghelli, Simona; Loiacono, Fabrizio; Zocchi, Maria Raffaella; Poggi, Alessandro

    2018-01-01

    Mesenchymal stromal cells (MSC) present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF)] can exert immunosuppressive effects on T and natural killer (NK) lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC) and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16). In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR); thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF) of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy. PMID:29910806

  18. Monitoring the initiation and kinetics of human dendritic cell-induced polarization of autologous naive CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Tammy Oth

    Full Text Available A crucial step in generating de novo immune responses is the polarization of naive cognate CD4+ T cells by pathogen-triggered dendritic cells (DC. In the human setting, standardized DC-dependent systems are lacking to study molecular events during the initiation of a naive CD4+ T cell response. We developed a TCR-restricted assay to compare different pathogen-triggered human DC for their capacities to instruct functional differentiation of autologous, naive CD4+ T cells. We demonstrated that this methodology can be applied to compare differently matured DC in terms of kinetics, direction, and magnitude of the naive CD4+ T cell response. Furthermore, we showed the applicability of this assay to study the T cell polarizing capacity of low-frequency blood-derived DC populations directly isolated ex vivo. This methodology for addressing APC-dependent instruction of naive CD4+ T cells in a human autologous setting will provide researchers with a valuable tool to gain more insight into molecular mechanisms occurring in the early phase of T cell polarization. In addition, it may also allow the study of pharmacological agents on DC-dependent T cell polarization in the human system.

  19. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions

    NARCIS (Netherlands)

    Nagao, Keisuke; Ginhoux, Florent; Leitner, Wolfgang W.; Motegi, Sei-Ichiro; Bennett, Clare L.; Clausen, Björn E.; Merad, Miriam; Udey, Mark C.

    2009-01-01

    A new langerin(+) DC subset has recently been identified in murine dermis (langerin(+) dDC), but the lineage and functional relationships between these cells and langerin(+) epidermal Langerhans cells (LC) are incompletely characterized. Selective expression of the cell adhesion molecule EpCAM by LC

  20. UVB-induced epidermal hyperproliferation is modified by a single, topical treatment with a mitosis inhibitory epidermal pentapeptide

    International Nuclear Information System (INIS)

    Olsen, W.M.; Elgjo, K.

    1990-01-01

    A single application of a water-miscible cream base containing the recently identified mitosis inhibitory epidermal pentapeptide pyroGlu-Glu-Asp-Ser-GlyOH (EPP) to hairless mouse skin is followed by a long-lasting period of reduced epidermal cell proliferation. To examine if a similar growth inhibition could be achieved in stimulated and rapidly proliferating epidermis, EPP was applied at two different concentrations, 0.005 or 0.02%, to hairless mouse skin immediately after exposure of the left flank to an erythemic dose of ultraviolet B light (UVB). This dose of UVB alone induces a sustained period of rapid epidermal cell proliferation, starting at about 18 h after the irradiation. Epidermal cell proliferation was followed from 18 to 54 h (0.005% cream) or from 18 to 30 h (0.02% cream) after the treatment by estimating the rate of G2-M cell flux (the mitotic rate) by means of Colcemid, and epidermal DNA synthesis by counting labeled cells after pulse-labeling with 3H-thymidine. The unirradiated side of the mice was used as reference. The results showed that topical treatment with a 0.02% EPP cream partially inhibited UVB-induced epidermal hyperproliferation, while the 0.005% EPP cream inhibited as well as stimulated the UVB-induced hyperproliferation. Thus, EPP is effective even in rapidly proliferating epidermal cell populations, but the outcome is obviously dose-dependent in this test system

  1. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2012-09-01

    Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Real-time visualization of macromolecule uptake by epidermal Langerhans cells in living animals.

    Science.gov (United States)

    Frugé, Rachel E; Krout, Colleen; Lu, Ran; Matsushima, Hironori; Takashima, Akira

    2012-03-01

    As a skin-resident member of the dendritic cell family, Langerhans cells (LCs) are generally regarded to function as professional antigen-presenting cells. Here we report a simple method to visualize the endocytotic activity of LCs in living animals. BALB/c mice received subcutaneous injection of FITC-conjugated dextran (DX) probes into the ear skin and were then examined under confocal microscopy. Large numbers of FITC(+) epidermal cells became detectable 12-24 hours after injection as background fluorescence signals began to disappear. Most (>90%) of the FITC(+) epidermal cells expressed Langerin, and >95% of Langerin(+) epidermal cells exhibited significant FITC signals. To assess intracellular localization, Alexa Fluor 546-conjugated DX probes were locally injected into IAβ-enhanced green fluorescent protein (EGFP) knock-in mice and Langerin-EGFP-diphtheria toxin receptor mice--three dimensional rotation images showed close association of most of the internalized DX probes with major histocompatibility complex (MHC) class II molecules, but not with Langerin molecules. These observations support the current view that LCs constantly sample surrounding materials, including harmful and innocuous antigens, at the environmental interface. Our data also validate the potential utility of the newly developed imaging approach to monitor LC function in wild-type animals.

  3. Epidermal Langerhans' cell induction of immunity against an ultraviolet-induced skin tumour

    International Nuclear Information System (INIS)

    Cavanagh, L.L.; Sluyter, R.; Henderson, K.G.; Barnetson, R.St.C.; Halliday, G.M.

    1996-01-01

    Lanerghans' cells (LC) have been shown experimentally to induce immune response against many antigens; however, their role in the initiation of anti-tumour immunity has received little attention. This study examined the ability of murine epidermal LC to induce immunity to an ultraviolet radiation (UV)-induced skin tumour. Freshly prepared epidermal cells (EC) were cultured for 2 or 20 hr with granulocyte-macrophage colony-stimulating factor (GM-CSF), pulsed with an extract of the UV-13-1 tumour, then used to immunize naive syngeneic mice. Delayed type hypersensitivity (DTH) was elicited 10 days after immunization by injection of UV-13-1 tumour cells into the ear pinna, and measured 24 hr later. EC cultured with GM-CSF for 2 hr induced anti-tumour DTH, as did EC cultured for 20 hr without GM-CSF. Conversely, EC cultured for 2 hr without GM-CSF, or EC cultured for 20 hr with GM-CSF were unable to induce a DTH. Induction of immunity required active presentation of tumour antigens by Ia + EC and was tumour specific. Thus Ia + epidermal cells are capable of inducing anti-tumour immunity to UV-induced skin tumours, but only when they contact antigen in particular states of maturation. (author)

  4. Autologous Mesenchymal Stem Cell and Islet Cotransplantation: Safety and Efficacy.

    Science.gov (United States)

    Wang, Hongjun; Strange, Charlie; Nietert, Paul J; Wang, Jingjing; Turnbull, Taylor L; Cloud, Colleen; Owczarski, Stefanie; Shuford, Betsy; Duke, Tara; Gilkeson, Gary; Luttrell, Louis; Hermayer, Kathie; Fernandes, Jyotika; Adams, David B; Morgan, Katherine A

    2018-01-01

    Islet engraftment after transplantation is impaired by high rates of islet/β cell death caused by cellular stressors and poor graft vascularization. We studied whether cotransplantation of ex vivo expanded autologous bone marrow-derived mesenchymal stem cells (MSCs) with islets is safe and beneficial in chronic pancreatitis patients undergoing total pancreatectomy with islet autotransplantation. MSCs were harvested from the bone marrow of three islet autotransplantation patients and expanded at our current Good Manufacturing Practices (cGMP) facility. On the day of islet transplantation, an average dose of 20.0 ± 2.6 ×10 6 MSCs was infused with islets via the portal vein. Adverse events and glycemic control at baseline, 6, and 12 months after transplantation were compared with data from 101 historical control patients. No adverse events directly related to the MSC infusions were observed. MSC patients required lower amounts of insulin during the peritransplantation period (p = .02 vs. controls) and had lower 12-month fasting blood glucose levels (p = .02 vs. controls), smaller C-peptide declines over 6 months (p = .01 vs. controls), and better quality of life compared with controls. In conclusion, our pilot study demonstrates that autologous MSC and islet cotransplantation may be a safe and potential strategy to improve islet engraftment after transplantation. (Clinicaltrials.gov registration number: NCT02384018). Stem Cells Translational Medicine 2018;7:11-19. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  5. Hemolytic uremic syndrome after high dose chemotherapy with autologous stem cell support

    NARCIS (Netherlands)

    van der Lelie, H.; Baars, J. W.; Rodenhuis, S.; Van Dijk, M. A.; de Glas-Vos, C. W.; Thomas, B. L.; van Oers, R. H.; von dem Borne, A. E.

    1995-01-01

    BACKGROUND: Chemotherapy intensification may lead to new forms of toxicity such as hemolytic uremic syndrome. METHODS: Three patients are described who developed this complication 4 to 6 months after high dose chemotherapy followed by autologous stem cell support. The literature on this subject is

  6. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-11-01

    Full Text Available Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  7. Adoptive cell transfer using autologous tumor infiltrating lymphocytes in gynecologic malignancies.

    Science.gov (United States)

    Mayor, Paul; Starbuck, Kristen; Zsiros, Emese

    2018-05-23

    During the last decade, the field of cancer immunotherapy has been entirely transformed by the development of new and more effective treatment modalities with impressive response rates and the prospect of long survival. One of the major breakthroughs is adoptive cell transfer (ACT) based on autologous T cells derived from tumor-infiltrating lymphocytes (TILs). TIL-based ACT is a highly personalized cancer treatment. T cells are harvested from autologous fresh tumor tissues, and after ex vivo activation and extensive expansion, are reinfused to patients. TIL-based therapies have only been offered in small phase I/II studies in a few centers given the highly specialized care required, the complexity of TIL production and the very intensive nature of the three-step treatment protocol. The treatment includes high-dose lymphodepleting chemotherapy, the infusion of the expanded and activated T cells and interleukin-2 (IL-2) injections to increase survival of the T cells. Despite the limited data on ACT, the small published studies consistently confirm an impressive clinical response rate of up to 50% in metastatic melanoma patients, including a significant proportion of patients with durable complete response. These remarkable results justify the need for larger clinical trials in other solid tumors, including gynecologic malignancies. In this review we provide an overview of the current clinical results, future applications of TIL-based ACT in gynecologic malignancies, and on risks and challenges associated with modern T cell therapy. Copyright © 2018. Published by Elsevier Inc.

  8. Peripheral blood CD34+ cell count as a predictor of adequacy of hematopoietic stem cell collection for autologous transplantation

    Directory of Open Access Journals (Sweden)

    Combariza, Juan F.

    2016-10-01

    Full Text Available Introduction: In order to carry out an autologous transplantation, hematopoietic stem cells should be mobilized to peripheral blood and later collected by apheresis. The CD34+ cell count is a tool to establish the optimal time to begin the apheresis procedure. Objective: To evaluate the association between peripheral blood CD34+ cell count and the successful collection of hematopoietic stem cells. Materials and methods: A predictive test evaluation study was carried out to establish the usefulness of peripheral blood CD34+ cell count as a predictor of successful stem cell collection in patients that will receive an autologous transplantation. Results: 77 patients were included (median age: 49 years; range: 5-66. The predominant baseline diagnosis was lymphoma (53.2 %. The percentage of patients with successful harvest of hematopoietic stem cells was proportional to the number of CD34+cells in peripheral blood at the end of the mobilization procedure. We propose that more than 15 CD34+cells/μL must be present in order to achieve an adequate collection of hematopoietic stem cells. Conclusion: Peripheral blood CD34+ cell count is a useful tool to predict the successful collection of hematopoietic stem cells.

  9. Immunisation of colorectal cancer patients with autologous tumour cells

    DEFF Research Database (Denmark)

    Diederichsen, Alice; Stenholm, Anna Catharina Olsen; Kronborg, O

    1998-01-01

    Patients with colorectal cancer were entered into a clinical phase I trial of immunotherapy with an autologous tumour cell/bacillus Calmette-Guerin (BCG) vaccine. We attempted to describe the possible effects and side effects of the immunisation, and further to investigate whether expression...... of immune-response-related surface molecules on the tumour cells in the vaccine correlated with survival. The first and second vaccine comprised of 107 irradiated tumour cells mixed with BCG, the third of irradiated tumour cells only. Thirty-nine patients were considered, but only 6 patients fulfilled...... the criteria for inclusion. No serious side effects were observed. With three years of observation time, two patients are healthy, while the rest have had recurrence, and two of them have died. In all vaccines, all tumour cells expressed HLA class I, some expressed HLA class II and none expressed CD80...

  10. Perivascular Mesenchymal Stem Cells in Sheep: Characterization and Autologous Transplantation in a Model of Articular Cartilage Repair.

    Science.gov (United States)

    Hindle, Paul; Baily, James; Khan, Nusrat; Biant, Leela C; Simpson, A Hamish R; Péault, Bruno

    2016-11-01

    Previous research has indicated that purified perivascular stem cells (PSCs) have increased chondrogenic potential compared to conventional mesenchymal stem cells (MSCs) derived in culture. This study aimed to develop an autologous large animal model for PSC transplantation and to specifically determine if implanted cells are retained in articular cartilage defects. Immunohistochemistry and fluorescence-activated cell sorting were used to ascertain the reactivity of anti-human and anti-ovine antibodies, which were combined and used to identify and isolate pericytes (CD34 - CD45 - CD146 + ) and adventitial cells (CD34 + CD45 - CD146 - ). The purified cells demonstrated osteogenic, adipogenic, and chondrogenic potential in culture. Autologous ovine PSCs (oPSCs) were isolated, cultured, and efficiently transfected using a green fluorescence protein (GFP) encoding lentivirus. The cells were implanted into articular cartilage defects on the medial femoral condyle using hydrogel and collagen membranes. Four weeks following implantation, the condyle was explanted and confocal laser scanning microscopy demonstrated the presence of oPSCs in the defect repaired with the hydrogel. These data suggest the testability in a large animal of native MSC autologous grafting, thus avoiding possible biases associated with xenotransplantation. Such a setting will be used in priority for indications in orthopedics, at first to model articular cartilage repair.

  11. Isolation and In Vitro Characterization of Epidermal Stem Cells

    DEFF Research Database (Denmark)

    Moestrup, Kasper S; Andersen, Marianne Stemann; Jensen, Kim Bak

    2017-01-01

    flow cytometry. Using markers that define the spatial origin of epidermal cells, it is possible to interrogate the specific characteristics of subpopulations of cells based on their in vivo credentials. Here, we describe how to isolate, culture, and characterize keratinocytes from murine back and tail......Colony-forming assays represent prospective methods, where cells isolated from enzymatically dissociated tissues or from tissue cultures are assessed for their proliferative capacity in vitro. Complex tissues such as the epithelial component of the skin (the epidermis) are characterized...

  12. Enteric Neural Cells From Hirschsprung Disease Patients Form Ganglia in Autologous Aneuronal ColonSummary

    Directory of Open Access Journals (Sweden)

    Benjamin N. Rollo

    2016-01-01

    Full Text Available Background & Aims: Hirschsprung disease (HSCR is caused by failure of cells derived from the neural crest (NC to colonize the distal bowel in early embryogenesis, resulting in absence of the enteric nervous system (ENS and failure of intestinal transit postnatally. Treatment is by distal bowel resection, but neural cell replacement may be an alternative. We tested whether aneuronal (aganglionic colon tissue from patients may be colonized by autologous ENS-derived cells. Methods: Cells were obtained and cryopreserved from 31 HSCR patients from the proximal resection margin of colon, and ENS cells were isolated using flow cytometry for the NC marker p75 (nine patients. Aneuronal colon tissue was obtained from the distal resection margin (23 patients. ENS cells were assessed for NC markers immunohistologically and by quantitative reverse-transcription polymerase chain reaction, and mitosis was detected by ethynyl-2′-deoxyuridine labeling. The ability of human HSCR postnatal ENS-derived cells to colonize the embryonic intestine was demonstrated by organ coculture with avian embryo gut, and the ability of human postnatal HSCR aneuronal colon muscle to support ENS formation was tested by organ coculture with embryonic mouse ENS cells. Finally, the ability of HSCR patient ENS cells to colonize autologous aneuronal colon muscle tissue was assessed. Results: ENS-derived p75-sorted cells from patients expressed multiple NC progenitor and differentiation markers and proliferated in culture under conditions simulating Wnt signaling. In organ culture, patient ENS cells migrated appropriately in aneural quail embryo gut, and mouse embryo ENS cells rapidly spread, differentiated, and extended axons in patient aneuronal colon muscle tissue. Postnatal ENS cells derived from HSCR patients colonized autologous aneuronal colon tissue in cocultures, proliferating and differentiating as neurons and glia. Conclusions: NC-lineage cells can be obtained from HSCR

  13. Autologous Pluripotent Stem Cell-Derived β-Like Cells for Diabetes Cellular Therapy.

    Science.gov (United States)

    Millman, Jeffrey R; Pagliuca, Felicia W

    2017-05-01

    Development of stem cell technologies for cell replacement therapy has progressed rapidly in recent years. Diabetes has long been seen as one of the first applications for stem cell-derived cells because of the loss of only a single cell type-the insulin-producing β-cell. Recent reports have detailed strategies that overcome prior hurdles to generate functional β-like cells from human pluripotent stem cells in vitro, including from human induced pluripotent stem cells (hiPSCs). Even with this accomplishment, addressing immunological barriers to transplantation remains a major challenge for the field. The development of clinically relevant hiPSC derivation methods from patients and demonstration that these cells can be differentiated into β-like cells presents a new opportunity to treat diabetes without immunosuppression or immunoprotective encapsulation or with only targeted protection from autoimmunity. This review focuses on the current status in generating and transplanting autologous β-cells for diabetes cell therapy, highlighting the unique advantages and challenges of this approach. © 2017 by the American Diabetes Association.

  14. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    Science.gov (United States)

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  15. Lysis of endogenously infected CD4+ T cell blasts by rIL-2 activated autologous natural killer cells from HIV-infected viremic individuals.

    Directory of Open Access Journals (Sweden)

    Manuela Fogli

    2008-07-01

    Full Text Available Understanding the cellular mechanisms that ensure an appropriate innate immune response against viral pathogens is an important challenge of biomedical research. In vitro studies have shown that natural killer (NK cells purified from healthy donors can kill heterologous cell lines or autologous CD4+ T cell blasts exogenously infected with several strains of HIV-1. However, it is not known whether the deleterious effects of high HIV-1 viremia interferes with the NK cell-mediated cytolysis of autologous, endogenously HIV-1-infected CD4+ T cells. Here, we stimulate primary CD4+ T cells, purified ex vivo from HIV-1-infected viremic patients, with PHA and rIL2 (with or without rIL-7. This experimental procedure allows for the significant expansion and isolation of endogenously infected CD4+ T cell blasts detected by intracellular staining of p24 HIV-1 core antigen. We show that, subsequent to the selective down-modulation of MHC class-I (MHC-I molecules, HIV-1-infected p24(pos blasts become partially susceptible to lysis by rIL-2-activated NK cells, while uninfected p24(neg blasts are spared from killing. This NK cell-mediated killing occurs mainly through the NKG2D activation pathway. However, the degree of NK cell cytolytic activity against autologous, endogenously HIV-1-infected CD4+ T cell blasts that down-modulate HLA-A and -B alleles and against heterologous MHC-I(neg cell lines is particularly low. This phenomenon is associated with the defective surface expression and engagement of natural cytotoxicity receptors (NCRs and with the high frequency of the anergic CD56(neg/CD16(pos subsets of highly dysfunctional NK cells from HIV-1-infected viremic patients. Collectively, our data demonstrate that the chronic viral replication of HIV-1 in infected individuals results in several phenotypic and functional aberrancies that interfere with the NK cell-mediated killing of autologous p24(pos blasts derived from primary T cells.

  16. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    DEFF Research Database (Denmark)

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival ...... of fat grafts enriched with autologous adipose-derived stem cells (ASCs) versus non-enriched fat grafts....

  17. Evaluation of dermal-epidermal skin equivalents ('composite-skin') of human keratinocytes in a collagen-glycosaminoglycan matrix(Integra artificial skin).

    Science.gov (United States)

    Kremer, M; Lang, E; Berger, A C

    2000-09-01

    Integra artificial skin (Integra LifeSciences Corp., Plainsboro, NJ, USA) is a dermal template consisting of bovine collagen, chondroitin-6-sulphate and a silastic membrane manufactured as Integra. This product has gained widespread use in the clinical treatment of third degree burn wounds and full thickness skin defects of different aetiologies. The product was designed to significantly reduce the time needed to achieve final wound closure in the treatment of major burn wounds, to optimise the sparse autologous donor skin resources and to improve the durable mechanical quality of the skin substitute. The clinical procedure requires two stages. The first step creates a self neodermis, the second creates a self epidermis on the neodermis. However, it is desirable to cover major burn wounds early in a single step by a skin substitute consisting of a dermal equivalent seeded in vitro with autologous keratinocytes ('composite-skin') out of which a full thickness skin develops in vivo.The goal of this experimental study was to develop a method to integrate human keratinocytes in homogeneous distribution and depth into Integra Artificial Skin. The seeded cell-matrix composites were grafted onto athymic mice in order to evaluate their potential to reconstitute a human epidermis in vivo. We were able to demonstrate that the inoculated human keratinocytes reproducibly displayed a homogeneous pattern of distribution, adherence, proliferation and confluence. The cell-matrix composites grafted in this model exhibited good wound adherence, complete healing, minor wound contraction and had the potential to reconstitute an elastic, functional and durable human skin. Histologically we were able to show that the inoculated human keratinocytes in vivo colonised the matrix in a histomorphologically characteristic epidermal pattern (keratomorula, keratinocyte bubbling) and developed a persisting, stratified, keratinising epidermis which immunohistologically proved to be of human

  18. Renal Allograft Survival in Nonhuman Primates Infused With Donor Antigen-Pulsed Autologous Regulatory Dendritic Cells.

    Science.gov (United States)

    Ezzelarab, M B; Raich-Regue, D; Lu, L; Zahorchak, A F; Perez-Gutierrez, A; Humar, A; Wijkstrom, M; Minervini, M; Wiseman, R W; Cooper, D K C; Morelli, A E; Thomson, A W

    2017-06-01

    Systemic administration of autologous regulatory dendritic cells (DCreg; unpulsed or pulsed with donor antigen [Ag]), prolongs allograft survival and promotes transplant tolerance in rodents. Here, we demonstrate that nonhuman primate (NHP) monocyte-derived DCreg preloaded with cell membrane vesicles from allogeneic peripheral blood mononuclear cells induce T cell hyporesponsiveness to donor alloantigen (alloAg) in vitro. These donor alloAg-pulsed autologous DCreg (1.4-3.6 × 10 6 /kg) were administered intravenously, 1 day before MHC-mismatched renal transplantation to rhesus monkeys treated with costimulation blockade (cytotoxic T lymphocyte Ag 4 immunoglobulin [CTLA4] Ig) and tapered rapamycin. Prolongation of graft median survival time from 39.5 days (no DCreg infusion; n = 6 historical controls) and 29 days with control unpulsed DCreg (n = 2), to 56 days with donor Ag-pulsed DCreg (n = 5) was associated with evidence of modulated host CD4 + and CD8 + T cell responses to donor Ag and attenuation of systemic IL-17 production. Circulating anti-donor antibody (Ab) was not detected until CTLA4 Ig withdrawal. One monkey treated with donor Ag-pulsed DCreg rejected its graft in association with progressively elevated anti-donor Ab, 525 days posttransplant (160 days after withdrawal of immunosuppression). These findings indicate a modest but not statistically significant beneficial effect of donor Ag-pulsed autologous DCreg infusion on NHP graft survival when administered with a minimal immunosuppressive drug regimen. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  19. Nanofat-derived stem cells with platelet-rich fibrin improve facial contour remodeling and skin rejuvenation after autologous structural fat transplantation

    Science.gov (United States)

    Liang, Zhi-Jie; Chen, Hai; Zhu, Mao-Guang; Xu, Fang-Tian; He, Ning; Wei, Xiao-Juan; Li, Hong-Mian

    2017-01-01

    Traditional autologous fat transplantation is a common surgical procedure for treating facial soft tissue depression and skin aging. However, the transplanted fat is easily absorbed, reducing the long-term efficacy of the procedure. Here, we examined the efficacy of nanofat-assisted autologous fat structural transplantation. Nanofat-derived stem cells (NFSCs) were isolated, mechanically emulsified, cultured, and characterized. Platelet-rich fibrin (PRF) enhanced proliferation and adipogenic differentiation of NFSCs in vitro. We then compared 62 test group patients with soft tissue depression or signs of aging who underwent combined nanofat, PRF, and autologous fat structural transplantation to control patients (77 cases) who underwent traditional autologous fat transplantation. Facial soft tissue depression symptoms and skin texture were improved to a greater extent after nanofat transplants than after traditional transplants, and the nanofat group had an overall satisfaction rate above 90%. These data suggest that NFSCs function similarly to mesenchymal stem cells and share many of the biological characteristics of traditional fat stem cell cultures. Transplants that combine newly-isolated nanofat, which has a rich stromal vascular fraction (SVF), with PRF and autologous structural fat granules may therefore be a safe, highly-effective, and long-lasting method for remodeling facial contours and rejuvenating the skin. PMID:28978136

  20. Endothelial network formed with human dermal microvascular endothelial cells in autologous multicellular skin substitutes.

    Science.gov (United States)

    Ponec, Maria; El Ghalbzouri, Abdoelwaheb; Dijkman, Remco; Kempenaar, Johanna; van der Pluijm, Gabri; Koolwijk, Pieter

    2004-01-01

    A human skin equivalent from a single skin biopsy harboring keratinocytes and melanocytes in the epidermal compartment, and fibroblasts and microvascular dermal endothelial cells in the dermal compartment was developed. The results of the study revealed that the nature of the extracellular matrix of the dermal compartments plays an important role in establishment of endothelial network in vitro. With rat-tail type I collagen matrices only lateral but not vertical expansion of endothelial networks was observed. In contrast, the presence of extracellular matrix of entirely human origin facilitated proper spatial organization of the endothelial network. Namely, when human dermal fibroblasts and microvascular endothelial cells were seeded on the bottom of an inert filter and subsequently epidermal cells were seeded on top of it, fibroblasts produced extracellular matrix throughout which numerous branched tubes were spreading three-dimensionally. Fibroblasts also facilitated the formation of basement membrane at the epidermal/matrix interface. Under all culture conditions, fully differentiated epidermis was formed with numerous melanocytes present in the basal epidermal cell layer. The results of the competitive RT-PCR revealed that both keratinocytes and fibroblasts expressed VEGF-A, -B, -C, aFGF and bFGF mRNA, whereas fibroblasts also expressed VEGF-D mRNA. At protein level, keratinocytes produced 10 times higher amounts of VEGF-A than fibroblasts did. The generation of multicellular skin equivalent from a single human skin biopsy will stimulate further developments for its application in the treatment of full-thickness skin defects. The potential development of biodegradable, biocompatible material suitable for these purposes is a great challenge for future research.

  1. Factors affecting autologous peripheral blood hematopoietic stem cell collections by large-volume leukapheresis: a single center experience

    Directory of Open Access Journals (Sweden)

    Araci Massami Sakashita

    2011-06-01

    Full Text Available Objective: To evaluate factors affecting peripheral bloodhematopoietic stem cell yield in patients undergoing large-volumeleukapheresis for autologous peripheral blood stem cell collection.Methods: Data from 304 consecutive autologous peripheral bloodstem cell donors mobilized with hematopoietic growth factor (usually G-CSF, associated or not with chemotherapy, at Hospital Israelita Albert Einstein between February 1999 and June 2010 were retrospectively analyzed. The objective was to obtain at least 2 x 106CD34+ cells/kg of body weight. Pre-mobilization factors analyzedincluded patient’s age, gender and diagnosis. Post mobilizationparameters evaluated were pre-apheresis peripheral white bloodcell count, immature circulating cell count, mononuclear cell count,peripheral blood CD34+ cell count, platelet count, and hemoglobinlevel. The effect of pre and post-mobilization factors on hematopoietic stem cell collection yield was investigated using logistic regression analysis (univariate and multivariate approaches. Results: Premobilization factors correlating to poor CD34+ cell yield in univariate analysis were acute myeloid leukemia (p = 0.017 and other hematological diseases (p = 0.023. Significant post-mobilization factors included peripheral blood immature circulating cells (p = 0.001, granulocytes (p = 0.002, hemoglobin level (p = 0.016, and CD34+ cell concentration (p < 0.001 in the first harvesting day. However, according to multivariate analysis, peripheral blood CD34+ cell content (p < 0.001 was the only independent factor that significantly correlated to poor hematopoietic stem cell yield. Conclusion: In this study, peripheral blood CD34+ cell concentration was the only factor significantly correlated to yield in patients submitted to for autologous collection.

  2. Development of a Functional Schwann Cell Phenotype from Autologous Porcine Bone Marrow Mononuclear Cells for Nerve Repair

    Directory of Open Access Journals (Sweden)

    Michael J. Rutten

    2012-01-01

    Full Text Available Adult bone marrow mononuclear cells (BM-MNCs are a potential resource for making Schwann cells to repair damaged peripheral nerves. However, many methods of producing Schwann-like cells can be laborious with the cells lacking a functional phenotype. The objective of this study was to develop a simple and rapid method using autologous BM-MNCs to produce a phenotypic and functional Schwann-like cell. Adult porcine bone marrow was collected and enriched for BM-MNCs using a SEPAX device, then cells cultured in Neurobasal media, 4 mM L-glutamine and 20% serum. After 6–8 days, the cultures expressed Schwann cell markers, S-100, O4, GFAP, were FluoroMyelin positive, but had low p75(NGF expression. Addition of neuregulin (1–25 nM increased p75(NGF levels at 24–48 hrs. We found ATP dose-dependently increased intracellular calcium [Ca2+]i, with nucleotide potency being UTP=ATP>ADP>AMP>adenosine. Suramin blocked the ATP-induced [Ca2+]i but α, β,-methylene-ATP had little effect suggesting an ATP purinergic P2Y2 G-protein-coupled receptor is present. Both the Schwann cell markers and ATP-induced [Ca2+]i sensitivity decreased in cells passaged >20 times. Our studies indicate that autologous BM-MNCs can be induced to form a phenotypic and functional Schwann-like cell which could be used for peripheral nerve repair.

  3. Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.

    Science.gov (United States)

    Gao, Yuanzheng; Guo, Xiuming; Santostefano, Katherine; Wang, Yanlin; Reid, Tammy; Zeng, Desmond; Terada, Naohiro; Ashizawa, Tetsuo; Xia, Guangbin

    2016-08-01

    Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.

  4. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-01-01

    Full Text Available

    Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  5. Successful autologous hematopoietic stem cell transplantation for a patient with rapidly progressive localized scleroderma.

    Science.gov (United States)

    Nair, Velu; Sharma, Ajay; Sharma, Sanjeevan; Das, Satyaranjan; Bhakuni, Darshan S; Narayanan, Krishnan; Nair, Vivek; Shankar, Subramanian

    2015-03-01

    Autologous hematopoietic stem cell transplant (HSCT) for rapidly progressive disease has not been reported in localized scleroderma. Our patient, a 16-year-old girl had an aggressive variant of localized scleroderma, mixed subtype (linear-generalized) with Parry Romberg syndrome, with no internal organ involvement, that was unresponsive to immunosuppressive therapy and was causing rapid disfigurement. She was administered autologous HSCT in June 2011 and has maintained drug-free remission with excellent functional status at almost 3.5 years of follow-up. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  6. Early Prognostic Value of Monitoring Serum Free Light Chain in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation.

    Science.gov (United States)

    Özkurt, Zübeyde Nur; Sucak, Gülsan Türköz; Akı, Şahika Zeynep; Yağcı, Münci; Haznedar, Rauf

    2017-03-16

    We hypothesized the levels of free light chains obtained before and after autologous stem cell transplantation can be useful in predicting transplantation outcome. We analyzed 70 multiple myeloma patients. Abnormal free light chain ratios before stem cell transplantation were found to be associated early progression, although without any impact on overall survival. At day +30, the normalization of levels of involved free light chain related with early progression. According to these results almost one-third reduction of free light chain levels can predict favorable prognosis after autologous stem cell transplantation.

  7. Beta1 integrin-mediated adhesion signalling is essential for epidermal progenitor cell expansion.

    Directory of Open Access Journals (Sweden)

    Aleksandra Piwko-Czuchra

    Full Text Available BACKGROUND: There is a major discrepancy between the in vitro and in vivo results regarding the role of beta1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of beta1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate this discrepancy we generated hypomorphic mice expressing reduced beta1 integrin levels on keratinocytes that developed similar, but less severe defects than mice with beta1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of beta1 integrin expression. A similar phenomenon was observed in aged mice with a complete, skin-specific ablation of the beta1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of beta1 integrin expressing keratinocytes was even further accelerated in situations of increased keratinocyte proliferation such as wound healing. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that expression of beta1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis.

  8. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Pedas, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellula...... for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits....

  9. Transcatheter Arterial Infusion of Autologous CD133+ Cells for Diabetic Peripheral Artery Disease

    Directory of Open Access Journals (Sweden)

    Xiaoping Zhang

    2016-01-01

    Full Text Available Microvascular lesion in diabetic peripheral arterial disease (PAD still cannot be resolved by current surgical and interventional technique. Endothelial cells have the therapeutic potential to cure microvascular lesion. To evaluate the efficacy and immune-regulatory impact of intra-arterial infusion of autologous CD133+ cells, we recruited 53 patients with diabetic PAD (27 of CD133+ group and 26 of control group. CD133+ cells enriched from patients’ PB-MNCs were reinfused intra-arterially. The ulcer healing followed up till 18 months was 100% (3/3 in CD133+ group and 60% (3/5 in control group. The amputation rate was 0 (0/27 in CD133+ group and 11.54% (3/26 in control group. Compared with the control group, TcPO2 and ABI showed obvious improvement at 18 months and significant increasing VEGF and decreasing IL-6 level in the CD133+ group within 4 weeks. A reducing trend of proangiogenesis and anti-inflammatory regulation function at 4 weeks after the cells infusion was also found. These results indicated that autologous CD133+ cell treatment can effectively improve the perfusion of morbid limb and exert proangiogenesis and anti-inflammatory immune-regulatory impacts by paracrine on tissue microenvironment. The CD133+ progenitor cell therapy may be repeated at a fixed interval according to cell life span and immune-regulatory function.

  10. Production of a Dendritic Cell-Based Vaccine Containing Inactivated Autologous Virus for Therapy of Patients with Chronic Human Immunodeficiency Virus Type 1 Infection▿

    Science.gov (United States)

    Whiteside, Theresa L.; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C.; Rinaldo, Charles R.; Riddler, Sharon A.

    2009-01-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8+ and CD4+ T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus isolation; (ii) superinfection of CD4+ T cells with the virus; (iii) inactivation of the virus in CD4+ T cells, T-cell apoptosis, and coincubation of T cells with autologous DCs; and (iv) product testing and release. Endogenous virus was isolated from peripheral blood-derived CD4+ T cells of three HIV-1-positive subjects by coincubation with autologous OKT-3-stimulated CD4+ T cells. CD4+ T-cell supernatants were tested for p24 levels by enzyme-linked immunosorbent assay (>25 ng/ml) and for the 50% tissue culture infective doses (TCID50; which ranged from 4,642 to 46,416/ml on day 19 of culture). Autologous CD4+ T cells that were separated on immunobeads (>95% purity) and superinfected with virus-expressed p24 (28 to 54%) had TCID50 of >400/ml on days 5 to 10. Virus inactivation with psoralen (20 μg/ml) and UVB irradiation (312 nm) reduced the TCID50 of the supernatants from 199,986 to 11/ml (>99%). 7-Amino-actinomycin D-positive, annexin V-positive CD4+ T cells were fed to autologous DCs generated by using the Elutra cell separation system and the Aastrom system. Flow analysis showed that DC loading was complete in 24 h. On the basis of these translational results and experience with the generation of DCs from HIV-1-infected patients in a previous clinical trial, the Investigational New Drug application for clinical vaccination was submitted and approved by the FDA (application no. BB-IND-13137). PMID:19038780

  11. Production of a dendritic cell-based vaccine containing inactivated autologous virus for therapy of patients with chronic human immunodeficiency virus type 1 infection.

    Science.gov (United States)

    Whiteside, Theresa L; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C; Rinaldo, Charles R; Riddler, Sharon A

    2009-02-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8(+) and CD4(+) T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus isolation; (ii) superinfection of CD4(+) T cells with the virus; (iii) inactivation of the virus in CD4(+) T cells, T-cell apoptosis, and coincubation of T cells with autologous DCs; and (iv) product testing and release. Endogenous virus was isolated from peripheral blood-derived CD4(+) T cells of three HIV-1-positive subjects by coincubation with autologous OKT-3-stimulated CD4(+) T cells. CD4(+) T-cell supernatants were tested for p24 levels by enzyme-linked immunosorbent assay (>25 ng/ml) and for the 50% tissue culture infective doses (TCID(50); which ranged from 4,642 to 46,416/ml on day 19 of culture). Autologous CD4(+) T cells that were separated on immunobeads (>95% purity) and superinfected with virus-expressed p24 (28 to 54%) had TCID(50) of >400/ml on days 5 to 10. Virus inactivation with psoralen (20 microg/ml) and UVB irradiation (312 nm) reduced the TCID(50) of the supernatants from 199,986 to 11/ml (>99%). 7-Amino-actinomycin D-positive, annexin V-positive CD4(+) T cells were fed to autologous DCs generated by using the Elutra cell separation system and the Aastrom system. Flow analysis showed that DC loading was complete in 24 h. On the basis of these translational results and experience with the generation of DCs from HIV-1-infected patients in a previous clinical trial, the Investigational New Drug application for clinical vaccination was submitted and approved by the FDA (application no. BB-IND-13137).

  12. Rational Autologous Cell Sources For Therapy of Heart Failure - Vehicles and Targets For Gene and RNA Therapies.

    Science.gov (United States)

    Lampinen, Milla; Vento, Antti; Laurikka, Jari; Nystedt, Johanna; Mervaala, Eero; Harjula, Ari; Kankuri, Esko

    2016-01-01

    This review focuses on the possibilities for intraoperative processing and isolation of autologous cells, particularly atrial appendage-derived cells (AADCs) and cellular micrografts, and their straightforward use in cell transplantation for heart failure therapy. We review the potential of autologous tissues to serve as sources for cell therapy and consider especially those tissues that are used in surgery but from which the excess is currently discarded as surgical waste. We compare the inculture expanded cells to the freshly isolated ones in terms of evidence-based cost-efficacy and their usability as gene- and RNA therapy vehicles. We also review how financial and authority-based decisions and restrictions sculpt the landscape for patients to participate in academic-based trials. Finally, we provide an insight example into AADCs isolation and processing for epicardial therapy during coronary artery bypass surgery.

  13. Enhancement of human adipose-derived stem cell expansion and stability for clinical use

    OpenAIRE

    Krähenbühl, S. M.

    2016-01-01

    Co-culture techniques associating both dermal fibroblasts and epidermal keratinocytes have shown to have better clinical outcome than keratinocyte culture alone for the treatment of severe burns. Since fat grafting has been shown to improve scar remodelling, new techniques such as cell-therapy-assisted surgical reconstruction with isolated and expanded autologous adipose-derived stem cells (ASCs) would be of benefit to increase graft acceptation. Therefore, integrating ASCs into s...

  14. Protective immunity to UV radiation-induced skin tumours induced by skin grafts and epidermal cells

    International Nuclear Information System (INIS)

    Ronald Sluyter; Kylie S Yuen; Gary M Halliday

    2001-01-01

    There is little evidence that cutaneous dendritic cells (DC), including epidermal Langerhans cells (LC), can induce immunity to UV radiation (UVR)-induced skin tumours. Here, it is shown that cells within skin can induce protective antitumour immunity against a UVR-induced fibrosarcoma. Transplantation of the skin overlying subcutaneous tumours onto naive recipients could induce protective antitumour immunity, probably because the grafting stimulated the tumour Ag-loaded DC to migrate to local lymph nodes. This suggests that cutaneous APC can present tumour Ag to induce protective antitumour immunity. Previously, it has been shown that immunization of mice with MHC class II+ epidermal cells (EC) pulsed with tumour extracts could induce delayed-type hypersensitivity against tumour cells. Here, this same immunization protocol could induce protective immunity against a minimum tumorigenic dose of UVR-induced fibrosarcoma cells, but not higher doses. Epidermal cells obtained from semiallogeneic donors and pulsed with tumour extract could also induce protective immunity. However, presentation of BSA Ag from the culture medium was found to contribute to this result using semiallogeneic EC. The results suggest that LC overlying skin tumours may be able to induce protective immunity to UVR-induced tumours if stimulated to migrate from the skin. Copyright (2001) Australasian Society of Immunology Inc

  15. Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells

    International Nuclear Information System (INIS)

    Creixell, Mar; Herrera, Adriana P.; Ayala, Vanessa; Latorre-Esteves, Magda; Perez-Torres, Marianela; Torres-Lugo, Madeline; Rinaldi, Carlos

    2010-01-01

    Epidermal growth factor (EGF) was conjugated with carboxymethyldextran (CMDx) coated iron oxide magnetic nanoparticles using carbodiimide chemistry to obtain magnetic nanoparticles that target the epidermal growth factor receptor (EGFR). Epidermal growth factor modified magnetic nanoparticles were colloidally stable when suspended in biological buffers such as PBS and cell culture media. Both targeted and non-targeted nanoparticles were incubated with CaCo-2 cancer cells, known to overexpress EGFR. Nanoparticle localization within the cell was visualized by confocal laser scanning microscopy and light microscopy using Prussian blue stain. Results showed that targeted magnetic nanoparticles were rapidly accumulated in both flask-shaped small vesicles and large circular endocytic structures. Internalization patterns suggest that both clathrin-dependent and clathrin-independent receptors mediated endocytosis mechanisms are responsible for nanoparticle internalization.

  16. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  17. Severe encephalopathy after high-dose chemotherapy with autologous stem cell support for brain tumours

    NARCIS (Netherlands)

    van den Berkmortel, F.; Gidding, C.; de Kanter, M.; Punt, C. J. A.

    2006-01-01

    Recurrent medulloblastoma carries a poor prognosis. Long-term survival has been obtained with high-dose chemotherapy with autologous stem cell transplantation and secondary irradiation. A 21-year-old woman with recurrent medulloblastoma after previous chemotherapy and radiotherapy is presented. The

  18. Incidence of interstitial pneumonia after hyperfractionated total body irradiation before autologous bone marrow/stem cell transplantation

    International Nuclear Information System (INIS)

    Lohr, F.; Schraube, P.; Wenz, F.; Flentje, M.; Kalle, K. von; Haas, R.; Hunstein, W.; Wannenmacher, M.

    1995-01-01

    Purpose/Objectives Interstitial pneumonia (IP) is a severe complication after allogenic bone marrow transplantation (BMT) with incidence rates between 10 % and 40 % in different series. It is a polyetiologic disease that occurs depending on age, graft vs. host disease (GvHD), CMV-status, total body irradiation (TBI) and immunosuppressive therapy after BMT. The effects of fractionation and dose rate are not entirely clear. This study evaluates the incidence of lethal IP after hyperfractionated TBI for autologous BMT or stem cell transplantation. Materials and Methods Between 1982 and 1992, 182 patients (60 % male, 40 % female) were treated with hyperfractionated total body irradiation (TBI) before autologous bone marrow transplantation. Main indications were leukemias and lymphomas (53 % AML, 21 % ALL, 22 % NHL, 4 % others) Median age was 30 ys (15 - 55 ys). A total dose of 14.4 Gy was applied using lung blocks (12 fractions of 1.2 Gy in 4 days, dose rate 7-18 cGy/min, lung dose 9 - 9.5 Gy). TBI was followed by cyclophosphamide (200 mg/kg). 72 % were treated with bone marrow transplantation, 28 % were treated with stem cell transplantation. Interstitial pneumonia was diagnosed clinically, radiologically and by autopsy. Results 4 patients died most likely of interstitial pneumonia. For another 12 patients interstitial pneumonia was not the most likely cause of death but could not be excluded. Thus, the incidence of lethal IP was at least 2.2 % but certainly below 8.8 %. Conclusion Lethal interstitial pneumonia is a rare complication after total body irradiation before autologous bone marrow transplantation in this large, homogeously treated series. In the autologous setting, total doses of 14.4 Gy can be applied with a low risk for developing interstitial pneumonia if hyperfractionation and lung blocks are used. This falls in line with data from series with identical twins or t-cell depleted marrow and smaller, less homogeneous autologous transplant studies. Thus

  19. UVA-induced immune suppression in human skin: protective effect of vitamin E in human epidermal cells in vitro

    International Nuclear Information System (INIS)

    Clement-Lacroix, P.; Michel, L.; Moysan, A.; Morliere, P.; Dubertret, L.

    1996-01-01

    UVA (320-400 nm) radiation damage to membranes, proteins, DNA and other cellular targets is predominantly related to oxidative processes. In the present study, we demonstrated that cutaneous UVA-induced immunosuppression can be related, at least in part, to the appearance of these oxidative processes. The UVA-induced oxidative processes in freshly isolated epidermal cells were monitored by measuring the thiobarbituric acid reactive substances (TBARS) as an index of peroxidation. The in vitro immunosuppressive effects of UVA were demonstrated by measuring the allogenic lymphocyte proliferation induced by epidermal cells or purified Langerhans cells in the mixed epidermal cell-lymphocyte reaction (MECLR). In addition, the effects of a potent antioxidant (vitamin E) on these two UVA-induced processes were analysed. (author)

  20. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  1. Cord Blood Banking Standards: Autologous Versus Altruistic.

    Science.gov (United States)

    Armitage, Sue

    2015-01-01

    Cord blood (CB) is either donated to public CB banks for use by any patient worldwide for whom it is a match or stored in a private bank for potential autologous or family use. It is a unique cell product that has potential for treating life-threatening diseases. The majority of CB products used today are for hematopoietic stem cell transplantation and are accessed from public banks. CB is still evolving as a hematopoietic stem cell source, developing as a source for cellular immunotherapy products, such as natural killer, dendritic, and T-cells, and fast emerging as a non-hematopoietic stem cell source in the field of regenerative medicine. This review explores the regulations, standards, and accreditation schemes that are currently available nationally and internationally for public and private CB banking. Currently, most of private banking is under regulated as compared to public banking. Regulations and standards were initially developed to address the public arena. Early responses from the medical field regarding private CB banking was that at the present time, because of insufficient scientific data to support autologous banking and given the difficulty of making an accurate estimate of the need for autologous transplantation, private storage of CB as "biological insurance" should be discouraged (1, 2, 3). To ensure success and the true realization of the full potential of CB, whether for autologous or allogeneic use, it is essential that each and every product provided for current and future treatments meets high-quality, international standards.

  2. FRET microscopy autologous tumor lysate processing in mature dendritic cell vaccine therapy

    Directory of Open Access Journals (Sweden)

    Ridolfi Ruggero

    2010-06-01

    Full Text Available Abstract Background Antigen processing by dendritic cells (DC exposed to specific stimuli has been well characterized in biological studies. Nonetheless, the question of whether autologous whole tumor lysates (as used in clinical trials are similarly processed by these cells has not yet been resolved. Methods In this study, we examined the transfer of peptides from whole tumor lysates to major histocompatibility complex class II molecules (MHC II in mature dendritic cells (mDC from a patient with advanced melanoma. Tumor antigenic peptides-MHC II proximity was revealed by Förster Resonance Energy Transfer (FRET measurements, which effectively extends the application of fluorescence microscopy to the molecular level ( Results We detected significant energy transfer between donor and acceptor-labelled antibodies against HLA-DR at the membrane surface of mDC. FRET data indicated that fluorescent peptide-loaded MHC II molecules start to accumulate on mDC membranes at 16 hr from the maturation stimulus, steeply increasing at 22 hr with sustained higher FRET detected up to 46 hr. Conclusions The results obtained imply that the patient mDC correctly processed the tumor specific antigens and their display on the mDC surface may be effective for several days. These observations support the rationale for immunogenic efficacy of autologous tumor lysates.

  3. Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells.

    Science.gov (United States)

    Insausti, T C; Casas, J

    2009-12-01

    Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.

  4. Proton extrusion is an essential signalling component in the HR of epidermal single cells in the barley-powdery mildew interaction

    DEFF Research Database (Denmark)

    Zhou, F.S.; Andersen, C.H.; Burhenne, K.

    2000-01-01

    We propose a model for activation of the epidermal cell hypersensitive response (HR) in the barley/powdery mildew interaction. The model suggests that the plasma membrane proton pump (H+-ATPase) of epidermal cells is activated following penetration by an avirulent powdery mildew fungus...... in the incompatible interaction; (4) race-specific proton extrusion is observed underneath epidermal tissue detached from leaves inoculated 15 h earlier; and (5) treatment of leaves with fusicoccin, an activator of the plasma membrane H+-ATPase, increases the number of HR-cells in the compatible interaction........ This will cause an acidification of the apoplast towards the mesophyll cells, thereby activating generation of H2O2 from the mesophyll, which subsequently triggers the epidermal cell to undergo HR. The model is supported by the following data: (1) the earliest HR-related H2O2 is found in the attachment zones...

  5. Calcipotriol inhibits the proliferation of hyperproliferative CD29 positive keratinocytes in psoriatic epidermis in the absence of an effect on the function and number of antigen-presenting cells

    DEFF Research Database (Denmark)

    Jensen, A.M.; Llado, Minna Fyhn Lykke; Skov, L.

    1998-01-01

    The aim of this study was to elucidate some of the possible mechanisms of action of the vitamin D analogue calcipotriol in vivo. Calcipotriol is finding increasing use in the treatment of psoriasis, but the primary target cell in vivo has not yet been identified. We treated psoriatic patients...... psoriatic and normal skin, calcipotriol treatment did not alter the capacity of epidermal antigen-presenting cells to stimulate the proliferation of autologous T cells, either in the absence or in the presence of exogenous antigen. Epidermal cell suspensions were analysed further by staining...... for infiltrating leucocytes (CD45+) and Langerhans cells (CD1a+). Flow cytometric analysis showed that calcipotriol did not alter the number of CD45+ cells or Langerhans cells in psoriatic skin. These results indicate that calcipotriol does not alter either the number of the function of epidermal antigen...

  6. Expression and analysis of exogenous proteins in epidermal cells.

    Science.gov (United States)

    Dagnino, Lina; Ho, Ernest; Chang, Wing Y

    2010-01-01

    In this chapter we review protocols for transient transfection of primary keratinocytes. The ability to transfect primary epidermal cells regardless of their differentiation status allows the biochemical and molecular characterization of multiple proteins. We review methods to analyze exogenous protein abundance in transfected keratinocytes by immunoblot and immunoprecipitation. We also present protocols to determine the subcellular distribution of these proteins by indirect immunofluorescence microscopy approaches.

  7. Autologous fat grafting: use of closed syringe microcannula system for enhanced autologous structural grafting

    Directory of Open Access Journals (Sweden)

    Alexander RW

    2013-04-01

    Full Text Available Robert W Alexander,1 David Harrell2 1Department of Surgery, School of Medicine and Dentistry, University of Washington, Seattle, WA, USA; 2Harvest-Terumo Inc, Plymouth, MA, USA Objectives: Provide background for use of acquiring autologous adipose tissue as a tissue graft and source of adult progenitor cells for use in cosmetic plastic surgery. Discuss the background and mechanisms of action of closed syringe vacuum lipoaspiration, with emphasis on accessing adipose-derived mesenchymal/stromal cells and the stromal vascular fraction (SVF for use in aesthetic, structural reconstruction and regenerative applications. Explain a proven protocol for acquiring high-quality autologous fat grafts (AFG with use of disposable, microcannula systems. Design: Explain the components and advantage of use of the patented super luer-lock and microcannulas system for use with the closed-syringe system. A sequential explanation of equipment selection for minimally traumatic lipoaspiration in small volumes is presented, including use of blunt injection cannulas to reduce risk of embolism. Results: Thousands of AFG have proven safe and efficacious for lipoaspiration techniques for large and small structural fat grafting procedures. The importance and advantages of gentle harvesting of the adipose tissue complex has become very clear in the past 5 years. The closed-syringe system offers a minimally invasive, gentle system with which to mobilize subdermal fat tissues in a suspension form. Resulting total nuclear counting of undifferentiated cells of the adipose-derived -SVF suggests that the yield achieved is better than use of always-on, constant mechanical pump applied vacuum systems. Conclusion: Use of a closed-syringe lipoaspiration system featuring disposable microcannulas offers a safe and effective means of harvesting small volumes of nonmanipulated adipose tissues and its accompanying progenitor cells within the SVF. Closed syringes and microcannulas are

  8. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  9. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model

    DEFF Research Database (Denmark)

    Jespersen, Henrik; Lindberg, Mattias F; Donia, Marco

    2017-01-01

    Immune checkpoint inhibitors and adoptive cell transfer (ACT) of autologous tumor-infiltrating T cells have shown durable responses in patients with melanoma. To study ACT and immunotherapies in a humanized model, we have developed PDXv2.0 - a melanoma PDX model where tumor cells and tumor...

  10. Effect of combined use of autologous adipose-derived stem cells and sterile biological films on chronic wound

    Directory of Open Access Journals (Sweden)

    Ming-hui LI

    2017-02-01

    Full Text Available Objective To analyze and evaluate the effectiveness of combined use of autologous adipose-derived stem cells (ADSCs and sterile biological films on chronic wound. Methods Sixty patients of chronic wound were selected from the General Hospital of Chinese People's Armed Police Forces, and randomly divided into three groups (20 each: the conventional treatment group (group A, the sterile biological films group (group B and ADSCs combined with sterile biological films group (group C. The wound healing time and healing rate of the 3 groups on 7, 21 and 40d after treatment were observed; The proliferation of the basilar membrane cells of wound epithelium in the 3 groups were observed before and 7, 14d after treatment, and the epithelization on 50d after treatment was also observed. The neonatal microvessel density (MVD in epidermal basal layer was calculated before and 7 days after treatment. Results On wound healing, the best result was shown in group C, manifested as the minor inflammatory response, the good formation of granulation tissue and faster speed in epithelial growth; and the result was better in group B than in group A. On wound healing time, the result was shown as group A > group B > group C, and the difference was statistically significant (P<0.05. On wound healing rate, cell proliferation and MVD, group C showed the best result in the 3 groups, group B was better than group A, and the differences were statistically significant (P<0.05. Conclusion ADSCs combined with sterile biological films in treatment of chronic wound healing may significantly improve the proliferation of repaired cells, promote wound vascular regeneration, improve the local growth environment and accelerate the wound healing. DOI: 10.11855/j.issn.0577-7402.2016.12.11

  11. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman′s syndrome

    Directory of Open Access Journals (Sweden)

    Chaitanya B Nagori

    2011-01-01

    Full Text Available In a woman with severe Asherman′s syndrome, curettage followed by placement of intrauterine contraceptive device (IUCD (IUCD with cyclical hormonal therapy was tried for 6 months, for development of the endometrium. When this failed, autologous stem cells were tried as an alternative therapy. From adult autologous stem cells isolated from patient′s own bone marrow, endometrial angiogenic stem cells were separated using immunomagnetic isolation. These cells were placed in the endometrial cavity under ultrasound guidance after curettage. Patient was then given cyclical hormonal therapy. Endometrium was assessed intermittently on ultrasound. On development of endometrium with a thickness of 8 mm and good vascularity, in vitro fertilization and embryo transfer was done. This resulted in positive biochemical pregnancy followed by confirmation of gestational sac, yolk sac, and embryonic pole with cardiac activity on ultrasound. Endometrial angiogenic stem cells isolated from autologous adult stem cells could regenerate injured endometrium not responding to conventional treatment for Asherman′s syndrome.

  12. In vitro transformation of primary cultures of neonatal BALB/c mouse epidermal cells with ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Ananthaswamy, H.N.; Kripke, M.L.

    1981-01-01

    Primary epidermal cultures from neonatal BALB/c mice were used to study the carcinogenic effects of ultraviolet radiation in vitro. These cultures were irradiated once through a Falcon plastic dish cover with an FS40 sunlamp [ultraviolet B, lambda approximately 290 to 400 nm] for various lengths of time and maintained for 8 to 12 weeks without subculturing. During this period, most of the cells in the untreated control showed signs of morphological differentiation and eventually died. The cultures irradiated with ultraviolet B radiation also behaved in the same manner except that, in some dishes, small populations of surviving cells began to proliferate and developed into morphologically distinct foci. Seven long-term cell lines were derived from these ultraviolet-irradiated primary epidermal cell cultures. Six of these cell lines produced tumors when injected s.c. into normal and/or immunosuppressed syngeneic recipients. These tumorigenic cell lines lacked definitive characteristics of differentiated epidermal cells, but the cells possessed intermediate junctions, suggesting that they were of epithelial origin. Some of these in vitro-transformed cell lines appeared to be highly antigenic inasmuch as they grew preferentially in immunosuppressed BALB/c mice as compared to their growth in normal syngeneic recipients

  13. IMMUNE STATE IN PATIENTS WITH HEMATOLOGICAL MALIGNANCIES AT LATE TERMS AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    N. V. Minaeva

    2012-01-01

    Full Text Available Abstract. Autologous hematopoietic stem cell transplantation (auto-HSCT is one of the most effective methods for treatment of patients with various forms of hemoblastoses, both in adults and children. However, high-dose chemotherapy protocols used in this procedure are characterized by pronounced myeloand immunotoxicity. Appropriate data concerning immune state at long terms after high-dose chemotherapy and auto-HSCT are sparse and controversial, and there is no consensus on time dynamics of immune system reconstitution. The aim of this study was a comprehensive evaluation of immunity in recipients of auto-HSCT at longer terms. Clinical and immunological testing was performed in ninety-eight patients with hematological malignancies before starting a high-dose chemotherapy, and at late post-transplant period. The state of cellular immunity was assessed as expression of surface CD3+, CD4+, CD8+, CD16+, CD19+ lymphocyte antigens. Humoral immunity was evaluated by serum IgG, IgA, and IgM levels. The studies have revealed disorders of cellular and humoral immunity, as well as nonspecific immune resistance factors in recipients of autologous hematopoietic stem cells at late terms post-transplant. Immune reconstitution in patients receiving highdose consolidation treatment followed by auto-HSCT takes longer time than in patients who did not receive autologous hematopoietic stem cells. Severity of these disturbances and immune reconstitution rates depend on the type of conditioning regimen, and the source of haematopoietic stem cells used for transplantation.

  14. Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why: a concise review

    NARCIS (Netherlands)

    Vonk, L.A.; de Windt, T.S.; Slaper-Cortenbach, Ineke C.M.; Saris, Daniël B.F.

    2015-01-01

    The evolution of articular cartilage repair procedures has resulted in a variety of cell-based therapies that use both autologous and allogeneic mesenchymal stromal cells (MSCs). As these cells are increasingly available and show promising results both in vitro and in vivo, cell-based strategies,

  15. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and tr...

  16. Autologous stem-cell transplantation in Hodgkin’s lymphoma: analysis of a therapeutic option

    Directory of Open Access Journals (Sweden)

    Adriano de Moraes Arantes

    2011-06-01

    Full Text Available Objective: To report the clinical progress of patients with Hodgkin’slymphoma treated with autologous transplantation after failure orrelapse of first-line treatment with chemotherapy and/or radiationtherapy. Methods: The results of a retrospective analysis of 31patients submitted to autologous transplantation as second-linetreatment, between April 2000 and December 2008, were analyzed.Fourteen men and seventeen women, with a median age of 27 years,were submitted to autologous transplantation for relapsed (n = 21or refractory (n = 10 Hodgkin’s lymphoma. Results: Mortalityrelated to treatment in the first 100 days after transplant was 3.2%.With a mean follow-up period of 18 months (range: 1 to 88 months,the probability of global survival and progression-free survival in18 months was 84 and 80%, respectively. The probability of globalsurvival and progression-free survival at 18 months for patients withchemosensitive relapses (n = 21 was 95 and 90%, respectively,versus 60 and 45% for patients with relapses resistant to chemotherapy(n = 10 (p = 0.001 for global survival; p = 0.003 for progressionfreesurvival. In the multivariate analysis, absence of disease or pretransplant disease < 5 cm were favorable factors for global survival (p= 0.02; RR: 0.072; 95%CI: 0.01-0.85 and progression-free survival (p= 0.01; RR: 0.040; 95%CI: 0.007-0.78. Conclusion: Autologous transplantation of stem-cells is a therapeutic option for Hodgkin’s lymphoma patients after the first relapse. Promising results were observed in patients with a low tumor burden at transplant.

  17. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    International Nuclear Information System (INIS)

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.; Williams, A.C.; Howarth, J.L.; Glover, C.P.; Uney, J.B.; Hague, A.

    2010-01-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  18. Aging of bone marrow mesenchymal stromal/stem cells: Implications on autologous regenerative medicine.

    Science.gov (United States)

    Charif, N; Li, Y Y; Targa, L; Zhang, L; Ye, J S; Li, Y P; Stoltz, J F; Han, H Z; de Isla, N

    2017-01-01

    With their proliferation, differentiation into specific cell types, and secretion properties, mesenchymal stromal/stem cells (MSC) are very interesting tools to be used in regenerative medicine. Bone marrow (BM) was the first MSC source characterized. In the frame of autologous MSC therapy, it is important to detect donor's parameters affecting MSC potency. Age of the donors appears as one parameter that could greatly affect MSC properties. Moreover, in vitro cell expansion is needed to obtain the number of cells necessary for clinical developments. It will lead to in vitro cell aging that could modify cell properties. This review recapitulates several studies evaluating the effect of in vitro and in vivo MSC aging on cell properties.

  19. Dynein and EFF-1 control dendrite morphology by regulating the localization pattern of SAX-7 in epidermal cells.

    Science.gov (United States)

    Zhu, Ting; Liang, Xing; Wang, Xiang-Ming; Shen, Kang

    2017-12-01

    Our previous work showed that the cell adhesion molecule SAX-7 forms an elaborate pattern in Caenorhabditis elegans epidermal cells, which instructs PVD dendrite branching. However, the molecular mechanism forming the SAX-7 pattern in the epidermis is not fully understood. Here, we report that the dynein light intermediate chain DLI-1 and the fusogen EFF-1 are required in epidermal cells to pattern SAX-7. While previous reports suggest that these two molecules act cell-autonomously in the PVD, our results show that the disorganized PVD dendritic arbors in these mutants are due to the abnormal SAX-7 localization patterns in epidermal cells. Three lines of evidence support this notion. First, the epidermal SAX-7 pattern was severely affected in dli-1 and eff-1 mutants. Second, the abnormal SAX-7 pattern was predictive of the ectopic PVD dendrites. Third, expression of DLI-1 or EFF-1 in the epidermis rescued both the SAX-7 pattern and the disorganized PVD dendrite phenotypes, whereas expression of these molecules in the PVD did not. We also show that DLI-1 functions cell-autonomously in the PVD to promote distal branch formation. These results demonstrate the unexpected roles of DLI-1 and EFF-1 in the epidermis in the control of PVD dendrite morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  20. Defibrotide prevents the activation of macrovascular and microvascular endothelia caused by soluble factors released to blood by autologous hematopoietic stem cell transplantation.

    Science.gov (United States)

    Palomo, Marta; Diaz-Ricart, Maribel; Rovira, Montserrat; Escolar, Ginés; Carreras, Enric

    2011-04-01

    Endothelial activation and damage occur in association with autologous hematopoietic stem cell transplantation (HSCT). Several of the early complications associated with HSCT seem to have a microvascular location. Through the present study, we have characterized the activation and damage of endothelial cells of both macro (HUVEC) and microvascular (HMEC) origin, occurring early after autologous HSCT, and the potential protective effect of defibrotide (DF). Sera samples from patients were collected before conditioning (Pre), at the time of transplantation (day 0), and at days 7, 14, and 21 after autologous HSCT. Changes in the expression of endothelial cell receptors at the surface, presence and reactivity of extracellular adhesive proteins, and the signaling pathways involved were analyzed. The expression of ICAM-1 at the cell surface increased progressively in both HUVEC and HMEC. However, a more prothrombotic profile was denoted for HMEC, in particular at the time of transplantation (day 0), reflecting the deleterious effect of the conditioning treatment on the endothelium, especially at a microvascular location. Interestingly, this observation correlated with a higher increase in the expression of both tissue factor and von Willebrand factor on the extracellular matrix, together with activation of intracellular p38 MAPK and Akt. Previous exposure and continuous incubation of cells with DF prevented the signs of activation and damage induced by the autologous sera. These observations corroborate that conditioning treatment in autologous HSCT induces a proinflammatory and a prothrombotic phenotype, especially at a microvascular location, and indicate that DF has protective antiinflammatory and antithrombotic effects in this setting. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  1. Antibody responses to vaccination and immune function in patients with haematological malignancies - studies in patients with chronic lymphocytic leukaemia autologous stem cell recipients

    NARCIS (Netherlands)

    Velden, A.M.T. van der

    2007-01-01

    This thesis concerns the antibody responses to vaccination and immune function of patients with several forms of haematological diseases. Antibody responses in patients with chronic lymphocytic leukaemia (CLL) and in autologous stem cell transplant recipients were studied. In the autologous stem

  2. Lack of autologous mixed lymphocyte reaction in patients with chronic lymphocytic leukemia: evidence for autoreactive T-cell dysfunction not correlated with phenotype, karyotype, or clinical status

    International Nuclear Information System (INIS)

    Han, T.; Bloom, M.L.; Dadey, B.; Bennett, G.; Minowada, J.; Sandberg, A.A.; Ozer, H.

    1982-01-01

    In the present study, there was a complete lack of autologous MLR between responding T cells or T subsets and unirradiated or irradiated leukemic B cells or monocytes in all 20 patients with CLL, regardless of disease status, stage, phenotype, or karyotype of the disease. The stimulating capacity of unirradiated CLL B cells and CLL monocytes or irradiated CLL B cells was significantly depressed as compared to that of respective normal B cells and monocytes in allogeneic MLR. The responding capacity of CLL T cells was also variably lower than that of normal T cells against unirradiated or irradiated normal allogeneic B cells and monocytes. The depressed allogeneic MLR between CLL B cells or CLL monocytes and normal T cells described in the present study could be explained on the basis of a defect in the stimulating antigens of leukemic B cells or monocytes. The decreased allogeneic MLR of CLL T cells might simply be explained by a defect in the responsiveness of T lymphocytes from patients with CLL. However, these speculations do not adequately explain the complete lack of autologous MLR in these patients. When irradiated CLL B cells or irradiated CLL T cells were cocultured with normal T cells and irradiated normal B cells, it was found that there was no suppressor cell activity of CLL B cells or CLL T cells on normal autologous MLR. Our data suggest that the absence or dysfunction of autoreactive T cells within the Tnon-gamma subset account for the lack of autologous MLR in patients with CLL. The possible significance of the autologous MLR, its relationship to in vivo immunoregulatory mechanisms, and the possible role of breakdown of autoimmunoregulation in the oncogenic process of certain lymphoproliferative and autoimmune diseases in man are discussed

  3. Hodgkin's disease as unusual presentation of post-transplant lymphoproliferative disorder after autologous hematopoietic cell transplantation for malignant glioma

    Directory of Open Access Journals (Sweden)

    Scelsi Mario

    2005-08-01

    Full Text Available Abstract Background Post-transplant lymphoproliferative disorder (PTLD is a complication of solid organ and allogeneic hematopoietic stem cell transplantation (HSCT; following autologous HSCT only rare cases of PTLD have been reported. Here, a case of Hodgkin's disease (HD, as unusual presentation of PTLD after autologous HSCT for malignant glioma is described. Case presentation 60-years old man affected by cerebral anaplastic astrocytoma underwent subtotal neurosurgical excision and subsequent high-dose chemotherapy followed by autologous HSCT. During the post HSCT course, cranial irradiation and corticosteroids were administered as completion of therapeutic program. At day +105 after HSCT, the patient developed HD, nodular sclerosis type, with polymorphic HD-like skin infiltration. Conclusion The clinical and pathological findings were consistent with the diagnosis of PTLD.

  4. In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Heidt, Emanuel; Niemeyer, Philipp

    2017-01-01

    Purpose: The use of passaged chondrocytes is the current standard for autologous chondrocyte implantation (ACI). De-differentiation due to amplification and donor site morbidity are known drawbacks highlighting the need for alternative cell sources. Methods: Via clinically validated flow cytometry...... analysis, we compared the expression of human stem cell and cartilage markers (collagen type 2 (Col2), aggrecan (ACAN), CD44) of chondrocytes (CHDR), passaged chondrocytes for ACI (CellGenix™), bone marrow derived mesenchymal stem cells (BMSC), and synovial derived stem cells (SDSC). Results: Primary...

  5. 70th Birthday symposium of Prof. Dr. Riederer: autologous adult stem cells in ischemic and traumatic CNS disorders

    NARCIS (Netherlands)

    de Munter, J.P.J.M.; Wolters, E.C.

    2013-01-01

    Ischemic and traumatic insults of the central nervous system both result in definite chronic disability, only to some extent responsive to rehabilitation. Recently, the application of autologous stem cells (fresh bone marrow-derived mononuclear cells including mesenchymal and hematopoietic stem

  6. Impact of Autologous and Allogeneic Stem Cell Transplantation in Peripheral T-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Peter Reimer

    2010-01-01

    Full Text Available Peripheral T/NK-cell lymphomas (PTCLs are rare malignancies characterized by poor prognosis. So far, no standard therapy has been established, due to the lack of randomised studies. High-dose therapy and autologous stem cell transplantation (HDT-autoSCT have shown good feasibility with low toxicity in retrospective studies. In relapsing and refractory PTCL several comparison analyses suggest similar efficacy for PTCL when compared with aggressive B-cell lymphoma. In the upfront setting, prospective data show promising results with a long-lasting overall survival in a relevant subset of patients. Achieving a complete remission at transplantation seems to be the most important prognostic factor. Allogeneic stem cell transplantation (alloSCT has been investigated only as salvage treatment. Especially when using reduced intensity conditioning regimen, eligible patients seem to benefit from this approach. To define the role for upfront stem cell transplantation a randomised trial by the German High-Grade Non-Hodgkin Lymphoma Study Group comparing HDT-autoSCT and alloSCT will be initiated this year.

  7. Apoptosis of conjunctival epithelial cells before and after the application of autologous serum eye drops in severe dry eye disease.

    Science.gov (United States)

    Rybickova, Ivana; Vesela, Viera; Fales, Ivan; Skalicka, Pavlina; Jirsova, Katerina

    2016-06-01

    To assess the impact of autologous serum eye drops on the level of ocular surface apoptosis in patients with bilateral severe dry eye disease. This prospective study was conducted on 10 patients with severe dry eye due to graft versus host disease (group 1) and 6 patients with severe dry eye due to primary Sjögren's syndrome (group 2). Impression cytology specimens from the bulbar conjunctiva were obtained before and after a three-month treatment with 20% autologous serum eye drops applied a maximum of 12 times a day together with regular therapy with artificial tears. The percentage of apoptotic epithelial cells was evaluated immunochemically using anti-active caspase 3 antibody. In group 1, the mean percentage of apoptotic cells was 3.6% before the treatment. The three-month treatment led to a significant decrease to a mean percentage of 1.8% (P = 0.028). The mean percentage of apoptotic conjunctival cells decreased from 5.4% before the treatment to 3.8% in group 2; however, these results did not reach the level of significance. Three-month autologous serum treatment led to the improvement of ocular surface apoptosis, especially in the group of patients with severe dry eye due to graft versus host disease. This result supports the very positive effect of autologous serum on the ocular surface in patients suffering from severe dry eye.

  8. Allogeneic versus autologous derived cell sources for use in engineered bone-ligament-bone grafts in sheep anterior cruciate ligament repair.

    Science.gov (United States)

    Mahalingam, Vasudevan D; Behbahani-Nejad, Nilofar; Horine, Storm V; Olsen, Tyler J; Smietana, Michael J; Wojtys, Edward M; Wellik, Deneen M; Arruda, Ellen M; Larkin, Lisa M

    2015-03-01

    The use of autografts versus allografts for anterior cruciate ligament (ACL) reconstruction is controversial. The current popular options for ACL reconstruction are patellar tendon or hamstring autografts, yet advances in allograft technologies have made allogeneic grafts a favorable option for repair tissue. Despite this, the mismatched biomechanical properties and risk of osteoarthritis resulting from the current graft technologies have prompted the investigation of new tissue sources for ACL reconstruction. Previous work by our lab has demonstrated that tissue-engineered bone-ligament-bone (BLB) constructs generated from an allogeneic cell source develop structural and functional properties similar to those of native ACL and vascular and neural structures that exceed those of autologous patellar tendon grafts. In this study, we investigated the effectiveness of our tissue-engineered ligament constructs fabricated from autologous versus allogeneic cell sources. Our preliminary results demonstrate that 6 months postimplantation, our tissue-engineered auto- and allogeneic BLB grafts show similar histological and mechanical outcomes indicating that the autologous grafts are a viable option for ACL reconstruction. These data indicate that our tissue-engineered autologous ligament graft could be used in clinical situations where immune rejection and disease transmission may preclude allograft use.

  9. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture.

    Science.gov (United States)

    Yuanzheng, Chen; Yan, Gao; Ting, Li; Yanjie, Fu; Peng, Wu; Nan, Bai

    2015-05-01

    Autologous bone graft has been regarded as the criterion standard for the repair of alveolar cleft. However, the most prominent issue in alveolar cleft treatment is the high absorption rate of the bone graft. The authors' objective was to investigate the effects of an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture on the repair of dog alveolar cleft. Twenty beagle dogs with unilateral alveolar clefts created by surgery were divided randomly into four groups: group A underwent repair with an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture; group B underwent repair with autologous iliac bone and bone marrow-derived mesenchymal stem cells; group C underwent repair with autologous iliac bone and platelet-rich fibrin; and group D underwent repair with autologous iliac bone as the control. One day and 6 months after transplantation, the transplant volumes and bone mineral density were assessed by quantitative computed tomography. All of the transplants were harvested for hematoxylin and eosin staining 6 months later. Bone marrow-derived mesenchymal stem cells and platelet-rich fibrin transplants formed the greatest amounts of new bone among the four groups. The new bone formed an extensive union with the underlying maxilla in groups A, B, and C. Transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture retained the majority of their initial volume, whereas the transplants in the control group showed the highest absorption rate. Bone mineral density of transplants with the bone marrow-derived mesenchymal stem cells, platelet-rich fibrin, and their mixture 6 months later was significantly higher than in the control group (p platelet-rich fibrin mixed transplants. Hematoxylin and eosin staining showed that the structure of new bones formed the best in group A. Both bone marrow-derived mesenchymal stem cells and platelet

  10. PRGF exerts more potent proliferative and anti-inflammatory effects than autologous serum on a cell culture inflammatory model.

    Science.gov (United States)

    Anitua, E; Muruzabal, F; de la Fuente, M; Riestra, A; Merayo-Lloves, J; Orive, G

    2016-10-01

    Ocular graft versus host disease (oGVHD) is part of a systemic inflammatory disease that usually affects ocular surface tissues manifesting as a dry eye syndrome. Current treatments provide unsatisfactory results. Blood-derived products, like plasma rich in growth factors (PRGF) emerge as a potential therapy for this disease. The purpose of this study was to evaluate the tissue regeneration and anti-inflammatory capability of PRGF, an autologous platelet enriched plasma eye-drop, compared to autologous serum (AS) obtained from oGVHD patients on ocular surface cells cultured in a pro-inflammatory environment. PRGF and AS were obtained from four GVHD patients. Cell proliferation and inflammation markers, intercellular adhesion molecule-1 (ICAM-1) and cyclooxygenase-2 (COX-2), were measured in corneal and conjunctival fibroblastic cells cultured under pro-inflammatory conditions and after treatment with PRGF or AS eye drops. Moreover, cell proliferation increased after treatment with PRGF and AS, though this enhancement in the case of keratocytes was significantly higher with PRGF. PRGF eye drops showed a significant reduction of both inflammatory markers with respect to the initial inflammatory situation and to the AS treatment. Our results concluded that PRGF exerts more potent regenerative and anti-inflammatory effects than autologous serum on ocular surface fibroblasts treated with pro-inflammatory IL-1β and TNFα. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Biochemistry of epidermal stem cells☆

    Science.gov (United States)

    Eckert, Richard L.; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan C.; Boucher, Shayne E.; Bickenbach, Jackie R.; Kerr, Candace

    2014-01-01

    Background The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. Scope of review A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. Major conclusions An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. General significance Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. PMID:22820019

  12. Localized extramedullary relapse after autologous hematopoietic stem cell transplantation in multiple myeloma

    International Nuclear Information System (INIS)

    Erkus, Muhan; Meteoglu, Ibrahim; Bolaman, Zahit; Kadikoylu, Gurhan

    2005-01-01

    Extramedullary plasmacytomas are rare manifestation of plasma cell malignancies. After hematopoietic stem cell transplantation HSCT, presentation of localized plasmacytoma with extramedullary growth is very unusual. We report a case of a 56-year-old woman with Dune-Salmon stage IIIA immunoglobulin A-kappa multiple myeloma, which presented 120 days after autologous HSCT with extramedullary plasmacytoma arising from a lymph node in supraclavicular region. The patient had no pretransplant-history related with extramedullary disease. There was no increase of plasma cells in bone marrow or monoclonal protein in urine or serum. Aspiration smears of lymph node revealed a population of plasmacytoid cells at various stages of maturation. The patient was successfully treated with local radiotherapy and has remained progression-free for more than 20 months. (author)

  13. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na(+) and Cl(-) ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells.

  14. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    Science.gov (United States)

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na+ and Cl− ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells. PMID:26113856

  15. Co-Culturing of Multipotent Mesenchymal Stromal Cells with Autological and Allogenic Lymphocytes.

    Science.gov (United States)

    Kapranov, N M; Davydova, Yu O; Gal'tseva, I V; Petinati, N A; Bakshinskaitė, M V; Drize, N I; Kuz'mina, L A; Parovichnikova, E N; Savchenko, V G

    2018-03-01

    We studied the effect of autologous and allogeneic lymphocytes on multipotent mesenchymal stromal cells in co-culture. It is shown that changes in multipotent mesenchymal stromal cells and in lymphocytes did not depend on the source of lymphocytes. Contact with lymphocytes triggers expression of HLA-DR molecules on multipotent mesenchymal stromal cells and these cells lose their immune privilege. In multipotent mesenchymal stromal cells, the relative level of expression of factors involved in immunomodulation (IDO1, PTGES, and IL-6) and expression of adhesion molecule ICAM1 increased, while expression of genes involved in the differentiation of multipotent mesenchymal stromal cells remained unchanged. Priming of multipotent mesenchymal stromal cells with IFN did not affect these changes. In turn, lymphocytes underwent activation, expression of HLA-DR increased, subpopulation composition of lymphocytes changed towards the increase in the content of naïve T cells. These findings are important for cell therapy.

  16. Clinical efficacy of sunitinib combined with autologous DC and CIK for patients with metastatic renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2014-01-01

    Full Text Available Objective To analyze the clinical efficacy and safety of sunitinib combined with autologous dentritic cell (DC and cytokine induced killer cell (CIK for patients suffering from metastatic renal cell carcinoma (mRCC. Methods Clinical data of 27 mRCC patients treated with sunitinib combined with autologous DC and CIK were reviewed retrospectively. Efficacy, quality of life, immunology and safety of this treatment were evaluated. Results Follow-up time ranged from 4 to 25 months. Out of all the patients, sunitinib was reduced in 1 and discontinued in 2 due to side effects; 1 patient quit for personal reasons; 14 patients developed progressive disease. The progression-free survival (PFS was 4 to 19.5 months. Ten patients died from tumor, the overall survival time (OS was 6 to 21 months. The median PFS was 16 months (95%CI 12.5-19.5. The OS was not achieved. The efficacy was evaluated according to Response Evaluation Criteria in Solid Tumors (RECIST. All the patients received treatment over 1 cycle. After one course of treatment, among 27 patients, 0 had complete remission (CR, 4 had partial remission (PR, 17 had stable disease (SD, and 6 had progressive disease (PD. The overall objective remission rate (ORR and disease control rate (DCR were 14.8% (4/27 and 77.8% (21/27, respectively. Sunitinib and autologous transfusion of DC and CIK improved the immune function and quality of life. The major adverse events were fatigue, hand-foot syndrome, hypertension, hypothyroidism, thrombocytopenia, neutropenia and fever. Most of the adverse events were ameliorated by supportive treatment or dose reduction. Conclusions  Sunitinib combined with autologous DC and CIK may be beneficial in the treatment of mRCC with acceptable toxic reactions, and it may be considered as a new approach for the comprehensive treatment of RCC. DOI: 10.11855/j.issn.0577-7402.2013.12.06

  17. The effect of CD34+ cell telomere length and hTERT expression on the outcome of autologous CD34+ cell transplantation in patients with chronic heart failure.

    Science.gov (United States)

    Rozman, Jasmina-Ziva; Perme, Maja Pohar; Jez, Mojca; Malicev, Elvira; Krasna, Metka; Novakovic, Srdjan; Vrtovec, Bojan; Rozman, Primoz

    2017-09-01

    Age-related telomere attrition in stem/progenitor cells may diminish their functional capacity and thereby impair the outcome of cell-based therapies. The aim of the present study was to investigate the effect of CD34 + cell telomere length and hTERT expression on the clinical outcome of autologous CD34 + cell transplantation. We studied 43 patients with cardiomyopathy. Their peripheral blood CD34 + cells were mobilized with granulocyte colony-stimulating factor, enriched by immunoselection and delivered transendocardially. Relative telomere length and expression levels of hTERT were measured using a real-time PCR assay. Immunoselected CD34 + cells had longer telomere length compared to leukocytes in leukapheresis products (p=0.001). In multivariate analysis, CD34 + cell telomere length was not associated with the clinical outcome (b=3.306, p=0.540). While hTERT expression was undetectable in all leukapheresis products, 94.4% of the CD34 + enriched cell products expressed hTERT. Higher CD34 + hTERT expression was associated with a better clinical outcome on univariate analysis (b=87.911, p=0.047). Our findings demonstrate that CD34 + cell telomere length may not influence the clinical outcome in cardiomyopathy patients treated with autologous CD34 + cell transplantation. Larger studies are needed to validate the impact of the CD34 + hTERT expression on the clinical outcome of autologous CD34 + cell transplantation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of epidermal growth factor on neural crest cells in tissue culture

    International Nuclear Information System (INIS)

    Erickson, C.A.; Turley, E.A.

    1987-01-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the 3 H-labeled proteoglycan. Furthermore, EGF stimulates [ 3 H]thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis

  19. Myosin II activity is required for functional leading-edge cells and closure of epidermal sheets in fish skin ex vivo.

    Science.gov (United States)

    Morita, Toshiyuki; Tsuchiya, Akiko; Sugimoto, Masazumi

    2011-09-01

    Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.

  20. Cytokine-primed bone marrow stem cells vs. peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF vs. G-CSF.

    Science.gov (United States)

    Weisdorf, D; Miller, J; Verfaillie, C; Burns, L; Wagner, J; Blazar, B; Davies, S; Miller, W; Hannan, P; Steinbuch, M; Ramsay, N; McGlave, P

    1997-10-01

    Autologous transplantation for non-Hodgkins lymphoma and Hodgkin's disease is widely used as standard therapy for those with high-risk or relapsed tumor. Peripheral blood stem cell (PBSC) collections have nearly completely replaced bone marrow stem cell (BMSC) harvests because of the perceived advantages of more rapid engraftment, less tumor contamination in the inoculum, and better survival after therapy. The advantage of PBSC, however, may derive from the hematopoietic stimulating cytokines used for PBSC mobilization. Therefore, we tested a randomized comparison of GM-CSF vs. G-CSF used to prime either BMSC or PBSC before collection for use in autologous transplantation. Sixty-two patients receiving transplants (31 PBSC; 31 BMSC) for non-Hodgkin's lymphoma (n = 51) or Hodgkin's disease (n = 11) were treated. All patients received 6 days of randomly assigned cytokine. Those with cellular marrow in morphologic remission underwent BMSC harvest, while those with hypocellular marrow or microscopic marrow tumor involvement had PBSC collected. Neutrophil recovery was similarly rapid in all groups (median 14 days; range 10-23 days), though two patients had delayed neutrophil recovery using GM-CSF primed PBSC (p = 0.01). Red cell and platelet recovery were significantly quicker after BMSC mobilized with GM-CSF or PBSC mobilized with G-CSF. This speedier hematologic recovery resulted in earlier hospital discharge as well. However, in multivariate analysis, neither the stem cell source nor randomly assigned G-CSF vs. GM-CSF was independently associated with earlier multilineage hematologic recovery or shorter hospital stay. Relapse-free survival was not independently affected by either the assigned stem cell source or the randomly assigned priming cytokine, though malignant relapse was more frequent in those assigned to PBSC (RR of relapse 3.15, p = 0.03). These data document that BMSC, when collected following cytokine priming, can yield a similarly rapid hematologic

  1. The organization of human epidermis: functional epidermal units and phi proportionality.

    Science.gov (United States)

    Hoath, Steven B; Leahy, D G

    2003-12-01

    The concept that mammalian epidermis is structurally organized into functional epidermal units has been proposed on the basis of stratum corneum (SC) architecture, proliferation kinetics, melanocyte:keratinocyte ratios (1:36), and, more recently, Langerhans cell: epidermal cell ratios (1:53). This article examines the concept of functional epidermal units in human skin in which the maintenance of phi (1.618034) proportionality provides a central organizing principle. The following empirical measurements were used: 75,346 nucleated epidermal cells per mm2, 1394 Langerhans cells per mm2, 1999 melanocytes per mm2, 16 (SC) layers, 900-microm2 corneocyte surface area, 17,778 corneocytes per mm2, 14-d (SC) turnover time, and 93,124 per mm2 total epidermal cells. Given these empirical data: (1) the number of corneocytes is a mean proportional between the sum of the Langerhans cell + melanocyte populations and the number of epidermal cells, 3393/17,778-17,778/93,124; (2) the ratio of nucleated epidermal cells over corneocytes is phi proportional, 75,346/17,778 approximately phi3; (3) assuming similar 14-d turnover times for the (SC) and Malpighian epidermis, the number of corneocytes results from subtraction of a cellular fraction equal to approximately 2/phi2 x the number of living cells, 75,436 - (2/phi2 x 75,346) approximately 17,778; and (4) if total epidermal turnover time equals (SC) turnover time x the ratio of living/dead cells, then compartmental turnover times are unequal (14 d for (SC) to 45.3 d for nucleated epidermis approximately 1/2phi) and cellular replacement rates are 52.9 corneocytes/69.3 keratinocytes per mm2 per h approximately 2/phi2. These empirically derived equivalences provide logicomathematical support for the presence of functional epidermal units in human skin. Validation of a phi proportional unit architecture in human epidermis will be important for tissue engineering of skin and the design of instruments for skin measurement.

  2. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    Science.gov (United States)

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Bioengineering a human plasma-based epidermal substitute with efficient grafting capacity and high content in clonogenic cells.

    Science.gov (United States)

    Alexaline, Maia M; Trouillas, Marina; Nivet, Muriel; Bourreau, Emilie; Leclerc, Thomas; Duhamel, Patrick; Martin, Michele T; Doucet, Christelle; Fortunel, Nicolas O; Lataillade, Jean-Jacques

    2015-06-01

    Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach. ©AlphaMed Press.

  4. Effect of activated autologous platelet-rich plasma on proliferation and osteogenic differentiation of human adipose-derived stem cells in vitro

    Science.gov (United States)

    Xu, Fang-Tian; Li, Hong-Mian; Yin, Qing-Shui; Liang, Zhi-Jie; Huang, Min-Hong; Chi, Guang-Yi; Huang, Lu; Liu, Da-Lie; Nan, Hua

    2015-01-01

    To investigate whether activated autologous platelet-rich plasma (PRP) can promote proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs) in vitro. hASCs were isolated from lipo-aspirates, and characterized by specific cell markers and multilineage differentiation capacity after culturing to the 3rd passage. PRP was collected and activated from human peripheral blood of the same patient. Cultured hASCs were treated with normal osteogenic inductive media alone (group A, control) or osteogenic inductive media plus 5%, 10%, 20%, 40%PRP (group B, C, D, E, respectively). Cell proliferation was assessed by CCK-8 assay. mRNA expression of osteogenic marker genes including alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) and core binding factor alpha 1 (Cbfa1) were determined by Real-Time Quantitative PCR Analysis (qPCR). Data revealed that different concentrations of activated autologous PRP significantly promoted hASCs growth in the proliferation phase compared to the without PRP group and resulted in a dose-response relationship. At 7-d and 14-d time point of the osteogenic induced stage, ALP activity in PRP groups gradually increased with the increasing of concentrations of PRP and showed that dose-response relationship. At 21-d time point of the osteogenic induced stage, PRP groups make much more mineralization and mRNA relative expression of ALP, OPN, OCN and Cbfa1 than that without PRP groups and show that dose-response relationship. This study indicated that different concentrations of activated autologous PRP can promote cell proliferation at earlier stage and promote osteogenic differentiation at later stage of hASCs in vitro. Moreover, it displayed a dose-dependent effect of activated autologous PRP on cell proliferation and osteogenic differentiation of hASCs in vitro. PMID:25901195

  5. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Directory of Open Access Journals (Sweden)

    Bronwyn Jane Barkla

    2015-06-01

    Full Text Available One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples was used to identify 352 significantly differing metabolites (268 after correction for FDR. Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na and Cl ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggest large alterations in Mesembryanthemum crystallinum epidermal bladder cells.

  6. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-01-01

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  7. * Comparison of Autologous, Allogeneic, and Cell-Free Scaffold Approaches for Engineered Tendon Repair in a Rabbit Model-A Pilot Study.

    Science.gov (United States)

    Wang, Wenbo; Deng, Dan; Wang, Bin; Zhou, Guangdong; Zhang, WenJie; Cao, Yilin; Zhang, Peihua; Liu, Wei

    2017-08-01

    Tendons are subjected to high strength dynamic mechanical forces in vivo. Mechanical strength is an essential requirement for tendon scaffold materials. A composite scaffold was used in this study to provide mechanical strength, which was composed of an inter part of nonwoven polyglycolic acid (PGA) fibers and an outer part of the net knitted with PGA and polylactic acid (PLA) fibers in a ratio of 4:2. This study compared three different approaches for in vivo tendon engineering, that is, cell-free scaffold and allogeneic and autologous cell seeded scaffolds, using a rabbit Achilles tendon repair model. Dermal fibroblasts were, respectively, isolated from the dermis of regular rabbits or green fluorescence protein transgenic rabbits as the autologous and the allogeneic cell sources, respectively. The cell scaffolds and cell-free scaffolds were implanted to bridge a partial segmental defect of rabbit Achilles tendon. The engineered tendons were harvested at 7 and 13 months postsurgery for various examinations. The results showed that all three groups could achieve in vivo tendon regeneration similarly with slightly better tissue formation in autologous group than in other two groups, including better scaffold degradation and relatively thicker collagen fibrils. There were no statistically significant differences in mechanical parameters among three groups. This work demonstrated that allogeneic fibroblasts and scaffold alone are likely to be used for tendon tissue engineering.

  8. Epidermal growth factor in the rat prostate

    DEFF Research Database (Denmark)

    Tørring, Niels; Jørgensen, P E; Poulsen, Steen Seier

    1998-01-01

    Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate.......Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate....

  9. Marked improvement by high-dose chemotherapy and autologous stem cell transplantation in a case of light chain deposition disease.

    Science.gov (United States)

    Matsuzaki, Keiichi; Ohsawa, Isao; Nishitani, Tomohito; Takeda, Yukihiko; Inoshita, Hiroyuki; Ishii, Masaya; Takagi, Miyuki; Horikoshi, Satoshi; Tomino, Yasuhiko

    2011-01-01

    A 55-year-old woman presented with heavy proteinuria (6.2 g/day) in April 2007. Because monoclonal IgG-k was detected in serum and urine samples, bone marrow aspiration and renal biopsy were performed. She was diagnosed with plasma cell dyscrasia because a bone marrow aspiration specimen showed plasma cells at 6.1%. Renal tissues revealed the formation of nodular glomerulosclerosis which was negative for Congo-red staining. Renal immunohistochemistry showed positive staining for kappa light chains in the nodular lesions, proximal tubules and part of Bowman's capsules. Her renal involvement was diagnosed as light chain deposition disease. Proteinuria disappeared and renal function stabilized after high-dose chemotherapy and autologous stem cell transplantation. It appears that an early initiation of active therapy such as high-dose chemotherapy and autologous stem cell transplantation may be beneficial for patients with light chain deposition disease.

  10. The Chondrogenic Induction Potential for Bone Marrow-Derived Stem Cells between Autologous Platelet-Rich Plasma and Common Chondrogenic Induction Agents: A Preliminary Comparative Study

    Directory of Open Access Journals (Sweden)

    Shan-zheng Wang

    2015-01-01

    Full Text Available The interests in platelet-rich plasma (PRP and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs. We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1, dexamethasone (DEX, and vitamin C (Vc was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.

  11. Production of a Dendritic Cell-Based Vaccine Containing Inactivated Autologous Virus for Therapy of Patients with Chronic Human Immunodeficiency Virus Type 1 Infection▿

    OpenAIRE

    Whiteside, Theresa L.; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C.; Rinaldo, Charles R.; Riddler, Sharon A.

    2008-01-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8+ and CD4+ T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus is...

  12. Biosimilar G-CSF based mobilization of peripheral blood hematopoietic stem cells for autologous and allogeneic stem cell transplantation.

    Science.gov (United States)

    Schmitt, Michael; Publicover, Amy; Orchard, Kim H; Görlach, Matthias; Wang, Lei; Schmitt, Anita; Mani, Jiju; Tsirigotis, Panagiotis; Kuriakose, Reeba; Nagler, Arnon

    2014-01-01

    The use of granulocyte colony stimulating factor (G-CSF) biosimilars for peripheral blood hematopoietic stem cell (PBSC) mobilization has stimulated an ongoing debate regarding their efficacy and safety. However, the use of biosimilar G-CSF was approved by the European Medicines Agency (EMA) for all the registered indications of the originator G-CSF (Neupogen (®) ) including mobilization of stem cells. Here, we performed a comprehensive review of published reports on the use of biosimilar G-CSF covering patients with hematological malignancies as well as healthy donors that underwent stem cell mobilization at multiple centers using site-specific non-randomized regimens with a biosimilar G-CSF in the autologous and allogeneic setting. A total of 904 patients mostly with hematological malignancies as well as healthy donors underwent successful autologous or allogeneic stem cell mobilization, respectively, using a biosimilar G-CSF (520 with Ratiograstim®/Tevagrastim, 384 with Zarzio®). The indication for stem cell mobilization in hematology patients included 326 patients with multiple myeloma, 273 with Non-Hodgkin's lymphoma (NHL), 79 with Hodgkin's lymphoma (HL), and other disease. 156 sibling or volunteer unrelated donors were mobilized using biosimilar G-CSF. Mobilization resulted in good mobilization of CD34+ stem cells with side effects similar to originator G-CSF. Post transplantation engraftment did not significantly differ from results previously documented with the originator G-CSF. The side effects experienced by the patients or donors mobilized by biosimilar G-CSF were minimal and were comparable to those of originator G-CSF. In summary, the efficacy of biosimilar G-CSFs in terms of PBSC yield as well as their toxicity profile are equivalent to historical data with the reference G-CSF.

  13. Signalling in the epidermis: the E2F cell cycle regulatory pathway in epidermal morphogenesis, regeneration and transformation.

    Science.gov (United States)

    Ivanova, Iordanka A; D'Souza, Sudhir J A; Dagnino, Lina

    2005-01-01

    The epidermis is the outermost layer in the skin, and it is the first line of defence against the environment. The epidermis also provides a barrier against loss of fluids and electrolytes, which is crucial for life. Essential in the maintenance of this tissue is its ability to continually self-renew and regenerate after injury. These two characteristics are critically dependent on the ability of the principal epidermal cell type, the keratinocyte, to proliferate and to respond to differentiation cues. Indeed, the epidermis is a multilayered tissue composed of keratinocyte stem cells and their differentiated progeny. Central for the control of cell proliferation is the E2F transcription factor regulatory network. This signaling network also includes cyclins, cdk, cdk inhibitors and the retinoblastoma (pRb) family of proteins. The biological importance of the E2F/pRb pathway is emphasized by the fact that a majority of human tumours exhibit alterations that disrupt the ability of pRb proteins to inhibit E2F, leading to permanent activation of the latter. Further, E2F is essential for normal epidermal regeneration after injury. Other member of the E2F signaling pathway are also involved in epidermal development and pathophysiology. Thus, whereas the pRb family of proteins is essential for epidermal morphogenesis, abnormal regulation of cyclins and E2F proteins results in tumorgenesis in this tissue. In this review, we discuss the role of each member of this important growth regulatory network in epidermal formation, homeostasis and carcinogenesis.

  14. Induction of suppression of delayed type hypersensitivity to herpes simplex virus by epidermal cells exposed to UV-irradiated urocanic acid in vivo

    International Nuclear Information System (INIS)

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.P.

    1987-01-01

    Urocanic acid (UCA), the putative photoreceptor for ultraviolet radiation (UV)-induced suppression, undergoes a UV-dependent trans to cis isomerisation. Epidermal cells from mice painted with UCA, containing a known proportion of the cis-isomer, generate suppression of the delayed type hypersensitivity response to herpes simplex virus type 1 (HSV-1) when transferred to naive syngeneic recipients at the same time and site as infection with HSV-1. One T suppressor cell subset, of phenotype (Thy1+, L3T4+, Ly2-), is induced by the cis-UCA modified epidermal cell transfer. Flow cytometric analysis of the epidermal cells from skin treated with UV or cis-UCA indicates an overall reduction from normal in the number of cells expressing MHC Class II antigens, but no alteration in the number expressing I-J antigens

  15. Treatment of chronic hepatic cirrhosis with autologous bone marrow stem cells transplantation in rabbits

    International Nuclear Information System (INIS)

    Zhu Yinghe; Xu Ke; Zhang Xitong; Han Jinling; Ding Guomin; Gao Jue

    2008-01-01

    Objective: To evaluate the feasibility of treatment for rabbit model with hepatic cirrhosis by transplantation of autologous bone marrow-derived stem cells via the hepatic artery and evaluate the effect of hepatocyte growth-promoting factors (pHGF) in the treatment of stem cells transplantation to liver cirrhosis. To provide empirical study foundation for future clinical application. Methods: Chronic hepatic cirrhosis models of rabbits were developed by subcutaneous injection with 50% CCl 4 0.2 ml/kg. Twenty-five model rabbits were randomly divided into three experimental groups, stem cells transplant group (10), stem cells transplant + pHGF group (10) and control group (5). Autologous bone marrow was harvested from fibia of each rabbit, and stem cells were disassociated using density gradient centrifugation and transplanted into liver via the hepatic artery under fluoroscopic guidance. In the stem cells transplant + pHGF group, the hepatocyte growth-promoting factor was given via intravenous injection with 2 mg/kg every other day for 20 days. Liver function tests were monitored at 4, 8,12 weeks intervals and histopathologic examinations were performed at 12 weeks following transplantation. The data were analyzed using analysis of variance Results: Following transplantation of stern cells, the liver function of rabbits improved gradually. Twelve weeks after transplantation, the activity of ALT and AST decreased from (73.0±10.6) U/L and (152.4± 22.8) U/L to (48.0±1.0) U/L and (86.7±2.1) U/L respectively; and the level of ALB and PTA increased from (27.5±1.8) g/L and 28.3% to (33.2±0.5) g/L and 44.1% respectively. The changes did not have statistically significant difference when compared to the control group (P>0.05). However, in the stem cellstransplant + pHGF group, the activity of ALT and AST decreased to (43.3±0.6) U/L and (78.7±4.0) U/L respectively and the level of ALB and PTA increased to (35.7±0.4) g/L and 50.5% respectively. The difference was

  16. Genetic analysis of Ras genes in epidermal development and tumorigenesis

    Science.gov (United States)

    Drosten, Matthias; Lechuga, Carmen G; Barbacid, Mariano

    2013-01-01

    Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation. PMID:24150175

  17. Cell Seeding Densities in Autologous Chondrocyte Implantation Techniques for Cartilage Repair.

    Science.gov (United States)

    Foldager, Casper Bindzus; Gomoll, Andreas H; Lind, Martin; Spector, Myron

    2012-04-01

    Cartilage repair techniques have been among the most intensively investigated treatments in orthopedics for the past decade, and several different treatment modalities are currently available. Despite the extensive research effort within this field, the generation of hyaline cartilage remains a considerable challenge. There are many parameters attendant to each of the cartilage repair techniques that can affect the amount and types of reparative tissue generated in the cartilage defect, and some of the most fundamental of these parameters have yet to be fully investigated. For procedures in which in vitro-cultured autologous chondrocytes are implanted under a periosteal or synthetic membrane cover, or seeded onto a porous membrane or scaffold, little is known about how the number of cells affects the clinical outcome. Few published clinical studies address the cell seeding density that was employed. The principal objective of this review is to provide an overview of the cell seeding densities used in cell-based treatments currently available in the clinic for cartilage repair. Select preclinical studies that have informed the use of specific cell seeding densities in the clinic are also discussed.

  18. The effect of wound dressings on a bio-engineered human dermo-epidermal skin substitute in a rat model

    OpenAIRE

    Hüging, Martina; Biedermann, Thomas; Sobrio, Monia; Meyer, Sarah; Böttcher-Haberzeth, Sophie; Manuel, Edith; Horst, Maya; Hynes, Sally; Reichmann, Ernst; Schiestl, Clemens; Hartmann-Fritsch, Fabienne

    2017-01-01

    Autologous bio-engineered dermo-epidermal skin substitutes are a promising treatment for large skin defects such as burns. For their successful clinical application, the graft dressing must protect and support the keratinocyte layer and, in many cases, possess antimicrobial properties. However, silver in many antimicrobial dressings may inhibit keratinocyte growth and differentiation. The purpose of our study is to evaluate the effect of various wound dressings on the healing of a human hydro...

  19. Successful autologous Stem Cell transplantation in a woman with Severe Systemic Sclerosis, refractory to immunosuppressive therapy

    International Nuclear Information System (INIS)

    Reyes, Elsa; Arbelaez, Ana M; Avila P, Luz M; Benjamin O, Juan Manuel

    2009-01-01

    The following case presents a 49 year-old patient with diffuse SSc and poor evolution given by rapidly progressive of severe skin and lung involvement, who had undergone autologous stem cell transplantation in December 2008. Sustained improvement of skin thickening and of major organ involvement was achieved at six months.

  20. Autologous Mesenchymal Stem Cells in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Ashu Bhasin

    2011-12-01

    Full Text Available Background: Cell transplantation is a ‘hype and hope’ in the current scenario. It is in the early stage of development with promises to restore function in chronic diseases. Mesenchymal stem cell (MSC transplantation in stroke patients has shown significant improvement by reducing clinical and functional deficits. They are feasible and multipotent and have homing characteristics. This study evaluates the safety, feasibility and efficacy of autologous MSC transplantation in patients with chronic stroke using clinical scores and functional imaging (blood oxygen level-dependent and diffusion tensor imaging techniques. Methods: Twelve chronic stroke patients were recruited; inclusion criteria were stroke lasting 3 months to 1 year, motor strength of hand muscles of at least 2, and NIHSS of 4–15, and patients had to be conscious and able to comprehend. Fugl Meyer (FM, modified Barthel index (mBI, MRC, Ashworth tone grade scale scores and functional imaging scans were assessed at baseline, and after 8 and 24 weeks. Bone marrow was aspirated under aseptic conditions and expansion of MSC took 3 weeks with animal serum-free media (Stem Pro SFM. Six patients were administered a mean of 50–60 × 106 cells i.v. followed by 8 weeks of physiotherapy. Six patients served as controls. This was a non-randomized experimental controlled trial. Results: Clinical and radiological scanning was normal for the stem cell group patients. There was no mortality or cell-related adverse reaction. The laboratory tests on days 1, 3, 5 and 7 were also normal in the MSC group till the last follow-up. The FM and mBI showed a modest increase in the stem cell group compared to controls. There was an increased number of cluster activation of Brodmann areas BA 4 and BA 6 after stem cell infusion compared to controls, indicating neural plasticity. Conclusion: MSC therapy aiming to restore function in stroke is safe and feasible. Further randomized controlled trials are needed

  1. Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue

    International Nuclear Information System (INIS)

    Liu, S Y.; Eary, Janet F.; Petersdorf, S H.; Martin, P J.; Maloney, D G.; Applebaum, F. R.; Matthews, D. C.; Bush, S A.; Durack, L. D.; Fisher, Darrell R.; Gooley, T A.; Bernstein, I. D.; Press, O. W.

    1997-01-01

    Radioimmunotherapy (RIT) is a promising treatment approach for B-cell lymphomas. This is our first opportunity to report long-term follow-up data and late toxicities in 29 patients treated with myeloablative doses of iodine-131-anti-CD20 antibody (anti-B1) and autologous stem-cell rescue. PATIENTS AND METHODS: Trace-labeled biodistribution studies first determined the ability to deliver higher absorbed radiation doses to tumor sites than to lung, liver, or kidney at varying amounts of anti-B1 protein (0.35, 1.7, or 7 mg/kg). Twenty- nine patients received therapeutic infusions of single-agent (131)I- anti-B1, given at the protein dose found optimal in the biodistribution study, labeled with amounts of (131)I (280 to 785 mCi[10.4 to 29.0 GBq]) calculated to deliver specific absorbed radiation doses to the normal organs, followed by autologous stem-cell support. RESULTS: Major responses occurred in 25 patients (86%), with 23 complete responses (CRs; 79%). The nonhematopoietic do se-limiting toxicity was reversible cardiopulmonary insufficiency, which occurred in two patients at RIT doses that delivered > or = 27 Gy to the lungs. With a median follow-up time of 42 months, the estimated overall and progression-free survival rates are 68% and 42%, respectively. Currently, 14 of 29 patients remain in unmaintained remissions that range from 27+ to 87+ months after RIT. Late toxicities have been uncommon except for elevated thyroid-stimulating hormone (TSH) levels found in approximately 60% of the subjects. Two patients developed second malignancies, but none have developed myelodysplasia (MDS). CONCLUSION: Myeloablative (131)I-anti- B1 RIT is relatively well tolerated when given with autologous stem- cell support and often results in prolonged remission durations with few late toxicities

  2. Effect of glucocorticoids and gamma radiation on epidermal Langerhans cells

    International Nuclear Information System (INIS)

    Belsito, D.V.; Baer, R.L.; Thorbecke, G.J.; Gigli, I.

    1984-01-01

    The effect of 750 rads of gamma radiation on the rate of return of epidermal Langerhans cells (LC) following suppressive doses of topical glucorticoids was studied in guinea pigs. Gamma radiation alone had no effect on the LC as assessed by staining for cell membrane ATPase activity and Ia antigen. It did, however, delay the expected return of Ia but not ATPase surface markers on the LC after perturbation with glucocorticoids. The delayed return of surface Ia antigen is possibly related to a radiation-induced defect in the production of a required lymphokine and/or in intracellular Ia transport. Although our data do not rule out a cytolytic effect of steroids on the LC, they do strongly suggest that, at least in part, glucocorticoids act on the LC by altering cell surface characteristics

  3. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  4. The use of gamma-irradiation and ultraviolet-irradiation in the preparation of human melanoma cells for use in autologous whole-cell vaccines

    International Nuclear Information System (INIS)

    Deacon, Donna H; Slingluff, Craig L Jr; Hogan, Kevin T; Swanson, Erin M; Chianese-Bullock, Kimberly A; Denlinger, Chadrick E; Czarkowski, Andrea R; Schrecengost, Randy S; Patterson, James W; Teague, Mark W

    2008-01-01

    Human cancer vaccines incorporating autologous tumor cells carry a risk of implantation and subsequent metastasis of viable tumor cells into the patient who is being treated. Despite the fact that the melanoma cell preparations used in a recent vaccine trial (Mel37) were gamma-irradiated (200 Gy), approximately 25% of the preparations failed quality control release criteria which required that the irradiated cells incorporate 3 H-thymidine at no more than 5% the level seen in the non-irradiated cells. We have, therefore, investigated ultraviolet (UV)-irradiation as a possible adjunct to, or replacement for gamma-irradiation. Melanoma cells were gamma- and/or UV-irradiated. 3 H-thymidine uptake was used to assess proliferation of the treated and untreated cells. Caspase-3 activity and DNA fragmentation were measured as indicators of apoptosis. Immunohistochemistry and Western blot analysis was used to assess antigen expression. UV-irradiation, either alone or in combination with gamma-irradiation, proved to be extremely effective in controlling the proliferation of melanoma cells. In contrast to gamma-irradiation, UV-irradiation was also capable of inducing significant levels of apoptosis. UV-irradiation, but not gamma-irradiation, was associated with the loss of tyrosinase expression. Neither form of radiation affected the expression of gp100, MART-1/MelanA, or S100. These results indicate that UV-irradiation may increase the safety of autologous melanoma vaccines, although it may do so at the expense of altering the antigenic profile of the irradiated tumor cells

  5. Transplantation of autologous adipose stem cells lacks therapeutic efficacy in the experimental autoimmune encephalomyelitis model.

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    Full Text Available Multiple sclerosis (MS, characterized by chronic inflammation, demyelination, and axonal damage, is a complicated neurological disease of the human central nervous system. Recent interest in adipose stromal/stem cell (ASCs for the treatment of CNS diseases has promoted further investigation in order to identify the most suitable ASCs. To investigate whether MS affects the biologic properties of ASCs and whether autologous ASCs from MS-affected sources could serve as an effective source for stem cell therapy, cells were isolated from subcutaneous inguinal fat pads of mice with established experimental autoimmune encephalomyelitis (EAE, a murine model of MS. ASCs from EAE mice and their syngeneic wild-type mice were cultured, expanded, and characterized for their cell morphology, surface antigen expression, osteogenic and adipogenic differentiation, colony forming units, and inflammatory cytokine and chemokine levels in vitro. Furthermore, the therapeutic efficacy of the cells was assessed in vivo by transplantation into EAE mice. The results indicated that the ASCs from EAE mice displayed a normal phenotype, typical MSC surface antigen expression, and in vitro osteogenic and adipogenic differentiation capacity, while their osteogenic differentiation capacity was reduced in comparison with their unafflicted control mice. The ASCs from EAE mice also demonstrated increased expression of pro-inflammatory cytokines and chemokines, specifically an elevation in the expression of monocyte chemoattractant protein-1 and keratin chemoattractant. In vivo, infusion of wild type ASCs significantly ameliorate the disease course, autoimmune mediated demyelination and cell infiltration through the regulation of the inflammatory responses, however, mice treated with autologous ASCs showed no therapeutic improvement on the disease progression.

  6. Foliar Epidermal Studies of Plants in Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    H. A. Thakur

    2014-03-01

    Full Text Available This paper describes foliar epidermal structure in 17 species belonging to 17 genera of the family Euphoprbiaceae. Anomocytic stomata is predominant, rarely they are anisocytic, paracytic on the same foliar surface with different combinations. Leaves are hypostomatic and rarely amphistomatic. The foliar surface is smooth, rarely striated. The foliar epidermal cell walls are straight or undulate. Distribution of stomata, stomatal index, stomatal frequency, stomatal size and other cell wall contours are described in detail.

  7. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model.

    Science.gov (United States)

    O'Loughlin, Aonghus; Kulkarni, Mangesh; Vaughan, Erin E; Creane, Michael; Liew, Aaron; Dockery, Peter; Pandit, Abhay; O'Brien, Timothy

    2013-01-01

    Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel therapy for the treatment of non

  8. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    International Nuclear Information System (INIS)

    Hicks, B.D.; St Aubin, D.J.; Geraci, J.R.; Brown, W.R.

    1985-01-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciled by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed

  9. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, B.D.; St. Aubin, D.J.; Geraci, J.R.; Brown, W.R.

    1985-07-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciled by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed.

  10. Generation of autologous tumor-specific T cells for adoptive transfer based on vaccination, in vitro restimulation and CD3/CD28 dynabead-induced T cell expansion

    DEFF Research Database (Denmark)

    Brimnes, Marie Klinge; Gang, Anne Ortved; Donia, Marco

    2012-01-01

    Adoptive cell transfer (ACT) of in vitro expanded autologous tumor-infiltrating lymphocytes (TIL) has been shown to exert therapeutic efficacy in melanoma patients. We aimed to develop an ACT protocol based on tumor-specific T cells isolated from peripheral blood and in vitro expanded by Dynabeads...

  11. Chimeric autologous/allogeneic constructs for skin regeneration.

    Science.gov (United States)

    Rasmussen, Cathy Ann; Tam, Joshua; Steiglitz, Barry M; Bauer, Rebecca L; Peters, Noel R; Wang, Ying; Anderson, R Rox; Allen-Hoffmann, B Lynn

    2014-08-01

    The ideal treatment for severe cutaneous injuries would eliminate the need for autografts and promote fully functional, aesthetically pleasing autologous skin regeneration. NIKS progenitor cell-based skin tissues have been developed to promote healing by providing barrier function and delivering wound healing factors. Independently, a device has recently been created to "copy" skin by harvesting full-thickness microscopic tissue columns (MTCs) in lieu of autografts traditionally harvested as sheets. We evaluated the feasibility of combining these two technologies by embedding MTCs in NIKS-based skin tissues to generate chimeric autologous/allogeneic constructs. Chimeric constructs have the potential to provide immediate wound coverage, eliminate painful donor site wounds, and promote restoration of a pigmented skin tissue possessing hair follicles, sweat glands, and sebaceous glands. After MTC insertion, chimeric constructs and controls were reintroduced into air-interface culture and maintained in vitro for several weeks. Tissue viability, proliferative capacity, and morphology were evaluated after long-term culture. Our results confirmed successful MTC insertion and integration, and demonstrated the feasibility of generating chimeric autologous/allogeneic constructs that preserved the viability, proliferative capacity, and structure of autologous pigmented skin. These feasibility studies established the proof-of-principle necessary to further develop chimeric autologous/allogeneic constructs for the treatment of complex skin defects. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  12. Vaccination with experimental feline immunodeficiency virus vaccines, based on autologous infected cells, elicits enhancement of homologous challenge infection

    NARCIS (Netherlands)

    J.A. Karlas (Jos); C.H.J. Siebelink (Kees); M.A. Peer; W. Huisman (Willem); A.M. Cuisinier; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1999-01-01

    textabstractCats were vaccinated with fixed autologous feline immunodeficiency virus (FIV)-infected cells in order to present viral proteins to the immune system of individual cats in an MHC-matched fashion. Upon vaccination, a humoral response against Gag was induced. Furthermore,

  13. Clinical Benefit of Allogeneic Melanoma Cell Lysate-Pulsed Autologous Dendritic Cell Vaccine in MAGE-Positive Colorectal Cancer Patients

    DEFF Research Database (Denmark)

    Toh, Han Chong; Wang, Who-Whong; Chia, Whay Kuang

    2009-01-01

    PURPOSE: We evaluated the clinical benefit of an allogeneic melanoma cell lysate (MCL)-pulsed autologous dendritic cell (DC) vaccine in advanced colorectal cancer patients expressing at least one of six MAGE-A antigens overexpressed by the cell line source of the lysate. EXPERIMENTAL DESIGN: DCs...... were cultured from peripheral blood mononuclear cells (PBMC), pulsed with the allogeneic MCL, and matured using cytokines that achieved high CD83- and CCR7-expressing DCs. Each patient received up to 10 intradermal vaccinations (3-5 x 10(6) cells per dose) at biweekly intervals. RESULTS: Twenty......-free for >27 and >37 months, respectively. This result is particularly meaningful as all patients had progressive disease before treatment. Overall, DC vaccination was associated with a serial decline in regulatory T cells. Using an antibody array, we characterized plasma protein profiles in responding...

  14. Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies.

    Science.gov (United States)

    Block, Travis J; Marinkovic, Milos; Tran, Olivia N; Gonzalez, Aaron O; Marshall, Amanda; Dean, David D; Chen, Xiao-Dong

    2017-10-27

    Degenerative diseases are a major public health concern for the aging population and mesenchymal stem cells (MSCs) have great potential for treating many of these diseases. However, the quantity and quality of MSCs declines with aging, limiting the potential efficacy of autologous MSCs for treating the elderly population. Human bone marrow (BM)-derived MSCs from young and elderly donors were obtained and characterized using standard cell surface marker criteria (CD73, CD90, CD105) as recommended by the International Society for Cellular Therapy (ISCT). The elderly MSC population was isolated into four subpopulations based on size and stage-specific embryonic antigen-4 (SSEA-4) expression using fluorescence-activated cell sorting (FACS), and subpopulations were compared to the unfractionated young and elderly MSCs using assays that evaluate MSC proliferation, quality, morphology, intracellular reactive oxygen species, β-galactosidase expression, and adenosine triphosphate (ATP) content. The ISCT-recommended cell surface markers failed to detect any differences between young and elderly MSCs. Here, we report that elderly MSCs were larger in size and displayed substantially higher concentrations of intracellular reactive oxygen species and β-galactosidase expression and lower amounts of ATP and SSEA-4 expression. Based on these findings, cell size and SSEA-4 expression were used to separate the elderly MSCs into four subpopulations by FACS. The original populations (young and elderly MSCs), as well as the four subpopulations, were then characterized before and after culture on tissue culture plastic and BM-derived extracellular matrix (BM-ECM). The small SSEA-4-positive subpopulation representing ~ 8% of the original elderly MSC population exhibited a "youthful" phenotype that was similar to that of young MSCs. The biological activity of this elderly subpopulation was inhibited by senescence-associated factors produced by the unfractionated parent population

  15. Stimulation of allogeneic lymphocytes by skin epidermal cells in the rat

    International Nuclear Information System (INIS)

    Tanaka, S.; Sakai, A.

    1979-01-01

    The ability of skin epidermal cells to induce allogeneic lymphocytes into proliferation was examined in mixed skin cell-lymphocyte culture reaction (MSLR). The stimulatng capacity of skin cells was reduced significantly by trypsin digestion, although the damage was repaired by incubation at 37 C for 3 hr. The optimal concentration of mitomycin C for treatment of stimulating cells in the MSLR differed from that in mixed lymphocyte culture reaction (MLR). Irradiation rendered them three to four times more stimulatory than did mitomycin C. Removal of adherent cells from responding cells by passage through a nylon-wool column gave a substantial elevation of the MSLR. The lymphocytes cocultured with skin cells in the primary MSLR incorporated 3 H-thymidine, with the peak at the 6th day of culture. If the lymphocytes primed in the MSLR were restimulated with skin cells from the same stimulating strain, the primed lymphocytes responded promptly and in great magnitude

  16. The role of NK cells in HIV-1 protection: autologous, allogeneic or both?

    Science.gov (United States)

    Hens, Jef; Jennes, Wim; Kestens, Luc

    2016-01-01

    transmission. Therefore, theoretically, HIV-1 would be eliminated before it has the chance to infect the autologous cells in the recipient. While this "alloreactive" NK cell mechanism is especially relevant to HIV transmission in monogamous couples, it would be interesting to investigate how it could influence resistance to HIV in other settings. The objective of this review is to summarize the knowledge about these autologous and alloreactive NK cell responses with regard to HIV-1 outcome.

  17. In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells

    DEFF Research Database (Denmark)

    Bang, Bo; Gniadecki, Robert; Larsen, Jørgen K

    2003-01-01

    a single dose of UVB irradiation. Normal healthy individuals were irradiated with three minimal erythema doses (MED) of UVB on forearm or buttock skin. Suction blisters from unirradiated and irradiated skin were raised, and Fas, FasL, and apoptosis of epidermal cells quantified by flow cytometry...

  18. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors.

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong

    2016-12-01

    : Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.

  19. Design of a hybrid biomaterial for tissue engineering: Biopolymer-scaffold integrated with an autologous hydrogel carrying mesenchymal stem-cells.

    Science.gov (United States)

    Weinstein-Oppenheimer, Caroline R; Brown, Donald I; Coloma, Rodrigo; Morales, Patricio; Reyna-Jeldes, Mauricio; Díaz, María J; Sánchez, Elizabeth; Acevedo, Cristian A

    2017-10-01

    Biologically active biomaterials as biopolymers and hydrogels have been used in medical applications providing favorable results in tissue engineering. In this research, a wound dressing device was designed by integration of an autologous clot hydrogel carrying mesenchymal stem-cells onto a biopolymeric scaffold. This hybrid biomaterial was tested in-vitro and in-vivo, and used in a human clinical case. The biopolymeric scaffold was made with gelatin, chitosan and hyaluronic acid, using a freeze-drying method. The scaffold was a porous material which was designed evaluating both physical properties (glass transition, melting temperature and pore size) and biological properties (cell viability and fibronectin expression). Two types of chitosan (120 and 300kDa) were used to manufacture the scaffold, being the high molecular weight the most biologically active and stable after sterilization with gamma irradiation (25kGy). A clot hydrogel was formulated with autologous plasma and calcium chloride, using an approach based on design of experiments. The optimum hydrogel was used to incorporate cells onto the porous scaffold, forming a wound dressing biomaterial. The wound dressing device was firstly tested in-vitro using human cells, and then, its biosecurity was evaluated in-vivo using a rabbit model. The in-vitro results showed high cell viability after one week (99.5%), high mitotic index (19.8%) and high fibronectin expression. The in-vivo application to rabbits showed adequate biodegradability capacity (between 1 and 2weeks), and the histological evaluation confirmed absence of rejection signs and reepithelization on the wound zone. Finally, the wound dressing biomaterial was used in a single human case to implant autologous cells on a skin surgery. The medical examination indicated high biocompatibility, partial biodegradation at one week, early regeneration capacity at 4weeks and absence of rejection signs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Combined inhibition of EMMPRIN and epidermal growth factor receptor prevents the growth and migration of head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Suzuki, Shinsuke; Ishikawa, Kazuo

    2014-03-01

    It has been reported that the epidermal growth factor receptor (EGFR) expression is associated with the extracellular matrix metalloproteinase inducer (EMMPRIN) in some solid tumors; however, the relationship of EMMPRIN with EGFR in head and neck cancers is not fully understood. To determine the relationship between EMMPRIN and EGFR in head and neck squamous cell carcinoma (HNSCC), HNSCC cells were stimulated with epidermal growth factor (EGF), a ligand of EGFR. EMMPRIN expression in HNSCC cells was upregulated by EGF. In addition, EGF stimulation induced HNSCC cell invasion and MMP-9 expression. This increase in invasion and MMP-9 expression was abrogated by downmodulation of EMMPRIN. Furthermore, to determine the effects of combined EMMPRIN and EGFR targeting in HNSCC, HNSCC cells were treated with an EMMPRIN function-blocking antibody and the EGFR inhibitor AG1478. This combined treatment resulted in greater inhibition of HNSCC cell proliferation and migration compared with the individual agents alone. These results suggest that EMMPRIN mediates EGFR-induced tumorigenicity and that combined targeting of EMMPRIN and EGFR may be an efficacious treatment approach.

  1. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients.

    Science.gov (United States)

    Carrion, F; Nova, E; Ruiz, C; Diaz, F; Inostroza, C; Rojo, D; Mönckeberg, G; Figueroa, F E

    2010-03-01

    Mesenchymal stem cells (MSCs) exert suppressive effects in several disease models including lupus prone mice. However, autologous MSC therapy has not been tested in human systemic lupus erythematosus (SLE). We evaluate the safety and efficacy of bone marrow (BM)-derived MSCs in two SLE patients; the suppressor effect of these cells in-vitro and the change in CD4+CD25+FoxP3+ T regulatory (Treg) cells in response to treatment. Two females (JQ and SA) of 19 and 25 years of age, fulfilling the 1997 American College of Rheumatology (ACR) criteria for SLE were infused with autologous BM-derived MSCs. Disease activity indexes and immunological parameters were assessed at baseline, 1, 2, 7 and 14 weeks. Peripheral blood lymphocyte (PBL) subsets and Treg cells were quantitated by flow cytometry, and MSCs tested for in-vitro suppression of activation and proliferation of normal PBLs. No adverse effects or change in disease activity indexes were noted during 14 weeks of follow-up, although circulating Treg cells increased markedly. Patient MSCs effectively suppressed in-vitro PBL function. However, JQ developed overt renal disease 4 months after infusion. MSC infusion was without adverse effects, but did not modify initial disease activity in spite of increasing CD4+CD25+FoxP3+ cell counts. One patient subsequently had a renal flare. We speculate that the suppressive effects of MSC-induced Treg cells might be dependent on a more inflammatory milieu, becoming clinically evident in patients with higher degrees of disease activity.

  2. Autologous Stem Cell Transplantation in Patients with Acute Myeloid Leukemia: a Single-Centre Experience

    Directory of Open Access Journals (Sweden)

    Kakucs Enikő

    2013-04-01

    Full Text Available Introduction: Autologous haemopoietic stem cell transplantation (SCT is an important treatment modality for patients with acute myeloid leukemia with low and intermediate risk disease. It has served advantages over allogenic transplantation, because it does not need a matched donor, there is no graft versus host disease, there are less complications and a faster immune reconstitution than in the allo-setting. The disadvantage is the lack of the graft versus leukaemia effect.

  3. Lysis of fresh human solid tumors by autologous lymphocytes activated in vitro with lectins

    International Nuclear Information System (INIS)

    Mazumder, A.; Grimm, E.A.; Zhang, H.Z.; Rosenberg, S.A.

    1982-01-01

    Human peripheral blood lymphocytes (PBL), obtained from patients with a variety of cancers, were incubated in vitro with phytohemagglutinin, concanavalin A, and crude or lectin-free T-cell growth factors. The lectin-activated PBL of nine patients were capable of lysing fresh autologous tumor during a 4-hr 51Cr release assay. Multiple metastases from the same patient were equivalently lysed by these activated autologous PBL. No lysis of fresh PBL or lectin-induced lymphoblast cell targets was seen, although tumor, PBL, and lymphoblast cells were shown to be equally lysable using allosensitized cells. The activated cells could be expanded without loss of cytotoxicity in crude or lectin-free T-cell growth factors. The generation of cells lytic to fresh autologous tumor was dependent on the presence of adherent cells, although the lytic cell itself was not adherent. Proliferation was not involved in the induction of lytic cells since equal lysis was induced in irradiated and nonirradiated lymphocytes. Lectin was not required in the lytic assay, and the addition of alpha-methyl-D-mannoside to concanavalin A-activated lymphoid cells did not increase the lysis of fresh tumor cells. Activation by lectin for 3 days appears to be an efficient and convenient method for generating human cells lytic to fresh autologous tumor. These lytic cells may be of value for studies of the cell-mediated lysis of human tumor and possibly for tumor immunotherapy as well

  4. Autologous Adipose-Derived Tissue Matrix Part I: Biologic Characteristics.

    Science.gov (United States)

    Schendel, Stephen A

    2017-10-01

    Autologous collagen is an ideal soft tissue filler and may serve as a matrix for stem cell implantation and growth. Procurement of autologous collagen has been limited, though, secondary to a sufficient source. Liposuction is a widely performed and could be a source of autologous collagen. The amount of collagen and its composition in liposuctioned fat remains unknown. The purpose of this research was to characterize an adipose-derived tissue-based product created using ultrasonic cavitation and cryo-grinding. This study evaluated the cellular and protein composition of the final product. Fat was obtained from individuals undergoing routine liposuction and was processed by a 2 step process to obtain only the connective tissue. The tissue was then evaluated by scanning electronic microscope, Western blot analysis, and flow cytometry. Liposuctioned fat was obtained from 10 individuals with an average of 298 mL per subject. After processing an average of 1 mL of collagen matrix was obtained from each 100 mL of fat. Significant viable cell markers were present in descending order for adipocytes > CD90+ > CD105+ > CD45+ > CD19+ > CD144+ > CD34+. Western blot analysis showed collagen type II, III, IV, and other proteins. Scanning electronic microscope study showed a regular pattern of cross-linked, helical collagen. Additionally, vital staing demonstrated that the cells were still viable after processing. Collagen and cells can be easily obtained from liposuctioned fat by ultrasonic separation without alteration of the overall cellular composition of the tissue. Implantation results in new collagen and cellular growth. Collagen matrix with viable cells for autologous use can be obtained from liposuctioned fat and may provide long term results. 5. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  5. Effect of liver histopathology on islet cell engraftment in the model mimicking autologous islet cell transplantation.

    Science.gov (United States)

    Desai, Chirag S; Khan, Khalid M; Ma, Xiaobo; Li, Henghong; Wang, Juan; Fan, Lijuan; Chen, Guoling; Smith, Jill P; Cui, Wanxing

    2017-11-02

    The inflammatory milieu in the liver as determined by histopathology is different in individual patients undergoing autologous islet cell transplantation. We hypothesized that inflammation related to fatty-liver adversely impacts islet survival. To test this hypothesis, we used a mouse model of fatty-liver to determine the outcome of syngeneic islet transplantation after chemical pancreatectomy. Mice (C57BL/6) were fed a high-fat-diet from 6 weeks of age until attaining a weight of ≥28 grams (6-8 weeks) to produce a fatty liver (histologically > 30% fat);steatosis was confirmed with lipidomic profile of liver tissue. Islets were infused via the intra-portal route in fatty-liver and control mice after streptozotocin induction of diabetes. Outcomes were assessed by the rate of euglycemia, liver histopathology, evaluation of liver inflammation by measuring tissue cytokines IL-1β and TNF-α by RT-PCR and CD31 expression by immunohistochemistry. The difference in the euglycemic fraction between the normal liver group (90%, 9/10) and the fatty-liver group (37.5%, 3/8) was statistically significant at the 18 th day post- transplant and was maintained to the end of the study (day 28) (p = 0.019, X 2 = 5.51). Levels of TNF-α and IL-1β were elevated in fatty-liver mice (p = 0.042, p = 0.037). Compared to controls cytokine levels were elevated after islet cell transplantation and in transplanted fatty-liver mice as compared to either fatty- or islet transplant group alone (p = NS). A difference in the histochemical pattern of CD31 could not be determined. Fatty-liver creates an inflammatory state which adversely affects the outcome of autologous islet cell transplantation.

  6. The Evolution of Intracardiac Hemodynamics Post Autologous Stem Cell Transplant in a Case of Multiple Myeloma Associated with Severe Tricuspid and Mitral Valve Insufficiency

    Directory of Open Access Journals (Sweden)

    Tudor Cezara-Iuliana

    2017-12-01

    Full Text Available Stem cells are undifferentiated cells that can divide and become differentiated. Hematopoietic stem cells cannot transform into new stem cells such as cardiomyocytes or new heart valves, but they act through paracrine effects, by secreting cytokines and growth factors that lead to an increase in contractility and overall improved function. In this case report, we present how autologous stem cell transplantation can bring two major benefits: the first refers to hematological malignancy and the second is about the improvement of the heart condition. We present the case of a 60-year-old patient diagnosed with multiple myeloma suffering from a bi-valve severe condition in which autologous stem cell transplantation led to the remission of the patient’s malignant disease and also improved the heart function.

  7. An Epidermal Biosensor for Carcinoembryonic Antigen

    National Research Council Canada - National Science Library

    Schwartz, Pauline

    2001-01-01

    ...). An epidermal biosensor is a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  8. Shavenbaby couples patterning to epidermal cell shape control.

    Directory of Open Access Journals (Sweden)

    Hélène Chanut-Delalande

    2006-09-01

    Full Text Available It is well established that developmental programs act during embryogenesis to determine animal morphogenesis. How these developmental cues produce specific cell shape during morphogenesis, however, has remained elusive. We addressed this question by studying the morphological differentiation of the Drosophila epidermis, governed by a well-known circuit of regulators leading to a stereotyped pattern of smooth cells and cells forming actin-rich extensions (trichomes. It was shown that the transcription factor Shavenbaby plays a pivotal role in the formation of trichomes and underlies all examined cases of the evolutionary diversification of their pattern. To gain insight into the mechanisms of morphological differentiation, we sought to identify shavenbaby's downstream targets. We show here that Shavenbaby controls epidermal cell shape, through the transcriptional activation of different classes of cellular effectors, directly contributing to the organization of actin filaments, regulation of the extracellular matrix, and modification of the cuticle. Individual inactivation of shavenbaby's targets produces distinct trichome defects and only their simultaneous inactivation prevent trichome formation. Our data show that shavenbaby governs an evolutionarily conserved developmental module consisting of a set of genes collectively responsible for trichome formation, shedding new light on molecular mechanisms acting during morphogenesis and the way they can influence evolution of animal forms.

  9. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...

  10. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack

    Directory of Open Access Journals (Sweden)

    Takemoto Daigo

    2008-06-01

    Full Text Available Abstract Background Plant cells respond to the presence of potential fungal or oomycete pathogens by mounting a basal defence response that involves aggregation of cytoplasm, reorganization of cytoskeletal, endomembrane and other cell components and development of cell wall appositions beneath the infection site. This response is induced by non-adapted, avirulent and virulent pathogens alike, and in the majority of cases achieves penetration resistance against the microorganism on the plant surface. To explore the nature of signals that trigger this subcellular response and to determine the timing of its induction, we have monitored the reorganization of GFP-tagged actin, microtubules, endoplasmic reticulum (ER and peroxisomes in Arabidopsis plants – after touching the epidermal surface with a microneedle. Results Within 3 to 5 minutes of touching the surface of Arabidopsis cotyledon epidermal cells with fine glass or tungsten needles, actin microfilaments, ER and peroxisomes began to accumulate beneath the point of contact with the needle. Formation of a dense patch of actin was followed by focusing of actin cables on the site of contact. Touching the cell surface induced localized depolymerization of microtubules to form a microtubule-depleted zone surrounding a dense patch of GFP-tubulin beneath the needle tip. The concentration of actin, GFP-tubulin, ER and peroxisomes remained focused on the contact site as the needle moved across the cell surface and quickly dispersed when the needle was removed. Conclusion Our results show that plant cells can detect the gentle pressure of a microneedle on the epidermal cell surface and respond by reorganizing subcellular components in a manner similar to that induced during attack by potential fungal or oomycete pathogens. The results of our study indicate that during plant-pathogen interactions, the basal defence response may be induced by the plant's perception of the physical force exerted by the

  11. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  12. Fractalkine levels are elevated early after PCI-treated ST-elevation myocardial infarction; no influence of autologous bone marrow derived stem cell injection.

    Science.gov (United States)

    Njerve, Ida Unhammer; Solheim, Svein; Lunde, Ketil; Hoffmann, Pavel; Arnesen, Harald; Seljeflot, Ingebjørg

    2014-09-01

    Fractalkine (CX3CL1) is a chemokine associated with atherosclerosis and inflammation. There is limited knowledge of fractalkine levels during acute myocardial infarction (AMI) and stem cell treatment. We aimed to investigate the time profile of circulating fractalkine and gene expression of its receptor CX3CR1 during AMI, and the influence of intracoronary autologous bone marrow stem cell (mBMC) transplantation (given 6 days after AMI) on fractalkine levels. We examined fractalkine levels at different time points by enzyme-linked immunosorbent assay (ELISA) in 20 patients with AMI, and 10 patients with stable angina pectoris (AP) undergoing percutaneous coronary intervention (PCI), and in 100 patients included in the randomized Autologous Stem-Cell Transplantation in Acute Myocardial Infarction (ASTAMI) trial. Patients with AMI had significantly elevated levels 3- and 12 h after PCI compared to patients with stable AP. After 12 h levels were similar in the two groups. An inverse pattern was observed in gene expression levels. No correlation between fractalkine levels and myocardial injury or infarct size was seen. We could not demonstrate any influence of autologous mBMC transplantation on fractalkine levels. Fractalkine levels are elevated the first 12 h after PCI in patients with AMI, however, not correlated to infarct size. The inverse pattern in gene expression of fractalkine receptor (CX3CR1) might be a compensatory mechanism. No effect of autologous mBMC transplantation given 6 days after AMI on fractalkine levels was observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. An Epidermal Biosensor for Carcinoembryonic Antigen

    National Research Council Canada - National Science Library

    Schwartz, Pauline

    2003-01-01

    ...) An epidermal biosensor was conceived as a new approach for the early continuous, in vivo detection of the onset of disease by the using genetically modified skin cells to respond to molecules secreted by tumor cells...

  14. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    Directory of Open Access Journals (Sweden)

    Boos AM

    2014-11-01

    Full Text Available Anja M Boos,1,* Annika Weigand,1,* Gloria Deschler,1 Thomas Gerber,2 Andreas Arkudas,1 Ulrich Kneser,1 Raymund E Horch,1 Justus P Beier11Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg FAU, Erlangen, 2Institute of Physics, University of Rostock, Rostock, Germany *These authors contributed equally to this work Abstract: New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2, and different carrier materials (fibrin, cell culture medium, autologous serum was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 µg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin. Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly

  15. Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells

    Directory of Open Access Journals (Sweden)

    Raj Victor

    2011-08-01

    Full Text Available Abstract Cyprinid herpesvirus 3 (CyHV-3 is the aetiological agent of a mortal and highly contagious disease in common and koi carp. The skin is the major portal of entry of CyHV-3 in carp after immersion in water containing the virus. In the present study, we used in vivo bioluminescence imaging to investigate the effect of skin mucus removal and skin epidermis lesion on CyHV-3 entry. Physical treatments inducing removal of the mucus up to complete erosion of the epidermis were applied on a defined area of carp skin just before inoculation by immersion in infectious water. CyHV-3 entry in carp was drastically enhanced on the area of the skin where the mucus was removed with or without associated epidermal lesion. To investigate whether skin mucus inhibits CyHV-3 binding to epidermal cells, tail fins with an intact mucus layer or without mucus were inoculated ex vivo. While electron microscopy examination revealed numerous viral particles bound on the fins inoculated after mucus removal, no particle could be detected after infection of mucus-covered fins. Finally, anti-CyHV-3 neutralising activity of mucus extract was tested in vitro. Incubation of CyHV-3 with mucus extract reduced its infectivity in a dose dependent manner. The present study demonstrates that skin mucus removal and epidermal lesions enhance CyHV-3 entry in carp. It highlights the role of fish skin mucus as an innate immune protection against viral epidermal entry.

  16. Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells

    Science.gov (United States)

    2011-01-01

    Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a mortal and highly contagious disease in common and koi carp. The skin is the major portal of entry of CyHV-3 in carp after immersion in water containing the virus. In the present study, we used in vivo bioluminescence imaging to investigate the effect of skin mucus removal and skin epidermis lesion on CyHV-3 entry. Physical treatments inducing removal of the mucus up to complete erosion of the epidermis were applied on a defined area of carp skin just before inoculation by immersion in infectious water. CyHV-3 entry in carp was drastically enhanced on the area of the skin where the mucus was removed with or without associated epidermal lesion. To investigate whether skin mucus inhibits CyHV-3 binding to epidermal cells, tail fins with an intact mucus layer or without mucus were inoculated ex vivo. While electron microscopy examination revealed numerous viral particles bound on the fins inoculated after mucus removal, no particle could be detected after infection of mucus-covered fins. Finally, anti-CyHV-3 neutralising activity of mucus extract was tested in vitro. Incubation of CyHV-3 with mucus extract reduced its infectivity in a dose dependent manner. The present study demonstrates that skin mucus removal and epidermal lesions enhance CyHV-3 entry in carp. It highlights the role of fish skin mucus as an innate immune protection against viral epidermal entry. PMID:21816061

  17. Cartilage Repair With Autologous Bone Marrow Mesenchymal Stem Cell Transplantation: Review of Preclinical and Clinical Studies.

    Science.gov (United States)

    Yamasaki, Shinya; Mera, Hisashi; Itokazu, Maki; Hashimoto, Yusuke; Wakitani, Shigeyuki

    2014-10-01

    Clinical trials of various procedures, including bone marrow stimulation, mosaicplasty, and autologous chondrocyte implantation, have been explored to treat articular cartilage defects. However, all of them have some demerits. We focused on autologous culture-expanded bone marrow mesenchymal stem cells (BMSC), which can proliferate without losing their capacity for differentiation. First, we transplanted BMSC into the defective articular cartilage of rabbit and succeeded in regenerating osteochondral tissue. We then applied this transplantation in humans. Our previous reports showed that treatment with BMSC relieves the clinical symptoms of chondral defects in the knee and elbow joint. We investigated the efficacy of BMSC for osteoarthritic knee treated with high tibial osteotomy, by comparing 12 BMSC-transplanted patients with 12 cell-free patients. At 16-month follow-up, although the difference in clinical improvement between both groups was not significant, the arthroscopic and histological grading score was better in the cell-transplanted group. At the over 10-year follow-up, Hospital for Special Surgery knee scores improved to 76 and 73 in the BMSC-transplanted and cell-free groups, respectively, which were better than preoperative scores. Additionally, neither tumors nor infections were observed in all patients, and in the clinical study, we have never observed hypertrophy of repaired tissue, thereby guaranteeing the clinical safety of this therapy. Although we have never observed calcification above the tidemark in rabbit model and human histologically, the repair cartilage was not completely hyaline cartilage. To elucidate the optimum conditions for cell therapy, other stem cells, culture conditions, growth factors, and gene transfection methods should be explored.

  18. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology.

    Science.gov (United States)

    Ebert, Berit; Melle, Christian; Lieckfeldt, Elke; Zöller, Daniela; von Eggeling, Ferdinand; Fisahn, Joachim

    2008-08-25

    Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.

  19. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  20. Topical grape seed proanthocyandin extract reduces sunburn cells and mutant p53 positive epidermal cell formation, and prevents depletion of Langerhans cells in an acute sunburn model.

    Science.gov (United States)

    Yuan, Xiao-Ying; Liu, Wei; Hao, Jian-Chun; Gu, Wei-Jie; Zhao, Yan-Shuang

    2012-01-01

    The purpose of this study was to investigate whether grape seed proanthocyanidin extract (GSPE) can provide photoprotection against ultraviolet (UV) irradiation. Study has shown that GSPE is a natural oxidant, and is used in many fields such as ischemia-reperfusion injury, chronic pancreatitis, and even cancer. However, the effect of GSPE on UV irradiation is as yet unknown. Cutaneous areas on the backs of normal volunteers were untreated or treated with GSPE solutions or vehicles 30 min before exposure to two minimal erythema doses (MED) of solar simulated radiation. Cutaneous areas at different sites were examined histologically for the number of sunburn cells, or immunohistochemically for Langerhans cells and mutant p53 epidermal cells. On histological and immunohistochemical examination, skin treated with GSPE before UV radiation showed fewer sunburn cells and mutant p53-positive epidermal cells and more Langerhans cells compared with skin treated with 2-MED UV radiation only (p<0.001, p<0.001, and p<0.01, respectively). GSPE may be a possible preventive agent for photoprotection.

  1. Use of autologous blood-derived endothelial progenitor cells at point-of-care to protect against implant thrombosis in a large animal model.

    Science.gov (United States)

    Jantzen, Alexandra E; Lane, Whitney O; Gage, Shawn M; Jamiolkowski, Ryan M; Haseltine, Justin M; Galinat, Lauren J; Lin, Fu-Hsiung; Lawson, Jeffrey H; Truskey, George A; Achneck, Hardean E

    2011-11-01

    Titanium (Ti) is commonly utilized in many cardiovascular devices, e.g. as a component of Nitinol stents, intra- and extracorporeal mechanical circulatory assist devices, but is associated with the risk of thromboemboli formation. We propose to solve this problem by lining the Ti blood-contacting surfaces with autologous peripheral blood-derived late outgrowth endothelial progenitor cells (EPCs) after having previously demonstrated that these EPCs adhere to and grow on Ti under physiological shear stresses and functionally adapt to their environment under flow conditions ex vivo. Autologous fluorescently-labeled porcine EPCs were seeded at the point-of-care in the operating room onto Ti tubes for 30 min and implanted into the pro-thrombotic environment of the inferior vena cava of swine (n = 8). After 3 days, Ti tubes were explanted, disassembled, and the blood-contacting surface was imaged. A blinded analysis found all 4 cell-seeded implants to be free of clot, whereas 4 controls without EPCs were either entirely occluded or partially thrombosed. Pre-labeled EPCs had spread and were present on all 4 cell-seeded implants while no endothelial cells were observed on control implants. These results suggest that late outgrowth autologous EPCs represent a promising source of lining Ti implants to reduce thrombosis in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Epidermal wound repair is regulated by the planar cell polarity signaling pathway.

    Science.gov (United States)

    Caddy, Jacinta; Wilanowski, Tomasz; Darido, Charbel; Dworkin, Sebastian; Ting, Stephen B; Zhao, Quan; Rank, Gerhard; Auden, Alana; Srivastava, Seema; Papenfuss, Tony A; Murdoch, Jennifer N; Humbert, Patrick O; Parekh, Vishwas; Boulos, Nidal; Weber, Thomas; Zuo, Jian; Cunningham, John M; Jane, Stephen M

    2010-07-20

    The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair. (c) 2010 Elsevier Inc. All rights reserved.

  3. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    International Nuclear Information System (INIS)

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark; Dharmarajan, Arunasalam

    2008-01-01

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  4. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala, M D

    2012-10-11

    The proposed work aims to address three major challenges to the field of regenerative medicine: 1) the growth and expansion of regenerative cells outside the body in controlled in vitro environments, 2) supportive vascular supply for large tissue engineered constructs, and 3) interactive biomaterials that can orchestrate tissue development in vivo. Toward this goal, we have engaged a team of scientists with expertise in cell and molecular biology, physiology, biomaterials, controlled release, nanomaterials, tissue engineering, bioengineering, and clinical medicine to address all three challenges. This combination of resources, combined with the vast infrastructure of the WFIRM, have brought to bear on projects to discover and test new sources of autologous cells that can be used therapeutically, novel methods to improve vascular support for engineered tissues in vivo, and to develop intelligent biomaterials and bioreactor systems that interact favorably with stem and progenitor cells to drive tissue maturation. The Institute's ongoing programs are aimed at developing regenerative medicine technologies that employ a patient's own cells to help restore or replace tissue and organ function. This DOE program has provided a means to solve some of the vexing problems that are germane to many tissue engineering applications, regardless of tissue type or target disease. By providing new methods that are the underpinning of tissue engineering, this program facilitated advances that can be applied to conditions including heart disease, diabetes, renal failure, nerve damage, vascular disease, and cancer, to name a few. These types of conditions affect millions of Americans at a cost of more than $400 billion annually. Regenerative medicine holds the promise of harnessing the body's own power to heal itself. By addressing the fundamental challenges of this field in a comprehensive and focused fashion, this DOE program has opened new opportunities to treat

  5. Autologous Stem Cell Injection for Spinal Cord Injury - A Clinical Study from India.

    Directory of Open Access Journals (Sweden)

    Ravikumar R

    2007-01-01

    Full Text Available We studied 100 patients with Spinal Cord injury (SCI after Autologous Stem cell Injection in the Spinal fluid with a Follow up of 6 months post Stem cell injection. There were 69 males and 31 females; age ranging from 8 years to 55 years.? Time after Spinal Injury ranged from 11 years - 3 months (Average: 4.5 years. The Level of Injury ranged from Upper Thoracic (T1-T7 - 34 pts, Lower thoracic (T7-T12 -45 pts, Lumbar -12, Cervical-9 pts. All patients had an MRI Scan, urodynamic study and SSEP (somatosensory Evoked Potential tests before and 3 months after Stem cell Injection.80% of patients had Grade 0 power in the Lower limbs and rest had grade 1-2 power before stem cell injections. 70% of cases had complete lack of Bladder control and 95% had reduced detrusor function.We Extracted CD34 and CD 133 marked Stem cells from 100 ml of Bone marrow Aspirate using Ficoll Gradient method with Cell counting done using flowcytometry.15 ml of the Stem cell concentrate was injected into the Lumbar spinal fluid in aseptic conditions. The CD 34/CD45 counts ranged from 120-400 million cells in the total volume.6 months after Injection, 8 patients had more than 2 grades of Motor power improvement, 3 are able to walk with support. 1 patient with T12/L1 injury was able to walk without support. 12 had sensory tactile and Pain perception improvement and 8 had objective improvement in bladder control and Bladder Muscle contractility. A total of 18 patients had reported or observed improvement in Neurological status. 85% of patients who had motor Improvement had Lesions below T8. MRI, SSEP and Urodynamic Study data are gathered at regular intervals. Conclusion: This study shows that Quantitative and qualitative Improvement in the Neurological status of paralyzed patients after Spinal cord injury is possible after autologous bone marrow Stem cell Injections in select patients. There was no report of Allodynia indicating the safety of the procedure. Further studies to

  6. Long-term outcomes of high dose treatment and autologous stem cell transplantation in follicular and mantle cell lymphomas – a single centre experience

    Directory of Open Access Journals (Sweden)

    Boltezar Lucka

    2016-06-01

    Full Text Available Advanced follicular lymphoma (FL and mantle cell lymphoma (MCL are incurable diseases with conventional treatment. The high dose treatment (HDT with autologous stem cell transplantation (ASCT, however, offers a certain proportion of these patients the prospect of a prolonged disease-free and overall survival. The aim of this study was to investigate the event free survival (EFS and overall survival (OS in patients with FL and MCL treated with ASCT.

  7. Bone scan and red blood cell scan in a patient with epidermal naevus syndrome

    International Nuclear Information System (INIS)

    Becker, W.; Wolf, F.; Stosiek, N.; Peters, K.P.

    1990-01-01

    A bone scan and red blood cell scan in the rare epidermal naevus syndrome, associated with multiple haemangiomes of the bone and hypophosphataemic osteomalacia in a 20-year-old man are reported. The typical pattern of osteomalacia on the bone scan was associated with lesions of increased bone metabolism in the peripheral bones. The haemangiomas did not pool labelled red blood cells. Thus, the bone scan seems to be suited for diagnosing the complete extent of haemangiomas in bone, but they could not be specifically proven by red blood cell pooling. (orig.)

  8. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases......., the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus...

  9. The SKINT1-like gene is inactivated in hominoids but not in all primate species: implications for the origin of dendritic epidermal T cells.

    Directory of Open Access Journals (Sweden)

    Rania Hassan Mohamed

    Full Text Available Dendritic epidermal T cells, which express an invariant Vγ5Vδ1 T-cell receptor and account for 95% of all resident T cells in the mouse epidermis, play a critical role in skin immune surveillance. These γδ T cells are generated by positive selection in the fetal thymus, after which they migrate to the skin. The development of dendritic epidermal T cells is critically dependent on the Skint1 gene expressed specifically in keratinocytes and thymic epithelial cells, suggesting an indispensable role for Skint1 in the selection machinery for specific intraepithelial lymphocytes. Phylogenetically, rodents have functional SKINT1 molecules, but humans and chimpanzees have a SKINT1-like (SKINT1L gene with multiple inactivating mutations. In the present study, we analyzed SKINT1L sequences in representative primate species and found that all hominoid species have a common inactivating mutation, but that Old World monkeys such as olive baboons, green monkeys, cynomolgus macaques and rhesus macaques have apparently functional SKINT1L sequences, indicating that SKINT1L was inactivated in a common ancestor of hominoids. Interestingly, the epidermis of cynomolgus macaques contained a population of dendritic-shaped γδ T cells expressing a semi-invariant Vγ10/Vδ1 T-cell receptor. However, this population of macaque T cells differed from rodent dendritic epidermal T cells in that their Vγ10/Vδ1 T-cell receptors displayed junctional diversity and expression of Vγ10 was not epidermis-specific. Therefore, macaques do not appear to have rodent-type dendritic epidermal T cells despite having apparently functional SKINT1L. Comprehensive bioinformatics analysis indicates that SKINT1L emerged in an ancestor of placental mammals but was inactivated or lost multiple times in mammalian evolution and that Skint1 arose by gene duplication in a rodent lineage, suggesting that authentic dendritic epidermal T cells are presumably unique to rodents.

  10. Fibrin sealants or cell saver eliminate the need for autologous blood donation in anemic patients undergoing primary total knee arthroplasty.

    Science.gov (United States)

    Bou Monsef, Jad; Buckup, Johannes; Waldstein, Wenzel; Cornell, Charles; Boettner, Friedrich

    2014-01-01

    Reducing allogeneic blood transfusions remains a challenge in total knee arthroplasty. Patients with preoperative anemia have a particularly high risk for perioperative blood transfusions. 176 anemic patients (Hb < 13.5 g/dl) undergoing total knee replacement were prospectively evaluated to compare the effect of a perioperative cell saver (26 patients), intraoperative fibrin sealants (5 ml Evicel, Johnson & Johnson Wound Management, Ethicon, Somerville, NJ) (45 patients), preoperative autologous blood donation (PABD) (21 patients), the combination of fibrin sealants and preoperative autologous blood donation (44) and no intervention (40 patients) on perioperative blood loss and transfusion requirements. All protocols resulted in significant reduction of allogeneic blood transfusions. Transfusion rates were similar with the use of PABD (19%), Evicel (18%), and cell saver (19%), all significantly lower than the control group (38 %, p < 0.05). Combining Evicel with PABD resulted in significantly higher wastage of autologous units (p < 0.05) with no significant reduction in allogeneic transfusion rate (14%). The use of fibrin sealant resulted in a significant reduction of blood loss compared to the PABD group (603 vs. 810 ml, p < 0.005) as well as the control group (603 vs. 822 ml, p < 0.005). While PABD proved to be the most cost-effective treatment option in anemic patients, fibrin sealants and cell saver show similar reduction in allogeneic transfusion rates compared to controls. The combination of fibrin sealants and PABD is not cost-effective and increases the number of wasted units.

  11. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  12. Autologous cytokine-induced killer cell immunotherapy may improve overall survival in advanced malignant melanoma patients.

    Science.gov (United States)

    Zhang, Yong; Zhu, Yu'nan; Zhao, Erjiang; He, Xiaolei; Zhao, Lingdi; Wang, Zibing; Fu, Xiaomin; Qi, Yalong; Ma, Baozhen; Song, Yongping; Gao, Quanli

    2017-11-01

    Our study was conducted to explore the efficacy of autologous cytokine-induced killer (CIK) cells in patients with advanced malignant melanoma. Materials & Methods: Here we reviewed 113 stage IV malignant melanoma patients among which 68 patients received CIK cell immunotherapy alone, while 45 patients accepted CIK cell therapy combined with chemotherapy. Results: We found that the median survival time in CIK cell group was longer than the combined therapy group (21 vs 15 months, p = 0.07). In addition, serum hemoglobin level as well as monocyte proportion and lymphocyte count were associated with patients' survival time. These indicated that CIK cell immunotherapy might extend survival time in advanced malignant melanoma patients. Furthermore, serum hemoglobin level, monocyte proportion and lymphocyte count could be prognostic indicators for melanoma.

  13. The impact of preapheresis white blood cell count on autologous peripheral blood stem cell collection efficiency and HSC infusion side effect rate.

    Science.gov (United States)

    Sakashita, Araci M; Kondo, Andrea T; Yokoyama, Ana Paula H; Lira, Sanny M C; Bub, Carolina B; Souza, Aline M; Cipolletta, Andrea N F; Alvarez, Kelen C; Hamerschlak, Nelson; Kutner, Jose M; Chiattone, Carlos S

    2018-01-19

    Autologous peripheral blood hematopoietic stem cell (PBSC) collection efficiency (CE) is reportedly affected by the patient's blood properties; however, studies to identify factors correlated with CE have shown inconsistent results. Additionally, variables such as stem cell graft granulocyte content and patient age, sex, and underlying disease, may be associated with hematopietic stem cell (HSC) infusion-related adverse reactions. In this study, we evaluated the correlation of preleukapheresis PB granulocyte count and PBSC harvest variables with CD34 + collection yield and efficiency, and thawed HSC infusion side effect occurrence. We evaluated data from 361 patients who had undergone autologous PBSC transplant. Large volume leukapheresis was the method for PBSC collection. Complete Blood Count and CD34 + cell enumeration were performed in the preapheresis PB and the apheresis product sample. The PBSC grafts were submitted to non-controlled rate freezing after addition of 5% DMSO plus 6% hidroxyethylstarch as a cryoprotectant solution. The cryopreserved graft was thawed in a 37°C water bath and then infused without further manipulation. The CD34 + yield was associated with preapheresis PB CD34 + count and immature granulocyte count. The PBSC CE was negatively correlated with preapheresis white blood cell (WBC), immature granulocyte and granulocyte count. The leukapheresis product total nucleated cell (TNC) and granulocyte content was correlated with the thawed graft infusion side effect occurrence. This study has shown that preapheresis PB WBC and granulocyte counts were associated with leukapheresis CE. Additionally, the leukapheresis product TNC and granulocyte content was correlated with thawed graft infusion side effect occurrence. © 2018 Wiley Periodicals, Inc.

  14. Recycling of epidermal growth factor in a human pancreatic carcinoma cell line

    International Nuclear Information System (INIS)

    Korc, M.; Magun, B.E.

    1985-01-01

    PANC-1 human pancreatic carcinoma cells readily bound and internalized 125 I-labeled epidermal growth factor (EGF). Bound 125 I-labeled EGF was then partially processed to a number of high molecular weight acidic species. Percoll gradient centrifugation of cell homogenates indicated that the majority of 125 I activity localized to several intracellular vesicular compartments. Both intact EGF and its processed species were subsequently released into the incubation medium. A major portion of the released radioactivity was capable of rebinding to the cell. Only a small amount of bound 125 I-labeled EGF was degraded to low molecular weight products, and this degradation was completely blocked by methylamine. These findings suggest that in PANC-1 cells, bound EGF undergoes only limited processing. Both intact EGF and its major processed species bypass the cellular degradative pathways, are slowly released from the cell, and then rebind to the cell

  15. Neck Rhabdoid Tumors: Clinical Features and Consideration of Autologous Stem Cell Transplant.

    Science.gov (United States)

    Wolfe, Adam D; Capitini, Christian M; Salamat, Shahriar M; DeSantes, Kenneth; Bradley, Kristin A; Kennedy, Tabassum; Dehner, Louis P; Patel, Neha J

    2018-01-01

    Extrarenal malignant rhabdoid tumors (MRT) have a poor prognosis despite aggressive therapy. Adding high-dose chemotherapy with autologous stem cell rescue (HDC-ASCR) as consolidative therapy for MRT is controversial. We describe 2 patients, age 13 years and 19 months, with unresectable neck MRT. After chemotherapy and radiotherapy, both underwent HDC-ASCR and remain in remission over 4 years later. We reviewed all published cases of neck MRT, and found poorer outcomes and more variable age of presentation and time to progression than MRT at other sites. Neck MRT may represent a higher-risk subset of MRT, and addition of HDC-ASCR merits consideration.

  16. Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG™) in advanced cancer of the liver.

    Science.gov (United States)

    Nemunaitis, John; Barve, Minal; Orr, Douglas; Kuhn, Joseph; Magee, Mitchell; Lamont, Jeffrey; Bedell, Cynthia; Wallraven, Gladice; Pappen, Beena O; Roth, Alyssa; Horvath, Staci; Nemunaitis, Derek; Kumar, Padmasini; Maples, Phillip B; Senzer, Neil

    2014-01-01

    Therapies for advanced hepatocellular carcinoma (HCC) are limited. We carried out a phase I trial of a novel autologous whole-cell tumor cell immunotherapy (FANG™), which incorporates a dual granulocyte macrophage colony-stimulating factor (GM-CSF) expressive/bifunctional small hairpin RNA interference (bi-shRNAi) vector. The bi-shRNAi DNA targets furin, which is a proconvertase of transforming growth factors beta (TGFβ) 1 and 2. Safety, mechanism, immunoeffectiveness, and suggested benefit were previously shown [Senzer et al.: Mol Ther 2012;20:679-689; Senzer et al.: J Vaccines Vaccin 2013;4:209]. We now provide further follow-up of a subset of 8 HCC patients. FANG manufacturing was successful in 7 of 8 attempts (one failure due to insufficient cell yield). Median GM-CSF expression was 144 pg/10(6) cells, TGFβ1 knockdown was 100%, and TGFβ2 knockdown was 93% of the vector-transported cells. Five patients were vaccinated (1 or 2.5×10(7) cells/intradermal injection, 6-11 vaccinations). No FANG toxicity was observed. Three of these patients demonstrated evidence of an immune response to the autologous tumor cell sample. Long-term follow-up demonstrated survival of 319, 729, 784, 931+, and 1,043+ days of the FANG-treated patients. In conclusion, evidence supports further assessment of the FANG immunotherapy in HCC. © 2014 S. Karger AG, Basel.

  17. Inhibition of epidermal cell proliferation by borderline rays

    Energy Technology Data Exchange (ETDEWEB)

    Born, W [Freiburg Univ.; Daikeler, G

    1976-08-01

    Treatment of guinea pig flanks with very soft x-rays (borderline rays) directly caused a partial block of epidermal DNA synthesis which had been determined by measuring the /sup 3/H-Tdr incorporation. Higher doses and repeated applications would undoubtedly cause lasting damage to the tissue. The enhanced epidermal DNA synthesis which is sometimes observed should not be misinterpreted as a sign of a directly biopositive utilisation of the quantum energy supplied. Rather, it is a secondary repair process following initial phases of depression. A reparative increase in DNA synthesis may also occur as a primary process if the radiation is almost completely absorbed above the germinative layer.

  18. Epidermal growth factor-mediated effects on equine vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Grosenbaugh, D.A.; Amoss, M.S.; Hood, D.M.; Morgan, S.J.; Williams, J.D.

    1988-01-01

    Epidermal growth factor (EGF) receptor binding kinetics and EGF-mediated stimulation of DNA synthesis and cellular proliferation were studied in cultured vascular smooth muscle cells (VSMC) from the equine thoracic aorta. Binding studies, using murine 125 I-labeled EGF, indicate the presence of a single class of high-affinity binding sites, with an estimated maximal binding capacity of 5,800 sites/cells. EGF stimulated [ 3 H]thymidine uptake in confluent quiescent monolayers in a dose-dependent fashion, half-maximal stimulation occurring at 7.5 x 10 -11 M. Likewise, EGF-mediated cellular proliferation was dose dependent under reduced serum concentrations. Equine VSMC contain specific receptors for EGF, and EGF can stimulate DNA synthesis and proliferation in these cultured cells, which suggests that EGF may participate in the proliferative changes observed in equine distal digital peripheral vascular disease

  19. Open for business: a comparative study of websites selling autologous stem cells in Australia and Japan.

    Science.gov (United States)

    Munsie, Megan; Lysaght, Tamra; Hendl, Tereza; Tan, Hui-Yin Lynn; Kerridge, Ian; Stewart, Cameron

    2017-11-10

    This article examines online marketing practices of Japanese and Australian clinics offering putative autologous stem cell treatments. We conducted google searches for keywords related to stem cell therapy and stem cell clinics in English and Japanese. We identified websites promoting 88 point-of-sale clinics in Japan and 70 in Australia. Our findings provide further evidence of the rapid global growth in clinics offering unproven stem cell interventions. We also show that these clinics adopt strategies to promote their services as though they are consistent with evidentiary and ethical standards of science, research and medicine. Unless addressed, these practices risk harming not only vulnerable patients but also undermining public trust in science and medicine.

  20. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor.

    Science.gov (United States)

    Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G; Scholler, John; Levine, Bruce L; Albelda, Steven M; June, Carl H

    2010-11-15

    Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor-reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CAR). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high-level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week after electroporation. Multiple injections of RNA CAR-electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(-/-) mice. Dramatic tumor reduction also occurred when the preexisting intraperitoneal human-derived tumors, which had been growing in vivo for >50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes showing that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA-engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. Copyright © 2010 AACR.

  1. Yorkie regulates epidermal wound healing in Drosophila larvae independently of cell proliferation and apoptosis.

    Science.gov (United States)

    Tsai, Chang-Ru; Anderson, Aimee E; Burra, Sirisha; Jo, Juyeon; Galko, Michael J

    2017-07-01

    Yorkie (Yki), the transcriptional co-activator of the Hippo signaling pathway, has well-characterized roles in balancing apoptosis and cell division during organ growth control. Yki is also required in diverse tissue regenerative contexts. In most cases this requirement reflects its well-characterized roles in balancing apoptosis and cell division. Whether Yki has repair functions outside of the control of cell proliferation, death, and growth is not clear. Here we show that Yki and Scalloped (Sd) are required for epidermal wound closure in the Drosophila larval epidermis. Using a GFP-tagged Yki transgene we show that Yki transiently translocates to some epidermal nuclei upon wounding. Genetic analysis strongly suggests that Yki interacts with the known wound healing pathway, Jun N-terminal kinase (JNK), but not with Platelet Derived Growth Factor/Vascular-Endothelial Growth Factor receptor (Pvr). Yki likely acts downstream of or parallel to JNK signaling and does not appear to regulate either proliferation or apoptosis in the larval epidermis during wound repair. Analysis of actin structures after wounding suggests that Yki and Sd promote wound closure through actin regulation. In sum, we found that Yki regulates an epithelial tissue repair process independently of its previously documented roles in balancing proliferation and apoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Immunology in the medical practice.XXXII. Transplantation of autologous hematopoietic stem cells for treatment of refractory auto-immune diseases; preliminary favorable results with 35 patients].

    Science.gov (United States)

    Vlieger, A M; van den Hoogen, F H; Brinkman, D M; van Laar, J M; Schipperus, M; Kruize, A A; Wulffraat, N M

    2000-08-12

    The objective of this study was to document the experiences in the first Dutch pilot studies of the effect of transplantation of autologous haematopoietic stem cells in patients with therapy-resistant autoimmune disease. The first results in 21 adults and 14 children are promising: remission of the disease was achieved in 13 patients, while in the others a significant reduction of disease activity was seen with a corresponding improvement of the quality of life. Infectious complications were frequently observed. Two children with systemic juvenile idiopathic arthritis developed a fatal infection-associated macrophage activation syndrome. Multicentre randomised studies are necessary to study the effects of autologous stem cell transplantation and modifications such as T-cell depletion.

  3. A fusion of minicircle DNA and nanoparticle delivery technologies facilitates therapeutic genetic engineering of autologous canine olfactory mucosal cells.

    Science.gov (United States)

    Delaney, Alexander M; Adams, Christopher F; Fernandes, Alinda R; Al-Shakli, Arwa F; Sen, Jon; Carwardine, Darren R; Granger, Nicolas; Chari, Divya M

    2017-06-29

    Olfactory ensheathing cells (OECs) promote axonal regeneration and improve locomotor function when transplanted into the injured spinal cord. A recent clinical trial demonstrated improved motor function in domestic dogs with spinal injury following autologous OEC transplantation. Their utility in canines offers promise for human translation, as dogs are comparable to humans in terms of clinical management and genetic/environmental variation. Moreover, the autologous, minimally invasive derivation of OECs makes them viable for human spinal injury investigation. Genetic engineering of transplant populations may augment their therapeutic potential, but relies heavily on viral methods which have several drawbacks for clinical translation. We present here the first proof that magnetic particles deployed with applied magnetic fields and advanced DNA minicircle vectors can safely bioengineer OECs to secrete a key neurotrophic factor, with an efficiency approaching that of viral vectors. We suggest that our alternative approach offers high translational potential for the delivery of augmented clinical cell therapies.

  4. Induction of tolerance to topically applied INCB using TNP-conjugated ultraviolet light-irradiated epidermal cells

    International Nuclear Information System (INIS)

    Sauder, D.N.; Tamaki, K.; Moshell, A.N.; Fujiwara, H.; Katz, S.I.

    1981-01-01

    Ultraviolet (uv) radiation has profound effects on the immune system both in vitro and in vivo. Recent studies, utilizing uv irradiation of intact animals, have focused on the suppressive effect of uv irradiation on the generation of allergic contact sensitization (ACS). To explore the mechanism(s) by which uv affects ACS, we used a recently described technique of sensitizing mice with the subcutaneous (s.c.) injection of haptenated epidermal cells. uv-treated or untreated mouse epidermal cells (EC) were conjugated with 1 mM trinitrobenzene sulfonate and injected s.c. into syngeneic recipients. Six days later the ear was challenged with 20 μl of 1% trinitrochlorobenzene (TNCB), and 24 h later ear thickness was measured. Our studies indicate that uv irradiation of EC prior to haptenation not only abrogates their capability of inducing ACS but also induces a state of specific immunologic tolerance. These studies indicate that the s.c. injection of trinitrophenyl conjugated (TNP) uv-irradiated (TNP-uv) EC induces a state of specific immunologic hyporesponsiveness, and passive transfer studies showed that this hyporesponsiveness is in part due to the generation of suppressor T-cells

  5. Effects of epidermal growth factor, transferrin, and insulin on lipofection efficiency in human lung carcinoma cells.

    Science.gov (United States)

    Yanagihara, K; Cheng, H; Cheng, P W

    2000-01-01

    Poor transfection efficiency is the major drawback of lipofection. We showed previously that addition of transferrin (TF) to Lipofectin enhanced the expression of a reporter gene in HeLa cells by 120-fold and achieved close to 100% transfection efficiency. The purpose of this study was to determine whether TF and other ligands could improve the efficiency of lipofection in lung carcinoma cells. Confluent A549, Calu3, and H292 cells were transfected for 18 hours with a plasmid DNA (pCMVlacZ) using Lipofectin plus TF, insulin, or epidermal growth factor as the vector. The transfected cells were assessed for transfection efficiency by beta-galactosidase activity (light units/microg protein) and the percentage of blue cells following 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside staining. Lipofectin supplemented with epidermal growth factor yielded the largest enhancement of lipofection efficiency (lipofection efficiency in A549 and Calu3 cells but not in H292 cells, whereas TF showed significant lipofection efficiency-enhancing effect in Calu3 and H292 cells but not in A549 cells. The transfection efficiency correlated well with the amounts of DNA delivered to the nucleus as well as the amounts of the receptor. These results indicate that the gene delivery strategy employing ligand-facilitated lipofection can achieve high transfection efficiency in human lung carcinoma cells. In addition, enhancement of the expression of the receptor may be a possible strategy for increasing the efficiency of gene targeting.

  6. Autologous blood transfusion in open heart surgeries under cardio-pulmonary bypass - Clinical appraisal

    Directory of Open Access Journals (Sweden)

    B. Sartaj Hussain

    2017-01-01

    Full Text Available Autologous blood withdrawal before instituting cardiopulmonary bypass (CPB protects the platelets, preserve red cell mass and reduce allogeneic transfusion requirements. Ideal condition for autologous blood donation is elective cardiac surgery where there is a high probability of blood transfusion. The purpose of this study was to assess the role of preoperative autologous blood donation in cardiac surgeries. Out of 150 patients registered, 50 cases were excluded on the basis of hemoglobin content ( [J Med Allied Sci 2017; 7(1.000: 48-54

  7. Model system for plant cell biology: GFP imaging in living onion epidermal cells

    Science.gov (United States)

    Scott, A.; Wyatt, S.; Tsou, P. L.; Robertson, D.; Allen, N. S.

    1999-01-01

    The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.

  8. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. CCR 20th Anniversary Commentary: Autologous T Cells-The Ultimate Personalized Drug for the Immunotherapy of Human Cancer.

    Science.gov (United States)

    Rosenberg, Steven A

    2015-12-15

    The article by Rosenberg and colleagues, which was published in the July 1, 2011, issue of Clinical Cancer Research, demonstrated the power of the adoptive transfer of autologous antitumor T cells to mediate the complete, durable, and likely curative regression of cancer in patients with heavily pretreated metastatic melanoma. It also provided a stimulus to the development of cell transfer approaches for other cancer types using both natural and genetically engineered lymphocytes. ©2015 American Association for Cancer Research.

  10. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  11. The Antiaging Properties of Andrographis paniculata by Activation Epidermal Cell Stemness

    Directory of Open Access Journals (Sweden)

    Jiyoung You

    2015-09-01

    Full Text Available Andrographis paniculata (A. paniculata, Chuanxinlian, a medicinal herb with an extremely bitter taste that is native to China and other parts of Southeast Asia, possesses immense therapeutic value; however, its therapeutic properties have rarely been applied in the field of skin care. In this study, we investigated the effect of an A. paniculata extract (APE on human epidermal stem cells (EpSCs, and confirmed its anti-aging effect through in vitro, ex vivo, and in vivo study. An MTT assay was used to determine cell proliferation. A flow cytometric analysis, with propidium iodide, was used to evaluate the cell cycle. The expression of integrin β1 (CD29, the stem cell marker, was detected with antibodies, using flow cytometry in vitro, and immunohistochemical assays in ex vivo. Type 1 collagen and VEGF (vascular endothelial growth factor were measured using an enzyme-linked immunosorbent assay (ELISA. During the clinical study, skin hydration, elasticity, wrinkling, sagging, and dermal density were evaluated before treatment and at four and eight weeks after the treatment with the test product (containing the APE on the face. The proliferation of the EpSCs, treated with the APE, increased significantly. In the cell cycle analysis, the APE increased the G2/M and S stages in a dose-dependent manner. The expression of integrin β1, which is related to epidermal progenitor cell expansion, was up-regulated in the APE-treated EpSCs and skin explants. In addition, the production of VEGF in the EpSCs increased significantly in response to the APE treatment. Consistent with these results, the VEGF and APE-treated EpSCs conditioned medium enhanced the Type 1 collagen production in normal human fibroblasts (NHFs. In the clinical study, the APE improved skin hydration, dermal density, wrinkling, and sagging significantly. Our findings revealed that the APE promotes a proliferation of EpSCs, through the up-regulation of the integrin β1 and VEGF expression

  12. The Antiaging Properties of Andrographis paniculata by Activation Epidermal Cell Stemness.

    Science.gov (United States)

    You, Jiyoung; Roh, Kyung-Baeg; Li, Zidan; Liu, Guangrong; Tang, Jian; Shin, Seoungwoo; Park, Deokhoon; Jung, Eunsun

    2015-09-22

    Andrographis paniculata (A. paniculata, Chuanxinlian), a medicinal herb with an extremely bitter taste that is native to China and other parts of Southeast Asia, possesses immense therapeutic value; however, its therapeutic properties have rarely been applied in the field of skin care. In this study, we investigated the effect of an A. paniculata extract (APE) on human epidermal stem cells (EpSCs), and confirmed its anti-aging effect through in vitro, ex vivo, and in vivo study. An MTT assay was used to determine cell proliferation. A flow cytometric analysis, with propidium iodide, was used to evaluate the cell cycle. The expression of integrin β1 (CD29), the stem cell marker, was detected with antibodies, using flow cytometry in vitro, and immunohistochemical assays in ex vivo. Type 1 collagen and VEGF (vascular endothelial growth factor) were measured using an enzyme-linked immunosorbent assay (ELISA). During the clinical study, skin hydration, elasticity, wrinkling, sagging, and dermal density were evaluated before treatment and at four and eight weeks after the treatment with the test product (containing the APE) on the face. The proliferation of the EpSCs, treated with the APE, increased significantly. In the cell cycle analysis, the APE increased the G2/M and S stages in a dose-dependent manner. The expression of integrin β1, which is related to epidermal progenitor cell expansion, was up-regulated in the APE-treated EpSCs and skin explants. In addition, the production of VEGF in the EpSCs increased significantly in response to the APE treatment. Consistent with these results, the VEGF and APE-treated EpSCs conditioned medium enhanced the Type 1 collagen production in normal human fibroblasts (NHFs). In the clinical study, the APE improved skin hydration, dermal density, wrinkling, and sagging significantly. Our findings revealed that the APE promotes a proliferation of EpSCs, through the up-regulation of the integrin β1 and VEGF expression. The VEGF

  13. The separation of a mixture of bone marrow stem cells from tumor cells: an essential step for autologous bone marrow transplantation

    International Nuclear Information System (INIS)

    Rubin, P.; Wheeler, K.T.; Keng, P.C.; Gregory, P.K.; Croizat, H.

    1981-01-01

    KHT tumor cells were mixed with mouse bone marrow to simulate a sample of bone marrow containing metastatic tumor cells. This mixture was separated into a bone marrow fraction and a tumor cell fraction by centrifugal elutriation. Elutriation did not change the transplantability of the bone marrow stem cells as measured by a spleen colony assay and an in vitro erythroid burst forming unit assay. The tumorogenicity of the KHT cells was similarly unaffected by elutriation. The data showed that bone marrow cells could be purified to less than 1 tumor cell in more than 10 6 bone marrow cells. Therefore, purification of bone marrow removed prior to lethal radiation-drug combined therapy for subsequent autologous transplantation appears to be feasible using modifications of this method if similar physical differences between human metastatic tumor cells and human bone marrow cells exist. This possibility is presently being explored

  14. The epidermal cell kinetic response to ultraviolet B irradiation combines regenerative proliferation and carcinogen associated cell cycle delay

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, W.M.; Kirkhus, B. (Oslo Univ. (Norway))

    1989-09-01

    The cell cycle traverse of epidermal basal cells 24 h after in vivo exposure of ultraviolet B (UVB) irradiation was studied by immunochemical staining of incorporated bromodeoxyuridine (BrdU) and bivariate BrdU/DNA flow cytometric analysis. The results were compared with the cell kinetic patterns following topical application of the skin carcinogen methylnitrosourea (MNU) as well as the skin irritant cantharidin. The cell cycle traverse in hairless mouse epidermis 24 h after in vivo exposure to UVB seemed to be a combination of the cell kinetic effects following chemical skin carcinogens and skin irritants. UVB irradiation induced both a delay in transit time through S phase, probably due to DNA damage and subsequent repair, as well as a reduction in the total cell cycle time consistent with rapid regenerative proliferation. (author).

  15. What is the role of autologous blood transfusion in major spine surgery?

    Science.gov (United States)

    Kumar, Naresh; Chen, Yongsheng; Nath, Chinmoy; Liu, Eugene Hern Choon

    2012-06-01

    Major spine surgery is associated with significant blood loss, which has numerous complications. Blood loss is therefore an important concern when undertaking any major spine surgery. Blood loss can be addressed by reducing intraoperative blood loss and replenishing perioperative blood loss. Reducing intraoperative blood loss helps maintain hemodynamic equilibrium and provides a clearer operative field during surgery. Homologous blood transfusion is still the mainstay for replenishing blood loss in major spine surgery across the world, despite its known adverse effects. These significant adverse effects can be seen in up to 20% of patients. Autologous blood transfusion avoids the risks associated with homologous blood transfusion and has been shown to be cost-effective. This article reviews the different methods of autologous transfusion and focuses on the use of intraoperative cell salvage in major spine surgery. Autologous blood transfusion is a proven alternative to homologous transfusion in major spine surgery, avoiding most, if not all of these adverse effects. However, autologous blood transfusion rates in major spine surgery remain low across the world. Autologous blood transfusion may obviate the need for homologous transfusion completely. We encourage spine surgeons to consider autologous blood transfusion wherever feasible.

  16. Treatment of aggressive multiple myeloma by high-dose chemotherapy and total body irradiation followed by blood stem cells autologous graft

    International Nuclear Information System (INIS)

    Fermand, J.P.; Levy, Y.; Gerota, J.; Benbunan, M.; Cosset, J.M.; Castaigne, S.; Seligmann, M.; Brouet, J.C.

    1989-01-01

    Eight patients with stage III aggressive multiple myeloma, refractory to current chemotherapy in six cases, were treated by high-dose chemotherapy (nitrosourea, etoposide, and melphalan) (HDC) and total body irradiation (TBI), followed by autografting with blood stem cells. These cells were previously collected by leukapheresis performed during hematologic recovery following cytotoxic drug-induced bone marrow aplasia. Seven patients were alive 9 to 17 months after HDC-TBI and graft. One died at day 40 from cerebral bleeding. All living patients achieved a 90% or greater reduction in tumor mass. In two cases, a complete remission (CR) has persisted at a follow-up of 15 and 16 months. Three patients have been well and off therapy with stable minimal residual disease (RD) since 10, 11, and 17 months, respectively. A patient in apparent CR and another with RD have relapsed 9 to 12 months posttreatment. Autologous blood-derived hematopoietic stem cells induced successful and sustained engraftment in all living patients. These results, although still preliminary, indicate that HDC and TBI, followed by blood stem cells autograft, which has both practical and theoretical interest over allogeneic or autologous bone marrow transplantation, deserve consideration in selected patients with multiple myeloma

  17. Intrathecal administration of autologous bone marrow stromal cells improves neuropathic pain in patients with spinal cord injury.

    Science.gov (United States)

    Vaquero, J; Zurita, M; Rico, M A; Aguayo, C; Fernández, C; Gutiérrez, R; Rodríguez-Boto, G; Saab, A; Hassan, R; Ortega, C

    2018-03-23

    Neuropathic pain (NP) is highly disabling, responds poorly to pharmacological treatment, and represents a significant cause of decreased quality of life in patients suffering from spinal cord injury (SCI). In recent years, cell therapy with autologous mesenchymal stromal cells (MSCs) has been considered as a potential therapeutic weapon in this entity. Ten patients suffering chronic SCI received 100 million MSCs into subarachnoid space by lumbar puncture (month 1 of the study) and this procedure was repeated at months 4 and 7 until reaching a total doses of 300 million MSCs. Intensity of NP was measured by standard numerical rating scale (VAS) from 0 to 10, recording scores previous to the first MSCs administration and monthly, until month 10 of follow-up. Months 1, 4, 7 and 10 of the study were selected as time points in order to a statistical analysis by the nonparametric Wilcoxon rank test. Our results showed significant and progressive improvement in NP intensity after the first administration of MSCs (p: 0.003). This study supports the benefit of intrathecal administration of autologous MSCs for the treatment of NP in patients with SCI. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Comparative SAXS and DSC study on stratum corneum structural organization in an epidermal cell culture model (ROC)

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Herre, Angela; Fahr, Alfred

    2013-01-01

    barrier similar to that of human stratum corneum is, however, a prerequisite. In this study, the stratum corneum lipid organization in an epidermal cell culture model based on rat epidermal keratinocytes (REK organotypic culture, ROC) was investigated by small-angle X-ray scattering (SAXS) in dependence......Cell cultured skin equivalents present an alternative for dermatological in vitro evaluations of drugs and excipients as they provide the advantage of availability, lower variability and higher assay robustness compared to native skin. For penetration/permeation studies, an adequate stratum corneum...... and SC lipid organization. Cultivation for 21days resulted in further minor changes in the structural organization of ROC SC. The SAXS patterns of ROC SC had overall large similarities with that of human SC and point to the presence of a long periodicity phase with a repeat distance of about 122Å, e...

  19. Treatment of AVN Using Autologous BM Stem Cells and Activated Platelet-Derived Growth Factor Concentrates.

    Science.gov (United States)

    Nandeesh, Nagaraj H; Janardhan, Kiranmayee; Subramanian, Vignesh; Ashtekar, Abhishek Bhushan; Srikruthi, Nandagiri; Koka, Prasad S; Deb, Kaushik

    Avascular Necrosis (AVN) of hip is a devastating condition seen in younger individuals. It is the ischemic death of the constituents of the bone cartilage of the hip. The femoral head (FH) is the most common site for AVN. It results from interruption of the normal blood flow to the FH that fits into the hip socket. Earlier studies using autologous bone marrow stem cell concentrate injections have shown encouraging results with average success rates. The current study was designed to improve significantly the cartilage regeneration and clinical outcome. Total of 48 patients underwent autologous bone marrow stem cell and activated platelet-rich plasma derived growth factor concentrate (PRP-GFC) therapy for early and advanced stages AVN of femoral head in a single multi-specialty center. The total treatment was divided into three phases. In the phase I, all the clinical diagnostic measurements such as magnetic resonance imaging (MRI), computed tomography (CT) etc. with respect to the AVN patients and bone marrow aspiration from posterior iliac spine from the patients were carried out. In the phase II, isolation of stem cells and preparation from the patients were performed. Subsequently, in phase III, the stem cells and PRP- GFCs were transplanted in the enrolled patients. Ninety three percent of the enrolled AVN patients showed marked enhancement in the hip bone joint space (more than 3mm) after combined stem cells and PRP-GFC treatment as evidenced by comparison of the pre- and post-treatment MRI data thus indicative of regeneration of cartilage. The treated patients showed significant improvement in their motor function, cartilage regrowth (3 to 10mm), and high satisfaction in the two-year follow-up. Combination of stem cell and PRP-GFC therapy has shown promising cartilage regeneration in 45 out of 48 patients of AVN. This study clearly demonstrates the safety and efficacy of this treatment. Larger numbers of patients need to be evaluated to better understand the

  20. Efficacy of Surgery Combined with Autologous Bone Marrow Stromal Cell Transplantation for Treatment of Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Jianxin Zhu

    2015-01-01

    Full Text Available Bone marrow stromal cells (BMSCs may differentiate into nerve cells under a certain condition; however, the clinical application for treating nervous system disease remains unclear. The aim is to assess the safety profile, feasibility, and effectiveness of surgery combined with autologous BMSCs transplantation for treating ICH. 206 ICH patients who had received surgical procedure were divided into transplantation (n=110 or control group (n=96. For transplantation group, BMSCs were injected into the perihemorrhage area in the base ganglia through an intracranial drainage tube 5.5 (3.01–6.89 days after surgery, followed by a second injection into the subarachnoid space through lumbar puncture 4 weeks later. Neurologic impairment and daily activities were assessed with National Institute Stroke Scale (NIHSS, Barthel index, and Rankin scale before transplantation and 6 months and 12 months after transplantation. Our results revealed that, compared with control group, NIHSS score and Rankin scale were both significantly decreased but Barthel index was increased in transplantation group after 6 months. Interestingly, no significant difference was observed between 12 months and 6 months. No transplantation-related adverse effects were investigated during follow-up assessments. Our findings suggest that surgery combined with autologous BMSCs transplantation is safe for treatment of ICH, providing short-term therapeutic benefits.

  1. Treatment of massive gastrointestinal bleeding occurred during autologous stem cell transplantation with recombinant activated factor VII and octreotide

    Directory of Open Access Journals (Sweden)

    Erman Atas

    2015-01-01

    Full Text Available After hematopoietic stem cell transplantation (HSCT, patients may suffer from bleeding. One of the bleeding type is gastrointestinal (GI which has serious morbidity and mortality in children with limited treatment options. Herein, we presented a child with upper GI bleeding post autologous HSCT controlled successfully by using recombinant activated factor VII (rFVIIa and octreotide infusion.

  2. GWAS of 972 autologous stem cell recipients with multiple myeloma identifies 11 genetic variants associated with chemotherapy-induced oral mucositis

    DEFF Research Database (Denmark)

    Coleman, Elizabeth Ann; Lee, Jeannette Y; Erickson, Stephen W

    2015-01-01

    PURPOSE: High-dose chemotherapy and autologous stem cell transplant (ASCT) to treat multiple myeloma (MM) and other cancers carries the risk of oral mucositis (OM) with sequelae including impaired nutritional and fluid intake, pain, and infectious complications. As a result of these problems, can...

  3. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals.

    Science.gov (United States)

    Van Moerkercke, Alex; Galván-Ampudia, Carlos S; Verdonk, Julian C; Haring, Michel A; Schuurink, Robert C

    2012-05-01

    In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds occurs in these cells. However, whether the entire pathway is active in these cells and whether it is exclusively active in these cells remains to be proven. Cell-specific transcription factors activating these genes will determine in which cells they are expressed. In petunia, the transcription factor EMISSION OF BENZENOIDS II (EOBII) activates the ODORANT1 (ODO1) promoter and the promoter of the biosynthetic gene isoeugenol synthase (IGS). The regulator ODO1 in turn activates the promoter of the shikimate gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Here the identification of a new target gene of ODO1, encoding an ABC transporter localized on the plasma membrane, PhABCG1, which is co-expressed with ODO1, is described. PhABCG1 expression is up-regulated in petals overexpressing ODO1 through activation of the PhABCG1 promoter. Interestingly, the ODO1, PhABCG1, and IGS promoters were active in petunia protoplasts originating from both epidermal and mesophyll cell layers of the petal, suggesting that the volatile phenylpropanoid/benzenoid pathway in petunia is active in these different cell types. Since volatile release occurs from epidermal cells, trafficking of (volatile) compounds between cell layers must be involved, but the exact function of PhABCG1 remains to be resolved.

  4. Genetically induced cell death in bulge stem cells reveals their redundancy for hair and epidermal regeneration.

    Science.gov (United States)

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-03-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. © 2014 AlphaMed Press.

  5. Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells.

    Science.gov (United States)

    Ghanavati, Zeinab; Orazizadeh, Mahmoud; Bayati, Vahid; Abbaspour, Mohammad Reza; Khorsandi, Layasadat; Mansouri, Esrafil; Neisi, Niloofar

    2016-01-01

    The organotypic co-culture is a well-known technique to examine cellular interactions and their roles in stem cell proliferation and differentiation. This study aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co- culture technique. In this experimental research study, rat DFs and ASCs were isolated and cultured separately on electrospun polycaprolactone (PCL) matrices. The PCL matrices seeded by ASCs were superimposed on to the matrices seeded by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin protein by immunofluorescence in the differentiated keratinocyte-like cells from co- culture and control groups. Keratinocyte-like cell morphologies were also observed by scanning electron microscopy (SEM). The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com- pared to the control ones (P<0.05). We observed pan-cytokeratin in keratinocyte-like cells of both groups by immunofluorescence. SEM observation of the co-culture groups showed that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape, considered characteristic of keratinocytes. The 3D organotypic co-culture bilayered construct that consisted of DFs and ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture might be useful for epidermal differentiation of stem cells for future applications in skin regeneration.

  6. EXERCISE in pediatric autologous stem cell transplant patients: a randomized controlled trial protocol

    Directory of Open Access Journals (Sweden)

    Chamorro-Viña Carolina

    2012-09-01

    Full Text Available Abstract Background Hematopoietic stem cell transplantation is an intensive therapy used to improve survivorship and cure various oncologic diseases. However, this therapy is associated with high mortality rates and numerous negative side-effects. The recovery of the immune system is a special concern and plays a key role in the success of this treatment. In healthy populations it is known that exercise plays an important role in immune system regulation, but little is known about the role of exercise in the hematological and immunological recovery of children undergoing hematopoietic stem cell transplant. The primary objective of this randomized-controlled trial (RCT is to study the effect of an exercise program (in- and outpatient on immune cell recovery in patients undergoing an autologous stem cell transplantation. The secondary objective is to determine if an exercise intervention diminishes the usual deterioration in quality of life, physical fitness, and the acquisition of a sedentary lifestyle. Methods This RCT has received approval from The Conjoint Health Research Ethics Board (CHREB of the University of Calgary (Ethics ID # E-24476. Twenty-four participants treated for a malignancy with autologous stem cell transplant (5 to 18 years in the Alberta Children’s Hospital will be randomly assigned to an exercise or control group. The exercise group will participate in a two-phase exercise intervention (in- and outpatient from hospitalization until 10 weeks after discharge. The exercise program includes strength, flexibility and aerobic exercise. During the inpatient phase this program will be performed 5 times/week and will be supervised. The outpatient phase will combine a supervised session with two home-based exercise sessions with the use of the Wii device. The control group will follow the standard protocol without any specific exercise program. A range of outcomes, including quantitative and functional recovery of immune system

  7. Design and implementation of the TRACIA: intracoronary autologous transplant of bone marrow-derived stem cells for acute ST elevation myocardial infarction

    OpenAIRE

    Peña-Duque, Marco A.; Martínez-Ríos, Marco A.; Calderón G, Eva; Mejía, Ana M.; Gómez, Enrique; Martínez-Sánchez, Carlos; Figueroa, Javier; Gaspar, Jorge; González, Héctor; Bialoztosky, David; Meave, Aloha; Uribe-González, Jhonathan; Alexánderson, Erick; Ochoa, Victor; Masso, Felipe

    2011-01-01

    Objective: To describe the design of a protocol of intracoronary autologous transplant of bone marrow-derived stem cells for acute ST-elevation myocardial infarction (STEMI) and to report the safety of the procedure in the first patients included. Methods: The TRACIA study was implemented following predetermined inclusion and exclusion criteria. The protocol includes procedures such as randomization, bone marrow retrieval, stem cells processing, intracoronary infusion of stem cells in the inf...

  8. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-01-01

    Background Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. Results In...

  9. Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Laurent Spahr

    Full Text Available OBJECTIVE: Impaired liver regeneration is associated with a poor outcome in patients with decompensated alcoholic liver disease (ALD. We assessed whether autologous bone marrow mononuclear cell transplantation (BMMCT improved liver function in decompensated ALD. DESIGN: 58 patients (mean age 54 yrs; mean MELD score 19, all with cirrhosis, 81% with alcoholic steatohepatitis at baseline liver biopsy were randomized early after hospital admission to standard medical therapy (SMT alone (n = 30, including steroids in patients with a Maddrey's score ≥32, or combined with G-CSF injections and autologous BMMCT into the hepatic artery (n = 28. Bone marrow cells were harvested, isolated and reinfused the same day. The primary endpoint was a ≥3 points decrease in the MELD score at 3 months, corresponding to a clinically relevant improvement in liver function. Liver biopsy was repeated at week 4 to assess changes in Ki67+/CK7+ hepatic progenitor cells (HPC compartment. RESULTS: Both study groups were comparable at baseline. After 3 months, 2 and 4 patients died in the BMMCT and SMT groups, respectively. Adverse events were equally distributed between groups. Moderate alcohol relapse occurred in 31% of patients. The MELD score improved in parallel in both groups during follow-up with 18 patients (64% from the BMMCT group and 18 patients (53% from the SMT group reaching the primary endpoint (p = 0.43 (OR 1.6, CI 0.49-5.4 in an intention to treat analysis. Comparing liver biopsy at 4 weeks to baseline, steatosis improved (p<0.001, and proliferating HPC tended to decrease in both groups (-35 and -33%, respectively. CONCLUSION: Autologous BMMCT, compared to SMT is a safe procedure but did not result in an expanded HPC compartment or improved liver function. These data suggest either insufficient regenerative stimulation after BMMCT or resistance to liver regenerative drive in patients with decompensated alcoholic cirrhosis. TRIAL REGISTRATION

  10. Destiny of autologous bone marrow-derived stromal cells implanted in the vocal fold.

    Science.gov (United States)

    Kanemaru, Shin-ichi; Nakamura, Tatsuo; Yamashita, Masaru; Magrufov, Akhmar; Kita, Tomoko; Tamaki, Hisanobu; Tamura, Yoshihiro; Iguchi, Fuku-ichiro; Kim, Tae Soo; Kishimoto, Masanao; Omori, Koichi; Ito, Juichi

    2005-12-01

    The aim of this study was to investigate the destiny of implanted autologous bone marrow-derived stromal cells (BSCs) containing mesenchymal stem cells. We previously reported the successful regeneration of an injured vocal fold through implantation of BSCs in a canine model. However, the fate of the implanted BSCs was not examined. In this study, implanted BSCs were traced in order to determine the type of tissues resulting at the injected site of the vocal fold. After harvest of bone marrow from the femurs of green fluorescent transgenic mice, adherent cells were cultured and selectively amplified. By means of a fluorescence-activated cell sorter, it was confirmed that some cells were strongly positive for mesenchymal stem cell markers, including CD29, CD44, CD49e, and Sca-1. These cells were then injected into the injured vocal fold of a nude rat. Immunohistologic examination of the resected vocal folds was performed 8 weeks after treatment. The implanted cells were alive in the host tissues and showed positive expression for keratin and desmin, markers for epithelial tissue and muscle, respectively. The implanted BSCs differentiated into more than one tissue type in vivo. Cell-based tissue engineering using BSCs may improve the quality of the healing process in vocal fold injuries.

  11. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  12. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    Science.gov (United States)

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  13. Human Breast Adipose-Derived Stem Cells Transfected with the Stromal Cell-Derived Factor-1 Receptor CXCR4 Exhibit Enhanced Viability in Human Autologous Free Fat Grafts

    Directory of Open Access Journals (Sweden)

    Fang-tian Xu

    2014-11-01

    Full Text Available Background: The main complication of autologous free fat tissue transplantation is fat resorption and calcification due to the ischemic necrosis of fat. The promotion of transplant neovascularization soon after autologous free fat grafts may reduce these outcomes. In adulthood, stromal cell-derived factor-1 (SDF-1 and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4 are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. We hypothesized that CXCR4 may improve the long-term survival of free fat tissue transplants by recruiting endothelial progenitor cells (EPCs and may therefore improve graft revascularization. In this study, we aimed to determine the effect of human breast adipose-derived stem cells (HBASCs transfected with the CXCR4 gene on the survival rate of human autologous free fat transplants in nude mice. Methods: Human breast adipose-derived stem cells (HBASCs were expanded ex vivo for 3 passages, labeled with green fluorescent protein (GFP and transfected with CXCR4 or left untransfected. Autologous fat tissues were mixed with the GFP-labeled, CXCR4-transfected HBASCs (group A, GFP-labeled HBASCs (group B, the known vascularization-promoting agent VEGF (group C, or medium (group D and then injected subcutaneously into 32 nude mice at 4 spots in a random fashion. Six months later, the transplanted tissue volume and histology were evaluated, and neo-vascularization was quantified by counting the capillaries. CXCR4 and SDF-1α mRNA expression in the transplants was determined using real-time quantitative PCR analysis (qPCR. Results: The data revealed that the control (group D transplant volume survival was 28.3 ± 4.5%. Mixing CXCR4-transfected (group A and untransfected (group B HBASCs significantly increased transplant volume survival (79.5 ± 8.3% and 67.2 ± 5.9%, respectively, whereas VEGF-transfected HBASCs (group C were less effective (41.2 ± 5.1%. Histological

  14. Autologous hematopoietic progenitor cell mobilization and collection in adult patients presenting with multiple myeloma and lymphoma: A position-statement from the Turkish Society of Apheresis (TSA).

    Science.gov (United States)

    Tekgündüz, Emre; Arat, Mutlu; Göker, Hakan; Özdoğu, Hakan; Kaynar, Leylagül; Çağırgan, Seçkin; Erkurt, Mehmet Ali; Vural, Filiz; Kiki, İlhami; Altuntaş, Fevzi; Demirkan, Fatih

    2017-12-01

    Autologous hematopoietic cell transplantation (AHCT) is a routinely used procedure in the treatment of adult patients presenting with multiple myeloma (MM), Hodgkin lymphoma (HL) and various subtypes of non-Hodgkin lymphoma (NHL) in upfront and relapsed/refractory settings. Successful hematopoietic progenitor cell mobilization (HPCM) and collection are the rate limiting first steps for application of AHCT. In 2015, almost 1700 AHCT procedures have been performed for MM, HL and NHL in Turkey. Although there are recently published consensus guidelines addressing critical issues regarding autologous HPCM, there is a tremendous heterogeneity in terms of mobilization strategies of transplant centers across the world. In order to pave the way to a more standardized HPCM approach in Turkey, Turkish Society of Apheresis (TSA) assembled a working group consisting of experts in the field. Here we report the position statement of TSA regarding autologous HPCM mobilization strategies in adult patients presenting with MM and lymphoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  16. Cartilage repair: Generations of autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Zeller, Philip; Singer, Philipp; Resinger, Christoph; Vecsei, Vilmos

    2006-01-01

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation

  17. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  18. Benefit from autologous stem cell transplantation in primary refractory myeloma? Different outcomes in progressive versus stable disease

    Science.gov (United States)

    Rosiñol, Laura; García-Sanz, Ramón; Lahuerta, Juan José; Hernández-García, Miguel; Granell, Miquel; de la Rubia, Javier; Oriol, Albert; Hernández-Ruiz, Belén; Rayón, Consuelo; Navarro, Isabel; García-Ruiz, Juan Carlos; Besalduch, Joan; Gardella, Santiago; Jiménez, Javier López; Díaz-Mediavilla, Joaquín; Alegre, Adrián; Miguel, Jesús San; Bladé, Joan

    2012-01-01

    Background Several studies of autologous stem cell transplantation in primary refractory myeloma have produced encouraging results. However, the outcome of primary refractory patients with stable disease has not been analyzed separately from the outcome of patients with progressive disease. Design and Methods In the Spanish Myeloma Group 2000 trial, 80 patients with primary refractory myeloma (49 with stable disease and 31 with progressive disease), i.e. who were refractory to initial chemotherapy, were scheduled for tandem transplants (double autologous transplant or a single autologous transplant followed by an allogeneic transplant). Patients with primary refractory disease included those who never achieved a minimal response (≥25% M-protein decrease) or better. Responses were assessed using the European Bone Marrow Transplant criteria. Results There were no significant differences in the rates of partial response or better between patients with stable or progressive disease. However, 38% of the patients with stable disease at the time of transplantation remained in a stable condition or achieved a minimal response after transplantation versus 7% in the group with progressive disease (P=0.0017) and the rate of early progression after transplantation was significantly higher among the group with progressive disease at the time of transplantation (22% versus 2%; P=0.0043). After a median follow-up of 6.6 years, the median survival after first transplant of the whole series was 2.3 years. Progression-free and overall survival from the first transplant were shorter in patients with progressive disease (0.6 versus 2.3 years, P=0.00004 and 1.1 versus 6 years, P=0.00002, respectively). Conclusions Our results show that patients with progressive refractory myeloma do not benefit from autologous transplantation, while patients with stable disease have an outcome comparable to those with chemosensitive disease. (ClinicalTrials.gov:NCT00560053) PMID:22058223

  19. Autologous Intravenous Mononuclear Stem Cell Therapy in Chronic Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Bhasin A

    2012-01-01

    Full Text Available Background: The regenerative potential of brain has led to emerging therapies that can cure clinico-motor deficits after neurological diseases. Bone marrow mononuclear cell therapy is a great hope to mankind as these cells are feasible, multipotent and aid in neurofunctional gains in Stroke patients. Aims: This study evaluates safety, feasibility and efficacy of autologous mononuclear (MNC stem cell transplantation in patients with chronic ischemic stroke (CIS using clinical scores and functional imaging (fMRI and DTI. Design: Non randomised controlled observational study Study: Twenty four (n=24 CIS patients were recruited with the inclusion criteria as: 3 months–2years of stroke onset, hand muscle power (MRC grade at least 2; Brunnstrom stage of recovery: II-IV; NIHSS of 4-15, comprehendible. Fugl Meyer, modified Barthel Index (mBI and functional imaging parameters were used for assessment at baseline, 8 weeks and at 24 weeks. Twelve patients were administered with mean 54.6 million cells intravenously followed by 8 weeks of physiotherapy. Twelve patients served as controls. All patients were followed up at 24 weeks. Outcomes: The laboratory and radiological outcome measures were within normal limits in MNC group. Only mBI showed statistically significant improvement at 24 weeks (p<0.05 whereas the mean FM, MRC, Ashworth tone scores in the MNC group were high as compared to control group. There was an increased number of cluster activation of Brodmann areas BA 4, BA 6 post stem cell infusion compared to controls indicating neural plasticity. Cell therapy is safe and feasible which may facilitate restoration of function in CIS.

  20. Epidermal growth factor in alkali-burned corneal epithelial wound healing.

    Science.gov (United States)

    Singh, G; Foster, C S

    1987-06-15

    We conducted a double-masked study to evaluate the effect of epidermal growth factor on epithelial wound healing and recurrent erosions in alkali-burned rabbit corneas. Epithelial wounds 10 mm in diameter healed completely under the influence of topical epidermal growth factor, whereas the control corneas did not resurface in the center. On reversal of treatment, the previously nonhealing epithelial defects healed when treated with topical epidermal growth factor eyedrops. Conversely, the epidermal growth factor-treated and resurfaced corneas developed epithelial defects when treatment was discontinued. Histopathologic examination disclosed hyperplastic epithelium growing over the damaged stroma laden with polymorphonuclear leukocytes when treated with epidermal growth factor eyedrops, but it did not adhere to the underlying tissue. Hydropic changes were seen intracellularly as well as between the epithelial cells and the stroma.

  1. Optical characterization of epidermal cells and their relationship to DNA recovery from touch samples [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Cristina E. Stanciu

    2015-11-01

    Full Text Available The goal of this study was to investigate the relative contributions of different cellular and genetic components to biological samples created by touch or contact with a surface – one of the most challenging forms of forensic evidence. Touch samples were generated by having individuals hold an object for five minutes and analyzed for quantity of intact epidermal cells, extracellular DNA, and DNA from pelleted cell material after elution from the collection swab. Comparisons were made between samples where individuals had washed their hands immediately prior to handling and those where hand washing was not controlled. The vast majority (84-100% of DNA detected in these touch samples was extracellular and was uncorrelated to the number of epidermal cells detected. Although little to no extracellular or cell pellet-associated DNA was detected when individuals washed their hands prior to substrate handling, we found that a significant number of epidermal cells (between ~5x103 and ~1x105 could still be recovered from these samples, suggesting that other types of biological information may be present even when no amplifiable nuclear DNA is present. These results help to elucidate the biological context for touch samples and characterize factors that may contribute to patterns of transfer and persistence of genetic material in forensic evidence.

  2. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    Science.gov (United States)

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  3. Beneficial Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Naturally Occurring Tendinopathy

    Science.gov (United States)

    Smith, Roger Kenneth Whealands; Werling, Natalie Jayne; Dakin, Stephanie Georgina; Alam, Rafiqul; Goodship, Allen E.; Dudhia, Jayesh

    2013-01-01

    Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs), supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs) suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X107 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (ptendon repair in enhancing normalisation of biomechanical, morphological, and compositional parameters. These data in natural disease, with no adverse findings, support the use of this treatment for human tendon injuries. PMID:24086616

  4. Clinical translation of autologous cell-based tissue engineering techniques as Class III therapeutics in China: Taking cartilage tissue engineering as an example

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-04-01

    Full Text Available Autologous cell-based tissue engineering (TE techniques have been clinically approved for approximately 4 years in China, since the first cartilage TE technique was approved for clinical use by the Zhejiang Health Bureau. TE techniques offer a promising alternative to traditional transplantation surgery, and are different from those for transplanted tissues (biologics or pharmaceutical, the clinical translational procedures are unique and multitasked, and the requirements may differ from those of the target tissues. Thus, the translational procedure is still unfamiliar to most researchers and needs further improvement. This perspectives paper describes the key guidelines and regulations involved in the current translational process, and shares our translational experiences in cartilage TE to provide an example of autologous cell-based TE translation in China. Finally, we discuss the scientific and social challenges and provide some suggestions for future improvements.

  5. High-dose treatment with autologous stem cell transplantation versus sequential chemotherapy: the GELA experience.

    Science.gov (United States)

    Bosly, A; Haioun, C; Gisselbrecht, C; Reyes, F; Coiffier, B

    2001-07-01

    Autologous stem-cell transplantation (ASCT) has permitted to deliver high-dose therapy (HDT). In aggressive lymphomas, the GELA group conducted prospective and retrospective studies comparing HDT + ASCT to conventional sequential chemotherapy. In relapsing patients and in partial remission, retrospective studies showed a survival advantage for HDT + ASCT over sequential chemotherapy. In complete response, advantage for HDT + ASCT was demonstrated in a prospective trial only for patients with high intermediate or high risk in the IPI score. The attainment of a maximal reduction of the tumoral mass before going HDT is very important either in first line or in relapsing patients.

  6. ASCOT: Autologous Bone Marrow Stem Cell Use for Osteoarthritis of the Thumb—First Carpometacarpal Joint

    Science.gov (United States)

    Buckley, Christina; Sugrue, Conor; Carr, Emma; O’Reilly, Aine; O’Neill, Shane; Carroll, Sean M.

    2017-01-01

    Background: The first carpometacarpal joint (CMCJ) in the hand is a commonly affected joint by osteoarthritis. It causes significant thumb base pain, limiting functional capacity. Microfracturing and application of autologous stem cells has been performed on large joints such as the knee but has never been evaluated for use in the smaller joints in the hand. Our aim was to determine the potential benefit of microfracturing and autologous bone marrow stem cells for treatment of osteoarthritis of the first CMCJ in the hand. Methods: All inclusion criteria were satisfied. Preoperative assessment by the surgeon, physiotherapist, and occupational therapist was performed. The first CMCJ was microfractured and the Bone Marrow Stem Cells were applied directly. Postoperatively, the patients were followed up for 1 year. Results: Fifteen patients met inclusion criteria; however, 2 patients were excluded due to postoperative cellulitis and diagnosis of De Quervain's tenosynovitis. The mean scores of the 13-patient preoperative and 1 year follow-up assessments are visual analog score at rest of 3.23–1.69 (P = 0.0292), visual analog score on activity of 7.92–4.23 (P = 0.0019), range of motion 45.77o–55.15o (P = 0.0195), thumb opposition score 7.62–9.23 (P = 0.0154), Disability of the Arm, Shoulder and Hand score of 51.67–23.08 (P = 0.0065). Strength improved insignificantly from 4.7 kg preoperatively to 5.53 kg at 12 months (P = 0.1257). All patients had a positive Grind test preoperatively and a negative test after 12 months. Conclusions: This innovative pilot study is a new approach to osteoarthritis of the thumb. PMID:29062653

  7. Effect of BCNU combined with total body irradiation or cyclophosphamide on survival of dogs after autologous marrow grafts

    International Nuclear Information System (INIS)

    Paterson, A.H.G.; English, D.

    1979-01-01

    Dogs were treated with either: (1) 750 rad total body irradiation; (2) BCNU 2 or 4 mg/kg IV 48 hours prior to 750 rad total body irradiation; or (3) BCNU 4 mg/kg IV plus cyclophosphamide 30 mg/kg IV. Results showed that of 11 dogs who received 750 rad total body irradiation and did not receive cryopreserved autologous bone marrow cells, none survived, compared to an 88% survival (31 of 35 dogs) after 750 rad total body irradiation if the dogs received stored autologous bone marrow cells. However, when the dogs were treated with BCNU 2 or 4 mg/kg prior to 750 rad total body irradiation the survival rate, despite infusion of autologous bone marrow cells, dropped to 25% (3 of 12 dogs) for BCNU 2 mg/kg, and 17% (2 of 12 dogs) for BCNU 4 mg/kg. This effect did not seem to be due to direct serum inhibition of hemopoietic cell proliferation since serum obtained at various intervals after BCNU administrations failed to inhibit CFU growth in vitro. The dogs died from hemorrhage and infection; at autopsy there was hemorrhagic pneumonitis and intestinal ulcerations with petechial hemorrhages, suggesting that the combination of BCNU and total body irradiation may have synergistic toxicity on the canine gastro-intestinal tract. When BCNU was combined with cyclophosphamide, reversal of marrow toxicity occurred in 54% (6 of 11 dogs) with stored autologous bone marrow cells compared to no survival (0 of 8 dogs) with stored autologous bone marrow cells. Thus while autologous bone marrow grafts are useful for reversal of marrow toxicity due to many therapeutic protocols, such grafts alone may not provide protection against toxicity due to the combination of high dosage BCNU and total body irradiation

  8. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    Directory of Open Access Journals (Sweden)

    Ashvin K. Dewan

    2014-01-01

    Full Text Available Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells and associated scaffolds (natural or synthetic, hydrogels or membranes. ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient’s knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients.

  9. Incidental Squamous Cell Carcinoma in an Epidermal Inclusion Cyst: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ethan Frank

    2018-03-01

    Full Text Available Epidermal inclusion cysts are common lesions that rarely develop into squamous cell carcinoma (SCC. Neoplastic change in these cysts can be associated with prominent symptoms such as pain, rapid growth, or ulceration. This study describes the case of a 64-year-old woman with a 4-year history of a largely asymptomatic neck mass, which after routine excision was found to be an epidermal inclusion cyst harboring well-differentiated SCC. The diagnosis was made incidentally after routine cyst bisection and hematoxylin and eosin staining. Given the potential for variable presentation and low cost of hematoxylin and eosin analysis, we recommend a low threshold for a comprehensive pathological search for malignancy in excised cysts when appropriate.

  10. Autologous tenocyte therapy for experimental Achilles tendinopathy in a rabbit model.

    Science.gov (United States)

    Chen, Jimin; Yu, Qian; Wu, Bing; Lin, Zhen; Pavlos, Nathan J; Xu, Jiake; Ouyang, Hongwei; Wang, Allan; Zheng, Ming H

    2011-08-01

    Tendinopathy of the Achilles tendon is a chronic degenerative condition that frequently does not respond to treatment. In the current study, we propose that autologous tenocytes therapy (ATT) is effective in treating tendon degeneration in a collagenase-induced rabbit Achilles tendinopathy model. Chronic tendinopathy was created in the left Achilles tendon of 44 rabbits by an intratendonous injection of type I collagenase. Forty-two rabbits were randomly allocated into three groups of 14 and received control treatment; autologous tenocytes digested from tendon tissue; and autologous tenocytes digested from epitendineum tissue. For cell tracking in vivo, the remaining two animals were injected with autologous tenocytes labeled with a nano-scale super-paramagnetic iron oxide (Feridex). Rabbits were sacrificed at 4 and 8 weeks after the therapeutic injection, and tendon tissue was analyzed by histology, immunostaining, and biomechanical testing to evaluate tissue repair. Autologous tenocyte treatment improved tendon remodeling, histological outcomes, collagen content, and tensile strength of tendinopathic Achilles tendons. Injected tenocytes were integrated into tendon matrix and could be tracked up to 8 weeks in vivo. Immunohistochemistry showed that ATT improved type I collagen expression in repaired tendon but did not affect type III collagen and secreted protein, acidic and rich in cysteine expression. ATT may be a useful treatment of chronic Achilles tendinopathy.

  11. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  12. Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model

    Directory of Open Access Journals (Sweden)

    Ferrone Soldano

    2007-06-01

    Full Text Available Abstract Background The anti-tumor efficacy of human immune effector cells, such as cytolytic T lymphocytes (CTLs, has been difficult to study in lung cancer patients in the clinical setting. Improved experimental models for the study of lung tumor-immune cell interaction as well as for evaluating the efficacy of adoptive transfer of immune effector cells are needed. Methods To address questions related to the in vivo interaction of human lung tumor cells and immune effector cells, we obtained an HLA class I + lung tumor cell line from a fresh surgical specimen, and using the infiltrating immune cells, isolated and characterized tumor antigen-specific, CD8+ CTLs. We then established a SCID mouse-human tumor xenograft model with the tumor cell line and used it to study the function of the autologous CTLs provided via adoptive transfer. Results The tumor antigen specific CTLs isolated from the tumor were found to have an activated memory phenotype and able to kill tumor cells in an antigen specific manner in vitro. Additionally, the tumor antigen-specific CTLs were fully capable of homing to and killing autologous tumors in vivo, and expressing IFN-γ, each in an antigen-dependent manner. A single injection of these CTLs was able to provide significant but temporary control of the growth of autologous tumors in vivo without the need for IL-2. The timing of injection of CTLs played an essential role in the outcome of tumor growth control. Moreover, immunohistochemical analysis of surviving tumor cells following CTL treatment indicated that the surviving tumor cells expressed reduced MHC class I antigens on their surface. Conclusion These studies confirm and extend previous studies and provide additional information regarding the characteristics of CTLs which can be found within a patient's tumor. Moreover, the in vivo model described here provides a unique window for observing events that may also occur in patients undergoing adoptive cellular

  13. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    Directory of Open Access Journals (Sweden)

    Christian eFalter

    2015-03-01

    Full Text Available The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the adhesive tape – liquid cover glass technique for simple leaf epidermis preparation and the compatibility to laser microdissection and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  14. Preparation and Characterization of a Novel Skin Substitute

    OpenAIRE

    Carlotta Castagnoli; Mara Fumagalli; Daniela Alotto; Irene Cambieri; Stefania Casarin; Alessia Ostorero; Raffaella Casimiri; Patrizia Germano; Carla Pezzuto; Maurizio Stella

    2010-01-01

    Autologous epidermal cell cultures (CEA) represent a possibility to treat extensive burn lesions, since they allow a significative surface expansion which cannot be achieved with other surgical techniques based on autologous grafting. Moreover currently available CEA preparations are difficult to handle and their take rate is unpredictable. This study aimed at producing and evaluating a new cutaneous biosubstitute made up of alloplastic acellular glycerolized dermis (AAGD) and CEA to ove...

  15. Combining laser-assisted microdissection (LAM) and RNA-seq allows to perform a comprehensive transcriptomic analysis of epidermal cells of Arabidopsis embryo.

    Science.gov (United States)

    Sakai, Kaori; Taconnat, Ludivine; Borrega, Nero; Yansouni, Jennifer; Brunaud, Véronique; Paysant-Le Roux, Christine; Delannoy, Etienne; Martin Magniette, Marie-Laure; Lepiniec, Loïc; Faure, Jean Denis; Balzergue, Sandrine; Dubreucq, Bertrand

    2018-01-01

    Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm 2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.

  16. Nuclear receptor NHR-25 is required for cell-shape dynamics during epidermal differentiation in Caenorhabditis elegans

    Czech Academy of Sciences Publication Activity Database

    Šilhánková, Marie; Jindra, Marek; Asahina, Masako

    2005-01-01

    Roč. 118, č. 1 (2005), s. 223-232 ISSN 0021-9533 R&D Projects: GA AV ČR KJB5022303; GA ČR GD524/03/H133 Institutional research plan: CEZ:AV0Z60220518 Keywords : Caenorhabditis elegans * nuclear receptor * epidermal stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.543, year: 2005

  17. Immune Response Generated With the Administration of Autologous Dendritic Cells Pulsed With an Allogenic Tumoral Cell-Lines Lysate in Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma

    Directory of Open Access Journals (Sweden)

    Daniel Benitez-Ribas

    2018-04-01

    Full Text Available Background and objectiveDiffuse intrinsic pontine glioma (DIPG is a lethal brainstem tumor in children. Dendritic cells (DCs have T-cell stimulatory capacity and, therefore, potential antitumor activity for disease control. DCs vaccines have been shown to reactivate tumor-specific T cells in both clinical and preclinical settings. We designed a phase Ib immunotherapy (IT clinical trial with the use of autologous dendritic cells (ADCs pulsed with an allogeneic tumors cell-lines lysate in patients with newly diagnosed DIPG after irradiation (radiation therapy.MethodsNine patients with newly diagnosed DIPG met enrollment criteria. Autologous dendritic cell vaccines (ADCV were prepared from monocytes obtained by leukapheresis. Five ADCV doses were administered intradermally during induction phase. In the absence of tumor progression, patients received three boosts of tumor lysate every 3 months during the maintenance phase.ResultsVaccine fabrication was feasible in all patients included in the study. Non-specific KLH (9/9 patients and specific (8/9 patients antitumor response was identified by immunologic studies in peripheral blood mononuclear cells (PBMC. Immunological responses were also confirmed in the T lymphocytes isolated from the cerebrospinal fluid (CSF of two patients. Vaccine administration resulted safe in all patients treated with this schema.ConclusionThese preliminary results demonstrate that ADCV preparation is feasible, safe, and generate a DIPG-specific immune response detected in PBMC and CSF. This strategy shows a promising backbone for future schemas of combination IT.

  18. Epidermal growth factor in mammary glands and milk from rats

    DEFF Research Database (Denmark)

    Thulesen, J; Raaberg, Lasse; Nexø, Ebba

    1993-01-01

    Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF-immunoreact......Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF...

  19. Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Shridhar Bale

    2018-05-01

    Full Text Available Native flexibly linked (NFL HIV-1 envelope glycoprotein (Env trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan “hole” naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 in vitro, elicited low-to-no tier 1 virus neutralization in vivo, indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses in vivo.

  20. Potential involvement of oxygen intermediates and glutathione depletion in UV-induced epidermal cell injury in vitro

    International Nuclear Information System (INIS)

    Hsieh, G.C.; Acosta, D.

    1991-01-01

    Generation of reactive oxygen species (ROS) and depletion of glutathione (GSH) are suggested as the cytotoxic mechanisms for UVB-induced cellular damage. Primary monolayer cultures of epidermal keratinocytes (KCs) prepared from the skin of neonatal rats were irradiated with UVB at levels of 0.25-3.0 J/cm 2 . Cytotoxicity was measured at 3, 6, and 12 hr after UVB radiation. Exposure of KCs to UVB resulted in time- and dose-related toxic responses as determined by plasma membrane integrity, lysosomal function and mitochondrial metabolic activity. Irradiated KCs generated superoxide in a dose-dependent manner when compared to sham-irradiated cells. Superoxide formation, which occurred before and concomitant with cell injury, was decreased by superoxide dismutase (SOD). Cell injury was also significantly prevented by ROS scavengers, SOD and catalase. Pretreatment of cells with endocytosis inhibitors, cytochalasin B and methylamine, suppressed the ability of SOD and catalase to protect keratinocytes from UVB-induced toxicity. Irradiation of cells with UVB caused rapid depletion of GSH to about 30% of unirradiated levels within 15 min. UVB-irradiation led to a rapid transient increase in GSH peroxidase activity, concomitant with a marked decrease in the GSH/GSSG ratio. After 1 hr., while the GSH/GSSG ratio remained low, the GSH peroxidase activity declined below the control levels in UVB-treated epidermal cells. Following extensive GSH depletion in cells preincubated with 0.1 mM buthiomine sulfoximine, KCs became strongly sensitized to the cytotoxic action of UVB. These results indicate that UVB-induced cell injury in cultured KCs may be mediated by ROs and that endogenous GSH may play an important protective role against the cytotoxic action of UVB

  1. Does the FDA have regulatory authority over adult autologous stem cell therapies? 21 CFR 1271 and the emperor's new clothes

    Directory of Open Access Journals (Sweden)

    Freeman Michael

    2012-03-01

    Full Text Available Abstract FDA has recently asserted that many autologous cell therapies once considered the practice of medicine are in fact drugs. These changes began with the creation of new sections of 21 CFR 1271 and a subsequent one word change where the FDA, without public commentary, altered a single word in its regulatory language regarding cell and tissue based therapies that asserted the authority to classify autologous tissue as drugs. The bright line between medical care and drug production can be delineated in many ways, but a simple metric that defines the dichotomy is the consent status of the patient. In healthcare, a patient can either be consented individually for a medical procedure or exposed to an unconsented risk where regulatory assurances are already in place. These new FDA policies apply rules meant to keep drugs safe in a drug factory (unconsented mass production risks to individually consented surgical procedures. We argue that there is little societal benefit to these changes and that they are already stifling medical innovation.

  2. Comparison of radiosensitivities of human autologous normal and neoplastic thyroid epithelial cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Kopecky, K.J.; Hiraoka, T.; Ezaki, H.; Clifton, K.H.

    1986-01-01

    Studies were conducted to examine differences between the radiosensitivities of normal and neoplastic epithelial cells of the human thyroid. Freshly excised thyroid tissues from the tumours of eight patients with papillary carcinoma (PC) and five with follicular adenoma (FA) were cultured in vitro separately from normal thyroid tissue obtained from the surgical margins of the same patients. Plating efficiency of unirradiated control tissue was lower, on average for tumour tissue compared with normal tissue. Radiosensitivity, measured by the 37% inactivation dose D 0 , was greater for carcinoma tissue than for normal tissue in seven out of eight PC cases. Adenomatous tissue was less radiosensitive than normal tissue in four out of five FA cases. This is the first report comparing the radiosensitivity of autologous normal and abnormal epithelial tissue from the human thyroid. (author)

  3. Autologous fat graft and bone marrow-derived mesenchymal stem cells assisted fat graft for treatment of Parry-Romberg syndrome.

    Science.gov (United States)

    Jianhui, Zhao; Chenggang, Yi; Binglun, Lu; Yan, Han; Li, Yang; Xianjie, Ma; Yingjun, Su; Shuzhong, Guo

    2014-09-01

    Progressive facial hemiatrophy, also called Parry-Romberg syndrome (PRS), is characterized by slowly progressive atrophy of one side of the face and primarily involves the subcutaneous tissue and fat. The restoration of facial contour and symmetry in patients affected by PRS still remains a challenge clinically. Fat graft is a promising treatment but has some shortcomings, such as unpredictability and low rate of graft survival due to partial necrosis. To obviate these disadvantages, fat graft assisted by bone marrow-derived mesenchymal stem cells (BMSCs) was used to treat PRS patients and the outcome was evaluated in comparison with the conventional treatment by autologous fat graft. Autologous fat graft was harvested by tumescent liposuction. Bone marrow-derived mesenchymal stem cells were then isolated by human Lymphocytes Separation Medium through density gradient centrifugation. Twenty-six patients were treated with autologous fat graft only (group A), whereas 10 other patients were treated with BMSC-assisted fat graft (group B). The Coleman technique was applied in all fat graft injections. The follow-up period was 6 to 12 months in this study, In group A, satisfactory outcome judged by symmetrical appearances was obtained with 1 injection in 12 patients, 2 injections in 8 patients, and 3 injections in 4 patients. However, the result of 1 patient was not satisfactory and 1 patient was overcorrected. In group B, 10 patients obtained satisfactory outcomes and almost reached symmetry by 1 injection. No complications (infection, hematoma, or subcutaneous mass) were observed. The results suggest that BMSC-assisted fat graft is effective and safe for soft tissue augmentation and may be superior to conventional lipoinjection. Additional study is necessary to further evaluate the efficacy of this technique.

  4. DC-CIK cells derived from ovarian cancer patient menstrual blood activate the TNFR1-ASK1-AIP1 pathway to kill autologous ovarian cancer stem cells.

    Science.gov (United States)

    Qin, Wenxing; Xiong, Ying; Chen, Juan; Huang, Yongyi; Liu, Te

    2018-03-22

    Ovarian cancer stem cells (OCSCs) are highly carcinogenic and have very strong resistance to traditional chemotherapeutic drugs; therefore, they are an important factor in ovarian cancer metastasis and recurrence. It has been reported that dendritic cell (DC)-cytokine-induced killer (CIK) cells have significant killing effects on all cancer cells across many systems including the blood, digestive, respiratory, urinary and reproductive systems. However, whether DC-CIK cells can selectively kill OCSCs is currently unclear. In this study, we collected ovarian cancer patient menstrual blood (OCPMB) samples to acquire mononuclear cells and isolated DC-CIK cells in vitro. In addition, autologous CD44+/CD133+ OCSCs were isolated and used as target cells. The experimental results showed that when DC-CIK cells and OCSCs were mixed and cultured in vitro at ratios of 5:1, 10:1 and 50:1, the DC-CIK cells killed significant amounts of OCSCs, inhibited their invasion in vitro and promoted their apoptosis. The qPCR and Western blot results showed that DC-CIK cells stimulated high expression levels and phosphorylation of TNFR1, ASK1, AIP1 and JNK in OCSCs through the release of TNF-α. After the endogenous TNFR1 gene was knocked out in OCSCs using the CRISPR/Cas9 technology, the killing function of DC-CIK cells on target OCSCs was significantly attenuated. The results of the analyses of clinical samples suggested that the TNFR1 expression level was negatively correlated with ovarian cancer stage and prognosis. Therefore, we innovatively confirmed that DC-CIK cells derived from OCPMB could secret TNF-α to activate the expression of the TNFR1-ASK1-AIP1-JNK pathway in OCSCs and kill autologous OCSCs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Human and Autologous Adipose-derived Stromal Cells Increase Flap Survival in Rats Independently of Host Immune Response

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Jensen, Charlotte Harken; Andersen, Ditte Caroline

    2018-01-01

    evaluated after 7 days. RESULTS: The mean survival rates for SVF treatment regardless of human or autologous origin were significantly increased as compared with the control group. Adipose stem/stromal cell and SVF lysate injection did not increase flap survival. Vessel density was increased for human...... injections lead to increased vessel density, but it did not necessarily lead to increased flap survival. Further research should elaborate which molecular events make SVF treatment more efficacious than ASC....

  6. Spatiotemporal Expression of p63 in Mouse Epidermal Commitment

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2015-12-01

    Full Text Available The embryonic surface ectoderm is a simple flat epithelium consisting of cells that express the cytokeratins K8/K18. Before stratification, K5/K14 expression substitutes K8/K18 expression, marking the event called epidermal commitment. Previous studies show that the transcription factor p63 plays an essential role in epidermal commitment. However, detailed expression information of p63 during early epidermal development in mice is still unclear. We systematically studied the expression pattern of p63 in mouse epidermal commitment, together with K8 and K5. We show that p63 expression could be detected as early as E8.5 in mouse embryos preceding epidermal commitment. p63 expression first appears near the newly formed somites and the posterior part of the embryo, further expanding to the whole embryonic surface with particular enrichment in the first branchial arches and the limb buds. ΔNp63 is the major class of isoforms expressed in this period. Relative expression intensity of p63 depends on the embryonic position. In summary, there is a sequential and regular expression pattern of K8, p63 and K5 in mouse epidermal commitment. Our study not only contributes to understanding the early events during epidermal development but also provides a basal tool to study the function of p63 in mammals.

  7. Multistep change in epidermal growth factor receptors during spontaneous neoplastic progression in Chinese hamster embryo fibroblasts

    International Nuclear Information System (INIS)

    Wakshull, E.; Kraemer, P.M.; Wharton, W.

    1985-01-01

    Whole Chinese hamster embryo lineages have been shown to undergo multistep spontaneous neoplastic progression during serial passage in culture. The authors have studied the binding, internalization, and degradation of 125 I-labeled epidermal growth factor at four different stages of transformation. The whole Chinese hamster embryo cells lost cell surface epidermal growth factor receptors gradually during the course of neoplastic progression until only 10% of the receptor number present in the early-passage cells (precrisis) were retained in the late-passage cells (tumorigenic). No differences in internalization rates, chloroquine sensitivity, or ability to degrade hormone between the various passage levels were seen. No evidence for the presence in conditioned medium of transforming growth factors which might mask or down-regulate epidermal growth factor receptor was obtained. These results suggest that a reduction in cell surface epidermal growth factor receptor might be an early event during spontaneous transformation in whole Chinese hamster embryo cells

  8. Generating autologous hematopoietic cells from human-induced pluripotent stem cells through ectopic expression of transcription factors.

    Science.gov (United States)

    Hwang, Yongsung; Broxmeyer, Hal E; Lee, Man Ryul

    2017-07-01

    Hematopoietic cell transplantation (HCT) is a successful treatment modality for patients with malignant and nonmalignant disorders, usually when no other treatment option is available. The cells supporting long-term reconstitution after HCT are the hematopoietic stem cells (HSCs), which can be limited in numbers. Moreover, finding an appropriate human leukocyte antigen-matched donor can be problematic. If HSCs can be stably produced in large numbers from autologous or allogeneic cell sources, it would benefit HCT. Induced pluripotent stem cells (iPSCs) established from patients' own somatic cells can be differentiated into hematopoietic cells in vitro. This review will highlight recent methods for regulating human (h) iPSC production of HSCs and more mature blood cells. Advancements in transcription factor-mediated regulation of the developmental stages of in-vivo hematopoietic lineage commitment have begun to provide an understanding of the molecular mechanism of hematopoiesis. Such studies involve not only directed differentiation in which transcription factors, specifically expressed in hematopoietic lineage-specific cells, are overexpressed in iPSCs, but also direct conversion in which transcription factors are introduced into patient-derived somatic cells which are dedifferentiated to hematopoietic cells. As iPSCs derived from patients suffering from genetically mutated diseases would express the same mutated genetic information, CRISPR-Cas9 gene editing has been utilized to differentiate genetically corrected iPSCs into normal hematopoietic cells. IPSCs provide a model for molecular understanding of disease, and also may function as a cell population for therapy. Efficient differentiation of patient-specific iPSCs into HSCs and progenitor cells is a potential means to overcome limitations of such cells for HCT, as well as for providing in-vitro drug screening templates as tissue-on-a-chip models.

  9. Functional assessment of autologous platelet-rich plasma (PRP) after long-term storage at -20 °C without any preservation agent.

    Science.gov (United States)

    Hosnuter, Mubin; Aslan, Cem; Isik, Daghan; Caliskan, Gorkem; Arslan, Banu; Durgun, Mustafa

    2017-08-01

    Platelet-rich plasma (PRP) is increasingly being used in the treatment of chronic wounds, pathologies of the musculoskeletal system, and in cosmetic medicine; however, the preparation of platelet-rich plasma is both time-consuming and requires invasive intervention. Additional costs are introduced if special equipment is used during preparation. The aim of the present study is to test whether autologous platelet-rich plasma (PRP) preserves the feature of growth factor release when stored at -20 °C after preparation. Autologous PRP concentrates were prepared using whole blood samples obtained from 20 healthy subjects and divided into three parts to form three groups. Epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), platelet derived growth factor-AB (PDGF-AB), insulin-like growth factor 1 (IGF-1), transforming growth factor-beta (TGF-β), and P-Selectin levels were immediately analysed in the control group. The other groups were defined as the experimental groups and were stored at -20 °C and analysed on the 7th and the 14th days. The same growth factors were tested in the experimental groups. The growth factors (EGF, VEGF, PDGF-AB, IGF-1, TGF-β) and P-selectin levels were significantly decreased in the autologous PRP samples stored at -20 °C compared to the control group. The growth factor levels on days 7 and 14 suggest that autologous PRP can be stored at -20 °C without preservative agents, although in vivo studies are required in order to evaluate the clinical efficacy of the detected growth factor levels.

  10. Combination of autologous bone marrow mesenchymal stem cells and cord blood mononuclear cells in the treatment of chronic thoracic spinal cord injury in 27 cases

    Directory of Open Access Journals (Sweden)

    Lian-zhong WANG

    2012-08-01

    Full Text Available Objective To investigate and evaluate therapeutic effects of transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells for late thoracic spinal cord injury. Methods Data from 27 patients with late thoracic spinal cord injury who received transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells in Neurosurgery Department of 463rd Hospital of PLA between July 2006 and July 2008 were collected and analyzed. The full treatment course consisted of 4 consecutive injections at one week apart. Indicators for evaluation followed that of the American Spiral Injury Association (ASIA Impairment Scale (AIS grade, ASIA motor and sensory scores, ASIA visual analog score, and the Ashworth score. The follow-up period was 6 months. Evaluations were made 6 weeks and 6 months after the treatment. Results Improvement from AIS A to AIS B was found in 4 patients. In one patient, improvement from AIS A to AIS C and in one patient from AIS B to AIS C was found 6 weeks after the treatment. The AIS improvement rate was 22.2%. In one patient improvement from AIS A to AIS B was found after 6 months. The overall AIS improvement rate was 25.9%. ASIA baseline motor scores of lower extremties were 0.5±1.5, 1.7±2.9, 3.1±3.6 before the treatment, 6 weeks and 6 months after the treatment, respectively, and showed a statistically significant improvement (P < 0.05. ASIA sensory scores including light touch and pinprick were 66.6±13.7 and 67.0±13.6 respectively before treatment, and they became 68.8±14.4, 68.4±14.7 and 70.5±14.4, 70.2±14.4 six weeks and six months after the treatment. The changes were statistically significant (P < 0.05; Modified Ashworth Scale scores were 1.8±1.5, 1.6±1.2,1.1±0.8 respectively at baseline, 6 weeks and 6months after the treatment, and showed a statistically significant descending trend (P < 0.05. Conclusion Transplantation of

  11. Impact of the use of autologous stem cell transplantation at first relapse both in naïve and previously rituximab exposed follicular lymphoma patients treated in the GELA/GOELAMS FL2000 study

    Science.gov (United States)

    Le Gouill, Steven; De Guibert, Sophie; Planche, Lucie; Brice, Pauline; Dupuis, Jehan; Cartron, Guillaume; Van Hoof, Achiel; Casasnovas, Olivier; Gyan, Emmanuel; Tilly, Hervé; Fruchart, Christophe; Deconinck, Eric; Fitoussi, Olivier; Gastaud, Lauris; Delwail, Vincent; Gabarre, Jean; Gressin, Rémy; Blanc, Michel; Foussard, Charles; Salles, Gilles

    2011-01-01

    Background We analyzed detailed characteristics and salvage treatment in 175 follicular lymphoma patients from the FL2000 study who were in progression after first-line therapy with or without addition of rituximab to chemotherapy and interferon. Design and Methods The impact of using autologous stem cell transplantation and/or rituximab administration at first progression was investigated, taking into account initial therapy. With a median follow up of 31 months, 3-year event free and overall survival rates after progression were 50% (95%CI 42–58%) and 72% (95%CI 64–78%), respectively. Results The 3-year event free rate of rituximab re-treated patients (n=112) was 52% (95%CI 41–62%) versus 40% (95%CI 24–55%) for those not receiving rituximab second line (n=53) (P=0.075). There was a significant difference in 3-year overall survival between patients receiving autologous stem cell transplantation and those not: 92% (95%CI 78–97%) versus 63% (95%CI 51–72%) (P=0.0003), respectively. In multivariate analysis, both autologous stem cell transplantation and period of progression/relapse affected event free and overall survival. Conclusions Regardless of front-line rituximab exposure, this study supports incorporating autologous stem cell transplantation in the therapeutic approach at first relapse for follicular lymphoma patients. PMID:21486862

  12. Morphometric analysis of epidermal differentiation in primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; Smith, H. S.

    1990-01-01

    Epidermal differentiation in primary roots of Zea mays was divided into six cell types based on cellular shape and cytoplasmic appearance. These six cell types are: 1) apical protoderm, located at the tip of the root pole and characterized by periclinally flattened cells; 2) cuboidal protoderm, located approximately 230 microns from the root pole and characterized by cuboidal cells; 3) tabular epidermis, located approximately 450 microns from the root pole and characterized by anticlinally flattened cells; 4) cuboidal epidermis, located approximately 900 microns from the root pole and characterized by cuboidal cells having numerous small vacuoles; 5) vacuolate cuboidal epidermis, located approximately 1,500 microns from the root pole and characterized by cuboidal cells containing several large vacuoles; and 6) columnar epidermis, located approximately 2,200 microns from the root pole (i.e., at the beginning of the zone of elongation) and characterized by elongated cells. We also used stereology to quantify the cellular changes associated with epidermal differentiation. The quiescent center and the apical protoderm have significantly different ultrastructures. The relative volume of dictyosomes increases dramatically during the early stages of epidermal differentiation. This increase correlates inversely with the amount of coverage provided by the root cap and mucilage.

  13. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals.

    NARCIS (Netherlands)

    Van Moerkercke, A.; Galván-Ampudia, C.S.; Verdonk, J.C.; Haring, M.A.; Schuurink, R.C.

    2012-01-01

    In which cells of the flower volatile biosynthesis takes place is unclear. In rose and snapdragon, some enzymes of the volatile phenylpropanoid/benzenoid pathway have been shown to be present in the epidermal cells of petals. It is therefore generally believed that the production of these compounds

  14. Reliability of using circulating tumor cells for detecting epidermal growth factor receptor mutation status in advanced non-small-cell lung cancer patients: a meta-analysis and systematic review

    Directory of Open Access Journals (Sweden)

    Hu F

    2018-03-01

    Full Text Available Fang Hu,* Xiaowei Mao,* Yujun Zhang, Xiaoxuan Zheng, Ping Gu, Huimin Wang, Xueyan ZhangDepartment of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this workPurpose: To evaluate the clinical value of circulating tumor cells as a surrogate to detect epidermal growth factor receptor mutation in advanced non-small-cell lung cancer (NSCLC patients.Methods: We searched the electronic databases, and all articles meeting predetermined selection criteria were included in this study. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. The evaluation indexes of the diagnostic performance were the summary receiver operating characteristic curve and area under the summary receiver operating characteristic curve.Results: Eight eligible publications with 255 advanced NSCLC patients were included in this meta-analysis. Taking tumor tissues as reference, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of circulating tumor cells for detecting the epidermal growth factor receptor mutation status were found to be 0.82 (95% confidence interval [CI]: 0.50–0.95, 0.95 (95% CI: 0.24–1.00, 16.81 (95% CI: 0.33–848.62, 0.19 (95% CI: 0.06–0.64, and 86.81 (95% CI: 1.22–6,154.15, respectively. The area under the summary receiver operating characteristic curve was 0.92 (95% CI: 0.89–0.94. The subgroup analysis showed that the factors of blood volume, histological type, EGFR-tyrosine kinase inhibitor therapy, and circulating tumor cell and tissue test methods for EGFR accounted for the significant difference of the pooled specificity. No significant difference was found between the pooled sensitivity of the subgroup.Conclusion: Our meta-analysis confirmed that circulating tumor cells are a good surrogate for

  15. Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes

    DEFF Research Database (Denmark)

    Kristensen, Stine Gry; Pors, Susanne Elisabeth; Andersen, Claus Yding

    2017-01-01

    options using autologous mitochondria to potentially augment pregnancy potential in ART. Autologous transfer of mitochondria from the patient's own germline cells has attracted much attention as a possible new treatment to revitalize deficient oocytes. IVF births have been reported after transfer...... of oogonial precursor cell-derived mitochondria; however, the source and quality of the mitochondria are still unclear. In contrast, fully grown oocytes are loaded with mitochondria which have passed the genetic bottleneck and are likely to be of high quality. An increased supply of such oocytes could...... with high quality mitochondria can be obtained from natural or stimulated ovaries and potentially be used to improve both quality and quantity of oocytes available for fertility treatment....

  16. Progressive increase in brain glucose metabolism after intrathecal administration of autologous mesenchymal stromal cells in patients with diffuse axonal injury.

    Science.gov (United States)

    Vaquero, Jesús; Zurita, Mercedes; Bonilla, Celia; Fernández, Cecilia; Rubio, Juan J; Mucientes, Jorge; Rodriguez, Begoña; Blanco, Edelio; Donis, Luis

    2017-01-01

    Cell therapy in neurological disability after traumatic brain injury (TBI) is in its initial clinical stage. We describe our preliminary clinical experience with three patients with diffuse axonal injury (DAI) who were treated with intrathecal administration of autologous mesenchymal stromal cells (MSCs). Three patients with established neurological sequelae due to DAI received intrathecally autologous MSCs. The total number of MSCs administered was 60 × 10 6 (one patient), 100 × 10 6 (one patient) and 300 × 10 6 (one patient). All three patients showed improvement after cell therapy, and subsequent studies with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) showed a diffuse and progressive increase in brain glucose metabolism. Our present results suggest benefit of intrathecal administration of MSCs in patients with DAI, as well as a relationship between this type of treatment and increase in brain glucose metabolism. These preliminary findings raise the question of convenience of assessing the potential benefit of intrathecal administration of MSCs for brain diseases in which a decrease in glucose metabolism represents a crucial pathophysiological finding, such as Alzheimer's disease (AD) and other dementias. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Phase I/II Trial of Autologous Bone Marrow Stem Cell Transplantation with a Three-Dimensional Woven-Fabric Scaffold for Periodontitis

    Directory of Open Access Journals (Sweden)

    Shunsuke Baba

    2016-01-01

    Full Text Available Regenerative medicine is emerging as a promising option, but the potential of autologous stem cells has not been investigated well in clinical settings of periodontal treatment. In this clinical study, we evaluated the safety and efficacy of a new regenerative therapy based on the surgical implantation of autologous mesenchymal stem cells (MSCs with a biodegradable three-dimensional (3D woven-fabric composite scaffold and platelet-rich plasma (PRP. Ten patients with periodontitis, who required a surgical procedure for intrabony defects, were enrolled in phase I/II trial. Once MSCs were implanted in each periodontal intrabony defect, the patients were monitored during 36 months for a medical exam including laboratory tests of blood and urine samples, changes in clinical attachment level, pocket depth, and linear bone growth (LBG. All three parameters improved significantly during the entire follow-up period (p<0.0001, leading to an average LBG of 4.7 mm after 36 months. Clinical mobility measured by Periotest showed a decreasing trend after the surgery. No clinical safety problems attributable to the investigational MSCs were identified. This clinical trial suggests that the stem cell therapy using MSCs-PRP/3D woven-fabric composite scaffold may constitute a novel safe and effective regenerative treatment option for periodontitis.

  18. IIVP salvage regimen induces high response rates in patients with relapsed lymphoma before autologous stem cell transplantation.

    Science.gov (United States)

    Abali, Huseyin; Oyan, Basak; Koc, Yener; Kars, Ayse; Barista, Ibrahim; Uner, Aysegul; Turker, Alev; Demirkazik, Figen; Tekin, Fatma; Tekuzman, Gulten; Kansu, Emin

    2005-06-01

    Patients with relapsed lymphoma can be cured with high-dose chemotherapy and autologous hematopoietic stem cell transplantation (HSCT). New therapeutic approaches with better cytoreductive capacity are needed for relapsed patients to keep their chance for cure with transplantation. We report 30 patients with relapsed lymphoma, median age 43 years, treated with IIVP salvage regimen consisting of ifosfamide, mesna, idarubicin, and etoposide for 2 or 3 cycles. Seventeen patients had non-Hodgkin lymphoma (NHL) and 13 patients had Hodgkin disease (HD). Fourteen (47%) patients were at their first relapse. Overall response rate was 86.6% (n = 26) with 19 patients (63.3%) achieving complete response. Overall response rate was 92% in patients with HD and 82% in NHL. The most frequent side effects observed were grade III-IV neutropenia (87%) and thrombocytopenia (73%). IIVP regimen is a highly effective salvage therapy for patients with relapsed HD or NHL who are candidates for autologous HSCT. Close follow up is necessary because of the high incidence of grade III-IV hematologic toxicity.

  19. Culture technique of rabbit primary epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Marini M

    2012-10-01

    Full Text Available The epidermis is the protective covering outer layer of the mammalian skin. The epidermal cells are stratified squamous epithelia which undergo continuous differentiation of loss and replacement of cells. Ninety per cent of epidermal cells consist of keratinocytes that are found in the basal layer of the stratified epithelium called epidermis. Keratinocytes are responsible for forming tight junctions with the nerves of the skin as well as in the process of wound healing. This article highlights the method of isolation and culture of rabbit primary epidermal keratinocytes in vitro. Approximately 2cm x 2cm oval shaped line was drawn on the dorsum of the rabbit to mark the surgical area. Then, the skin was carefully excised using a surgical blade and the target skin specimens harvested from the rabbits were placed in transport medium comprising of Dulbecco’s Modified Eagle Medium (DMEM and 1% of antibiotic-antimycotic solution. The specimens were transferred into a petri dish containing 70% ethanol and washed for 5 min followed by a wash in 1 x Dulbecco’s Phosphate Buffered Saline (DBPS. Then, the skin specimens were placed in DMEM and minced into small pieces using a scalpel. The minced pieces were placed in a centrifuge tube containing 0.6% Dispase and 1% antibiotic-antimycotic solution overnight at 4°C in a horizontal orientation. The epidermis layer (whitish, semi-transparent was separated from the dermis (pink, opaque, gooey with the aid of curved forceps by fixing the dermis with one pair of forceps while detaching the epidermis with the second pair. The cells were cultured at a density of 4 x 104 cells/cm2 in culture flask at 37°C and 5% CO2. The cell morphology of the keratinocytes was analyzed using inverted microscope.

  20. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine.

    Science.gov (United States)

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C; Nolta, Jan A; Athanasiou, Kyriacos A

    2015-10-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides

  1. Autologous peripheral blood stem cell harvest: Collection efficiency and factors affecting it

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2016-01-01

    Full Text Available Background: Harvest of hematopoietic progenitor cells via leukapheresis is being used increasingly for transplants in India. Adequate yield of cells per kilogram body weight of recipient is required for successful engraftment. Collection efficiency (CE is an objective quality parameter used to assess the quality of leukapheresis program. In this study, we calculated the CE of the ComTec cell separator (Fresenius Kabi, Germany using two different formulae (CE1 and CE2 and analyzed various patient and procedural factors, which may affect it. Materials and Methods: One hundred and one consecutive procedures in 77 autologous donors carried out over 3 years period were retrospectively reviewed. Various characteristics like gender, age, weight, disease status, hematocrit, preprocedure total leukocyte count, preprocedure CD34 positive (CD34+ cells count, preprocedure absolute CD34+ cell count and processed apheresis volume effect on CE were compared. CE for each procedure was calculated using two different formulae, and results were compared using statistical correlation and regression analysis. Results: The mean CE1 and CE2 was 41.2 and 49.1, respectively. CE2 appeared to be more accurate indicator of overall CE as it considered the impact of continued mobilization of stem cells during apheresis procedure, itself. Of all the factors affecting CE, preprocedure absolute CD34+ was the only independent factor affecting CE. Conclusion: The only factor affecting CE was preprocedure absolute CD34+ cells. Though the mean CE2 was higher than CE1, it was not statistically significant.

  2. Pre-Clinical Cell-Based Therapy for Limbal Stem Cell Deficiency.

    Science.gov (United States)

    Sehic, Amer; Utheim, Øygunn Aass; Ommundsen, Kristoffer; Utheim, Tor Paaske

    2015-08-28

    The cornea is essential for normal vision by maintaining transparency for light transmission. Limbal stem cells, which reside in the corneal periphery, contribute to the homeostasis of the corneal epithelium. Any damage or disease affecting the function of these cells may result in limbal stem cell deficiency (LSCD). The condition may result in both severe pain and blindness. Transplantation of ex vivo cultured cells onto the cornea is most often an effective therapeutic strategy for LSCD. The use of ex vivo cultured limbal epithelial cells (LEC), oral mucosal epithelial cells, and conjunctival epithelial cells to treat LSCD has been explored in humans. The present review focuses on the current state of knowledge of the many other cell-based therapies of LSCD that have so far exclusively been explored in animal models as there is currently no consensus on the best cell type for treating LSCD. Major findings of all these studies with special emphasis on substrates for culture and transplantation are systematically presented and discussed. Among the many potential cell types that still have not been used clinically, we conclude that two easily accessible autologous sources, epidermal stem cells and hair follicle-derived stem cells, are particularly strong candidates for future clinical trials.

  3. Assessment of the Developmental Toxicity of Epidermal Growth ...

    African Journals Online (AJOL)

    Purpose: To determine whether epidermal growth factor (EGF) is involved in reproductive developmental toxicity, using the embryonic stem cell test (EST), as well as ascertain how EGF influences embryonic development. Methods: To predict developmental toxicity on the basis of reducing cell viability and inhibition of ...

  4. Autologous bone marrow concentrate enriched in progenitor cells — An adjuvant in the treatment of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Vinay Sanghi

    2016-06-01

    Full Text Available Despite advances in revascularization techniques, acute myocardial infarction (AMI still carries significant morbidity and mortality. Over the past decade, the use of regenerative medicine methodologies, and specifically bone marrow derived progenitor cell therapy has been tested in more than 35 Phase I and Phase II clinical studies demonstrating overall safety and measurable clinical benefit, 12–61 months post-treatment as evaluated by improvement in the Left Ventricular Ejection Fraction (LVEF and changes in infarct size post AMI. Recent meta-analysis on the subject highlighted several important parameters that include timing of the cell therapy post AMI, the cell dose, and the baseline LVEF on enrollment. We further postulate that the mythologies and timing for cell handling and delivery including the specific devices are essential for clinical efficacy. Addressing this we have developed a rapid 60 to 90 minute process and integrated system which is carried out in the heart catheter lab, using a combination product (U.S. Food and Drug broadly defined as the combination of co-labeled optimized “cell friendly” devices, effective cell/biological formulation and dose for harvesting, processing, verifying, and delivering an autologous dose of bone marrow progenitor/stem cells via the intracoronary artery proximal to the infarct myocardial region. The methodology has been demonstrated to be safe and feasible for autologous in vivo use and presented by our groups' earlier studies1–3 and most recently used in a Phase Ib critical limb ischemia trial of 17 subjects (NCT01472289 (manuscript under preparation. This is the first case study prior to beginning the AMIRST trial [Acute Myocardial Infarction Rapid Stem cell Therapy], specific to our proprietary combination product kit for acute myocardial infarction, and was completed under the Independent Ethics Committee and Institutional Committee for Stem Cell Research and Therapy approval (TIEC

  5. Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction.

    Science.gov (United States)

    Lee, Hee Jung; Seo, Seong Rak; Yoon, Moon Soo; Song, Ji-Ye; Lee, Eun Young; Lee, Sang Eun

    2016-02-01

    Skin aging results in physiological alterations in keratinocyte activities and epidermal function, as well as dermal changes. Yet, the cellular and molecular mechanisms that cause epidermal dysfunction during skin aging are not well understood. Recently, the role of epidermal hyaluronan (HA) as an active regulator of dynamic cellular processes is getting attention and alterations in HA metabolism are thought to be important in age-related epidermal dysfunction. Microneedle fractional radiofrequency (RF) has shown effects for improving cutaneous aging. However, little is known about the effects of fractional RF on the epidermal HA and epidermal function. We investigated the effect of microneedle fractional RF on the expression of epidermal HA in young and aged mice epidermis. We performed fractional RF on the dorsal skin of 30 8-week-old (young) hairless mice and 15 47-week-old (aged) C57BL/6J mice. Skin samples were collected on day 1, 3, and 7. HA content was measured by ELISA. Gene expressions of CD 44, HABP4, and HAS3 were measured using real time RT-PCR. Immunohistochemistry for detection of HA, CD44, PCNA, and filaggrin were performed. HA content and the mRNA levels of HABP4, CD44, and HAS3 were upregulated in the epidermis of both young and aged mice after microneedle fractional RF treatment. The expression was increased from day 1 after treatment and increased expression persisted on day 7. Fractional RF treatment significantly increased PCNA and filaggrin expression only in the aged mice skin. Microneedle fractional RF increased epidermal HA and CD44 expression in both young and aged mice and reversed age-related epidermal dysfunction especially in aged mice, suggesting a new mechanism involved in the skin rejuvenation effect of microneedle fractional RF. © 2015 Wiley Periodicals, Inc.

  6. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    Science.gov (United States)

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. DHAP plus filgrastim as an effective peripheral stem cell mobilization regimen for autologous stem-cell transplantation in patients with relapsed/refractory lymphoma: A single center experience.

    Science.gov (United States)

    Berber, Ilhami; Erkurt, Mehmet Ali; Kuku, Irfan; Kaya, Emin; Bag, Harika Gozukara; Nizam, Ilknur; Koroglu, Mustafa; Ozgul, Mustafa

    2016-02-01

    This study aimed to evaluate the efficiency of DHAP regimen plus filgrastim for mobilization of stem cells in patients with recurrent and/or refractory lymphoma. Thirty-four patients who took DHAP as salvage therapy prior to autologous stem cell transplantation were included. After chemotherapies, 2 cycles of DHAP plus filgrastim were administered to the patients. Stem cells from 32 patients (94%) were collected on median 11th day (8-12), and the median collected CD34(+) cell dose was 9.7 × 10(6)/kg (range 3.8-41.6). DHAP plus filgrastim was found to be an effective chemotherapy regimen in mobilizing CD34(+) stem cells into the peripheral. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  9. Rapid preparation of a noncultured skin cell suspension that promotes wound healing.

    Science.gov (United States)

    Yoon, Cheonjae; Lee, Jungsuk; Jeong, Hyosun; Lee, Sungjun; Sohn, Taesik; Chung, Sungphil

    2017-06-01

    Autologous skin cell suspensions have been used for wound healing in patients with burns and against normal pigmentation in vitiligo. To separate cells and the extracellular matrix from skin tissue, most researchers use enzymatic digestion. Therefore, this process is difficult to perform during a routine surgical procedure. We aimed to prepare a suspension of noncultured autologous skin cells (NCSCs) using a tissue homogenizer as a new method instead of harsh biochemical reagents. The potential clinical applicability of NCSCs was analyzed using a nude-rat model of burn healing. After optimization of the homogenizer settings, cell viability ranged from 52 to 89%. Scanning electron microscopy showed evidence of keratinocyte-like cell morphology, and several growth factors, including epidermal growth factor and basic fibroblast growth factor, were present in the NCSCs. The rat model revealed that NCSCs accelerated skin regeneration. NCSCs could be generated using a tissue homogenizer for enhancement of wound healing in vivo. In the NCSC group of wounds, on day 7 of epithelialization, granulation was observed, whereas on day 14, there was a significant increase in skin adnexa regeneration as compared to the control group (PBS treatment; p study suggests that the proposed process is rapid and does not require the use of biochemical agents. Thus, we recommend a combination of surgical treatment with the new therapy for a burn as an effective method.

  10. Using corneal confocal microscopy to track changes in the corneal layers of dry eye patients after autologous serum treatment.

    Science.gov (United States)

    Mahelkova, Gabriela; Jirsova, Katerina; Seidler Stangova, Petra; Palos, Michalis; Vesela, Viera; Fales, Ivan; Jiraskova, Nada; Dotrelova, Dagmar

    2017-05-01

    In vivo corneal confocal microscopy allows the examination of each layer of the cornea in detail and the identification of pathological changes at the cellular level. The purpose of this study was to identify the possible effects of a three-month treatment with autologous serum eye-drops in different corneal layers of patients with severe dry eye disease using corneal confocal microscopy. Twenty-six patients with dry eye disease were included in the study. Corneal fluorescein staining was performed. The corneas of the right eyes were examined using in vivo corneal confocal microscopy before and after a three-month treatment with autologous serum drops. The densities of superficial and basal epithelial cells, Langerhans cells, the keratocytes and activated keratocytes, the density of endothelial cells and the status of the sub-basal nerve plexus fibres were evaluated. A significant decrease in corneal fluorescein staining was found after the three-month autologous serum treatment (p = 0.0006). The basal epithelial cell density decreased significantly (p = 0.001), while the density of superficial epithelial cells did not change significantly (p = 0.473) nor did the number of Langerhans cells or activated keratocytes (p = 0.223; p = 0.307, respectively). There were no differences in the other corneal cell layers or in the status of the nerve fibres. The results demonstrate the ability of corneal confocal microscopy to evaluate an improvement in the basal epithelial cell layer of the cornea after autologous serum treatment in patients with dry eye disease. More studies with longer follow-up periods are needed to elucidate the suitability of corneal confocal microscopy to follow the effect of autologous serum treatment on nerve fibres or other corneal layers in dry eye disease patients. © 2016 Optometry Australia.

  11. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  12. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells

    KAUST Repository

    Sauret-Güeto, Susanna

    2011-11-25

    The phytohormone gibberellin (GA) promotes plant growth by stimulating cellular expansion. Whilst it is known that GA acts by opposing the growth-repressing effects of DELLA proteins, it is not known how these events promote cellular expansion. Here we present a time-lapse analysis of the effects of a single pulse of GA on the growth of Arabidopsis hypocotyls. Our analyses permit kinetic resolution of the transient growth effects of GA on expanding cells. We show that pulsed application of GA to the relatively slowly growing cells of the unexpanded light-grown Arabidopsis hypocotyl results in a transient burst of anisotropic cellular growth. This burst, and the subsequent restoration of initial cellular elongation rates, occurred respectively following the degradation and subsequent reappearance of a GFP-tagged DELLA (GFP-RGA). In addition, we used a GFP-tagged α-tubulin 6 (GFP-TUA6) to visualise the behaviour of microtubules (MTs) on the outer tangential wall (OTW) of epidermal cells. In contrast to some current hypotheses concerning the effect of GA on MTs, we show that the GA-induced boost of hypocotyl cell elongation rate is not dependent upon the maintenance of transverse orientation of the OTW MTs. This confirms that transverse alignment of outer face MTs is not necessary to maintain rapid elongation rates of light-grown hypocotyls. Together with future studies on MT dynamics in other faces of epidermal cells and in cells deeper within the hypocotyl, our observations advance understanding of the mechanisms by which GA promotes plant cell and organ growth. © 2011 Blackwell Publishing Ltd.

  13. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells.

    Science.gov (United States)

    Offersen, Rasmus; Nissen, Sara Konstantin; Rasmussen, Thomas A; Østergaard, Lars; Denton, Paul W; Søgaard, Ole Schmeltz; Tolstrup, Martin

    2016-05-01

    Toll-like receptor (TLR) agonists are potent enhancers of innate antiviral immunity and may also reverse HIV-1 latency. Therefore, TLR agonists have a potential role in the context of a "shock-and-kill" approach to eradicate HIV-1. Our extensive preclinical evaluation suggests that a novel TLR9 agonist, MGN1703, may indeed perform both functions in an HIV-1 eradication trial. Peripheral blood mononuclear cells (PBMCs) from aviremic HIV-1-infected donors on antiretroviral therapy (ART) that were incubated with MGN1703 ex vivo exhibited increased secretion of interferon alpha (IFN-α) (P= 0.005) and CXCL10 (P= 0.0005) in culture supernatants. Within the incubated PBMC pool, there were higher proportions of CD69-positive CD56(dim)CD16(+)NK cells (P= 0.001) as well as higher proportions of CD107a-positive (P= 0.002) and IFN-γ-producing (P= 0.038) NK cells. Incubation with MGN1703 also increased the proportions of CD69-expressing CD4(+)and CD8(+)T cells. Furthermore, CD4(+)T cells within the pool of MGN1703-incubated PBMCs showed enhanced levels of unspliced HIV-1 RNA (P= 0.036). Importantly, MGN1703 increased the capacity of NK cells to inhibit virus spread within a culture of autologous CD4(+)T cells assessed by using an HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) (P= 0.03). In conclusion, we show that MGN1703 induced strong antiviral innate immune responses, enhanced HIV-1 transcription, and boosted NK cell-mediated suppression of HIV-1 infection in autologous CD4(+)T cells. These findings support clinical testing of MGN1703 in HIV-1 eradication trials. We demonstrate that MGN1703 (a TLR9 agonist currently undergoing phase 3 clinical testing for the treatment of metastatic colorectal cancer) induces potent antiviral responses in immune effector cells from HIV-1-infected individuals on suppressive antiretroviral therapy. The significantly improved safety and tolerability profiles of MGN1703 versus TLR9 agonists of the CpG-oligodeoxynucleotide (CpG-ODN) family

  14. Comparison of autologous cell therapy and granulocyte-colony stimulating factor (G-CSF) injection vs. G-CSF injection alone for the treatment of acute radiation syndrome in a non-human primate model

    International Nuclear Information System (INIS)

    Bertho, Jean-Marc; Frick, Johanna; Prat, Marie; Demarquay, Christelle; Dudoignon, Nicolas; Trompier, Francois; Gorin, Norbert-Claude; Thierry, Dominique; Gourmelon, Patrick

    2005-01-01

    Purpose: To compare the efficacy of autologous cell therapy after irradiation combined with granulocyte-colony stimulating factor (G-CSF) injections with G-CSF treatment alone in a heterogeneous model of irradiation representative of an accidental situation. Material and Methods: Non-human primates were irradiated at 8.7 Gy whole-body dose with the right arm shielded to receive 4.8 Gy. The first group of animals received G-CSF (lenograstim) injections starting 6 h after irradiation, and a second group received a combination of G-CSF (lenograstim) injections and autologous expanded hematopoietic cells. Animals were followed up for blood cell counts, circulating progenitors, and bone marrow cellularity. Results: No significant differences were seen between the two treatment groups, whatever the parameter observed: time to leukocyte or platelet recovery and duration and severity of aplasia. Conclusion: Our results indicated that identical recovery kinetic was observed when irradiated animals are treated with G-CSF independently of the reinjection of ex vivo expanded autologous hematopoietic cells. Thus G-CSF injections might be chosen as a first-line therapeutic strategy in the treatment of accidental acute radiation victims

  15. Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo.

    Science.gov (United States)

    Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming

    2016-03-01

    Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.

  16. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    International Nuclear Information System (INIS)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-01-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol 125 I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function

  17. Myeloid regeneration after whole body irradiation, autologous bone marrow transplantation, and treatment with an anabolic steroid

    International Nuclear Information System (INIS)

    Ambrus, C.M.; Ambrus, J.L.

    1975-01-01

    Stumptail monkeys (Macaca speciosa) received lethal whole-body radiation. Autologous bone marrow injection resulted in survival of the majority of the animals. Treatment with Deca-Durabolin, an anabolic steroid, caused more rapid recovery of colony-forming cell numbers in the bone marrow than in control animals. Both the Deca-Durabolin-treated and control groups were given autologous bone marrow transplantation. Anabolic steroid effect on transplanted bone marrow colony-forming cells may explain the increased rate of leukopoietic regeneration in anabolic steroid-treated animals as compared to controls

  18. Pharmacoeconomic impact of up-front use of plerixafor for autologous stem cell mobilization in patients with multiple myeloma.

    Science.gov (United States)

    Kim, Sara S; Renteria, Anne S; Steinberg, Amir; Banoff, Karen; Isola, Luis

    2014-11-01

    Stem cell collection can be a major component of overall cost of autologous stem cell transplantation (ASCT). Plerixafor is an effective agent for mobilization; however, it is often reserved for salvage therapy because of its high cost. We present data on the pharmacoeconomic impact of the use of plerixafor as an up-front mobilization in patients with multiple myeloma (MM). Patients with MM who underwent ASCT between January 2008 and April 2011 at the Mount Sinai Medical Center were reviewed retrospectively. In April 2010, practice changes were instituted for patients with MM to delay initiation of granulocyte-colony-stimulating factor (G-CSF) support from day 0 to day +5 and to add plerixafor to G-CSF as an up-front autologous mobilization. Targets of collection were 5-10 × 10(6) CD34(+) cells/kg. Of 50 adults with MM who underwent ASCT, 25 received plerixafor/filgrastim and 25 received G-CSF alone as an up-front mobilization. Compared with the control, plerixafor mobilization yielded higher CD34(+) cell content (16.1 versus 8.4 × 10(6) CD34(+) cells/kg; P = 0.0007) and required fewer sessions of apheresis (1.9 versus 3.1; P = 0.0001). In the plerixafor group, the mean number of plerixafor doses required per patient was 1.8. Although the overall cost of medications was higher in the plerixafor group, the cost for blood products and overall cost of hospitalization were similar between the two groups. Up-front use of plerixafor is an effective mobilization strategy in patients with MM and does not have a substantial pharmacoeconomic impact in overall cost of hospitalization combined with the apheresis procedure. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Administration of Autologous Hematopoietic Stem Cell Trans-plan¬tation for Treatment of Type 1 Diabetes Mellitus

    OpenAIRE

    Ensieh NASLI ESFAHANI; Ardeshir GHAVAMZADEH; Nika MOJAHEDYAZDI; SeyyedJafar HASHEMIAN; Kamran ALIMOGHADAM; Nar­jes AGHEL; Behrouz NIKBIN; Bagher LARIJANI

    2015-01-01

    Background: The aim of the present clinical trial was to investigate the efficacy of autologous bone marrow mesenchymal stem cells (BM-MSCs) in glycemic control of diabetic patients without using any immunosuppressive drugs over a nine-month period.Method: Twenty-three patients with T1DM, at 5 to 30 years of age and in both sexes, participated in this study. This trial consisted of two phases; in the end of the first phase (three month after the transplantation), if the patient still needed e...

  20. Autologous Fat Injection for Augmented Mammoplasty

    International Nuclear Information System (INIS)

    Yoon, Eul Sik; Seo, Bo Kyoung; Yi, Ann; Cho, Kyu Ran

    2008-01-01

    Autologous fat injection is one of the methods utilized for augmented mammoplasty methods. In this surgical procedure, the fat for transfer is obtained from the donor site of the patient's own body by liposuction and the fat is then injected into the breast. We report here cases of three patients who underwent autologous fat injection. Two of the patients had palpable masses that were present after surgery. The serial imaging findings and surgical method of autologous fat transfer are demonstrated

  1. [Consensus of the Deutsche Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen (DGPRÄC) on Autologous Fat Grafting].

    Science.gov (United States)

    Giunta, R E; Horch, R E; Prantl, L; Baur, E M; Herold, C; Kamolz, L; Lehnhardt, M; Noah, E M; Rennekampff, O; Richter, D; Schaefer, D J; Ueberreiter, K

    2016-12-01

    On occasion of the Munich Plastic Symposium in Munich the board of the Deutsche Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen (DGPRÄC) together with a group of experts who were also involved in the preparation of the recently published S2K guideline "Autologous Fat Grafting", prepared a consensus statement from a plastic-surgical point of view so to evaluate current spects and taking into account the current legal framework: 1. Autologous Fat Grafting is a long established treatment in plastic surgery and does not differ from other tissue grafts. 2. Mechanical processing of autologous fat does not provide any substantial change tot he tissue. 3. If other treatment methods to enrich progenitor cells of autolous fat i. e. by an enzymatic process have evidence that autologous adipose tissue or cells were substantially changed, classification as a drug could come in question under current german law (application of AMG/ATMP). © Georg Thieme Verlag KG Stuttgart · New York.

  2. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    Science.gov (United States)

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  3. EPIDERMAL MORPHOLOGY OF WEST AFRICAN OKRA ...

    African Journals Online (AJOL)

    Administrator

    stem peels were obtained from a slight cut on the tenth internodes. Peels from fruit ... xia l su rfa ce. A b a xia l su rfa ce. Adaxial surface. Abaxial surface. L e n g th. (µ m. ) ..... Variations in epidermal cell shape of both adaxial and abaxial surfaces ...

  4. High-activity samarium-153-EDTMP therapy followed by autologous peripheral blood stem cell support in unresectable osteosarcoma

    International Nuclear Information System (INIS)

    Franzius, Ch.; Eckardt, J.; Sciuk, J.; Schober, O.; Bielack, S.; Flege, S.; Juergens, H.

    2001-01-01

    Purpose: Despite highly efficacious chemotherapy, patients with osteosarcomas still have a poor prognosis if adequate surgical control cannot be obtained. These patients may benefit from therapy with radiolabeled phosphonates. Patients and Methods: Six patients (three male, three female; seven to 41 years) with unresectable primary osteosarcoma (n = 3) or unresectable recurrent sites of osteosarcomas (n = 3) were treated with high-activity of Sm-153-EDTMP (150 MBq/kg BW). In all patients autologous peripheral blood stem cells had been collected before Sm-153-EDTMP therapy. Results: No immediate adverse reactions were observed in the patients. In one patient bone pain increased during the first 48 hrs after therapy. Three patients received pain relief. Autologous peripheral blood stem cell reinfusion was performed on day +12 to +27 in all patients to overcome potentially irreversible damage to the hematopoietic stem cells. In three patient external radiotherapy of the primary tumor site was performed after Sm-153-EDTMP therapy and in two of them polychemotherapy was continued. Thirty-six months later one of these patients is still free of progression. Two further patients are still alive. However, they have developed new metastases. The three patients who had no accompanying external radiotherapy, all died of disease progression five to 20 months after therapy. Conclusion: These preliminary results show that high-dose Sm-153-EDTMP therapy is feasible and warrants further evaluation of efficacy. The combination with external radiation and polychemotherapy seems to be most promising. Although osteosarcoma is believed to be relatively radioresistant, the total focal dose achieved may delay local progression or even achieve permanent local tumor control in patients with surgically inaccessible primary or relapsing tumors. (orig.)

  5. Outcomes following autologous hematopoietic stem cell transplant for patients with relapsed Wilms’ Tumor: A CIBMTR retrospective analysis

    Science.gov (United States)

    Malogolowkin, Marcio H.; Hemmer, Michael T.; Le-Rademacher, Jennifer; Hale, Gregory A; Metha, Parinda A.; Smith, Angela R.; Kitko, Carrie; Abraham, Allistair; Abdel-Azim, Hisham; Dandoy, Christopher; Diaz, Miguel Angel; Gale, Robert Peter; Guilcher, Greg; Hayashi, Robert; Jodele, Sonata; Kasow, Kimberly A.; MacMillian, Margaret L.; Thakar, Monica; Wirk, Baldeep M.; Woolfrey, Ann; Thiel, E L

    2017-01-01

    Despite the dramatic improvement in the overall survival for patients diagnosed with Wilms’ tumor (WT), the outcomes for those that experience relapse have remained disappointing. We describe the outcomes of 253 patients with relapsed WT who received high-dose chemotherapy (HDT) followed by autologous hematopoietic stem cell transplant (HCT) between 1990 and 2013, and reported to the Center for International Blood and Marrow Transplantation Research (CIBMTR). The 5-year estimates for event free survival (EFS) and overall survival (OS) were 36% (95% CI; 29 – 43%) and 45% (95% CI; 38 – 51%) respectively. Relapse of primary disease was the cause of death in 81% of the population. EFS, OS, relapse and transplant-related mortality (TRM) showed no significant differences when broken down by disease status at transplant, time from diagnosis to transplant, year of transplant or conditioning regimen. Our data suggest that HDT followed by autologous HCT for relapsed WT is well tolerated and outcomes are similar to those reported in the literature. Since attempts to conduct a randomized trial comparing maintenance chemotherapy with consolidation versus high-dose chemotherapy followed by stem cell transplant have failed, one should balance the potential benefits with the yet unknown long-term risks. Since disease recurrence continues to be the most common cause of death, future research should focus on the development of consolidation therapies for those patients achieving complete response to therapy. PMID:28869618

  6. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman's syndrome and endometrial atrophy: a pilot cohort study.

    Science.gov (United States)

    Santamaria, Xavier; Cabanillas, Sergio; Cervelló, Irene; Arbona, Cristina; Raga, Francisco; Ferro, Jaime; Palmero, Julio; Remohí, Jose; Pellicer, Antonio; Simón, Carlos

    2016-05-01

    Could cell therapy using autologous peripheral blood CD133+ bone marrow-derived stem cells (BMDSCs) offer a safe and efficient therapeutic approach for patients with refractory Asherman's syndrome (AS) and/or endometrial atrophy (EA) and a wish to conceive? In the first 3 months, autologous cell therapy, using CD133+ BMDSCs in conjunction with hormonal replacement therapy, increased the volume and duration of menses as well as the thickness and angiogenesis processes of the endometrium while decreasing intrauterine adhesion scores. AS is characterized by the presence of intrauterine adhesions and EA prevents the endometrium from growing thicker than 5 mm, resulting in menstruation disorders and infertility. Many therapies have been attempted for these conditions, but none have proved effective. This was a prospective, experimental, non-controlled study. There were 18 patients aged 30-45 years with refractory AS or EA were recruited, and 16 of these completed the study. Medical history, physical examination, endometrial thickness, intrauterine adhesion score and neoangiogenesis were assessed before and 3 and 6 months after cell therapy. After the initial hysteroscopic diagnosis, BMDSC mobilization was performed by granulocyte-CSF injection, then CD133+ cells were isolated through peripheral blood aphaeresis to obtain a mean of 124.39 million cells (range 42-236), which were immediately delivered into the spiral arterioles by catheterization. Subsequently, endometrial treatment after stem cell therapy was assessed in terms of restoration of menses, endometrial thickness (by vaginal ultrasound), adhesion score (by hysteroscopy), neoangiogenesis and ongoing pregnancy rate. The study was conducted at Hospital Clínico Universitario of Valencia and IVI Valencia (Spain). All 11 AS patients exhibited an improved uterine cavity 2 months after stem cell therapy. Endometrial thickness increased from an average of 4.3 mm (range 2.7-5) to 6.7 mm (range 3.1-12) ( ITALIC! P = 0

  7. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats.

    Science.gov (United States)

    Sun, Fei; Zhou, Ke; Mi, Wen-juan; Qiu, Jian-hua

    2011-11-01

    Natural biological conduits containing seed cells have been widely used as an alternative strategy for nerve gap reconstruction to replace traditional nerve autograft techniques. The purpose of this study was to investigate the effects of a decellularized allogeneic artery conduit containing autologous transdifferentiated adipose-derived stem cells (dADSCs) on an 8-mm facial nerve branch lesion in a rat model. After 8 weeks, functional evaluation of vibrissae movements and electrophysiological assessment, retrograde labeling of facial motoneurons and morphological analysis of regenerated nerves were performed to assess nerve regeneration. The transected nerves reconstructed with dADSC-seeded artery conduits achieved satisfying regenerative outcomes associated with morphological and functional improvements which approached those achieved with Schwann cell (SC)-seeded artery conduits, and superior to those achieved with artery conduits alone or ADSC-seeded artery conduits, but inferior to those achieved with nerve autografts. Besides, numerous transplanted PKH26-labeled dADSCs maintained their acquired SC-phenotype and myelin sheath-forming capacity inside decellularized artery conduits and were involved in the process of axonal regeneration and remyelination. Collectively, our combined use of decellularized allogeneic artery conduits with autologous dADSCs certainly showed beneficial effects on nerve regeneration and functional restoration, and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Immunohistochemical detection of cytochrome P450 isoenzymes in cultured human epidermal cells.

    Science.gov (United States)

    Van Pelt, F N; Meierink, Y J; Blaauboer, B J; Weterings, P J

    1990-12-01

    We used specific monoclonal antibodies (MAb) to human cytochrome P450 isoenzymes to determine the presence of these proteins in human epidermal cells. Two MAb (P450-5 and P450-8) recognize major forms of hepatic cytochrome P450 involved in biotransformation of xenobiotics. A third MAb, to cytochrome P450-9, is not fully characterized. The proteins were determined by the indirect immunoperoxidase technique after fixation with methanol and acetone. Biopsy materials for cultured keratinocytes, i.e., foreskin and hair follicles, contained the two major forms of cytochrome P450. In cultured keratinocytes derived from hair follicles the proteins were undetectable, whereas the keratinocytes derived from foreskin continued to express the two major forms of hepatic cytochrome P450. Cultured human fibroblasts and a human keratinocyte cell line (SVK14) showed staining similar to that of the foreskin keratinocytes. Cytochrome P450-9 was detectable only in human hepatocytes. The results indicate that, under the culture conditions applied, cultured human foreskin cells and the cell line SVK14 continue to express specific cytochrome P450 isoenzymes in culture, in contrast to hair follicle keratinocytes.

  9. Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses.

    Science.gov (United States)

    Carrade, Danielle D; Owens, Sean D; Galuppo, Larry D; Vidal, Martin A; Ferraro, Gregory L; Librach, Fred; Buerchler, Sabine; Friedman, Michael S; Walker, Naomi J; Borjesson, Dori L

    2011-04-01

    The development of an allogeneic mesenchymal stem cell (MSC) product to treat equine disorders would be useful; however, there are limited in vivo safety data for horses. We hypothesized that the injection of self (autologous) and non-self (related allogeneic or allogeneic) MSC would not elicit significant alterations in physical examination, gait or synovial fluid parameters when injected into the joints of healthy horses. Sixteen healthy horses were used in this study. Group 1 consisted of foals (n = 6), group 2 consisted of their dams (n = 5) and group 3 consisted of half-siblings (n = 5) to group 1 foals. Prior to injection, MSC were phenotyped. Placentally derived MSC were injected into contralateral joints and MSC diluent was injected into a separate joint (control). An examination, including lameness evaluation and synovial fluid analysis, was performed at 0, 24, 48 and 72 h post-injection. MSC were major histocompatibility complex (MHC) I positive, MHC II negative and CD86 negative. Injection of allogeneic MSC did not elicit a systemic response. Local responses such as joint swelling or lameness were minimal and variable. Intra-articular MSC injection elicited marked inflammation within the synovial fluid (as measured by nucleated cell count, neutrophil number and total protein concentration). However, there were no significant differences between the degree and type of inflammation elicited by self and non-self-MSC. The healthy equine joint responds similarly to a single intra-articular injection of autologous and allogeneic MSC. This pre-clinical safety study is an important first step in the development of equine allogeneic stem cell therapies.

  10. Allogeneic MSCs and Recycled Autologous Chondrons Mixed in a One-Stage Cartilage Cell Transplantion: A First-in-Man Trial in 35 Patients.

    Science.gov (United States)

    de Windt, Tommy S; Vonk, Lucienne A; Slaper-Cortenbach, Ineke C M; Nizak, Razmara; van Rijen, Mattie H P; Saris, Daniel B F

    2017-08-01

    MSCs are known as multipotent mesenchymal stem cells that have been found capable of differentiating into various lineages including cartilage. However, recent studies suggest MSCs are pericytes that stimulate tissue repair through trophic signaling. Aimed at articular cartilage repair in a one-stage cell transplantation, this study provides first clinical evidence that MSCs stimulate autologous cartilage repair in the knee without engrafting in the host tissue. A phase I (first-in-man) clinical trial studied the one-stage application of allogeneic MSCs mixed with 10% or 20% recycled defect derived autologous chondrons for the treatment of cartilage defects in 35 patients. No treatment-related serious adverse events were found and statistically significant improvement in clinical outcome shown. Magnetic resonance imaging and second-look arthroscopies showed consistent newly formed cartilage tissue. A biopsy taken from the center of the repair tissue was found to have hyaline-like features with a high concentration of proteoglycans and type II collagen. DNA short tandem repeat analysis delivered unique proof that the regenerated tissue contained patient-DNA only. These findings support the hypothesis that allogeneic MSCs stimulate a regenerative host response. This first-in-man trial supports a paradigm shift in which MSCs are applied as augmentations or "signaling cells" rather than differentiating stem cells and opens doors for other applications. Stem Cells 2017;35:1984-1993. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  11. Rho A Regulates Epidermal Growth Factor-Induced Human Osteosarcoma MG63 Cell Migration

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    2018-05-01

    Full Text Available Osteosarcoma, the most common primary bone tumor, occurs most frequently in children and adolescents and has a 5-year survival rate, which is unsatisfactory. As epidermal growth factor receptor (EGFR positively correlates with TNM (tumor-node-metastasis stage in osteosarcoma, EGFR may play an important role in its progression. The purpose of this study was to explore potential mechanisms underlying this correlation. We found that EGF promotes MG63 cell migration and invasion as well as stress fiber formation via Rho A activation and that these effects can be reversed by inhibiting Rho A expression. In addition, molecules downstream of Rho A, including ROCK1, LIMK2, and Cofilin, are activated by EGF in MG63 cells, leading to actin stress fiber formation and cell migration. Moreover, inhibition of ROCK1, LIMK2, or Cofilin in MG63 cells using known inhibitors or short hairpin RNA (shRNA prevents actin stress fiber formation and cell migration. Thus, we conclude that Rho A/ROCK1/LIMK2/Cofilin signaling mediates actin microfilament formation in MG63 cells upon EGFR activation. This novel pathway provides a promising target for preventing osteosarcoma progression and for treating this cancer.

  12. Extra-anatomic transplantations in autologous adult cell therapies aiding anatomical regeneration and physiological recovery – An insight and categorization

    Directory of Open Access Journals (Sweden)

    Editorial

    2015-12-01

    Full Text Available Autologous mature adult cells as well as stem cells, which are not considered pluripotent, have been reported to be safe and efficacious in clinical applications for regenerating cartilage [1] and corneal epithelium [2]. Use of primary autologous cells and stem cells expanded in number from cartilage and corneal epithelial tissues have shown abilities to reconstruct and regenerate tissues, de novo. It is to be noted that in both these cases, the source of the cells that have been used for transplantation into the cornea and cartilage have been from the same organ and tissue. The replacement cells for regeneration have also been sourced from the same germ layer, as that of the cells of the target tissue; corneal epithelial tissue embryologically originating from the ectoderm has been replaced with corneal limbal stem cells that are also of ectodermal origin from the unaffected healthy eye of the same individual. Similarly, the cartilage which developmentally is from the mesoderm has been replaced with mature chondrocytes from the non-weight bearing area of the cartilage, again of the same individual. Figure 1: Autologous, in vitro cultured, adult cell based therapies; An overview and categorization. (Click here for High Resol. Image The proceedings of the IIDIAS session published in this issue have described two novel cell therapies, where cells taken from a tissue or organ, after normal in vitro expansion, have been clinically applied to aid the regeneration of a different tissue or organ, i.e skeletal myoblasts having been used for myocardial regeneration and buccal mucosal epithelium having been used for corneal epithelial regeneration heralding the birth of a new paradigm called ‘extra-anatomic cell therapy’. The myocardium is a specialized muscle in that it works as an electrical synctitium with an intrinsic capacity to generate and propagate action potentials (involuntary as opposed to the skeletal muscles that are dependent on neuronal

  13. Herceptin Enhances the Antitumor Effect of Natural Killer Cells on Breast Cancer Cells Expressing Human Epidermal Growth Factor Receptor-2

    Directory of Open Access Journals (Sweden)

    Xiao Tian

    2017-10-01

    Full Text Available Optimal adoptive cell therapy (ACT should contribute to effective cancer treatment. The unique ability of natural killer (NK cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2 monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.

  14. Radiolabeled cetuximab: dose optimization for epidermal growth factor receptor imaging in a head-and-neck squamous cell carcinoma model

    NARCIS (Netherlands)

    Hoeben, B.A.W.; Molkenboer-Kuenen, J.D.M.; Oyen, W.J.G.; Peeters, W.J.M.; Kaanders, J.H.A.M.; Bussink, J.; Boerman, O.C.

    2011-01-01

    Noninvasive imaging of the epidermal growth factor receptor (EGFR) in head-and-neck squamous cell carcinoma could be of value to select patients for EGFR-targeted therapy. We assessed dose optimization of (111) Indium-DTPA-cetuximab ((111) In-cetuximab) for EGFR imaging in a head-and-neck squamous

  15. Embryonic maturation of epidermal Merkel cells is controlled by a redundant transcription factor network.

    Science.gov (United States)

    Perdigoto, Carolina N; Bardot, Evan S; Valdes, Victor J; Santoriello, Francis J; Ezhkova, Elena

    2014-12-01

    Merkel cell-neurite complexes are located in touch-sensitive areas of the mammalian skin and are involved in recognition of the texture and shape of objects. Merkel cells are essential for these tactile discriminations, as they generate action potentials in response to touch stimuli and induce the firing of innervating afferent nerves. It has been shown that Merkel cells originate from epidermal stem cells, but the cellular and molecular mechanisms of their development are largely unknown. In this study, we analyzed Merkel cell differentiation during development and found that it is a temporally regulated maturation process characterized by a sequential activation of Merkel cell-specific genes. We uncovered key transcription factors controlling this process and showed that the transcription factor Atoh1 is required for initial Merkel cell specification. The subsequent maturation steps of Merkel cell differentiation are controlled by cooperative function of the transcription factors Sox2 and Isl1, which physically interact and work to sustain Atoh1 expression. These findings reveal the presence of a robust transcriptional network required to produce functional Merkel cells that are required for tactile discrimination. © 2014. Published by The Company of Biologists Ltd.

  16. Effects of different concentrations of Platelet-rich Plasma and Platelet-Poor Plasma on vitality and differentiation of autologous Adipose tissue-derived stem cells.

    Science.gov (United States)

    Felthaus, Oliver; Prantl, Lukas; Skaff-Schwarze, Mona; Klein, Silvan; Anker, Alexandra; Ranieri, Marco; Kuehlmann, Britta

    2017-01-01

    Autologous fat grafts and adipose-derived stem cells (ASCs) can be used to treat soft tissue defects. However, the results are inconsistent and sometimes comprise tissue resorption and necrosis. This might be due to insufficient vascularization. Platelet-rich plasma (PRP) is a source of concentrated autologous platelets. The growth factors and cytokines released by platelets can facilitate angiogenesis. The simultaneous use of PRP might improve the regeneration potential of fat grafts. The optimal ratio has yet to be elucidated. A byproduct of PRP preparation is platelet-poor plasma (PPP). In this study we investigated the influence of different concentrations of PRP on the vitality and differentiation of ASCs. We processed whole blood with the Arthrex Angel centrifuge and isolated ASCs from the same donor. We tested the effects of different PRP and PPP concentrations on the vitality using resazurin assays and the differentiation of ASCs using oil-red staining. Both cell vitality and adipogenic differentiation increase to a concentration of 10% to 20% PRP. With a PRP concentration of 30% cell vitality and differentiation decrease. Both PRP and PPP can be used to expand ASCs without xenogeneic additives in cell culture. A PRP concentration above 20% has inhibitory effects.

  17. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  18. Autologous transplantation of genetically modified iris pigment epithelial cells: A promising concept for the treatment of age-related macular degeneration and other disorders of the eye

    Science.gov (United States)

    Semkova, Irina; Kreppel, Florian; Welsandt, Gerhard; Luther, Thomas; Kozlowski, Jolanta; Janicki, Hanna; Kochanek, Stefan; Schraermeyer, Ulrich

    2002-10-01

    Age-related macular degeneration (ARMD) is the leading cause for visual impairment and blindness in the elder population. Laser photocoagulation, photodynamic therapy and excision of neovascular membranes have met with limited success. Submacular transplantation of autologous iris pigment epithelial (IPE) cells has been proposed to replace the damaged retinal pigment epithelium following surgical removal of the membranes. We tested our hypothesis that the subretinal transplantation of genetically modified autologous IPE cells expressing biological therapeutics might be a promising strategy for the treatment of ARMD and other retinal disorders. Pigment epithelium-derived factor (PEDF) has strong antiangiogenic and neuroprotective activities in the eye. Subretinal transplantation of PEDF expressing IPE cells inhibited pathological choroidal neovascularization in rat models of laser-induced rupture of Bruch's membrane and of oxygen induced ischemic retinopathy. PEDF expressing IPE transplants also increased the survival and preserved rhodopsin expression of photoreceptor cells in the RCS rat, a model of retinal degeneration. These findings suggest a promising concept for the treatment of ARMD and other retinal disorders.

  19. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response.

    Science.gov (United States)

    Hus, I; Schmitt, M; Tabarkiewicz, J; Radej, S; Wojas, K; Bojarska-Junak, A; Schmitt, A; Giannopoulos, K; Dmoszyńska, A; Roliński, J

    2008-05-01

    Recently, we described that vaccination with allogeneic dendritic cells (DCs) pulsed with tumor cell lysate generated specific CD8+ T cell response in patients with B-cell chronic lymphocytic leukemia (B-CLL). In the present study, the potential of autologous DCs pulsed ex vivo with tumor cell lysates to stimulate antitumor immunity in patients with B-CLL in early stages was evaluated. Twelve patients at clinical stage 0-2 as per Rai were vaccinated intradermally up to eight times with a mean number of 7.4 x 10(6) DCs pulsed with B-CLL cell lysate. We observed a decrease of peripheral blood leukocytes and CD19+/CD5+ leukemic cells in five patients, three patients showed a stable disease and four patients progressed despite DC vaccination. A significant increase of specific cytotoxic CD8+ T lymphocytes against the leukemia-associated antigens RHAMM or fibromodulin was detected in four patients after DC vaccination. In patients with a clinical response, an increase of interleukin 12 (IL-12) serum levels and a decrease of the frequency of CD4+CD25(+)FOXP3+ T regulatory cells were observed. Taken together, the study demonstrated that vaccination with autologous DC in CLL patients is feasible and safe. Immunological and to some extend hematological responses could be noted, justifying further investigation on this immunotherapeutical approach.

  20. Sleep disruption among cancer patients following autologous hematopoietic cell transplantation.

    Science.gov (United States)

    Nelson, Ashley M; Jim, Heather S L; Small, Brent J; Nishihori, Taiga; Gonzalez, Brian D; Cessna, Julie M; Hyland, Kelly A; Rumble, Meredith E; Jacobsen, Paul B

    2018-03-01

    Despite a high prevalence of sleep disruption among hematopoietic cell transplant (HCT) recipients, relatively little research has investigated its relationships with modifiable cognitive or behavioral factors or used actigraphy to characterize sleep disruption in this population. Autologous HCT recipients who were 6-18 months post transplant completed self-report measures of cancer-related distress, fear of cancer recurrence, dysfunctional sleep cognitions, and inhibitory sleep behaviors upon enrollment. Patients then wore an actigraph for 7 days and completed a self-report measure of sleep disruption on day 7 of the study. Among the 84 participants (age M = 60, 45% female), 41% reported clinically relevant sleep disruption. Examination of actigraph data confirmed that, on average, sleep was disrupted (wake after sleep onset M = 66 min) and sleep efficiency was less than recommended (sleep efficiency M = 78%). Cancer-related distress, fear of recurrence, dysfunctional sleep cognitions, and inhibitory sleep behaviors were related to self-reported sleep disruption (p valuesdisruption after transplant. Cancer-related distress, fear of recurrence, dysfunctional sleep cognitions, and maladaptive sleep behaviors are related to self-reported sleep disruption and should be considered targets for cognitive behavioral intervention in this population.

  1. The DP-1 transcription factor is required for keratinocyte growth and epidermal stratification.

    Science.gov (United States)

    Chang, Wing Y; Bryce, Dawn M; D'Souza, Sudhir J A; Dagnino, Lina

    2004-12-03

    The epidermis is a stratified epithelium constantly replenished through the ability of keratinocytes in its basal layer to proliferate and self-renew. The epidermis arises from a single-cell layer ectoderm during embryogenesis. Large proliferative capacity is central to ectodermal cell and basal keratinocyte function. DP-1, a heterodimeric partner of E2F transcription factors, is highly expressed in the ectoderm and all epidermal layers during embryogenesis. To investigate the role of DP-1 in epidermal morphogenesis, we inhibited DP-1 activity through exogenous expression of a dominant-negative mutant (dnDP-1). Expression of the dnDP-1 mutant interferes with binding of E2F/DP-1 heterodimers to DNA and inhibits DNA replication, as well as cyclin A mRNA and protein expression. Chromatin immunoprecipitation analysis demonstrated that the cyclin A promoter is predominantly bound in proliferating keratinocytes by complexes containing E2F-3 and E2F-4. Thus, the mechanisms of decreased expression of cyclin A in the presence of dnDP-1 seem to involve inactivation of DP-1 complexes containing E2F-3 and E2F-4. To assess the consequences on epidermal morphogenesis of inhibiting DP-1 activity, we expressed dnDP-1 in rat epithelial keratinocytes in organotypic culture and observed that DP-1 inhibition negatively affected stratification of these cells. Likewise, expression of dnDP-1 in embryonic ectoderm explants produced extensive disorganization of subsequently formed epidermal basal and suprabasal layers, interfering with normal epidermal formation. We conclude that DP-1 activity is required for normal epidermal morphogenesis and ectoderm-to-epidermis transition.

  2. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before InfectionW⃞

    Science.gov (United States)

    Genre, Andrea; Chabaud, Mireille; Timmers, Ton; Bonfante, Paola; Barker, David G.

    2005-01-01

    The penetration of arbuscular mycorrhizal (AM) fungi through the outermost root tissues of the host plant is a critical step in root colonization, ultimately leading to the establishment of this ecologically important endosymbiotic association. To evaluate the role played by the host plant during AM infection, we have studied in vivo cellular dynamics within Medicago truncatula root epidermal cells using green fluorescent protein labeling of both the plant cytoskeleton and the endoplasmic reticulum. Targeting roots with Gigaspora hyphae has revealed that, before infection, the epidermal cell assembles a transient intracellular structure with a novel cytoskeletal organization. Real-time monitoring suggests that this structure, designated the prepenetration apparatus (PPA), plays a central role in the elaboration of the apoplastic interface compartment through which the fungus grows when it penetrates the cell lumen. The importance of the PPA is underlined by the fact that M. truncatula dmi (for doesn't make infections) mutants fail to assemble this structure. Furthermore, PPA formation in the epidermis can be correlated with DMI-dependent transcriptional activation of the Medicago early nodulin gene ENOD11. These findings demonstrate how the host plant prepares and organizes AM infection of the root, and both the plant–fungal signaling mechanisms involved and the mechanistic parallels with Rhizobium infection in legume root hairs are discussed. PMID:16284314

  3. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy

    Science.gov (United States)

    Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J.; Rivière, Isabelle

    2009-01-01

    Summary Based on promising pre-clinical data demonstrating the eradication of systemic B cell malignancies by CD19-targeted T lymphocytes in vivo in SCID beige mouse models, we are launching Phase 1 clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). We present here the validation of the bioprocess we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads® CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semi-closed culture system using the Wave bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in SCID beige mice bearing disseminated tumors. The validation requirements in terms of T cell expansion, T cell transduction with the 1928z CAR, biological activity, quality control testing and release criteria were met for all four validation runs using apheresis products from patients with CLL. Additionally, following expansion of the T cells, the diversity of the skewed Vβ T cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemo-refractory CLL and in patients with relapsed ALL. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any chimeric antigen receptor or T cell receptor. PMID:19238016

  4. Radiation-induced autologous in situ tumor vaccines

    International Nuclear Information System (INIS)

    Guha, Chandan

    2014-01-01

    Radiation therapy (RT) has been used as a definitive treatment for many solid tumors. While tumoricidal properties of RT are instrumental for standard clinical application, irradiated tumors can potentially serve as a source of tumor antigens in vivo, where dying tumor cells would release tumor antigens and danger signals and serve as autologous in situ tumor vaccines. Using murine tumor models of prostate, metastatic lung cancer and melanoma, we have demonstrated evidence of radiation-enhanced tumor-specific immune response that resulted in improved primary tumor control and reduction in systemic metastasis and cure. We will discuss the immunogenic properties of RT and determine how immunotherapeutic approaches can synergize with RT in boosting immune cells cell function. (author)

  5. Distress and quality of life after autologous stem cell transplantation: a randomized clinical trial to evaluate the outcome of a web-based stepped care intervention

    NARCIS (Netherlands)

    Braamse, A.M.J.; van Meijel, B.; Visser, O.; van Oppen, P.C.; Boenink, A.D.; Eeltink, C.M.; Cuijpers, P.; Huijgens, P.C.; Beekman, A.T.F.; Dekker, J.J.M.

    2010-01-01

    Background: Psychological distress (i.e. depression and anxiety) is a strong predictor of functional status and other aspects of quality of life in autologous stem cell transplantation following high-dose chemotherapy. Treatment of psychological distress is hypothesized to result in improvement of

  6. Distress and quality of life after autologous stem cell transplantation: a randomized clinical trial to evaluate the outcome of a web-based stepped care intervention

    NARCIS (Netherlands)

    Braamse, A.M.J.; Meijel, van B.; Visser, O.; Oppen, van P.C.; Boenink, A.D.; Eeltink, C.M.; Cuijpers, P.; Huijgens, P.C.; Beekman, A.T.F.; Dekker, J.J.M.

    2010-01-01

    Background Psychological distress (i.e. depression and anxiety) is a strong predictor of functional status and other aspects of quality of life in autologous stem cell transplantation following high-dose chemotherapy. Treatment of psychological distress is hypothesized to result in improvement of

  7. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Michaela Norum

    2010-05-01

    Full Text Available The differentiation of an extracellular matrix (ECM at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation.We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus.Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes.

  8. Use of a collagen-elastin matrix as transport carrier system to transfer proliferating epidermal cells to human dermis in vitro.

    Science.gov (United States)

    Waaijman, Taco; Breetveld, Melanie; Ulrich, Magda; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan

    2010-01-01

    This in vitro study describes a novel cell culture, transport, and transfer protocol that may be highly suitable for delivering cultured proliferating keratinocytes and melanocytes to large open skin wounds (e.g., burns). We have taken into account previous limitations identified using other keratinocyte transfer techniques, such as regulatory issues, stability of keratinocytes during transport (single cell suspensions undergo terminal differentiation), ease of handling during application, and the degree of epidermal blistering resulting after transplantation (both related to transplanting keratinocyte sheets). Large numbers of proliferating epidermal cells (EC) (keratinocytes and melanocytes) were generated within 10-14 days and seeded onto a three-dimensional matrix composed of elastin and collagen types I, III, and V (Matriderm®), which enabled easy and stable transport of the EC for up to 24 h under ambient conditions. All culture conditions were in accordance with the regulations set by the Dutch Central Committee on Research Involving Human Subjects (CCMO). As an in vitro model system for clinical in vivo transfer, the EC were then transferred from Matriderm onto human acellular dermis during a period of 3 days. After transfer the EC maintained the ability to regenerate into a fully differentiated epidermis containing melanocytes on the human dermis. Proliferating keratinocytes were located in the basal layer and keratin-10 expression was located in differentiating suprabasal layers similar to that found in human epidermis. No blistering was observed (separation of the epidermis from the basement membrane). Keratin-6 expression was strongly upregulated in the regenerating epidermis similar to normal wound healing. In summary, we show that EC-Matriderm contains viable, metabolically active keratinocytes and melanocytes cultured in a manner that permits easy transportation and contains epidermal cells with the potential to form a pigmented reconstructed

  9. Autologous Transfusion of Stored Red Blood Cells Increases Pulmonary Artery Pressure

    Science.gov (United States)

    Pinciroli, Riccardo; Stowell, Christopher P.; Wang, Lin; Yu, Binglan; Fernandez, Bernadette O.; Feelisch, Martin; Mietto, Cristina; Hod, Eldad A.; Chipman, Daniel; Scherrer-Crosbie, Marielle; Bloch, Kenneth D.; Zapol, Warren M.

    2014-01-01

    Rationale: Transfusion of erythrocytes stored for prolonged periods is associated with increased mortality. Erythrocytes undergo hemolysis during storage and after transfusion. Plasma hemoglobin scavenges endogenous nitric oxide leading to systemic and pulmonary vasoconstriction. Objectives: We hypothesized that transfusion of autologous blood stored for 40 days would increase the pulmonary artery pressure in volunteers with endothelial dysfunction (impaired endothelial production of nitric oxide). We also tested whether breathing nitric oxide before and during transfusion could prevent the increase of pulmonary artery pressure. Methods: Fourteen obese adults with endothelial dysfunction were enrolled in a randomized crossover study of transfusing autologous, leukoreduced blood stored for either 3 or 40 days. Volunteers were transfused with 3-day blood, 40-day blood, and 40-day blood while breathing 80 ppm nitric oxide. Measurements and Main Results: The age of volunteers was 41 ± 4 years (mean ± SEM), and their body mass index was 33.4 ± 1.3 kg/m2. Plasma hemoglobin concentrations increased after transfusion with 40-day and 40-day plus nitric oxide blood but not after transfusing 3-day blood. Mean pulmonary artery pressure, estimated by transthoracic echocardiography, increased after transfusing 40-day blood (18 ± 2 to 23 ± 2 mm Hg; P transfusing 3-day blood (17 ± 2 to 18 ± 2 mm Hg; P = 0.5). Breathing nitric oxide decreased pulmonary artery pressure in volunteers transfused with 40-day blood (17 ± 2 to 12 ± 1 mm Hg; P Transfusion of autologous leukoreduced blood stored for 40 days was associated with increased plasma hemoglobin levels and increased pulmonary artery pressure. Breathing nitric oxide prevents the increase of pulmonary artery pressure produced by transfusing stored blood. Clinical trial registered with www.clinicaltrials.gov (NCT 01529502). PMID:25162920

  10. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    International Nuclear Information System (INIS)

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-01-01

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlated with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases

  11. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-11-26

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlated with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases.

  12. A clinical study on the feasibility of autologous cord blood transfusion for anemia of prematurity.

    Science.gov (United States)

    Khodabux, Chantal M; von Lindern, Jeannette S; van Hilten, Joost A; Scherjon, Sicco; Walther, Frans J; Brand, Anneke

    2008-08-01

    The objective was to investigate the use of autologous red blood cells (RBCs) derived from umbilical cord blood (UCB), as an alternative for allogeneic transfusions in premature infants admitted to a tertiary neonatal center. UCB collection was performed at deliveries of less than 32 weeks of gestation and processed into autologous RBC products. Premature infants requiring a RBC transfusion were randomly assigned to an autologous or allogeneic product. The primary endpoint was an at least 50 percent reduction in allogeneic transfusion needs. Fifty-seven percent of the collections harvested enough volume (> or =15 mL) for processing. After being processed, autologous products (> or =10 mL/kg) were available for 36 percent of the total study population and for 27 percent of the transfused infants and could cover 58 percent (range, 25%-100%) of the transfusion needs within the 21-day product shelf life. Availability of autologous products depended most on the gestational age. Infants born between 24 and 28 weeks had the lowest availability (17%). All products, however, would be useful in view of their high (87%) transfusion needs. Availability was highest (48%) for the infants born between 28 and 30 weeks. For 42 percent of the infants with transfusion needs in this group, autologous products were available. For the infants born between 30 and 32 weeks, autologous products were available for 36 percent of the infants. Transfusion needs in this group were, however, much lower (19%) compared to the other gestational groups. Autologous RBCs derived from UCB could not replace 50 percent of allogeneic transfusions due to the low UCB volumes collected and subsequent low product availability.

  13. Platelet released growth factors boost expansion of bone marrow derived CD34(+) and CD133(+) endothelial progenitor cells for autologous grafting.

    Science.gov (United States)

    Lippross, Sebastian; Loibl, Markus; Hoppe, Sven; Meury, Thomas; Benneker, Lorin; Alini, Mauro; Verrier, Sophie

    2011-01-01

    Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell

  14. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Yira Bermudez

    Full Text Available Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells.Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional.The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  15. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae

    Directory of Open Access Journals (Sweden)

    René Hans-Jürgen Heim

    2015-12-01

    Full Text Available Epidermal structures (ES of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA based on the spectral data. Subsequently, variable importance (VIP was calculated to identify spectral regions relevant for discriminating our functional types (classes. Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.

  16. Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells.

    Science.gov (United States)

    Klöß, Stephan; Oberschmidt, Olaf; Morgan, Michael; Dahlke, Julia; Arseniev, Lubomir; Huppert, Volker; Granzin, Markus; Gardlowski, Tanja; Matthies, Nadine; Soltenborn, Stephanie; Schambach, Axel; Koehl, Ulrike

    2017-10-01

    The administration of ex vivo expanded natural killer (NK) cells as potential antitumor effector cells appears to be suitable for effector cell-based immunotherapies in high-risk cancer patients. However, good manufacturing practice (GMP)-compliant manufacturing of clinical-grade NK cells at sufficiently high numbers represents a great challenge. Therefore, previous expansion protocols for those effector cells were improved and optimized by using newly developed culture medium, interleukin (IL)-21, and autologous feeder cells (FCs). Separation of primary human NK cells (CD56 + CD3 - ) was carried out with the CliniMACS Prodigy ® in a single process, starting with approximately 1.2 × 10 9 leukocytes collected by small-scale lymphapheresis or from buffy coats. Enriched NK cells were adjusted to starting cell concentrations within approximately 1 × 10 6 effector cells/mL and cultured in comparative expansion experiments for 14 days with IL-2 (1,000 IU/mL) in different GMP-compliant media (X-VIVO ™ 10, CellGro ® , TexMACS ™ , and NK MACS ® ). After medium optimization, beneficial effects for functionality and phenotype were investigated at the beginning of cell expansion with irradiated (25 Gy) autologous FCs at a ratio of 20:1 (feeder: NK) in the presence or absence of IL-21 (100 ng/mL). Additionally, expanded NK cells were gene modified to express chimeric antigen receptors (CARs) against CD123, a common marker for acute myeloid leukemia (AML). Cytotoxicity, degranulation, and cytokine release of transduced NK cells were determined against KG1a cells in flow cytometric analysis and fluorescent imaging. The Prodigy manufacturing process revealed high target cell viabilities (median 95.4%), adequate NK cell recovery (median 60.4%), and purity of 95.4% in regard to CD56 + CD3 - target cells. The process in its early phase of development led to a median T-cell depletion of log 3.5 after CD3 depletion and log 3.6 after the whole process, including CD3

  17. Technologies enabling autologous neural stem cell-based therapies for neurodegenerative disease and injury

    Science.gov (United States)

    Bakhru, Sasha H.

    The intrinsic abilities of mammalian neural stem cells (NSCs) to self-renew, migrate over large distances, and give rise to all primary neural cell types of the brain offer unprecedented opportunity for cell-based treatment of neurodegenerative diseases and injuries. This thesis discusses development of technologies in support of autologous NSC-based therapies, encompassing harvest of brain tissue biopsies from living human patients; isolation of NSCs from harvested tissue; efficient culture and expansion of NSCs in 3D polymeric microcapsule culture systems; optimization of microcapsules as carriers for efficient in vivo delivery of NSCs; genetic engineering of NSCs for drug-induced, enzymatic release of transplanted NSCs from microcapsules; genetic engineering for drug-induced differentiation of NSCs into specific therapeutic cell types; and synthesis of chitosan/iron-oxide nanoparticles for labeling of NSCs and in vivo tracking by cellular MRI. Sub-millimeter scale tissue samples were harvested endoscopically from subventricular zone regions of living patient brains, secondary to neurosurgical procedures including endoscopic third ventriculostomy and ventriculoperitoneal shunt placement. On average, 12,000 +/- 3,000 NSCs were isolated per mm 3 of subventricular zone tissue, successfully demonstrated in 26 of 28 patients, ranging in age from one month to 68 years. In order to achieve efficient expansion of isolated NSCs to clinically relevant numbers (e.g. hundreds of thousands of cells in Parkinson's disease and tens of millions of cells in multiple sclerosis), an extracellular matrix-inspired, microcapsule-based culture platform was developed. Initial culture experiments with murine NSCs yielded unprecedented expansion folds of 30x in 5 days, from initially minute NSC populations (154 +/- 15 NSCs per 450 mum diameter capsule). Within 7 days, NSCs expanded as almost perfectly homogenous populations, with 94.9% +/- 4.1% of cultured cells staining positive for

  18. Quality of intraoperative autologous blood withdrawal used for retransfusion after cardiopulmonary bypass.

    Science.gov (United States)

    Flom-Halvorsen, Hanne I; Øvrum, Eivind; Øystese, Rolf; Brosstad, Frank

    2003-09-01

    Intraoperative autologous blood withdrawal protects the pooled blood from the deleterious effects of cardiopulmonary bypass. Following reinfusion after cardiopulmonary bypass, the fresh autologous blood contributes to less coagulation abnormalities and reduces postoperative bleeding and the need for allogeneic blood products. However, few data have been available concerning the quality and potential activation of fresh blood stored at room temperature in the operating room. Forty coronary artery bypass grafting patients undergoing a consistent intraoperative and postoperative autotransfusion protocol had a median of 1,000 mL of autologous blood withdrawn before cardiopulmonary bypass. After heparinization the blood was drained from the venous catheter via venous cannula into standard blood bags and stored in the operating room until termination of cardiopulmonary bypass. Samples for hemostatic and inflammatory markers were taken from the pooled blood immediately before it was returned to the patient. There was some activation of platelets in the stored autologous blood, as measured by an increase of beta-thromboglobulin. Indications of thrombin formation, as assessed by plasma levels of thrombin-antithrombin complex and prothrombin fragment 1.2 were not seen, and there was no fibrinolytic activity. The red blood cells remained intact, indicated by the absence of plasma free hemoglobin. As for the inflammatory response, the levels of the terminal complement complex remained stable, and the cytokines tumor necrosis factor-alpha and interleukin 6 levels were not increased during storage. The complement activation products increased minimally, but remained within normal ranges. Except for slight activation of platelets, there was no indication of coagulation, hemolysis, fibrinolysis, or immunologic activity in the autologous blood after approximately 1 hour of operating room storage. The autologous blood was preserved in a condition of high quality, and retransfusion

  19. Ethical and Regulatory Challenges with Autologous Adult Stem Cells: A Comparative Review of International Regulations.

    Science.gov (United States)

    Lysaght, Tamra; Kerridge, Ian H; Sipp, Douglas; Porter, Gerard; Capps, Benjamin J

    2017-06-01

    Cell and tissue-based products, such as autologous adult stem cells, are being prescribed by physicians across the world for diseases and illnesses that they have neither been approved for or been demonstrated as safe and effective in formal clinical trials. These doctors often form part of informal transnational networks that exploit differences and similarities in the regulatory systems across geographical contexts. In this paper, we examine the regulatory infrastructure of five geographically diverse but socio-economically comparable countries with the aim of identifying similarities and differences in how these products are regulated and governed within clinical contexts. We find that while there are many subtle technical differences in how these regulations are implemented, they are sufficiently similar that it is difficult to explain why these practices appear more prevalent in some countries and not in others. We conclude with suggestions for how international governance frameworks might be improved to discourage the exploitation of vulnerable patient populations while enabling innovation in the clinical application of cellular therapies.

  20. In vitro cell quality of articular chondrocytes assigned for autologous implantation in dependence of specific patient characteristics

    DEFF Research Database (Denmark)

    Pestka, Jan M; Schmal, Hagen; Salzmann, Gian

    2011-01-01

    OBJECTIVE: Autologous chondrocyte implantation (ACI) is a well-established therapeutic option for the treatment of cartilage defects of the knee joint. Since information concerning the cellular aspects of ACI is still limited, the aim of the present study was to investigate relevant differences...... between chondrocyte quality after in vitro cultivation and possible correlations with patient-specific factors. DESIGN: Cell quality of 252 consecutive ACI patients was assessed after chondrocyte in vitro expansion by determination of the expression of cartilage relevant surface marker CD44 and cartilage......, aggrecan or collagen type II nor cell density or viability after proliferation seemed to correlate with the grade of joint degeneration, defect aetiology or patient gender. However, chondrocytes harvested from the knee joints of patients at less than 20 years of age showed significantly higher expression...

  1. The composite of bone marrow concentrate and PRP as an alternative to autologous bone grafting.

    Directory of Open Access Journals (Sweden)

    Mohssen Hakimi

    Full Text Available One possible alternative to the application of autologous bone grafts represents the use of autologous bone marrow concentrate (BMC. The purpose of our study was to evaluate the potency of autologous platelet-rich plasma (PRP in combination with BMC. In 32 mini-pigs a metaphyseal critical-size defect was surgically created at the proximal tibia. The animals were allocated to four treatment groups of eight animals each (1. BMC+CPG group, 2. BMC+CPG+PRP group, 3. autograft group, 4. CPG group. In the BMC+CPG group the defect was filled with autologous BMC in combination with calcium phosphate granules (CPG, whereas in the BMC+CPG+PRP group the defect was filled with the composite of autologous BMC, CPG and autologous PRP. In the autograft group the defect was filled with autologous cancellous graft, whereas in the CPG group the defect was filled with CPG solely. After 6 weeks radiological and histomorphometrical analysis showed significantly more new bone formation in the BMC+CPG+PRP group compared to the BMC+CPG group and the CPG group. There were no significant differences between the BMC+CPG+PRP group and the autograft group. In the PRP platelets were enriched significantly about 4.7-fold compared to native blood. In BMC the count of mononuclear cells increased significantly (3.5-fold compared to the bone marrow aspirate. This study demonstrates that the composite of BMC+CPG+PRP leads to a significantly higher bone regeneration of critical-size defects at the proximal tibia in mini-pigs than the use of BMC+CPG without PRP. Furthermore, within the limits of the present study the composite BMC+CPG+PRP represents a comparable alternative to autologous bone grafting.

  2. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  3. Return to work for patients with diffuse large B-cell lymphoma and transformed indolent lymphoma undergoing autologous stem cell transplantation

    DEFF Research Database (Denmark)

    Arboe, Bente; Olsen, Maja Halgren; Goerloev, Jette Soenderskov

    2017-01-01

    BACKGROUND: Autologous stem cell transplantation (ASCT) is the standard treatment for patients with relapsed diffuse large B-cell lymphoma (DLBCL) or transformed indolent lymphoma (TIL). The treatment is mainly considered for younger patients still available for the work market. In this study...... to work. The rate of returning to work in the first year following ASCT was decreased for patients being on sick leave at the time of relapse (hazard ratio [HR] 0.3 [0.2;0.5]) and increased for patients aged ≥55 years (HR 1.9 [1.1;3.3]). In all, 56 (27%) patients were granted disability pension. Being...... on sick leave at the time of relapse was positively associated with receiving a disability pension in the first 2 years after ASCT (HR 3.7 [1.8;7.7]). CONCLUSION: Patients on sick leave at the time of relapse have a poorer prognosis regarding RTW and have a higher rate of disability pension. Furthermore...

  4. Effect of time to infusion of autologous stem cells (24 vs. 48 h) after high-dose melphalan in patients with multiple myeloma.

    Science.gov (United States)

    Talamo, Giampaolo; Rakszawski, Kevin L; Rybka, Witold B; Dolloff, Nathan G; Malysz, Jozef; Berno, Tamara; Zangari, Maurizio

    2012-08-01

    High-dose melphalan (HD-Mel) is considered the current standard of care among the preparative regimens used in autologous peripheral blood stem cell transplantation (SCT) for multiple myeloma (MM), but optimal time and schedule of administration is not defined. We retrospectively analyzed outcomes and toxicities of HD-Mel administered on day -2 vs. day -1 before autologous stem cells infusion. A total of 138 consecutive MM patients treated at Penn State Hershey Cancer Institute between 2007 and 2010 were included in this study. No difference in time to hematopoietic recovery, common SCT-related toxicities, and clinical outcomes was seen between patients who received HD-Mel on day -2 (group A, n = 47), and those who received it on day -1 (group B, n = 91). Prompt and full hematopoietic recovery occurred even when stem cells were infused between 8 and 24 h after completion of chemotherapy. In the absence of prospective and randomized data, we conclude that a single I.V. infusion of HD-Mel on day -1 is a safe and effective practice, and the so-called 'day of rest' before the transplant appears not to be necessary. © 2012 John Wiley & Sons A/S.

  5. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates.

    Science.gov (United States)

    Kondo, Shimpei; Muneta, Takeshi; Nakagawa, Yusuke; Koga, Hideyuki; Watanabe, Toshifumi; Tsuji, Kunikazu; Sotome, Shinichi; Okawa, Atsushi; Kiuchi, Shinji; Ono, Hideo; Mizuno, Mitsuru; Sekiya, Ichiro

    2017-06-01

    Transplantation of aggregates of synovial mesenchymal stem cells (MSCs) enhanced meniscus regeneration in rats. Anatomy and biological properties of the meniscus depend on animal species. To apply this technique clinically, it is valuable to investigate the use of animals genetically close to humans. We investigated whether transplantation of aggregates of autologous synovial MSCs promoted meniscal regeneration in aged primates. Chynomolgus primates between 12 and 13 years old were used. After the anterior halves of the medial menisci in both knees were removed, an average of 14 aggregates consisting of 250,000 synovial MSCs were transplanted onto the meniscus defect. No aggregates were transplanted to the opposite knee for the control. Meniscus and articular cartilage were analyzed macroscopically, histologically, and by MRI T1rho mapping at 8 (n = 3) and 16 weeks (n = 4). The medial meniscus was larger and the modified Pauli's histological score for the regenerated meniscus was better in the MSC group than in the control group in each primate at 8 and 16 weeks. Mankin's score for the medial femoral condyle cartilage was better in the MSC group than in the control group in all primates at 16 weeks. T1rho value for both the regenerated meniscus and adjacent articular cartilage in the MSC group was closer to the normal meniscus than in the control group in all primates at 16 weeks. Transplantation of aggregates of autologous synovial MSCs promoted meniscus regeneration and delayed progression of degeneration of articular cartilage in aged primates. This is the first report dealing with meniscus regeneration in primates. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1274-1282, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Inflammatory linear verrucous epidermal naevus: Report of three ...

    African Journals Online (AJOL)

    Background: Epidermal naevi are congenital harmatomas that arise from embryonal ectodermal cells. The inflammatory linear verrucous variant is rare and presents with disturbing symptoms. In blacks the classical erythema is not common but pruritus and discharge are the commonest features. Methods and results: We ...

  7. Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model

    Science.gov (United States)

    Ozeki, Nobutake; Muneta, Takeshi; Matsuta, Seiya; Koga, Hideyuki; Nakagawa, Yusuke; Mizuno, Mitsuru; Tsuji, Kunikazu; Mabuchi, Yo; Akazawa, Chihiro; Kobayashi, Eiji; Saito, Tomoyuki; Sekiya, Ichiro

    2015-01-01

    Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938 PMID:25993981

  8. The Influence of Autologous Bone Marrow Stem Cell Transplantation on Matrix Metalloproteinases in Patients Treated for Acute ST-Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Eline Bredal Furenes

    2014-01-01

    Full Text Available Background. Matrix metalloproteinase-9 (MMP-9, regulated by tissue inhibitor of metalloproteinase-9 (TIMP-1 and the extracellular matrix metalloproteinase inducer (EMMPRIN, contributes to plaque instability. Autologous stem cells from bone marrow (mBMC treatment are suggested to reduce myocardial damage; however, limited data exists on the influence of mBMC on MMPs. Aim. We investigated the influence of mBMC on circulating levels of MMP-9, TIMP-1, and EMMPRIN at different time points in patients included in the randomized Autologous Stem-Cell Transplantation in Acute Myocardial Infarction (ASTAMI trial (n=100. Gene expression analyses were additionally performed. Results. After 2-3 weeks we observed a more pronounced increase in MMP-9 levels in the mBMC group, compared to controls (P=0.030, whereas EMMPRIN levels were reduced from baseline to 2-3 weeks and 3 months in both groups (P<0.0001. Gene expression of both MMP-9 and EMMPRIN was reduced from baseline to 3 months. MMP-9 and EMMPRIN were significantly correlated to myocardial injury (CK: P=0.005 and P<0.001, resp. and infarct size (SPECT: P=0.018 and P=0.008, resp.. Conclusion. The results indicate that the regulation of metalloproteinases is important during AMI, however, limited influenced by mBMC.

  9. Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus–oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10...... with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P

  10. BLIMP1 Is Required for Postnatal Epidermal Homeostasis but Does Not Define a Sebaceous Gland Progenitor under Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Kai Kretzschmar

    2014-10-01

    Full Text Available B-lymphocyte-induced nuclear maturation protein 1 (BLIMP1 was previously reported to define a sebaceous gland (SG progenitor population in the epidermis. However, the recent identification of multiple stem cell populations in the hair follicle junctional zone has led us to re-evaluate its function. We show, in agreement with previous studies, that BLIMP1 is expressed by postmitotic, terminally differentiated epidermal cells within the SG, interfollicular epidermis, and hair follicle. Epidermal overexpression of c-Myc results in loss of BLIMP1+ cells, an effect modulated by androgen signaling. Epidermal-specific deletion of Blimp1 causes multiple differentiation defects in the epidermis in addition to SG enlargement. In culture, BLIMP1+ sebocytes have no greater clonogenic potential than BLIMP1− sebocytes. Finally, lineage-tracing experiments reveal that, under steady-state conditions, BLIMP1-expressing cells do not divide. Thus, rather than defining a sebocyte progenitor population, BLIMP1 functions in terminally differentiated cells to maintain homeostasis in multiple epidermal compartments.

  11. Factors affecting the autologous mixed lymphocyte reaction in kidney transplantation

    International Nuclear Information System (INIS)

    Fuller, L.; Flaa, C.; Jaffe, D.; Strauss, J.; Kyriakides, G.K.; Miller, J.

    1983-01-01

    In long-term well adapted kidney transplant recipients we have found a close correlation between the T helper (TH):T suppressor/cytotoxic (TS/C) subset ratios and the presence of T cells that respond in the autologous mixed lymphocyte reaction (AMLR). In 21 recipients with T cell E rosette levels ranging between 53 and 86% and TH:TS/C ratios between 0.15 to 2.10, ratios of greater than 0.8 correlated with AMLR responses (13/13), and ratios of less than 0.8 with AMLR nonreactivity (7/7). By contrast, the allogeneic MLR showed no apparent correlation with the TH:TS/C ratios or with the AMLR pre- or postoperatively. It was found that the AMLR in 22 of 23 normal individuals was markedly inhibited by autologous T cells obtained from peripheral blood lymphocytes, exposed to 3,000 rad (Tx) and added as a third component to the cultures. In contrast, 13 of 13 kidney transplant recipients failed to exhibit this Tx AMLR inhibitory cell population. The ''naturally occurring'' T inhibitory cells, fractionated by an affinity column chromatography procedure into x-irradiated TH and TS/C subsets, inhibited the AMLR to the same extent as unseparated Tx cells. In cell interchange studies performed in four of five HLA identical donor-recipient pairs the Tx cells of the (normal) donor inhibited the recipient AMLR (immunosuppressed), but recipient Tx cells failed to inhibit the donor AMLR. Finally T cells, primed in AMLR and allogeneic MLR for 10 d were tested for AMLR or allogeneic MLR inhibitory activity. Allogeneic MLR primed x-irradiated cells, inhibited both the AMLR and allogeneic MLR while AMLR x-irradiated primed cells inhibited neither reaction. The Tx AMLR inhibitor found in normal peripheral blood, appears to be a cell that is highly sensitive to the effects of biologic or pharmacologic immunosuppressive agents

  12. Proliferation and Differentiation of Autologic and Allogenic Stem Cells in Supralethally X-Irradiated Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, I. L. [Department of Radiobiology, Central Institute of Haematology and Blood Transfusion, Moscow, USSR (Russian Federation)

    1967-07-15

    Full text: Allogenic bone marrow after transplantation into dogs irradiated with 1000 R X-rays differentiates in the normal way only for 3-4 days, afterwards transforming into lymphoid cells. This transformation is due to the antigen stimulus of the host on the grafted stem cells. The lymphoid cells, obtained from the host's blood on the 7-8th day after grafting, showed specific, immune activity under the Immune Lymphocyte Transfer test. Within a short duration of the immune response immunoblasts and immunocytes Undergo degenerative changes: destroyed mitochondria, formation of autophagic vacuoles and, finally, lysis of the cells. These changes are suggested to be the result of overloading of immune cells with antigen. Preliminary sensitization of the donor with prospective host's haemopoietic tissue does not hasten the immune transformation of haemopoiesis. Injections of bacterial pyrogen, cortisone or 6-mercaptopurine into recipients, as well as incubation of bone marrow at 37 Degree-Sign C for 2 hours, do not prevent the immune transformation. Preliminary thymectomy of the prospective recipients prevents in some of the cases immune transformation of the bone-marrow graft. The delay of allogenic bone-marrow transplantation for 5-6 days prevents in some dogs (X-irradiated with 1000 R, but not with 1200 R) the immune transformation. Transplantation of autologic bone marrow or shielding of the legs during irradiation is accompanied with good restoration of normal haemopoiesis without lymphoid transformation. (author)

  13. Epidermal growth factor induces HCCR expression via PI3K/Akt/mTOR signaling in PANC-1 pancreatic cancer cells

    International Nuclear Information System (INIS)

    Xu, Zekuan; Zhang, Guoxin; Zhang, Yi; Jiang, Jiakai; Yang, Yang; Shi, Ruihua; Hao, Bo; Zhang, Zhihong; Huang, Zuhu; Kim, Jin W

    2010-01-01

    Human cervical cancer oncoprotein 1 (HCCR-1), reported as a negative regulator of p53, is over-expressed in a variety of human cancers. However, it is yet unknown whether HCCR-1 plays any role in pancreatic cancer development. The aim of this study was to investigate the effect of epidermal growth factor on the expression of HCCR in pancreatic cancer cells, and to explore if PI3K/Akt/mTOR signaling pathway mediated this expression. A polyclonal antibody against HCCR protein was raised by immunizing Balb/c mice with the purified recombinant protein pMBPc-HCCR. Tissue samples were constructed on a tissue chip, and the expression of HCCR was investigated by immunohistochemistry assay and Western blotting. Pancreatic cell line, PANC-1 cells were stably transfected with plasmids containing sense-HCCR-1 fragment and HCCR siRNA fragment. MTT and transwell assay were used to investigate the proliferation and invasion of stable tansfectants. The specific inhibitor of PI3K and mTOR was used to see if PI3K/mTOR signal transduction was involved in the induction of HCCR gene expression. A Luciferase assay was used to see if Akt can enhance the HCCR promoter activity. HCCR was up-regulated in pancreatic tumor tissues (mean Allred score 4.51 ± 1.549 vs. 2.87 ± 2.193, P < 0.01), especially with high expression in poorly differentiated pancreatic cancer. The growth of cells decreased in HCCR-1 siRNA transfected cells compared with vector transfectants. The number of invasion cells was significantly lower in HCCR-1 siRNA transfected cells (24.4 ± 9.9) than that in vector transfectants (49.1 ± 15.4). Treatment of PANC-1 cells with epidermal growth factor increased HCCR protein level in a dose- and time-dependent manner. However, application of LY294002 and rapamycin caused a dramatic reduction of epidermal growth factor-induced HCCR expression. Over-expression of exogenous constitutively active Akt increased the HCCR promoter activity; in contrast, dominant negative Akt decreased

  14. The regeneration of epidermal cells of Saintpaulia leaves as a new plant-tissue system for cellular radiation biology

    International Nuclear Information System (INIS)

    Engels, F.M.; Laan, F.M. van der; Leenhouts, H.P.; Chadwick, K.H.

    1980-01-01

    investigation of the nucleus of epidermal cells of the petioles of Saintpaulia leaves by cytofluorimetry revealed that all cells are in a non-cycling pre DNA synthesis phase. Cultivation of dissected leaves results in a synchronous regeneration process of a defined number of cells. Five days after onset of cultivation the cells reach the first mitosis. The nuclear development during the regeneration process is described. Irradiation of the leaves results in a directly visible inhibition of this regenerating capability which is used to quantify cell survival in a tissue. The data show that the radiation response has a similar shape to that of the survival of single cells in culture. This response can be observed before the first mitosis of the cells and its application as a new plant tissue system for cellular radiation research is discussed. (author)

  15. Phosphoproteomic fingerprinting of epidermal growth factor signaling and anticancer drug action in human tumor cells.

    Science.gov (United States)

    Lim, Yoon-Pin; Diong, Lang-Shi; Qi, Robert; Druker, Brian J; Epstein, Richard J

    2003-12-01

    Many proteins regulating cancer cell growth are tyrosine phosphorylated. Using antiphosphotyrosine affinity chromatography, thiourea protein solubilization, two-dimensional PAGE, and mass spectrometry, we report here the characterization of the epidermal growth factor (EGF)-induced phosphoproteome in A431 human epidermoid carcinoma cells. Using this approach, more than 50 distinct tyrosine phosphoproteins are identifiable within five main clusters-cytoskeletal proteins, signaling enzymes, SH2-containing adaptors, chaperones, and focal adhesion proteins. Comparison of the phosphoproteomes induced in vitro by transforming growth factor-alpha and platelet-derived growth factor demonstrates the pathway- and cell-specific nature of the phosphoproteomes induced. Elimination of both basal and ligand-dependent phosphoproteins by cell exposure to the EGF receptor catalytic inhibitor gefitinib (Iressa, ZD1839) suggests either an autocrine growth loop or the presence of a second inhibited kinase in A431 cells. By identifying distinct patterns of phosphorylation involving novel signaling substrates, and by clarifying the mechanism of action of anticancer drugs, these findings illustrate the potential of immunoaffinity-based phosphoproteomics for guiding the discovery of new drug targets and the rational utilization of pathway-specific chemotherapies.

  16. Adaptive Immune Response Impairs the Efficacy of Autologous Transplantation of Engineered Stem Cells in Dystrophic Dogs

    Science.gov (United States)

    Sitzia, Clementina; Farini, Andrea; Jardim, Luciana; Razini, Paola; Belicchi, Marzia; Cassinelli, Letizia; Villa, Chiara; Erratico, Silvia; Parolini, Daniele; Bella, Pamela; da Silva Bizario, Joao Carlos; Garcia, Luis; Dias-Baruffi, Marcelo; Meregalli, Mirella; Torrente, Yvan

    2016-01-01

    Duchenne muscular dystrophy is the most common genetic muscular dystrophy. It is caused by mutations in the dystrophin gene, leading to absence of muscular dystrophin and to progressive degeneration of skeletal muscle. We have demonstrated that the exon skipping method safely and efficiently brings to the expression of a functional dystrophin in dystrophic CD133+ cells injected scid/mdx mice. Golden Retriever muscular dystrophic (GRMD) dogs represent the best preclinical model of Duchenne muscular dystrophy, mimicking the human pathology in genotypic and phenotypic aspects. Here, we assess the capacity of intra-arterial delivered autologous engineered canine CD133+ cells of restoring dystrophin expression in Golden Retriever muscular dystrophy. This is the first demonstration of five-year follow up study, showing initial clinical amelioration followed by stabilization in mild and severe affected Golden Retriever muscular dystrophy dogs. The occurrence of T-cell response in three Golden Retriever muscular dystrophy dogs, consistent with a memory response boosted by the exon skipped-dystrophin protein, suggests an adaptive immune response against dystrophin. PMID:27506452

  17. Hepatic Sinusoidal-obstruction Syndrome and Busulfan-induced Lung Injury in a Post-autologous Stem Cell Transplant Recipient.

    Science.gov (United States)

    Jain, Richa; Gupta, Kirti; Bhatia, Anmol; Bansal, Arun; Bansal, Deepak

    2017-09-15

    Veno-occlusive disease of the liver is mostly encountered as a complication of hematopoietic stem cell transplantation with myeloablative regimens with an incidence estimated to be 13.7%. It is clinically characterized by tender hepatomegaly, jaundice, weight gain and ascites. Strong clinical suspicion and an early recognition of clinical signs are essential to establish the diagnosis and institute effective regimen. Another complication of cytotoxic drugs given for cancers, is development of busulfan-induced lung injury. A strong index of suspicion is needed for its diagnosis, especially in setting where opportunistic fungal and viral infections manifest similarly. We illustrate the clinical and autopsy finings in a 2½-year-old boy who received autologous stem-cell transplantation following resection of stage IV neuroblastoma. He subsequently developed both hepatic veno-occlusive disease and busulfan-induced lung injury. The autopsy findings are remarkable for their rarity.

  18. 99Tcm-MIBI and 18F-FDG DISA imaging in the evaluation of CABG combined with autologous bone marrow mononuclear cell transplantation in patients with myocardial infarction

    International Nuclear Information System (INIS)

    Zhang Fuqiang; Chen Xianying; Zhang Guoxu; Wang Zhiguo; Ma Dongchu; Wang Huishan

    2009-01-01

    Objective: Autologous bone marrow mononuclear cell transplantation is a treatment modality under investigation for severe coronary heart disease. Its beneficial effects on ventricular function, myocardial perfusion and metabolism remain to be evaluated. The present study proposed a 18 F-fluorodeoxyglucose (FDG) and 99 Tc m -methoxyisobutylisinitrile (MIBI) dual-isotope simultaneous acquisition (DISA) imaging technique to assess the effects of coronary artery bypass grafting (CABG) combined with autologous bone marrow mononuclear cell transplantation in patients with old myocardial infarction (OMI). Methods: Twenty patients with OMI, whose diagnosis was confirmed with angiography. were divided into a convention. al CABG group (group A, n=11) and CABG+ autologous bone marrow mononuclear cell transplantation group (group B, n=9). All subjects underwent gated cardiac DISA tomography at one week preoperatively and four months postoperatively. The segmental myocardial uptake of the tracers was scored as 3, 2, 1 and 0. Paired-samples t test was used to compare data of the two groups. Results In group A, there were 52 perfusion/metabolism mismatched segments, 99 Tc m -MIBI and 18 F-FDG uptake scores of these segments in-creased from preoperatively 1.48 ± 0.75( 99 Tc m -MIBI)and 1.90 ± 0.75( 18 F-FDG) to postoperatively 1.75 ± 0.68 and 2.13 ± 0.74 (t=3.25 and 2.37, both P 0.05). However, in group B, there was significant increase of the myocardial uptake scores both in mismatched segments and matched segments. In the 45 mismatched segments of this group,preoperative and postoperative 99 Tc m -MIBI/ 18 F-FDG uptake scores were 1.24 ± 0.68/1.71 ± 0.76 and 1.53 ± 0.66/2.00 ± 0.64, respectively (t=2.93 and 2.56. both P 99 Tc m -MIBI/ 18 F-FDG uptake scores were 0.94 ± 0.75/1.50 ± 0.74 and 1.22 ± 0.76/1.78 ± 0.64. respectively (t=2.71 and 3.37. both P 0.05). Conclusions: CABG combined with autologous bone marrow mononuclear cell transplantation may improve myocardial

  19. Epidermal characters of Tamarix L. (Tamaricaceae) from Northwest China and their taxonomic and palaeogeographic implications

    OpenAIRE

    Jian-Wei Zhang; Ashalata D'Rozario; Shi-Min Duan; Xi-Yong Wang; Xiao-Qing Liang; Bo-Rong Pan

    2018-01-01

    The taxonomical position of species of the genus Tamarix (Tamaricaceae) has been criticized because of their gross morphological similarities (such as slender, smooth and reddish–brown branches, grey–green foliage and scale leaves), and their systematic relationships remain unclear. In this paper, the leaf epidermal features of 17 species from China are studied based on the micro-morphological characters of the epidermal cells, stomata, salt glands, papillae and epidermal hairs. According to ...

  20. Soft Tissue Repair with Easy-Accessible Autologous Newborn Placenta or Umbilical Cord Blood in Severe Malformations: A Primary Evaluation

    Science.gov (United States)

    2017-01-01

    Disrupted organogenesis leads to permanent malformations that may require surgical correction. Autologous tissue grafts may be needed in severe lack of orthotopic tissue but include donor site morbidity. The placenta is commonly discarded after birth and has a therapeutic potential. The aim of this study was to determine if the amnion from placenta or plasma rich of growth factors (PRGF) with mononuclear cells (MNC) from umbilical cord blood (UCB), collected noninvasively, could be used as bio-constructs for autologous transplantation as an easy-accessible no cell culture-required method. Human amnion and PRGF gel were isolated and kept in culture for up to 21 days with or without small intestine submucosa (SIS). The cells in the constructs showed a robust phenotype without induced increased proliferation (Ki67) or apoptosis (caspase 3), but the constructs showed decreased integrity of the amnion-epithelial layer at the end of culture. Amnion-residing cells in the SIS constructs expressed CD73 or pan-cytokeratin, and cells in the PRGF-SIS constructs expressed CD45 and CD34. This study shows that amnion and UCB are potential sources for production of autologous grafts in the correction of congenital soft tissue defects. The constructs can be made promptly after birth with minimal handling or cell expansion needed. PMID:29403534

  1. Soft Tissue Repair with Easy-Accessible Autologous Newborn Placenta or Umbilical Cord Blood in Severe Malformations: A Primary Evaluation

    Directory of Open Access Journals (Sweden)

    Åsa Ekblad

    2017-01-01

    Full Text Available Disrupted organogenesis leads to permanent malformations that may require surgical correction. Autologous tissue grafts may be needed in severe lack of orthotopic tissue but include donor site morbidity. The placenta is commonly discarded after birth and has a therapeutic potential. The aim of this study was to determine if the amnion from placenta or plasma rich of growth factors (PRGF with mononuclear cells (MNC from umbilical cord blood (UCB, collected noninvasively, could be used as bio-constructs for autologous transplantation as an easy-accessible no cell culture-required method. Human amnion and PRGF gel were isolated and kept in culture for up to 21 days with or without small intestine submucosa (SIS. The cells in the constructs showed a robust phenotype without induced increased proliferation (Ki67 or apoptosis (caspase 3, but the constructs showed decreased integrity of the amnion-epithelial layer at the end of culture. Amnion-residing cells in the SIS constructs expressed CD73 or pan-cytokeratin, and cells in the PRGF-SIS constructs expressed CD45 and CD34. This study shows that amnion and UCB are potential sources for production of autologous grafts in the correction of congenital soft tissue defects. The constructs can be made promptly after birth with minimal handling or cell expansion needed.

  2. Repair of facial nerve defects with decellularized artery allografts containing autologous adipose-derived stem cells in a rat model.

    Science.gov (United States)

    Sun, Fei; Zhou, Ke; Mi, Wen-Juan; Qiu, Jian-Hua

    2011-07-20

    The purpose of this study was to investigate the effects of a decellularized artery allograft containing autologous adipose-derived stem cells (ADSCs) on an 8-mm facial nerve branch lesion in a rat model. At 8 weeks postoperatively, functional evaluation of unilateral vibrissae movements, morphological analysis of regenerated nerve segments and retrograde labeling of facial motoneurons were all analyzed. Better regenerative outcomes associated with functional improvement, great axonal growth, and improved target reinnervation were achieved in the artery-ADSCs group (2), whereas the cut nerves sutured with artery conduits alone (group 1) achieved inferior restoration. Furthermore, transected nerves repaired with nerve autografts (group 3) resulted in significant recovery of whisking, maturation of myelinated fibers and increased number of labeled facial neurons, and the latter two parameters were significantly different from those of group 2. Collectively, though our combined use of a decellularized artery allograft with autologous ADSCs achieved regenerative outcomes inferior to a nerve autograft, it certainly showed a beneficial effect on promoting nerve regeneration and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Tissue engineering applications: cartilage lesions repair by the use of autologous chondrocytes

    Directory of Open Access Journals (Sweden)

    L. De Franceschi

    2011-09-01

    Full Text Available Promising new therapies based on tissue engineering have been recently developed for cartilage repair. The association of biomaterials with autologous chondrocytes expanded in vitro can represent a useful tool to regenerate this tissue. The scaffolds utilised in such therapeutical applications should provide a pre-formed three-dimensional shape, prevent cells from floating out of the defect, have sufficient mechanical strength, facilitate uniform spread of cells and stimulate the phenotype of transplanted cells. Hyaff®-11 is a hyaluronic-acid based biodegradable polymer, that has been shown to provide successful cell carrier for tissue-engineered repair. From our findings we can state that human chondrocytes seeded on Hyaff®-11 are able to maintain in vitro the characteristic of differentiated cells, expressing and producing collagen type II and aggrecan which are the main markers of cartilage phenotype, down-regulating collagen type I. Moreover, it seems to be a useful scaffold for cartilage repair both in animal models and clinical trials in humans, favouring the formation of a hyaline-like tissue. In the light of these data, we can hypothesise, for the future, the use of autologous chondrocyte transplantation together with gene therapy as a treatment for rheumatic diseases such as osteoarthritis.

  4. LOCAL CORTICOSTEROID VS. AUTOLOGOUS BLOOD FOR PLANTAR FASCIITIS

    Directory of Open Access Journals (Sweden)

    Syam Sunder B

    2017-01-01

    Full Text Available BACKGROUND Plantar fasciitis is the most common cause of heel pain for which professional care is sought. Initially thought of as an inflammatory process, plantar fasciitis is a disorder of degenerative changes in the fascia and maybe more accurately termed plantar fasciosis. Traditional therapeutic efforts have been directed at decreasing the presumed inflammation. These treatments include icing, Nonsteroidal Anti-inflammatory Drugs (NSAIDs, rest and activity modification, corticosteroids, botulinum toxin type A, splinting, shoe modifications and orthosis. Other treatment techniques have been directed at resolving the degeneration caused by the disease process. In general, these techniques are designed to create an acute inflammatory reaction with the goal of restarting the healing process. These techniques include autologous blood injection, Platelet-Rich Plasma (PRP injection, nitroglycerin patches, Extracorporeal Shock Wave Therapy (ESWT and surgical procedures. Recently, research has focused on regenerative therapies with high expectations of success. The use of autologous growth factors is thought to heal through collagen regeneration and the stimulation of a well-ordered angiogenesis. These growth factors are administered in the form of autologous whole blood or Platelet-Rich Plasma (PRP. Platelets can be isolated using simple cell-separating systems. The degranulation of the alpha granules in the platelets releases many different growth factors that play a role in tissue regeneration processes. Platelet-derived growth factor, transforming growth factor-P, vascular-derived endothelial growth factor, epithelial growth factor, hepatocyte growth factor and insulin-like growth factor are examples of such growth factors. Injections with autologous growth factors are becoming common in clinical practice. The present study was an attempt to compare the efficacy of autologous blood injection in plantar fasciitis by comparing it with the local

  5. Autologous bone marrow transplantation following chemotherapy and irradiation in dogs with spontaneous lymphomas

    International Nuclear Information System (INIS)

    Bowles, C.A.; Bull, M.; McCormick, K.; Kadin, M.; Lucas, D.

    1980-01-01

    Thirty dogs with spontaneous lymphomas were administered two to six cycles of chemotherapy and were randomized into 3 groups to receive 800 rads of total body irradiation and autologous bone marrow transplantation. Of 10 dogs irradiated after chemotherapy-induced remission and infused with remission marrow (group 1), 8 (80%) had successful grafts and experienced remissions lasting 62 to 1024 days. Of 9 dogs irradiated during remission and infused with remission marrow mixed with autologous tumor cells (group 2), 6 (66%) had remission lasting 15 to 45 days. Eleven dogs with progressive tumor growth (relapse) following chemotherapy were irradiated and infused with remission marrow (group 3). Tumor remission lasting 39 to 350 days was observed in 5 dogs (45%) in this group, and 6 dogs died in less than 30 days. Dogs in groups 1 to 3 had median survival times of 216, 60, and 45 days, respectively. The prolonged survival times for dogs in group 1 compared to dogs in groups 2 and 3 suggest that protocols involving irradiation and autologous marrow grafting in this model would be most effective when these protocols are applied to animals having a minimum tumor burden at the time of irradiation and when the grafting is done with tumor-free autologous marrow

  6. Influence of autologous blood transfusion in liver transplantation in patients with hepatitis B on the function and hemorheology of red blood cells

    OpenAIRE

    Liu, Xiangfu; Fan, Ruifang; Lu, Ying; Kuang, Lihua; Yuan, Qing; Chen, Yuchan; Lin, Zhesheng; Lin, Dongjun

    2017-01-01

    The present study aimed to characterize the function and hemorheology of red blood cells (RBCs) recovered during liver transplantation surgery in patients with hepatitis B and decompensation. A total of 15 hepatitis B patients with decompensation who underwent liver transplantation surgery were included in the present study. Blood samples were recovered during the liver transplantation surgery using an Autologous Blood Recovery System. The morphology and structure of RBCs were characterized a...

  7. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    Purpose: To study the effect of conformal radiotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell lung cancer (NSCLC). Methods: A total of 316 patients attending Shanghai Pulmonary Hospital affiliated to Tongji University, were divided ...

  8. Reaming debris as a novel source of autologous bone to enhance healing of bone defects

    NARCIS (Netherlands)

    Bakker, A.D.; Kroeze, R.J.; Korstjens, C.; de Kleine, R.H.; Frolke, J.P.M.; Klein-Nulend, J.

    2011-01-01

    Reaming debris is formed when bone defects are stabilized with an intramedullary nail, and contains viable osteoblast-like cells and growth factors, and might thus act as a natural osteoinductive scaffold. The advantage of using reaming debris over stem cells or autologous bone for healing bone

  9. Reaming debris as a novel source of autologous bone to enhance healing of bone defects

    NARCIS (Netherlands)

    Bakker, Astrid D.; Kroeze, Robert Jan; Korstjens, Clara; de Kleine, Ruben H.; Frolke, Jan Paul M.; Klein-Nulend, Jenneke

    Reaming debris is formed when bone defects are stabilized with an intramedullary nail, and contains viable osteoblast-like cells and growth factors, and might thus act as a natural osteoinductive scaffold. The advantage of using reaming debris over stem cells or autologous bone for healing bone

  10. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC derived-exosomes: results of thefirst phase I clinical trial

    Directory of Open Access Journals (Sweden)

    Piperno Sophie

    2005-03-01

    Full Text Available Abstract Background DC derived-exosomes are nanomeric vesicles harboring functional MHC/peptide complexes capable of promoting T cell immune responses and tumor rejection. Here we report the feasability and safety of the first Phase I clinical trial using autologous exosomes pulsed with MAGE 3 peptides for the immunization of stage III/IV melanoma patients. Secondary endpoints were the monitoring of T cell responses and the clinical outcome. Patients and methods Exosomes were purified from day 7 autologous monocyte derived-DC cultures. Fifteen patients fullfilling the inclusion criteria (stage IIIB and IV, HLA-A1+, or -B35+ and HLA-DPO4+ leukocyte phenotype, tumor expressing MAGE3 antigen were enrolled from 2000 to 2002 and received four exosome vaccinations. Two dose levels of either MHC class II molecules (0.13 versus 0.40 × 1014 molecules or peptides (10 versus 100 μg/ml were tested. Evaluations were performed before and 2 weeks after immunization. A continuation treatment was performed in 4 cases of non progression. Results The GMP process allowed to harvest about 5 × 1014 exosomal MHC class II molecules allowing inclusion of all 15 patients. There was no grade II toxicity and the maximal tolerated dose was not achieved. One patient exhibited a partial response according to the RECIST criteria. This HLA-B35+/A2+ patient vaccinated with A1/B35 defined CTL epitopes developed halo of depigmentation around naevi, a MART1-specific HLA-A2 restricted T cell response in the tumor bed associated with progressive loss of HLA-A2 and HLA-BC molecules on tumor cells during therapy with exosomes. In addition, one minor, two stable and one mixed responses were observed in skin and lymph node sites. MAGE3 specific CD4+ and CD8+ T cell responses could not be detected in peripheral blood. Conclusion The first exosome Phase I trial highlighted the feasibility of large scale exosome production and the safety of exosome administration.

  11. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  12. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    International Nuclear Information System (INIS)

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-01-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  13. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Tang, Cheng; Xu, Yan; Jin, Chengzhe; Min, Byoung-Hyun; Li, Zhiyong; Pei, Xuan; Wang, Liming

    2013-12-01

    Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  14. Autologous Bone Marrow Mononuclear Cells in Ischemic Cerebrovascular Accident Paves Way for Neurorestoration: A Case Report

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2014-01-01

    Full Text Available In response to acute ischemic stroke, large numbers of bone marrow stem cells mobilize spontaneously in peripheral blood that home onto the site of ischemia activating the penumbra. But with chronicity, the numbers of mobilized cells decrease, reducing the degree and rate of recovery. Cellular therapy has been explored as a new avenue to restore the repair process in the chronic stage. A 67-year-old Indian male with a chronic right middle cerebral artery ischemic stroke had residual left hemiparesis despite standard management. Recovery was slow and partial resulting in dependence to carry out activities of daily living. Our aim was to enhance the speed of recovery process by providing an increased number of stem cells to the site of injury. We administered autologous bone marrow mononuclear cells intrathecally alongwith rehabilitation and regular follow up. The striking fact was that the hand functions, which are the most challenging deficits, showed significant recovery. Functional Independence Measure scores and quality of life improved. This could be attributed to the neural tissue restoration. We hypothesize that cell therapy may be safe, novel and appealing treatment for chronic ischemic stroke. Further controlled trials are indicated to advance the concept of Neurorestoration.

  15. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Aileen G Rowan

    2016-11-01

    Full Text Available There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL, human T lymphotropic virus type-1 (HTLV-1, contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1 to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease.

  16. Fractionated total body irradiation and autologous bone marrow transplantation in dogs: Hemopoietic recovery after various marrow cell doses

    International Nuclear Information System (INIS)

    Bodenburger, U.; Kolb, H.J.; Thierfelder, S.; Netzel, B.; Schaeffer, E.; Kolb, H.

    1980-01-01

    Hemopoietic recovery was studied in dogs given 2400 R fractionated total body irradiation within one week and graded doses of cryopreserved autologous bone marrow. Complete hemopoietic recovery including histology was observed after this dose and sufficient doses of marrow cells. Doses of more than 5.5 x 10 7 mononuclear marrow cells/kg body weight were sufficient for complete recovery in all dogs, 1.5 to 5.5 x 10 7 cells/kg were effective in some of the dogs and less than 1.5 x 10 7 cells/kg were insufficient for complete recovery. Similarly, more than 30000 CFUsub(c)/kg body weight were required for hemopoietic recovery. The optimal marrow cell dose which has been defined as the minimal dose required for the earliest possible recovery of leukocyte and platelet counts was 7-8 x 10 7 mononuclear marrow cells/kg body weight. It has been concluded that fractionated total body irradiation with 2400 R dose not require greater doses of marrow cells for hemopoietic reconstitution than lower single doses and that the hemopoietic microenvironment is not persistently disturbed after this dose. (author)

  17. In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells

    DEFF Research Database (Denmark)

    Bang, Bo; Gniadecki, Robert; Larsen, Jørgen K

    2003-01-01

    In vitro studies with human cell lines have demonstrated that the death receptor Fas plays a role in ultraviolet (UV)-induced apoptosis. The purpose of the present study was to investigate the relation between Fas expression and apoptosis as well as clustering of Fas in human epidermis after...... a single dose of UVB irradiation. Normal healthy individuals were irradiated with three minimal erythema doses (MED) of UVB on forearm or buttock skin. Suction blisters from unirradiated and irradiated skin were raised, and Fas, FasL, and apoptosis of epidermal cells quantified by flow cytometry....... Clustering of Fas was from skin biopsied. Soluble FasL in suction blister fluid was quantified by ELISA. Flow cytometric analysis demonstrated increased expression intensity of Fas after irradiation, with 1.6-,2.2- and 2.7-fold increased median expression at 24, 48 and 72 h after irradiation, respectively (n...

  18. Cervi cornus Colla (deer antler glue) induce epidermal differentiation in the reconstruction of skin equivalents.

    Science.gov (United States)

    Choi, H-R; Nam, K-M; Kim, D-S; Huh, C-H; Na, J-I; Park, K-C

    2013-06-01

    In the reconstruction of skin equivalents (SEs), keratinocyte differentiation is important because epidermal differentiation is closely related with barrier function. The aim of this study was to investigate the effects of Cervi cornus Colla (CCC) on the stem cell activity and epidermal differentiation in the reconstruction of skin equivalent. Four different models were constructed according to different composition of dermal substitute. Results showed similar morphologic findings when hyaluronic acid (HA) and/or CCC was added. But, immunohistochemical staining showed that p63 was significantly increased by addition of HA and/or CCC. Increased staining of integrin α6 and β1 was variably observed when HA and/or CCC was added to make dermal substitute. These finding showed that addition of HA and/or CCC may affect the stem cell activity in the reconstruction of skin. Furthermore, filaggrin expression was much increased when CCC was added. It showed that epidermal differentiation was significantly improved by addition of CCC. In conclusion, simultaneous presence of HA and CCC contributed to the stem cell activity and epidermal differentiation in the reconstruction of SE. Legislation in the EU prohibits marketing cosmetics and personal care products that contain constituents that have been examined through animal experiments. To avoid these limitations, SEs can be used for testing the safety or the efficacy of cosmetic ingredients. Therefore, our results showed that combined use of HA and CCC can be helpful for the reconstruction of SE with good stem cell activity and epidermal differentiation. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Immunohistochemical localization of epidermal growth factor in rat and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1986-01-01

    Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands is...... antisera against human urinary EGF worked in rat as well as man. EGF was found only in cells with an exocrine function.......Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands...... is well documented. The localization of EGF in other tissues is still unclarified. In the present study, the immunohistochemical localization of EGF in tissues from rat, man and a 20 week human fetus were investigated. In man and rat, immunoreaction was found in the submandibular glands, the serous glands...

  20. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions : A pilot study

    NARCIS (Netherlands)

    Geburek, Florian; Mundle, Kathrin; Conrad, Sabine; Hellige, Maren; Walliser, Ulrich; van Schie, Hans T M; van Weeren, René; Skutella, Thomas; Stadler, Peter M

    2016-01-01

    BACKGROUND: Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are frequently used to treat equine tendinopathies. Up to now, knowledge about the fate of autologous AT-MSCs after intralesional injection into equine superficial digital flexor tendons (SDFTs) is very limited. The purpose of

  1. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Manpreet S. Chahal

    2010-07-01

    Full Text Available Phospholipase D2 (PLD2 generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  2. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells.

    Science.gov (United States)

    Chahal, Manpreet S; Brauner, Daniel J; Meier, Kathryn E

    2010-07-02

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  3. Autologous monoclonal antibodies recognize tumour-associated antigens in X-irradiated C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Artus, A; Guillemain, B; Legrand, E; Astier-Gin, T; Mamoun, R; Duplan, J -F

    1986-09-01

    X-irradiation of C57BL/6 mice induces thymic lymphosarcomas which sometimes contain retroviruses which upon injection into normal mice mimic the effect of the irradiation. We examined whether specific antigenicities, viral or cellular, were expressed by tumour cells that could be recognized by antibodies from the irradiated animals. We developed monoclonal antibodies (MAbs) using splenocytes of the diseased animal. The reactivity of such MAbs towards thymoma cell lines established in vitro was investigated by means of an ELISA. At least 10 antibody specificities were detected on the 13 tumours investigated, allowing separation of the MAbs into three classes: (i) those recognizing the autologous tumour, heterologous tumours as well as normal thymic tissue, (ii) those specific for the autologous tumour, and (iii) those specific for one tumour, but not ones of autologous origin. The last two classes corresponded to specific tumour-associated antigens. Our panel of MAbs defined each tumour by the particular pattern of antigens harboured. It is striking that most of the antigens were present in the normal thymus and that only two tumours had additional antigenicities. Additionally, quantitative variations were observed in the levels of expression of these antigens.

  4. Plerixafor in non-Hodgkin’s lymphoma and multiple myeloma patients undergoing autologous stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Jan S. Moreb

    2011-10-01

    Full Text Available Autologous stem cell transplantation (ASCT is the standard of care for multiple myeloma (MM and relapsing non-Hodgkin’s lymphoma (NHL patients. Peripheral blood stem cells (PBSC have become the main source of grafts for ASCT due to several advantages over bone marrow grafts. Poor PBSC mobilization and inadequate collection of CD34+ cell dose for safe engraftment is a reality for significant proportion of these patients. For this review, we conducted a PubMed search using the titles plerixafor and AMD3100 as well as poor stem cell mobilization. English-language articles were selected and data were extracted with focus on clinical studies of PBSC mobilization in MM and NHL patients. We discuss predictors of poor PBSC mobilization, the impact of poor mobilization on ASCT outcomes, the available agents that have been routinely used to enhance mobilization to achieve optimal CD34+ cell dose, and the role of plerixafor, the first CXCR4 antagonist to be approved for stem cell mobilization. Studies have shown that plerixafor is effective and safe when given with G-CSF either upfront or as a rescue for patients with MM or NHL. Currently, more patients are getting transplanted because of plerixafor. The challenge now is how to use the drug in the most cost effective way. Several scenarios on how to use the drug in proven or predicted poor mobilizers are proposed in this manuscript; however, validation for some of these approaches is still needed.

  5. Immune Reconstitution After Autologous Hematopoietic Stem Cell Transplantation in Crohn’s Disease: Current Status and Future Directions. A Review on Behalf of the EBMT Autoimmune Diseases Working Party and the Autologous Stem Cell Transplantation In Refractory CD—Low Intensity Therapy Evaluation Study Investigators

    Directory of Open Access Journals (Sweden)

    Alan Graham Pockley

    2018-04-01

    Full Text Available Patients with treatment refractory Crohn’s disease (CD suffer debilitating symptoms, poor quality of life, and reduced work productivity. Surgery to resect inflamed and fibrotic intestine may mandate creation of a stoma and is often declined by patients. Such patients continue to be exposed to medical therapy that is ineffective, often expensive and still associated with a burden of adverse effects. Over the last two decades, autologous hematopoietic stem cell transplantation (auto-HSCT has emerged as a promising treatment option for patients with severe autoimmune diseases (ADs. Mechanistic studies have provided proof of concept that auto-HSCT can restore immunological tolerance in chronic autoimmunity via the eradication of pathological immune responses and a profound reconfiguration of the immune system. Herein, we review current experience of auto-HSCT for the treatment of CD as well as approaches that have been used to monitor immune reconstitution following auto-HSCT in patients with ADs, including CD. We also detail immune reconstitution studies that have been integrated into the randomized controlled Autologous Stem cell Transplantation In refractory CD—Low Intensity Therapy Evaluation trial, which is designed to test the hypothesis that auto-HSCT using reduced intensity mobilization and conditioning regimens will be a safe and effective means of inducing sustained control in refractory CD compared to standard of care. Immunological profiling will generate insight into the pathogenesis of the disease, restoration of responsiveness to anti-TNF therapy in patients with recurrence of endoscopic disease and immunological events that precede the onset of disease in patients that relapse after auto-HSCT.

  6. Studies on the relationship between epidermal cell turnover kinetics and permeability of hairless mouse skin

    International Nuclear Information System (INIS)

    Han, S.R.

    1988-01-01

    The primary aim of this study was to develop non-invasive, physical means to quantitatively assess the epidermal turnover kinetics and barrier properties of the skin and relate these to the cutaneous irritation which results from ultraviolet light irradiation and mold thermal burns. After systematically injecting radiolabeled glycine, the appearance of radioactivity at the skin's surface indicated the transit time of radiolabeled cells through the skin. By plotting the data as the cumulative specific activity against time and then fitting them with a third order polynomial equation, it is possible to estimate the turnover time of the stratum corneum. The skin turnover was coordinated with non-invasive transepidermal water loss (TEWL) studies determined with an evaporimeter. In vitro diffusion studies of the permeability of hydrocortisone through UVB irradiated and thermally burned skin were also performed. The studies indicated that irritated skin offers a relatively low diffusional resistance to hydrocortisone. Depending on the severity of the trauma, the increases in hydrocortisone's permeability coefficient through irritated skin ranged from a low of about 2 times normal to a high of about 210 times normal. Trauma-induced changes in hydrocortisone permeability parallel changes in TEWL, proving that the barrier deficient state resulting from rapid epidermal turnover is a general phenomenon

  7. Relationship between the ability of sunscreens containing 2-ethylhexyl-4'-methoxycinnamate to protect against UVR-induced inflammation, depletion of epidermal Langerhans (Ia+) cells and suppression of alloactivating capacity of murine skin in vivo.

    Science.gov (United States)

    Walker, S L; Morris, J; Chu, A C; Young, A R

    1994-01-01

    The UVB sunscreen 2-ethylhexyl-4'-methoxycinnamate was evaluated in hairless albino mouse skin for its ability to inhibit UVR-induced (i) oedema, (ii) epidermal Langerhans cell (Ia+) depletion and (iii) suppression of the alloactivating capacity of epidermal cells (mixed epidermal cell-lymphocyte reaction, MECLR). The sunscreen, prepared at 9% in ethanol or a cosmetic lotion, was applied prior to UVB/UVA irradiation. In some experiments there was a second application halfway through the irradiation. Single applications in both vehicles gave varying degrees of protection from oedema and Langerhans cell depletion but afforded no protection from suppression of MECLR. When the sunscreens were applied twice there was improved protection from oedema and Langerhans cell depletion and complete protection was afforded from suppression of MECLR. There was a clear linear relationship between Langerhans cell numbers and oedema with and without sunscreen application. The relationship between Langerhans cell numbers and MECLR was more complex. These data confirm published discrepancies between protection from oedema (a model for human erythema) and endpoints with immunological significance, but show that 2-ethylhexyl-4'-methoxycinnamate can afford complete immunoprotection, although protection is dependent on the application rate and vehicle.

  8. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Francesco Orio

    2014-01-01

    Full Text Available Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo- and autologous- (auto- stem cell transplant (HSCT. This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma, gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT.

  9. Improvement of myocardial perfusion reserve detected by cardiovascular magnetic resonance after direct endomyocardial implantation of autologous bone marrow cells in patients with severe coronary artery disease

    Directory of Open Access Journals (Sweden)

    Lau Chu-Pak

    2010-01-01

    Full Text Available Abstract Background Recent studies suggested that bone marrow (BM cell implantation in patients with severe chronic coronary artery disease (CAD resulted in modest improvement in symptoms and cardiac function. This study sought to investigate the functional changes that occur within the chronic human ischaemic myocardium after direct endomyocardial BM cells implantation by cardiovascular magnetic resonance (CMR. Methods and Results We compared the interval changes of left ventricular ejection fraction (LVEF, myocardial perfusion reserve and the extent of myocardial scar by using late gadolinium enhancement CMR in 12 patients with severe CAD. CMR was performed at baseline and at 6 months after catheter-based direct endomyocardial autologous BM cell (n = 12 injection to viable ischaemic myocardium as guided by electromechanical mapping. In patients randomized to receive BM cell injection, there was significant decrease in percentage area of peri-infarct regions (-23.6%, P = 0.04 and increase in global LVEF (+9.0%, P = 0.02, the percentage of regional wall thickening (+13.1%, P= 0.04 and MPR (+0.25%, P = 0.03 over the target area at 6-months compared with baseline. Conclusions Direct endomyocardial implantation of autologous BM cells significantly improved global LVEF, regional wall thickening and myocardial perfusion reserve, and reduced percentage area of peri-infarct regions in patients with severe CAD.

  10. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    Science.gov (United States)

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  11. Epidermal growth factor treatment of A431 cells alters the binding capacity and electrophoretic mobility of the cytoskeletally associated epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1991-01-01

    Epidermal growth factor receptor interacts with structural elements of A431 cells and remains associated with the cytoskeleton following extraction with nonionic detergents. Extraction of cells with 0.15% Triton X-100 resulted in detection of only approximately 40% of the EGF binding sites on the cytoskeleton. If the cells were exposed to EGF prior to extraction, approximately twofold higher levels of low-affinity EGF binding sites were detected. The difference in number of EGF binding sites was not a consequence of differences in numbers of EGF receptors associated with the cytoskeleton; equal amounts of 35S-labeled receptor were immunoprecipitated from the cytoskeletons of both control and EGF-treated cells. The effect of EGF pretreatment on binding activity was coincident with a change in the mobility of the receptor from a doublet of Mr approximately 160-180 kDa to a single sharp band at 180 kDa. The alteration in receptor mobility was not a simple consequence of receptor phosphorylation in that the alteration was not reversed by alkaline phosphatase treatment, nor was the shift produced by treatment of the cells with phorbol ester. The two EGF receptor species demonstrated differential susceptibility to V8 proteinase digestion. The EGF-induced 180 kDa species was preferentially digested by the proteinase relative to the 160 kDa species, indicating that EGF binding results in a conformational change in the receptor. The EGF-mediated preservation of binding activity and altered conformation may be related to receptor oligomerization

  12. Long-term engraftment of bone marrow-derived cells in the intimal hyperplasia lesion of autologous vein grafts.

    Science.gov (United States)

    Diao, Yanpeng; Guthrie, Steve; Xia, Shen-Ling; Ouyang, Xiaosen; Zhang, Li; Xue, Jing; Lee, Pui; Grant, Maria; Scott, Edward; Segal, Mark S

    2008-03-01

    Intimal hyperplasia of autologous vein grafts is a critical problem affecting the long-term patency of many types of vascular reconstruction. Within intimal hyperplasia lesions, smooth muscle cells are a major component, playing an essential role in the pathological process. Given that bone marrow-derived cells may differentiate into smooth muscle cells in the neointima of injured arteries, we hypothesized that the bone marrow may serve as a source for some of the smooth muscle cells within intimal hyperplasia lesions of vein grafts. To test this hypothesis, we used an established mouse model for intimal hyperplasia in wild-type mice that had been transplanted with bone marrow from a green fluorescent protein (GFP+/+) transgenic mouse. High-resolution confocal microscopy analysis performed 2 and 8 weeks after grafting demonstrated expression of GFP in 5.4 +/- 0.8% and 11.9 +/- 2.3%, respectively, of smooth muscle cells within intimal hyperplasia lesions. By 16 weeks, GFP expression in smooth muscle cells was not detected by immunohistochemistry; however, real-time PCR revealed that 20.2 +/- 1.7% of the smooth muscle cells captured from the neointima lesion by laser capture microdissection at 16 weeks contained GFP DNA. Our results suggest that bone marrow-derived cells differentiated into smooth muscle cells within the intimal lesion and may provide a novel clinical approach for decreasing intimal hyperplasia in vein grafts.

  13. Granulocyte Colony-Stimulating Factor Use after Autologous Peripheral Blood Stem Cell Transplantation: Comparison of Two Practices.

    Science.gov (United States)

    Singh, Amrita D; Parmar, Sapna; Patel, Khilna; Shah, Shreya; Shore, Tsiporah; Gergis, Usama; Mayer, Sebastian; Phillips, Adrienne; Hsu, Jing-Mei; Niesvizky, Ruben; Mark, Tomer M; Pearse, Roger; Rossi, Adriana; van Besien, Koen

    2018-02-01

    Administration of granulocyte colony-stimulating factor (G-CSF) after autologous peripheral blood stem cell transplantation (PBSCT) is generally recommended to reduce the duration of severe neutropenia; however, data regarding the optimal timing of G-CSFs post-transplantation are limited and conflicting. This retrospective study was performed at NewYork-Presbyterian/Weill Cornell Medical Center between November 5, 2013, and August 9, 2016, of adult inpatient autologous PBSCT recipients who received G-CSF empirically starting on day +5 (early) versus on those who received G-CSF on day +12 only if absolute neutrophil count (ANC) was ANC-driven). G-CSF was dosed at 300 µg in patients weighing ANC-driven (n = 50) G-CSF regimen. Patient and transplantation characteristics were comparable in the 2 groups. In the ANC-driven group, 24% (n = 12) received G-CSF on day +12 and 60% (n = 30) started G-CSF earlier due to febrile neutropenia or at the physician's discretion, 6% (n = 3) started after day +12 at the physician's discretion, and 10% (n = 5) did not receive any G-CSF. The median start day of G-CSF therapy was day +10 in the ANC-driven group versus day +5 in the early group (P ANC-driven group (P = .07). There were no significant between-group differences in time to platelet engraftment, 1-year relapse rate, or 1-year overall survival. The incidence of febrile neutropenia was 74% in the early group versus 90% in the ANC-driven group (P = .04); however, there was no significant between-group difference in the incidence of positive bacterial cultures or transfer to the intensive care unit. The duration of G-CSF administration until neutrophil engraftment was 6 days in the early group versus 3 days in the ANC-driven group (P ANC-driven group (P = .28). Our data show that early initiation of G-CSF (on day +5) and ANC-driven initiation of G-CSF following autologous PBSCT were associated with a similar time to neutrophil engraftment

  14. Catalase reverses tumorigenicity in a malignant cell line by an epidermal growth factor receptor pathway.

    Science.gov (United States)

    Finch, Joanne S; Tome, Margaret E; Kwei, Kevin A; Bowden, G Tim

    2006-03-01

    We have used a keratinocyte in vivo/in vitro cell model to test the hypothesis that hydrogen peroxide acts as a signaling molecule, contributing to proliferation and tumorigenesis. A cell line, 6M90, that produces squamous cell carcinoma (SCC), has high levels of ROS and low levels of catalase. A new cell line, MTOC2, generated from parental 6M90 cells by introduction of a Tet-responsive catalase transgene, effectively expressed higher peroxisomal catalase. Increased catalase expression diminished constitutive ROS and enhanced viability after treatment with hydrogen peroxide. Protein tyrosine phosphatase activity was higher in the MTOC2 cells with high catalase, consistent with detection of a lower level of phosphorylation at tyrosine 1068 of the epidermal growth factor receptor (EGF-R). Transcription of downstream c-fos, AP-1 transactivation and cell proliferation were higher in the low catalase cells. An EGF-R inhibitor, AG1478, blocks the higher AP-1 transactivation and cell proliferation of the low catalase 6M90 cells. Tumorigenesis in SCID mice was greatly diminished in the high catalase cells. Our data suggest that hydrogen peroxide functions as a signaling molecule that can modulate activity of a protein tyrosine phosphatase/(s) resulting in phosphorylation of tryrosine/(s) on the EGF-R. Therefore, catalase acts as a tumor-suppressor gene in part by decreasing EGF-R signaling.

  15. Autologous Hematopoietic Stem Cells transplantation and genetic modification of CCR5 m303/m303 mutant patient for HIV/AIDS.

    Science.gov (United States)

    Esmaeilzadeh, Abdolreza; Farshbaf, Alieh; Erfanmanesh, Maryam

    2015-03-01

    HIV and AIDS is one of the biggest challenges all over the world. There are an approximately 34 million people living with the virus, and a large number of them become infected each year. Although there are some antiviral drugs for HIV viral load reduction, they are not sufficient. There is no cure for AIDS. Nowadays natural resistance or immunity has absorbed attentions. Because in some HIV positive patients progression trend is slow or even they indicate resistance to AIDS. One of the most interesting approaches in this category is CCR5 gene. CCR5 is a main cc-chemokine co-receptor that facilitates HIV-1 entry to macrophage and CD4(+) T cells. To now, many polymorphisms have been known by CCR5 gene that produces a truncated protein with no function. So, HIV-1 could not entry to immune-cells and the body resistant to HIV/AIDS. Δ32/Δ32 and m303/m303 homozygotes are example of mutations that could create this resistance mechanism. There is a new treatment, such as Hematopoietic Stem Cell transplantation (HSCT) in Berlin and Boston patients for Δ32/Δ32 mutation. It could eliminate co-receptor antagonist and highly-active-anti retroviral therapy (HAART) drugs problems such as toxicity, low safety and side-effects. Now there, the aim of this hypothesis will be evaluation of a new mutation CCR5 m303/m303 as autologous HSCT. This novel hypothesis indicates that autologous HSCT for m303/m303 could be effective treatment for anyone HIV/AIDS affected patient worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  17. HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines

    Science.gov (United States)

    Seo, Min-Duk; Kang, Tae Jin; Lee, Chang Hoon; Lee, Ai-Young; Noh, Minsoo

    2012-01-01

    HaCaT cells are the immortalized human keratinocytes and have been extensively used to study the epidermal homeostasis and its pathophysiology. T helper cells play a role in various chronic dermatological conditions and they can affect skin barrier homeostasis. To evaluate whether HaCaT cells can be used as a model cell system to study abnormal skin barrier development in various dermatologic diseases, we analyzed the gene expression profile of epidermal differentiation markers of HaCaT cells in response to major T helper (Th) cell cytokines, such as IFNγ, IL-4, IL-17A and IL-22. The gene transcriptional profile of cornified envelope-associated proteins, such as filaggrin, loricrin, involucrin and keratin 10 (KRT10), in HaCaT cells was generally different from that in normal human keratinocytes (NHKs). This suggests that HaCaT cells have a limitation as a model system to study the pathophysiological mechanism associated with the Th cell cytokine-dependent changes in cornified envelope-associated proteins which are essential for normal skin barrier development. In contrast, the gene transcription profile change of human β2-defensin (HBD2) in response to IFNγ, IL-4 or IL-17A in HaCaT cells was consistent with the expression pattern of NHKs. IFNγ also up-regulated transglutaminase 2 (TGM2) gene transcription in both HaCaT cells and NHKs. As an alternative cell culture system for NHKs, HaCaT cells can be used to study molecular mechanisms associated with abnormal HBD2 and TGM2 expression in response to IFNγ, IL-4 or IL-17A. PMID:24116291

  18. Modulation of Regorafenib effects on HCC cell lines by epidermal growth factor.

    Science.gov (United States)

    D'Alessandro, Rosalba; Refolo, Maria Grazia; Lippolis, Catia; Carella, Nicola; Messa, Caterina; Cavallini, Aldo; Carr, Brian Irving

    2015-06-01

    Blood platelet numbers are correlated to growth and aggressiveness of several tumor types, including hepatocellular carcinoma (HCC). We previously found that platelet lysates (hPLs) also stimulated growth and migration, and antagonized the growth-inhibitory and apoptotic effects of both Sorafenib and Regorafenib, two multikinase inhibitors, on three HCC cell lines. In this study, in vitro function of human epidermal growth factor (EGF) with and without Sorafenib or Regorafenib was investigated. An ELISA kit was used to evaluate the EGF concentrations in hPLs. In vitro function of EGF was assessed with proliferation MTT test. Apoptosis assay, scratch assays, and Transwell assays were performed for apoptosis, invasion, and migration, respectively. MAPK Activation Kit was used to explore MAPK phosphorylation. EGF antagonized the growth inhibition of Regorafenib on three HCC cell lines. Regorafenib-mediated growth inhibition was blocked by 70 % when the cells were pre-treated with EGF. EGF also blocked Regorafenib-induced apoptosis, as well as Regorafenib-induced decreases in cell migration and invasion. The EGF effects were in turn antagonized by concomitant addition to the cultures of EGF receptor antagonist Erlotinib, showing that the EGF receptor was involved in the mechanisms of EGF-mediated blocking of Regorafenib effects. Erlotinib also partially blocked the effects of hPLs in antagonizing Regorafenib-mediated growth inhibition, showing that EGF was an important component of hPL actions. All these results show that EGF antagonized Regorafenib-mediated growth and migration inhibition and apoptosis induction in HCC cells and reinforce the idea that microenvironment can influence cancer drug actions.

  19. Effect of Immunoglobulin Therapy on the Rate of Infections in Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplantation and or Treated with Immunomodulatory Agents

    Directory of Open Access Journals (Sweden)

    Alhossain A. Khalafallah

    2010-04-01

    Full Text Available There are few data available regarding the prevalence of infection in multiple myeloma (MM patients in conjunction with newer generations of immunomodulatory drugs (thalidomide, bortezomib, lenalidomide or post autologous stem cell transplantation.  We retrospectively analyzed 47 patients with MM from March 2006 to June 2009 at our institution. All patients received thalidomide and steroid therapy for at least 6 months. Nine patients received bortezomib and 11 lenalidomide subsequently to thalidomide, because of disease progression and 22 patients underwent autologous stem cell transplantation.   The median age was 64 years (range 37-86, with a female–to-male ratio of 18:29. The median residual-serum IgG-level at time of infection was 3.2 g/L, IgA 0.3 g/L and IgM 0.2 g/L. Most patients suffered from recurrent moderate to severe infections. All patients except 3 received intravenous immunoglobulin (IVIG therapy with a significant decline of the rate of infection thereafter. Our analysis shows that IVIG appears to be an effective strategy to prevent infection in MM patients. Further studies to confirm these findings are warranted.

  20. The fate of autologous endometrial mesenchymal stromal cells after application in the healthy equine uterus.

    Science.gov (United States)

    Rink, Elisabeth; Beyer, Teresa; French, Hilari; Watson, Elaine; Aurich, Christine; Donadeu, Xavier

    2018-05-23

    Because of their distinct differentiation, immunomodulatory and migratory capacities, endometrial mesenchymal stromal cells (MSCs) may provide an optimum source of therapeutic cells not only in relation to the uterus but also for regeneration of other tissues. This study reports the fate of endometrial MSCs following intrauterine application in mares. Stromal cell fractions were isolated from endometrial biopsies taken from seven reproductively healthy mares, expanded and fluorescence-labeled in culture. MSCs (15 x 106) or PBS were autologously infused into each uterine horn during early diestrus and subsequently tracked by fluorescence microscopy and flow cytometry of endometrial biopsies and blood samples taken periodically after infusion. The inflammatory response to cell infusion was monitored in endometrial cytology samples. MSCs were detected in endometrial sections at 6, 12 and 24 hours but not later (7 or 14 days) after cell infusion. Cells were in all cases located in the uterine lumen, never within endometrial tissue. No fluorescence signal was detected in blood samples at any time point after infusion. Cytology analyses showed an increase in %PMN between 1 and 3 hours after uterine infusion with either MSCs or PBS, and a further increase by 6 hours only in mares infused with PBS. In summary, endometrial MSCs were detected in the uterine lumen for up to 24 h after infusion but did not migrate into healthy endometrium. Moreover, MSCs effectively attenuated the inflammatory response to uterine infusion. We conclude that endometrial MSCs obtained from routine uterine biopsies could provide a safe and effective cell source for treatment of inflammatory conditions of the uterus and potentially other tissues.

  1. Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand.

    Science.gov (United States)

    Rastogi, Anshu; Pospísil, Pavel

    2010-08-01

    All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.

  2. Rapid and automated processing of bone marrow grafts without Ficoll density gradient for transplantation of cryopreserved autologous or ABO-incompatible allogeneic bone marrow.

    Science.gov (United States)

    Schanz, U; Gmür, J

    1992-12-01

    The growing number of BMTs has increased interest in safe and standardized in vitro bone marrow processing techniques. We describe our experience with a rapid automated method for the isolation of mononuclear cells (MNC) from large volumes of bone marrow using a Fenwal CS-3000 cell separator without employing density gradient materials. Forty bone marrow harvests with a mean volume of 1650 +/- 307 ml were processed. A mean of 75 +/- 34% (50 percentile range 54-94%) of the original MNCs were recovered in a volume of 200 ml with only 4 +/- 2% of the starting red blood cells (RBC). Removal of granulocytes, immature myeloid precursors and platelets proved to be sufficient to permit safe cryopreservation and successful autologous BMT (n = 25). Allogeneic BMT (n = 14, including three major ABO-incompatible) could be performed without additional manipulation. In both groups of patients timely and stable engraftment comparable to historical controls receiving Ficoll gradient processed autologous (n = 17) or unprocessed allogeneic BMT (n = 54) was observed. Moreover, 70 +/- 14% of the RBC could be recovered from the grafts. They were used for autologous RBC support of donors, rendering unnecessary autologous blood pre-donations.

  3. PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug.

    Science.gov (United States)

    Wang, Congfei; Yang, Aiqin; Zhang, Baoming; Yin, Qiang; Huang, Heguang; Chen, Minghuang; Xie, Jieming

    2014-03-01

    To investigate the inhibition of PANC-1 pancreatic cancer cell growth by cucurmosin (CUS) and its possible mechanism. We observed the inhibition of PANC-1 cell growth by sulforhodamine B and colony-forming experiments in vitro and established nonobese diabetic/severe combined immunodeficiency mouse subcutaneous tumor models in vivo. We used Western blot to analyze protein levels related to apoptosis and epidermal growth factor receptor (EGFR) signaling pathways after drug intervention, whereas the messenger RNA expression of EGFR was analyzed by quantitative real-time polymerase chain reaction. Sulforhodamine B and colony-forming experiments indicated that CUS inhibited PANC-1 cell proliferation in a dose- and time-dependent manner. A stronger inhibitory effect was observed when CUS was combined with gefitinib. The subcutaneous tumor growth was also inhibited. Western blot showed that all the examined proteins decreased, except for 4E-BP1 and the active fragments of caspase 3 and caspase 9 increased. Epidermal growth factor receptor expression did not change significantly in quantitative real-time polymerase chain reaction. Cucurmosin can strongly inhibit the growth of PANC-1 cells in vitro and in vivo. Cucurmosin can down-regulate EGFR protein expression, but not at the messenger RNA level. Cucurmosin can also inhibit the ras/raf and phosphatidylinositol 3-kinase/Akt downstream signaling pathways and enhance the sensitivity of the EGFR-targeted drug gefitinib.

  4. Mobilization and collection of CD34+ cells for autologous transplantation of peripheral blood hematopoietic progenitor cells in children: analysis of two different granulocyte-colony stimulating factor doses

    Directory of Open Access Journals (Sweden)

    Kátia Aparecida de Brito Eid

    2015-06-01

    Full Text Available Introduction: The use of peripheral hematopoietic progenitor cells (HPCs is the cell choice in autologous transplantation. The classic dose of granulocyte-colony stimulating factor (G- CSF for mobilization is a single daily dose of 10 µg/kg of patient body weight. There is a theory that higher doses of granulocyte-colony stimulating factor applied twice daily could increase the number of CD34+ cells collected in fewer leukapheresis procedures. Objective: The aim of this study was to compare a fractionated dose of 15 µg G-CSF/kg of body weight and the conventional dose of granulocyte-colony stimulating factor in respect to the number of leukapheresis procedures required to achieve a minimum collection of 3 × 106 CD34+ cells/kg body weight. Methods: Patients were divided into two groups: Group 10 - patients who received a single daily dose of 10 µg G-CSF/kg body weight and Group 15 - patients who received a fractioned dose of 15 µg G-CSF/kg body weight daily. The leukapheresis procedure was carried out in an automated cell separator. The autologous transplantation was carried out when a minimum number of 3 × 106 CD34+ cells/kg body weight was achieved. Results: Group 10 comprised 39 patients and Group 15 comprised 26 patients. A total of 146 apheresis procedures were performed: 110 (75.3% for Group 10 and 36 (24.7% for Group 15. For Group 10, a median of three (range: 1-7 leukapheresis procedures and a mean of 8.89 × 106 CD34+ cells/kg body weight (±9.59 were collected whereas for Group 15 the corresponding values were one (range: 1-3 and 5.29 × 106 cells/kg body weight (±4.95. A statistically significant difference was found in relation to the number of apheresis procedures (p-value <0.0001. Conclusions: To collect a minimum target of 3 × 106 CD34+ cells/kg body weight, the administration of a fractionated dose of 15 µg G-CSF/kg body weight significantly decreased the number of leukapheresis procedures performed.

  5. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  6. Molecular Monitoring after Autologous Stem Cell Transplantation and Preemptive Rituximab Treatment of Molecular Relapse; Results from the Nordic Mantle Cell Lymphoma Studies (MCL2 and MCL3) with Median Follow-Up of 8.5 Years

    DEFF Research Database (Denmark)

    Kolstad, Arne; Pedersen, Lone Bredo; Eskelund, Christian W.

    2017-01-01

    Lymphoma Group, 183 who had completed autologous stem cell transplantation (ASCT) and in whom an MRD marker had been obtained were included in our analysis. Fresh samples of bone marrow were analyzed for MRD by a combined standard nested and quantitative real-time PCR assay for Bcl-1/immunoglobulin heavy...

  7. Degradation of Epidermal Growth Factor Receptor Mediates Dasatinib-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chin Lin

    2012-06-01

    Full Text Available Epidermal growth factor receptor (EGFR is an important oncoprotein that promotes cell growth and proliferation. Dasatinib, a bcr-abl inhibitor, has been approved clinically for the treatment of chronic myeloid leukemia and demonstrated to be effective against solid tumors in vitro through Src inhibition. Here, we disclose that EGFR degradation mediated dasatinib-induced apoptosis in head and neck squamous cell carcinoma (HNSCC cells. HNSCC cells, including Ca9-22, FaDu, HSC3, SAS, SCC-25, and UMSCC1, were treated with dasatinib, and cell viability, apoptosis, and underlying signal transduction were evaluated. Dasatinib exhibited differential sensitivities against HNSCC cells. Growth inhibition and apoptosis were correlated with its inhibition on Akt, Erk, and Bcl-2, irrespective of Src inhibition. Accordingly, we found that down-regulation of EGFR was a determinant of dasatinib sensitivity. Lysosome inhibitor reversed dasatinib-induced EGFR down-regulation, and c-cbl activity was increased by dasatinib, indicating that dasatinib-induced EGFR down-regulation might be through c-cbl-mediated lysosome degradation. Increased EGFR activation by ligand administration rescued cells from dasatinib-induced apoptosis, whereas inhibition of EGFR enhanced its apoptotic effect. Estrogen receptor α (ERα was demonstrated to play a role in Bcl-2 expression, and dasatinib inhibited ERα at the pretranslational level. ERα was associated with EGFR in dasatinib-treated HNSCC cells. Furthermore, the xenograft model showed that dasatinib inhibited HSC3 tumor growth through in vivo down-regulation of EGFR and ERα. In conclusion, degradation of EGFR is a novel mechanism responsible for dasatinib-induced apoptosis in HNSCC cells.

  8. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  9. Epidermal Inclusion Cysts of The Breast

    Directory of Open Access Journals (Sweden)

    Amir R. Motabar

    2009-02-01

    Full Text Available Epidermal inclusion cysts are uncommon in the breast, but the consequences can besevere when these cysts occur in the breast parenchyma. Here,we report two suchcases. The patient in case 1 was an 37-year-old woman with a 3-cm palpable mass inthe right breast. Mammography revealed a round and smoothly outlined mass, whichindicated a benign tumor, and sonography showed an irregularly shaped and heterogeneoushypoechoic mass, fibroadenoma was suspected on the basis of clinical andimage findings, but excisional biopsy revealed an epidermal inclusion cyst. The patientin case 2 was a 50-year-old woman with a 2.5-cm lesion in the left breast. Mammographyrevealed a round, dense, smoothly outlined mass, and sonography showeda well-defined, central hyperechoic mass. . Breast cancer was suspected on the basisof the sonographic findings and the age of the patient, but the resected specimen revealedan epidermal inclusion cyst. Although epidermal inclusion cysts are benign,occasionally they may play a role in the origin of squamous carcinoma of the breast. .Mammographic and sonographic features of an epidermal cyst may mimic a malignantlesion. Malignant change appears to occur more frequently in epidermal inclusioncysts in the mammary gland, compared to common epidermal inclusion cysts,and this may be associated with origination of mammary epidermal inclusion cystsfrom squamous metaplasia of the mammary duct epithelium.Epidermmoid inclusion cyst of the breast is potentially serious, although such cystsare rare, and differentiation from a malignant or benign breast tumor is required. Excisionis probably the most appropriate treatment, and can eliminate the possible riskof malignant transformation.

  10. Acquired von Willebrand Syndrome Associated to Secondary IgM MGUS Emerging after Autologous Stem Cell Transplantation for AL Amyloidosis.

    Science.gov (United States)

    Qamar, Hina; Lee, Adrienne; Valentine, Karen; Skeith, Leslie; Jimenez-Zepeda, Victor H

    2017-01-01

    Acquired von Willebrand syndrome (AVWS) is a rare hemorrhagic disorder that occurs in patients with no prior personal or family history of bleeding. Here, we describe a case of AVWS occurring after autologous stem cell transplantation (ASCT). Interestingly, AVWS developed after bortezomib-based induction and conditioning regimens. Recent evidence suggests that the proximity of the bortezomib therapy to the collection of stem cells with consequent depletion of regulatory T cells after the conditioning regimen could explain some of the unusual autoimmune complications reported in patients receiving bortezomib prior to ASCT. In addition, this patient developed a secondary MGUS post-ASCT, which may have also contributed to the AVWS. To the best of our knowledge, this is the first case of post-ASCT AVWS reported. Prospective data is needed to better elucidate the mechanisms by which these unusual complications occur in patients receiving bortezomib prior to ASCT.

  11. Acquired von Willebrand Syndrome associated to secondary IgM MGUS emerging after Autologous Stem Cell Transplantation for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Victor H Jimenez-Zepeda

    2017-05-01

    Full Text Available Acquired von Willebrand syndrome (AVWS is a rare hemorrhagic disorder that occurs in patients with no prior personal or family history of bleeding. Here, we describe a case of AVWS occurring after autologous stem cell transplantation (ASCT. Interestingly, AVWS developed after bortezomib-based induction and conditioning regimens. Recent evidence suggests that the proximity of the bortezomib therapy to the collection of stem cells with consequent depletion of regulatory T cells after the conditioning regimen could explain some of the unusual autoimmune complications reported in patients receiving bortezomib prior to ASCT. In addition, this patient developed a secondary MGUS post-ASCT, which may have also contributed to the AVWS. To the best of our knowledge, this is the first case of post-ASCT AVWS reported. Prospective data is needed to better elucidate the mechanisms by which these unusual complications occur in patients receiving bortezomib prior to ASCT.

  12. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    OpenAIRE

    Boeckx, Carolien; Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against epidermal growth factor receptor (EGFR) is one of the most promising therapeutics for head and neck squamous cell carcinoma, and EGFR is overexpressed in a wide range of malignancies. An improved understanding of the resistance to EGFR inhibitors may provide new treatment options. This review summarizes some mechanisms and decribes strategies to overcome this resistance.

  13. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  14. Immediate effects of isolated transmyocardial laser revascularization procedures combined with intramyocardial injection of autologous bone marrow stem cells in patients with terminal stage of coronary artery disease

    Directory of Open Access Journals (Sweden)

    Leo A. Bockeria

    2017-05-01

    Conclusions ― TMLR with intramyocardial autologous stem cells injections in patients with end-stage CAD is safe. This procedure can be done in the most severe group of patients who cannot be completely revascularized with either PCI or CABG surgery. Futher investigation is needed to assess the effectiveness of the procedure.

  15. Human autologous in vitro models of glioma immunogene therapy using B7-2, GM-CSF, and IL12

    International Nuclear Information System (INIS)

    Parney, I.F.; Farr-Jones, M.A.; Kane, K.; Chang, L.-J.; Petruk, K.C.

    2002-01-01

    Cancer immunogene therapy is based on vaccination with radiated, autologous tumor cells transduced with immunostimulatory genes. To help determine an optimal glioma immunogene therapy strategy, we stimulated lymphocytes with autologous human glioma cells transduced with B7-2 (CD86), granulocyte-macrophage colony-stimulating factor (GM-CSF), and/or interleukin-12 (IL12). A human glioma-derived cell culture (Ed147.BT) was transduced with B7-2, GM-CSF, and/or IL12 using retroviral vectors. Autologous peripheral blood mononuclear cells (PBMC) were co-cultured with irradiated gene-transduced tumor alone or a combination of radiated wild type and gene-transduced cells. Peripheral blood mononuclear cells proliferation was determined by serial cell counts. Peripheral blood mononuclear cells phenotype was assessed by flow cytometry for CD4, CD8, and CD16. Anti-tumor cytotoxicity was determined by chromium-51 ( 51 Cr) release assay. Peripheral blood mononuclear cells cell numbers all decreased during primary stimulation but tumor cells expressing B7-2 or GM-CSF consistently caused secondary proliferation. Tumors expressing B7-2 and GM-CSF or B7-2,GM-CSF,and IL12 consistently increased PBMC CD8+ (cytotoxic T) and CD16+ (natural killer) percentages. Interestingly, anti-tumor cytotoxicity only exceeded that of PBMC stimulated with wild type tumor alone when peripheral blood mononuclear cells were stimulated with both wild type tumor and B7-2/GM-CSF- (but not IL12) transduced cells. PBMC proliferation and phenotype is altered as expected by exposure to immunostimulatory gene-transduced tumor. However, transduced tumor cells alone do not stimulate greater anti-tumor cytotoxicity than wild type tumor. Only B7-2/GM-CSF-transduced cells combined with wild type produced increased cytotoxicity. This may reflect selection of turnor subclones with limited antigenic spectra during retrovirus-mediated gene transfer. (author)

  16. AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN CHILDREN WITH SEVERE RESISTANT MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    K. I. Kirgizov

    2013-01-01

    Full Text Available Unique experience of high-dose chemotherapy with consequent autologous hematopoietic stem cell transplantation in children with severe resistant multiple sclerosis (n=7 is shown in this article. At present time there is enough data on chemotherapy with consequent hematopoietic stem cell transplantation in children with severe resistant multiple sclerosis. This method was proved to be efficient and safe with immunoablative conditioning chemotherapy regimen. In patients included in this study the mean rate according to the Expanded Disability Status Scale was 5,94±0,2 (from 3 to 9 points. All the patients had disseminated demyelination loci, accumulating the contrast substance, in the brain and the spinal cord. After cyclophosphamide treatment in combination with anti-monocytes globulin the fast stabilization of the condition and prolonged (the observation period was 3-36 moths clinical and radiologic as well as immunophenotypic remission with marked positive dynamics according to the Expanded Disability Status Scale were noted. No pronounced side-effects and infectious complications were mentioned. The maximal improvement according to the Expanded Disability Status Scale (EDSS was 5,5 points, the mean — 2,7±0,1 (from 2 to 5,5 points accompanied with positive dynamics on the magneto-resonance imaging.  The efficacy of the treatment was also proved by the positive changes in the lymphocytes subpopulation status in peripheral blood. The timely performed high-dose chemotherapy with consequent hematopoietic stem cell transplantation is an effective and safe method to slowdown the autoimmune inflammatory process. This method can be recommended to use in treatment of children with severe resistant multiple sclerosis. 

  17. Autologous fibrin glue as an encapsulating scaffold for delivery of retinal progenitor cells

    Directory of Open Access Journals (Sweden)

    Tamer Anwar Esmail Ahmed

    2015-02-01

    Full Text Available The retina is a highly sophisticated piece of the neural machinery that begins the translation of incoming light signals into meaningful visual information. Several degenerative diseases of the retina are characterized by photoreceptor loss and eventually lead to irreversible blindness. Regenerative medicine, using tissue engineering-based constructs to deliver progenitor cells or photoreceptors along with supporting carrier matrix is a promising approach for restoration of structure and function. Fresh fibrin glue (FG produced by the CryoSeal®FS system in combination with mouse retinal progenitor cells (RPCs were evaluated in this study. In vitro expanded RPCs isolated from postnatal mouse retina were encapsulated into FG and cultured in the presence of the protease inhibitor, tranexamic acid. Encapsulation of RPCs into FG did not show adverse effects on cell proliferation or cell survival. RPCs exhibited fibroblast-like morphology concomitantly with attachment to the encapsulating FG surface. They expressed α7 and β3 integrin subunits that could mediate attachment to fibrin matrix via an RGD independent mechanism. The three dimensional environment and the attachment surface provided by FG was associated with a rapid downregulation of the progenitor marker SOX2 and enhanced the expression of the differentiation markers CRX and recoverin. However, the in vitro culture conditions did not promote full differentiation into mature photoreceptors. Nevertheless, we have shown that autologous fibrin, when fabricated into a scaffold for RPCs for delivery to the retina, provides the cells with external cues that could potentially improve the differentiation events. Hence, transient encapsulation of RPCs into FG could be a valid and potential treatment strategy to promote retinal regeneration following degenerative diseases. However, further optimization is necessary to maximize the outcomes in terms of mature photoreceptors.

  18. Epidermal response of rainbow trout to Ichthyobodo necator

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Kuhn, Jesper Andreas; Mohammad, Rezkar Jaafar

    2014-01-01

    Infections with the parasitic flagellate Ichthyobodo necator (Henneguy, 1883) cause severe skin and gill disease in rainbow trout Oncorhynchus mykiss (Walbaum, 1792) juveniles. The epidermal disturbances including hyperplasia and mucous cell exhaustion caused by parasitization are known, but no d...

  19. Autologous stem cell transplantation following high-dose whole-body irradiation of dogs - influence of cell number and fractionation regimes

    International Nuclear Information System (INIS)

    Bodenberger, U.

    1981-01-01

    The acute radiation syndrome after a single dose of 1600 R (approx. 12-14 Gy in body midline) and after fractionated irradiation with 2400 R (approx. 18-20 Gy) was studied with regard to fractionation time and to the number of bone marrow cells infused. The acute radiation syndrome consisted of damage to the alimentary tract and of damage to the hemopoietic system. Damage of hemopoiesis was reversible in dogs which had been given a sufficient amount of hemopoietic cells. Furthermore changes in skin and in the mucous membranes occurred. Hemopoietic recovery following infusion of various amounts of bone marrow was investigated in dogs which were irradiated with 2400 R within 7 days. Repopulation of bone marrow as well as rise of leukocyte and platelet counts in the peripheral blood was taken as evidence of complete hemopoietic reconstitution. The results indicate that the acute radiation syndrom following 2400 R TBI and autologous BMT can be controlled by fractionation of this dose within 5 or 7 days. The acute gastrointestinal syndrome is aggravated by infusion of a lesser amount of hemopoietic cells. However, TBI with 2400 R does not require greater numbers of hemopoietic cells for restoration of hemopoiesis. Thus, the hemopoiesis supporting tissue can not be damage by this radiation dose to an essential degree. Longterm observations have not revealed serious late defects which could represent a contraindication to the treatment of malignent diseases with 2400 R of TBI. (orig./MG) [de

  20. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    Science.gov (United States)

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  1. Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement.

    Science.gov (United States)

    Kellner, Manuela; Steindorff, Marina M; Strempel, Jürgen F; Winkel, Andreas; Kühnel, Mark P; Stiesch, Meike

    2014-06-01

    Autologous therapy via stem cell-based tissue regeneration is an aim to rebuild natural teeth. One option is the use of adult stem cells from the dental pulp (DPSCs), which have been shown to differentiate into several types of tissue in vitro and in vivo, especially into tooth-like structures. DPSCs are mainly isolated from the dental pulp of third molars routinely extracted for orthodontic reasons. Due to the extraction of third molars at various phases of life, DPSCs are isolated at different developmental stages of the tooth. The present study addressed the question whether DPSCs from patients of different ages were similar in their growth characteristics with respect to the stage of tooth development. Therefore DPSCs from third molars of 12-30 year-old patients were extracted, and growth characteristics, e.g. doubling time and maximal cell division potential were analysed. In addition, pulp and hard dental material weight were recorded. Irrespective of the age of patients almost all isolated cells reached 40-60 generations with no correlation between maximal cell division potential and patient age. Cells from patients <22 years showed a significantly faster doubling time than the cells from patients ≥22 years. The age of patients at the time of stem cell isolation is not a crucial factor concerning maximal cell division potential, but does have an impact on the doubling time. However, differences in individuals regarding growth characteristics were more pronounced than age-dependent differences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Epidermal characters of Tamarix L. (Tamaricaceae from Northwest China and their taxonomic and palaeogeographic implications

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zhang

    2018-04-01

    Full Text Available The taxonomical position of species of the genus Tamarix (Tamaricaceae has been criticized because of their gross morphological similarities (such as slender, smooth and reddish–brown branches, grey–green foliage and scale leaves, and their systematic relationships remain unclear. In this paper, the leaf epidermal features of 17 species from China are studied based on the micro-morphological characters of the epidermal cells, stomata, salt glands, papillae and epidermal hairs. According to the studies, the leaf epidermal features, together with the character of the flower, are taxonomically clearly distinct. The establishment of Tamarix albiflonum is consolidated. Tamarix korolkowi and Tamarix ramosissima have minimal differences in epidermal characters, and the former is suggested to be a junior synonym. Tamarix ramosissima, Tamarix tarimensis, Tamarix arceuthoides and Tamarix hohenackeri are most similar with respect to their leaf epidermis; considering the common morphological features, habit, distribution and especially the hybridization, it is suggested that these four species are closely genetically related and that the variations among them are probably intraspecific. The new taxonomical evidence indicates the occurrence of 13 species and four variants in China. Presently, Tamarix is a typical plant of arid and semi-arid regions, but its Eocene ancestors lived in warm and humid climates in the coastal areas of the ancient Mediterranean Sea. Thus, the papillae or epidermal hairs, which are outgrowths of the outer epidermal cells facilitating the leaf to respond to water stress and commonly seen in the plants growing in arid or semi-arid areas rather than the plants in warm and humid climates, are of relatively recent origin in Tamarix. The primitive species lack papillae or epidermal hairs, while in evolved species these structures are abundant. Based on the ecological adaptations of the epidermal features, the palaeogeographic

  3. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  4. Predeposit autologous blood transfusion: Do we require to promote it?

    Directory of Open Access Journals (Sweden)

    Gurjit Singh

    2015-01-01

    Full Text Available Introduction: Safest blood a patient can receive is his own. Quest for safe blood transfusion has remained of prime concern. To meet this aspiration, various forms of autologous blood transfusions can be practiced. It is especially suitable for patients with rare blood groups and religious sects such as Jehovah′s witness autologous transfusion is extremely safe. Cross matching is not required; iso-immunization to a foreign body is excluded. Fear of transfusion transmissible disease can be ignored. Therefore, autologous blood transfusion is required to be revisited. Materials and Methods: This is a prospective study carried out at Padmashree Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune between July 2010 and May 2012. Study comprised of 100 patients divided into two groups, autologous and homologous. Benefits of autologous transfusion were studied. Results: There was no significant change in hematocrit and blood parameters after blood donation. That is mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration (P < 0.001 after blood donation. Only one complication of vasovagal syncope was observed at the time of blood donation. Conclusion: Autologous blood transfusion is safe. Easy alternative to be practiced in elective surgeries, especially in patients with rare blood group or believers of Jehovah′s witness faith. It helps to reduce the shortfall in national blood inventory. Autologous blood donation should be practiced whenever possible.

  5. [Origins and selection of epidermal progenitors and stem cells: a challenge for tissue engineering].

    Science.gov (United States)

    Deshayes, Nathalie; Rathman-Josserand, Michelle

    2008-01-01

    The use of epidermal stem cells and their progeny for tissue engineering and cell therapy represents a source of hope and major interest in view of applications such as replacing the loss of functionality in failing tissues or obtaining physiologic skin equivalents for skin grafting. The use of such cells necessitates the isolation and purification of rare populations of keratinocytes and then increasing their numbers by mass culture. This is not currently possible since part of the specific phenotype of these cells is lost once the cells are placed in culture. Furthermore, few techniques are available to unequivocally detect the presence of skin stem cells and/or their progeny in culture and thus quantify them. Two different sources of stem cells are currently being studied for skin research and clinical applications: skin progenitors either obtained from embryonic stem cells (ESC) or from selection from adult skin tissue. It has been shown that "keratinocyte-like" cells can be derived from ESC; however, the culturing processes must still be optimized to allow for the mass culture of homogeneous populations at a controlled stage of differentiation. The functional characterization of such populations must also be more thoroughly achieved. In order to use stem cells from adult tissues, improvements must be made in order to obtain a satisfactory degree of purification and characterization of this rare population. Distinguishing stem cells from progenitor cells at the molecular level also remains a challenge. Furthermore, stem cell research inevitably requires cultivating these cells outside their physiological environment or niche. It will thus be necessary to better understand the impact of this specific environmental niche on the preservation of the cellular phenotypes of interest.

  6. Transforming growth factor alpha and epidermal growth factor in laryngeal carcinomas demonstrated by immunohistochemistry

    DEFF Research Database (Denmark)

    Christensen, M E; Therkildsen, M H; Poulsen, Steen Seier

    1993-01-01

    the basal cell layer. The present investigation and our previous results confirm the existence of EGF receptors, TGF-alpha and EGF in laryngeal carcinomas. In addition, we conclude that the conditions do exist for growth factors to act through an autocrine system in poorly differentiated tumours and through......Fifteen laryngeal squamous cell carcinomas were investigated for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) using immunohistochemical methods. In a recent study the same material was characterized for epidermal growth factor receptors (EGF...... receptors) which were confined predominantly to the undifferentiated cells. The expression of this growth factor system in malignant cells may play a role in carcinogenesis and/or tumour growth. All carcinomas were positive for TGF-alpha and 12 were positive for EGF. In moderately-to-well differentiated...

  7. Blood management and transfusion strategies in 600 patients undergoing total joint arthroplasty: an analysis of pre-operative autologous blood donation.

    Science.gov (United States)

    Perazzo, Paolo; Viganò, Marco; De Girolamo, Laura; Verde, Francesco; Vinci, Anna; Banfi, Giuseppe; Romagnoli, Sergio

    2013-07-01

    Blood loss during total joint arthroplasty strongly influences the time to recover after surgery and the quality of the recovery. Blood conservation strategies such as pre-operative autologous blood donation and post-operative cell salvage are intended to avoid allogeneic blood transfusions and their associated risks. Although widely investigated, the real effectiveness of these alternative transfusion practices remains controversial. The surgery reports of 600 patients undergoing total joint arthroplasty (312 hip and 288 knee replacements) were retrospectively reviewed to assess transfusion needs and related blood management at our institute. Evaluation parameters included post-operative blood loss, haemoglobin concentration measured at different time points, ASA score, and blood transfusion strategies. Autologous blood donation increased the odds of receiving a red blood cell transfusion. Reinfusion by a cell salvage system of post-operative shed blood was found to limit adverse effects in cases of severe post-operative blood loss. The peri-operative net decrease in haemoglobin concentration was higher in patients who had predeposited autologous blood than in those who had not. The strengths of this study are the high number of cases and the standardised procedures, all operations having been performed by a single orthopaedic surgeon and a single anaesthesiologist. Our data suggest that a pre-operative autologous donation programme may often be useless, if not harmful. Conversely, the use of a cell salvage system may be effective in reducing the impact of blood transfusion on a patient's physiological status. Basal haemoglobin concentration emerged as a useful indicator of transfusion probability in total joint replacement procedures.

  8. Carbon isotope ratios of epidermal and mesophyll tissues from leaves of C3 and CAM plants

    International Nuclear Information System (INIS)

    Nishida, K.; Roksandic, Z.; Osmond, B.

    1981-01-01

    The δ 13 C values for epidermal and mesophyll tissues of two C 3 plants, Commelina communis and Tulipa gesneriana, and a CAM plant, Kalanchoē daigremontiana, were measured. The values for the tissues of both C 3 plants were similar. In young leaves of Kalanchoē, the epidermis and the mesophyll showed S 13 C values which were nearly identical, and similar to those found in C 3 plants. However, markedly more negative values for epidermal compared to mesophyll tissue, were obtained in the mature Kalanchoē leaf. This is consistent with the facts that the epidermis in a CAM leaf is formed when leaves engage in C 3 photosynthesis and that subsequent dark CO 2 fixation in guard cells or mesophyll cells makes only a small contribution to total epidermal carbon

  9. Adjuvant Autologous Melanoma Vaccine for Macroscopic Stage III Disease: Survival, Biomarkers, and Improved Response to CTLA-4 Blockade

    Directory of Open Access Journals (Sweden)

    Michal Lotem

    2016-01-01

    Full Text Available Background. There is not yet an agreed adjuvant treatment for melanoma patients with American Joint Committee on Cancer stages III B and C. We report administration of an autologous melanoma vaccine to prevent disease recurrence. Patients and Methods. 126 patients received eight doses of irradiated autologous melanoma cells conjugated to dinitrophenyl and mixed with BCG. Delayed type hypersensitivity (DTH response to unmodified melanoma cells was determined on the vaccine days 5 and 8. Gene expression analysis was performed on 35 tumors from patients with good or poor survival. Results. Median overall survival was 88 months with a 5-year survival of 54%. Patients attaining a strong DTH response had a significantly better (p=0.0001 5-year overall survival of 75% compared with 44% in patients without a strong response. Gene expression array linked a 50-gene signature to prognosis, including a cluster of four cancer testis antigens: CTAG2 (NY-ESO-2, MAGEA1, SSX1, and SSX4. Thirty-five patients, who received an autologous vaccine, followed by ipilimumab for progressive disease, had a significantly improved 3-year survival of 46% compared with 19% in nonvaccinated patients treated with ipilimumab alone (p=0.007. Conclusion. Improved survival in patients attaining a strong DTH and increased response rate with subsequent ipilimumab suggests that the autologous vaccine confers protective immunity.

  10. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies.

    Science.gov (United States)

    Abbasalizadeh, Saeed; Baharvand, Hossein

    2013-12-01

    Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing. © 2013.

  11. Assessment of functional recovery after autologous implantation of neural progenitor cells for the treatment of traumatic brain injury

    International Nuclear Information System (INIS)

    Wu Xing; Zhang Dong; Zuo Zhuantao; Ge Feng; Zhu Jianhong; Zhou Liangfu

    2005-01-01

    Objective: To assess the functional recovery in the patients with traumatic brain injury (TBI) after autologous implantation of neural progenitor cells, and 7 counterparts with matched age, injury location and extent were chosen as the control. Methods: Neural progenitor cells were isolated from exposed brain tissue and propagated for 25 to 30 d, then implanted the autologous neural progenitor cells at seven points around the traumatic regions with MRI-stereotactic guiding device for 7 patients. All recruited patients underwent 18 F-fluorodeox-yglucose (FDG) PET imaging, function MRI (fMRI) and assessment of Glasgow outcome scale extended (GOSE) after operation for open brain trauma. The examinations were repeated one month after neural progenitor cell implantation and then repeated every 3 months during follow-up in the first year, and every 6 months in the second year. The same examinations were performed on untreated counterparts at similar intervals for avoiding deviations of spontaneous recovery. The data were analyzed with region of interest (ROI) and statistical parametric mapping (SPM). Results: At the third month of follow-up, mean tracer uptake in the damaged territory in implantation group increased significantly (P 18 F-FDG in the top of precentral gyrus was significantly increased in implantation group, and the metabolism of 18 F-FDG in the frontal lobe was significantly elevated postoperation according to paired SPM analysis. The activation in fMRI maps was seen in the motor cortex since the third month after implantation, whereas no active signals were detected before implantation or in control group. At the 6th month of follow-up, mean score of GOSE in the group of implantation was 6.63±0.52, whereas the mean score was 4.50 ±0.76 in control group (P 18 F-FDG uptake in the injured area was 3 months prior to the elevation of GOSE. Conclusions: The results of the study show that 18 F-FDG PET and fMRI both showed significantly increased neurological

  12. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    Science.gov (United States)

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  13. Comparison of immune reconstitution after allogeneic vs. autologous stem cell transplantation in 182 pediatric recipients

    Directory of Open Access Journals (Sweden)

    V. Wiegering

    2017-03-01

    Conclusion: Children undergoing a HSCT show a different pattern of immune reconstitution in the allogeneic and autologous setting. This might influence the outcome and should affect the clinical handling of infectious prophylaxis and re-vaccinations.

  14. Bismuth adjuvant ameliorates adverse effects of high-dose chemotherapy in patients with multiple myeloma and malignant lymphoma undergoing autologous stem cell transplantation

    DEFF Research Database (Denmark)

    Hansen, Per Boye; Penkowa, Milena

    2017-01-01

    show for the first time that bismuth significantly reduces grade 2 stomatitis, febrile neutropenia and infections caused by melphalan in multiple myeloma, where adverse effects also were significantly linked to gender. In lymphoma patients, bismuth significantly reduces diarrhoea relative to placebo......PURPOSE: High-dose chemotherapy prior to autologous stem cell transplantation (ASCT) leads to adverse effects including mucositis, neutropenia and bacteremia. To reduce the toxicity, we treated myeloma and lymphoma patients with peroral bismuth as an adjuvant to chemotherapy to convey...

  15. Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila.

    Directory of Open Access Journals (Sweden)

    Michelle T Juarez

    2011-12-01

    Full Text Available The epidermis is the largest organ of the body for most animals, and the first line of defense against invading pathogens. A breach in the epidermal cell layer triggers a variety of localized responses that in favorable circumstances result in the repair of the wound. Many cellular and genetic responses must be limited to epidermal cells that are close to wounds, but how this is regulated is still poorly understood. The order and hierarchy of epidermal wound signaling factors are also still obscure. The Drosophila embryonic epidermis provides an excellent system to study genes that regulate wound healing processes. We have developed a variety of fluorescent reporters that provide a visible readout of wound-dependent transcriptional activation near epidermal wound sites. A large screen for mutants that alter the activity of these wound reporters has identified seven new genes required to activate or delimit wound-induced transcriptional responses to a narrow zone of cells surrounding wound sites. Among the genes required to delimit the spread of wound responses are Drosophila Flotillin-2 and Src42A, both of which are transcriptionally activated around wound sites. Flotillin-2 and constitutively active Src42A are also sufficient, when overexpressed at high levels, to inhibit wound-induced transcription in epidermal cells. One gene required to activate epidermal wound reporters encodes Dual oxidase, an enzyme that produces hydrogen peroxide. We also find that four biochemical treatments (a serine protease, a Src kinase inhibitor, methyl-ß-cyclodextrin, and hydrogen peroxide are sufficient to globally activate epidermal wound response genes in Drosophila embryos. We explore the epistatic relationships among the factors that induce or delimit the spread of epidermal wound signals. Our results define new genetic functions that interact to instruct only a limited number of cells around puncture wounds to mount a transcriptional response, mediating

  16. Expression and significance of HMGB1, TLR4 and NF-κB p65 in human epidermal tumors

    International Nuclear Information System (INIS)

    Weng, Hui; Deng, Yunhua; Xie, Yuyan; Liu, Hongbo; Gong, Feili

    2013-01-01

    High mobility group protein box 1 (HMGB1) is a DNA binding protein located in nucleus. It is released into extracellular fluid where it acts as a novel proinflammatory cytokine which interacts with Toll like receptor 4 (TLR4) to activate nuclear factor-κB (NF-κB). This sequence of events is involved in tumor growth and progression. However, the effects of HMGB1, TLR4 and NF-κB on epidermal tumors remain unclear. Human epidermal tumor specimens were obtained from 96 patients. Immunohistochemistry was used to detect expression of HMGB1, TLR4 and NF-κB p65 in human epidermal tumor and normal skin specimens. Western blot analysis was used to detect the expression of NF-κB p65 in epithelial cell nuclei in human epidermal tumor and normal tissues. Immunohistochemistry and western blot analysis indicated a progressive but statistically significant increase in p65 expression in epithelial nuclei in benign seborrheic keratosis (SK), precancerous lesions (PCL), low malignancy basal cell carcinoma (BCC) and high malignancy squamous cell carcinoma (SCC) (P <0.01). The level of extracellular HMGB1 in SK was significantly higher than in normal skin (NS) (P <0.01), and was higher than in SCC but without statistical significance. The level of TLR4 on epithelial membranes of SCC cells was significantly higher than in SK, PCL, BCC and NS (P <0.01). There was a significant positive correlation between p65 expression in the epithelial nuclei and TLR4 expression on the epithelial cell membranes (r = 0.3212, P <0.01). These findings indicate that inflammation is intensified in parallel with increasing malignancy. They also indicate that the TLR4 signaling pathway, rather than HMGB1, may be the principal mediator of inflammation in high-grade malignant epidermal tumors. Combined detection of p65 in the epithelial nuclei and TLR4 on the epithelial membranes may assist the accurate diagnosis of malignant epidermal tumors

  17. Protective Effect of Liposome-Encapsulated Glutathione in a Human Epidermal Model Exposed to a Mustard Gas Analog

    Directory of Open Access Journals (Sweden)

    Victor Paromov

    2011-01-01

    Full Text Available Sulfur mustard or mustard gas (HD and its monofunctional analog, 2-chloroethyl ethyl sulfide (CEES, or “half-mustard gas,” are alkylating agents that induce DNA damage, oxidative stress, and inflammation. HD/CEES are rapidly absorbed in the skin causing extensive injury. We hypothesize that antioxidant liposomes that deliver both water-soluble and lipid-soluble antioxidants protect skin cells from immediate CEES-induced damage via attenuating oxidative stress. Liposomes containing water-soluble antioxidants and/or lipid-soluble antioxidants were evaluated using in vitro model systems. Initially, we found that liposomes containing encapsulated glutathione (GSH-liposomes increased cell viability and attenuated production of reactive oxygen species (ROS in HaCaT cells exposed to CEES. Next, GSH-liposomes were tested in a human epidermal model, EpiDerm. In the EpiDerm, GSH-liposomes administered simultaneously or 1 hour after CEES exposure (2.5 mM increased cell viability, inhibited CEES-induced loss of ATP and attenuated changes in cellular morphology, but did not reduce caspase-3 activity. These findings paralleled the previously described in vivo protective effect of antioxidant liposomes in the rat lung and established the effectiveness of GSH-liposomes in a human epidermal model. This study provides a rationale for use of antioxidant liposomes against HD toxicity in the skin considering further verification in animal models exposed to HD.

  18. DEVELOPMENT OF PRIMARY CELL CULTURE FROM TAIL EPIDERMAL TISSUE OF KOI CARP (Cyprinus carpio koi

    Directory of Open Access Journals (Sweden)

    Lila Gardenia

    2014-06-01

    Full Text Available Primary cell culture from tail epidermal tissue of koi carp (Cyprinus carpio koi was developed. Cells were grown in Leibovits-15 medium supplemented with 20% fetal bovine serum and antibiotics (Penicillin/Streptomycin and Kanamycin. Cell growth was observed in a range of incubation temperature (17oC±2oC, 22oC±2oC, 27oC±2oC, and 32oC±2oC in order to determine the optimum temperature. The cells were able to grow at a range of temperature between 17oC to 32oC with optimal growth at 22oC. Primary cells infected with koi herpes virus produced typical cytopathic effects characterized by severe vacuolation and deformation of nuclei, which is consistent with those of previous reports. Artificial injection experiment by using supernatant koi herpes virus SKBM-1 isolate revealed that it could cause 90% mortality in infected fish within two weeks. PCR test with Sph I-5 specific primers carried out with DNA template from supernatant virus, pellet cell, and gills of infected fish showed positive results in all samples (molecular weight of DNA target 290 bp. The cells were found to be susceptible to koi herpes virus and can be used for virus propagation.

  19. Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy

    Directory of Open Access Journals (Sweden)

    Howard R. Seay

    2017-03-01

    Full Text Available Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 109 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR. Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.

  20. High-dose chemotherapy followed by autologous stem cell transplantation for metastatic rhabdomyosarcoma--a systematic review.

    Directory of Open Access Journals (Sweden)

    Frank Peinemann

    Full Text Available INTRODUCTION: Patients with metastatic rhabdomyosarcoma (RMS have a poor prognosis. The aim of this systematic review is to investigate whether high-dose chemotherapy (HDCT followed by autologous hematopoietic stem cell transplantation (HSCT in patients with metastatic RMS has additional benefit or harm compared to standard chemotherapy. METHODS: Systematic literature searches were performed in MEDLINE, EMBASE, and The Cochrane Library. All databases were searched from inception to February 2010. PubMed was searched in June 2010 for a last update. In addition to randomized and non-randomized controlled trials, case series and case reports were included to complement results from scant data. The primary outcome was overall survival. A meta-analysis was performed using the hazard ratio as primary effect measure, which was estimated from Cox proportional hazard models or from summary statistics of Kaplan Meier product-limit estimations. RESULTS: A total of 40 studies with 287 transplant patients with metastatic RMS (age range 0 to 32 years were included in the assessment. We identified 3 non-randomized controlled trials. The 3-year overall survival ranged from 22% to 53% in the transplant groups vs. 18% to 55% in the control groups. Meta-analysis on overall survival in controlled trials showed no difference between treatments. Result of meta-analysis of pooled individual survival data of case series and case reports, and results from uncontrolled studies with aggregate data were in the range of those from controlled data. The risk of bias was high in all studies due to methodological flaws. CONCLUSIONS: HDCT followed by autologous HSCT in patients with RMS remains an experimental treatment. At present, it does not appear justifiable to use this treatment except in appropriately designed controlled trials.