WorldWideScience

Sample records for autoclave curing

  1. Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites

    Science.gov (United States)

    Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong

    2018-01-01

    Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59–60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties. PMID:29534048

  2. Out-of-Autoclave Cure Composites

    Science.gov (United States)

    Hayes, Brian S.

    2015-01-01

    As the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.

  3. Mathematical Model For Autoclave Curing Of Unsaturated Polyester Based Composite Materials

    Directory of Open Access Journals (Sweden)

    Adnan A. Abdul Razak

    2013-05-01

    Full Text Available Heat transfer process involved in the autoclave curing of fiber-reinforced thermosetting composites is investigated numerically. A model for the prediction of the temperature and the extent of the reaction across the laminate thickness during curing process in the autoclave of unsaturated polyester based composite has been developed. The governing equation for one dimensional heat transfer, and accounting for the heat generation due to the exothermic cure reaction in the composites had been used.  It was found that the temperature at the central of the laminate increases up to the external imposed temperature, because of the thermal conductivity of the resin and fiber. The heat generated by the exothermic reaction of the resin is not adequately removed; the increase in the temperature at the center increases the resins rate reaction, which in turn generates more heat.

  4. Single Vacuum Bagging and Autoclave Curing System Influence on Physical and Mechanical Properties of Phenolic Composites

    Directory of Open Access Journals (Sweden)

    M.A. Mirzapour

    2010-12-01

    Full Text Available Industrial production of thermoset composite components involves the application of a vacuum bagging and autoclave pressure to minimize void percentage, usually to less than 5%. Phenolic resin systems generate water as a reaction byproduct via condensation reactions during curing at elevated temperatures. In this paper, vacuum bagging and simple manufactured autoclave curing systems are used for manufacturing of asbestos/phenolic composites and the effects of processing conditions on manufactured composites are investigated. The traditional single-vacuum-bag process is unable to manage the volatiles effectively, resulting in inferior laminates having voids. The autoclave process cure cycle (temperature/pressure profiles for the selected composite system is designed to emit volatiles during curing reactions effectively and produce composites with low void contents and excellent mechanical properties. Laminate consolidation quality is characterized by optical photomicrography for the cross-sections and measurements of void content and mechanical properties. The void content of phenolic composites as opposed to other composites increases as pressure increases up to 3 bar and it is then decreased beyond it. A product of 124% lower void content, 13% higher density, 24% higher flexural strength and 27% higher flexural modulus can be fabricated in composites obtainedby autoclave processing.

  5. Curing Pressure Influence of Out-of-Autoclave Processing on Structural Composites for Commercial Aviation

    Directory of Open Access Journals (Sweden)

    Vasileios M. Drakonakis

    2013-01-01

    Full Text Available Autoclaving is a process that ensures the highest quality of carbon fiber reinforced polymer (CFRP composite structures used in aviation. During the autoclave process, consolidation of prepreg laminas through simultaneous elevated pressure and temperature results in a uniform high-end material system. This work focuses on analyzing in a fundamental way the applications of pressure and temperature separately during prepreg consolidation. A controlled pressure vessel (press-clave has been designed that applies pressure during the curing process while the temperature is being applied locally by heat blankets. This vessel gives the ability to design manufacturing processes with different pressures while applying temperature at desired regions of the composite. The pressure role on the curing extent and its effect on the interlayer region are also tested in order to evaluate the consolidation of prepregs to a completely uniform material. Such studies may also be used to provide insight into the morphology of interlayer reinforcement concepts, which are widely used in the featherweight composites. Specimens manufactured by press-clave, which separates pressure from heat, are analytically tested and compared to autoclaved specimens in order to demonstrate the suitability of the press-clave to manufacture high-quality composites with excessively reduced cost.

  6. Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave

    Science.gov (United States)

    Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.

    1990-01-01

    Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.

  7. Monitoring cure properties of out-of-autoclave BMI composites using IFPI sensor

    Science.gov (United States)

    Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam

    2016-04-01

    A non-destructive technique for inspection of a Bismaleimide (BMI) composite is presented using an optical fiber sensor. High performance BMI composites are used for Aerospace application for their mechanical strength. They are also used as an alternative to toughened epoxy resins. A femtosecond-laser-inscribed Intrinsic Fabry-Perot Interferometer (IFPI) sensor is used to perform real time cure monitoring of a BMI composite. The composite is cured using the out-of-autoclave (OOA) process. The IFPI sensor was used for in-situ monitoring; different curing stages are analyzed throughout the curing process. Temperature-induced-strain was measured to analyze the cure properties. The IFPI structure comprises of two reflecting mirrors inscribed on the core of the fiber using a femtosecond-laser manufacturing process. The manufacturing process makes the sensor thermally stable and robust for embedded applications. The sensor can withstand very high temperatures of up to 850 °C. The temperature and strain sensitivities of embedded IFPI sensor were measured to be 1.4 pm/μepsilon and 0.6 pm/μepsilon respectively.

  8. Compaction behavior of out-of-autoclave prepreg materials

    Science.gov (United States)

    Serrano, Léonard; Olivier, Philippe; Cinquin, Jacques

    2017-10-01

    The main challenges with composite parts manufacturing are related to the curing means, mainly autoclaves, the length of their cycles and their operating costs. In order to decrease this dependency, out of autoclave materials have been considered as a solution for high production rate parts such as spars, flaps, etc… However, most out-of-autoclave process do not possess the same maturity as their counterpart, especially concerning part quality1. Some pre-cure processes such as compaction and ply lay-up are usually less of a concern for autoclave manufacturing: the pressure applied during the cycle participates to reduce the potential defects (porosity caused by a poor quality lay-up, bad compaction, entrapped air or humidity…). For out-of-autoclave parts, those are crucial steps which may have many consequences on the final quality of the laminate2. In order to avoid this quality loss, those steps must be well understood.

  9. Characterization and behaviour of Autoclaved Aerated Concrete before Autoclaving

    NARCIS (Netherlands)

    Straub, Chr.; Florea, M.V.A.; Brouwers, H.J.H.; Schmidt, Wolfram; Msinjili, Nsesheye Susan

    In order to achieve a high quality Autoclaved Aerated Concrete (AAC) product, certain steps need to be ensured: the characterization of the raw materials, a proper mixing and correct slurry behaviour to achieve a good green body during green curing. In the current research the emphasis is on all of

  10. Evaluation of Out-of-Autoclave (OOA epoxy system

    Directory of Open Access Journals (Sweden)

    Fernanda Guilherme

    Full Text Available Abstract Epoxy resins (EP usually cure in autoclave to minimize resin voids and to achieve the desired resin/fiber ratio. Cure parameters such as temperature, vacuum and pressure levels are controlled and monitored. Aiming time and cost optimization, new out-of-autoclave (OOA cure processes have been developed lately. This study evaluated the cure cycle and the effect of non-programmed interruptions in an OOA process. Fourier Transform Infrared spectroscopy (FT-IR results show similarities between the resin used and diglycidyl ether of bisphenol A (DGEBA and also that the curing system is composed of cyan and sulfur hardeners, codified in industry, as Components of #2511 Resin System. The cure cycle and its interruptions were simulated by dynamic-mechanical analysis (DMA. The samples obtained were evaluated by FT-IR and differential scanning calorimetry (DSC, whose results show that the degree of cure varying between 0.8 to 0.85 was achieved at 120 °C.

  11. Long Out-time, Out-of-Autoclave Cure Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the size of composite parts exceed that of even the largest autoclaves, new out-of-autoclave processes and materials are necessary to achieve the same level of...

  12. Long Out-time, Out-of-Autoclave Cure Composites, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — As the size of composite parts exceed that of even the largest autoclaves, new out-of-autoclave processes and materials are necessary to achieve the same level of...

  13. Outgassing of Out-of-Autoclave Composite Primary Structures for Small Satellites

    Science.gov (United States)

    Komus, Alastair

    Out-of-autoclave vacuum-bagged-only (VBO) processing is capable of producing lower cost composite primary structures for small satellites than autoclave processing. However, the outgassing performance of VBO structures in a vacuum environment has not been examined. Panels were manufactured from CYCOM 5320-1 and TC275-1 carbon fiber/epoxy prepreg using VBO processing. The humidity level, pre-cure dwell time, and cure cycle parameters were varied during manufacturing. The degree of cure and glass transition temperature were shown to increase with increasing oven temperature. Processing humidity levels and the length of pre-cure dwell times had no discernable effect on the total mass loss (TML) and collected volatile condensable material (CVCM) that were outgassed under vacuum. Instead the TML was controlled by moisture saturation after manufacturing. Fourier transform infrared spectroscopy showed that epoxy oligomers were the primary CVCM. The study showed the VBO laminates had outgassing values that were comparable to the autoclave-cured laminates.

  14. The Effect of Slamming Impact on Out-of-Autoclave Cured Prepregs of GFRP Composite Panels for Hulls

    OpenAIRE

    Suárez, J.C.; Townsend, P.; Sanz, E.; Ulzurrum, I. Diez de; Pinilla, P.

    2016-01-01

    This paper proposes a methodology that employs an experimental apparatus that reproduces, in pre-impregnated and cured out-of-autoclave Glass Fiber Reinforced Polymer (GFRP) panels, the phenomenon of slamming or impact on the bottom of a high-speed boat during planing. The pressure limits in the simulation are defined by employing a finite element model (FEM) that evaluates the forces applied by the cam that hits the panels in the apparatus via microdeformations obtained in the simulation. Th...

  15. BALU: Largest autoclave research facility in the world

    Directory of Open Access Journals (Sweden)

    Hakan Ucan

    2016-03-01

    Full Text Available Among the large-scale facilities operated at the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade BALU is the world's largest research autoclave. With a loading length of 20m and a loading diameter of 5.8 m the main objective of the facility is the optimization of the curing process operated by components made of carbon fiber on an industrial scale. For this reason, a novel dynamic autoclaving control has been developed that is characterized by peripheral devices to expend the performance of the facility for differential applications, by sensing systems to detect the component state throughout the curing process and by a feedback system, which is capable to intervene into the running autoclave process.

  16. Autoclave cycle optimization for high performance composite parts manufacturing

    OpenAIRE

    Nele, L.; Caggiano, A.; Teti, R.

    2016-01-01

    In aeronautical production, autoclave curing of composite parts must be performed according to a specified diagram of temperature and pressure vs time. Part-tool assembly thermal inertia and shape have a large influence on the heating and cooling rate, and therefore on the dwell time within the target temperature range. When simultaneously curing diverse composite parts, the total autoclave cycle time is driven by the part-tool assembly with the lower heating and cooling rates. With the aim t...

  17. A Comparison of the Properties of Carbon Fiber Epoxy Composites Produced by Non-autoclave with Vacuum Bag Only Prepreg and Autoclave Process

    Science.gov (United States)

    Park, Sang Yoon; Choi, Chi Hoon; Choi, Won Jong; Hwang, Seong Soon

    2018-05-01

    The non-autoclave curing technique with vacuum bag only (VBO) prepreg has been conceived as a cost-effective manufacturing method for producing high-quality composite part. This study demonstrated the feasibility of improving composite part's performances and established the effective mitigation strategies for manufacturing induced defects, such as internal voids and surface porosity. The experimental results highlighted the fact that voids and surface porosity were clearly dependent on the resin viscosity state at an intermediate dwell stage of the curing process. Thereafter, the enhancement of resin flow could lead to achieving high quality parts with minimal void content (1.3%) and high fiber fraction (53 vol.%). The mechanical testing showed comparable in-plane shear and compressive strength to conventional autoclave. The microscopic observations also supported the evidence of improved interfacial bonding in terms of excellent fiber wet-out and minimal void content for the optimized cure cycle condition.

  18. NONA Cure of Prepreg Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG's no-oven, no-autoclave (NONA) cure of OoA or autoclave prepreg materials allows the manufacture of large composite structures without the expensive and...

  19. Critical parameters for electron beam curing of cationic epoxies and property comparison of electron beam cured cationic epoxies versus thermal cured resins and composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Norris, R.E.; Yarborough, K.; Lopata, V.J.

    1997-01-01

    Electron beam curing of composites is a nonthermal, nonautoclave curing process offering the following advantages compared to conventional thermal curing: substantially reduced manufacturing costs and curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvements in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance electron beam curing of composites. The CRADA has successfully developed hundreds of new toughened and untoughened resins, offering unlimited formulation and processing flexibility. Several patent applications have been filed for this work. Composites made from these easily processable, low shrinkage material match the performance of thermal cured composites and exhibit: low void contents comparable to autoclave cured composites (less than 1%); superb low water absorption values in the same range as cyanate esters (less than 1%); glass transition temperatures rivaling those of polyimides (greater than 390 C); mechanical properties comparable to high performance, autoclave cured composites; and excellent property retention after cryogenic and thermal cycling. These materials have been used to manufacture many composite parts using various fabrication processes including hand lay-up, tow placement, filament winding, resin transfer molding and vacuum assisted resin transfer molding

  20. No-Oven, No-Autoclave Composite Processing

    Science.gov (United States)

    Rauscher, Michael D.

    2015-01-01

    Very large composite structures, such as those used in NASA's Space Launch System, push the boundaries imposed by current autoclaves. New technology is needed to maintain composite performance and free manufacturing engineers from the restraints of curing equipment size limitations. Recent efforts on a Phase II project by Cornerstone Research Group, Inc. (CRG), have advanced the technology and manufacturing readiness levels of a unique two-part epoxy resin system. Designed for room-temperature infusion of a dry carbon preform, the system includes a no-heat-added cure that delivers 350 F composite performance in a matter of hours. This no-oven, no-autoclave (NONA) composite processing eliminates part-size constraints imposed by infrastructure and lowers costs by increasing throughput and reducing capital-specific, process-flow bottlenecks. As a result of the Phase II activity, NONA materials and processes were used to make high-temperature composite tooling suitable for further production of carbon-epoxy laminates and honeycomb/ sandwich-structure composites with an aluminum core. The technology platform involves tooling design, resin infusion processing, composite part design, and resin chemistry. The various technology elements are combined to achieve a fully cured part. The individual elements are not unusual, but they are combined in such a way that enables proper management of the heat generated by the epoxy resin during cure. The result is a self-cured carbon/ epoxy composite part that is mechanically and chemically stable at temperatures up to 350 F. As a result of the successful SBIR effort, CRG has launched NONA Composites as a spinoff subsidiary. The company sells resin to end users, fabricates finished goods for customers, and sells composite tooling made with NONA materials and processes to composite manufacturers.

  1. High-impact strength acrylic denture base material processed by autoclave.

    Science.gov (United States)

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  2. Comparison of Composites Properties Manufactured by Vacuum Process and Autoclave Process

    Directory of Open Access Journals (Sweden)

    MA Rufei

    2017-01-01

    Full Text Available Two kinds of prepregs ZT7G/LT-03A(unidirectional carbon fiber prepreg and ZT7G3198P/LT-03A(plain carbon fabric prepreg were used to manufacture three Bateches of composites by vacuum process and autoclave process respectively. The physical properties of the prepregs and mechanical properties of composite were tested. The performance, fiber volume content and porosity of composites manufactured by vacuum cure and autoclave process show that the physical property retention rates of vacuum cured composites are all over 75%, some even more than 100%. Interlaminar shear strength keeps the lowest retention rate and warp tensile strength keeps the highest retention in unidirectional carbon fiber composites. For fabric composite material, compression strength keeps the lowest and warp tensile strength keeps the highest retention. Vacuum cured composites perform lower fiber volume content and higher porosity, which are the main reasons of the lower performance.

  3. Experiments and numerical simulations of flow field and heat transfer coefficients inside an autoclave model

    Science.gov (United States)

    Ghamlouch, T.; Roux, S.; Bailleul, J.-L.; Lefèvre, N.; Sobotka, V.

    2017-10-01

    Today's aerospace industrial first priority is the quality improvement of the composite material parts with the reduction of the manufacturing time in order to increase their quality/cost ratio. A fabrication method that could meet these specifications especially for large parts is the autoclave curing process. In fact the autoclave molding ensures the thermal control of the composite parts during the whole curing cycle. However the geometry of the tools as well as their positioning in the autoclave induce non uniform and complex flows around composite parts. This heterogeneity implies non-uniform heat transfers which can directly impact on part quality. One of the main challenges is therefore to describe the flow field inside an autoclave as well as the convective heat transfer from the heated pressurized gas to the composite part and the mold. For this purpose, and given the technical issues associated with instrumentation and measurements in actual autoclaves, an autoclave model was designed and then manufactured based on similarity laws. This tool allows the measurement of the flow field around representative real industrial molds using the PIV technique and the characterization of the heat transfer thanks to thermal instrumentation. The experimental results are then compared with those derived from numerical simulations using a commercial RANS CFD code. This study aims at developing a semi-empirical approach for the prediction of the heat transfer coefficient around the parts and therefore predicts its thermal history during the process with a view of optimization.

  4. Modeling the curing process of thermosetting resin matrix composites

    Science.gov (United States)

    Loos, A. C.

    1986-01-01

    A model is presented for simulating the curing process of a thermosetting resin matrix composite. The model relates the cure temperature, the cure pressure, and the properties of the prepreg to the thermal, chemical, and rheological processes occurring in the composite during cure. The results calculated with the computer code developed on the basis of the model were compared with the experimental data obtained from autoclave-curved composite laminates. Good agreement between the two sets of results was obtained.

  5. Mechanical Characterization of In and Out-of-Autoclave Cured Composite Panels for Large Launch Vehicles

    Science.gov (United States)

    Kellas, Sotiris; Lerch, Bradley A.; Wilmoth, Nathan

    2012-01-01

    Two manufacturing demonstration panels (1/16th-arc-segments of 10 m diameter cylinder) were fabricated under the composites part of the Lightweight Space Structures and Materials program. Both panels were of sandwich construction with aluminum core and 8-ply quasi-isotropic graphite/epoxy facesheets. One of the panels was constructed with in-autoclave curable unidirectional prepreg (IM7/977-3) and the second with out-of-autoclave unidirectional prepreg (T40-800B/5320-1). Following NDE inspection, each panel was divided into a number of small specimens for material property characterization and a large (0.914 m wide by 1.524 m long) panel for a buckling study. Results from the small specimen tests were used to (a) assess the fabrication quality of each 1/16th arc segment panel and (b) to develop and/or verify basic material property inputs to Finite Element analysis models. The mechanical performance of the two material systems is assessed at the coupon level by comparing average measured properties such as flatwise tension, edgewise compression, and facesheet tension. The buckling response of the 0.914 m wide by 1.524 m long panel provided a comparison between the in- and out-of autoclave systems at a larger scale.

  6. Relation between interlaminar fracture toughness and pressure condition in autoclave molding process of GFRP composite laminates; GFRP sekisoban no autoclave seikei ni okeru atsuryoku joken to sokan hakai jinseichi tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J. [Osaka City University, Osaka (Japan); Motogi, S.; Fukuda, T. [Osaka City University, Osaka (Japan). Faculty of Engineering

    1998-06-15

    Relation between fracture toughness and pressure condition in autoclave molding of GF composite laminates is investigated. Glass/epoxy prepregs are molded under different curing pressures, and UD laminates of [O{sub 8}]T and [O{sub 16}]T are fabricated. The results of the double cantilever beam (DCB) test show that the curing pressure has certain influences on the interlaminar fracture toughness via the change in morphology of matrix resin and fibers between laminae, and via the change in interfacial strength of fiber and matrix. It is also found that the fiber/matrix interfacial strength increases as the curing pressure increases by SEM photographs of the fracture surface in GF UD laminates. 13 refs., 12 figs.

  7. Face-Sheet Quality Analysis and Thermo-Physical Property Characterization of OOA and Autoclave Panels

    Science.gov (United States)

    Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.

    2012-01-01

    Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kg/sq m (3.1 lb/cu ft (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.

  8. Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads

    Science.gov (United States)

    Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.

    2015-01-01

    An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.

  9. Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Bali Ika

    2016-01-01

    Full Text Available A development of Reactive Powder Concrete (RPC currently is the use of quartz powder as a stabilizing agent with the content to cement ratio of 30% and steam curing method in an autoclave temperature of 250ºC which produced a high compressive strength of 180 MPa. That RPC can be generated due to one reason for using the technique of steam curing in an autoclave in the laboratory. This study proposes in-situ curing method in order the curing can be applied in the field and with a reasonable compressive strength results of RPC. As the benchmarks in this study are the curing methods in laboratory that are steam curing of 90°C for 8 hours (C1, and water curing for 28 days (C2. For the in-situ curing methods that are covering with tarpaulins and flowed steam of 3 hours per day for 7 days (C3, covering with wet sacks for 28 days (C4, and covering with wet sacks for 28 days for specimen with unwashed sand as fine aggregate (C5. The comparison of compressive strength of the specimens in this study showed compressive strength of RPC with in-situ steam curing (101.64 MPa close to the compressive strength of RPC with steam curing in the laboratory with 8.2% of different. While in-situ wet curing compared with the water curing in laboratory has the different of 3.4%. These results indicated that the proposed in-situ curing methods are reasonable good in term of the compressive strength that can be achieved.

  10. NASA Out-of-Autoclave Process Technology Development

    Science.gov (United States)

    Johnston, Norman, J.; Clinton, R. G., Jr.; McMahon, William M.

    2000-01-01

    Polymer matrix composites (PMCS) will play a significant role in the construction of large reusable launch vehicles (RLVs), mankind's future major access to low earth orbit and the international space station. PMCs are lightweight and offer attractive economies of scale and automated fabrication methodology. Fabrication of large RLV structures will require non-autoclave methods which have yet to be matured including (1) thermoplastic forming: heated head robotic tape placement, sheet extrusion, pultrusion, molding and forming; (2) electron beam curing: bulk and ply-by-ply automated placement; (3) RTM and VARTM. Research sponsored by NASA in industrial and NASA laboratories on automated placement techniques involving the first 2 categories will be presented.

  11. Elevated Temperature, Residual Compressive Strength of Impact-Damaged Sandwich Structure Manufactured Out-of-Autoclave

    Science.gov (United States)

    Grimsley, Brian W.; Sutter, James K.; Burke, Eric R.; Dixon, Genevieve D.; Gyekenyesi, Thomas G.; Smeltzer, Stanley S.

    2012-01-01

    Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.

  12. Autoclave nuclear criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  13. Characterization of polymer composites during autoclave manufacturing by Fourier transform Raman spectroscopy

    Science.gov (United States)

    Farquharson, Stuart; Smith, Wayne W.; Rigas, Elias J.; Granville, Dana

    2001-02-01

    12 The superior engineering properties of fiber reinforced polymer matrix composites, primarily the high strength-to- weight ratio, make them suitable to applications ranging from sporting goods to aircraft components (e.g. helicopter blades). Unfortunately, consistent fabrication of components with desired mechanical properties has proven difficult, and has led to high production costs. This is largely due to the inability to monitor and control polymer cure, loosely defined as the process of polymer chain extension and cross- linking. Even with stringent process control, slight variations in the pre-polymer formulations (e.g. prepreg) can influence reaction rates, reaction mechanisms, and ultimately, product properties. In an effort to optimize the performance of thermoset composite, we have integrated fiber optic probes between the plies of laminates and monitored cure by Raman spectroscopy, with the eventual goal of process control. Here we present real-time measurements of two high performance aerospace companies cured within an industrial autoclave.

  14. On the Assessment of Susceptor-Assisted Induction Curing of Adhesively Bonded Joints

    NARCIS (Netherlands)

    Severijns, C.P.A.; Teixeira De Freitas, S.; Poulis, J.A.

    2016-01-01

    The autoclave/oven curing process is known to be the current manufacturing technique that provides the best quality of composite laminates and bonded joints. However, this process implies high acquisition cost and a large ecological footprint. Furthermore, with the current complete aeroplane

  15. The experimental study of heat transfer around molds inside a model autoclave

    Science.gov (United States)

    Ghamlouch, Taleb; Roux, Stéphane; Lefèvre, Nicolas; Bailleul, Jean-Luc; Sobotka, Vincent

    2018-05-01

    The temperature distribution within composite parts manufactured inside autoclaves plays a key role in determining the parts quality at the end of the curing cycle. Indeed, heat transfer between the parts and the surroundings inside an autoclave is strongly coupled with the flow field around the molds and can be modeled through the convective heat transfer coefficient (HTC). The aerodynamically unsuitable geometry of the molds generates complex turbulent non-uniform flows around them accompanied with the presence of dead zones. This heterogeneity can imply non-uniform convective heat transfers leading to temperature gradients inside parts that can be prejudicial. Given this fact, the purpose of this study is to perform experimental measurements in order to describe the flow field and the convective heat transfer behavior around representative industrial molds installed inside a home-made model. A key point of our model autoclave is the ease of use of non-intrusive measuring instruments: the Particle Image Velocimetry (PIV) technique and infrared imaging camera for the study of the flow field and the heat transfer coefficient distribution around the molds respectively. The experimental measurements are then compared to computational fluid dynamics (CFD) calculations performed on the computer code ANSYS Fluent 16.0®. This investigation has revealed, as expected, a non-uniform distribution of the convective heat transfer coefficient around the molds and therefore the presence of thermal gradients which can reduce the composite parts quality during an autoclave process. A good agreement has been achieved between the experimental and the numerical results leading then to the validation of the performed numerical simulations.

  16. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    Science.gov (United States)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  17. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    Science.gov (United States)

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  18. Identification of autoclave-resistant Anisakis simplex allergens.

    Science.gov (United States)

    Carballeda-Sangiao, Noelia; Olivares, Fabiola; Rodriguez-Mahillo, Ana I; Careche, Mercedes; Tejada, Margarita; Moneo, Ignacio; González-Muñoz, Miguel

    2014-04-01

    Anisakis simplex is a fish parasite able to induce allergic reactions in humans infected when eating raw or undercooked fish parasitized with viable third-stage larvae. Some authors claim that exposure to nonviable Anisakis material can result in allergic symptoms in previously sensitized patients, indicating that parasite allergens are resistant to the thermal treatments of usual cooking procedures. Furthermore, some patients report symptoms after eating canned fish. The aim of this work was the analysis of parasite allergen stability in heating to 121 °C in an autoclave to simulate the thermal process applied to canned fish. Third-stage larvae were subjected to autoclaving for 20, 40, and 80 min, and parasite crude extracts were analyzed by electrophoresis, immunoblotting, and a flow-cytometric basophil activation test. Allergens resistant to autoclaving were separated by reversed-phase high-performance liquid chromatography and identified by ion trap mass spectrometry. Protein analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that autoclaving considerably reduced the number and intensity of identifiable protein bands in a time-dependent manner. Several allergens were detected by immunoblotting with a pool of A. simplex allergic patients' sera after autoclaving. Allergens of 9 and 14 kDa resistant to autoclaving were identified as Ani s 4 and Ani s 1 allergens, respectively. Functional analysis showed that allergens retain their capacity to activate basophils even after autoclaving for 80 min. In conclusion, some relevant A. simplex allergens retain their capacity to bind immunoglobulin E and activate basophils after being subjected to autoclaving, which is a method equivalent to that used in industrial canning processes.

  19. Out-of-Autoclave Manufacturing of Aerospace Representative Parts

    Science.gov (United States)

    Cauberghs, Julien

    The use of carbon fibre reinforced composites for aerospace structures has seen a high increase in recent years, and is still growing. The high stiffness-to-weight ratio of these materials makes them ideal for primary structures on airplanes, satellites, and spacecrafts. Nevertheless, the manufacturing of composites remains very costly since it requires equipment investment such as an autoclave, and very qualified workers. Out-of-autoclave manufacturing technology is very promising since it only requires a traditional oven, while still aiming at similar part quality. However, the absence of positive pressure compared with an autoclave makes it more difficult to achieve low porosity parts. This research investigates the manufacturing of complex features with out-of autoclave prepreg technology. The features studied are tight-radius corners with a curvature change, and ply drop-offs. Ply drop-offs tests were conducted to identify if porosity is higher at ply terminations. In corners, the bagging arrangement was modified to achieve the most uniform thickness in areas of curvature change, even with small radii. The conclusions from these studies provided us with guidelines to manufacture larger representative parts, which included these features. The representative parts were tested for porosity, thickness uniformity, mechanical performance, and glass transition temperature (Tg). A total of four representative parts were manufactured with out-of-autoclave technology, and one more was manufactured with an autoclave to allow for a proper comparison between the two processes. The materials used were MTM45-1 5 harness satin and CYCOM5320 plain weave for the out-of-autoclave parts, and CYCOM5276-1 plain weave for the autoclave part. The effect of ply drop-offs on porosity was found to be negligible. Thickness deviation in corners was attributed to a combination of consumable bridging, prepreg's bulk factor and inter-ply shear. Overall, out-of-autoclave prepregs showed

  20. Gravity Effects of Curing Angle on Laminated Composite Structures: A Review on Novel Study

    Directory of Open Access Journals (Sweden)

    T. T. T. Jennise

    2013-01-01

    Full Text Available Composites manufactured by small and medium industries/entrepreneurs (SMI/E are conventionally cured in the horizontal position. Hence, the confined space restricts optimum productivity. Besides, SMI/E is unable to allocate high budget for high-end technology such as autoclave and vacuum mechanical oven which limits the development of SMI/E as a result of high capital cost. Through a series of literature review, the review confirmed that there is no similar scientific study has been conducted. Consequently, the review is carried out to facilitate the investigation of the feasibility of a gravity cured glass fiber laminated thermosetting composites via vacuum bagging at angle position from horizontal (0° to vertical (90° to enhance the curing space required.

  1. Temperature field investigation of the industrial autoclave ASCAMAT-230

    Directory of Open Access Journals (Sweden)

    Stolyanov A. V.

    2017-09-01

    Full Text Available Heterogeneity of the temperature field in the sterilization chambers of industrial autoclaves during heating and cooling phase is one of the problems in the development of new regime for product heat treatment on the preliminary selection and laboratory testing stages. This is the reason of studying the temperature field of the industrial autoclave ASCAMAT-230. The autoclave ASCAMAT-230 is a vertical autoclave of 230 liters capacity heated by three tubular electric heaters. Determination of temperature field parameters has been carried out according to the method for studying the temperature field of periodic devices' heating medium for sterilizing canned food. Six Thermochron iButton temperature loggers have been used to measure the temperatures in the sterilization chamber of the ASCAMAT-230 autoclave. Logger 1 has been put in the place of the standard thermometer installation, loggers 2 and 3, 5 and 6 – in the center and on periphery of the lower and upper parts of the autoclave respectively, logger 4 – in the center of the middle part of the autoclave's sterilization chamber. Temperature measurement in cans with the product has been carried out by temperature loggers from the Ellab TrackSense PRO complex. The loggers have been installed in two cans with homogeneous product located in the upper and lower parts of the autoclave. The time temperature dependences for the entire sterilization process, as well as for the heating and cooling stages have been constructed according to the acquired information. Based on these data conclusions about the uniformity of the temperature field inside the sterilization chamber of the autoclave ASCAMAT-230 during the heating, sterilization and cooling stages have been developed. Some recommendations for using the autoclave ASCAMAT-230 in the preliminary selection and verification of sterilization regimes for canned foods from hydrobionts, and also for the creation of an industrial autoclave control system

  2. Development of a Fully Automated Guided Wave System for In-Process Cure Monitoring of CFRP Composite Laminates

    Science.gov (United States)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo

    2016-01-01

    A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.

  3. Autoclavable physically-crosslinked chitosan cryogel as a wound dressing.

    Science.gov (United States)

    Takei, Takayuki; Danjo, So; Sakoguchi, Shogo; Tanaka, Sadao; Yoshinaga, Takuma; Nishimata, Hiroto; Yoshida, Masahiro

    2018-04-01

    Moist wounds were known to heal more rapidly than dry wounds. Hydrogel wound dressings were suitable for the moist wound healing because of their hyperhydrous structure. Chitosan was a strong candidate as a base material for hydrogel wound dressings because the polymer had excellent biological properties that promoted wound healing. We previously developed physically-crosslinked chitosan cryogels, which were prepared solely by freeze-thawing of a chitosan-gluconic acid conjugate (CG) aqueous solution, for wound treatment. The CG cryogels were disinfected by immersing in 70% ethanol before applying to wounds in our previous study. In the present study, we examined the influence of autoclave sterilization (121°C, 20 min) on the characteristics of CG cryogel because complete sterilization was one of the fundamental requirements for medical devices. We found that optimum value of gluconic acid content of CG, defined as the number of the incorporated gluconic acid units per 100 glucosamine units of chitosan, was 11 for autoclaving. An increased crosslinking level of CG cryogel on autoclaving enhanced resistance of the gels to enzymatic degradation. Furthermore, the autoclaved CG cryogels retained favorable biological properties of the pre-autoclaved CG cryogels in that they showed the same hemostatic activity and efficacy in repairing full-thickness skin wounds as the pre-autoclaved CG cryogels. These results showed the great potential of autoclavable CG cryogels as a practical wound dressing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Estabelecimento de ciclo de cura de pré-impregnados aeronáuticos Establishment of cure cycle of aeronautic prepregs

    Directory of Open Access Journals (Sweden)

    Michelle L. Costa

    2005-07-01

    Full Text Available Os compósitos poliméricos podem ser produzidos via moldagem em autoclave, onde as condições de processamento podem ser otimizadas a partir do conhecimento físico-químico da matriz polimérica. A evolução da cinética da reação de cura ocorre simultaneamente com as modificações no comportamento reológico do sistema polimérico, sendo comum denominar o fenômeno de comportamento reo-cinético. O presente trabalho tem como objetivo conhecer os parâmetros de cura, cinéticos e reológicos, de três diferentes sistemas de pré-impregnados de resina epóxi (cura a 177 °C, conhecidos como F161, F584 e 8552, hoje usados na indústria aeronáutica brasileira. Este estudo foi realizado com o auxílio das técnicas de DSC e reologia, utilizando-se análises dinâmicas e isotérmicas. Com isso, foi possível estabelecer a ordem de reação e a cinética de cura dos sistemas estudados. Neste estudo, foram utilizados como modelos matemáticos o de ordem n e o autocatalítico com ordem total de aproximadamente 2. A temperatura de gel foi de ~100 °C, e o tempo de gel correspondente foi de 135 segundos. A partir do conhecimento da cinética de cura e dos parâmetros reológicos dos sistemas de pré-impregnados foi possível estabelecer um ciclo de cura destinado à consolidação das peças aeronáuticas via moldagem em autoclave.Autoclave molding produces polymer composites, where the processing conditions can be optimized with physicochemical knowledge of the polymeric matrix. The cure reaction evolves simultaneously with changes in rheology, which is normally refered to as rheo-kinetic behavior. With the knowledge of the appropriate cure cycle one can identify the steps in which pressure should be applied and when to raise the temperature. This paper is aimed at investigating the cure, kinetics and rheological parameters of three prepreg epoxy systems, namely F161, F584 and 8552, which are currently used in the Brazilian aeronautic industry

  5. Anaerobic digestion of autoclaved and untreated food waste

    International Nuclear Information System (INIS)

    Tampio, Elina; Ervasti, Satu; Paavola, Teija; Heaven, Sonia; Banks, Charles; Rintala, Jukka

    2014-01-01

    Highlights: • Autoclaving decreased the formation of NH4-N and H 2 S during food waste digestion. • Stable digestion was achieved with untreated and autoclaved FW at OLR 6 kg VS/m 3 day. • Use of acclimated inoculum allowed very rapid increases in OLR. • Highest CH 4 yields were observed at OLR 3 kg VS/m 3 day with untreated FW. • Autoclaved FW produced highest CH 4 yields during OLR 4 kgVS/m 3 day. - Abstract: Anaerobic digestion of autoclaved (160 °C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m 3 d. Methane yields at all OLR were 5–10% higher for untreated FW (maximum 0.483 ± 0.013 m 3 CH 4 /kg VS at 3 kg VS/m 3 d) than autoclaved FW (maximum 0.439 ± 0.020 m 3 CH 4 /kg VS at 4 kg VS/m 3 d). The residual methane potential of both digestates at all OLRs was less than 0.110 m 3 CH 4 /kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components

  6. Autoclave decomposition method for metals in soils and sediments.

    Science.gov (United States)

    Navarrete-López, M; Jonathan, M P; Rodríguez-Espinosa, P F; Salgado-Galeana, J A

    2012-04-01

    Leaching of partially leached metals (Fe, Mn, Cd, Co, Cu, Ni, Pb, and Zn) was done using autoclave technique which was modified based on EPA 3051A digestion technique. The autoclave method was developed as an alternative to the regular digestion procedure passed the safety norms for partial extraction of metals in polytetrafluoroethylene (PFA vessel) with a low constant temperature (119.5° ± 1.5°C) and the recovery of elements were also precise. The autoclave method was also validated using two Standard Reference Materials (SRMs: Loam Soil B and Loam Soil D) and the recoveries were equally superior to the traditionally established digestion methods. Application of the autoclave was samples from different natural environments (beach, mangrove, river, and city soil) to reproduce the recovery of elements during subsequent analysis.

  7. Anaerobic digestion of autoclaved and untreated food waste

    Energy Technology Data Exchange (ETDEWEB)

    Tampio, Elina, E-mail: elina.tampio@mtt.fi [Bioenergy and Environment, MTT Agrifood Research Finland, FI-31600 Jokioinen (Finland); Ervasti, Satu; Paavola, Teija [Bioenergy and Environment, MTT Agrifood Research Finland, FI-31600 Jokioinen (Finland); Heaven, Sonia; Banks, Charles [University of Southampton, Faculty of Engineering and the Environment, Southampton SO17 1BJ (United Kingdom); Rintala, Jukka [Bioenergy and Environment, MTT Agrifood Research Finland, FI-31600 Jokioinen (Finland)

    2014-02-15

    Highlights: • Autoclaving decreased the formation of NH4-N and H{sub 2}S during food waste digestion. • Stable digestion was achieved with untreated and autoclaved FW at OLR 6 kg VS/m{sup 3}day. • Use of acclimated inoculum allowed very rapid increases in OLR. • Highest CH{sub 4} yields were observed at OLR 3 kg VS/m{sup 3}day with untreated FW. • Autoclaved FW produced highest CH{sub 4} yields during OLR 4 kgVS/m{sup 3}day. - Abstract: Anaerobic digestion of autoclaved (160 °C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m{sup 3} d. Methane yields at all OLR were 5–10% higher for untreated FW (maximum 0.483 ± 0.013 m{sup 3} CH{sub 4}/kg VS at 3 kg VS/m{sup 3} d) than autoclaved FW (maximum 0.439 ± 0.020 m{sup 3} CH{sub 4}/kg VS at 4 kg VS/m{sup 3} d). The residual methane potential of both digestates at all OLRs was less than 0.110 m{sup 3} CH{sub 4}/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components.

  8. Destruction of spores on building decontamination residue in a commercial autoclave.

    Science.gov (United States)

    Lemieux, P; Sieber, R; Osborne, A; Woodard, A

    2006-12-01

    The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently robust conditions to adequately destroy bacterial spores bound to the BDR. In this study we investigated the effects of several variables related to autoclaving BDR, including time, temperature, pressure, item type, moisture content, packing density, packing orientation, autoclave bag integrity, and autoclave process sequence. The test team created simulated BDR from wallboard, ceiling tiles, carpet, and upholstered furniture, and embedded in the BDR were Geobacillus stearothermophilus biological indicator (BI) strips containing 10(6) spores and thermocouples to obtain time and temperature profile data associated with each BI strip. The results indicated that a single standard autoclave cycle did not effectively decontaminate the BDR. Autoclave cycles consisting of 120 min at 31.5 lb/in2 and 275 degrees F and 75 min at 45 lb/in2 and 292 degrees F effectively decontaminated the BDR material. Two sequential standard autoclave cycles consisting of 40 min at 31.5 lb/in2 and 275 degrees F proved to be particularly effective, probably because the second cycle's evacuation step pulled the condensed water out of the pores of the materials, allowing better steam penetration. The results also indicated that the packing density and material type of the BDR in the autoclave could have a significant impact on the effectiveness of the decontamination process.

  9. Color stability of shade guides after autoclave sterilization.

    Science.gov (United States)

    Schmeling, Max; Sartori, Neimar; Monteiro, Sylvio; Baratieri, Luiz

    2014-01-01

    This study evaluated the influence of 120 autoclave sterilization cycles on the color stability of two commercial shade guides (Vita Classical and Vita System 3D-Master). The specimens were evaluated by spectrophotometer before and after the sterilization cycles. The color was described using the three-dimensional CIELab system. The statistical analysis was performed in three chromaticity coordinates, before and after sterilization cycles, using the paired samples t test. All specimens became darker after autoclave sterilization cycles. However, specimens of Vita Classical became redder, while those of the Vita System 3D-Master became more yellow. Repeated cycles of autoclave sterilization caused statistically significant changes in the color coordinates of the two shade guides. However, these differences are considered clinically acceptable.

  10. Efficient composite fabrication using electron-beam rapidly cured polymers engineered for several manufacturing processes

    International Nuclear Information System (INIS)

    Walton, T.C.; Crivello, J.V.

    1995-01-01

    Low cost, efficiently processed ultra high specific strength and stiffness graphite fiber reinforced polymeric composite materials are of great interest to commercial transportation, construction and aerospace industries for use in various components with enhanced degrees of weight reduction, corrosion/erosion resistance and fatigue resistance. 10 MeV Electron Beam cure processing has been found to increase the cure rate by an order of magnitude over thermally cured systems yet provide less molded in stresses and high T g s. However, a limited range of resins are available which are easily processed with low shrinkage and with performance properties equal or exceeding those of state of the art toughened epoxies and BMI's. The technology, introduced by an academia-industry partnership sparked by Langley Research Center utilizes a cost effective, rapid curing polymeric composite processing technique which effectively reduces the need for expensive tooling and energy inefficient autoclave processing and can cure the laminate in seconds (compared to hours for thermal curing) in ambient or sub-ambient conditions. The process is based on electron beam (E-Beam) curing of a new series of (65 to 1,000,000 cPs.) specially formulated resins that have been shown to exhibit excellent mechanical and physical properties once cured. Fabrication processes utilizing these specially formulated and newly commercialized resins, (e.g. including Vacuum Assist Resin Transfer molding (VARTM), vacuum bag prepreg layup, pultrusion and filament winding grades) are engineered to cure with low shrinkage, provide excellent mechanical properties, be processed solventless (environmentally friendly) and are inherently non toxic

  11. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat....... Codes for designing prefabricated reinforced components of aircrete structures have adopted these recently developed approaches.......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  12. Alkaline autoclave leaching of refractory uranium-thorium minerals

    International Nuclear Information System (INIS)

    Milani, S. A.; Sam, S.

    2011-01-01

    This paper deals with the study of an innovative method for processing the Oman placer ores by alkaline leaching in ball mill autoclaves, where grinding and leaching of the refractory minerals take place simultaneously. This was followed by the selective separation of thorium and uranium from lanthanides by autoclave leaching of the hydroxide cake with ammonium carbonate-bicarbonate solutions. The introduced method is based on the fact that thorium and uranium form soluble carbonate complexes with ammonium carbonate, while lanthanides form sparingly soluble double carbonates. It was found that a complete alkaline leaching of Oman placer ores (98.0 P ercent ) was attained at 150 and 175 d egree C within 2.5 and 2h, respectively. Oman placer ores leaching was intensified and accelerated in a ball mill autoclaves as a result of the grinding action of steel balls, removal of the hydroxide layer covering ores grains and the continuous contact of fresh ore grains with alkaline solution. The study of selective carbonate processing of hydroxide cake with ammonium carbonate-bicarbonate solutions on autoclave under pressure revealed that the complete thorium recovery (97.5 P ercent ) with uranium recovery (90.8 P ercent ) and their separation from the lanthanides were attained at 70-80 d egree C during l-2h. The extraction of lanthanides in carbonate solution was low and did not exceed 4.6 P ercent .

  13. Out-of-autoclave manufacturing of GLARE panels using resistance heating

    NARCIS (Netherlands)

    Muller, B.; Palardy, G.; Teixeira De Freitas, S.; Sinke, J.

    2017-01-01

    Autoclave manufacturing of fibre metal laminates, such as GLARE, is an expensive process.Therefore, there is an increasing interest to find cost effective out-of-autoclave manufacturing processes without diminishing the laminate quality. The aim of this study is to

  14. Polimerização complementar em autoclave, microondas e estufa de um compósito restaurador direto = The effect of post-cure heating in autoclave, microwave oven and conventional oven on direct composite resin

    Directory of Open Access Journals (Sweden)

    Arossi, Guilherme Anziliero

    2007-01-01

    Full Text Available Com o objetivo de tornar o processo de confecção de restaurações indiretas mais acessível, reduzindo seus custos com a resina utilizada e os métodos de polimerização complementar, este estudo testou a possibilidade de se utilizar resinas diretas com métodos de polimerização complementar alternativos. Corpos de prova foram confeccionados com a resina Charisma e fotopolimerizados por 20 segundos. Em seguida as amostras foram submetidas à polimerização complementar em autoclave, microondas e estufa. Foram estabelecidos dois grupos controles: um controle negativo, que consistiu na utilização da resina Charisma fotopolimerizada convencionalmente (20s; e um grupo controle positivo, formado por amostras do compósito restaurador indireto Targis. O ensaio de microdureza Knoop foi realizado após uma semana de armazenagem e os resultados submetidos à análise estatística. Os três métodos de polimerização complementar propostos determinaram um aumento na microdureza do compósito restaurador direto quando comparado ao controle negativo (p 0,05. Conclui-se que, considerando o desenho experimental deste estudo, a polimerização complementar em autoclave, microondas ou estufa aumenta a microdureza da resina Charisma previamente fotopolimerizada

  15. Investigation of compaction and permeability during the out-of-autoclave and vacuum-bag-only manufacturing of a laminate composite with aligned carbon nanofibers

    Science.gov (United States)

    Mann, Erin

    Both industry and commercial entities are in the process of using more lightweight composites. Fillers, such as fibers, nanofibers and other nanoconstituents in polymer matrix composites have been proven to enhance the properties of composites and are still being studied in order to optimize the benefits. Further optimization can be studied during the manufacturing process. The air permeability during the out-of-autoclave-vacuum-bag-only (OOA-VBO) cure method is an important property to understand during the optimization of manufacturing processes. Changes in the manufacturing process can improve or decrease composite quality depending on the ability of the composite to evacuate gases such as air and moisture during curing. Therefore, in this study, the axial permeability of a prepreg stack was experimentally studied. Three types of samples were studied: control (no carbon nanofiber (CNF) modification), unaligned CNF modified and aligned CNF modified samples.

  16. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy.

    Science.gov (United States)

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2016-01-01

    Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (Pautoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles.

  17. Generating Autoclave-Level Mechanical Properties with Out-of-Autoclave Thermoplastic Placement of Large Composite Aerospace Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Out-of-autoclave thermoplastic tape/tow placement (TP-ATP) is nearing commercialization but suffers a moderate gap in mechanical properties compared with laminates...

  18. OPTIMAL CONTROL OF AUTOCLAVE START MODE IN THE PRODUCTION OF NITRIC ACID

    OpenAIRE

    Ладієва, Леся Ростиславівна; Ширма, А. В.

    2015-01-01

    The algorithm of optimal control of autoclave start mode in the production of nitric acid is proposed. By optimality criterion is selected minimum time-autoclave at preset mode with the restriction on the concentration of nitric acid. End time start mode is entered on the terminal part of the cost function. The method of penalties and a gradient procedure is used to solve the problem. The applied algorithm is allowed to bring an autoclave at a given technological regime.Keywords: production o...

  19. An autoclave treatment reduces the solubility and antigenicity of an allergenic protein found in buckwheat flour.

    Science.gov (United States)

    Tomotake, Hiroyuki; Yamazaki, Rikio; Yamato, Masayuki

    2012-06-01

    The effects of an autoclave treatment of buckwheat flour on a 24-kDa allergenic protein were investigated by measuring reduction in solubility and antibody binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that the intensity of the major bands, including that of the 24-kDa allergen, was reduced by the autoclave treatment. The protein solubility in buckwheat flour was variably decreased by the autoclave treatment. Enzyme-linked immunosorbent assay analysis using a monoclonal antibody specific for buckwheat 24-kDa protein showed that the reactivity of protein extracts (10 μg/ml) from buckwheat flour was lowered by the autoclave treatment. The autoclave treatment may reduce the major allergen content of buckwheat. Future studies will determine if autoclaving treatments affect the allergenicity of the 24-kDa buckwheat protein.

  20. ETUDE DU COMPORTEMENT MECANIQUE DU BETON CELLULAIRE AUTOCLAVE PRODUIT EN ALGERIE

    Directory of Open Access Journals (Sweden)

    R BELOUETTAR

    2002-12-01

    Full Text Available Ce travail présente une étude expérimentale du comportement mécanique du béton cellulaire autoclavé. L’étude est portée essentiellement sur une série d’essais mécaniques en compression quasistatique à différentes vitesses de déformation variables entre 10-4 s-1 et 10 s-1 et à deux états différents (état sec et état saturé d’eau. En général, l’augmentation de la vitesse de déformation donne une augmentation de la contrainte critique du béton cellulaire autoclavé. Le béton cellulaire autoclavé présente une sensibilité à la vitesse de déformation positive. La valeur du module d’élasticité est proche de la valeur standard (1.5 GPa pour un béton cellulaire autoclavé de masse volumique égale à 500-550 kg/m3.

  1. Toxic anterior segment syndrome caused by autoclave reservoir wall biofilms and their residual toxins.

    Science.gov (United States)

    Sorenson, Andrew L; Sorenson, Robert L; Evans, David J

    2016-11-01

    To identify etiology of toxic anterior segment syndrome (TASS) after uneventful phacoemulsification. EyeMD Laser and Surgery Center, Oakland, California. Retrospective case series. Patient charts with TASS were reviewed. Reservoirs of 2 autoclaves associated with these cases were cultured for bacterial contamination. Cultures were performed on 23 other autoclave reservoirs at surgery centers in the local area. The main outcome measures were the incidence of TASS and prevalence of bacterial biofilm contamination of autoclave reservoirs. From 2010 to 2013, 11 935 consecutive cataract surgeries were performed at 1 center by multiple surgeons with no reported TASS. Between January 1, 2014, and January 15, 2015, 10 cases of TASS occurred out of 3003 cataract surgeries; these patients' charts were reviewed. Cultures of 2 Statim autoclave reservoir walls grew Bacillus species, Williamsia species, Mycobacterium mucogenicum, and Candida parapsilosis. Scanning electron microscopy of reservoir wall sections showed prominent biofilm. The 2 autoclaves were replaced in January 2015. Subsequently, 2875 cataract surgeries were performed with no reported TASS (P autoclaves were also contaminated with bacterial biofilms. Toxic anterior segment syndrome was strongly associated with bacterial biofilm contamination of autoclave reservoirs. An etiological mechanism might involve transport of heat-stable bacterial cell antigens in the steam with deposition on surgical instrumentation. Data suggest widespread prevalence of bacterial biofilms on fluid-reservoir walls, despite adherence to manufacturer guidelines for cleaning and maintenance. Prevention or elimination of autoclave fluid-reservoir biofilms might reduce the risk for postoperative TASS. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Non-autoclaved aerated concrete with mineral additives

    Science.gov (United States)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  3. 加气混凝土制备工艺影响因素分析%Analysis of Influential Factors on Preparation of Autoclaved Aerated Concrete

    Institute of Scientific and Technical Information of China (English)

    罗立群; 程琪林

    2015-01-01

    Aimed at new requirements brought up by domestic building material market, autoclaved aerated concrete has been acclaimed owning to its several particular performance advantages such as lightweight, thermal insulation, acoustic insulation, anti-seismic, etc. After preparation process of auto-claved aerated concrete was briefly summarized, it focused on influence of material characteristics on the properties of the products such as siliceous material, calcareous material, vesicant, water-solid ratio and ad-ditives. Influence mechanism of curing conditions of green body, reaction process of preparation and prod-ucts microstructure on performance of autoclaved aerated concrete were introduced. Eventually, direction of development of autoclaved aerated concrete was prospected in the future.%针对建材市场节能环保产品的需求,加气混凝土制品以其独特的质轻节能、保温隔热、抗震隔音等综合性能优势而备受关注。简述了蒸压加气混凝土的制备过程,重点阐述了制备加气混凝土砌块的硅质材料、钙质材料、发气剂、水料比及添加物等物料特性对制品性能的影响,介绍了坯体养护条件、制备过程反应以及制品微观结构对加气混凝土性能的影响机理,展望了加气混凝土未来的发展方向。

  4. Moisture conditions of modern structures made of autoclaved aerated concrete in operation period

    OpenAIRE

    P.S. Zyryanov; G.I. Grinfeld; Р.A. Morozov; I.A. Sogomonyan

    2011-01-01

    In St.-Petersburg and area six organizations making cellular concrete of autoclave hardening operate. At all enterprises the cellular concrete is made by the gas way of pore development by molding technology. The molding technology in practice means that the mass humidity of concrete on an exit from autoclaves will be at level of 35-45 % (great values of humidity correspond to smaller density). The similar situation is observed in other regions: more than 80 % of all autoclave cellular concre...

  5. Insitu measurement and control of processing properties of composite resins in a production tool

    Science.gov (United States)

    Kranbuehl, D.; Hoff, M.; Haverty, P.; Loos, A.; Freeman, T.

    1988-01-01

    An in situ measuring technique for use in automated composite processing and quality control is discussed. Frequency dependent electromagnetic sensors are used to measure processing parameters at four ply positions inside a thick section 192-ply graphite-epoxy composite during cure in an 8 x 4 in. autoclave. Viscosity measurements obtained using the sensors are compared with the viscosities calculated using the Loos-Springer cure process model. Good overall agreement is obtained. In a subsequent autoclave run, the output from the four sensors was used to control the autoclave temperature. Using the 'closed loop' sensor controlled autoclave temperature resulted in a more uniform and more rapid cure cycle.

  6. Autoclave and beta-amylolysis lead to reduced in vitro digestibility of starch.

    Science.gov (United States)

    Hickman, B Elliot; Janaswamy, Srinivas; Yao, Yuan

    2009-08-12

    In this study, a combination of autoclave and beta-amylolysis was used to modulate the digestibility of normal corn starch (NCS) and wheat starch (WS). The modification procedure comprised three cycles of autoclave at 35% moisture content and 121 degrees C, beta-amylolysis, and one additional cycle of autoclave. Starch materials were sampled at each stage and characterized. The fine structure of starch was determined using high-performance size-exclusion chromatography, the micromorphology of starch dispersion was imaged using cryo-SEM, the crystalline pattern was evaluated using wide-angle X-ray powder diffraction, and the digestibility was measured using Englyst assay. After beta-amylolysis, amylose was enriched (from 25.4 to 33.2% for NCS and from 27.5 to 32.8% for WS) and the branch density was increased (from 5.2 to 7.7% for NCS and from 5.3 to 7.9% for WS). Cryo-SEM images showed that the autoclave treatment led to the formation of a low-swelling, high-density gel network, whereas beta-amylolysis nearly demolished the network structure. The loss of A-type crystalline structure and the formation of B- and V-type structures resulted from autoclave, which suggests the formation of amylose-based ordered structure. Englyst assay indicated that, due to beta-amylolysis, the resistant starch (RS) content was increased to 30 from 11% of native NCS and to 23 from 9% of native WS. In contrast, autoclave showed only minor impact on RS levels. The increase of RS observed in this study is associated with enhanced branch density, which is different from the four types of RS commonly defined.

  7. Autoclaving practice in microbiology laboratories: report of a survey. The Public Health Laboratory Service Subcommittee on laboratory autoclaves.

    Science.gov (United States)

    1978-01-01

    The performance of autoclaves in 27 laboratories, operated in accordance with the normal routine of local practice, has been monitored using thermometric equipment. Sterilising performance was unsatisfactory on 10 of 62 occasions, and cooling was inadequate on 52 of 60 occasions. PMID:649767

  8. Composite Cure Process Modeling and Simulations using COMPRO(Registered Trademark) and Validation of Residual Strains using Fiber Optics Sensors

    Science.gov (United States)

    Sreekantamurthy, Thammaiah; Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.

    2016-01-01

    Composite cure process induced residual strains and warping deformations in composite components present significant challenges in the manufacturing of advanced composite structure. As a part of the Manufacturing Process and Simulation initiative of the NASA Advanced Composite Project (ACP), research is being conducted on the composite cure process by developing an understanding of the fundamental mechanisms by which the process induced factors influence the residual responses. In this regard, analytical studies have been conducted on the cure process modeling of composite structural parts with varied physical, thermal, and resin flow process characteristics. The cure process simulation results were analyzed to interpret the cure response predictions based on the underlying physics incorporated into the modeling tool. In the cure-kinetic analysis, the model predictions on the degree of cure, resin viscosity and modulus were interpreted with reference to the temperature distribution in the composite panel part and tool setup during autoclave or hot-press curing cycles. In the fiber-bed compaction simulation, the pore pressure and resin flow velocity in the porous media models, and the compaction strain responses under applied pressure were studied to interpret the fiber volume fraction distribution predictions. In the structural simulation, the effect of temperature on the resin and ply modulus, and thermal coefficient changes during curing on predicted mechanical strains and chemical cure shrinkage strains were studied to understand the residual strains and stress response predictions. In addition to computational analysis, experimental studies were conducted to measure strains during the curing of laminated panels by means of optical fiber Bragg grating sensors (FBGs) embedded in the resin impregnated panels. The residual strain measurements from laboratory tests were then compared with the analytical model predictions. The paper describes the cure process

  9. Elevated Temperature, Notched Compression Performance of Out of Autoclave Processed Composites

    Science.gov (United States)

    Grimsley, Brian W.; Sutter, James K.; Dixon, Genevieve D.; Smeltzer, Satn S.

    2013-01-01

    Curved honeycomb sandwich panels composed of carbon fiber reinforced toughened-epoxy polymer facesheets are being evaluated for potential use as payload fairing components on the NASA heavy-lift space launch system (HL-SLS). These proposed composite sandwich panels provide the most efficient aerospace launch structures, and offer mass and thermal advantages when compared with existing metallic payload fairing structures. NASA and industry are investigating recently developed carbon fiber epoxy prepreg systems which can be fabricated using out-of autoclave (OOA) processes. Specifically, OOA processes using vacuum pressure in an oven and thereby significantly reducing the cost associated with manufacturing large (up to 10 m diameter) composite structures when compared with autoclave. One of these OOA composite material systems, CYCOM(R) 5320-1, was selected for manufacture of a 1/16th scale barrel portion of the payload fairing; such that, the system could be compared with the well-characterized prepreg system, CYCOM(R) 977-3, typically processed in an autoclave. Notched compression coupons for each material were obtained from the minimum-gauge flat laminate [60/-60/0]S witness panels produced in this manufacturing study. The coupons were also conditioned to an effective moisture equilibrium point and tested according to ASTM D6484M-09 at temperatures ranging from 25 C up to 177 C. The results of this elevated temperature mechanical characterization study demonstrate that, for thin coupons, the OHC strength of the OOA laminate was equivalent to the flight certified autoclave processed composite laminates; the limitations on the elevated temperature range are hot-wet conditions up to 163 C and are only within the margins of testing error. At 25 C, both the wet and dry OOA material coupons demonstrated greater OHC failure strengths than the autoclave processed material laminates. These results indicate a substantial improvement in OOA material development and

  10. UV irradiation and autoclave treatment for elimination of contaminating DNA from laboratory consumables.

    Science.gov (United States)

    Gefrides, Lisa A; Powell, Mark C; Donley, Michael A; Kahn, Roger

    2010-02-01

    Laboratories employ various approaches to ensure that their consumables are free of DNA contamination. They may purchase pre-treated consumables, perform quality control checks prior to casework, and use in-house profile databases for contamination detection. It is better to prevent contamination prior to DNA typing than identify it after samples are processed. To this end, laboratories may UV irradiate or autoclave consumables prior to use but treatment procedures are typically based on killing microorganisms and not on the elimination of DNA. We report a systematic study of UV and autoclave treatments on the persistence of DNA from saliva. This study was undertaken to determine the best decontamination strategy for the removal of DNA from laboratory consumables. We have identified autoclave and UV irradiation procedures that can eliminate nanogram quantities of contaminating DNA contained within cellular material. Autoclaving is more effective than UV irradiation because it can eliminate short fragments of contaminating DNA more effectively. Lengthy autoclave or UV irradiation treatments are required. Depending on bulb power, a UV crosslinker may take a minimum of 2h to achieve an effective dose for elimination of nanogram quantities of contaminating DNA (>7250mJ/cm(2)). Similarly autoclaving may also take 2h to eliminate similar quantities of contaminating DNA. For this study, we used dried saliva stains to determine the effective dose. Dried saliva stains were chosen because purified DNA as well as fresh saliva are less difficult to eradicate than dried stains and also because consumable contamination is more likely to be in the form of a collection of dry cells.

  11. One-step formation and sterilization of gellan and hyaluronan nanohydrogels using autoclave.

    Science.gov (United States)

    Montanari, Elita; De Rugeriis, Maria Cristina; Di Meo, Chiara; Censi, Roberta; Coviello, Tommasina; Alhaique, Franco; Matricardi, Pietro

    2015-01-01

    The sterilization of nanoparticles for biomedical applications is one of the challenges that must be faced in the development of nanoparticulate systems. Usually, autoclave sterilization cannot be applied because of stability concerns when polymeric nanoparticles are involved. This paper describes an innovative method which allows to obtain, using a single step autoclave procedure, the preparation and, at the same time, the sterilization of self-assembling nanohydrogels (NHs) obtained with cholesterol-derivatized gellan and hyaluronic acid. Moreover, by using this approach, NHs, while formed in the autoclave, can be easily loaded with drugs. The obtained NHs dispersion can be lyophilized in the presence of a cryoprotectant, leading to the original NHs after re-dispersion in water.

  12. Leaching of a copper flotation concentrate with ammonium persulfate in an autoclave system

    Science.gov (United States)

    Deniz Turan, M.; Soner Altundoğan, H.

    2014-09-01

    The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave system. The decomposition products of APS, active oxygen, and acidic medium were used to extract metals from the concentrate. Leaching experiments were performed to compare the availability of APS as an oxidizing agent for leaching of the concentrate under atmospheric conditions and in an autoclave system. Leaching temperature and APS concentration were found to be important parameters in both leaching systems. Atmospheric leaching studies showed that the metal extractions increased with the increase in APS concentration and temperature (up to 333 K). A similar tendency was determined in the autoclave studies up to 423 K. It was also determined that the metal extractions decreased at temperatures above 423 K due to the passivation of the particle surface by molten elemental sulfur. The results showed that higher copper extractions could be achieved using an autoclave system.

  13. Surface roughness of polyvinyl siloxane impression materials following chemical disinfection, autoclave and microwave sterilization.

    Science.gov (United States)

    Al Kheraif, Abdulaziz Abdullah

    2013-05-01

    Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does

  14. Effect of autoclave postpolymerization treatments on the fracture toughness of autopolymerizing dental acrylic resins.

    Science.gov (United States)

    Durkan, Rukiye; Gürbüz, Ayhan; Yilmaz, Burak; Özel, M Birol; Bağış, Bora

    2012-06-26

    Microwave and water bath postpolymerization have been suggested as methods to improve the mechanical properties of heat and autopolymerizing acrylic resins. However, the effects of autoclave heating on the fracture properties of autopolymerizing acrylic resins have not been investigated. The aim of this study was to assess the effectiveness of various autoclave postpolymerization methods on the fracture properties of 3 different autopolymerizing acrylic resins. Forty-two specimens of 3 different autopolymerizing acrylic resins (Orthocryl, Paladent RR and Futurajet) were fabricated (40x8x4mm), and each group was further divided into 6 subgroups (n=7). Control group specimens remained as processed (Group 1). The first test group was postpolymerized in a cassette autoclave at 135°C for 6 minutes and the other groups were postpolymerized in a conventional autoclave at 130°C using different time settings (5, 10, 20 or 30 minutes). Fracture toughness was then measured with a three-point bending test. Data were analyzed by ANOVA followed by the Duncan test (α=0.05). The fracture toughness of Orthocryl and Paladent-RR acrylic resins significantly increased following conventional autoclave postpolymerization at 130°C for 10 minutes (Pautoclave postpolymerized Futurajet was not significantly different than its control specimens (Pautoclaved at 130°C for 10 minutes. Within the limitations of this study, it can be suggested that autoclave postpolymerization is an effective method for increasing the fracture toughness of tested autoploymerized acrylic resins.

  15. No-Oven, No-Autoclave, Composite Processing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) proposes to continue the efforts from the 2010 NASA SBIR Phase I topic X5.03, "No-Oven, No-Autoclave (NONA) Composite...

  16. Flash autoclave settings may influence eradication but not presence of well-established biofilms on orthopaedic implant material.

    Science.gov (United States)

    Williams, Dustin L; Taylor, Nicholas B; Epperson, Richard T; Rothberg, David L

    2017-10-04

    Flash autoclaving is one of the most frequently utilized methods of sterilizing devices, implants or other materials. For a number of decades, it has been common practice for surgeons to remove implantable devices, flash autoclave and then reimplant them in a patient. Data have not yet indicated the potential for biofilms to survive or remain on the surface of orthopaedic-relevant materials following flash autoclave. In this study, monomicrobial and polymicrobial biofilms were grown on the surface of clinically relevant titanium materials and exposed to flash autoclave settings that included varying times and temperatures. Data indicated that when the sterilization and control temperatures of an autoclave were the same, biofilms were able to survive flash autoclaving that was performed for a short duration. Higher temperature and increased duration rendered biofilms non-viable, but none of the autoclave settings had the ability to remove or disperse the presence of biofilms from the titanium surfaces. These findings may be beneficial for facilities, clinics, or hospitals to consider if biofilms are suspected to be present on materials or devices, in particular implants that have had associated infection and are considered for re-implantation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Pilot scale high solids anaerobic digestion of steam autoclaved municipal solid waste (MSW) pulp

    Science.gov (United States)

    Steam autoclaving is an efficient method for the separation and recovery of nearly all organics from MSW, yet a reliable alternative outlet for the large volume of organics produced has not yet been successfully demonstrated. The material produced by the autoclave contains a high concentration of s...

  18. Autoclave Testing on Zirconium Alloy Materials

    International Nuclear Information System (INIS)

    Hoffmann, Petra-Britt; Sell, Hans-Juergen; Garzarolli, Friedrich

    2012-09-01

    The corrosion of Zirconium components like fuel rod claddings and spacer grids is limiting lifetime and duty of these components. In Pressurized and Boiling Water Reactors (PWR and BWR), different corrosion phenomena are of interest. Although in-pile experience is the final proof for a material development, significant experience was gained by autoclave tests, trying to simulate in-pile conditions but reducing time for return of experience by increased temperatures. For PWR application, the uniform corrosion is studied in water at up to 370 deg. C and in high pressure steam at 400 deg. C, and for BWR, the nodular corrosion is studied in high pressure steam at 500-520 deg. C. Particular attention has to be given to the corrosion media, because oxidative traces in the water can significantly affect the corrosion response. An extensive air removal is thus important for all corrosion tests. This links to the different water chemistry conditions that have been investigated as separate effects otherwise difficult to separate under in-pile conditions. Uniform corrosion in 350 deg. C water is usually a cyclic process with repeated rate transitions. In addition, at high exposure times an acceleration of corrosion can occur, e.g. for Zr-Sn alloys with a high Sn content. In 400 deg. C steam, corrosion rate decreases somewhat with increasing time. Uniform corrosion rate of Zr alloys depends on their Sn- and Fe+Cr contents as well as on their annealing parameters with a similar trend as in PWR and on their yield strength, however with an opposite trend compared to BWR conditions. Nodular corrosion of BWR alloys depends on the annealing parameter with a similar trend as in PWR and out-of-reactor also significantly on the Fe+Cr content. The hydrogen pickup fraction (HPUF) depends largely on details of the water chemistry and can particularly depend on autoclave degassing and probably also on autoclave contaminations. Thus any HPUF value from out-of- pile corrosion tests is only

  19. Incineration or autoclave? A comparative study in isfahan hospitals waste management system (2010).

    Science.gov (United States)

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad

    2013-03-01

    Medical wastes are among hazardous wastes and their disposal requires special methods prior to landfilling. Medical wastes are divided into infected and non-infected wastes and the infected wastes require treatment. Incineration is one of the oldest methods for treatment of medical wastes, but their usage have faced wide objections due to emission of hazardous gases such as CO2 and CO as well as Carcinogenic gases such as Dioxins and Furans which are generated as a result of incomplete combustion of compositions like PVCs. Autoclave is one the newest methods of medical wastes treatment which works based on wet disinfection. The statistical population in this descriptive, comparative study includes hospitals located in Isfahan city and the sample hospitals were selected randomly. To environmentally evaluate the Autoclave method, TST (time, steam, temperature) and Spore tests were used. Also, samples were made from incinerator's stack gases and their analyses results were compared with WHO standards. TST and spore tests results were negative in all cases indicating the success of treatment process. The comparison of incinerator's stack gases with WHO standards showed the high concentration of CO in some samples indicating the incomplete combustion. Also, the incineration efficiency in some cases was less than 99.5 percent, which is the efficiency criterion according to the administrative regulations of wastes management law of Iran. No needle stick was observed in Autoclave method during the compaction of bags containing wastes, and the handlers were facing no danger in this respect. The comparison of costs indicated that despite higher capital investment for purchasing autoclave, its current costs (e.g. maintenance, etc) are much less than the incineration method. Totally, due to inappropriate operation of incinerators and lack of air pollution control devices, the use of incinerators doesn't seem rational anymore. Yet, despite the inefficiency of autoclaves in

  20. Incineration or Autoclave? A Comparative Study in Isfahan Hospitals Waste Management System (2010)

    Science.gov (United States)

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad

    2013-01-01

    Introduction: Medical wastes are among hazardous wastes and their disposal requires special methods prior to landfilling. Medical wastes are divided into infected and non-infected wastes and the infected wastes require treatment. Incineration is one of the oldest methods for treatment of medical wastes, but their usage have faced wide objections due to emission of hazardous gases such as CO2 and CO as well as Carcinogenic gases such as Dioxins and Furans which are generated as a result of incomplete combustion of compositions like PVCs. Autoclave is one the newest methods of medical wastes treatment which works based on wet disinfection. Methods: The statistical population in this descriptive, comparative study includes hospitals located in Isfahan city and the sample hospitals were selected randomly. To environmentally evaluate the Autoclave method, TST (time, steam, temperature) and Spore tests were used. Also, samples were made from incinerator’s stack gases and their analyses results were compared with WHO standards. Findings: TST and spore tests results were negative in all cases indicating the success of treatment process. The comparison of incinerator’s stack gases with WHO standards showed the high concentration of CO in some samples indicating the incomplete combustion. Also, the incineration efficiency in some cases was less than 99.5 percent, which is the efficiency criterion according to the administrative regulations of wastes management law of Iran. No needle stick was observed in Autoclave method during the compaction of bags containing wastes, and the handlers were facing no danger in this respect. The comparison of costs indicated that despite higher capital investment for purchasing autoclave, its current costs (e.g. maintenance, etc) are much less than the incineration method. Discussion: Totally, due to inappropriate operation of incinerators and lack of air pollution control devices, the use of incinerators doesn’t seem rational anymore

  1. Effect of autoclave devitalization on autograft incorporation and bone morphogenetic protein of tibia in Sprague-Dawley rats

    Directory of Open Access Journals (Sweden)

    Anak A.G.Y. Asmara

    2014-06-01

    Full Text Available Background: Heating process with autoclave is one of limb salvage modalities that are widely used. but the results are not satisfying, due to mechanical bone fragility. However, considering this treatment modality is widely accepted in terms of financial, religion and sociocultural aspects, we conducted a on study rats treated with resection and reconstruction with autoclave heating method to assess bone healing by sequential radiology, histopathologic osteoblasts count, and bone morphogenetic protein (BMP.Methods: Thirty six Sprague-Dawley rats were divided into two groups with one group being the autoclave group and others served as control group. In both groups, the tibial diaphysis was extracted en bloc for 7 mm. All groups were kept for 8 weeks and treated under the same condition except the autoclave group, where the extracted bones were put into autoclave at 134°C for 15 minutes and refixed again with k-wire. We performed radiological examination at 5th and 8th week using Lane and Sandhu radiological score. After extraction, the tibial bones were inspected for histological pattern using Salked modified score, osteoblast quantity counting and BMP-2 values.Results: There were statistically significant diffences between control and autoclave group on radiological score at 5th (5.12 ± 1.6 g vs 3.21 ± 2.42, p = 0.023 and 8th week (6.06 ± 1.71 vs 4.29 ± 2.53, p = 0.040, histological score between groups (6.06 ± 1.14 vs 4.14 ± 1.99, p = 0.005, osteoblast count (p < 0.001, and BMP-2 expression,  respectively.Conclusion: Autoclave recycling autograft lowered the speed of graft incorporation and BMP-2 expression. Therefore, autoclave recycling autograft as a method of limb salvage surgery must be reevaluated and not considered to be applied for treatment in bone malignancy.  

  2. Effect of germination and autoclaving of sprouted finger millet and kidney beans on cyanide content.

    Science.gov (United States)

    Chove, Bernard E; Mamiro, Peter R S

    2010-10-01

    Cyanide contents of locally purchased brown finger millet (Eleusine corocana L. Gaertner) and brown speckled kidney bean seeds (Phaseolus vulgaries var. Rose Coco) were determined using raw, germinated and autoclaved samples. The aim was to establish the extent of cyanide content increase resulting from the germination process and the effectiveness of the autoclaving process on the reduction of cyanide levels in the samples, for safety considerations. Autoclaving was carried out at 121degree C for 20 minutes. It was found that germination increased the cyanide content by 2.11 to 2.14 fold in finger millet for laboratory processed samples. In the case of kidney beans the increment was 1.76 to 1.77 fold for laboratory samples. The increments for field processed samples were in the same range as those for laboratory samples. Autoclaving reduced the cyanide content to between 61.8 and 65.9 % of the original raw contents for finger millet and between 56.6 to 57.8% in the case of kidney beans. The corresponding reductions for field samples were also found to be within the same ranges as the laboratory processed samples. It was concluded that autoclaving significantly reduced the cyanide levels in germinated finger millet and kidney beans.

  3. Quality evaluation of carbonaceous industrial by-products and its effect on properties of autoclave aerated concrete

    Science.gov (United States)

    Fomina, E. V.; Lesovik, V. S.; Fomin, A. E.; Kozhukhova, N. I.; Lebedev, M. S.

    2018-03-01

    Argillite is a carbonaceous industrial by-product that is a potential source in environmentally friendly and source-saving construction industry. In this research, chemical and mineral composition as well as particle size distribution of argillite were studied and used to develop autoclave aerated concrete as partial substitute of quartz sand. Effect of the argillite as a mineral admixture in autoclave aerated concrete was investigated in terms of compressive and tensile strength, density, heat conductivity etc. The obtained results demonstrated an efficiency of argillite as an energy-saving material in autoclave construction composites.

  4. PREPARATION OF ULTRA-LOW VOLUME WEIGHT AUTOCLAVED AERATED CONCRETE

    Directory of Open Access Journals (Sweden)

    Ondrej Koutny

    2016-12-01

    Full Text Available Autoclaved aerated concrete is a modern construction material that gains its popularity especially due to its thermal insulation performance resulting from low volume weight and porous structure with sufficient mechanical strength. Nowadays, there are attempts to use this material for thermal insulation purposes and to replace current systems, which have many disadvantages, mainly concerning durability. The key for improvement of thermal insulation properties is therefore obtaining a material based on autoclaved aerated concrete with extremely low volume weight (below 200 kg/m ³ ensuring good thermal isolation properties, but with sufficient mechanical properties to allow easy manipulation. This material can be prepared by foaming very fine powder materials such as silica fume or very finely ground sand. This paper deals with the possibilities of preparation and summarizes the basic requirements for successful preparation of such a material.

  5. Effect of high-dose irradiation and autoclave treatment on microbial safety and quality of ready-to-eat Bulgogi sauce

    International Nuclear Information System (INIS)

    Park, Jin-Gyu; Song, Beom-Seok; Kim, Jae-Hun; Han, In-Jun; Yoon, Yohan; Chung, Hyung-Wook; Kim, Eun-Jeong; Gao Meixu; Lee, Ju-Woon

    2012-01-01

    In Korea, commercialized sauce for ready-to-eat (RTE) Bulgogi is usually manufactured using heat treatment to ensure that it has a long shelf-life. However, heat treatment may adversely affect the taste and flavor of the sauce, thus, the development of suitable sterilizing methods for RTE sauces is necessary to preserve the quality of the sauce during long storage periods. In this study, total bacterial growth, the viscosity, and the sensory properties of Bulgogi sauce were compared between sterilization with gamma irradiation (0–40 kGy) and autoclave treatment during storage at 35 °C for 90 days. No bacterial growth was observed following irradiation at more than 10 kGy or after autoclave treatment. However, the viscosity and sensory properties of samples gamma-irradiated at above 10 kGy or autoclave-treated were significantly changed, even though autoclave treatment induced a burnt taste and flavor. Therefore, a gamma irradiation of 10 kGy was effective to prepare ready-to-eat Bulgogi sauce with microbial safety and original sensory qualities. - Highlights: ► No bacterial growth in gamma-irradiated Bulgogi sauce ≥10 kGy or autoclaved sample was observed. ► Viscosity of irradiated sample at 40 kGy was similar to that of autoclaved sample. ► Sensory properties of irradiated sample >10 kGy or autoclaved sample deteriorated.

  6. Light curing through glass ceramics: effect of curing mode on micromechanical properties of dual-curing resin cements.

    Science.gov (United States)

    Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta

    2014-04-01

    The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high

  7. Cure Kinetics of Benzoxazine/Cycloaliphatic Epoxy Resin by Differential Scanning Calorimetry

    Science.gov (United States)

    Gouni, Sreeja Reddy

    Understanding the curing kinetics of a thermoset resin has a significant importance in developing and optimizing curing cycles in various industrial manufacturing processes. This can assist in improving the quality of final product and minimizing the manufacturing-associated costs. One approach towards developing such an understanding is to formulate kinetic models that can be used to optimize curing time and temperature to reach a full cure state or to determine time to apply pressure in an autoclave process. Various phenomenological reaction models have been used in the literature to successfully predict the kinetic behavior of a thermoset system. The current research work was designed to investigate the cure kinetics of Bisphenol-A based Benzoxazine (BZ-a) and Cycloaliphatic epoxy resin (CER) system under isothermal and nonisothermal conditions by Differential Scanning Calorimetry (DSC). The cure characteristics of BZ-a/CER copolymer systems with 75/25 wt% and 50/50 wt% have been studied and compared to that of pure benzoxazine under nonisothermal conditions. The DSC thermograms exhibited by these BZ-a/CER copolymer systems showed a single exothermic peak, indicating that the reactions between benzoxazine-benzoxazine monomers and benzoxazine-cycloaliphatic epoxy resin were interactive and occurred simultaneously. The Kissinger method and isoconversional methods including Ozawa-Flynn-Wall and Freidman were employed to obtain the activation energy values and determine the nature of the reaction. The cure behavior and the kinetic parameters were determined by adopting a single step autocatalytic model based on Kamal and Sourour phenomenological reaction model. The model was found to suitably describe the cure kinetics of copolymer system prior to the diffusion-control reaction. Analyzing and understanding the thermoset resin system under isothermal conditions is also important since it is the most common practice in the industry. The BZ-a/CER copolymer system with

  8. Influence of addition of calcium sulfate dihydrate on drying of autoclaved aerated concrete

    Science.gov (United States)

    Małaszkiewicz, Dorota; Chojnowski, Jacek

    2017-11-01

    The quality of the autoclaved aerated concrete (AAC) strongly depends on the chemical composition of the raw materials, as well as on the process of the hydrothermal reaction during autoclaving. Performance parameters depend on material structure: fine micron-scale matrix porosity generated by the packing of thin tobermorite plates and coarse aeration pores arising from the foaming of wet mix. In this study the binder varied in calcium sulfate dihydrate (CaSO4ṡ2H2O) content. Five series of AAC specimens were produced, with gypsum content 0; 0.55; 1.15; 2.3 and 3.5% of dry mass respectively. AAC units were produced in UNIPOL technology. The study presents experimental results of AAC moisture stabilization. The initial moisture content was determined directly after autoclaving. Slower drying process was observed for samples containing over 2% of gypsum. Whereas other performance parameters, compressive and tensile strength, as well as water absorption and capillary rise, were significantly better comparing to the reference AAC samples.

  9. Autoclave Sterilization of PEDOT:PSS Electrophysiology Devices.

    Science.gov (United States)

    Uguz, Ilke; Ganji, Mehran; Hama, Adel; Tanaka, Atsunori; Inal, Sahika; Youssef, Ahmed; Owens, Roisin M; Quilichini, Pascale P; Ghestem, Antoine; Bernard, Christophe; Dayeh, Shadi A; Malliaras, George G

    2016-12-01

    Autoclaving, the most widely available sterilization method, is applied to poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) electrophysiology devices. The process does not harm morphology or electrical properties, while it effectively kills E. coli intentionally cultured on the devices. This finding paves the way to widespread introduction of PEDOT:PSS electrophysiology devices to the clinic. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The use of solar energy for powering a portable autoclave.

    Science.gov (United States)

    Dravid, M N; Chandak, A; Phute, S U; Khadse, R K; Adchitre, H R; Kulkarni, S D

    2012-04-01

    Climate change and the depletion of fossil fuels have forced the developed world to look for clean energy alternatives. Solar cooking is developing in Asian and African countries blessed with ample sun, but is still at an early stage. A portable autoclave was developed in India using this technology. The Prince-40 Concentrator provided adequate capacity to autoclave culture media and treat biomedical waste in a small laboratory set-up, and could save electricity worth Rs. 15,000 (188.10 GBP)/year or LPG worth Rs. 37,500 (470.25 GBP)/year. This technology would be of immense use in health centres in rural areas with frequent power cuts or no power supply. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  11. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles.

    Science.gov (United States)

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J

    2013-07-16

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.

  12. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles

    Science.gov (United States)

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D.; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J.

    2013-01-01

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator. PMID:23836642

  13. Dynamic Mechanical Analysis of E-Beam and Thermally Curable IPN Thermosets

    National Research Council Canada - National Science Library

    Jensen, Robert

    2002-01-01

    .... E-beam curing of composites and adhesives offers advantages, such as reduced cure shrinkages, over traditional autoclave processing by curing multiple resins through the thickness for thick-section...

  14. Effect of multiple autoclave cycles on the surface roughness of HyFlex CM and HyFlex EDM files: an atomic force microscopy study.

    Science.gov (United States)

    Yılmaz, K; Uslu, G; Özyürek, T

    2018-02-13

    To compare the effect of autoclave cycles on the surface topography and roughness of HyFlex CM and HyFlex EDM instruments using atomic force microscopy (AFM) analysis. Eight new files of each brand were subdivided into four subgroups (n = 2/each subgroup). One group was allocated as the control group and not subjected to autoclave sterilization. The other three groups were subjected to different numbers (1, 5, and 10) of autoclave sterilization cycles. After the cycle instruments were subjected to AFM analysis. Roughness average (Ra) and the root mean square (RMS) values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way ANOVA and post hoc Tamhane tests at 5% significant level. The lowest Ra and RMS values were observed in the HyFlex EDM files that served as the control and in those subjected to a single cycle of autoclave sterilization (P cycles of autoclave sterilization (P cycles, whereas those of the HyFlex EDM group exhibited a significant change after five autoclave cycles (P cycles of autoclave sterilization. In contrast, the surface roughness values of the HyFlex CM files did not increase until 10 cycles of autoclave sterilization. Present study indicated that autoclave sterilization negatively affected the surface roughness of the tested NiTi files.

  15. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process

    Science.gov (United States)

    McDonald, Erin E.; Wallace, Landon F.; Hickman, Gregory J. S.; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testingwas used to study the in-plane shear performance of [±45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination. PMID:24688435

  16. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process

    Directory of Open Access Journals (Sweden)

    Erin E. McDonald

    2014-01-01

    Full Text Available The interlaminar shear response is studied for carbon nanofiber (CNF modified out-of-autoclave-vacuum-bag-only (OOA-VBO carbon fiber reinforced plastic (CFRP. Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testingwas used to study the in-plane shear performance of [±45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination.

  17. Manufacturing and shear response characterization of carbon nanofiber modified CFRP using the out-of-autoclave-vacuum-bag-only cure process.

    Science.gov (United States)

    McDonald, Erin E; Wallace, Landon F; Hickman, Gregory J S; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testing was used to study the in-plane shear performance of [± 45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination.

  18. HYACE - a novel autoclave coring equipment for systematic offshore gashydrate sampling

    Energy Technology Data Exchange (ETDEWEB)

    Amann, H.; Hohnberg, H.J.; Reinelt, R. [Technische Univ. Berlin (Germany). Inst. fuer Schiffs- und Meerestechnik, Fachgebiet Maritime Technik

    1997-12-31

    HYACE, the acronym for hydrate autoclave coring equipment system, is a research and development project sponsored by the European Union`s Marine Science and Technology Programme MAST. The project was to have started in the fourth quarter of 1997 and is to last 30 months. The main activities of the project will be in the development and prototype testing of an innovative down-hole controlled autoclave coring system. This system will be designed to sample marine sediments at extended down-hole conditions maintaining as many parameters constant as possible. In general terms, the main aim of the project is to contribute to systematic ground truthing of a necessarily ephemeral phenomenon of growing global significance: sampling and analysis of gas hydrates in their natural environment. (MSK)

  19. CURING EFFICIENCY OF DUAL-CURE RESIN CEMENT UNDER ZIRCONIA WITH TWO DIFFERENT LIGHT CURING UNITS

    Directory of Open Access Journals (Sweden)

    Pınar GÜLTEKİN

    2015-04-01

    Full Text Available Purpose: Adequate polymerization is a crucial factor in obtaining optimal physical properties and a satisfying clinical performance from composite resin materials. The aim of this study was to evaluate the polymerization efficiency of dual-cure resin cement cured with two different light curing units under zirconia structures having differing thicknesses. Materials and Methods: 4 zirconia discs framework in 4 mm diameter and in 0.5 mm, 1 mm and 1.5 mm thickness were prepared using computer-aided design system. One of the 0.5 mm-thick substructures was left as mono-layered whereas others were layered with feldspathic porcelain of same thickness and ceramic samples with 4 different thicknesses (0.5, 1, 1.5 and 2.0 mm were prepared. For each group (n=12 resin cement was light cured in polytetrafluoroethylene molds using Light Emitting Diode (LED or Quartz-Tungsten Halogen (QHT light curing units under each of 4 zirconia based discs (n=96. The values of depth of cure (in mm and the Vickers Hardness Number values (VHN were evaluated for each specimen. Results: The use of LED curing unit produced a greater depth of cure compared to QTH under ceramic discs with 0.5 and 1 mm thickness (p<0.05.At 100μm and 300 μm depth, the LED unit produced significantly greater VHN values compared to the QTH unit (p<0.05. At 500 μm depth, the difference between the VHN values of LED and QTH groups were not statistically significant. Conclusion: Light curing may not result in adequate resin cement polymerization under thick zirconia structures. LED light sources should be preferred over QTH for curing dual-cure resin cements, especially for those under thicker zirconia restorations.

  20. Preparation of TiO2 thin films from autoclaved sol containing needle-like anatase crystals

    International Nuclear Information System (INIS)

    Ge Lei; Xu Mingxia; Fang Haibo; Sun Ming

    2006-01-01

    A new inorganic sol-gel method was introduced in this paper to prepare TiO 2 thin films. The autoclaved sol with needle-like anatase crystals was synthesized using titanyl sulfate (TiOSO 4 ) and peroxide (H 2 O 2 ) as starting materials. The transparent anatase TiO 2 thin films were prepared on glass slides from the autoclaved sol by sol-gel dip-coating method. A wide range of techniques such as Fourier transform infrared transmission spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), scanning electron microscopes, X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrum were applied to characterize the autoclaved sol and TiO 2 thin films. The results indicate that the autoclaved sol is flavescent, semitransparent and stable at room temperature. The anatase crystals of TiO 2 films connect together to form net-like structure after calcined and the films become uniform with increasing heating temperature. The surface of the TiO 2 films contain not only Ti and O elements, but also a small amount of N and Na elements diffused from substrates during heat treatment. The TiO 2 films are transparent and their maximal light transmittances exceed 80% under visible light region

  1. Application of glass recycling by-products in Autoclaved Aerated Concrete

    NARCIS (Netherlands)

    Straub, Chr.; Florea, M.V.A.; Brouwers, H.J.H.; Schmidt, Wolfram; Msinjili, Nsesheye Susan

    Autoclaved Aerated Concrete (AAC) is a construction material with a large range of applications. In order to generate more sustainable materials, the possibility of the incorporation of by-products and left-over-materials from various processes is investigated. The focus of this research is the

  2. Pre-cure freezing affects proteolysis in dry-cured hams.

    Science.gov (United States)

    Bañón, S; Cayuela, J M; Granados, M V; Garrido, M D

    1999-01-01

    Several parameters (sodium chloride, moisture, intramuscular fat, total nitrogen, non-protein nitrogen, white precipitates, free tyrosine, L* a* b* values and acceptability) related with proteolysis during the curing were compared in dry-cured hams manufactured from refrigerated and frozen/thawed raw material. Pre-cure freezing increased the proteolysis levels significantly (pcured meat, although it does not significantly affect the sensory quality of the dry-cured ham.

  3. A Method for Out-of-autoclave Fabrication of High Fiber Volume Fraction Fiber Reinforced Polymer Composites

    Science.gov (United States)

    2012-07-01

    5 Figure 5. (a) (Left) Results showing optimal compaction of an E-glass (similar compaction to S-Glass) laminate at approximately 350...repeatability and a lack in dimensional tolerances versus prepreg composites fabricated in an autoclave. However, recent advancements in process understanding...structure, and while high fvf composite laminates are attainable in autoclave processing, these techniques may not be cost effective (10–15). The out

  4. Effect of autoclave processing and gamma irradiation on apparent ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effect of autoclaving and different doses of gamma irradiation on the apparent ileal digestibility of amino acids of cottonseed meal in male broiler breeders. Samples were irradiated in a gamma cell at total doses of 15, 30 and 45 kGy. One package (control) was left at room ...

  5. Investigation of CFRP in aerospace field and improvement of the molding accuracy by using autoclave

    Science.gov (United States)

    Minamisawa, Takunori

    2017-07-01

    In recent years, CFRP (Carbon Fiber Reinforced Plastic) has come to be used in a wide range of industries such as sporting goods, fishing tackle and cars because it has a large number of advantages. In this situation, even the passenger aircraft industry also pays attention to the material. CFRP is an ideal material for airplanes because it has a lot of advantages such as light weight and strong, chemical resistance and corrosion resistance. Generally, autoclave is used for molding CFRP in the field of aerospace engineering. Autoclave is a machine that can mold a product by heating and pressurizing material in an evacuated bag. What is examined in this paper is an observation on handmade CFRP by a polarizing microscope. In addition, mechanical characteristics were investigated. Furthermore, an improvement of accuracy in CFRP molding using an autoclave is suggested from viewpoint of thermodynamics.

  6. Corrosion behaviour of zirconium alloys in the autoclaves of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Bordoni, Roberto A.; Olmedo, Ana M.; Villegas, Marina; Miyagusuku, Marcela; Maroto, Alberto J. G.; Sainz, Ricardo A.; Fernandez, Alberto N.; Allemandi, Walter D.

    1999-01-01

    The corrosion behaviour of zirconium alloys coupons attached to the holders of the autoclaves located out of core in the primary circuit of Embalse nuclear power plant is described. The Zr-2.5 Nb coupons of the autoclaves at the higher temperature (305 C degrees) and the Zry-4 coupons of the autoclaves at 265 and 305 C degrees installed in 1988 had a normal corrosion behaviour, after 3500 of full power days. While, the Zr-2.5 Nb coupons, at 265 C degrees, showed the presence of white oxide nuclei and a weight gain indicating an abnormal corrosion behaviour which might be attributed to the material microstructure. Complementary tests, made in the period September 1991-April 1993, showed that the abnormal corrosion behaviour observed for the Canadian coupons installed in 1983 was due to a surface contamination of the Zry-4 coupons and due to the microstructure of the Zr-2.5 Nb coupons. The normal corrosion behaviour for both alloys installed in 1986, showed that the resin ingress to the primary circuit that occurred in 1988, do not affect the performance of these materials. (author)

  7. Cure of skin cancer. Surgical cure of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors studied the cure of skin cancer in particular the surgical cure of skin cancer. They noted that surgical cure of skin cancer is remain one of the primary and most important methods in treatment of skin cancer

  8. Autoclaved lightweight aerated concrete. ; Manufacture/performance/application. Keiryo kiho concrete. ; Sono seiho kino yoto

    Energy Technology Data Exchange (ETDEWEB)

    Isome, Y. (Asahi Chemical Industry Co. Ltd., Tokyo (Japan))

    1993-10-20

    This paper reviews the manufacturing process, performance, and application of autoclaved lightweight aerated concrete (ALC). ALC is produced by a two-step process composed of molding and autoclaving, using quartz, lime, portland cement, and small quantities of aluminum as raw materials. In the molding step, aluminum reacts with alkali to generate hydrogen gas, thus forming air pores in the slurry. On the other hand, calcium silicate hydrates are produced by the reaction of lime and portland cement with water, resulting in formation of voids in the intergranular spaces vacated by the reacting water. In the autoclaving step, tobermorite (crystalline calcium silicate hydrates) is formed by the reaction of quartz and calcium silicate hydrates under high temperature and high pressure steam, and the intergranular voids are reduced to micropores in size as a result of the hydrothermal reaction. The air-pore and micropore structure adds unique physical properties to the ALC, such as fire resistance, heat insulation, lightness and strength. ALC is widely used as a useful material for homes and multistory buildings. 10 refs., 10 figs., 1 tab.

  9. Self-curing concrete with different self-curing agents

    Science.gov (United States)

    Gopala krishna sastry, K. V. S.; manoj kumar, Putturu

    2018-03-01

    Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.

  10. Validation of the efficacy of a solar-thermal powered autoclave system for off-grid medical instrument wet sterilization.

    Science.gov (United States)

    Kaseman, Tremayne; Boubour, Jean; Schuler, Douglas A

    2012-10-01

    This work describes the efficacy of a solar-thermal powered autoclave used for the wet sterilization of medical instruments in off-grid settings where electrical power is not readily available. Twenty-seven trials of the solar-thermal powered system were run using an unmodified non-electric autoclave loaded with a simulated bundle of medical instruments and biological test agents. Results showed that in 100% of the trials the autoclave achieved temperatures in excess of 121°C for 30 minutes, indicator tape displayed visible reactions to steam sterilization, and biological tests showed that microbial agents had been eliminated, in compliance with the Centers for Disease Control and Prevention requirements for efficacious wet sterilization.

  11. Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete

    NARCIS (Netherlands)

    Yuan, B.; Straub, C.; Segers, S.; Yu, Q.; Brouwers, H.J.H.

    2017-01-01

    This paper aims to study the suitability of fully replacing cement by sodium carbonate activated slag in producing autoclaved aerated concrete (AAC). The material properties of the product are characterized in terms of green strength development, mechanical properties, pore related properties such

  12. Scanning electron microscopy of autoclaved aerated concrete with supplementary raw materials

    NARCIS (Netherlands)

    Straub, C.; Florea, M.V.A.; Brouwers, H.J.H.; Nisperos, Arturo G.; Pöllmann, Herbert

    Microscopy is a key analysis technology for the understanding of the achieved properties of building materials. In the case of Autoclaved Aerated Concrete (AAC) it is even more important due to the phase transformation during the hydrothermal hardening. The incorporation of substitution materials in

  13. Carbon Foam Self-Heated Tooling for Out-of-Autoclave Composites Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASA's need for non-autoclave composites manufacture. The Constellation program, including the Ares V launch vehicle, will require very...

  14. Effect of autoclave devitalization on autograft incorporation and bone morphogenetic protein of tibia in Sprague-Dawley rats

    OpenAIRE

    Anak A.G.Y. Asmara; Achmad F. Kamal; Nurjati C. Siregar; Marcel Prasetyo

    2014-01-01

    Background: Heating process with autoclave is one of limb salvage modalities that are widely used. but the results are not satisfying, due to mechanical bone fragility. However, considering this treatment modality is widely accepted in terms of financial, religion and sociocultural aspects, we conducted a on study rats treated with resection and reconstruction with autoclave heating method to assess bone healing by sequential radiology, histopathologic osteoblasts count, and bone morphogeneti...

  15. An autoclave system for uranium oxide dissolution experiments

    International Nuclear Information System (INIS)

    Nykyri, Mikko

    1985-05-01

    According to the decision in principle of the Council of State of Finland the nuclear energy producers must provide preparedness for carrying out the final disposal of spent nuclear fuel in Finland. By the present principal concept the spent fuel will be disposed deep into the granitic bedrock. A parameter needed by risk analysis models is the dissolution rate of the uranium oxide matrix in the fuel pellets. In order to approach conditions prevailing deep in the groundwater, and autoclave system for dissolution experiments was developed at the Technical Research Centre of Finland. The low oxygen content and high pressure at elevated temperatures are simulated in the system. 20 MPa and 100 deg C are the upper operation limits of pressure and temperature. Water can be changed in the experiment autoclave without remarkable pressure and temperature variations. This has been arranged by using three pressure vessels: a supply vessel, a dissolution vessel and a depletion vessel. The extreme vessels serve pressure balancing purposes during water exchange. The water is deoxygenated during a preparation phase in the supply vessel by flushing it with nitrogen gas. Polytetrafluoroethylene is the principal material in contact with the water. A redox electrode couple was developed for potential measurements inside the dissolution vessel. The reference electrode is of Ag/AgCl-type with saturated KC1 electrolyte. A platinum wire operates as a measuring electrode

  16. [Influence of autoclave sterilization on dimensional stability and detail reproduction of 5 additional silicone impression materials].

    Science.gov (United States)

    Xu, Tong-kai; Sun, Zhi-hui; Jiang, Yong

    2012-03-01

    To evaluate the dimensional stability and detail reproduction of five additional silicone impression materials after autoclave sterilization. Impressions were made on the ISO 4823 standard mold containing several marking lines, in five kinds of additional silicone. All the impressions were sterilized by high temperature and pressure (135 °C, 212.8 kPa) for 25 min. Linear measurements of pre-sterilization and post-sterilization were made with a measuring microscope. Statistical analysis utilized single-factor analysis with pair-wise comparison of mean values when appropriate. Hypothesis testing was conducted at alpha = 0.05. No significant difference was found between the pre-sterilization and post-sterilization conditions for all locations, and all the absolute valuse of linear rate of change less than 8%. All the sterilization by the autoclave did not affect the surfuce detail reproduction of the 5 impression materials. The dimensional stability and detail reproduction of the five additional silicone impression materials in the study was unaffected by autoclave sterilization.

  17. Effect of high-dose irradiation and autoclave treatment on microbial safety and quality of ready-to-eat Bulgogi sauce

    Science.gov (United States)

    Park, Jin-Gyu; Song, Beom-Seok; Kim, Jae-Hun; Han, In-Jun; Yoon, Yohan; Chung, Hyung-Wook; Kim, Eun-Jeong; Gao, Meixu; Lee, Ju-Woon

    2012-08-01

    In Korea, commercialized sauce for ready-to-eat (RTE) Bulgogi is usually manufactured using heat treatment to ensure that it has a long shelf-life. However, heat treatment may adversely affect the taste and flavor of the sauce, thus, the development of suitable sterilizing methods for RTE sauces is necessary to preserve the quality of the sauce during long storage periods. In this study, total bacterial growth, the viscosity, and the sensory properties of Bulgogi sauce were compared between sterilization with gamma irradiation (0-40 kGy) and autoclave treatment during storage at 35 °C for 90 days. No bacterial growth was observed following irradiation at more than 10 kGy or after autoclave treatment. However, the viscosity and sensory properties of samples gamma-irradiated at above 10 kGy or autoclave-treated were significantly changed, even though autoclave treatment induced a burnt taste and flavor. Therefore, a gamma irradiation of 10 kGy was effective to prepare ready-to-eat Bulgogi sauce with microbial safety and original sensory qualities.

  18. [The influence of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 nickel-titanium rotary instruments].

    Science.gov (United States)

    Li, Xiang-fen; Zheng, Ping; Xu, Li; Su, Qin

    2015-12-01

    To investigate the effects of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 types of nickel-titanium rotary instruments (K3, Mtwo, ProTaper). Three brands of NiTi rotary endodontic instruments of the same size (tip diameter 0.25 mm and constant 0.06 taper) were selected: K3, Mtwo and Protaper (F2). 24 instruments for each brand were used to evaluate the effects of autoclave sterilization on inner character in the as-received condition and after subjection to 0, 1, 5, and 10 sterilization cycles (6 for each group). Time to fracture (TtF) from the start of the test to the moment of file breakage and the length of the fractured fragment were recorded. Means and standard deviations of TtF and fragment length were calculated. The data was analyzed with SPSS13.0 software package. Another 12 NiTi rotary instruments for each brand were used, 6 subjected to 10 autoclave sterilization cycles and the other as control. Scanning electron microscope was used to observe the changes in surface topography and inner character. For cyclic fatigue resistance, when sterilization was not performed, K3 showed the highest value of TtF means and ProTaper the lowest. The differences between each brand were statistically significant (Pinstruments were intensified greatly after 10 cycles of sterilization. Cycle fatigue resistance is different among instruments of different brands. Autoclave sterilization may increase fatigue resistance of the 3 brands. Autoclave sterilization may increase the surface roughness and inner defects in cross section.

  19. EVALUATION OF DIELECTRIC CURING MONITORING INVESTIGATING LIGHT-CURING DENTAL FILLING COMPOSITES

    Directory of Open Access Journals (Sweden)

    Johannes Steinhaus

    2011-05-01

    Full Text Available The aim of this study is the evaluation of a dielectric analysis (DEA method monitoring the curing behaviour of a light curing dental filling material in real-time. The evaluation is to extract the influence of light intensity on the photo-curing process of dental composite filling materials. The intensity change is obtained by measuring the curing process at different sample depth. It could be shown that increasing sample thickness, and therefore exponentially decreasing light intensity, causes a proportional decrease in the initial curing rate. Nevertheless, the results give rise to the assumption that lower illumination intensities over a long period cause higher overall conversion, and thus better mechanical properties. This would allow for predictions of the impact of different curing-rates on the final mechanical properties.

  20. Light-Cured Self-Etch Adhesives Undergo Hydroxyapatite-Triggered Self-Cure

    Science.gov (United States)

    Liu, Y.; Bai, X.; Liu, Y.W.; Wang, Y.

    2015-01-01

    Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process. PMID:26635279

  1. Light-Cured Self-Etch Adhesives Undergo Hydroxyapatite-Triggered Self-Cure.

    Science.gov (United States)

    Liu, Y; Bai, X; Liu, Y W; Wang, Y

    2016-03-01

    Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process. © International & American Associations for Dental Research 2015.

  2. SureCure{sup (R)}-A new material to reduces curing time and improve curing reproducibility of lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Boden, David P.; Loosemore, Daniel V.; Botts, G. Dean [Hammond Lead Products Division, Hammond Group Inc., 2323 165th Street, Hammond, IN 46320 (United States)

    2006-08-25

    This paper introduces a technology that considerably reduces the time to cure the positive plates of lead-acid batteries. In each of several full-scale trials at automotive and industrial battery manufacturers, the simple replacement of 1wt.% of leady oxide with finely-divided tetrabasic lead sulfate (SureCure(TM) by Hammond Group Inc.) is shown to accelerate significantly the conversion of tribasic lead sulfate (3BS) to tetrabasic lead sulfate (4BS) in the curing process while improving crystal structure and reproducibility. Shorter curing times result in reduced labour and energy costs, as well as reduced fixed (curing chambers and plant footprint) and working (plate inventory) capital investment. (author)

  3. Effect of autoclave sterilization on the cyclic fatigue resistance of thermally treated Nickel-Titanium instruments.

    Science.gov (United States)

    Zhao, D; Shen, Y; Peng, B; Haapasalo, M

    2016-10-01

    To compare the cyclic fatigue resistance of HyFlex CM, Twisted Files (TF), K3XF, Race, and K3, and evaluate the effect of autoclave sterilization on the cyclic fatigue resistance of these instruments both before and after the files were cycled. Five types of NiTi instruments with similar size 30, .06 taper were selected: HyFlex CM, TF, K3XF, Race and K3. Files were tested in a simulated canal with a curvature of 60° and a radius of 3 mm. The number of cycles to failure of each instrument was determined to evaluate cyclic fatigue resistance. Each type of instruments was randomly divided into four experimental groups: group 1 (n = 20), unsterilized instruments; group 2 (n = 20), pre-sterilized instruments subjected to 10 cycles of autoclave sterilization; group 3 (n = 20), instruments tested were sterilized at 25%, 50% and 75% of the mean cycles to failure as determined in group 1, and then cycled to failure; group 4 (n = 20), instruments cycled in the same manner as group 3 but without sterilization. The fracture surfaces of instruments were examined by scanning electron microscopy (SEM). HyFlex CM, TF and K3XF had significantly higher cyclic fatigue resistance than Race and K3 in the unsterilized group 1 (P Autoclave sterilization significantly increased the MCF of HyFlex CM and K3XF (P Autoclaving extended the cyclic fatigue life of HyFlex CM and K3XF. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Grafting and curing

    International Nuclear Information System (INIS)

    Garnett, J.L.; Loo-Teck Ng; Visay Viengkhou

    1998-01-01

    Progress in radiation grafting and curing is briefly reviewed. The two processes are shown to be mechanistically related. The parameters influencing yields are examined particularly for grafting. For ionising radiation grafting systems (EB and gamma ray) these include solvents, substrate and monomer structure, dose and dose-rate, temperature and more recently role of additives. In addition, for UV grafting, the significance of photoinitiators is discussed. Current applications of radiation grafting and curing are outlined. The recent development of photoinitiator free grafting and curing is examined as well as the potential for the new excimer laser sources. The future application of both grafting and curing is considered, especially the significance of the occurrence of concurrent grafting during cure and its relevance in environmental considerations

  5. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty; M., El-Kashef; E., Fahmy; M., Abou-Zeid; M., Haroun

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal

  6. Effect of cure cycle on curing process and hardness for epoxy resin

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available A 3-dimensional finite element model is developed to simulate and analyze the temperature and degree of cure field of epoxy casting part during cure process. The present model based on general finite element software ABAQUS is verified by literature example and experimental data. The numerical results show good agreement with literature example and measured data, and are even more accurate than the simulation of literature. After modeling successfully, the influence of temperature cure cycle ramps have on the temperature and degree of cure gradient is investigated. Moreover, the effect of non-uniform temperature and degree of cure field within epoxy casting part on hardness is demonstrated. The present model provides an accurate and novel method that allows further insight into the process of cure for epoxy resin.

  7. Effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain.

    Science.gov (United States)

    Li, Kai Chun; Waddell, J Neil; Prior, David J; Ting, Stephanie; Girvan, Liz; van Vuuren, Ludwig Jansen; Swain, Michael V

    2013-11-01

    To investigate the effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain. The strain energy release rate using a four-point bending stable fracture test was evaluated for two different porcelains [leucite containing (VM9) and glass (Zirox) porcelain] veneered to zirconia. Prior to veneering the zirconia had been subjected to 0 (control), 1, 5, 10 and 20 autoclave cycles. The specimens were manufactured to a total bi-layer dimension of 30 mm × 8 mm × 3 mm. Subsequent scanning electron microscopy/energy dispersive spectrometry, electron backscatter diffraction and X-ray diffraction analysis were performed to identify the phase transformation and fracture behavior. The strain energy release rate for debonding of the VM9 specimens were significantly higher (pautoclave cycles lowered the strain energy release rate significantly (pautoclave cycles between 5 and 20. The monoclinic phase reverted back to tetragonal phase after undergoing conventional porcelain firing cycles. EBSD data showed significant changes of the grain size distribution between the control and autoclaved specimen (cycle 20). Increasing autoclave cycles only significantly decreased the adhesion of the VM9 layered specimens. In addition, a conventional porcelain firing schedule completely reverted the monoclinic phase back to tetragonal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres.

    Science.gov (United States)

    Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S

    2014-02-15

    The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Influence of autoclave sterilization on the surface parameters and mechanical properties of six orthodontic wires.

    Science.gov (United States)

    Pernier, C; Grosgogeat, B; Ponsonnet, L; Benay, G; Lissac, M

    2005-02-01

    Orthodontic wires are frequently packaged in individual sealed bags in order to avoid cross-contamination. The instructions on the wrapper generally advise autoclave sterilization of the package and its contents if additional protection is desired. However, sterilization can modify the surface parameters and the mechanical properties of many types of material. The aim of this research was to determine the influence of one of the most widely used sterilization processes, autoclaving (18 minutes at 134 degrees C, as recommended by the French Ministry of Health), on the surface parameters and mechanical properties of six wires currently used in orthodontics (one stainless steel alloy: Tru-Chrome RMO; two nickel-titanium shape memory alloys: Neo Sentalloy and Neo Sentalloy with Ionguard GAC; and three titanium-molybdenum alloys: TMA(R) and Low Friction TMA Ormco and Resolve GAC). The alloys were analysed on receipt and after sterilization, using surface structure observation techniques, including optical, scanning electron and atomic force microscopy and profilometry. The mechanical properties were assessed by three-point bending tests. The results showed that autoclave sterilization had no adverse effects on the surface parameters or on the selected mechanical properties. This supports the possibility for practitioners to systematically sterilize wires before placing them in the oral environment.

  10. Technological parameters influence on the non-autoclaved foam concrete characteristics

    Science.gov (United States)

    Bartenjeva, Ekaterina; Mashkin, Nikolay

    2017-01-01

    Foam concretes are used as effective heat-insulating materials. The porous structure of foam concrete provides good insulating and strength properties that make them possible to be used as heat-insulating structural materials. Optimal structure of non-autoclaved foam concrete depends on both technological factors and properties of technical foam. In this connection, the possibility to manufacture heat-insulation structural foam concrete on a high-speed cavity plant with the usage of protein and synthetic foamers was estimated. This experiment was carried out using mathematical planning method, and in this case mathematical models were developed that demonstrated the dependence of operating performance of foam concrete on foaming and rotation speed of laboratory plant. The following material properties were selected for the investigation: average density, compressive strength, bending strength and thermal conductivity. The influence of laboratory equipment technological parameters on technical foam strength and foam stability coefficient in the cement paste was investigated, physical and mechanical properties of non-autoclaved foam concrete were defined based on investigated foam. As a result of investigation, foam concrete samples were developed with performance parameters ensuring their use in production. The mathematical data gathered demonstrated the dependence of foam concrete performance on the technological regime.

  11. NONA Cure of Prepreg Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CRG's no-oven, no-autoclave (NONA) composite processing technology enables the fabrication of high-performance composite parts without the limitations imposed by...

  12. THE INFLUENCE OF A HALLOYSITE ADDITIVE ON THE PERFORMANCE OF AUTOCLAVED AERATED CONCRETE

    Directory of Open Access Journals (Sweden)

    Z. Owsiak

    2015-03-01

    Full Text Available This paper presents the results from the tests of autoclaved aerated concrete with halloysite as a cement additive. Good pozzolanic properties make it a suitable material to be used as a partial replacement of a portion of cement. Basic physical and mechanical properties of the composites with various mineral content are discussed. The compressive strength test results indicate an increase in strength of the AAC containing 2.5 % and 5 % halloysite relative to the reference specimen. Thermal conductivity and density values remained at the same level. Observations of the microstructure in the scanning electron microscope confirmed the results from the XRD tests. Anhydrite was observed in addition to tobermorite. The results from the tests of the autoclaved aerated concretes in which halloysite was incorporated as 7.5 % and 10 % cement replacement showed an increase in compressive strength, density and thermal conductivity values.

  13. West Angeles Community Development Corporation final technical report on export market feasibility planning and research for the solar medical autoclave

    Energy Technology Data Exchange (ETDEWEB)

    Power, G.D.

    1998-04-20

    This report summarizes core findings from an investigation performed by the staff of West Angeles Community Development Corporation (CDC) regarding the feasibility of marketing the Solar Medical Autoclave (``autoclave``) in South Africa. The investigation was completed during 1997, the period prescribed by the Grant Award made by the U.S. Department of Energy on January 1, 1997, and was monitored by the National Renewable Energy Laboratory.

  14. Radiation curing - a personal perspective

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1992-01-01

    This chapter briefly introduces radiation curing from the personal perspective of the author. Topics covered in this chapter include characteristic features of radiation curing, photoinitiated polymerization -- ultraviolet (UV) curing, and general principles of electron beam (EB) curing. 57 refs., 2 tabs

  15. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  16. Chemical modification of L-glutamine to alpha-amino glutarimide on autoclaving facilitates Agrobacterium infection of host and non-host plants: A new use of a known compound

    Directory of Open Access Journals (Sweden)

    Das Pralay

    2011-05-01

    Full Text Available Abstract Background Accidental autoclaving of L-glutamine was found to facilitate the Agrobacterium infection of a non host plant like tea in an earlier study. In the present communication, we elucidate the structural changes in L-glutamine due to autoclaving and also confirm the role of heat transformed L-glutamine in Agrobacterium mediated genetic transformation of host/non host plants. Results When autoclaved at 121°C and 15 psi for 20 or 40 min, L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (α-amino glutarimide, respectively. Of the two autoclaved products, only α-amino glutarimide facilitated Agrobacterium infection of a number of resistant to susceptible plants. However, the compound did not have any vir gene inducing property. Conclusions We report a one pot autoclave process for the synthesis of 5-oxo proline and α-amino glutarimide from L-glutamine. Xenobiotic detoxifying property of α-amino glutarimide is also proposed.

  17. Use of urinary biomarkers to characterize occupational exposure to BTEX in healthcare waste autoclave operators.

    Science.gov (United States)

    Rafiee, Ata; Delgado-Saborit, Juana Maria; Gordi, Elham; Quémerais, Bernadette; Kazemi Moghadam, Vahid; Lu, Wenjing; Hashemi, Fallah; Hoseini, Mohammad

    2018-08-01

    Urinary benzene, toluene, ethylbenzene, and xylenes (BTEX) can be used as a reliable biomarker of exposure to these pollutants. This study was aimed to investigate the urinary BTEX concentration in operators of healthcare waste (HCW) autoclaves. This cross-sectional study was conducted in selected hospitals in Tehran, Iran between April and June 2017. Twenty operators (as the case group) and twenty control subjects were enrolled in the study. Personal urine samples were collected at the beginning and end of the work shift. Urinary BTEX were measured by a headspace gas chromatography-mass spectrometry (GC/MS). A detailed questionnaire was used to gather information from subjects. Results showed that the median of urinary benzene, toluene, ethylbenzene, m-p xylene, and o-xylene levels in the exposed group were 3.26, 3.36, 0.84, 3.94 and 4.48 μg/L, respectively. With the exception of ethylbenzene, subjects in the exposed group had significantly higher urinary BTEX levels than control group (p autoclave used were also identified as predictors of urinary BTEX concentrations. The healthcare waste treatment autoclaves can be considered as a significant BTEX exposure source for operators working with these treatment facilities. The appropriate personal protection equipment and control measures capable in reducing BTEX exposure should be provided to HCW workers to reduce their exposures to BTEX. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Radiation curing of polymers

    International Nuclear Information System (INIS)

    Randell, D.R.

    1987-01-01

    The contents of this book are: Areas of Application of UV Curing; Areas of Application of EB Curing; Laser Curing of Acrylic Coatings; A User's View of the Application of Radiation Curable Materials; Radiation Curable Offset Inks: A Technical and Marketing Overview; and UV Curable Screen Printing Inks

  19. Autoclaved Tumor Bone for Skeletal Reconstruction in Paediatric Patients: A Low Cost Alternative in Developing Countries

    Directory of Open Access Journals (Sweden)

    Masood Umer

    2013-01-01

    Full Text Available We reviewed in this series forty patients of pediatric age who underwent resection for malignant tumors of musculoskeletal system followed by biological reconstruction. Our surgical procedure for reconstruction included (1 wide en bloc resection of the tumor; (2 curettage of tumor from the resected bone; (3 autoclaving for 8 minutes (4 bone grafting from the fibula (both vascularized and nonvascularized fibular grafts used; (5 reimplantation of the autoclaved bone into the host bone defect and fixation with plates. Functional evaluation was done using MSTS scoring system. At final followup of at least 18 months (mean 29.2 months, 31 patients had recovered without any complications. Thirty-eight patients successfully achieved a solid bony union between the graft and recipient bone. Three patients had surgical site infection. They were managed with wound debridement and flap coverage of the defect. Local recurrence and nonunion occurred in two patients each. One patient underwent disarticulation at hip due to extensive local disease and one died of metastasis. For patients with non-union, revision procedure with bone graft and compression plates was successfully used. The use of autoclaved tumor grafts provides a limb salvage option that is inexpensive and independent of external resources and is a viable option for musculoskeletal tumor management in developing countries.

  20. Radiation curing in the eighties

    International Nuclear Information System (INIS)

    Vrancken, A.

    1984-01-01

    The subject is discussed under the headings: introduction; what is radiation curing; history; radiation curable resins (with properties of products); ultraviolet and electron beam curing; photoinitiation and the ultraviolet light curing process; electron beam curing (initiation; electron beam accelerators); end uses (graphic arts; wood finishing; paper upgrading; adhesives; metal finishing; electronic chemical; floor coatings). (U.K.)

  1. A flexible cure rate model with dependent censoring and a known cure threshold.

    Science.gov (United States)

    Bernhardt, Paul W

    2016-11-10

    We propose a flexible cure rate model that accommodates different censoring distributions for the cured and uncured groups and also allows for some individuals to be observed as cured when their survival time exceeds a known threshold. We model the survival times for the uncured group using an accelerated failure time model with errors distributed according to the seminonparametric distribution, potentially truncated at a known threshold. We suggest a straightforward extension of the usual expectation-maximization algorithm approach for obtaining estimates in cure rate models to accommodate the cure threshold and dependent censoring. We additionally suggest a likelihood ratio test for testing for the presence of dependent censoring in the proposed cure rate model. We show through numerical studies that our model has desirable properties and leads to approximately unbiased parameter estimates in a variety of scenarios. To demonstrate how our method performs in practice, we analyze data from a bone marrow transplantation study and a liver transplant study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate

    Science.gov (United States)

    In this study, the autoclaved organic fraction of municipal solid waste pulp (OFMSW) and the digestate from OFMSW pulp after anaerobic digestion (AD) were processed by hydrothermal carbonization (HTC) at 200, 250, and 300 °C for 30 min and 2 h. The focus of this work was to evaluate the potential fo...

  3. Relaxed Poisson cure rate models.

    Science.gov (United States)

    Rodrigues, Josemar; Cordeiro, Gauss M; Cancho, Vicente G; Balakrishnan, N

    2016-03-01

    The purpose of this article is to make the standard promotion cure rate model (Yakovlev and Tsodikov, ) more flexible by assuming that the number of lesions or altered cells after a treatment follows a fractional Poisson distribution (Laskin, ). It is proved that the well-known Mittag-Leffler relaxation function (Berberan-Santos, ) is a simple way to obtain a new cure rate model that is a compromise between the promotion and geometric cure rate models allowing for superdispersion. So, the relaxed cure rate model developed here can be considered as a natural and less restrictive extension of the popular Poisson cure rate model at the cost of an additional parameter, but a competitor to negative-binomial cure rate models (Rodrigues et al., ). Some mathematical properties of a proper relaxed Poisson density are explored. A simulation study and an illustration of the proposed cure rate model from the Bayesian point of view are finally presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Curing agent for polyepoxides and epoxy resins and composites cured therewith. [preventing carbon fiber release

    Science.gov (United States)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D. (Inventor)

    1981-01-01

    A curing for a polyepoxide is described which contains a divalent aryl radical such as phenylene a tetravalent aryl radical such as a tetravalent benzene radical. An epoxide is cured by admixture with the curing agent. The cured epoxy product retains the usual properties of cured epoxides and, in addition, has a higher char residue after burning, on the order of 45% by weight. The higher char residue is of value in preventing release to the atmosphere of carbon fibers from carbon fiber-epoxy resin composites in the event of burning of the composite.

  5. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier.

    Science.gov (United States)

    Gou, Jingxin; Chao, Yanhui; Liang, Yuheng; Zhang, Ning; He, Haibing; Yin, Tian; Zhang, Yu; Xu, Hui; Tang, Xing

    2016-09-01

    Humid heat autoclaving is a facile technique widely used in the sterilization of injections, but the high temperature employed would destroy nanoparticles composed of biodegradable polymers. The aim of this study was to investigate whether incorporation of medium chain triglycerides (MCT) could stabilize nanoparticles composed of poly (ethylene glycol)-b-polycaprolactone (PEG-b-PCL) during autoclaving (121°C, 10 min). Polymeric nanoparticles with different MCT contents were prepared by dialysis. Block copolymer degradation was studied by GPC. The critical aggregation concentrations of nanoparticles at different temperatures were determined using pyrene fluorescence. The size, morphology and weight averaged molecular weight of pristine/autoclaved nanoparticles were studied using DLS, TEM and SLS, respectively. Drug loading content and release profile were determined using RP-HPLC. The protecting effect of MCT on nanoparticles was dependent on the amount of MCT incorporated. Nanoparticles with high MCT contents, which assumed an emulsion-like morphology, showed reduced block copolymer degradation and particle disassociation after incubation at 100°C for 24 h. Nanoparticles with high MCT content showed the lowest critical aggregation concentration (CAC) under either room temperature or 60°C and the lowest particle concentration among all samples. And the particle size, drug loading content, physical stability and release profile of nanoparticles with high MCT contents remained nearly unchanged after autoclaving. Incorporation of high amount of MCT changed the morphology of PEG-b-PCL based nanoparticles to an emulsion-like structure and the nanoparticles prepared could withstand autoclaving due to improved particle stability and decreased particle concentration caused by MCT incorporation.

  6. Delamination Resistance Of Laminate Made With VBO MTM46/HTS Prepreg

    Directory of Open Access Journals (Sweden)

    Czarnocki Piotr

    2015-09-01

    Full Text Available A laminate made with the Vacuum Bag Only (VBO prepregs can be cured out of autoclave. Because of low curing pressure such a process can result in deterioration of laminate mechanical properties. They can be significantly lower than those displayed by the autoclave cured ones. The resistance against delamination can be among the most affected. Since this property is a week point of all the laminates it was of particular interest. Delamination resistance of unidirectional laminate made from VBO MTM46/HTS(12K prepreg was in the scope of the presented research and the critical values of the Strain Energy Release Rates and the Paris-type equations corresponding to Mode I, Mode II and Mixed-Mode I/II static and cyclic loadings, respectively, were determined.

  7. Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA).

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Großgarten, Mandy; Möginger, Bernhard

    2014-03-01

    During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Residual Stress Developed During the Cure of Thermosetting Polymers: Optimizing Cure Schedule to Minimize Stress.

    Energy Technology Data Exchange (ETDEWEB)

    Kropka, Jamie Michael; Stavig, Mark E.; Jaramillo, Rex

    2016-06-01

    When thermosetting polymers are used to bond or encapsulate electrical, mechanical or optical assemblies, residual stress, which often affects the performance and/or reliability of these devices, develops within the structure. The Thin-Disk-on-Cylinder structural response test is demonstrated as a powerful tool to design epoxy encapsulant cure schedules to reduce residual stress, even when all the details of the material evolution during cure are not explicitly known. The test's ability to (1) distinguish between cohesive and adhesive failure modes and (2) demonstrate methodologies to eliminate failure and reduce residual stress, make choices of cure schedules that optimize stress in the encapsulant unambiguous. For the 828/DEA/GMB material in the Thin-Disk-on-Cylinder geometry, the stress associated with cure is significant and outweighs that associated with cool down from the final cure temperature to room temperature (for measured lid strain, Scure I > I I e+h erma * II) * The difference between the final cure temperature and 1 1 -- the temperature at which the material gels, Tf-T ge i, was demonstrated to be a primary factor in determining the residual stress associated with cure. Increasing T f -T ge i leads to a reduction in cure stress that is described as being associated with balancing some of the 828/DEA/GMB cure shrinkage with thermal expansion. The ability to tune residual stress associated with cure by controlling T f -T ge i would be anticipated to translate to other thermosetting encapsulation materials, but the times and temperatures appropriate for a given material may vary widely.

  9. Effect of curing mode on the hardness of dual-cured composite resin core build-up materials

    Directory of Open Access Journals (Sweden)

    César Augusto Galvão Arrais

    2010-06-01

    Full Text Available This study evaluated the Knoop Hardness (KHN values of two dual-cured composite resin core build-up materials and one resin cement exposed to different curing conditions. Two dual-cured core build-up composite resins (LuxaCore®-Dual, DMG; and FluoroCore®2, Dentsply Caulk, and one dual-cured resin cement (Rely X ARC, 3M ESPE were used in the present study. The composite materials were placed into a cylindrical matrix (2 mm in height and 3 mm in diameter, and the specimens thus produced were either light-activated for 40 s (Optilux 501, Demetron Kerr or were allowed to self-cure for 10 min in the dark (n = 5. All specimens were then stored in humidity at 37°C for 24 h in the dark and were subjected to KHN analysis. The results were submitted to 2-way ANOVA and Tukey's post-hoc test at a pre-set alpha of 5%. All the light-activated groups exhibited higher KHN values than the self-cured ones (p = 0.00001, regardless of product. Among the self-cured groups, both composite resin core build-up materials showed higher KHN values than the dual-cured resin cement (p = 0.00001. LuxaCore®-Dual exhibited higher KHN values than FluoroCore®2 (p = 0.00001 when they were allowed to self-cure, while no significant differences in KHN values were observed among the light-activated products. The results suggest that dual-cured composite resin core build-up materials may be more reliable than dual-cured resin cements when curing light is not available.

  10. Accelerated dry curing of hams.

    Science.gov (United States)

    Marriott, N G; Kelly, R F; Shaffer, C K; Graham, P P; Boling, J W

    1985-01-01

    Uncured pork legs from the right side of 18 carcasses were treated with a Ross Tenderizer and the left side were controls. All 36 samples were dry-cured for 40, 56 or 70 days and evaluated for appearance traits, cure penetration characteristics, microbial load, Kramer Shear force and taste attributes. The tenderization treatment had no effect (P > 0·05) on visual color or cure penetration rate, weight loss before curing, percentage moisture, nitrate level, nitrite level, total plate count, anaerobic counts, psychrotrophic counts, objective and subjective tenderness measurements or juiciness. However, the higher values of salt suggested a possible acceleration of the dry cure penetration process among the tenderized samples. Cure time had no effect (P > 0·05) on percentage moisture, percentage salt, nitrate content, nitrite content, shear force and juiciness. Results suggest a limited effect of the mechanical tenderization process on certain traits related to dry curing and that total process time should be at least 70 days if color stability during cooking is desired. Copyright © 1985. Published by Elsevier Ltd.

  11. Characteristics of Chemical and Functional Properties of Modified Cassava Flour (Manihot esculenta) by Autoclaving-Cooling Cycles Method

    Science.gov (United States)

    Cecep Erwan Andriansyah, Raden; Rahman, Taufik; Herminiati, Ainia; Rahman, Nurhaidar; Luthfiyanti, Rohmah

    2017-12-01

    The modified cassava flour can be made using the method of the autoclaving cooling cycle (AAC). The stability of the warming can be seen from the decreasing value of breakdown viscosity, while the stability of the stirring process can be seen by the decreasing value of setback viscosity. The stages of research include: (1) the making of cassava flour, (2) the making of modified cassava flour by the method of treatment of ACC with a variety of flour concentration and autoclaving time, (3) chemical analysis of the moisture, ash, fat, protein, carbohydrate; The functional properties of the pasting characteristics to the initial temperature of the pasting, peak viscosity, hot paste viscosity, breakdown viscosity, cold paste viscosity and setback viscosity. The result shows that cassava flour modified by treatment of flour concentration 16% and autoclaving time 41 minutes having pasting code and pasting viscosity which is resistant to high temperature. Flour with this character is flour that is expected to maintain the texture of processed products with a paste form that remains stable. Utilization of modified cassava flour by the ACC method can be applied to the pasting product such as noodle and spaghetti, hoping to support for food diversification program to reduce dependence on wheat flour in Indonesia.

  12. Development situation of radiation curing materials

    International Nuclear Information System (INIS)

    He Songhua; Luo Junyi; Liu Zhen

    2010-01-01

    Due to fitting the '4E' principle, radiation curing technology, known as green technology, have shown its own superiority in many applications. It has been rapid developed in China and abroad in recent years, especially ultraviolet/electron beam (UV/EB) radiation curing technology. In order to let the researchers have a general understanding on the radiation curing materials and their development, in this paper a briefly introducing on the related radiation sources, chemical systems, curing mechanism, and the application, the common and difference of ultraviolet curing and electron beam curing has been made. A brief account of development of radiation-curable material in China and the outlook of the development of materials can be found in this paper. At last, we have proposed that the development of radiation curing technology will promote the development of the radiation curing material and benefit in the humanity. (authors)

  13. Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging.

    Science.gov (United States)

    Mota, Yasmine A; Cotes, Caroline; Carvalho, Rodrigo F; Machado, João P B; Leite, Fabíola P P; Souza, Rodrigo O A; Özcan, Mutlu

    2017-10-01

    This study evaluated the influence of two aging procedures on the biaxial flexural strength of yttria-stabilized tetragonal zirconia ceramics. Disc-shaped zirconia specimens and (ZE: E.max ZirCAD, Ivoclar; ZT: Zirkon Translucent, Zirkonzahn) (N = 80) (∅:12 mm; thickness:1.2 mm, ISO 6872) were prepared and randomly divided into four groups (n = 10 per group) according to the aging procedures: C: Control, no aging; M: mechanical cycling (2 × 10 6 cycles/3.8 Hz/200 N); AUT: Aging in autoclave at 134°C, 2 bar for 24 h; AUT + M: Autoclave aging followed by mechanical cycling. After aging, the transformed monoclinic zirconia (%) were evaluated using X-ray diffraction and surface roughness was measured using atomic force microscopy. The average grain size was measured by scanning electron microscopy and the specimens were submitted to biaxial flexural strength testing (1 mm/min, 1000 kgf in water). Data (MPa) were statistically analyzed using 2-way analysis of variance and Tukey's test (α = 0.05). Aging procedures significantly affected (p = 0.000) the flexural strength data but the effect of zirconia type was not significant (p = 0.657). AUT ZT (936.4 ± 120.9 b ) and AUT + M ZE (867.2 ± 49.3 b ) groups presented significantly higher values (p autoclave aging alone or with mechanical aging increased the flexure strength but also induced higher transformation from tetragonal to monoclinic phase in both zirconia materials tested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1972-1977, 2017. © 2016 Wiley Periodicals, Inc.

  14. Curing behavior and thermal properties of trifunctional epoxy resin cured by 4, 4’-diaminodiphenyl sulfone

    Directory of Open Access Journals (Sweden)

    2009-08-01

    Full Text Available A novel trifunctional epoxy resin 4-(3, 3-dihydro-7-hydroxy-2, 4, 4-trimethyl-2H-1-benzopyran-2-yl-1, 3-benzenediol glycidyl (shorted as TMBPBTH-EPOXY was synthesized in our lab to improve thermal performance. Its curing behavior and performance were studied by using 4, 4′-diaminodiphenyl sulfone (DDS as hardener with the mass ratio of 100:41 of TMBPBTH-EPOXY and DDS. The curing activation energy was investigated by differential scanning calorimetry (DSC to be 64.0 kJ/mol estimated by Kissinger’s method and 68.7 kJ/mol estimated by Flynn-Wall-Ozawa method respectively. Thermogravimetric analyzer (TGA was used to investigate the thermal decomposition of cured compounds. It was found that when curing temperature was lower than 180°C, the thermal decomposition temperature increased with the rise of curing temperature and curing time. On the other hand, when the curing temperature was higher than 180°C, the thermal decomposition temperature went down instead with the increase of curing time that might be the over-crosslinking of TMBPBTH-EPOXY and DDS hardener. The glass transition temperature (Tg of cured TMBPBTH-EPOXY/DDS compound determined by dynamic mechanical thermal analysis (DMTA is 290.1°C.

  15. CHOICE THEORY OF CREEP DEFORMATION FOR EVALUATION OF LONG FINE-GRAINED AUTOCLAVED AERATED CONCRETE IN VIEW OF FACTORS CARBONIZATION

    Directory of Open Access Journals (Sweden)

    D. K-S. Bataev

    2015-01-01

    Full Text Available Experimental data on the effect of the age of autoclaved aerated concrete with and without carbonation factor to change its physical and mechanical characteristics, as well as by the amount of creep deformation and degree of reversibility. It was found that the solution of applied problems creep theory for structures of autoclaved aerated concrete, in accordance with their carbonation from the effects of atmospheric carbon dioxide, it is necessary to use the theory of elastic-creeping body on the basis of function creep measures in the form proposed by prof. S.V. Alexandrovsky. 

  16. Degree of conversion and surface hardness of resin cement cured with different curing units.

    Science.gov (United States)

    Ozturk, Nilgun; Usumez, Aslihan; Usumez, Serdar; Ozturk, Bora

    2005-01-01

    The aim of this study was to evaluate the degree of conversion and Vickers surface hardness of resin cement under a simulated ceramic restoration with 3 different curing units: a conventional halogen unit, a high-intensity halogen unit, and a light-emitting diode system. A conventional halogen curing unit (Hilux 550) (40 s), a high-intensity halogen curing unit used in conventional and ramp mode (Optilux 501) (10 s and 20 s, respectively), and a light-emitting diode system (Elipar FreeLight) (20 s, 40 s) were used in this study. The dual-curing resin cement (Variolink II) was cured under a simulated ceramic restoration (diameter 5 mm, height 2 mm), and the degree of conversion and Vickers surface hardness were measured. For degree of conversion measurement, 10 specimens were prepared for each group. The absorbance peaks were recorded using the diffuse-reflection mode of Fourier transformation infrared spectroscopy. For Vickers surface hardness measurement, 10 specimens were prepared for each group. A load of 200 N was applied for 15 seconds, and 3 evaluations of each of the samples were performed. Degree of conversion achieved with Optilux 501 (20 s) was significantly higher than those of Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). For Vickers surface hardness measurement, Optilux 501 (20 s) produced the highest surface hardness value. No significant differences were found among the Hilux, Optilux 501 (10 s), Elipar FreeLight (20 s), and Elipar FreeLight (40 s). The high-intensity halogen curing unit used in ramp mode (20 s) produced harder resin cement surfaces than did the conventional halogen curing unit, high-intensity halogen curing unit used in conventional mode (10 s) and light-emitting diode system (20 s, 40 s), when cured through a simulated ceramic restoration.

  17. Excimer UV curing in printing

    International Nuclear Information System (INIS)

    Mehnert, R.

    1999-01-01

    It is the aim of this study to investigate the potential of 308 run excimer UV curing in web and sheet fed offset printing and to discuss its present status. Using real-time FTIR-ATR and stationary or pulsed monochromatic (313 nm) irradiation chemical and physical factors affecting the curing speed of printing inks such as nature and concentration of photo-initiators, reactivity of the ink binding system, ink thickness and pigmentation, irradiance in the curing plane, oxygen concentration and nitrogen inerting, multiple pulse exposure, the photochemical dark reaction and temperature dependence were studied. The results were used to select optimum conditions for excimer UV curing in respect to ink reactivity, nitrogen inerting and UV exposure and to build an excimer UV curing unit consisting of two 50 W/cm 308 run excimer lamps, power supply, cooling and inerting unit. The excimer UV curing devices were tested under realistic conditions on a web offset press zirkon supra forte and a sheet fed press Heidelberg GTO 52. Maximum curing speeds of 300 m/min in web offset and 8000 sheets per hour in sheet fed offset were obtained

  18. Electron curing of surface coatings

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1974-01-01

    The technical development of electron curing of surface coatings has received great impetus since 1970 from dramatic changes in the economics of the conventional thermal process. The most important of these changes are reviewed, including: the Clear Air Act, increasing cost and restrictive allocation of energy, decreased availability and increased costs of solvents, competitive pressure for higher line productivity. The principles of free-radical initiated curing as they pertain to industrial coatings are reviewed. Although such electron initiated processes have been under active development for at least two decades, high volume production applications on an industrial scale have only recently appeared. These installations are surveyed with emphasis on the developments in machinery and coatings which have made this possible. The most significant economic advantages of electron curing are presented. In particular, the ability of electron curing to eliminate substrate damage and to eliminate the curing station (oven) as the pacing element for most industrial surface coating curing applications is discussed. Examples of several new processes of particular interest in the textile industry are reviewed, including the curing of transfer cast urethane films, flock adhesives, and graftable surface finishes

  19. Composite cements benefit from light-curing.

    Science.gov (United States)

    Lührs, Anne-Katrin; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To investigate the effect of curing of composite cements and a new ceramic silanization pre-treatment on the micro-tensile bond strength (μTBS). Feldspathic ceramic blocks were luted onto dentin using either Optibond XTR/Nexus 3 (XTR/NX3; Kerr), the silane-incorporated 'universal' adhesive Scotchbond Universal/RelyX Ultimate (SBU/RXU; 3M ESPE), or ED Primer II/Panavia F2.0 (ED/PAF; Kuraray Noritake). Besides 'composite cement', experimental variables were 'curing mode' ('AA': complete auto-cure at 21°C; 'AA*': complete auto-cure at 37°C; 'LA': light-curing of adhesive and auto-cure of cement; 'LL': complete light-curing) and 'ceramic surface pre-treatment' ('HF/S/HB': hydrofluoric acid ('HF': IPS Ceramic Etching Gel, Ivoclar-Vivadent), silanization ('S': Monobond Plus, Ivoclar-Vivadent) and application of an adhesive resin ('HB': Heliobond, Ivoclar-Vivadent); 'HF/SBU': 'HF' and application of the 'universal' adhesive Scotchbond Universal ('SBU'; 3M ESPE, only for SBU/RXU)). After water storage (7 days at 37°C), ceramic-dentin sticks were subjected to μTBS testing. Regarding the 'composite cement', the significantly lowest μTBSs were measured for ED/PAF. Regarding 'curing mode', the significantly highest μTBS was recorded when at least the adhesive was light-cured ('LA' and 'LL'). Complete auto-cure ('AA') revealed the significantly lowest μTBS. The higher auto-curing temperature ('AA*') increased the μTBS only for ED/PAF. Regarding 'ceramic surface pre-treatment', only for 'LA' the μTBS was significantly higher for 'HF/S/HB' than for 'HF/SBU'. Complete auto-cure led to inferior μTBS than when either the adhesive (on dentin) or both adhesive and composite cement were light-cured. The use of a silane-incorporated adhesive did not decrease luting effectiveness when also the composite cement was light-cured. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Curing efficiency of three light emitting diode units at different curing profiles

    Directory of Open Access Journals (Sweden)

    Priyanka Verma

    2016-01-01

    Conclusions: Reduction of exposure time to 6 s with high-intensity curing light seemed to be clinically acceptable and should be recommended. Curing of metal brackets with single exposure from buccal side showed lower shear bond strength values.

  1. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hassen, Ahmed A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.

  2. Autoclave reduction of jarosites and other metal sulfates : a new approach to major waste problems

    NARCIS (Netherlands)

    Hage, J.T.L.

    1999-01-01

    Industrial jarosite is a waste product of the zinc industry. It is considered a serious environmental problem, due to the quantity produced and the mobile hazardous metals it contains. Over 50 million tons are already stored worldwide. The jarosite sludge autoclave treatment process described in

  3. Validation of Autoclave Protocols for Successful Decontamination of Category A Medical Waste Generated from Care of Patients with Serious Communicable Diseases.

    Science.gov (United States)

    Garibaldi, Brian T; Reimers, Mallory; Ernst, Neysa; Bova, Gregory; Nowakowski, Elaine; Bukowski, James; Ellis, Brandon C; Smith, Chris; Sauer, Lauren; Dionne, Kim; Carroll, Karen C; Maragakis, Lisa L; Parrish, Nicole M

    2017-02-01

    In response to the Ebola outbreak in 2014, many hospitals designated specific areas to care for patients with Ebola and other highly infectious diseases. The safe handling of category A infectious substances is a unique challenge in this environment. One solution is on-site waste treatment with a steam sterilizer or autoclave. The Johns Hopkins Hospital (JHH) installed two pass-through autoclaves in its biocontainment unit (BCU). The JHH BCU and The Johns Hopkins biosafety level 3 (BSL-3) clinical microbiology laboratory designed and validated waste-handling protocols with simulated patient trash to ensure adequate sterilization. The results of the validation process revealed that autoclave factory default settings are potentially ineffective for certain types of medical waste and highlighted the critical role of waste packaging in successful sterilization. The lessons learned from the JHH validation process can inform the design of waste management protocols to ensure effective treatment of highly infectious medical waste. Copyright © 2017 American Society for Microbiology.

  4. Thermal properties of Poly(ethylene terephthalate) recovered from municipal solid waste by steam autoclaving

    Science.gov (United States)

    The goal of this study was to evaluate the effects of steam autoclaving on the properties of PET, data which could ultimately be applied to determine the most likely end use of this potentially huge waste stream. Through the course of the study it was determined that stretch blow molding in bottle ...

  5. Post-cure depth of cure of bulk fill dental resin-composites.

    Science.gov (United States)

    Alrahlah, A; Silikas, N; Watts, D C

    2014-02-01

    To determine the post-cure depth of cure of bulk fill resin composites through using Vickers hardness profiles (VHN). Five bulk fill composite materials were examined: Tetric EvoCeram(®) Bulk Fill, X-tra base, Venus(®) Bulk Fill, Filtek™ Bulk Fill, SonicFill™. Three specimens of each material type were prepared in stainless steel molds which contained a slot of dimensions (15 mm × 4 mm × 2 mm), and a top plate. The molds were irradiated from one end. All specimens were stored at 37°C for 24h, before measurement. The Vickers hardness was measured as a function of depth of material, at 0.3mm intervals. Data were analysed by one-way ANOVA using Tukey post hoc tests (α=0.05). The maximum VHN ranged from 37.8 to 77.4, whilst the VHN at 80% of max.VHN ranged from 30.4 to 61.9. The depth corresponding to 80% of max.VHN, ranged from 4.14 to 5.03 mm. One-way ANOVA showed statistically significant differences between materials for all parameters tested. SonicFill exhibited the highest VHN (pFill the lowest (p≤0.001). SonicFill and Tetric EvoCeram Bulk Fill had the greatest depth of cure (5.03 and 4.47 mm, respectively) and was significant's different from X-tra base, Venus Bulk Fill and Filtek Bulk Fill (p≤0.016). Linear regression confirmed a positive regression between max.VHN and filler loading (r(2)=0.94). Bulk fill resin composites can be cured to an acceptable post-cure depth, according to the manufacturers' claims. SonicFill and Tetric EvoCeram Bulk Fill had the greatest depth of cure among the composites examined. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Cure Schedule for Stycast 2651/Catalyst 11.

    Energy Technology Data Exchange (ETDEWEB)

    Kropka, Jamie Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCoy, John D. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2017-11-01

    The Henkel technical data sheet (TDS) for Stycast 2651/Catalyst 11 lists three alternate cure schedules for the material, each of which would result in a different state of reaction and different material properties. Here, a cure schedule that attains full reaction of the material is defined. The use of this cure schedule will eliminate variance in material properties due to changes in the cure state of the material, and the cure schedule will serve as the method to make material prior to characterizing properties. The following recommendation was motivated by (1) a desire to cure at a single temperature for ease of manufacture and (2) a desire to keep the cure temperature low (to minimize residual stress build-up associated with the cooldown from the cure temperature to room temperature) without excessively limiting the cure reaction due to vitrification (i.e., material glass transition temperature, Tg, exceeding cure temperature).

  7. Properties of radiation cured coatings

    International Nuclear Information System (INIS)

    Larson, E.G.; Spencer, D.S.; Boettcher, T.E.; Melbauer, M.A.; Skarjune, R.P.

    1987-01-01

    Coatings were prepared from acrylate or methacrylate functionalized resins to study the effect of end group functionality on the physical properties of u.v. and electron beam cured coatings. Cure response was measured by solid state NMR and gel extraction, as expected, methacrylate resins cured much slower. Thermal Gravimetric Analysis (TGA) revealed acrylate coatings have greater thermal stability. Properties such as tensile strength and hardness showed little effect of end group functionality or curing method. The O 2 and H 2 O permeabilities of the coating were correlated with the processing conditions. (author)

  8. The situation of radiation curing

    International Nuclear Information System (INIS)

    Chen Weixiu

    1988-01-01

    Radiation curing is a branch of radiation processing. It has developed significantly and its annual growth rate exceeds 10% in the nineteen eighties. Several products were manufactured by radiation curing, such as magnetic media, release coating, floor tile, printing flates, optical fiber, electronics, lithography and pressure sensitive adhesives etc. The chemistry of radiation curing is often considered ahead. The safe handling of UV/EB curable material, the regulation of industial and the patent protection for development in radiation curing were introduced. The equipment and processes of this field have got progress recently

  9. Electron beam curing of coatings

    International Nuclear Information System (INIS)

    Schmidt, J.; Mai, H.

    1986-01-01

    Modern low-energy electron beam processors offer the possibility for high-speed curing of coatings on paper, plastics, wood and metal. Today the electron beam curing gets more importance due to the increasing environmental problems and the rising cost of energy. For an effective curing process low-energy electron beam processors as well as very reactive binders are necessary. Generally such binders consist of acrylic-modified unsaturated polyester resins, polyacrylates, urethane acrylates or epoxy acrylates and vinyl monomers, mostly multifunctional acrylates. First results on the production of EBC binders on the base of polyester resins and vinyl monomers are presented. The aim of our investigations is to obtain binders with curing doses ≤ 50 kGy. In order to reduce the curing dose we studied mixtures of resins and acrylates. (author)

  10. Thermal Aging Behaviors of Rubber Vulcanizates Cured with Single and Binary Cure Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Seen; Ha, Sung Ho [Sejong University, Seoul (Korea, Republic of); Woo, Chang Su [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2006-03-15

    In general, an accelerated sulfur cure system consists of elemental sulfur, one or two cure accelerators, and cure activators. Crosslink density of a rubber vulcanizate determines the physical properties. By increasing the crosslink density, the modulus, hardness, resilience, and abrasion resistance increase, whereas the elongation at break, heat build-up, and stress relaxation decrease. Sulfur linkages are composed of monosulfide, disulfide, and polysulfides. Sulfur linkages, especially polysulfides, are dissociated by heating and this brings about decrease of the crosslink density.

  11. Strength of Geopolymer Cement Curing at Ambient Temperature by Non-Oven Curing Approaches: An Overview

    Science.gov (United States)

    Wattanachai, Pitiwat; Suwan, Teewara

    2017-06-01

    At the present day, a concept of environmentally friendly construction materials has been intensively studying to reduce the amount of releasing greenhouse gases. Geopolymer is one of the cementitious binders which can be produced by utilising pozzolanic wastes (e.g. fly ash or furnace slag) and also receiving much more attention as a low-CO2 emission material. However, to achieve excellent mechanical properties, heat curing process is needed to apply to geopolymer cement in a range of temperature around 40 to 90°C. To consume less oven-curing energy and be more convenience in practical work, the study on geopolymer curing at ambient temperature (around 20 to 25°C) is therefore widely investigated. In this paper, a core review of factors and approaches for non-oven curing geopolymer has been summarised. The performance, in term of strength, of each non-oven curing method, is also presented and analysed. The main aim of this review paper is to gather the latest study of ambient temperature curing geopolymer and to enlarge a feasibility of non-oven curing geopolymer development. Also, to extend the directions of research work, some approaches or techniques can be combined or applied to the specific properties for in-field applications and embankment stabilization by using soil-cement column.

  12. Release of bound residues of atrazine from soils through autoclaving and gamma radiation sterilization

    International Nuclear Information System (INIS)

    Nakagawa, L.E.; Andréa, M.M.

    1997-01-01

    The sterilization methods are particularly important to study the influence of microorganisms on the pesticide dissipation in soils. This study, conducted in the laboratories of the Instituto Biológico of São Paulo in august 1996, tested the influence of two methods of soil sterilization - moist heat (autoclaving) and γ radiation - on the release of nonextractable or bound residues. It was studied, as example, bound residues of the herbicide atrazine in two types of soil (gley humic and dark red latosol). In the soil samples submitted to the moist heat sterilization, the recovery of the previously bound residues as reextractable residues was 5.6 and 5.9 times higher than in the control soils, not submitted to any sterilization process. Therefore, the method itself released the residues, indicating that the autoclaving is not the most appropriate method for studies on the influence of microorganisms on the release of bound residues. Otherwise, the γ radiation did not modify the residues recovery when compared to the controls. (author) [pt

  13. A comparative evaluation of effect of modern-curing lights and curing modes on conventional and novel-resin monomers

    Science.gov (United States)

    Roy, Konda Karthik; Kumar, Kanumuru Pavan; John, Gijo; Sooraparaju, Sujatha Gopal; Nujella, Surya Kumari; Sowmya, Kyatham

    2018-01-01

    Aim: The aim of this study is to compare and to evaluate effect of curing light and curing modes on the nanohybrid composite resins with conventional Bis-GMA and novel tricyclodecane (TCD) monomers. Methodology: Two nanohybrid composites, IPS empress direct and charisma diamond were used in this study. Light-emitting diode (LED)-curing unit and quartz-tungsten-halogen (QTH)-curing unit which were operated into two different modes: continuous and soft start. Based on the composite resin, curing lights, and mode of curing used, the samples were divided into 8 groups. After polymerization, the samples were stored for 48 h in complete darkness at 37°C and 100% humidity. The Vickers hardness (VK) of the surface was determined with Vickers indenter by the application of 200 g for 15 s. Three VK readings were recorded for each sample surface both on top and bottom surfaces. For all the specimens, the three hardness values for each surface were averaged and reported as a single value. The mean VK and hardness ratio were calculated. The depth of cure was assessed based on the hardness ratio. Results: Comparison of mean hardness values and hardness ratios was done using ANOVA with post hoc Tukey's test. Conclusion: Both QTH- and LED-curing units had shown the adequate depth of cure. Soft-start-curing mode in both QTH- and LED-curing lights had effectively increased microhardness than the continuous mode of curing. TCD monomer had shown higher hardness values compared with conventional Bis-GMA-containing resin. PMID:29628651

  14. Diseño de un biorreactor a partir de un autoclave en deshuso

    Directory of Open Access Journals (Sweden)

    Teresa Salazar-Rojas

    2014-06-01

    Este artículo detalla el proceso de construcción de un prototipo de biorreactor piloto, con todas las características necesarias para su funcionalidad, partiendo de una autoclave obsoleta. Con el fin de dar ejemplo de cómo se puede extender la vida útil de un material de desecho y, además, minimizar costos al obtener un equipo 100% funcional.

  15. Process simulations for manufacturing of thick composites

    Science.gov (United States)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure

  16. Naturally cured foamed concrete with improved thermal insulation properties

    Directory of Open Access Journals (Sweden)

    Mashkin Nikolay

    2018-01-01

    Full Text Available The paper is dedicated to investigation on improvement of thermal insulation properties of non-autoclaved concrete by increasing aggregate stability of foamed concrete mixture. The study demonstrates influence of mineral admixtures on the foam stability index in the mortar mixture and on decrease of foamed concrete density and thermal conductivity. The effect of mineral admixtures on thermal conductivity properties of non-autoclaved concrete was assessed through different ways of their addition: to the foam and to the mortar mixture. The admixtures were milled up to the specific surface area of 300 and 600 m2/kg using an AГO-9 centrifugal attrition mill with continuous operation mode (Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk. Laboratory turbulent foam concrete mixer was used to prepare foamed concrete. Thermal conductivity coefficient was defined by a quick method using “ИTП-MГ 4 “Zond” thermal conductivity meter in accordance with the regulatory documents. The impact of modifiers on the foam structure stability was defined using the foam stability index for the mortar mixture. The research demonstrated the increase in stability of porous structure of non-autoclaved concrete when adding wollastonite and diopside. Improvement of thermal and physical properties was demonstrated, the decrease of thermal conductivity coefficient reaches 0.069 W/(m×°C

  17. The effect of multiple autoclave cycles on the surface of rotary nickel-titanium endodontic files: An in vitro atomic force microscopy investigation.

    Science.gov (United States)

    Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar

    2015-01-01

    To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P autoclave cycles, a fact that should be kept in mind during their reuse.

  18. Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results

    Science.gov (United States)

    Jackson, Justin R.; Vickers, John; Fikes, John

    2015-01-01

    The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.

  19. Effect of Dephytinization by Fermentation and Hydrothermal Autoclaving Treatments on the Antioxidant Activity, Dietary Fiber, and Phenolic Content of Oat Bran.

    Science.gov (United States)

    Özkaya, H; Özkaya, B; Duman, B; Turksoy, S

    2017-07-19

    Fermentation and hydrothermal methods were tested to reduce the phytic acid (PA) content of oat bran, and the effects of these methods on the dietary fiber (DF) and total phenolic (TP) contents as well as the antioxidant activity (AA) were also investigated. Fermentation with 6% yeast and for 6 h resulted in 88.2% reduction in PA content, while it only resulted in 32.5% reduction in the sample incubated for 6 h without yeast addition. The PA loss in autoclaved oat bran sample (1.5 h, pH 4.0) was 95.2% while it was 41.8% at most in the sample autoclaved without pH adjustment. In both methods, soluble, insoluble, and total DF contents of samples were remarkably higher than the control samples. Also for TP in the oat bran samples, both processes led to 17% and 39% increases, respectively, while AA values were 8% and 15%, respectively. Among all samples, the autoclaving process resulted in the lowest PA and the greatest amount of bioactive compounds.

  20. Dielectric Cure Monitoring of Thermosetting Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Geun [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Dae Gil [KAIST, Daejeon (Korea, Republic of)

    2003-10-15

    Cure monitoring can be used to improve the quality and productivity of thermosetting resin matrix composite products during their manufacturing process. In this work, the sensitivity of dielectrometry was improved by adequate separation the efforts of sensor and externals on the measured signal. A new algorithm to obtain the degree of cure during dielectric cure monitoring of glass/polyester and glass/epoxy composites was developed by employing a function of both temperature and dissipation factor, in which five cure monitoring parameters were used to calculate the degree of cure. The decreasing pattern of dissipation factor was compared with the relationships between the degree of cure and the resin viscosity. The developed algorithm might be employed for the in situ cure monitoring of thermosetting resin composites

  1. Dielectric Cure Monitoring of Thermosetting Matrix Composites

    International Nuclear Information System (INIS)

    Kim, Hyoung Geun; Lee, Dae Gil

    2003-01-01

    Cure monitoring can be used to improve the quality and productivity of thermosetting resin matrix composite products during their manufacturing process. In this work, the sensitivity of dielectrometry was improved by adequate separation the efforts of sensor and externals on the measured signal. A new algorithm to obtain the degree of cure during dielectric cure monitoring of glass/polyester and glass/epoxy composites was developed by employing a function of both temperature and dissipation factor, in which five cure monitoring parameters were used to calculate the degree of cure. The decreasing pattern of dissipation factor was compared with the relationships between the degree of cure and the resin viscosity. The developed algorithm might be employed for the in situ cure monitoring of thermosetting resin composites

  2. Direct Synthesis of Fe3C-Functionalized Graphene by High Temperature Autoclave Pyrolysis for Oxygen Reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electroca...

  3. Comparative catalytic reduction of 4-nitrophenol by polyacrylamide-gold nanocomposite synthesized by hydrothermal autoclaving and conventional heating routes

    Science.gov (United States)

    Salaheldin, Hosam I.

    2017-12-01

    Gold nanoparticles (AuNPs) in polymeric polyacrylamide (PAAm) matrix were synthesized using conventional heating and autoclaving thermal techniques. The synthesized Au/PAAm nanocomposite was characterized using UV-vis spectroscopy and high-resolution transmission electron microscopy. The size of the synthesized particles was approximately 6.37 nm and 8.19 nm with the conventional heating and autoclaving thermal techniques, respectively. Electron diffraction x-ray spectroscopy and the Fourier transformation infrared spectroscopy were used for the composition and elemental studies, which confirmed that the Au metallic atoms were synthesized and embedded within a PAAm matrix via a coordination bond between the carbonyl (-CONH2) group and the metallic NPs. X-ray diffraction confirmed the crystalline nature of the fabricated AuNPs with face centered cubic of nanocrystals. The catalytic activity of the as-prepared Au/PAAm nanocomposite for the reduction of 4-nitrophenol to 4-aminophenol was studied in the presence of sodium borohydrate. The synthesized AuNPs had an effective catalytic activity; the smaller NPs synthesized NPs with the conventional heating technique had a higher reaction kinetic rate in comparation with those synthesized with the autoclaving technique. Therefore, the Au/PAAm nanocomposite can be widely used as an eco-friendly, non-toxic, a fast and cost-effective product to remove versatile organic pollutants such as aromatic nitro compounds.

  4. EB/UV curing market in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Dahlan, Khairul Zaman; Nik Salleh, Nik Ghazali; Mahmood, Mohd Hilmi [Malaysian Inst. for Nuclear Technology Res. (MINT), Bangi (Malaysia)

    1999-07-01

    Radiation curing of coatings of wood based products is expanding and being used for curing of coatings of table tops, parquet, wood panel, furniture, curtain railing, etc. UV curing of over print varnish is still the main application of UV curing in printing industry. However, curing ofprinting ink has also been extended in the printing of CD and VCD in addition to other printing such as paper, magazine, label on bottles, metal-can, etc. In the electronic industry, the manufacturer of printed circuit board is still the main consumer of UV curable resins. On the other hand, low energy electron beam machine is used mainly for cross-linking of heat shrink films.

  5. EB/UV curing market in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Dahlan; Nik Ghazali Nik Salleh; Mohd Hilmi Mahmood

    1999-01-01

    Radiation curing of coatings of wood based products is expanding and being used for curing of coatings of table tops, parquet, wood panel, furniture, curtain railing, etc. UV curing of over print varnish is still the main application of UV curing in printing industry. However, curing of printing ink has also been extended in the printing of CD and VCD in addition to other printing such as paper, magazine, label on bottles, metal-can, etc. In the electronic industry, the manufacturer of printed circuit board is still the main consumer of UV curable resins. On the other hand, low energy electron beam machine is used mainly for cross-linking of heat shrink films

  6. Treatment of clinical solid waste using a steam autoclave as a possible alternative technology to incineration.

    Science.gov (United States)

    Hossain, Md Sohrab; Balakrishnan, Venugopal; Rahman, Nik Norulaini Nik Ab; Sarker, Md Zaidul Islam; Kadir, Mohd Omar Ab

    2012-03-01

    A steam autoclave was used to sterilize bacteria in clinical solid waste in order to determine an alternative to incineration technology in clinical solid waste management. The influence of contact time (0, 5, 15, 30 and 60 min) and temperature (111 °C, 121 °C and 131 °C) at automated saturated steam pressure was investigated. Results showed that with increasing contact time and temperature, the number of surviving bacteria decreased. The optimum experimental conditions as measured by degree of inactivation of bacteria were 121 °C for 15 minutes (min) for Gram negative bacteria, 121 °C and 131 °C for 60 and 30 min for Gram positive bacteria, respectively. The re-growth of bacteria in sterilized waste was also evaluated in the present study. It was found that bacterial re-growth started two days after the inactivation. The present study recommends that the steam autoclave cannot be considered as an alternative technology to incineration in clinical solid waste management.

  7. Treatment of Clinical Solid Waste Using a Steam Autoclave as a Possible Alternative Technology to Incineration

    Science.gov (United States)

    Hossain, Md. Sohrab; Balakrishnan, Venugopal; Rahman, Nik Norulaini Nik Ab; Sarker, Md. Zaidul Islam; Kadir, Mohd Omar Ab

    2012-01-01

    A steam autoclave was used to sterilize bacteria in clinical solid waste in order to determine an alternative to incineration technology in clinical solid waste management. The influence of contact time (0, 5, 15, 30 and 60 min) and temperature (111 °C, 121 °C and 131 °C) at automated saturated steam pressure was investigated. Results showed that with increasing contact time and temperature, the number of surviving bacteria decreased. The optimum experimental conditions as measured by degree of inactivation of bacteria were 121 °C for 15 minutes (min) for Gram negative bacteria, 121 °C and 131 °C for 60 and 30 min for Gram positive bacteria, respectively. The re-growth of bacteria in sterilized waste was also evaluated in the present study. It was found that bacterial re-growth started two days after the inactivation. The present study recommends that the steam autoclave cannot be considered as an alternative technology to incineration in clinical solid waste management. PMID:22690168

  8. Evaluation of an autoclave resistant anatomic nose model for the testing of nasal swabs.

    Science.gov (United States)

    Bartolitius, Lennart; Frickmann, Hagen; Warnke, Philipp; Ottl, Peter; Podbielski, Andreas

    2014-09-01

    A nose model that allows for the comparison of different modes of sample acquisition as well as of nasal swab systems concerning their suitability to detect defined quantities of intranasal microorganisms, and further for training procedures of medical staff, was evaluated. Based on an imprint of a human nose, a model made of a silicone elastomer was formed. Autoclave stability was assessed. Using an inoculation suspension containing Staphylococcus aureus and Staphylococcus epidermidis, the model was compared with standardized glass plate inoculations. Effects of inoculation time, mode of sampling, and sample storage time were assessed. The model was stable to 20 autoclaving cycles. There were no differences regarding the optimum coverage from the nose and from glass plates. Optimum sampling time was 1 h after inoculation. Storage time after sampling was of minor relevance for the recovery. Rotating the swab around its own axis while circling the nasal cavity resulted in best sampling results. The suitability of the assessed nose model for the comparison of sampling strategies and systems was confirmed. Without disadvantages in comparison with sampling from standardized glass plates, the model allows for the assessment of a correct sampling technique due to its anatomically correct shape.

  9. Cure Behavior and Thermal Properties of Diepoxidized Cardanol Resin Cured by Electron Beam Process

    International Nuclear Information System (INIS)

    Cho, Donghwan; Cheon, Jinsil

    2013-01-01

    Thermal curing of epoxy resin requires high temperature, time-consuming process and the volatilization of hardener. It has known that electron beam curing of epoxy resin is a fast process and occurs at low or room temperature that help reduce residual mechanical stresses in thermosetting polymers. Diepoxidized cardanol (DEC) can be synthesized by an enzymatic method from cashew nut shell liquid (CNSL), that constitutes nearly one-third of the total nut weight. A large amount of CNSL can be formed as a byproduct of the mechanical processes used to render the cashew kerneledible and its total production approaches one million tons annually, which can be bio-degradable and replace the industrial thermosetting plastics. It is expected that DEC may be cured as in an epoxy resin, which was constituted on two epoxide group and long alkyl chain, and two-types of onium salts (cationic initiator) were used as a photo-initiator. The experimental variables of this study are type and concentration of photo-initiators and electron beam dosage. In this study, the effects of initiator type and concentration on the cure behavior and the thermal properties of DEC resin processed by using electron beam technology were studied using FT-IR, TGA, TMA, DSC, and DMA. Figure 1 is the FT-IR results, showing the change of chemical structure of pure DEC and electron beam cured DEC. The characteristic absorption peak of epoxide group appeared at 850cm -1 . The shape and the height were reduced when the sample was irradiated with electron beam. From this result, the epoxide groups is DEC were opened by electron beam and cured. After then, electron beam cured DEC was investigated the effect of forming 3-dimensional network

  10. Cure Behavior and Thermal Properties of Diepoxidized Cardanol Resin Cured by Electron Beam Process

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Donghwan; Cheon, Jinsil [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2013-07-01

    Thermal curing of epoxy resin requires high temperature, time-consuming process and the volatilization of hardener. It has known that electron beam curing of epoxy resin is a fast process and occurs at low or room temperature that help reduce residual mechanical stresses in thermosetting polymers. Diepoxidized cardanol (DEC) can be synthesized by an enzymatic method from cashew nut shell liquid (CNSL), that constitutes nearly one-third of the total nut weight. A large amount of CNSL can be formed as a byproduct of the mechanical processes used to render the cashew kerneledible and its total production approaches one million tons annually, which can be bio-degradable and replace the industrial thermosetting plastics. It is expected that DEC may be cured as in an epoxy resin, which was constituted on two epoxide group and long alkyl chain, and two-types of onium salts (cationic initiator) were used as a photo-initiator. The experimental variables of this study are type and concentration of photo-initiators and electron beam dosage. In this study, the effects of initiator type and concentration on the cure behavior and the thermal properties of DEC resin processed by using electron beam technology were studied using FT-IR, TGA, TMA, DSC, and DMA. Figure 1 is the FT-IR results, showing the change of chemical structure of pure DEC and electron beam cured DEC. The characteristic absorption peak of epoxide group appeared at 850cm{sup -1}. The shape and the height were reduced when the sample was irradiated with electron beam. From this result, the epoxide groups is DEC were opened by electron beam and cured. After then, electron beam cured DEC was investigated the effect of forming 3-dimensional network.

  11. Autoclaved aerated concrete : shaping the evolution of residential construction in the United States.

    OpenAIRE

    Bukoski, Steven C.

    1998-01-01

    CIVINS (Civilian Institutions) Thesis document Precast Autoclaved Aerated Concrete (AAC) is a proven construction material used in Europe for over 70 years. Introduced to the United States in 1990, construction thus far is limited to commercial and custom borne applications. Premium benefits include energy efficiency and resistance to natural disaster and pests. Despite being the leading residential construction material in Europe and Japan, lumber is the leading material of choice in the ...

  12. Circulating progesterone concentrations in nonlactating Holstein cows during reuse of intravaginal progesterone implants sanitized by autoclave or chemical disinfection.

    Science.gov (United States)

    Melo, L F; Monteiro, P L J; Oliveira, L H; Guardieiro, M M; Drum, J N; Wiltbank, M C; Sartori, R

    2018-04-01

    The aim of this study was to compare plasma progesterone (P4) concentrations in nonlactating, multiparous Holstein cows (n = 24) treated with 2 types of intravaginal implants containing either 1.0 or 1.9 g of P4 either at the first use or during reuse of the implants after sanitizing the implant by autoclave or chemical disinfection. In a completely randomized design with a 2 × 3 factorial arrangement and 2 replicates, every cow underwent 2 of 6 treatments. Two sources of P4 [controlled internal drug release (1.9 g of P4) from Zoetis (São Paulo, Brazil), and Sincrogest (1.0 g of P4) from Ourofino (Cravinhos, Brazil)] and 3 types of processing, new (N), reused after autoclave (RA), and reused after chemical disinfection (RC), were used. After inducing luteolysis to avoid endogenous circulating P4, the cows were randomized in 1 of 6 treatments (1.9 g of N, 1.9 g of RA, 1.9 g of RC, 1.0 g of N, 1.0 g of RA, and 1.0 g RC). Cows were treated with the implants for 8 d and during this period blood samples were collected at 0, 2, 12, 24, 48, 72, 96, 120, 144, 168, and 192 h. Statistical analyses were performed using Proc-Mixed and the mean ± standard error of the mean P4 concentrations were calculated using the Proc-Means procedures of SAS 9.4 (SAS Institute Inc., Cary, NC). No interaction between treatments was observed. Comparing types of implant, average P4 concentrations during treatments were greater for 1.9 g than 1.0 g (1.46 vs. 1.14 ± 0.04 ng/mL). When types of processing were compared, average P4 concentrations did not differ between autoclaved and new inserts (1.46 vs. 1.37 ± 0.05 ng/mL; respectively), but both were greater than chemically disinfected implants (1.09 ± 0.04 ng/mL). Within 1.9-g P4 inserts, P4 concentrations from autoclaved implants were greater than new, which were greater than chemically disinfected (1.67 ± 0.06 vs. 1.49 ± 0.07 vs. 1.21 ± 0.05 ng/mL; respectively). For 1.0-g P4 implants, P4 concentrations from autoclaved did not differ

  13. Effect of autoclaving on the surfaces of TiN -coated and conventional nickel-titanium rotary instruments.

    Science.gov (United States)

    Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M

    2012-12-01

    To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.

  14. 7 CFR 30.12 - Fire-cure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fire-cure. 30.12 Section 30.12 Agriculture Regulations... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.12 Fire-cure. To cure tobacco under artificial atmospheric conditions by the use of open fires, the smoke and...

  15. The potential of dielectric analysis as an on-line cure monitoring technique in the manufacture of advanced fibre reinforced composites

    International Nuclear Information System (INIS)

    McIlhagger, A.T.

    2002-02-01

    the dielectric properties. The ability to provide through the thickness measurement of the composite was identified as an important advantage of this particular sensor configuration since the standard single surface design only provides a localised measurement. The traditional composite manufacturing technique (use of prepreg with autoclave) is primarily utilised in the aerospace industry. The parameters identified for the parallel plate configuration were applied to an aerospace prepreg resin system. The key cure parameters were identified and successfully correlated with DSC and DMA techniques. The importance of in-tool monitoring both in the research area and industry was investigated. Two industrial dielectric systems were utilised to provide comparative data and also to assess the relative advantages and disadvantages against the parallel plate configuration and its implementation in industry. A resin flow monitoring system was utilised to determine the flow of the resin through the preform structure in the RTM process. The results demonstrated that although the system has many advantages, it does not fulfil the cure monitoring requirements identified by the aerospace industry. The results highlighted the fact that at present, it would appear that no one cure monitoring technique can analyse all of the key cure parameters required by the aerospace industry. In conclusion the development and implementation of dielectric parallel plate sensors for use in the composite manufacturing environment is discussed. (author)

  16. Radiation curing

    International Nuclear Information System (INIS)

    Wendrinsky, J.

    1987-04-01

    In the beginning of the seventies the two types of radiation sources applied in industrial processes, electron radiation and UV, had been given rather optimistic forecasts. While UV could succeed in the field of panel and film coating, electron radiation curing seems to gain success in quite new fields of manufacturing. The listing of the suggested applications of radiation curing and a comparison of both advantages and disadvantages of this technology are followed by a number of case studies emphasizing the features of these processes and giving some examplary calculations. The data used for the calculations should provide an easy calculation of individual manufacturing costs if special production parameters, investment or energy costs are employed. (Author)

  17. Accounting for Cured Patients in Cost-Effectiveness Analysis.

    Science.gov (United States)

    Othus, Megan; Bansal, Aasthaa; Koepl, Lisel; Wagner, Samuel; Ramsey, Scott

    2017-04-01

    Economic evaluations often measure an intervention effect with mean overall survival (OS). Emerging types of cancer treatments offer the possibility of being "cured" in that patients can become long-term survivors whose risk of death is the same as that of a disease-free person. Describing cured and noncured patients with one shared mean value may provide a biased assessment of a therapy with a cured proportion. The purpose of this article is to explain how to incorporate the heterogeneity from cured patients into health economic evaluation. We analyzed clinical trial data from patients with advanced melanoma treated with ipilimumab (Ipi; n = 137) versus glycoprotein 100 (gp100; n = 136) with statistical methodology for mixture cure models. Both cured and noncured patients were subject to background mortality not related to cancer. When ignoring cured proportions, we found that patients treated with Ipi had an estimated mean OS that was 8 months longer than that of patients treated with gp100. Cure model analysis showed that the cured proportion drove this difference, with 21% cured on Ipi versus 6% cured on gp100. The mean OS among the noncured cohort patients was 10 and 9 months with Ipi and gp100, respectively. The mean OS among cured patients was 26 years on both arms. When ignoring cured proportions, we found that the incremental cost-effectiveness ratio (ICER) when comparing Ipi with gp100 was $324,000/quality-adjusted life-year (QALY) (95% confidence interval $254,000-$600,000). With a mixture cure model, the ICER when comparing Ipi with gp100 was $113,000/QALY (95% confidence interval $101,000-$154,000). This analysis supports using cure modeling in health economic evaluation in advanced melanoma. When a proportion of patients may be long-term survivors, using cure models may reduce bias in OS estimates and provide more accurate estimates of health economic measures, including QALYs and ICERs. Copyright © 2017 International Society for Pharmacoeconomics

  18. Comparative study and histomorphometric analysis of bone allografts lyophilized and sterilized by autoclaving, gamma irradiation and ethylene oxide in rats

    Directory of Open Access Journals (Sweden)

    Otavio Machado de Almeida

    2013-01-01

    Full Text Available PURPOSE: To compare three sterilization methods (autoclave, gamma irradiation and ethylene oxide over non demineralized lyophilized bone allografts. METHODS: Bone allografts were implanted on paravertebral muscles of 21 rats. After 30 days animals were sacrificed and grafts underwent comparative analysis regarding histomorphometric and macroscopic parameters. RESULTS: Allografts that underwent the three sterilization methods presents similar weight gain, cortical thickness similar to control group, and less fibrosis than the control group. Grafts that underwent sterilization in autoclave presented less presence of multinucleated giant cells, although not statistically significant. There was also no statistically significant difference regarding mineralization on the three groups. CONCLUSION: The three sterilization methods cause similar effects on bone allografts regarding macroscopic and histomorphometric parameters.

  19. FDTD modeling of EM field inside microwave cavities

    CERN Document Server

    Narayan, Shiv; Kanth, V Krushna

    2017-01-01

    This book deals with the EM analysis of closed microwave cavities based on a three-dimensional FDTD method. The EM analysis is carried out for (i) rectangular microwave ovens and (ii) hybrid-cylindrical microwave autoclaves at 2.45 GHz. The field distribution is first estimated inside domestic rectangular ovens in xy-, yz-, and zx-plane. Further, the RF leakage from the oven door is determined to study the effect of leakage radiation on wireless communication at 2.45 GHz. Furthermore, the EM analysis of the autoclave is carried out based on 3D FDTD using staircase approximation. In order to show the capability of autoclaves (excited with five source) for curing the aerospace components and materials, the field distribution inside autoclave cavity is studied in presence of aerospace samples. The FDTD based modelling of oven and autoclave are explained with the appropriate expressions and illustrations.

  20. Novel techniques for concrete curing

    DEFF Research Database (Denmark)

    Kovler, Konstantin; Jensen, Ole Mejlhede

    2005-01-01

    It is known that some high-strength/high-performance concretes (HSC/HPC) are prone to cracking at an early age unless special precautions are taken. The paper deals with the methods of curing as one of the main strategies to ensure good performance of concrete. Curing by both external (conventional......) and internal methods is reviewed and analyzed, among other methods of mitigating shrinkage and cracking of concrete. The focus is on the mitigation of autogenous shrinkage of low water to binder ratio (w/b) concrete by means of internal curing. The concepts of internal curing are based on using lightweight...... aggregate, superabsorbent polymers or water-soluble chemicals, which reduce water evaporation (so called "internal sealing"). These concepts have been intensively researched in the 90s, but still are not widespread among contractors and concrete suppliers. The differences between conventional methods...

  1. Cellular Composites with Ambient and Autoclaved Type of Hardening with Application of Nanostructured Binder

    International Nuclear Information System (INIS)

    Nelyubova, V; Pavlenko, N; Netsvet, D

    2015-01-01

    The research presents the dimensional and structural characteristics of nonhydrational hardening binders - nanostructured binders. Rational areas of their use in composites for construction purposes are given. The paper presents the results of the development of natural hardening foam concrete and aerated autoclaved concrete for thermal insulating and construction and thermal insulating purposes. Thus nanostructured binder (NB) in the composites was used as a primary binder and a high reactive modifier. (paper)

  2. C-CURE

    Data.gov (United States)

    US Agency for International Development — C-CURE system manages certain aspects of the access control system, including collecting employee and contractor names and photographs. The Office of Security uses...

  3. Gamma and electron beam curing of polymers and composites

    International Nuclear Information System (INIS)

    Saunders, C.B.; Dickson, L.W.; Singh, A.

    1987-01-01

    Radiation polymerization has helped us understand polymer chemistry, and is also playing an increasing role in the field of practical applications. Radiation curing has a present market share of about 5% of the total market for curing of polymers and composites and the annual growth rate of the radiation curing market is ≥20% per year. Advantages of radiation curing over thermal or chemical curing methods include: improved control of the curing rate, reduced curing times, curing at ambient temperatures, curing without the need for chemical initiators, and complete (100%) curing with minimal toxic chemical emissions. Radiation treatment may also be used to effect crosslinking and grafting of polymer and composite materials. The major advantage in these cases is the ability to process products in their final shape. Cable insulation, automotive and aircraft components, and improved construction materials are some of the current and near-future industrial applications of radiation curing and crosslinking. 19 refs

  4. Cure Schedule for Stycast 2651/Catalyst 9.

    Energy Technology Data Exchange (ETDEWEB)

    Kropka, Jamie Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCoy, John D. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2017-11-01

    The Emerson & Cuming technical data sheet (TDS) for Stycast 2651/Catalyst 9 lists three alternate cure schedules for the material, each of which would result in a different state of reaction and different material properties. Here, a cure schedule that attains full reaction of the material is defined. The use of this cure schedule will eliminate variance in material properties due to changes in the cure state of the material, and the cure schedule will serve as the method to make material prior to characterizing properties. The following recommendation uses one of the schedules within the TDS and adds a “post cure” to obtain full reaction.

  5. UV/EB curing market in Indonesia

    International Nuclear Information System (INIS)

    Hilmy, N.; Danu, S.

    1999-01-01

    The most application of UV curing of surface coating in Indonesia are on fancy plywood, furniture and wood flooring industry. Other application are on papers, printing ink/labelling, printed circuit board/PCB and dental materials. At present, application of EB curing coating is still in a pilot plant scale due to the high cost of production. Limited number of application of EB curing by using low energy electron beam machine are on wood panels, ceramics and marbles. This paper describes the market and the problem faced by the largest user of radiation curing systems such as the secondary process plywood, furniture and paper industries

  6. Radiation curing of polymers II

    International Nuclear Information System (INIS)

    Randell, D.R.

    1991-01-01

    During the last decade radiation cured polymers have continued to grow in importance not only by expansion within existing coatings applications but also by extension into new fields of application such as ceramics, ink-jet inks and fibres. To provide a further update on the rapidly growing science and technology of radiation curing the Third International Symposium was held. Apart from providing an update on the application, chemistry and control aspects of the radiation curing the aim of the meeting was also to provide the newcomer with a basic insight into radiation curing applications. Accordingly the proceedings contained in this special publication which follow closely the format of the meeting, has five sections covering the background/trends, applications, initiator chemistry, substrate chemistry and analytical, physical chemical and health and safety aspects. There are twenty-five papers all told, three of which are indexed separately. (Author)

  7. The Effect of Autoclaving on Torsional Moment of Two Nickel-Titanium Endodontic Files

    Science.gov (United States)

    2012-01-01

    titanium endodontic files 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) J. B. King, H. W. Roberts, B. E... Endodontic Journal, doi:10.1111/j.1365- 2591.2011.01958.x 45, 156–161, 2012 doi:10.1111/j.1365-2591.2011.01958.x Wiley Blackwell Publishing, 111 River...autoclaving on torsional strength of two nickel–titanium (NiTi) rotary endodontic files: Twisted Files (SybronEndo, Orange, CA, USA) and GT Series X

  8. Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin

    Directory of Open Access Journals (Sweden)

    H. Kimura

    2011-12-01

    Full Text Available Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin were investigated. The cure behavior of benzoxazine with cyanate ester resin was monitored by model reaction using nuclear magnetic resonance (NMR. As a result of the model reaction, the ring opening reaction of benzoxazine ring and thermal self-cyclotrimerization of cyanate ester group occurred, and then the phenolic hydoroxyl group generated by the ring opening reaction of benzoxazine ring co-reacted with cyanate ester group. The properties of the cured thermosetting resin were estimated by mechanical properties, electrical resistivity, water resistance and heat resistance. The cured thermosetting resin from benzoxazine and cyanate ester resin showed good heat resistance, high electrical resistivity and high water resistance, compared with the cured thermosetting resin from benzoxazine and epoxy resin.

  9. Effects of Chemical Curing Temperature and Time on the Properties of Liquefied Wood based As-cured Precursors and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Junbo Shang

    2015-09-01

    Full Text Available Liquefied wood based as-cured precursors and carbon fibers prepared by different chemical curing processes were carried out to investigate the effects of curing temperature and time on the thermostability and microstructure of liquefied wood based precursors, the tensile strength of carbon fibers as well. The primary fibers can be converted into precursors with high performance by directly heating at target curing temperature. With the temperature and duration increasing, the numbers of methylene bonds in precursors increased, resulting in the enhancement of cross-linkages among molecular chains and then the improvement of thermostability of precursors. Carbon fibers prepared from as-cured precursors (curing temperature 95 oC, curing time 3h had the minimum value of the average interlayer spacing (d002, it also showed the highest tensile strength, almost 800 MPa, which can be classified as fibers of general grade.

  10. Determination of metal concentrations in certified plastic reference materials after small-size autoclave and microwave-assisted digestion followed with inductively coupled plasma optical emission spectrometry

    Science.gov (United States)

    Lehtimäki, Esa; Väisänen, Ari

    2017-01-01

    The digestion methods for the determination of As, Cd, Cr, Pb, Sb, Sn and Zn concentrations in plastic samples using microwave-assisted digestion (MW-AD) and small-size autoclave digestion was developed. The certified polyethylene, polypropylene, polyvinyl chloride and acrylonitrile butadiene styrene certified reference materials were used in order to find digestion method working properly for several sample matrices. Efficiency of the digestion methods was evaluated by analyzing the residual carbon in digests by TOC analyzer. MW-AD using a mixture of 7 mL of HNO3 and 3 mL of H2O2 as a digestion solution resulted in excellent recoveries for As, Cd, Pb, Sb and Zn, and were in the range of 92-107% for all the analytes except Pb in polyethylene material. Autoclave digestion using 5 mL of concentrated HNO3 as a digestion solution resulted in similar recoveries with the exception of a higher As recovery (98%). Tin recovery resulted in low level after both MW-AD and autoclave digestion. Autoclave digestion was further developed resulting in a partially open two-step digestion process especially for the determination of Sn and Cr. The method resulted in higher recoveries of Sn and Cr (87 and 76%) but with the lower concentration of easily volatile As, Cd and Sb.

  11. The relative safety of gamma-ray, autoclave, and ethylene oxide gas sterilization of thermosetting polyurethane.

    Science.gov (United States)

    Shintani, H

    1995-01-01

    Sterilization of polyurethane (PU) produces 4,4'-methylenedianiline (MDA), a known carcinogen, and various other compounds. The relationships of the components of PU to the formation of these compounds by sterilization were studied. Specimens of PU fabricated from different combinations of isocyanates and polyols were obtained from dialyzers. The molecular weight of the particular polyol was found to influence the production of MDA by sterilization. Sterilization also produced many unidentified compounds. MDA production was not always associated with the production of the other compounds. Compared with gamma-ray irradiation and ethylene oxide gas (EOG) sterilization, autoclave sterilization eluted more hydrophilic compounds. This phenomenon was significant for PUs produced from smaller-molecular-weight polyols. The combination of autoclave sterilization and a PU produced from a larger-molecular-weight polyol is recommended to minimize the production of potentially toxic compounds. Of the techniques studied, EOG sterilization produced the least amounts of MDA and the other compounds, but the residue of EOG is itself problematic. The risk posed by the amounts of MDA extracted was not significant, but the biological safety of the other compounds remains to be determined.

  12. The irradiation curing of coatings

    International Nuclear Information System (INIS)

    Autio, T.

    1974-01-01

    The electron beam irradiation curing of coatings has been technically feasible for over a decade. A brief description of the process is presented. The progress in this field has been astonishingly slow in comparison with the use of UV lamps as radiation source. The primary reason for this has been the great advantage in terms of capital cost of the UV curing lines and their ready adaptability to low or high production rates. A literature survey is given concerning basic and applied research in the electron curing area, patents, economics and existing installations around the world. (author)

  13. NON-AUTOCLAVE SILICATE BRICK

    Directory of Open Access Journals (Sweden)

    V. N. Yaglov

    2015-01-01

    Full Text Available The paper proposes a technology for obtaining bricks on the basis of lime-silica mixtures where chemical interactions are practically completely realized in dispersive state at the stage of preparation of binding contact maturing and raw mixture as a whole. The role of forming operation (moulding is changed in principle because in this case conversion of dispersive system into a rock-like solid occurs and due to this the solid obtains complete water-resistance in contact with water immediately after forming operation. Theoretical basis for the developed technology is capability of silicate dispersive substances (hydrated calcium silicate to transit in non-stable state, to form a rock-like water-resistant solid in the moment of mechanical load application during forming process. Specific feature of the proposed method is an exclusion of additional operations for autoclaving of products from the process of obtaining a silicate brick.Synthetic hydrated calcium silicate in contrast to natural ones are more uniform in composition and structure, they contain less impurities and they are characterized by dispersive composition and due to the mentioned advantages they find wider practical application. Contact-condensation binders permit to manipulate product properties on their basis and ensure maximum correspondence to the requirements of the concrete application. Raw material sources for obtaining synthetic hydrated calcium silicates are practically un-limited because calcium-silicon containing substances are found as in various technogenic wastes so in natural compounds as well. So the problem for obtaining hydrated calcium silicates having contact-condensation ability for structure formation becomes more and more actual one. This transition is considered as dependent principally on arrangement rate of substance particles which determined the level of its instability.

  14. Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes

    OpenAIRE

    Hassan A. Alshahrani; Mehdi H. Hojjati

    2016-01-01

    In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was develo...

  15. Study on the heat-resistant EB curing composites

    International Nuclear Information System (INIS)

    Bao Jianwen; Li Yang; Li Fengmei

    2000-01-01

    There are many advantages in the EB-curing process of composites. Heat-resistant EB-curing composites could substitute for polyimide composites used in aeronautical engine. The effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical thermal analysis (DMTA). The experiment result shows that the mechanical property of the composites cured by EB could meet the needs of the aeronautical engine in 250degC. (author)

  16. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    International Nuclear Information System (INIS)

    Ferretti, D.; Michelini, E.; Rosati, G.

    2015-01-01

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM

  17. Cracking in autoclaved aerated concrete: Experimental investigation and XFEM modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, D., E-mail: daniele.ferretti@unipr.it [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Michelini, E. [Department of Civil, Environmental, Land Management Engineering and Architecture, University of Parma, P.co Area delle Scienze 181/A, 43124 Parma (Italy); Rosati, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    The paper aims to investigate and model cracking development in beams and deep-beams made of autoclaved aerated concrete (AAC). Fracture mechanics of AAC has been first studied by performing three-point bending tests on beams, similar to those commonly used for ordinary concrete elements. In some of these tests, crack growth has been also monitored by using ESPI laser technique. In this way, it has been possible to calibrate the main parameters of a proper cohesive law by means of extended finite element inverse analysis. Subsequently, cracking tests have been also performed on deep-beams, whose behavior is more representative of full scale walls. To validate the proposed cohesive law, deep-beam experimental behavior has been finally simulated through XFEM.

  18. An emerging alternative to thermal curing: Electron curing of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Singh, A.; Saunders, C.B.; Lopata, V.J.; Kremers, W.; Chung, M.

    1995-01-01

    Electron curing of fiber-reinforced composites to produce materials with good mechanical properties has been demonstrated by the authors' work, and by Aerospatiale. The attractions of this technology are the technical and processing advantages offered over thermal curing, and the projected cost benefits. Though the work so far has focused on the higher value composites for the aircraft and aerospace industries, the technology can also be used to produce composites for the higher volume industries, such as transportation and automotive

  19. Radiation cured acrylonitrile--butadiene elastomers

    International Nuclear Information System (INIS)

    Eldred, R.J.

    1976-01-01

    In accordance with a preferred embodiment of this invention, the ultimate elongation of an electron beam radiation cured acrylonitrile-butadiene elastomer is significantly increased by the incorporation of a preferred noncrosslinking monomer, glycidyl methacrylate, in combination with the conventional crosslinking monomer, trimethylolpropanetrimethacrylate, prior to the radiation curing process

  20. Techniques for internal water curing of concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Pietro, Lura

    2003-01-01

    This paper gives an overview of different techniques for incorporation of internal curing water in concrete. Internal curing can be used to mitigate self-desiccation and self-desiccation shrinkage. Some concretes may need 50 kg/m3 of internal curing water for this purpose. The price of the internal...

  1. Confirming Sterility of an Autoclaved Infected Femoral Component for Use in an Articulated Antibiotic Knee Spacer: A Pilot Study.

    Science.gov (United States)

    Lyons, Steven T; Wright, Coy A; Krute, Christina N; Rivera, Frances E; Carroll, Ronan K; Shaw, Lindsey N

    2016-01-01

    Antibiotic spacer designs have proven effective at eradicating infection during a two-stage revision arthroplasty. Temporary reuse of the steam-sterilized femoral component and a new all poly tibia component has been described as an effective articulating antibiotic spacer, but sterility concerns persist. Six explanted cobalt chrome femurs from patients with grossly infected TKA's and six stock femurs inoculated with different bacterial species were confirmed to be bacteria-free after autoclaving under a standard gravity-displacement cycle. The effect of steam sterilization on cobalt chrome fragments contaminated with MRSA biofilm was analyzed microscopically to quantify remaining biofilm. The autoclave significantly reduced the biofilm burden on the cobalt chrome fragments. This study confirmed sterility of the femur after a standard gravity-displacement cycle (132°C, 27 PSIG, 10 minutes). Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A cure for HIV: is it in sight?

    Science.gov (United States)

    Pace, Matthew; Frater, John

    2014-07-01

    HIV is a devastating disease affecting millions of people worldwide despite the advent of successful antiretroviral therapy (ART). However, ART does not result in a cure and has to be taken for life. Accordingly, researchers are turning towards cure efforts, particularly in the light of two patients whose HIV has been seemingly eradicated. Numerous approaches and strategies have been considered for curing HIV, but no scalable and safe solution has yet been reached. With newly discovered difficulties in measuring the HIV reservoir, the main barrier to a cure, the only true test of cure is to stop ART and see whether the virus becomes detectable. However, it is possible that this treatment interruption may be associated with certain risks for patients. Here, we compare the current major approaches and recent advances for curing HIV, as well as discuss ways of evaluating HIV cure and the safety concerns involved.

  3. Effect of various infection-control methods for light-cure units on the cure of composite resins.

    Science.gov (United States)

    Chong, S L; Lam, Y K; Lee, F K; Ramalingam, L; Yeo, A C; Lim, C C

    1998-01-01

    This study (1) compared the curing-light intensity with various barrier infection-control methods used to prevent cross contamination, (2) compared the Knoop hardness value of cured composite resin when various barrier control methods were used, and (3) correlated the hardness of the composite resin with the light-intensity output when different infection-control methods were used. The light-cure unit tips were covered with barriers, such as cellophane wrap, plastic gloves, Steri-shields, and finger cots. The control group had no barrier. Composite resins were then cured for each of the five groups, and their Knoop hardness values recorded. The results showed that there was significant statistical difference in the light-intensity output among the five groups. However, there was no significant statistical difference in the Knoop hardness values among any of the groups. There was also no correlation between the Knoop hardness value of the composite resin with the light-intensity output and the different infection-control methods. Therefore, any of the five infection-control methods could be used as barriers for preventing cross-contamination of the light-cure unit tip, for the light-intensity output for all five groups exceeded the recommended value of 300 W/m2. However, to allow a greater margin of error in clinical situations, the authors recommend that the plastic glove or the cellophane wrap be used to wrap the light-cure tip, since these barriers allowed the highest light-intensity output.

  4. The effects of autoclave sterilization on the cyclic fatigue resistance of ProTaper Universal, ProTaper Next, and ProTaper Gold nickel-titanium instruments.

    Science.gov (United States)

    Özyürek, Taha; Yılmaz, Koray; Uslu, Gülşah

    2017-11-01

    It was aimed to compare the cyclic fatigue resistances of ProTaper Universal (PTU), ProTaper Next (PTN), and ProTaper Gold (PTG) and the effects of sterilization by autoclave on the cyclic fatigue life of nickel-titanium (NiTi) instruments. Eighty PTU, 80 PTN, and 80 PTG were included to the present study. Files were tested in a simulated canal. Each brand of the NiTi files were divided into 4 subgroups: group 1, as received condition; group 2, pre-sterilized instruments exposed to 10 times sterilization by autoclave; group 3, instruments tested were sterilized after being exposed to 25%, 50%, and 75% of the mean cycles to failure, then cycled fatigue test was performed; group 4, instruments exposed to the same experiment with group 3 without sterilization. The number of cycles to failure (NCF) was calculated. The data was statistically analyzed by using one-way analysis of variance and post hoc Tukey tests. PTG showed significantly higher NCF than PTU and PTN in group 1 ( p Autoclaving increased the cyclic fatigue resistances of PTN and PTG.

  5. Autoclave corrosion of zircaloy-4 cladding samples in LiOH solutions

    International Nuclear Information System (INIS)

    Hermann, A.

    2010-03-01

    In reactor operation, pH of the cooling water is adjusted by addition of alkaline hydroxides, and LiOH has been found to be the most suitable one. The addition of LiOH above a certain concentration level (depending on temperature) increases the corrosion rate of zirconium and its alloys. Hydrogen pick-up by the metal is also increased, and this effect is used to produce hydrided specimens for different investigations using the corrosion reaction. At the Paul Scherrer Institute several projects were accomplished to investigate the influence of hydrogen in Zircaloy cladding on its mechanical properties. In order to produce hydrided specimens for comparison and for adjusting new equipment, Zircaloy tubing samples were hydrogen charged by autoclave corrosion in lithiated water. Results of the corrosion experiments are outlined in this publication. Because of the great variety of possible experimental parameters these results are still of interest for the scientific community. Autoclave corrosion was accomplished in 0.2 M or 0.5 M LiOH solution at a constant temperature of 340 o C and a pressure of 160 bar. The corrosion rate increases from 84 mg/(dm 2 d) in 0.2 M LiOH to 153 mg/(dm 2 d) in 0.5 M LiOH. The hydrogen pick-up fraction in 0.5 M LiOH amounts to 80%. In 0.5 M LiOH, Zircaloy tubing samples can be charged with ∼ 500 ppm hydrogen in about 40 hours. In the corrosion experiments described in this report a homogeneous distribution of hydrides should be expected (except very high hydride concentrations) because no temperature gradient exists through the tubing wall. Hydrogen stringers are homogeneously distributed with circumferential orientation (stress-relieved tubing samples). (author)

  6. Mechanical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-12-01

    Full Text Available The mechanical properties of concrete containing self-curing agents are investigated in this paper. In this study, two materials were selected as self-curing agents with different amounts, and the addition of silica fume was studied. The self-curing agents were, pre-soaked lightweight aggregate (Leca; 0.0%, 10%, 15%, and 20% of volume of sand; or polyethylene-glycol (Ch.; 1%, 2%, and 3% by weight of cement. To carry out this study the cement content of 300, 400, 500 kg/m3, water/cement ratio of 0.5, 0.4, 0.3 and 0.0%, 15% silica fume of weight of cement as an additive were used in concrete mixes. The mechanical properties were evaluated while the concrete specimens were subjected to air curing regime (in the laboratory environment with 25 °C, 65% R.H. during the experiment. The results show that, the use of self-curing agents in concrete effectively improved the mechanical properties. The concrete used polyethylene-glycol as self-curing agent, attained higher values of mechanical properties than concrete with saturated Leca. In all cases, either 2% Ch. or 15% Leca was the optimum ratio compared with the other ratios. Higher cement content and/or lower water/cement ratio lead(s to more efficient performance of self-curing agents in concrete. Incorporation of silica fume into self-curing concrete mixture enhanced all mechanical properties, not only due to its pozzolanic reaction, but also due to its ability to retain water inside concrete.

  7. Relation between Portland cement carbonation, range of clinker burning and some expansive phenomena in the autoclave test

    Directory of Open Access Journals (Sweden)

    Ruiz de Cauna, A.

    1975-12-01

    Full Text Available Not availableEn este trabajo se estudia el doble pico que aparece en la región de altas temperaturas de las curvas derivatométricas, realizadas en atmósfera de vapor de agua, de los cementos portland anhidros e hidratados y en general el efecto de la carbonatación sobre los silicatos y aluminatos presentes en los cementos portland, especialmente sobre el perfil de las curvas derivatométricas de los cementos portland anhidros e hidratados. Se recogen y examinan los cambios experimentados en el doble pico al someter los cementos a la acción de diversos tratamientos y de agentes modificantes, tales como el tiempo, el CO2, la hidratación normal, las hidrataciones bajo agua a ebullición, en autoclave y en suspensión acuosa con agitación, la adición de puzolana y de fuertes proporciones de S04Ca. Se estudia y compara, asimismo, el comportamiento al análisis térmico bajo vapor de agua y al ensayo de autoclave de algunos clínkeres y cementos que presentan el doble pico en forma acusada y poco apreciable, respectivamente. De los resultados obtenidos se deducen conclusiones que explican los comportamientos experimentales observados. Las principales conclusiones se refieren a la interpretación de los picos que aparecen en las curvas derivatométricas o de velocidad de pérdida de peso de los cementos portland anhidros e hidratados, y a algunos aspectos de su carbonatación, a la probable existencia de un compuesto intermedio, consecuencia de la incompleta formación del silicato tricálcico y a la explicación de determinadas grandes expansiones producidas en el ensayo de autoclave.

  8. Comparative Evaluation of Dimensional Accuracy of Elastomeric Impression Materials when Treated with Autoclave, Microwave, and Chemical Disinfection.

    Science.gov (United States)

    Kamble, Suresh S; Khandeparker, Rakshit Vijay; Somasundaram, P; Raghav, Shweta; Babaji, Rashmi P; Varghese, T Joju

    2015-09-01

    Impression materials during impression procedure often get infected with various infectious diseases. Hence, disinfection of impression materials with various disinfectants is advised to protect the dental team. Disinfection can alter the dimensional accuracy of impression materials. The present study was aimed to evaluate the dimensional accuracy of elastomeric impression materials when treated with different disinfectants; autoclave, chemical, and microwave method. The impression materials used for the study were, dentsply aquasil (addition silicone polyvinylsiloxane syringe and putty), zetaplus (condensation silicone putty and light body), and impregum penta soft (polyether). All impressions were made according to manufacturer's instructions. Dimensional changes were measured before and after different disinfection procedures. Dentsply aquasil showed smallest dimensional change (-0.0046%) and impregum penta soft highest linear dimensional changes (-0.026%). All the tested elastomeric impression materials showed some degree of dimensional changes. The present study showed that all the disinfection procedures produce minor dimensional changes of impression material. However, it was within American Dental Association specification. Hence, steam autoclaving and microwave method can be used as an alternative method to chemical sterilization as an effective method.

  9. Radiation curing - twenty five years on

    International Nuclear Information System (INIS)

    Garnett, J.L.

    1995-01-01

    Progress in UV/EB curing during the past twenty five years is briefly reviewed. During this time developments in unique polymer chemistry, novel equipment design and the introduction of relevant educational programmes has enabled radiation curing to become an established technology with specific strengths in certain industries. Possible reasons for the emergence of the technology in these niche markets are discussed. Despite the worldwide recession, radiation curing is shown to be expanding at 5% per annum with the prospect of higher growth with improving economic conditions. (Author)

  10. Silicone rubber curing by high intensity infrared radiation

    International Nuclear Information System (INIS)

    Huang, T.; Tsai, J.; Cherng, C.; Chen, J.

    1994-01-01

    A high-intensity (12 kW) and compact (80 cm) infrared heating oven for fast curing (12 seconds) of tube-like silicone rubber curing studies is reported. Quality inspection by DSC and DMA and results from pilot-scale curing oven all suggest that infrared heating provides a better way of vulcanization regarding to curing time, quality, cost, and spacing over conventional hot air heating. copyright 1995 American Institute of Physics

  11. Effect of curing modes of dual-curing core systems on microtensile bond strength to dentin and formation of an acid-base resistant zone.

    Science.gov (United States)

    Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Waidyasekera, Kanchana; Ikeda, Masaomi; Chen, Jihua; Nikaido, Toru; Tagami, Junji

    2011-12-01

    To evaluate the microtensile bond strength (μTBS) and acid-base resistant zone (ABRZ) of two dualcuring core systems to dentin using four curing modes. Sixty-four caries-free human molars were randomly divided into two groups according to two dual-curing resin core systems: (1) Clearfil DC Core Automix; (2) Estelite Core Quick. For each core system, four different curing modes were applied to the adhesive and core resin: (1) dual-cured and dual-cured (DD); (2) chemically cured and dual-cured (CD); (3) dual-cured and chemically cured (DC); (4) chemically cured and chemically cured (CC). The specimens were sectioned into sticks (n = 20 for each group) for the microtensile bond test. μTBS data were analyzed using two-way ANOVA and the Dunnett T3 test. Failure patterns were examined with scanning electron microscopy (SEM) to determine the proportion of each mode. Dentin sandwiches were produced and subjected to an acid-base challenge. After argon-ion etching, the ultrastructure of ABRZ was observed using SEM. For Clearfil DC Core Automix, the μTBS values in MPa were as follows: DD: 29.1 ± 5.4, CD: 21.6 ± 5.6, DC: 17.9 ± 2.8, CC: 11.5 ± 3.2. For Estelite Core Quick, they were: DD: 48.9 ±5.7, CD: 20.5 ± 4.7, DC: 41.4 ± 8.3, CC: 19.1 ± 6.0. The bond strength was affected by both material and curing mode, and the interaction of the two factors was significant (p < 0.001). Within both systems, there were significant differences among groups, and the DD group showed the highest μTBS (p < 0.05). ABRZ morphology was not affected by curing mode, but it was highly adhesive-material dependent. The curing mode of dual-curing core systems affects bond strength to dentin, but has no significant effect on the formation of ABRZ.

  12. Experimental Study on the Curing Effect of Dredged Sediments with Three Types of Curing Agents

    Directory of Open Access Journals (Sweden)

    Yan Lei-Ming

    2016-01-01

    Full Text Available Sediment solidification technology is widely used to dispose dredged sediment, three types of curing agents were used in this study to solidified the dredged sediment from shallows in Nantong with three types of curing agents: JY, ZL and FJ. The results showed that the optimal additive amounts of these three curing agents were 140g JY, 16g ZL, 2.0g FJ per 1000g of the dredged sediment respectively, their 28d USC were up to 2.48 MPa, 2.96 MPa and 3.00 MPa. JY has obvious early strength effect, which of FJ is not that obvious, but the later-stage strength of sediment solidified by FJ are relatively higher.

  13. Effect of curing methods, packaging and gamma irradiation on the weight loss and dry matter percent of garlic during curing and storage

    International Nuclear Information System (INIS)

    Mahmoud, A.A.; El-Oksh, I.I.; Farag, S.E.A.

    1988-01-01

    The Egyptian garlic plants, showed higher percent of weight loss at 17 or 27 days from curing compared to those of Chinese plants. The curing period of 17 days seemed satisfactory for the Egyptian cultivar, whereas, 27 days seemed to be enough for the Chinese garlic. No significant differences were observed between common and shaded curing methods in weight loss per cent. The Chinese garlic contained higher dry matter percentage than those of the Egyptian cultivar. Shaded cured plants of the two cultivars contained higher dry matter percent than those subjected to the common curing methods. Irradiation of garlic bulbs, shaded curing method and sack packaging decreased, in general the weight loss during storage in comparison with other treatments

  14. Proceedings of workshop on surface finishing by radiation curing technology: radiation curing for better finishing

    International Nuclear Information System (INIS)

    1993-01-01

    This book compiled the paper presented at this workshop. The papers discussed are 1. Introduction to radiation curing, 2. Radiation sources -ultraviolet and electron beams, 3. UV/EB curing of surface coating - wood and nonwood substrates, 4. Development of EPOLA (epoxidised palm oil products acrylate) and its application, 5. Development of radiation-curable resin based natural rubber

  15. Proceedings of workshop on surface finishing by radiation curing technology: radiation curing for better finishing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This book compiled the paper presented at this workshop. The papers discussed are 1. Introduction to radiation curing, 2. Radiation sources -ultraviolet and electron beams, 3. UV/EB curing of surface coating - wood and nonwood substrates, 4. Development of EPOLA (epoxidised palm oil products acrylate) and its application, 5. Development of radiation-curable resin based natural rubber.

  16. Physical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-08-01

    The results show that the use of self-curing agent (Ch. in concrete effectively improves the physical properties compared with conventional concrete. On the other hand, up to 15% saturated leca was effective while 20% saturated leca was effective for permeability and mass loss but adversely affects the sorptivity and volumetric water absorption. Self-curing agent Ch. was more effective than self-curing agent leca. In all cases, both 2% Ch. and 15% leca were the optimum values. Higher cement content and/or lower water–cement ratio leads to more effective results of self-curing agents in concrete. Incorporation of silica fume into concrete mixtures enhances all physical properties.

  17. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy

    OpenAIRE

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2015-01-01

    Introduction: Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). Methods and Materials: In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autocla...

  18. Comparing depth-dependent curing radiant exposure and time of curing of regular and flow bulk-fill composites

    Directory of Open Access Journals (Sweden)

    Jose Augusto RODRIGUES

    2017-08-01

    Full Text Available Abstract The effect of restoration depth on the curing time of a conventional and two bulk-fill composite resins by measuring microhardness and the respective radiosity of the bottom surface of the specimen was investigated. 1-, 3- and 5-mm thick washers were filled with Surefil SDR Flow–U (SDR, Tetric EvoCeram Bulk Fill-IVA (TEC or Esthet-X HD–B1 (EHD, and cured with Bluephase® G2 for 40s. Additional 1-mm washers were filled with SDR, TEC or EHD, placed above the light sensor of MARC®, stacked with pre-cured 1-, 3- or 5-mm washer of respective material, and cured for 2.5~60s to mimic 2-, 4- and 6-mm thick composite curing. The sensor measured the radiosity (EB at the bottom of specimen stacks. Vickers hardness (VH was measured immediately at 5 locations with triplicate specimens. Nonlinear regression of VH vs EB by VH=α[1-exp(-EB/β] with all thickness shows that the values of α, maximum hardness, are 21.6±1.0 kg/mm2 for SDR, 38.3±0.6 kg/mm2 for TEC and 45.3±2.6 kg/mm2 for EHD, and the values of β, rate parameter, are 0.40±0.06 J/cm2 for SDR, 0.77±0.04 J/cm2 for TEC and 0.58±0.09 J/cm2 for EHD. The radiosity of the bottom surface was calculated when the bottom surface of each material attained 80% of α of each material. The curing times for each material are in agreement with manufacturer recommendation for thickness. It is possible to estimate time needed to cure composite resin of known depth adequately by the radiosity and microhardness of the bottom surface.

  19. Comparing depth-dependent curing radiant exposure and time of curing of regular and flow bulk-fill composites.

    Science.gov (United States)

    Rodrigues, Jose Augusto; Tenorio, Ilana Pais; Mello, Ginger Baranhuk Rabello de; Reis, André Figueiredo; Shen, Chiayi; Roulet, Jean-François

    2017-08-21

    The effect of restoration depth on the curing time of a conventional and two bulk-fill composite resins by measuring microhardness and the respective radiosity of the bottom surface of the specimen was investigated. 1-, 3- and 5-mm thick washers were filled with Surefil SDR Flow-U (SDR), Tetric EvoCeram Bulk Fill-IVA (TEC) or Esthet-X HD-B1 (EHD), and cured with Bluephase® G2 for 40s. Additional 1-mm washers were filled with SDR, TEC or EHD, placed above the light sensor of MARC®, stacked with pre-cured 1-, 3- or 5-mm washer of respective material, and cured for 2.5~60s to mimic 2-, 4- and 6-mm thick composite curing. The sensor measured the radiosity (EB) at the bottom of specimen stacks. Vickers hardness (VH) was measured immediately at 5 locations with triplicate specimens. Nonlinear regression of VH vs EB by VH=α[1-exp(-EB/β)] with all thickness shows that the values of α, maximum hardness, are 21.6±1.0 kg/mm2 for SDR, 38.3±0.6 kg/mm2 for TEC and 45.3±2.6 kg/mm2 for EHD, and the values of β, rate parameter, are 0.40±0.06 J/cm2 for SDR, 0.77±0.04 J/cm2 for TEC and 0.58±0.09 J/cm2 for EHD. The radiosity of the bottom surface was calculated when the bottom surface of each material attained 80% of α of each material. The curing times for each material are in agreement with manufacturer recommendation for thickness. It is possible to estimate time needed to cure composite resin of known depth adequately by the radiosity and microhardness of the bottom surface.

  20. Electron beam curing of coating

    International Nuclear Information System (INIS)

    Fujioka, S.; Fujikawa, Z.

    1974-01-01

    Electron beam curing (EBC) method, by which hardened coating film is obtained by polymerizing and cross-linking paint with electron beam, has finally reached industrialized stage. While about seven items such as short curing time, high efficiency of energy consumption, and homogeneous curing are enumerated as the advantages of EBC method, it has limitations of the isolation requirement from air needing the injection of inert gas, and considerable amount of initial investment. In the electron accelerators employed in EBC method, the accelerating voltage is 250 to 750 kV, and the tube current is several tens of mA to 200 mA. As an example of EBC applications, EBC ''Erio'' steel sheet was developed by the cooperative research of Nippon Steel Corp., Dai-Nippon Printing Co. and Toray Industries, Inc. It is a high-class pre-coated metal product made from galvanized steel sheets, and the flat sheets with cured coating are sold, and final products are fabricated by being worked in various shapes in users. It seems necessary to develop the paint which enables to raise added value by adopting the EBC method. (Wakatsuki, Y.)

  1. Accelerated production of dry cured hams.

    Science.gov (United States)

    Marriott, N G; Graham, P P; Shaffer, C K; Phelps, S K

    1987-01-01

    Ten uncured legs from the right side of the sampled pork carcasses (Study A) were vacuum tumbled with the cure adjuncts for 30 min (T) and 10 counterparts from the left side were tumbled 30 min, rested 30 min and tumbled an additional 30 min (TRT). Evaluations were conducted at 40 and 70 days after cure application for color, taste attributes, percentage moisture, percentage salt and NO(3)(-) and NO(2)(-) content. Study B was the same except that 18 legs were boned, tumbled and cured for 40, 56 and 70 days. The TRT samples (Study A) at 40 days sustained less color fading (P 0.05) existed among the uncooked hams. Increased cure time enhanced moisture loss and salt content (Study A) and color retention during cookery (Study B). The TRT samples had increased moisture loss and salt content (Study A). Copyright © 1987. Published by Elsevier Ltd.

  2. Rubber curing chemistry governing the orientation of layered silicate

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The effect of curing systems on the orientation and the dispersion of the layered silicates in acrylonitrile butadiene rubber nanocomposite is reported. Significant differences in X-ray diffraction pattern between peroxide curing and sulfur curing was observed. Intense X-ray scattering values in the XRD experiments from peroxide cured vulcanizates indicate an orientation of the layers in a preferred direction as evinced by transmission electron micrographs. However, sulfur cured vulcanizates show no preferential orientation of the silicate particles. Nevertheless, a closer inspection of transmission electron microscopy (TEM images of peroxide and sulfur cured samples shows exfoliated silicate layers in the acrylonitrile butadiene rubber (NBR matrix. It was revealed in the prevailing study that the use of an excess amount of stearic acid in the formulation of the sulfur curing package leads to almost exfoliated type X-ray scattering pattern.

  3. Processing and Characterization of Welded Bonds between Thermoset and Thermoplastic Composites

    National Research Council Canada - National Science Library

    McKnight, Stephen

    2001-01-01

    .... The degradation is reported to decrease the shear strength in an exponential way. A layer of TP (polysulphone PSU) is cocured at the surface of the AS4/3501-6 laminate during its cure cycle in an autoclave...

  4. Curing kinetics of alkyd/melamine resin mixtures

    Directory of Open Access Journals (Sweden)

    Jovičić Mirjana C.

    2009-01-01

    Full Text Available Alkyd resins are the most popular and useful synthetic resins applied as the binder in protective coatings. Frequently they are not used alone but are modified with other synthetic resins in the manufacture of the coatings. An alkyd/melamine resin mixture is the usual composition for the preparation of coating called 'baking enamel' and it is cured through functional groups of resins at high temperatures. In this paper, curing kinetics of alkyd resins based on castor oil and dehydrated castor oil with melamine resin, has been studied by DSC method with programmed heating and in isothermal mode. The results determined from dynamic DSC curves were mathematically transformed using the Ozawa isoconversional method for obtaining the isothermal data. These results, degree of curing versus time, are in good agreement with those determined by the isothermal DSC experiments. By applying the Ozawa method it is possible to calculate the isothermal kinetic parameters for the alkyd/melamine resin mixtures curing using only calorimetric data obtained by dynamic DSC runs. Depending on the alkyd resin type and ratio in mixtures the values of activation energies of curing process of resin mixtures are from 51.3 to 114 kJ mol-1. The rate constant of curing increases with increasing the content of melamine resin in the mixture and with curing temperature. The reaction order varies from 1.12 to 1.37 for alkyd based on dehydrated castor oil/melamine resin mixtures and from 1.74 to 2.03 for mixtures with alkyd based on castor oil. Based on the results obtained, we propose that dehydrated castor oil alkyd/melamine resin mixtures can be used in practice (curing temperatures from 120 to 160°C.

  5. Monitoring Prepregs As They Cure

    Science.gov (United States)

    Young, P. R.; Gleason, J. R.; Chang, A. C.

    1986-01-01

    Quality IR spectra obtained in dynamic heating environment. New technique obtains quality infrared spectra on graphite-fiber-reinforced, polymeric-matrix-resin prepregs as they cure. Technique resulted from modification of diffuse reflectance/Fourier transform infrared (DR/FTIR) technique previously used to analyze environmentally exposed cured graphite composites. Technique contribute to better understanding of prepreg chemistry/temperature relationships and development of more efficient processing cycles for advanced materials.

  6. Catalyzed Synthesis and Characterization of a Novel Lignin-Based Curing Agent for the Curing of High-Performance Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Saeid Nikafshar

    2017-07-01

    Full Text Available In this study, lignin, an aromatic compound from the forestry industry, was used as a renewable material to synthesize a new aromatic amine curing agent for epoxy resin. Firstly, lignin was separated from black liquor and hydroxyl groups were converted to tosyl groups as leaving groups. Then, primary amination was conducted using an ammonia solution at high pressure and temperature, in the presence of a nano-alumina-based catalyst. The structure of the nanocatalyst was confirmed by FT-IR, ICP, SEM, and XPS analyses. According to the FT-IR spectra, a demethylation reaction, the substitution of hydroxyl groups with tosyl groups, and then an amination reaction were successfully performed on lignin, which was further confirmed by the 13C NMR and CHNS analyses. The active hydrogen equivalent of aminated lignin was determined and three samples with 9.9 wt %, 12.9 wt %, and 15.9 wt % of aminated lignin, as curing agents, were prepared for curing the diglycidyl ether of bisphenol A (DGEBA. The thermal characteristics of the curing process of these epoxy samples were determined by DSC and TGA analyses. Moreover, the mechanical performance of the cured epoxy systems, e.g., the tensile strength and Izod impact strength, were measured, showing that in the presence of 12.9 wt % aminated lignin, the mechanical properties of the aminated lignin-epoxy system exhibited the best performance, which was competitive, compared to the epoxy systems cured by commercial aromatic curing agents.

  7. Translating Genomic Discoveries to Cure Ultrahypermutant ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Translating Genomic Discoveries to Cure Ultrahypermutant Mismatch Repair Deficient Brain Tumours. Malignant brain tumours are the most common cause of death among children with cancer, but there is no known cure. This project will advance research in this important field. Inherited mutations and childhood cancer.

  8. Evaluation of gamma irradiation and heat treatment by autoclaving in the preparation of microorganism-free carriers for biofertilizer products

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Khairuddin Abdul Rahim; Ahmad Nazrul Abd Wahid

    2009-01-01

    Biofertilizer has been identified as an alternative or complementary to chemical fertilizers to increase soil fertility and crop production in sustainable farming. Biofertilizers are products containing living cells of different types of known microorganisms that may increase crop productivity through N 2 fixation, phosphate solubilization or stimulation of plant growth by synthesising phytohormones. A good biofertilizer product needs a good carrier or substrate. A good carrier should be free from microbial contamination and can optimise the growth of the biofertilizer microorganisms. Compost is commonly used as carrier or substrate for biofertilizer microorganisms. In the present study, compost produced by Nuclear Malaysia using the Natural Farming method was used as carrier for several biofertilizer products. Gamma irradiation and autoclave were used to produce sterile carrier for biofertilizer. The effectiveness for both methods was evaluated. Gamma irradiation at a dose of 50 kGy and autoclaving at 121 degree C for 60 minutes were found effective to produce sterile carriers for biofertilizer products.(Author)

  9. Influence of curing time, overlay material and thickness on three light-curing composites used for luting indirect composite restorations.

    Science.gov (United States)

    D'Arcangelo, Camillo; De Angelis, Francesco; Vadini, Mirco; Carluccio, Fabio; Vitalone, Laura Merla; D'Amario, Maurizio

    2012-08-01

    To assess the microhardness of three resin composites employed in the adhesive luting of indirect composite restorations and examine the influence of the overlay material and thickness as well as the curing time on polymerization rate. Three commercially available resin composites were selected: Enamel Plus HRI (Micerium) (ENA), Saremco ELS (Saremco Dental) (SAR), Esthet-X HD (Dentsply/DeTrey) (EST-X). Post-polymerized cylinders of 6 different thicknesses were produced and used as overlays: 2 mm, 3 mm, 3.5 mm, 4 mm, 5 mm, and 6 mm. Two-mm-thick disks were produced and employed as underlays. A standardized amount of composite paste was placed between the underlay and the overlay surfaces which were maintained at a fixed distance of 0.5 mm. Light curing of the luting composite layer was performed through the overlays for 40, 80, or 120 s. For each specimen, the composite to be cured, the cured overlay, and the underlay were made out of the same batch of resin composite. All specimens were assigned to three experimental groups on the basis of the resin composite used, and to subgroups on the basis of the overlay thickness and the curing time, resulting in 54 experimental subgroups (n = 5). Forty-five additional specimens, 15 for each material under investigation, were produced and subjected to 40, 80, or 120 s of light curing using a microscope glass as an overlay; they were assigned to 9 control subgroups (n = 5). Three Vicker's hardness (VH) indentations were performed on each specimen. Means and standard deviations were calculated. Data were statistically analyzed using 3-way ANOVA. Within the same material, VH values lower than 55% of control were not considered acceptable. The used material, the overlay thickness, and the curing time significantly influenced VH values. In the ENA group, acceptable hardness values were achieved with 3.5-mm or thinner overlays after 120 or 80 s curing time (VH 41.75 and 39.32, respectively), and with 2-mm overlays after 40 s (VH 54

  10. Radiation cured coating containing glitter particles and process therefor

    International Nuclear Information System (INIS)

    Sachs, P.R.; Sears, J.W.

    1992-01-01

    Radiation curable coatings for use on a variety of substrates and curable by exposure to ionizing irradiation of ultraviolet light are well known. The use of urethane type coatings cured with ultraviolet light to provide protective wear layers for wall or floor tile is for instance described in U.S. Pat. No. 4,180,615. U.S. Pat. No. 3,918,393 describes a method for obtaining a non-glossy coating on various substrates by curing radiation sensitive material with ionizing irradiation or ultraviolet light in two stages. In this process the coating is partially cured in an oxygen-containing atmosphere and the curing is completed in an inert atmosphere. U.S. Pat. No. 4,122,225 discloses a method and apparatus for coating tile which involves the application of one coat of radiation curable material to an entire substrate followed by partial curing and the subsequent application and curing of a second coat or radiation curable material only on high areas of the substrate which are subject to greater than average wear. Use of pigment in radiation cured coatings on products such as floor covering which are subject to wear during use has presented substantial difficulties. Incorporation of pigment, especially enough pigment to make the coating opaque, makes the coating hard to cure and substantially reduces the thicknesses of coating which can be cured relative to a clear coating cured under the same conditions

  11. Accelerated Cure Project for Multiple Sclerosis

    Science.gov (United States)

    ... questions and enable an era of optimized MS treatment. Read more... The Accelerated Cure Project for MS is a non-profit, 501(c)(3) tax-exempt organization whose mission is to accelerate efforts toward a cure for multiple sclerosis by rapidly advancing research that determines its causes ...

  12. 7 CFR 29.3002 - Air-cured.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Air-cured. 29.3002 Section 29.3002 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-cured tobacco should not carry the odor of smoke or fumes resulting from the application of artificial...

  13. Microwave and thermal curing of an epoxy resin for microelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, K. [Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Pavuluri, S.K.; Leonard, M.T.; Desmulliez, M.P.Y. [MIcroSystems Engineering Centre (MISEC), Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Arrighi, V., E-mail: v.arrighi@hw.ac.uk [Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2015-09-20

    Graphical abstract: - Highlights: • Thermal and microwave curing of a commercial epoxy resin EO1080 are compared. • Microwave curing increases cure rate and does not adversely affect properties. • The curing of EO1080 is generally autocatalytic but deviates at high conversion. • Microwave radiation has a more complex effect on curing kinetics. - Abstract: Microwave curing of thermosetting polymers has a number of advantages to natural or thermal oven curing and is considered a cost-effective alternative. Here we present a detailed study of a commercially available epoxy resin, EO1080. Samples that are thermally cured are compared to curing using a recently developed modular microwave processing system. For commercial purposes it is crucial to demonstrate that microwave curing does not adversely affect the thermal and chemical properties of the material. Therefore, the kinetics of cure and various post cure properties of the resin are investigated. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) analysis shows no significant difference between the conventionally and microwave cured samples. Differential scanning calorimetry (DSC) is used to monitor the kinetics of the curing reaction, as well as determine the thermal and ageing properties of the material. As expected, the rate of curing is higher when using microwave energy and we attempt to quantify differences compared to conventional thermal curing. No change in glass transition temperature (T{sub g}) is observed. For the first time, enthalpy relaxation measurements performed on conventional and microwave cured samples are reported and these indicate similar ageing properties at any given temperature under T{sub g}.

  14. Microwave and thermal curing of an epoxy resin for microelectronic applications

    International Nuclear Information System (INIS)

    Johnston, K.; Pavuluri, S.K.; Leonard, M.T.; Desmulliez, M.P.Y.; Arrighi, V.

    2015-01-01

    Graphical abstract: - Highlights: • Thermal and microwave curing of a commercial epoxy resin EO1080 are compared. • Microwave curing increases cure rate and does not adversely affect properties. • The curing of EO1080 is generally autocatalytic but deviates at high conversion. • Microwave radiation has a more complex effect on curing kinetics. - Abstract: Microwave curing of thermosetting polymers has a number of advantages to natural or thermal oven curing and is considered a cost-effective alternative. Here we present a detailed study of a commercially available epoxy resin, EO1080. Samples that are thermally cured are compared to curing using a recently developed modular microwave processing system. For commercial purposes it is crucial to demonstrate that microwave curing does not adversely affect the thermal and chemical properties of the material. Therefore, the kinetics of cure and various post cure properties of the resin are investigated. Attenuated Total Reflectance Fourier-Transform Infrared (ATR-FTIR) analysis shows no significant difference between the conventionally and microwave cured samples. Differential scanning calorimetry (DSC) is used to monitor the kinetics of the curing reaction, as well as determine the thermal and ageing properties of the material. As expected, the rate of curing is higher when using microwave energy and we attempt to quantify differences compared to conventional thermal curing. No change in glass transition temperature (T g ) is observed. For the first time, enthalpy relaxation measurements performed on conventional and microwave cured samples are reported and these indicate similar ageing properties at any given temperature under T g

  15. Financing cures in the United States.

    Science.gov (United States)

    Basu, Anirban

    2015-02-01

    True cures in health care are rare but likely not for long. The high price tag that accompanies a cure along with its rapid uptake create challenges in the financing of cures by public and private payers. In the US, the disaggregated nature of health insurance system adds to this challenge as patients frequently churn across multiple health plans. This creates a 'free-rider' problem, where no one health plan has the incentive to invest in cure since the returns will be scattered over many health plans. Here, a new health currency is proposed as a generalized version of a social impact bond that has the potential to solve this free-rider problem, as it can be traded not only between public and private payers but also within the private sector. An ensuing debate as to whether and how to develop such a currency can serve the US health care system well.

  16. Photoacoustic monitoring of inhomogeneous curing processes in polystyrene emulsions

    International Nuclear Information System (INIS)

    Vargas-Luna, M.; Gutierrez-Juarez, G.; Rodriguez-Vizcaino, J.M.; Varela-Nsjera, J.B.; Rodriguez-Palencia, J.M.; Bernal-Alvarado, J.; Sosa, M.; Alvarado-Gil, J.J.

    2002-01-01

    The time evolution of the inhomogeneous curing process of polystyrene emulsions is studied using a variant of the conventional photoacoustic (PA) technique. The thermal effusivity, as a function of time, is determined in order to monitor the sintering process of a styrene emulsion in different steps of the manufacturing procedure. PA measurements of thermal effusivity show a sigmoidal growth as a function of time during the curing process. The parameterization of these curves permits the determination of the characteristic curing time and velocity of the process. A decreasing of the curing time and an increasing curing velocity for the final steps of the manufacturing process are observed. The feasibility of our approach and its potentiality for the characterization of other curing process are discussed. (author)

  17. Autoclaving-Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies.

    Science.gov (United States)

    Su, Yajuan; Zhi, Zelun; Gao, Qiang; Xie, Meihua; Yu, Meng; Lei, Bo; Li, Peng; Ma, Peter X

    2017-03-01

    Biomedical device-associated infections which engender severe threat to public health require feasible solutions. In this study, block copolymers consisting of antimicrobial, antifouling, and surface-tethering segments in one molecule are synthesized and grafted on polymeric substrates by a facile plasma/autoclave-assisted method. Hetero-bifunctional polyethylene glycol (PEG) with allyl and tosyl groups (APEG-OTs) is first prepared. PEGs with different molecular weights (1200 and 2400 Da) are employed. Polyhexamethylene guanidine (PHMG) which has excellent broad-spectrum antimicrobial activity and thermal/chemical stability, is conjugated with APEG-OTs to generate the block copolymer (APEG-PHMG). Allyl terminated PHMG (A-PHMG) without PEG segments is also synthesized by reacting PHMG with allyl glycidyl ether. The synthesized copolymers are thermal initiated by autoclaving and grafted on plasma pretreated silicone surface, forming permanently bonded bottlebrush-like coatings. Both A-PHMG and APEG 1200/2400 -PHMG coatings exhibit potent antimicrobial activity against gram-positive/negative bacteria and fungus, whereas APEG 1200/2400 -PHMG coatings show superior antifouling activity and long-term reusability to A-PHMG coating. APEG 2400 -PHMG coating demonstrates the most effective in vitro antibiofilm and protein/platelet-resistant properties, as well as excellent hemo/biocompatibility. Furthermore, APEG 2400 -PHMG greatly reduces the bacteria number with 5-log reduction in a rodent subcutaneous infection model. This rationally designed dual-functional antimicrobial and antifouling coating has great potential in combating biomedical devices/implant-associated infections. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 7 CFR 29.1019 - Flue-cured.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Flue-cured. 29.1019 Section 29.1019 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... tobacco; or tobacco cured by some other process which accomplishes the same results. [42 FR 21092, Apr. 25...

  19. CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM

    Directory of Open Access Journals (Sweden)

    R. YUSOFF

    2007-08-01

    Full Text Available The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems. Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites. C-scan traces showed that all composites, regardless of methods of curing, had minimal defects.

  20. Determinant of flexible Parametric Estimation of Mixture Cure ...

    African Journals Online (AJOL)

    AIC, mean time to cure), variance and cure fraction (c) were used to determine the flexible Parametric Cure Fraction Model among the considered models. Gastric Cancer data from 76 patients received adjuvant CRT and 125 receiving resection (surgery) alone were used to confirm the suitability of the models. The data was ...

  1. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials

    International Nuclear Information System (INIS)

    Wongkeo, Watcharapong; Thongsanitgarn, Pailyn; Pimraksa, Kedsarin; Chaipanich, Arnon

    2012-01-01

    Highlights: ► Autoclaved aerated concrete were produced using coal bottom ash as a cement replacement material. ► Coal bottom ash was found to enhance concrete strengths. ► Thermal conductivity of concrete was not significantly affected. ► X-ray diffraction and thermal analysis show tobermorite formation. -- Abstract: The bottom ash (BA) from Mae Moh power plant, Lampang, Thailand was used as Portland cement replacement to produce lightweight concrete (LWC) by autoclave aerated concrete method. Portland cement type 1, river sand, bottom ash, aluminium powder and calcium hydroxide (Ca(OH) 2 ) were used in this study. BA was used to replace Portland cement at 0%, 10%, 20% and 30% by weight and aluminium powder was added at 0.2% by weight in order to produce the aerated concrete. Compressive strength, flexural and thermal conductivity tests were then carried out after the concrete were autoclaved for 6 h and left in air for 7 days. The results show that the compressive strength, flexural strength and thermal conductivity increased with increased BA content due to tobermorite formation. However, approximately, 20% increase in both compressive (up to 11.61 MPa) and flexural strengths (up to 3.16 MPa) was found for mixes with 30% BA content in comparison to just around 6% increase in the thermal conductivity. Thermogravimetry analysis shows C–S–H formation and X-ray diffraction confirm tobermorite formation in bottom ash lightweight concrete. The use of BA as a cement replacement, therefore, can be seen to have the benefit in enhancing strength of the aerated concrete while achieving comparatively low thermal conductivity when compared to the results of the control Portland cement concrete.

  2. Curing of Thick Thermoset Composite Laminates: Multiphysics Modeling and Experiments

    Science.gov (United States)

    Anandan, S.; Dhaliwal, G. S.; Huo, Z.; Chandrashekhara, K.; Apetre, N.; Iyyer, N.

    2017-11-01

    Fiber reinforced polymer composites are used in high-performance aerospace applications as they are resistant to fatigue, corrosion free and possess high specific strength. The mechanical properties of these composite components depend on the degree of cure and residual stresses developed during the curing process. While these parameters are difficult to determine experimentally in large and complex parts, they can be simulated using numerical models in a cost-effective manner. These simulations can be used to develop cure cycles and change processing parameters to obtain high-quality parts. In the current work, a numerical model was built in Comsol MultiPhysics to simulate the cure behavior of a carbon/epoxy prepreg system (IM7/Cycom 5320-1). A thermal spike was observed in thick laminates when the recommended cure cycle was used. The cure cycle was modified to reduce the thermal spike and maintain the degree of cure at the laminate center. A parametric study was performed to evaluate the effect of air flow in the oven, post cure cycles and cure temperatures on the thermal spike and the resultant degree of cure in the laminate.

  3. Radiation curing--new technology of green industries facing 21st century

    International Nuclear Information System (INIS)

    Wang Jianguo; Teng Renrui

    2000-01-01

    The development of radiation curing was simply reviewed and the mechanism of UV curing and EB curing, the equipment and materials used in the radiation curing were also introduced. Compared with ordinary curing, the radiation curing has advantages of energy saving, high effectiveness and little pollution. It is a new technology of green industries facing the 21st century

  4. Overview of UV and EB curing

    International Nuclear Information System (INIS)

    Garnett, J.L.

    2000-01-01

    Full text: UV and EB are complementary techniques in radiation curing. In the proposed paper, a brief review of both fields will be given. This will include principles of the process, the chemistry of the systems including monomers/oligomers/polymers used, additives required where necessary such as photoinitiators for UV, flow aids, adhesion promoters and the like. The types of equipment used in such processes will also be discussed including low energy electron beam utilisation and excimer curing. The advantages and disadvantages of both techniques will be examined. Mechanistic aspects of both curing systems will be discussed. Applications of the technology including developments in the banknote printing field will be summarised

  5. A Comparison of Curing Process-Induced Residual Stresses and Cure Shrinkage in Micro-Scale Composite Structures with Different Constitutive Laws

    Science.gov (United States)

    Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin

    2018-02-01

    In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.

  6. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  7. Curing mechanism of flexible aqueous polymeric coatings.

    Science.gov (United States)

    Irfan, Muhammad; Ahmed, Abid Riaz; Kolter, Karl; Bodmeier, Roland; Dashevskiy, Andriy

    2017-06-01

    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat® SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat® SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60°C or 60°C/75% RH for 24h. The film formation of the aqueous dispersion of Kollicoat® SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60°C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with (1) high flexibility of coating, (2) adhesion between coating and drug layer, (3) water retaining properties of the drug layer, and (4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified

  8. Methodic aspects of autoclave tests of compact samples on cyclic crack resistance

    International Nuclear Information System (INIS)

    Pokhmurskij, V.I.; Gnyp, I.P.; Popov, A.A.; Tarasyuk, G.P.; Dutsyak, I.Z.; Timonin, V.M.

    1984-01-01

    Laboratory autoclave LAKIM-25 was created for investigation of cyclic and static crack resistance of vessel materials of power plants under the conditions close to operation ones. It enables to investigate the cyclic crack resistance of standard samples of up to 25 mm thickness in water at 623 K and 18 MPa. The friction force changes during tests from 6.1 up to 6.4 kN, therefore it is necessary to correct regularly the force of sample loading, recording the s-n diagram on a drum of UMEh-10TM plant. The periodic record of loading diagram coincides with respect to time with the necessity of controlling the change of sample pliability during crack propagation

  9. Proceedings of national executive management seminar on surface finishing by radiation curing technology: radiation curing for better finishing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This book compiled the paper presented at this seminar. The papers discussed are 1. Incentives for investment in the manufacturing sector (in Malaysia) 2.Trends and prospect of surface finishing by radiation curing technology in Malaysia 3. Industrial application of radiation curing.

  10. Proceedings of national executive management seminar on surface finishing by radiation curing technology: radiation curing for better finishing

    International Nuclear Information System (INIS)

    1993-01-01

    This book compiled the paper presented at this seminar. The papers discussed are 1. Incentives for investment in the manufacturing sector (in Malaysia) 2.Trends and prospect of surface finishing by radiation curing technology in Malaysia 3. Industrial application of radiation curing

  11. Additive effects in radiation grafting and curing

    International Nuclear Information System (INIS)

    Viengkhou, V.; Ng, L.

    1996-01-01

    Full text: Detailed studies on the accelerative effect of novel additives in radiation grafting and curing using acrylated monomer/oligomer systems have been performed in the presence of ionising radiation and UV as sources. Methyl methacrylate (MMA) is used as typical monomer for these grafting studies in the presence of the additives with model backbone polymers, cellulose and propropylene. Additives which have been found to accelerate these grafting processes are: mineral acid, occlusion compounds like urea, thermal initiators and photoinitiators as well as multifunctional monomers such as multifunctional acrylates. The results from irradiation with gamma rays have also been compared with irradiation from a 90W UV lamp. The role of the above additives in accelerating the analogous process of radiation curing has been investigated. Acrylated urethanes, epoxies and polyesters are used as oligomers together with acrylated monomers in this work with uv lamps of 300 watts/inch as radiation source. In the UV curing process bonding between film and substrate is usually due to physical forces. In the present work the presence of additives are shown to influence the occurrence of concurrent grafting during cure thus affecting the nature of the bonding of the cured film. The conditions under which concurrent grafting with UV can occur will be examined. A mechanism for accelerative effect of these additives in both grafting and curing processes has been proposed involving radiation effects and partitioning phenomena

  12. Radiation sources EB and UV curing machines

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takashi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    This paper describes electron beam processors and related technologies for curing applications to facilitate those industrial personals who are trying to understand and evaluate the applicability and benefits of radiation curing to their products. 4 tabs., 10 figs.

  13. Radiation sources EB and UV curing machines

    International Nuclear Information System (INIS)

    Takashi Sasaki

    1993-01-01

    This paper describes electron beam processors and related technologies for curing applications to facilitate those industrial personals who are trying to understand and evaluate the applicability and benefits of radiation curing to their products. 4 tabs., 10 figs

  14. What is radiation curing

    International Nuclear Information System (INIS)

    Kinstle, J.F.

    1975-01-01

    Radiation curing is a highly interdisciplinary and sophisticated field. Successful interplay between chemists and engineers of various disciplines is required. Throughout the research-development-applications cycle, two disciplines for which hybridization is extremely important are radiation chemistry and polymer chemistry. The molecular level effects caused by absorbed radiation depend strongly on the type and intensity of the radiation. Efficient utilization of the radiation to effect desired transformations in a monomer and/or polymer system, and maximization of final properties, depend on well-planned polymer synthesis and system formulation. The elementary basis of these two disciplines and the manner in which they necessarily coalesce in the field of radiation curing are reviewed

  15. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  16. Excimer Laser Curing Of Polymer Coatings

    Science.gov (United States)

    Klick, David; Akerman, M. Alfred; Paul, George L.; Supurovic, Darko; Tsuda, Haruki

    1988-12-01

    The use of the excimer laser as a source of energy for photo-assisted curing of industrial polymeric coatings was investigated. Presently, UV lamps are sometimes used to excite a photoinitiating molecule mixed with the starting monomers and oligomers of a coating. The resulting polymeric chain reaction multiplies the effect of the initial photons, making economical use of the light source. The high cost of laser photons may thus be justifiable if lasers provide advantages over lamps. A series of visibly transparent 7 μm coatings (a typical thickness for 'slick' magazine coatings) with various photoinitiators, monomers, and oligomers was illuminated with excimer laser light of various wavelengths, fluences, and pulse repetition rates. For the optimum parameters, it was found that the laser had large advantages in curing speed over existing UV lamp processes, due to its monochromaticity. Pigmented coatings (20 μm TiO2 mixtures typical of appliance or automotive finishes) are not easily cured with UV lamps due to the inability of light to penetrate the absorbing and scattering pigmented layer. However, economically-viable cure rates were achieved with certain photoinitiators using a tunable excimer-pumped dye laser. A prototype of such a laser suitable for factory use was built and used to cure these coatings. Results are scaled to a factory situation, and costs are calculated to show the advantages of the laser method over currently used processes.

  17. Bulk-Fill Composites: Effectiveness of Cure With Poly- and Monowave Curing Lights and Modes.

    Science.gov (United States)

    Gan, J K; Yap, A U; Cheong, J W; Arista, N; Tan, Cbk

    This study compared the effectiveness of cure of bulk-fill composites using polywave light-emitting diode (LED; with various curing modes), monowave LED, and conventional halogen curing lights. The bulk-fill composites evaluated were Tetric N-Ceram bulk-fill (TNC), which contained a novel germanium photoinitiator (Ivocerin), and Smart Dentin Replacement (SDR). The composites were placed into black polyvinyl molds with cylindrical recesses of 4-mm height and 3-mm diameter and photopolymerized as follows: Bluephase N Polywave High (NH), 1200 mW/cm 2 (10 seconds); Bluephase N Polywave Low (NL), 650 mW/cm 2 (18.5 seconds); Bluephase N Polywave soft-start (NS), 0-650 mW/cm 2 (5 seconds) → 1200 mW/cm 2 (10 seconds); Bluephase N Monowave (NM), 800 mW/cm 2 (15 seconds); QHL75 (QH), 550 mW/cm 2 (21.8 seconds). Total energy output was fixed at 12,000 mJ/cm 2 for all lights/modes, with the exception of NS. The cured specimens were stored in a light-proof container at 37°C for 24 hours, and hardness (Knoop Hardness Number) of the top and bottom surfaces of the specimens was determined using a Knoop microhardness tester (n=6). Hardness data and bottom-to-top hardness ratios were subjected to statistical analysis using one-way analysis of variance/Scheffe's post hoc test at a significance level of 0.05. Hardness ratios ranged from 38.43% ± 5.19% to 49.25% ± 6.38% for TNC and 50.67% ± 1.54% to 67.62% ± 6.96% for SDR. For both bulk-fill composites, the highest hardness ratios were obtained with NM and lowest hardness ratios with NL. While no significant difference in hardness ratios was observed between curing lights/modes for TNC, the hardness ratio obtained with NM was significantly higher than the hardness ratio obtained for NL for SDR.

  18. A Fourier transform Raman spectroscopy analysis of the degree of conversion of a universal hybrid resin composite cured with light-emitting diode curing units.

    Science.gov (United States)

    Lindberg, Anders; Emami, Nazanin; van Dijken, Jan W V

    2005-01-01

    The degree of conversion (DC), of a universal hybrid resin composite cured with LED curing units with low and high power densities and a 510 mW/cm2 quartz tungsten halogen unit, was investigated with Fourier Transform Raman spectroscopy. Three curing depths (0, 2, 4mm) and 0 and 7 mm light guide tip - resin composite (LT - RC) distances were tested. The DC of the LED units varied between 52.3% - 59.8% at the top surface and 46.4% - 57.0% at 4 mm depth. The DC of specimen cured with a 0 mm LT- RC distance at 4 mm depth varied between 50.8% - 57.0% and with 7 mm distance between 46.4% - 55.4%. The low power density LED unit showed a significantly lower DC for both distances at all depth levels compared to the other curing units (p units were only found at the 4 mm depth level cured from 7 mm distance (p units. It can be concluded that the improved LED curing units could cure the studied resin composite to the same DC as the control unit.

  19. Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Allahbakhsh, Ahmad [Department of Polymer Engineering, Islamic Azad University, South Tehran Branch, 17776-13651 Tehran (Iran, Islamic Republic of); Mazinani, Saeedeh, E-mail: s.mazinani@aut.ac.ir [Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Kalaee, Mohammad Reza [Department of Polymer Engineering, Islamic Azad University, South Tehran Branch, 17776-13651 Tehran (Iran, Islamic Republic of); Sharif, Farhad [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2013-07-10

    Graphical abstract: - Highlights: • Graphene oxide content and dispersion as effective parameters on cure kinetics. • Graphene oxide as an effective controlling factor of crosslink density. • Interaction of graphene oxide with curing system (ZnO) during curing process. - Abstract: In this study, the effect of graphene oxide on cure behavior of ethylene–propylene–diene rubber (EPDM) nanocomposite is studied. In this regard, the cure kinetics of nanocomposite is studied employing different empirical methods. The required activation energy of nth-order cure process shows about 160 kJ/mol increments upon 5 phr graphene oxide loading compared to 1 phr graphene oxide loading. However, the required activation energy is significantly reduced followed by incorporation of graphene oxide in nanocomposites compared to neat EPDM sample. Furthermore, the effect of graphene oxide on structural properties of nanocomposites during the cure process is studied using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectrometry techniques. As the results show, graphene oxide interestingly affects the structure of zinc oxide during the vulcanization process. This behavior could be probably related to high tendency of zinc oxide to react with oxidized surface of graphene oxide.

  20. UV curing of a liquid based bismaleimide-containing polymer system

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available A new liquid formulation of commercial bismaleimide and n-acryloylmorpholine was prepared that could be UV cured as an alternative to traditional thermal cure methods presently used for BMI in the industry. UV curing was shown to be an efficient method which promoted the reaction rate significantly and was able to achieve this at low temperatures (30–50°C. A free radical polymerization approach has been used to explain the cure mechanism and cure kinetics, using data elucidated from the DPC and FTIR. The cured thin film was shown to achieve very high thermal stability (~400°C, with the BMI shown to retard the thermal degradation temperature and rate.

  1. Radiation curing: Science and technology

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1992-01-01

    The science and technology of radiation curing have progressed substantially within the last 20 years. Nevertheless, radiation-curable compositions typically command relatively small shares in many of their competitive markets. This situation signifies that potential advantages of radiation curing are not generally perceived to overcome their limitations. An important objective of this book is to address this issue, within the scope of the subjects offered, by providing the present state of knowledge and by identifying the directions and challenges for future studies. The first chapter introduces radiation curing. Chapter 2 offers the first systematic presentation of inorganic and organometallic photoinitiators. Chapters 3 and 4 present the analytical techniques of photocalorimetry and real-time infrared spectroscopy, respectively. Recent advances in resin technology are offered in Chapters 5 and 6, which constitute the first comprehensive accounts of (meth)acrylated silicones and vinyl ethers, respectively. Radiation-curable coatings, printing inks, and adhesives are discussed in Chapters 7-9, respectively. Chapter 10 offers a discussion on photopolymer imaging systems

  2. Techniques and materials for internal water curing of concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Lura, Pietro

    2006-01-01

    This paper gives an overview of different techniques for incorporation of internal curing water in concrete. Internal water curing can be used to mitigate self-desiccation and selfdesiccation shrinkage. Some concretes may need 50 kg/m3 of internal curing water for this purpose. The price...

  3. Factors affecting dry-cured ham consumer acceptability.

    Science.gov (United States)

    Morales, R; Guerrero, L; Aguiar, A P S; Guàrdia, M D; Gou, P

    2013-11-01

    The objectives of the present study were (1) to compare the relative importance of price, processing time, texture and intramuscular fat in purchase intention of dry-cured ham through conjoint analysis, (2) to evaluate the effect of dry-cured ham appearance on consumer expectations, and (3) to describe the consumer sensory preferences of dry-cured ham using external preference mapping. Texture and processing time influenced the consumer preferences in conjoint analysis. Red colour intensity, colour uniformity, external fat and white film presence/absence influenced consumer expectations. The consumer disliked hams with bitter and metallic flavour and with excessive saltiness and piquantness. Differences between expected and experienced acceptability were found, which indicates that the visual preference of consumers does not allow them to select a dry-cured ham that satisfies their sensory preferences of flavour and texture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Steam-cured stabilised soil blocks for masonry construction

    Energy Technology Data Exchange (ETDEWEB)

    Venkatarama Reddy, B.V. [Indian Inst. of Science, Bangalore (India). Dept. of Civil Engineering; Lokras, S.S. [Indian Inst. of Science, Bangalore (India). ASTRA

    1998-12-01

    Energy-efficient, economical and durable building materials are essential for sustainable construction practices. The paper deals with production and properties of energy-efficient steam-cured stabilised soil blocks used for masonry construction. Problems of mixing expansive soil and lime, and production of blocks using soil-lime mixtures have been discussed briefly. Details of steam curing of stabilised soil blocks and properties of such blocks are given. A comparison of energy content of steam-cured soil blocks and burnt bricks is presented. It has been shown that energy-efficient steam cured soil blocks (consuming 35% less thermal energy compared to burnt clay bricks) having high compressive strength can be easily produced in a decentralised manner. (orig.)

  5. UV/EB curing in Australia

    International Nuclear Information System (INIS)

    Woods, R.; Garnett, J.; Loo Teck Ng

    1999-01-01

    Progress in LTV/EB curing is reviewed in Australia. Generally the technology is used by those industries where curing is well developed in Europe and North America, however the scale is an order of magnitude lower due to the smaller market size. The Asian economic crisis does not appear to have affected expansion of the technology in Australia. EB continues to be successfully used in the packaging and foam fields whilst in UV, security devices, particularly banknotes are steadily expanding especially in export markets have been studied

  6. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    Science.gov (United States)

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Muscle individual phospholipid classes throughout the processing of dry-cured ham: influence of pre-cure freezing.

    Science.gov (United States)

    Pérez-Palacios, Trinidad; Ruiz, Jorge; Dewettinck, Koen; Le, Thien Trung; Antequera, Teresa

    2010-03-01

    This paper aims to study the profile of phospholipid (PL) classes of Iberian ham throughout its processing and the changes it underwent due to the influence of the pre-cure freezing treatment. The general profile of each PL class did not vary during the ripening stage. Phosphatidylcholine (PC) showed the highest proportion, followed by phosphatidyletanolamine (PE) and phosphatidylserine (PS) and phosphatidylinositol (PI) being the minor PL. The four PL classes were highly hydrolysed during the salting stage and their degradation continued during the rest of the processing. Pre-cure freezing of Iberian ham influenced the levels of the four PL classes at the initial stage, all of them being higher in refrigerated (R) than in pre-cure frozen (F) hams. Moreover, the pattern of hydrolysis was not the same in these two groups. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    Science.gov (United States)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  9. Curing the queue

    NARCIS (Netherlands)

    Zonderland, Maartje Elisabeth

    2012-01-01

    In this dissertation we study several problems related to the management of healthcare and the cure of disease. In each chapter a hospital capacity distribution problem is analyzed using techniques from operations research, also known as mathematical decision theory. The problems considered are

  10. Effect of curing time on microstructure and mechanical strength ...

    Indian Academy of Sciences (India)

    The aim of this paper is to study the influence of curing time on the microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Mechanical strength of alkali activated mortars cured at 65 °C was assessed for different curing times (4–168 h) using 10 ...

  11. Curing potential of experimental resin composites with systematically varying amount of bioactive glass: Degree of conversion, light transmittance and depth of cure.

    Science.gov (United States)

    Par, Matej; Spanovic, Nika; Bjelovucic, Ruza; Skenderovic, Hrvoje; Gamulin, Ozren; Tarle, Zrinka

    2018-06-17

    The aim of this work was to investigate the curing potential of an experimental resin composite series with the systematically varying amount of bioactive glass 45S5 by evaluating the degree of conversion, light transmittance and depth of cure. Resin composites based on a Bis-GMA/TEGDMA resin with a total filler load of 70 wt% and a variable amount of bioactive glass (0-40 wt%) were prepared. The photoinitiator system was camphorquinone and ethyl-4-(dimethylamino) benzoate. The degree of conversion and light transmittance were measured by Raman spectroscopy and UV-vis spectroscopy, respectively. The depth of cure was evaluated according to the classical ISO 4049 test. The initial introduction of bioactive glass into the experimental series diminished the light transmittance while the further increase in the bioactive glass amount up to 40 wt% caused minor variations with no clear trend. The curing potential of the experimental composites was similar to or better than that of commercial resin composites. However, unsilanized bioactive glass fillers demonstrated the tendency to diminish both the maximum attainable conversion and the curing efficiency at depth. Experimental composite materials containing bioactive glass showed a clinically acceptable degree of conversion and depth of cure. The degree of conversion and depth of cure were diminished by bioactive glass fillers in a dose-dependent manner, although light transmittance was similar among all of the experimental composites containing 5-40 wt% of bioactive glass. Reduced curing potential caused by the bioactive glass has possible consequences on mechanical properties and biocompatibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Hard facts for radiation curing of elastomers

    International Nuclear Information System (INIS)

    Lyall, D.J.

    1984-01-01

    The subject is covered under the headings: introduction; outline of chemistry (differences between conventional and radiation curing); compounding; green strength; response of rubbers to electron beam treatment; electron beam cured applications:(a) wire and cable applications;(b) rubber tyre components;(c) heat shrinkable materials;(d) roofing materials. (U.K.)

  13. Cure modeling in real-time prediction: How much does it help?

    Science.gov (United States)

    Ying, Gui-Shuang; Zhang, Qiang; Lan, Yu; Li, Yimei; Heitjan, Daniel F

    2017-08-01

    Various parametric and nonparametric modeling approaches exist for real-time prediction in time-to-event clinical trials. Recently, Chen (2016 BMC Biomedical Research Methodology 16) proposed a prediction method based on parametric cure-mixture modeling, intending to cover those situations where it appears that a non-negligible fraction of subjects is cured. In this article we apply a Weibull cure-mixture model to create predictions, demonstrating the approach in RTOG 0129, a randomized trial in head-and-neck cancer. We compare the ultimate realized data in RTOG 0129 to interim predictions from a Weibull cure-mixture model, a standard Weibull model without a cure component, and a nonparametric model based on the Bayesian bootstrap. The standard Weibull model predicted that events would occur earlier than the Weibull cure-mixture model, but the difference was unremarkable until late in the trial when evidence for a cure became clear. Nonparametric predictions often gave undefined predictions or infinite prediction intervals, particularly at early stages of the trial. Simulations suggest that cure modeling can yield better-calibrated prediction intervals when there is a cured component, or the appearance of a cured component, but at a substantial cost in the average width of the intervals. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Janke, C. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Dave [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Norris, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  15. UV curing by radical, cationic and concurrent radicalcationic polymerization

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1984-01-01

    UV and EB curing represent complementary technologies with respective advantages and disadvantages. This paper deals with the design and evaluation of UV curable coatings to optimize cure rate and film properties. Topics included are state-of-the-art photoinitiator systems, light intensity effects, retardation of air-inhibition, adhesion, and amplification of photons for enhanced speed of cure

  16. Study of oxygen inhibition effect on radiation curing

    International Nuclear Information System (INIS)

    Xiao Bin; Yang Xuemei; Zhao Pengji; Zeng Shuqing; Jiang Bo; Zhou Yong; Huang Wei; Zhou Youyi

    1995-01-01

    Michacl addition reaction product was used in the research of oxygen inhibition effect of radiation curing. The experimental results was measured by the content of gel and percentage of double bonds. It was proved that 9% of Michacl addition product could speed up 1.2 times of the radiation curing rate at 30 kGy of EB irradiation. This kind of formulation can withstand oxygen inhibition effect obviously, so it was the foundation of application for radiation curing in atmospheric condition

  17. Curing and caring competences in the skills training of physiotherapy students.

    Science.gov (United States)

    Dahl-Michelsen, Tone

    2015-01-01

    This article explores the significance of curing and caring competences in physiotherapy education, as well as how curing and caring competences intersect within the professional training of physiotherapy students. The empirical data include participant observations and interviews with students attending skills training in the first year of a bachelor's degree program in Norway. Curing and caring are conceptualized as gender-coded competences. That is, curing and caring are viewed as historical and cultural constructions of masculinities and femininities within the physiotherapy profession, as well as performative actions. The findings illuminate the complexity of curing and caring competences in the skills training of physiotherapy students. Curing and caring are both binary and intertwined competences; however, whereas binary competences are mostly concerned with contextual frames, intertwined competences are mostly concerned with performative aspects. The findings also point to how female and male students attend to curing and caring competences in similar ways; thus, the possibilities of transcending traditional gender norms turn out to be significant in this context. The findings suggest that, although curing somehow remains hegemonic to caring, the future generation of physiotherapists seemingly will be able to use their skills for both caring and curing.

  18. effect of curing methods on the compressive strength of concrete

    African Journals Online (AJOL)

    High curing temperature (up to 212◦F or. 100◦C) ... are affected by curing and application of the ... for concrete production, it is important to ... Concrete properties and durability are signif- ... Curing compounds are merely temporary coatings on.

  19. 7 CFR 30.36 - Class 1; flue-cured types and groups.

    Science.gov (United States)

    2010-01-01

    ...-cured, produced principally in the Piedmont sections of Virginia and North Carolina. (b) Type 11b. That... lying between the Piedmont and coastal plains regions of Virginia and North Carolina. (c) Type 12. That type of flue-cured tobacco commonly known as Eastern Flue-cured or Eastern Carolina Flue-cured...

  20. Determinant of flexible Parametric Estimation of Mixture Cure ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2015-12-01

    Dec 1, 2015 ... Suitability of four parametric mixture cure models were considered namely; Log .... regression analysis which relies on the ... The parameter of mixture cure fraction model was ..... Stochastic Models of Tumor Latency and Their.

  1. Year of progress for radiation curing

    International Nuclear Information System (INIS)

    Mesrobian, R.B.

    1975-01-01

    New developments in ultraviolet and electron beam curing of inks and coatings are reviewed. Current installations of radiation systems are noted. An assessment is presented on raw and intermediate materials availability. Current outlook on such problems as toxicity (FDA and OSHA), residual volatiles, materials cost, adhesion and flow-out of coatings is discussed. The future potential for radiation curing systems is contrasted with that of other systems, in view of EPA requirements

  2. Thermal analysis of bulk filled composite resin polymerization using various light curing modes according to the curing depth and approximation to the cavity wall

    Directory of Open Access Journals (Sweden)

    Hoon-Sang Chang

    2013-07-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS: Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Dr's Light, GoodDoctors Co., Seoul, Korea using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS: The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION: In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity.

  3. Monitoring cure of composite resins using frequency dependent electromagnetic sensing techniques

    Science.gov (United States)

    Kranbuehl, D. E.; Hoff, M. S.; Loos, A. C.; Freeman, W. T., Jr.; Eichinger, D. A.

    1988-01-01

    A nondestructive in situ measurement technique has been developed for monitoring and measuring the cure processing properties of composite resins. Frequency dependent electromagnetic sensors (FDEMS) were used to directly measure resin viscosity during cure. The effects of the cure cycle and resin aging on the viscosity during cure were investigated using the sensor. Viscosity measurements obtained using the sensor are compared with the viscosities calculated by the Loos-Springer cure process model. Good overall agreement was obtained except for the aged resin samples.

  4. Mixture proportioning for internal curing

    DEFF Research Database (Denmark)

    Bentz, Dale P.; Pietro, Lura; Roberts, John W.

    2005-01-01

    of additional internal water that is not part of the mixing water.” The additional internal water is typically supplied by using relatively small amounts of saturated, lightweight, fine aggregates (LWA) or superabsorbent polymer (SAP) particles in the concrete. Benefits of internal curing include increased...... less than that of bulk water, a hydrating cement paste will imbibe water (about 0.07 g water/g cement) from an available source. While in higher w/c concretes, this water can be, and often is, supplied by external (surface) curing, in low w/c concretes, the permeability of the concrete quickly becomes...

  5. Simulation of curing of a slab of rubber

    International Nuclear Information System (INIS)

    Abhilash, P.M.; Kannan, K.; Varkey, Bijo

    2010-01-01

    The objective of the present work is to predict the degree of curing for a rectangular slab of rubber, which was subjected to non-uniform thermal history. As the thermal conductivity of rubber is very low, the temperature gradient across a slab is quite large, which leads to non-uniform vulcanization, and hence non-uniform mechanical properties-an inhomogeneous material. Since curing is an exothermic reaction, heat transfer and chemical reactions are solved in a coupled manner. The effect of heat generation on curing is also discussed.

  6. Experimental observation of internal water curing of concrete

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2007-01-01

    Internal water curing has a significant effect on concrete. In addition to affecting hydration and moisture distribution, it influences most concrete properties, such as strength, shrinkage, cracking, and durability. The following paper is an overview of experimental methods to study internal water...... curing of concrete and its consequences. The special techniques needed to study internal water curing are dealt with along with the consequences of this process. Examples of applications are given and new measuring techniques that may potentially be applied to this field are addressed....

  7. Simulation of curing of a slab of rubber

    Energy Technology Data Exchange (ETDEWEB)

    Abhilash, P.M. [Department of Mechanical Engineering, IIT Madras, Chennai 600036 (India); Kannan, K., E-mail: krishnakannan@iitm.ac.i [Department of Mechanical Engineering, IIT Madras, Chennai 600036 (India); Varkey, Bijo [Advanced Design Department, MRF Ltd., Chennai 600019 (India)

    2010-04-15

    The objective of the present work is to predict the degree of curing for a rectangular slab of rubber, which was subjected to non-uniform thermal history. As the thermal conductivity of rubber is very low, the temperature gradient across a slab is quite large, which leads to non-uniform vulcanization, and hence non-uniform mechanical properties-an inhomogeneous material. Since curing is an exothermic reaction, heat transfer and chemical reactions are solved in a coupled manner. The effect of heat generation on curing is also discussed.

  8. Effect of light-curing units on the thermal expansion of resin nanocomposites.

    Science.gov (United States)

    Park, Jeong-Kil; Hur, Bock; Ko, Ching-Chang; García-Godoy, Franklin; Kim, Hyung-Il; Kwon, Yong Hoon

    2010-12-01

    To examine the thermal expansion of resin nanocomposites after light-curing using different light-curing units. Four different resin nanocomposites and four different light-curing units [quartz-tungsten-halogen (QTH), light emitting diode (LED), laser, and plasma arc] were chosen. Metal dies were filled with resin to make specimens and light-cured. The light intensity and light-curing time of the QTH and LED light-curing units were 1000 mW/cm2 and 40 seconds, 700 mW/cm2 and 40 seconds for the laser, and 1600 mW/cm2 and 3 seconds for the plasma arc. The coefficient of thermal expansion (CTE) was evaluated using a thermomechanical analyzer (TMA) at temperatures ranging from 30-80 degrees C. The CTE of the resin nanocomposites tested ranged from 28.5 to 65.8 (x 10(-6)/ degrees C), depending on the product and type of light-curing unit used. Among the specimens, Grandio showed the lowest CTE. The specimens cured using the plasma arc unit (Apollo 95E) showed the highest CTE. There was a linear correlation between the CTE and filler content (vol%) (R: -0.94-0.99 depending on the light-curing unit). The results may suggest a careful selection of the light-curing unit because there was more expansion in the specimens cured using the plasma arc unit than those cured by the other units.

  9. UV-cured polymer optics

    Science.gov (United States)

    Piñón, Victor; Santiago, Freddie; Vogelsberg, Ashten; Davenport, Amelia; Cramer, Neil

    2017-10-01

    Although many optical-quality glass materials are available for use in optical systems, the range of polymeric materials is limited. Polymeric materials have some advantages over glass when it comes to large-scale manufacturing and production. In smaller scale systems, they offer a reduction in weight when compared to glass counterparts. This is especially important when designing optical systems meant to be carried by hand. We aimed to expand the availability of polymeric materials by exploring both crown-like and flint-like polymers. In addition, rapid and facile production was also a goal. By using UV-cured thiolene-based polymers, we were able to produce optical materials within seconds. This enabled the rapid screening of a variety of polymers from which we down-selected to produce optical flats and lenses. We will discuss problems with production and mitigation strategies in using UV-cured polymers for optical components. Using UV-cured polymers present a different set of problems than traditional injection-molded polymers, and these issues are discussed in detail. Using these produced optics, we integrated them into a modified direct view optical system, with the end goal being the development of drop-in replacements for glass components. This optical production strategy shows promise for use in lab-scale systems, where low-cost methods and flexibility are of paramount importance.

  10. Weak interfaces for UV cure nanoimprint lithography

    Science.gov (United States)

    Houle, Frances; Fornof, Ann; Simonyi, Eva; Miller, Dolores; Truong, Hoa

    2008-03-01

    Nanoimprint lithography using a photocurable organic resist provides a means of patterning substrates with a spatial resolution in the few nm range. The usefulness of the technique is limited by defect generation during template removal, which involves fracture at the interface between the template and the newly cured polymer. Although it is critical to have the lowest possible interfacial fracture toughness (Gc less than 0.1 Jm-2) to avoid cohesive failure in the polymer, there is little understanding on how to achieve this using reacting low viscosity resist fluids. Studies of debonding of a series of free-radical cured polyhedral silsesquioxane crosslinker formulations containing selected reactive diluents from fluorosilane-coated quartz template materials will be described. At constant diluent fraction the storage modulus of cured resists follows trends in initial reaction rate, not diluent Tg. Adhesion is uncorrelated with both Tg and storage modulus. XPS studies of near-interface compositions indicate that component segregation within the resist fluid on contact with the template, prior to cure, plays a significant role in controlling the fracture process.

  11. Cure monitoring of epoxy resin by using fiber bragg grating sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuk [KEPCO, Naju (Korea, Republic of); Kim, Dae Hyun [Dept. of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-06-15

    In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

  12. Investigation of the cure behaviour of an epoxy polyester powder coating

    International Nuclear Information System (INIS)

    Ishrat, S.; Nadeem, M.

    1993-01-01

    The epoxy polyester based thermo sets make attractive matrix materials for many industrial and commercial applications because of their excellent performance properties. These properties for example, dimensional stability, adhesion, chemical resistance, and thermal stability arise primarily from the formation of crosslinks during cure. While many factors, such as the reactivity and stoichiometry of the reactants can influence the course of the crosslinking reaction, the cure temperature and cure time ultimately govern the end use performance of the thermosetting systems of powder coatings. The interrelationship between the network formation process and performance properties makes cure process studies critically important in product development. A products end use performance properties can be correlated with the processing conditions by monitoring specific polymeric properties such as gel points, glass transition temperature (TgS,) and the kinetics of the crosslinking reaction. By plotting the change in these properties against cure time and or cure temperature, a 'profile' or degree of cure (DOC) curve can be formed. These profiles illustrate the progress of the crosslinking reaction and can be used to optimize thermo set handling, processing and cure process. (author)

  13. Status of radiation curing in South America

    International Nuclear Information System (INIS)

    Machado, L.D.B.; Rotta, A.C.; Petrie, I.

    2007-01-01

    In August 2006, an agreement between the Rad tech International North America and the ATBCR, the Brazillian Technical Association for Radiation cure, turns ATCBR into RadTech South America. This new institution starts with already 10 years of history and pioneering technical experience and achievements in UV and EB radiation cure. Both RadTech institutions have asserted a whole cooperation and information exchange to continue with the initial ATBCR compromise in promoting UV and EB curing technology and to make it available to professionals, enterprise and other organizations. The RadTech South America has it's headquarter at the Energy and Nuclear Research Institute, IPEN, in Sao Paulo, Brazil, from whom also gets sponsorship. (Author)

  14. Comparison of the heat generation of light curing units.

    Science.gov (United States)

    Bagis, Bora; Bagis, Yildirim; Ertas, Ertan; Ustaomer, Seda

    2008-02-01

    The aim of this study was to evaluate the heat generation of three different types of light curing units. Temperature increases were recorded from a distance of 1 mm from a thermocouple to the tip of three different types of light curing units including one quartz-tungsten halogen (QTH), one plasma arc (PAC), and one light emitting diode (LED) unit. An experimental model was designed to fix the 1 mm distance between the tip of the light curing units and the thermocouple wire. Temperature changes were recorded in 10 second intervals up to 40 seconds. (10, 20, 30, and 40 seconds). Temperature measurements were repeated three times for every light curing unit after a one hour standby period. Statistical analysis of the results was performed using the analysis of variance (ANOVA) and the Bonferroni Test. The highest temperature rises (54.4+/-1.65 degrees C) occurred during activation of a PAC light curing unit for every test period (pdamage to the pulp.

  15. Influence of curing protocol on selected properties of light-curing polymers

    DEFF Research Database (Denmark)

    Dewaele, Magali; Asmussen, Erik; Peutzfeldt, Anne

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other....

  16. Development of an autoclave with zirconia crystal windows for in-situ observation of sample surface under primary water conditions of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Takuya; Totsuka, Nobuo; Arioka, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Nakajima, Nobuo

    2002-09-01

    Elucidating the mechanism for primary water stress corrosion cracking (PWSCC) is important for improving the reliability of structural materials in the primary system of pressurized water reactors (PWR). For this purpose, visualization of corrosion material surface in the primary coolant environment is effective, but it was impossible because of lack of suitable window material. Yttria stabilized zirconia was newly selected as a candidate for in-situ window material in the primary coolant environment of PWR. Its sufficient corrosion resistance was proved by measuring the transmissivity of light after being immersed in the primary coolant environment. A new autoclave with two windows of yttria-stabilized zirconia was developed. The corrosion material surfaces of Alloy600 and SUS304 in the primary coolant environment were clearly observed with this autoclave. Observations of cracks generated on the surface of SUS304 specimen, suggest that its generation time depends on temperature. (author)

  17. Temperature rise produced by different light-curing units through dentin.

    Science.gov (United States)

    Yazici, A Rüya; Müftü, Ali; Kugel, Gerard

    2007-11-01

    This study investigated the temperature rise caused by different light curing units and the temperature increase in dentin of different thicknesses. Dentin discs of 1.0 and 2.0 mm thicknesses were prepared from extracted human mandibular molars. Temperatures were recorded directly at the surface of the light guide tip, under dentin discs with different thicknesses, and through a sandwich composed of 2 mm thick cured composite and dentin using a K-type thermocouple. The curing units used were two quartz-tungsten-halogen lights (Spectrum and Elipar Trilight-ET) and a light-emitting diode (LED). The highest temperature rise was observed under a Mylar strip using ET standard mode. Under 1 and 2 mm thick dentin barriers, the lowest temperature rise was measured for the LED curing light. Significant differences in temperature rise existed among all curing units except between the Spectrum and ET exponential modes under a 1 mm thick dentin barrier with cured composite. Temperature rises were insignificant between the Spectrum and ET exponential modes and between two modes of Trilight when the same experimental setup was used under a 2 mm thick dentin barrier. For all curing units, temperature elevation through 2 mm of dentin was less than for 1 mm of dentin thickness. The ET standard mode produced the highest and the LED produced the lowest temperature rise for all tested conditions. The thickness of dentin and light-curing unit might affect temperature transmission.

  18. Monitoring the Cure State of Thermosetting Resins by Ultrasound.

    Science.gov (United States)

    Lionetto, Francesca; Maffezzoli, Alfonso

    2013-09-05

    The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA) for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors' research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing.

  19. Monitoring the Cure State of Thermosetting Resins by Ultrasound

    Directory of Open Access Journals (Sweden)

    Alfonso Maffezzoli

    2013-09-01

    Full Text Available The propagation of low intensity ultrasound in a curing resin, acting as a high frequency oscillatory excitation, has been recently proposed as an ultrasonic dynamic mechanical analysis (UDMA for cure monitoring. The technique measures sound velocity and attenuation, which are very sensitive to changes in the viscoelastic characteristics of the curing resin, since the velocity is related to the resin storage modulus and density, while the attenuation is related to the energy dissipation and scattering in the curing resin. The paper reviews the results obtained by the authors’ research group in the last decade by means of in-house made ultrasonic set-ups for both contact and air-coupled ultrasonic experiments. The basics of the ultrasonic wave propagation in polymers and examples of measurements of the time-evolution of ultrasonic longitudinal modulus and chemical conversion of different thermosetting resins are presented. The effect of temperature on the cure kinetics, the comparison with rheological, low frequency dynamic mechanical and calorimetric results, and the correlation between ultrasonic modulus and crosslinking density will be also discussed. The paper highlights the reliability of ultrasonic wave propagation for monitoring the physical changes taking place during curing and the potential for online monitoring during polymer and polymer matrix composite processing.

  20. Solid-state /sup 13/C NMR study of cured resorcinol-formaldehyde resins

    Energy Technology Data Exchange (ETDEWEB)

    Lippmaa, H.; Samoson, A.

    1988-08-01

    The curing process generally follows the pattern observed in the stage of prepolymer formation. Catalysts (NaOH, hexa, Mg(OCOCH/sub 3/)/sub 2/) that have no substantial influence on the isomeric composition of the resorcinol-formaldehyde prepolymers, do not affect the isomeric composition of the cured resins to any significant extent either. Isomeric composition of the cured resins depends mostly on the presence of water during the curing process, necessary for depolymerisation of the added paraformaldehyde. Curing in the melt leads to enhanced 2-substitution in the 1,3-dihydroxybenzene rings. In the /sup 13/C NMR spectra of cured powdered samples, the tendency of 5-methylresorcinol to form oligomers with a higher degree of 2-substitution than resorcinol is clearly apparent. Polycondensation process continues in the powdered resins after initial curing until complete consumption of all formaldehyde. Curing of phenol-formaldehyde resols proceeds through intermediate dimethylene ether formation.

  1. Efficiency of light curing units in a government dental school.

    Science.gov (United States)

    Nassar, Hani M; Ajaj, Reem; Hasanain, Fatin

    2018-01-01

    The light intensity of a light-curing unit is a crucial factor that affects the clinical longevity of resin composites. This study aimed to investigate the efficiency of light-curing units in use at a local governmental dental school for curing conventional and bulk-fill resin materials. A total of 166 light-curing units at three locations were examined, and the brand, type, clinic location, diameter of curing tip, tip cleanliness (using a visual score), and the output (in mW/cm 2 using a digital radiometer) were recorded. Only 23.5% of the units examined had clean tips, with the graduate student clinical area containing the highest percentage of clean tips. Further, tips with poor cleanliness score values were associated with significantly lower output intensities. A small percentage (9.4%) of units was capable of producing intensities higher than 1,200 mW/cm 2 and lower than 600 mW/cm 2 (7.6%). The majority of the low intensity units were located in the undergraduate student area, which also contained the highest number of units with intensities between 900 and 1,200 mW/cm 2 . The output of all the units in service was satisfactory for curing conventional resin composites, and most units were capable of curing bulk-fill resin materials.

  2. Pulp chamber temperature rise during curing of resin-based composites with different light-curing units.

    Science.gov (United States)

    Durey, Kathryn; Santini, Ario; Miletic, Vesna

    2008-01-01

    The purpose of the present study was to measure the intrapulpal temperature rise occurring during polymerisation of different shades of resin-based composites (RBCs), and two light-emitting diode (LED) units. Seventy non-carious permanent molars, that had been extracted for orthodontic purposes and stored in 2% thymol for not more than four months, were selected. Patient age range was 11-18 years. Standard cavity preparation with standardised remaining dentine thickness and placement of thermocouples (TCs) was prepared using a novel split-tooth technique. Cavities were filled with one of two shades of RBC (A2 and C4, Filtek Z250, 3M ESPE, Seefeld, Germany), and cured with two LED high-intensity units (Elipar Freelight2, 3M ESPE, Seefeld, Germany; Bluephase, Ivoclar Vivadent, Schaan, Liechtenstein) and a conventional halogen light-curing unit (LCU) (Prismetics Lite 2, Dentsply, Weybridge, Surrey, UK) as a control. Pulp temperature rises during bonding [A2 results: H;2.67/0.48:E;5.24/1.32;B;5.99/1.61] were always greater than during RBC curing [A2 results: 2.44/0.63;E3.34/0.70;B3.38/0.60], and these were significant for both LED lights but not for the halogen control, irrespective of shade (Mann-Whitney test: 95% confidence limits). Temperature rises were at times in excess of the values normally quoted as causing irreversible pulp damage. Pulp temperature rises during bonding were higher with the LED lights than with the halogen control. There was no significant difference in temperature rise between the two LED lights when bonding but there was a significant difference between the two LED lights and the halogen control LCUs (Kruskal-Wallis Test: 95% confidence limits). The results support the view that there is a potential risk for heat-induced pulpal injury when light-curing RBCs. The risk is greater during bonding and with high energy, as compared to low-energy output systems. As the extent of tolerable thermal trauma by the pulp tissues is unknown, care and

  3. Electron beam-cured coating

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  4. Degree of conversion of resin-based materials cured with dual-peak or single-peak LED light-curing units.

    Science.gov (United States)

    Lucey, Siobhan M; Santini, Ario; Roebuck, Elizabeth M

    2015-03-01

    There is a lack of data on polymerization of resin-based materials (RBMs) used in paediatric dentistry, using dual-peak light-emitting diode (LED) light-curing units (LCUs). To evaluate the degree of conversion (DC) of RBMs cured with dual-peak or single-peak LED LCUs. Samples of Vit-l-escence (Ultradent) and Herculite XRV Ultra (Kerr) and fissure sealants Delton Clear and Delton Opaque (Dentsply) were prepared (n = 3 per group) and cured with either one of two dual-peak LCUs (bluephase(®) G2; Ivoclar Vivadent or Valo; Ultradent) or a single-peak (bluephase(®) ; Ivoclar Vivadent). High-performance liquid chromatography and nuclear magnetic resonance spectroscopy were used to confirm the presence or absence of initiators other than camphorquinone. The DC was determined using micro-Raman spectroscopy. Data were analysed using general linear model anova; α = 0.05. With Herculite XRV Ultra, the single-peak LCU gave higher DC values than either of the two dual-peak LCUs (P < 0.05). Both fissure sealants showed higher DC compared with the two RBMs (P < 0.05); the DC at the bottom of the clear sealant was greater than the opaque sealant, (P < 0.05). 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin(®) TPO) was found only in Vit-l-escence. Dual-peak LED LCUs may not be best suited for curing non-Lucirin(®) TPO-containing materials. A clear sealant showed a better cure throughout the material and may be more appropriate than opaque versions in deep fissures. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Consumer satisfaction with dry-cured ham in five European countries.

    Science.gov (United States)

    Resano, H; Pérez-Cueto, F J A; Sanjuán, A I; de Barcellos, M D; Grunert, K G; Verbeke, W

    2011-04-01

    The objective is to investigate consumer satisfaction with dry-cured ham in five European countries. A logistic regression model has been fitted using data collected through a cross-sectional web-based survey carried out in Belgium, Germany, Denmark, Poland and Greece during January 2008 (n=2437 of which 2156 were dry-cured ham consumers). Satisfaction was evaluated as overall satisfaction, as well as specific satisfaction with healthfulness, price, convenience and taste. The findings show that the main determinant of overall satisfaction is taste satisfaction, hence, producers are recommended to focus on matching sensory acceptability of dry-cured ham. No significant between-country differences were found, reflecting the wide availability of this product in all countries. Consumer characteristics influenced their level of satisfaction. Men, older (age > 52 years) and frequent consumers of dry-cured ham consumption were more likely to be satisfied with dry-cured ham. Consumers trust the butcher's advice and they preferred purchasing dry-cured ham at a butcher shop rather than in a supermarket. © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  6. Optimal cure cycle design of a resin-fiber composite laminate

    Science.gov (United States)

    Hou, Jean W.; Sheen, Jeenson

    1987-01-01

    A unified computed aided design method was studied for the cure cycle design that incorporates an optimal design technique with the analytical model of a composite cure process. The preliminary results of using this proposed method for optimal cure cycle design are reported and discussed. The cure process of interest is the compression molding of a polyester which is described by a diffusion reaction system. The finite element method is employed to convert the initial boundary value problem into a set of first order differential equations which are solved simultaneously by the DE program. The equations for thermal design sensitivities are derived by using the direct differentiation method and are solved by the DE program. A recursive quadratic programming algorithm with an active set strategy called a linearization method is used to optimally design the cure cycle, subjected to the given design performance requirements. The difficulty of casting the cure cycle design process into a proper mathematical form is recognized. Various optimal design problems are formulated to address theses aspects. The optimal solutions of these formulations are compared and discussed.

  7. Evaluation of shear bond strength of orthodontic brackets using trans-illumination technique with different curing profiles of LED light-curing unit in posterior teeth.

    Science.gov (United States)

    Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman

    2013-11-21

    Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.

  8. Assessment of Salmonella survival in dry-cured Italian salami.

    Science.gov (United States)

    Bonardi, S; Bruini, I; Bolzoni, L; Cozzolino, P; Pierantoni, M; Brindani, F; Bellotti, P; Renzi, M; Pongolini, S

    2017-12-04

    The inactivation of Salmonella during curing of Italian traditional pork salami was investigated. A total of 150 batches of ground raw meat (GRM) used for salami manufacturing by four producers were tested for Salmonella by real-time PCR followed by ISO 6579 cultural confirmation and MPN enumeration. Salami produced with Salmonella positive GRMs were re-tested at the end of their curing period. Aw, pH and NaCl content were also measured. Detection of Salmonella was performed testing both 25 and 50g of the samples. By Real-Time PCR 37% of the GRMs resulted positive, but cultural detection of Salmonella was obtained in 14% of the samples only. Salmonella enumeration ranged from 31 MPN/g to Salmonella in 100% of all positive samples, vs. 62% of ISO-25g. Salami made of the contaminated GRMs were 29% Salmonella-positive, as most batches of salami produced with Salmonella-positive GRMs resulted negative after regular curing (20-48days). Overall, 13% of salami produced with Salmonella-contaminated GRMs were positive. They belonged to six batches, which turned out negative after prolonged curing ranging between 49 and 86days. Salmonella enumeration in salami ranged from 8.7 MPN/g to Salmonella in cured salami (p value: >0.05). The most common Salmonella serovars in GRMs were Derby (52%), Typhimurium monophasic variant 4, (Barbuti et al., 1993), 12:i:- (19%) and Stanley (10%). Salmonella Derby (56%), London, Branderup, Panama (13%, respectively) and Goldcoast (6%) were most frequent in cured salami. The study showed negative correlation between real-time CT values and cultural confirmation of Salmonella, as well as the importance of sample size for Salmonella detection. Among considered factors with possible effect on the occurrence of Salmonella in salami, statistical analysis revealed a role for aw in salami and for Salmonella load in GRMs, while pH and NaCl content did not significantly affect the probability of finding Salmonella in dry-cured salami in the context of

  9. Process Formulations And Curing Conditions That Affect Saltstone Properties

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  10. Radiation curing technology progress and its industrial applications in Japan

    International Nuclear Information System (INIS)

    Ukachi, Takashi

    2003-01-01

    Optics, electronics and display industries are now the driving forces for the Japanese radiation curing technology. The purpose of this paper is to overview the newly developed radiation curing technology in Japan, in particular, its industrial applications, and to present the market figures in radiation curing applications, which were surveyed by RadTech Japan in 2002 afresh. (author)

  11. Electron beam curing - taking good ideas to the manufacturing floor

    International Nuclear Information System (INIS)

    Saunders, C.; Lopata, V.; Barnard, J.; Stepanik, T.

    2000-01-01

    Acsion is exploiting several emerging electron beam EB applications ranging from composite curing and repair to viscose manufacturing. EB curing of composite structures offers several advantages: significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; improvements in material handling; and reduced overall manufacturing costs compared to thermal curing. The aerospace industry is developing EB technology in all of their market sectors, including military aviation and space products. Some specific products include cryogenic fuel tanks, improved canopy frames for jet aircraft, and the all-composite military aircraft. This paper discusses each of these opportunities. (author)

  12. Variable selection for mixture and promotion time cure rate models.

    Science.gov (United States)

    Masud, Abdullah; Tu, Wanzhu; Yu, Zhangsheng

    2016-11-16

    Failure-time data with cured patients are common in clinical studies. Data from these studies are typically analyzed with cure rate models. Variable selection methods have not been well developed for cure rate models. In this research, we propose two least absolute shrinkage and selection operators based methods, for variable selection in mixture and promotion time cure models with parametric or nonparametric baseline hazards. We conduct an extensive simulation study to assess the operating characteristics of the proposed methods. We illustrate the use of the methods using data from a study of childhood wheezing. © The Author(s) 2016.

  13. Nitrite-cured color and phosphate-mediated water binding of pork muscle proteins as affected by calcium in the curing solution.

    Science.gov (United States)

    Zhao, Jing; Xiong, Youling L

    2012-07-01

    Calcium is a mineral naturally present in water and may be included into meat products during processing thereby influencing meat quality. Phosphates improve myofibril swelling and meat water-holding capacity (WHC) but can be sensitive to calcium precipitation. In this study, pork shoulder meat was used to investigate the impact of calcium at 0, 250, and 500 ppm and phosphate type [sodium pyrophosphate (PP), tripolyphosphate (TPP), and hexametaphopshate (HMP)] at 10 mM on nitrite-cured protein extract color at various pH levels (5.5, 6.0, and 6.5) and crude myofibril WHC at pH 6.0. Neither calcium nor phosphates present in the curing brines significantly affected the cured color. Increasing the pH tended to promote the formation of metmyoglobin instead of nitrosylmyoglobin. The ability of PP to enhance myofibril WHC was hampered (P meat products. Although not affecting nitrite-cured color, calcium hampers the efficacy of phosphates to promote water binding by muscle proteins, underscoring the importance of water quality for brine-enhanced meat products. © 2012 Institute of Food Technologists®

  14. Influence of curing rate of resin composite on the bond strength to dentin

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, E; Peutzfeldt, A

    2007-01-01

    @ 1000 mW/cm2) for all groups. A split Teflon mold was clamped to the treated dentin surface and filled with resin composite. The rate of cure was varied, using one of four LED-curing units of different power densities. The rate of cure was also varied using the continuous or pulse-delay mode....... In continuous curing mode, in order to give an energy density totaling 16 J/cm2, the power densities (1000, 720, 550, 200 mW/cm2) emitted by the various curing units were compensated for by the light curing period (16, 22, 29 or 80 seconds). In the pulse-delay curing mode, two seconds of light curing at one...... of the four power densities was followed by a one-minute interval, after which light cure was completed (14, 29, 27 or 78 seconds), likewise, giving a total energy density of 16 J/cm2. The specimens produced for each of the eight curing protocols and two resin composites (Tetric EvoCeram, Ivoclar Vivadent...

  15. Study on curing reaction of 4-aminophenoxyphthalonitrile/bisphthalonitrile

    Institute of Scientific and Technical Information of China (English)

    Xiao

    2010-01-01

    A series of phthalonitrile blending resins were prepared from 4-aminophenoxyphthalonitrile (APN) and 4,4'-bis (3,4-dicyanophenoxy)biphenyl (BPH) by directly powder-mixing and copolymerization. Differential scanning calorimeter (DSC) and dynamic rheology were used to study the curing reaction behaviors of APN/BPH blends, and the results indicated that the introduction of APN accelerated the curing rate of BPH, and the existence of BPH decreased the curing temperature of APN/BPH systems. The thermal stability of postcured APN/BPH resins was investigated by thermogravimetric analysis (TGA), and the TGA results indicated that the crosslinked polymers of APN/BPH systems possessed good thermal stability.

  16. The Effect of Rubber Mixing Process on The Curing Characteristics of Natural Rubber

    Directory of Open Access Journals (Sweden)

    Abu Hasan

    2013-04-01

    Full Text Available This research is aimed at studying the relationship between rubber mixing processes and curing characteristics of natural rubber. The curing characteristic analysis was carried out through a natural rubber formula having been masticated and mixed, followed by curing. As many as four mastication methods were finely applied; each respected four sequences of rubber mixing process. In the first method, rubber was masticated for 5 minutes and then rubber chemicals and carbon black N 330 were  simultaneously added. In the second and the third methods, rubber was masticated for 1 minute and then carbon blacks and rubber chemicals were also simultaneously added but using different type of fillers. In the fourth method, rubber was masticated for 3 minutes and then rubber chemicals and carbon black were subsequently added. The additions of rubber chemicals and carbon blacks to the masticated rubber were distinguished by the sequence and time allocated for each mixing process. The carbon blacks were added in two stages by which 10 phr was added first and the remaining 40 phr was added later along with oil. In another method, ratios of the carbon blacks addition (as done in the first  and the second stages were 20:30, 30:20, and 40:10. The examination results showed that rubber mixing process gave an impact on the changes of curing characteristics. They were much affected by the method of carbon black addition. The mixing temperature also had an effect on both curing time and curing rate in which the higher the mixing temperature, the lower the curing time and curing rate. Vulcanization temperature also affected the curing time and curing rate in which the higher the vulcanization temperature, the lower the curing time and the higher the curing rate. Lastly, particle size of carbon black also gave an impact on the curing time and curing rate in which the smaller the particle size, the lower the curing time and the higher the curing rate.

  17. Method for curing polymers using variable-frequency microwave heating

    Science.gov (United States)

    Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.

    1998-01-01

    A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

  18. Effect of commercially available egg cures on the survival of juvenile salmonids.

    Directory of Open Access Journals (Sweden)

    Shaun Clements

    Full Text Available There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha and steelhead (O. mykiss with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  19. Effect of commercially available egg cures on the survival of juvenile salmonids

    Science.gov (United States)

    Clements, S.; Chitwood, R.; Schreck, C.B.

    2011-01-01

    There is some concern that incidental consumption of eggs cured with commercially available cures for the purpose of sport fishing causes mortality in juvenile salmon. We evaluated this by feeding juvenile spring Chinook (Oncorhynchus tshawytscha) and steelhead (O. mykiss) with eggs cured with one of five commercially available cures. We observed significant levels of mortality in both pre-smolts and smolts. Depending on the experiment, 2, 3, or 4 of the cures were associated with mortality. Mortality tended to be higher in the smolts than in the parr, but there was no clear species effect. The majority of mortality occurred within the first 10 d of feeding. Removal of sodium sulfite from the cure significantly reduced the level of mortality. Soaking the eggs prior to feeding did not reduce mortality. We observed a clear relationship between the amount of cured egg consumed each day and the survival time. We conclude that consumption of eggs cured with sodium sulfite has the potential to cause mortality in juvenile steelhead and Chinook salmon in the wild.

  20. Dsc cure kinetics of an unsaturated polyester resin using empirical kinetic model

    International Nuclear Information System (INIS)

    Abdullah, I.

    2015-01-01

    In this paper, the kinetics of curing of unsaturated polyester resin initiated with benzoyl peroxide was studied. In case of unsaturated polyester (UP) resin, isothermal test alone could not predict correctly the curing time of UP resin. Therefore, isothermal kinetic analysis through isoconventional adjustment was used to correctly predict the curing time and temperature of UP resin. Isothermal kinetic analysis through isoconversional adjustment indicated that 97% of UP resin cures in 33 min at 120 degree C. Curing of UP resin through microwaves was also studied and found that 67% of UP resin cures in 1 min at 120 degree C. The crosslinking reaction of UP resin is so fast at 120 degree C that it becomes impossible to predict correctly the curing time of UP resin using isothermal test and the burial of C=C bonds in microgels makes it impossible to be fully cured by microwaves at 120 degree C. The rheological behaviour of unsaturated polyester resin was also studied to observe the change in viscosity with respect to time and temperature. (author)

  1. Efficiency of Sodium Polyacrylate to Improve Durability of Concrete under Adverse Curing Condition

    Directory of Open Access Journals (Sweden)

    Tanvir Manzur

    2015-01-01

    Full Text Available The conventional external curing process requires supply of large amount of water in addition to mixing water as well as strict quality control protocol. However, in a developing country like Bangladesh, many local contractors do not have awareness and required knowledge on importance of curing which often results in weaker concrete with durability issues. Moreover, at times it is difficult to maintain proper external curing process due to nonavailability of water and skilled laborer. Internal curing can be adopted under such scenario since this method is simple and less quality intensive. Usually, naturally occurring porous light weight aggregates (LWA are used as internal curing agent. However, naturally occurring LWA are not available in many countries like Bangladesh. Under these circumstances, Super Absorbent Polymer (SAP can be utilized as an alternative internal curing agent. In this study, sodium polyacrylate (SP as SAP has been used to produce internally cured concrete. Desorption isotherm of SP has been developed to investigate its effectiveness as internal curing agent. Test results showed that internally cured concrete with SP performed better in terms of both strength and durability as compared to control samples when subjected to adverse curing conditions where supply of additional water for external curing was absent.

  2. Warpage of QFN Package in Post Mold Cure Process of integrated circuit packaging

    Science.gov (United States)

    Sriwithoon, Nattha; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about warpage of QFN package in post mold cure process of integrated circuit (IC) packages using pre-plated (PPF) leadframe. For IC package, epoxy molding compound (EMC) are molded by cross linking of compound stiffness but incomplete crosslinked network and leading the fully cured thermoset by post mold cure (PMC) process. The cure temperature of PMC can change microstructure of EMC in term of stress inside the package and effect to warpage of the package due to coefficient of thermal expansion (CTE) between EMC and leadframe. In experiment, cure temperatures were varied to check the effect of internal stress due to different cure temperature after completed post mold cure for TDFN 2×3 8L. The cure temperature were varied with 180 °C, 170 °C, 160 °C, and 150°C with cure time 4 and 6 hours, respectively. For analysis, the TDFN 2×3 8L packages were analyzed the warpage by thickness gauge and scanning acoustic microscope (SAM) after take the test samples out from the oven cure. The results confirmed that effect of different CTE between EMC and leadframe due to different cure temperature resulting to warpage of the TDFN 2×3 8L packages.

  3. Preparation of extra-small nisin nanoparticles for enhanced antibacterial activity after autoclave treatment.

    Science.gov (United States)

    Chang, Ranran; Lu, Hao; Li, Man; Zhang, Shuangling; Xiong, Liu; Sun, Qingjie

    2018-04-15

    Nisin is applied broadly in the food industry as an antimicrobial peptide. The objective of this study is to prepare nisin nanoparticles using free nisin by a facile nanoprecipitation technique and to investigate their antimicrobial activity after high-temperature processing. Transmission electron microscopic images showed that the size of extra-small nisin nanoparticles with different initial concentrations of nisin (0.1%, 0.3% and 0.5%) was 5, 10 and 15 nm, respectively. The nisin nanoparticles were stable at pH 5.0 with the smallest size. Moreover, nisin nanoparticles exhibited a higher antimicrobial activity than free nisin at a concentration below 2.0 mg/ml after autoclave treatment. These results suggested that nisin nanoparticles could serve as a potential food preservative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Electron curing for high speed paper, film and foil converting

    International Nuclear Information System (INIS)

    Nablo, S.V.; Tripp, E.P.

    1979-01-01

    The status of self-shielded, compact electron processors for flexible web converting applications is reviewed. The uses of these units for a variety of laminating applications are described, with emphasis on the application techniques appropriate for low weight, (1 to 2 gm/m 2 ) 100% convertible adhesives. Performance data for electron cured adhesives with polyester/polyethylene systems is presented and compared with conventional urethane systems. The unique surface features of electron cured gravure coatings applied and cured at high speed are discussed, with reference to both paper and film substrates. An important advantage of electron curing of buried adhesive layers is the process quality control permitted by this 'all-electric' system. The performance characteristics of curing atmosphere control (inerting) for coatings are reviewed. Industrial experience with these processors has shown that effective inerting of coated flexible webs at speeds to 250 m/minute is both practical and economical. (author)

  5. The effect of curing conditions on the durability of high performance concrete

    Science.gov (United States)

    Bumanis, G.; Bajare, D.

    2017-10-01

    This study researches compressive strength and durability of the high strength self-compacting concrete (SCC) impacted at early stage by the curing conditions. The mixture compositions of metakaolin containing waste and cenospheres as partial cement replacement (15 wt%) were compared to reference SCC with 100% cement. The specimens prepared in advance were demoulded 24h after casting of the SCC and the specific curing conditions were applied for up to 28 days: standard water curing at 20°C (i); indoor curing at 20°C, RH 60% (ii) and low temperature air curing (2°C) at RH 60% (iii). Results indicate that at early stage (14 days) indoor curing conditions increase compressive strength of the SCC whilst no strength loss has been detected even at a low temperature curing. The further strength gain has been substantially reduced for samples cured indoor and at a low temperature with significant variation observed for long term compressive strength (180 days). The metakaolin containing waste has proved to be an effective partial cement replacement and it has improved strength gain even at a low temperature curing. Meanwhile cenospheres have reduced the SCC strength and with no positive effect on strength observed within the standard term. Freeze-thaw durability and resistance to the chloride penetration have been improved for the SCC cured at low temperature. The SCC with metakaolin containing waste has proved to be the most durable thus demonstrating importance of effective micro filler use.

  6. Thermal stabilities of various rubber vulcanization cured by sulfur, peroxide and gamma radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Shamshad Ahmed; Abdel Aziz, M.M.

    1999-01-01

    Sulfur and peroxide-cured rubber vulcanizates of NR and EPDM were obtained by blending the elastomers with fillers, antioxidants and appropriate accelerators, followed by vulcanization at 150 - 160 degree C. Blends of the same elastomers with appropriate co-agents and additives were also cured by gamma radiation at 150 and 200 kGy. A comparison of the thermal stabilities of these vulcanizates prepared by different curing techniques has been made by thermogravimetric analysis (TGA), assessed on the basis of comparison of DTG peak maxima, temperature for loss of 50% mass and actual thermal curves. The comparison reveals that the sulfur-cured vulcanizates are less thermally stable than their peroxide-cured counterparts. This may be attributed to the presence of a stronger C-C bond in case of peroxide-cured vulcanizates compared to weaker C-S sub x-C bond in case of sulfur-cured vulcanizates. However, compared to peroxide-cured vulcanizates, radiation-cured formulations demonstrated much improved thermal stability. This may originate from the existence of more uniformly distributed crosslinks and the enhanced rate of crosslink formation in the radiation process as compared to peroxide curing. In all the formulations whether sulfur, peroxide or radiation-cured, the natural rubber vulcanizates were found to be thermally much inferior to the synthetic contender, EPDM. Influence of variation of the amount of co-agent and other additives on the thermal stabilities of formulations of radiation cured NR and EPDM vulcanizates was also investigated

  7. Techno-economic benefits of radiation curing: a comparison studies

    Energy Technology Data Exchange (ETDEWEB)

    French, D [Universal Wood Inc., Lousville (United States)

    1994-12-31

    In comparing radiation cure versus conventional heat cure systems, the factors are considered in this studies i.e. environmental laws - includes the future regulations concerning volatile organic emissions and waste disposal may weigh heavily in the decision.

  8. Electron Beam curing of intaglio inks

    International Nuclear Information System (INIS)

    O'Brien, T.

    1984-01-01

    Press trials conducted by the US Bureau of Engraving and Printing at the National Bank of Denmark in September 8-21, 1982, clearly indicated the feasibility of Electron Beam (EB) curing for web intaglio printing. These trials, some at continuous press runs of up to six hours, gave positive results for virtually all our requirements including: print quality, press speeds, ability to print both sides of the web on one pass through a press, acceptable ink curing at one megarad or less, and minimum substrate deterioration or loss of moisture. In addition, these trials demonstrated many advantages over thermal curing which is the only other alternative to two sided printing in one pass through the press. These advantages can be found in product quality, a cleaner environment, and in economics. This development program is still in progress with efforts now directed towards adapting EB ink technology to the latest developments in intaglio printing, i.e. aqueous cylinder wiping which requires EB inks to be water dispersable. Also the stability of materials in contact with EB inks is being investigated

  9. Electron beam curing of intaglio inks

    International Nuclear Information System (INIS)

    O'Brien, T.

    1985-01-01

    Press trials conducted by the U.S. Bureau of Engraving and Printing at the National Bank of Denmark clearly indicated the feasibility of Electron Beam (E.B.) curing for web intaglio printing . These trials, some at continuous press runs of up to six hours, gave positive results for virtually all our requirements including: print quality, press speeds, ability to print both sides of the web on one pass through a press, acceptable ink curing at one megarad or less, and minimum substrate deterioration or loss of moisture. In addition, these trials demonstrated many advantages over thermal curing which is the only other alternative to two sided printing in one pass through the press. These advantages can be found in product quality, a cleaner environment, and in economics. This development program is still in progress with efforts now directed towards adapting E.B. ink technology to the latest developments in intaglio printing, i.e. aqueous cylinder wiping which requires E.B. inks to be water dispersable. Also the stability of materials in contact with E.B. inks is being investigated. (author)

  10. An Analysis of EM Railgun Cross Section Designs

    Science.gov (United States)

    2009-08-14

    tube does not have to be cured in an autoclave afterwards. The fact that the resin in the prepreg is a thermoplastic rather than a thermoset is...decided that a chromium copper alloy would be used to take advantage of the electrical properties of copper while having a high strength material. The

  11. Depth of cure of bulk-fill flowable composite resins.

    Science.gov (United States)

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  12. Recent advance and applications in radiation curing of coatings

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The recent advance and application as well as the profitability of method of coating by curing with electron beam are reviewed. The acrylic prepolymers having two or more acryloyl radicals on side chains or at the end can be cured with electron beam, and have excellent characteristics. The technique to use acrylic esters and methacrylic esters as dilutant monomers has been developed. Mitsubishi Rayon Co., Ltd. is finishing asbestos slate boards and calcium silicate boards for prefabricated houses, utilizing an electron beam curing coating line. The line serves as a semicommercial production line having the capacity of continuously coating and curing boards of 1,200 mm by 2,400 mm. It is equipped with an electron beam accelerator of 500 kV x 65 mA (max. 100 mA), a conveyor running at speed of 5 to 100 m/min, and a curtain flow coater, a roller coater and the like. It can be cured rapidly at room temperature. The finished coatings have high cross-linking density and withstand particularly blocking, freezing and solvents. Its application to the coating of automotive parts by Suzuki Automobile Co. is briefly mentioned. (Iwakiri, K.)

  13. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  14. Sodium nitrite: the "cure" for nitric oxide insufficiency.

    Science.gov (United States)

    Parthasarathy, Deepa K; Bryan, Nathan S

    2012-11-01

    This process of "curing" food is a long practice that dates back thousands of years long before refrigeration or food safety regulations. Today food safety and mass manufacturing are dependent upon safe and effective means to cure and preserve foods including meats. Nitrite remains the most effective curing agent to prevent food spoilage and bacterial contamination. Despite decades of rigorous research on its safety and efficacy as a curing agent, it is still regarded by many as a toxic undesirable food additive. However, research within the biomedical science community has revealed enormous therapeutic benefits of nitrite that is currently being developed as novel therapies for conditions associated with nitric oxide (NO) insufficiency. Much of the same biochemistry that has been understood for decades in the meat industry has been rediscovered in human physiology. This review will highlight the fundamental biochemistry of nitrite in human physiology and highlight the risk benefit evaluation surrounding nitrite in food and meat products. Foods or diets enriched with nitrite can have profound positive health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effect of light-curing units, post-cured time and shade of resin cement on knoop hardness.

    Science.gov (United States)

    Reges, Rogério Vieira; Costa, Ana Rosa; Correr, Américo Bortolazzo; Piva, Evandro; Puppin-Rontani, Regina Maria; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2009-01-01

    The aim of this study was to evaluate the Knoop hardness after 15 min and 24 h of different shades of a dual-cured resin-based cement after indirect photoactivation (ceramic restoration) with 2 light-curing units (LCUs). The resin cement Variolink II (Ivoclar Vivadent) shade XL, A2, A3 and opaque were mixed with the catalyst paste and inserted into a black Teflon mold (5 mm diameter x 1 mm high). A transparent strip was placed over the mold and a ceramic disc (Duceram Plus, shade A3) was positioned over the resin cement. Light-activation was performed through the ceramic for 40 s using quartz-tungsten-halogen (QTH) (XL 2500; 3M ESPE) or light-emitting diode (LED) (Ultrablue Is, DMC) LCUs with power density of 615 and 610 mW/cm(2), respectively. The Koop hardness was measured using a microhardness tester HMV 2 (Shimadzu) after 15 min or 24 h. Four indentations were made in each specimen. Data were subjected to ANOVA and Tukey's test (alpha=0.05). The QTH LCU provided significantly higher (pcement showed lower Knoop hardness than the other shades for both LCUs and post-cure times.

  16. Synthesis, Characterization and Curing Studies of Thermosetting Epoxy Resin with Amines

    International Nuclear Information System (INIS)

    Lakshmi, B.; Mahendra, K. N.; Shivananda, K. N.

    2010-01-01

    A new hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) is prepared by reacting N-(4-hydroxyphenyl) maleimide (HPM) with Epichlorohydrin by using benzyltrimethylammonium chloride as a catalyst. The resulting compound possesses both the oxirane ring and maleimide group. The curing reaction of these maleimidophenyl glycidylether epoxy compound (N-MPGE) with amines as curing agents such as ethylendiamine (EDA), diethylentriamine (DETA) and triethylenetetramine (TETA), aminoethylpiperazine (AEP) and isophoronediamine, IPDA), are studied. Incorporation of maleimide groups in the epichlorohydrin provides cyclic imide structure and high cross-linking density to the cured resins. The cured samples exhibited good thermal stability, excellent chemical (acid/alkali/solvent) and water absorption resistance. Morphological studies by the SEM technique further confirmed the phase homogeneity net work of the cured systems

  17. Synthesis, Characterization and Curing Studies of Thermosetting Epoxy Resin with Amines

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, B.; Mahendra, K. N. [Bangalore University, Bangalore (India); Shivananda, K. N. [Technion - Israel Institute of Technology, Haifa (Israel)

    2010-08-15

    A new hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) is prepared by reacting N-(4-hydroxyphenyl) maleimide (HPM) with Epichlorohydrin by using benzyltrimethylammonium chloride as a catalyst. The resulting compound possesses both the oxirane ring and maleimide group. The curing reaction of these maleimidophenyl glycidylether epoxy compound (N-MPGE) with amines as curing agents such as ethylendiamine (EDA), diethylentriamine (DETA) and triethylenetetramine (TETA), aminoethylpiperazine (AEP) and isophoronediamine, IPDA), are studied. Incorporation of maleimide groups in the epichlorohydrin provides cyclic imide structure and high cross-linking density to the cured resins. The cured samples exhibited good thermal stability, excellent chemical (acid/alkali/solvent) and water absorption resistance. Morphological studies by the SEM technique further confirmed the phase homogeneity net work of the cured systems.

  18. Normal value collection in nuclear cardiological examination: The 'cured norm' concept

    International Nuclear Information System (INIS)

    Maul, F.D.; Standke, R.; Hoer, G.

    1989-01-01

    As a refence a standard of 'cured norm' is proposed. The patients who come under the 'cured norm' category are those without previous myocardial infarctions and who are free of symptoms after a successful transluminal coronary angioplasty (TCA) with a normalized exercise ECG. Global and sectorial parameters of radionuclide-vetriculography (RNV) and 201 Tl-myocardial-scintigraphy ( 201 Tl-MS) are in good accordance with the published data from other authors. An improvement is found after successful TCA but results are even better in the special 'cured norm' group indicating an additional normalization. Sensitivity and specificity based on the 'cured norm' is comparable with the results published by others. From these results we conclude that the 'cured norm' is suitable for clinical use. (orig.) [de

  19. The curing behavior and properties of phthalonitrile resins using ionic liquids as a new class of curing agents

    Directory of Open Access Journals (Sweden)

    K. Cheng

    2017-11-01

    Full Text Available Binary blends composed of 1,3-bis (3,4-dicyanophenoxy benzene (3BOCN and ionic liquids (ILs with different molecular structures were prepared. The curing behavior of these 3BOCN/ILs blends were studied by thermogravimetric analysis (TGA, differential scanning calorimetry (DSC and rheological analysis. The study suggested that the blends possessed a wide processing window and the structures of ILs (anion, cation and alkyl chain length at cation had an effect on curing behavior. The 3BOCN/[EPy]BF4 resins were prepared at elevated temperature. IR spectra of the resins showed that there were triazine and isoindoline formed in curing process. The TGA and dynamic mechanical analysis (DMA revealed that the resins have excellent thermal stability together with high storage modulus and high glass transition temperature (Tg. Dielectric properties, long term oxidative aging and water uptake measurements of the resins suggested the IL brought some unique properties to the resins.

  20. Distance to Cure

    OpenAIRE

    Capachi, Casey

    2013-01-01

    Distance to Cure A three-part television series by Casey Capachi www.distancetocure.com   Abstract   How far would you go for health care? This three-part television series, featuring two introductory segments between each piece, focuses on the physical, cultural, and political obstacles facing rural Native American patients and the potential of health technology to break down those barriers to care.   Part one,Telemedici...

  1. Curing mode affects bond strength of adhesively luted composite CAD/CAM restorations to dentin.

    Science.gov (United States)

    Lührs, Anne-Katrin; Pongprueksa, Pong; De Munck, Jan; Geurtsen, Werner; Van Meerbeek, Bart

    2014-03-01

    To determine the effect of curing mode and restoration-surface pre-treatment on the micro-tensile bond strength (μTBS) to dentin. Sandblasted CAD/CAM composite blocks (LAVA Ultimate, 3M ESPE) were cemented to bur-cut dentin using either the etch & rinse composite cement Nexus 3 ('NX3', Kerr) with Optibond XTR ('XTR', Kerr), or the self-etch composite cement RelyX Ultimate ('RXU', 3M ESPE) with Scotchbond Universal ('SBU', 3M ESPE). All experimental groups included different 'curing modes' (light-curing of adhesive and cement ('LL'), light-curing of adhesive and auto-cure of cement ('LA'), co-cure of adhesive through light-curing of cement ('AL'), or complete auto-cure ('AA')) and different 'restoration-surface pre-treatments' of the composite block (NX3: either a silane primer (Kerr), or the XTR adhesive; RXU: either silane primer (RelyX Ceramic Primer, 3M ESPE) and SBU, or solely SBU). After water-storage (7 days, 37°C), the μTBS was measured. Additionally, the degree of conversion (DC) of both cements was measured after 10min and after 1 week, either auto-cured (21°C/37°C) or light-cured (directly/through 3-mm CAD/CAM composite). The linear mixed-effects model (α=0.05) revealed a significant influence of the factors 'curing mode' and 'composite cement', and a less significant effect of the factor 'restoration-surface pre-treatment'. Light-curing 'LL' revealed the highest μTBS, which decreased significantly for all other curing modes. For curing modes 'AA' and 'AL', the lowest μTBS and a high percentage of pre-testing failures were reported. Overall, DC increased with light-curing and incubation time. The curing mode is decisive for the bonding effectiveness of adhesively luted composite CAD/CAM restorations to dentin. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Polyurethane curing kinetics for polymer bonded explosives: HTPB/IPDI binder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmook; Hong, In-Kwon [Dankook University, Yongin (Korea, Republic of); Choi, Chong Han; Lee, Jae Wook [Sogang University, Seoul (Korea, Republic of)

    2015-08-15

    The kinetics of polyurethane reaction and the effect of catalysts on the curing behavior were studied. The mixtures of hydroxyl terminated polybutadiene and isophorone diisocyanate with different reaction catalysts were dynamically cured in a differential scanning calorimeter. The activation energies were evaluated by the Kissinger and the Ozawa methods. The Chang plot was also used to determine reaction order and rate constant. The results showed that the activation energies were influenced remarkably by the choice of catalysts. The degree of cure and the cure time at given temperatures were calculated by direct integration of modified auto-catalytic kinetic model. It would give valuable information like pot-life estimation during manufacturing polymer-bonded explosives.

  3. Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats.

    Science.gov (United States)

    Pierson, M D; Smoot, L A

    1982-01-01

    Historically, nitrite has been a component of meat-curing additives for several centuries. In recent years the safety of nitrite as an additive in cured meats has been questioned mainly because of the possible formation of carcinogenic nitrosamines. Nitrite has many important functions in meat curing including its role in color development, flavor, antioxidant properties, and antimicrobial activity. The inhibition of Clostridium botulinum growth and toxin production is an especially important antimicrobial property of nitrite. This review discusses the effects of processing, curing ingredients (especially nitrite), and storage of cured meats in relation to the control of C. botulinum. If nitrite is eliminated from cured meats or the level of usage decreased, then alternatives for the antibotulinal function of nitrite need to be considered. Several potential alternatives including sorbates, parabens, and biological acidulants are discussed.

  4. Swelling of radiation-cured polymer precursor powder for silicon carbide by pyrolysis

    Directory of Open Access Journals (Sweden)

    Akinori Takeyama

    2015-12-01

    Full Text Available Ceramic yield, density, volume change and pore size distribution were measured for radiation- and thermally cured PCS powder when they were pyrolyzed in the temperature range of 673–973 K. Higher ceramic yield was obtained for radiation-cured powder due to smaller amount of evolved gas. Temperature dependence of volume change and the total pore volume show that the formation and disappearance of pores in the powders were determined by the volume shrinkage and evolution of decomposed gases. Volume shrinkage narrowed the pore size distribution for radiation-cured powder. For thermally cured powder, the narrowing of size distribution was disturbed by aggregated pores. Smaller amount of evolved gas from radiation-cured powder relative to thermally cured powder prevented the aggregation of pores and provided the narrow size distribution.

  5. Fight fire with fire: Gene therapy strategies to cure HIV.

    Science.gov (United States)

    Huyghe, Jon; Magdalena, Sips; Vandekerckhove, Linos

    2017-08-01

    Human Immunodeficiency Virus (HIV) to date remains one of the most notorious viruses mankind has ever faced. Despite enormous investments in HIV research for more than 30 years an effective cure for HIV has been elusive. Areas covered: Combination antiretroviral therapy (cART) suppresses active viral replication, but is not able to eliminate the virus completely due to stable integration of HIV inside the host genome of infected cells and the establishment of a latent reservoir, that is insensitive to cART. Nevertheless, this latent HIV reservoir is fully capable to refuel viral replication when treatment is stopped, creating a major obstacle towards a cure for HIV. Several gene therapy approaches ranging from the generation of HIV resistant CD4 + T cells to the eradication of HIV infected cells by immune cell engineering are currently under pre-clinical and clinical investigation and may present a promising road to a cure. In this review, we focus on the status and the prospects of gene therapy strategies to cure/eradicate HIV. Expert commentary: Recent advances in gene therapy for oncology and infectious diseases indicate that gene therapy may be a feasible and very potent cure strategy, and therefore a potential game changer in the search for an effective HIV cure.

  6. Talking Cure Models: A Framework of Analysis

    Directory of Open Access Journals (Sweden)

    Christopher Marx

    2017-09-01

    Full Text Available Psychotherapy is commonly described as a “talking cure,” a treatment method that operates through linguistic action and interaction. The operative specifics of therapeutic language use, however, are insufficiently understood, mainly due to a multitude of disparate approaches that advance different notions of what “talking” means and what “cure” implies in the respective context. Accordingly, a clarification of the basic theoretical structure of “talking cure models,” i.e., models that describe therapeutic processes with a focus on language use, is a desideratum of language-oriented psychotherapy research. Against this background the present paper suggests a theoretical framework of analysis which distinguishes four basic components of “talking cure models”: (1 a foundational theory (which suggests how linguistic activity can affect and transform human experience, (2 an experiential problem state (which defines the problem or pathology of the patient, (3 a curative linguistic activity (which defines linguistic activities that are supposed to effectuate a curative transformation of the experiential problem state, and (4 a change mechanism (which defines the processes and effects involved in such transformations. The purpose of the framework is to establish a terminological foundation that allows for systematically reconstructing basic properties and operative mechanisms of “talking cure models.” To demonstrate the applicability and utility of the framework, five distinct “talking cure models” which spell out the details of curative “talking” processes in terms of (1 catharsis, (2 symbolization, (3 narrative, (4 metaphor, and (5 neurocognitive inhibition are introduced and discussed in terms of the framework components. In summary, we hope that our framework will prove useful for the objective of clarifying the theoretical underpinnings of language-oriented psychotherapy research and help to establish a more

  7. 21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.

    Science.gov (United States)

    2010-04-01

    ... premixes, may continue to be used under prior sanctions in the commercial curing of meat and meat products... that apply to meat curing preparations for the home curing of meat and meat products, including poultry and wild game. To assure safe use of such ingredients the labeling of the premixes shall bear...

  8. Temperature and curing time affect composite sorption and solubility

    Directory of Open Access Journals (Sweden)

    Fabrício Luscino Alves de Castro

    2013-04-01

    Full Text Available Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8×2 mm were prepared using a commercial composite resin (ICE, SDI. Three temperatures (10°C, 25°C and 60°C and five curing times (5 s, 10 s, 20 s, 40 s and 60 s were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1; B: 7 days after storage (M2; C: 7 days after storage plus 1 day of drying (M3. The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%. Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p0.05. The 60°C composite temperature led to lower values of sorption for all curing times when compared with the 10°C temperature (p0.05. Solubility was similar at 40 s and 60 s for all temperatures (p>0.05, but was higher at 10°C than at 60°C for all curing times (p0.05. Conclusions: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and curing times.

  9. Simulation of Injection Molding Process Including Mold Filling and Compound Curing

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Erfanian

    2012-12-01

    Full Text Available The present work reports and discusses the results of a 3D simulation of the injection molding process of a rubber compound that includes the mold flling stage and  material curing, using the computer code is developed in “UDF” part of the Fluent 6.3 CAE software. The data obtained from a rheometer (MDR 2000 is used to characterize the rubber material in order to fnd the cure model parameters which exist in curing model. Because of non-newtonian behavior of rubber, in this work the non-newtonian model for viscosity was used and viscosity parameters were computed by mean of viscometry test by RPA. After calculation of the physical and curing properties, vulcanization process was simulated for a complex rubber article with non-uniform thickness by solving the continuity, momentum, energy and curing process equations. Predicted flling and curing time in a complex and 3D rubber part is compared with experimentally measured data which confrmed  the accuracy and applicability of the method.

  10. Development and Substantiation of Parameters of Environmentally Friendly Technology for Filling the Vertical Mine Workings with Autoclaved Slag-Concrete

    Directory of Open Access Journals (Sweden)

    Uglyanitca Andrey

    2017-01-01

    Full Text Available The environmentally friendly technology for filling the vertical mine workings with autoclaved slag-concrete, prefabricated on the surface of the mine is presented in the article; the optimal parameters of filling technology are proposed. The developed technology for filling the abandoned vertical mine workings allows ensuring the environmental safety of the territories adjacent to the abandoned mine, utilizing slag dumps and providing the possibility of shaft recovery, if necessary, with minimal labor and material costs.

  11. Sensory and physicochemical characteristics of salamis added with vegetable-based curing ingredients

    Directory of Open Access Journals (Sweden)

    Vicky Lilge Kawski

    Full Text Available ABSTRACT: The aim of this study was to evaluate the sensory and physicochemical quality of colonial salamis added with vegetable-based curing ingredients as potential enhancers of quality products. Salamis were produced according to three treatments: (A Control: 0.1% curing salt; (B rosemary: 0.05% curing salt + 0.5% rosemary extract (RE; and (C RE+celery: 0.14% Veg 503 + 0.27% Veg 504 (sea salt plus celery, nitrate and nitrite supplies, respectively + 0.5% of RE. No significant differences were observed (P>0.05 among the three treatments for dry matter (DM, crude protein (CP, ash, ether extract (EE and gross energy (GE. Sensory analysis was performed by applying the preference test and multiple comparison between the three treatments. Salamis added with vegetable-based curing ingredients were sensory equivalent to conventional level of curing salts. Vegetable extracts allowed the development of the sensory features of salami and did not interfere in the fermentation process. Results suggested that the extracts can serve as effective natural curing ingredients for the ripening process and cured meat color as well as adequate shelf-life replacing the commercial curing salts in meat and meat products. After 30 days of ripening, salami from the control treatment (conventional levels of nitrite and nitrate and the treatments with added vegetable-based curing ingredients and low nitrite and nitrate content (RE and RE + celery were equivalent in sensory quality.

  12. Free radical and thermal curing of terpyridine-modified terpolymers

    NARCIS (Netherlands)

    Hofmeier, H.; El-Ghayoury, A.; Schubert, U.S.

    2004-01-01

    Terpolymers bearing terpyridine as well as (meth)acrylates as free radical curable groups (UV-curing) or hydroxyl groups (thermal curing with bis-isocyanates) were synthesized and characterized using 1H NMR, IR and UV-vis spectroscopy as well as GPC. Subsequently, the ability of covalent

  13. Correlation between the state of cure of thermosetting resins and their properties

    International Nuclear Information System (INIS)

    Haffane, N.; Benameur, T.; Granger, R.; Vergnaud, J.M.

    1996-01-01

    Thermosetting resins, in the same way as polymers, are more and more used for coating metal sheets, in order to bring various interesting properties. An important problem arises with the cure of the thermoset, the process of cure being complex with heating conduction and convection and the heat generated by the cure reaction. The kinetics of the heat evolved from the overall cure reaction is determined through calorimetry experiments in scanning mode. The state of cure at time t is expressed by the heat generated by reaction up to time t as a fraction of the total heat generated. A numerical model taking all the facts into account is able to evaluate the profile of the state of cure developed through the thickness of the thermoset. The state of cure which derives from a theoretical point of view is correlated with some properties of interest for the coating, such as the hardness and the resistance to liquids. The resistance to water and ethanol is evaluated by determining the kinetics of absorption which is controlled by diffusion. copyright 1996 American Institute of Physics

  14. Comparison study of crosslink density determination in cured rubber

    International Nuclear Information System (INIS)

    El-sabbagh, S.H.; Yehia, A.A.

    2005-01-01

    The crosslink density is an important property affecting the major characteristics of cured rubber. The crosslink density can be determined by different methods such as: 1. Dynamic mechanical method using the data of stress-strain relationship. 2. Mooney-Rivlin equation 3. Swelling in organic solvents measurements using Flory-Rehner equation. The crosslink density calculated by the previous methods were discussed and compared with each other for cured NR, SBR and NBR. The obtained data showed that the dynamic-mechanical method can be considered as a simple and reliable method for determination of crosslink density for cured rubbers

  15. The difference nanocomposite hardness level using LED photoactivation based on curing period variations

    Directory of Open Access Journals (Sweden)

    Hasiana Tatian

    2011-03-01

    Full Text Available Polimerizatian is the critical stage to determine the quality of composites resin, this involves isolated monomer carbon double bonds being converted to an extended network of single bonds. Physical and mechanical properties of composites are influenced by the level of conversion attained during polymerization. An adequate light intensity and light curing time are important to obtain the degree of polymerization. The objective of this study is to evaluate the difference of the hardness nanocomposites which activated by LED LCU based on the variation of curing times. This study is a true experimental research. The samples were made from nanocomposites material with cylinder form of 4 mm in depth, 6 mm in diameter. This samples divided into 3 groups of curing times. Group, I was cured for 20's curing time as a control due to manufactory recommended; Group II was cured for 30's, and Group III was cured for 40's and the hardness (Rebound hardness tester was determined using Rebound scale (RS and converted by Mohs scale (MS. There was a very significant level of hardness rate from each group using ANOVA test. The result of the study concludes that there were the differences on the nanocomposites hardness level cured under different curing times 20, 30 and 40 sec. The longer of curing times, the higher level of hardness.

  16. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    Verschueren, K.; Balwant Kaur

    1999-01-01

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  17. Radiation cured coatings for high performance products

    International Nuclear Information System (INIS)

    Parkins, J.C.; Teesdale, D.H.

    1984-01-01

    Development over the past ten years of radiation curable coating and lacquer systems and the means of curing them has led to new products in the packaging, flooring, furniture and other industries. Solventless lacquer systems formulated with acrylates and other resins enable high levels of durability, scuff resistance and gloss to be achieved. Ultra violet and electron beam radiation curing are used, the choice depending on the nature of the coating, the product and the scale of the operation. (author)

  18. Heat transfer properties and thermal cure of glass-ionomer dental cements.

    Science.gov (United States)

    Gavic, Lidia; Gorseta, Kristina; Glavina, Domagoj; Czarnecka, Beata; Nicholson, John W

    2015-10-01

    Under clinical conditions, conventional glass-ionomer dental cements can be cured by application of heat from dental cure lamps, which causes acceleration in the setting. In order for this to be successful, such heat must be able to spread sufficiently through the cement to enhance cure, but not transmit heat so effectively that the underlying dental pulp of the tooth is damaged. The current study was aimed at measuring heat transfer properties of modern restorative glass-ionomers to determine the extent to which they meet these twin requirements. Three commercial glass ionomer cements (Ionofil Molar, Ketac Molar and Equia™ Fill) were used in association with three different light emitting diode cure lamps designed for clinical use. In addition, for each cement, one set of specimens was allowed to cure without application of a lamp. Temperature changes were measured at three different depths (2, 3 and 4 mm) after cure times of 20, 40 and 60 s. The difference among the tested groups was evaluated by ANOVA (P heat irradiation, but much greater temperature increases when exposed to the cure lamp. However, temperature rises did not exceed 12.9 °C. Application of the cure lamp led to the establishment of a temperature gradient throughout each specimen. Differences were typically significant (P heating effect. Because the thermal conductivity of glass-ionomers is low, temperature rises at 4 mm depths were much lower than at 2 mm. At no time did the temperature rise sufficiently to cause concern about potential damage to the pulp.

  19. Radiation Supporting Synthezis and Curing of Composites Suitable for Practical Applications

    International Nuclear Information System (INIS)

    Przybytniak, G.; Antoniak, M.; Nowicki, A.; Mirkowski, K.; Walo, M.

    2011-01-01

    Epoxy resins (ER) due to favorable combination of superior mechanical and thermal properties with unusual radiation resistance play an important role in some nuclear and aerospace industries. They are also widely used as matrices of reinforced composites since the homogeneous dissipation of fillers in the non-cured material is uncomplicated and efficient. Curing procedure is a very important factor determining final features of the epoxy resin and its composite. It was confirmed that irradiation facilitates molecular mobility and decreases glass transition as a result of chain scission. On the other hand, the increase in local mobility accelerates crosslinking thus the total effect is dependent on the relation between these two processes. Larieva reported that the ratio between degradation and crosslinking is 0.43, thus under selected conditions yield of curing more than twice prevails over yield of decomposition. The nature of hardener and its radiosensitivity also significantly influence the radiation induced curing. During exposure to ionizing radiation the binders participate in the processes initiated both by radiation and by heating, as curing is highly exothermic and considerably increases temperature of the system. Application of radiation treatment lowers energy consumption, shortens curing time and decreases curing temperature enhancing dimensional stability. In the past some attempts were made to improve heat resistance and strength of epoxy resins by the incorporation of various particles, e.g. silica, carbon nanotubes, montmorillonite, etc, however the results were unambiguous. In the reported studies the effects of radiation and thermal curing were investigated for ER and its composites either in the presence of cationic initiator or amine hardener

  20. Radiation Supporting Synthezis and Curing of Composites Suitable for Practical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Przybytniak, G.; Antoniak, M.; Nowicki, A.; Mirkowski, K.; Walo, M. [Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw (Poland)

    2011-07-01

    Epoxy resins (ER) due to favorable combination of superior mechanical and thermal properties with unusual radiation resistance play an important role in some nuclear and aerospace industries. They are also widely used as matrices of reinforced composites since the homogeneous dissipation of fillers in the non-cured material is uncomplicated and efficient. Curing procedure is a very important factor determining final features of the epoxy resin and its composite. It was confirmed that irradiation facilitates molecular mobility and decreases glass transition as a result of chain scission. On the other hand, the increase in local mobility accelerates crosslinking thus the total effect is dependent on the relation between these two processes. Larieva reported that the ratio between degradation and crosslinking is 0.43, thus under selected conditions yield of curing more than twice prevails over yield of decomposition. The nature of hardener and its radiosensitivity also significantly influence the radiation induced curing. During exposure to ionizing radiation the binders participate in the processes initiated both by radiation and by heating, as curing is highly exothermic and considerably increases temperature of the system. Application of radiation treatment lowers energy consumption, shortens curing time and decreases curing temperature enhancing dimensional stability. In the past some attempts were made to improve heat resistance and strength of epoxy resins by the incorporation of various particles, e.g. silica, carbon nanotubes, montmorillonite, etc, however the results were unambiguous. In the reported studies the effects of radiation and thermal curing were investigated for ER and its composites either in the presence of cationic initiator or amine hardener.

  1. Autoclave growth, magnetic, and optical properties of GdB6 nanowires

    Science.gov (United States)

    Han, Wei; Wang, Zhen; Li, Qidong; Liu, Huatao; Fan, Qinghua; Dong, Youzhong; Kuang, Quan; Zhao, Yanming

    2017-12-01

    High-quality single crystalline gadolinium hexaboride (GdB6) nanowires have been successfully prepared at very low temperatures of 200-240 °C by a high pressure solid state (HPSS) method in an autoclave with a new chemical reaction route, where Gd, H3BO3, Mg and I2 were used as raw materials. The crystal structure, morphology, valence, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, XPS, SQUID magnetometry and optical measurements. HRTEM images and SAED patterns reveal that the GdB6 nanowires are single crystalline with a preferred growth direction along [001]. The XPS spectrum suggests that the valence of Gd ion in GdB6 is trivalent. The effective magnetic momentum per Gd3+ in GdB6 is about 6.26 μB. The optical properties exhibit weak absorption in the visible light range, but relatively strong absorbance in the NIR and UV range. Low work function and high NIR absorption can make GdB6 nanowires a potential solar radiation shielding material for solar cells or other NIR blocking applications.

  2. Note: CO₂-mineral dissolution experiments using a rocking autoclave and a novel titanium reaction cell.

    Science.gov (United States)

    Purser, Gemma; Rochelle, Christopher A; Wallis, Humphrey C; Rosenqvist, Jörgen; Kilpatrick, Andrew D; Yardley, Bruce W D

    2014-08-01

    A novel titanium reaction cell has been constructed for the study of water-rock-CO2 reactions. The reaction cell has been used within a direct-sampling rocking autoclave and offers certain advantages over traditional "flexible gold/titanium cell" approaches. The main advantage is robustness, as flexible cells are prone to rupture on depressurisation during gas-rich experiments. The reaction cell was tested in experiments during an inter-laboratory comparison study, in which mineral kinetic data were determined. The cell performed well during experiments up to 130 °C and 300 bars pressure. The data obtained were similar to those of other laboratories participating in the study, and also to previously published data.

  3. Evaluation of compatibility between different types of adhesives and dual-cured resin cement.

    Science.gov (United States)

    Franco, Eduardo B; Lopes, Lawrence G; D'alpino, Paulo H P; Pereira, José C; Mondelli, Rafael F L; Navarro, Maria F L

    2002-01-01

    The objective of this in vitro study was to evaluate the bonding compatibility between different adhesives and a dual-cured resin cement, using a conventional tensile bond test. The adhesives used were: Prime & Bond (PB) (Dentsply) (PB), Scotchbond Multi Purpose (SB) (3M), and the activator Self Cure (SC) (Dentsply). The dual-curing resin cement used was Enforce (EF) (Dentsply). Six groups with five specimens in each were tested: G1: EF/PB/EF (light cured); G2: EF/SB/EF (light cured); G3: EF/PB+SC/EF (light cured); G4: EF/PB+SC/EF (only chemically cured); G5: EF/EF (light cured); G6: EF/EF (only chemically cured). The resin cement was applied in two stainless steel molds with a cone-shaped perforation measuring 4 mm in diameter and 1 mm in thickness, and the adhesive was applied between them. Ten minutes after specimens were cured, the tensile strength was measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The mean values (MPa) +/- SD obtained in each experimental group were: G1: 1.4 +/- 0.2; G2: 1.3 +/- 0.2; G3: 1.2 +/- 0.4; G4: 0.8 +/- 0.2; G5: 1.2 +/- 0.1; G6: 0.7 +/- 0.1. The results were statistically evaluated using nonparametric Kruskal-Wallis and Dunn tests (p adhesives used with dual-cured resin cement. The lowest tensile bond strength values occurred in the absence of photoactivation.

  4. Electron beam curing — taking good ideas to the manufacturing floor

    Science.gov (United States)

    Saunders, C.; Lopata, V.; Barnard, J.; Stepanik, T.

    2000-03-01

    Acsion is exploiting several emerging electron beam EB applications ranging from composite curing and repair to viscose manufacturing. EB curing of composite structures offers several advantages: significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; improvements in material handling; and reduced overall manufacturing costs compared to thermal curing. The aerospace industry is developing EB technology in all of their market sectors, including military aviation and space products. Some specific products include cryogenic fuel tanks, improved canopy frames for jet aircraft, and the all-composite military aircraft. This paper discusses each of these opportunities.

  5. The Effect of Autoclave Sterilization on Resistance to Cyclic Fatigue of Hero Endodontic File #642 (6%) at Two Artificial Curvature.

    Science.gov (United States)

    Khabiri, Masoud; Ebrahimi, Maziar; Saei, Mohammad Reza

    2017-12-01

    File fracture can interfere with cleaning and shaping of the canal and compromise periradicular healing. Autoclave sterilization may prone the files to fracture. The purpose of the present study was to determine the effect of autoclave sterilization on the cyclic fatigue resistance of Hero642 rotary instrument in two curvatures of 45 and 60 degrees. For this experimental in-vitro study, 90 Nickel-Titanium HERO 642 rotary files #30 with 0.06 taper were selected. They were divided into two groups (curvature of 45 and 60 degree) of 45 files. Each group was then subdivided into 3 subgroups; group I: no sterilization, group II: 5 cycles of sterilization and group III: 10 cycles of sterilization. Files were used in artificial canals until fracture. The cyclic fatigue was measured as the number of cycles before fracture. The data was statically analyzed by Student's t-test and two-way analysis of variance. There was a significant difference in cyclic fatigue of two curvature of 45 and 60 degrees ( p = 0.001). However, sterilization process has no significant effect on cyclic fatigue of HERO files ( p = 0.557). Sterilization had no effect on the cyclic fatigue of HERO 642 files when used in curvature of 45 or 60 degrees.

  6. Industrial application of radiation curing

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takashi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The contents are advantages of radiation processes - a solvent-free system, less energy consumative, higher production rate, processability at ambient temperature; electron beams vs. ultraviolet curing; applications -broad spectrum of markets use radiation curable materials.

  7. Industrial application of radiation curing

    International Nuclear Information System (INIS)

    Takashi Sasaki

    1993-01-01

    The contents are advantages of radiation processes - a solvent-free system, less energy consumative, higher production rate, processability at ambient temperature; electron beams vs. ultraviolet curing; applications -broad spectrum of markets use radiation curable materials

  8. Out-of-autoclave manufacturing of a stiffened thermoplastic carbon fibre PEEK panel

    Science.gov (United States)

    Flanagan, M.; Goggins, J.; Doyle, A.; Weafer, B.; Ward, M.; Bizeul, M.; Canavan, R.; O'Bradaigh, C.; Doyle, K.; Harrison, N.

    2017-10-01

    Out-of-Autoclave manufacturing methods, specifically Automated Tape Placement (ATP) and induction welding, used in the fabrication of a stiffened thermoplastic demonstrator panel, are presented in this study. The demonstrator panel consists of two stiffeners induction welded to a flat skin, to form a typical load bearing aerospace sub-component. The skin of the panel is manufactured from uni-directional Carbon Fibre (CF) Polyetheretherkeytone (PEEK) using laser assisted Automated Tape Placement (ATP) and the stiffeners are press formed from woven CF-PEEK. The stiffeners are fusion bonded to the skin using a continuous induction welding process. A susceptor material is used at the interface to ensure the required heating is concentrated at the weldline. Microscopy was used to examine the manufactured coupons for defects. Destructive testing was carried out to evaluate the strength of the overall assembly. The work shows that assemblies manufactured using continuous induction welding and ATP are suitable for load bearing aerospace applications.

  9. Tools for Visualizing HIV in Cure Research.

    Science.gov (United States)

    Niessl, Julia; Baxter, Amy E; Kaufmann, Daniel E

    2018-02-01

    The long-lived HIV reservoir remains a major obstacle for an HIV cure. Current techniques to analyze this reservoir are generally population-based. We highlight recent developments in methods visualizing HIV, which offer a different, complementary view, and provide indispensable information for cure strategy development. Recent advances in fluorescence in situ hybridization techniques enabled key developments in reservoir visualization. Flow cytometric detection of HIV mRNAs, concurrently with proteins, provides a high-throughput approach to study the reservoir on a single-cell level. On a tissue level, key spatial information can be obtained detecting viral RNA and DNA in situ by fluorescence microscopy. At total-body level, advancements in non-invasive immuno-positron emission tomography (PET) detection of HIV proteins may allow an encompassing view of HIV reservoir sites. HIV imaging approaches provide important, complementary information regarding the size, phenotype, and localization of the HIV reservoir. Visualizing the reservoir may contribute to the design, assessment, and monitoring of HIV cure strategies in vitro and in vivo.

  10. Industrial potential for application of radiation curing in Pakistan

    International Nuclear Information System (INIS)

    Ahmed, S.

    1991-01-01

    Potential applications of radiation curing of coating are in the field of wood and wood products, drying of printing inks, ceramics (roof and floor tiles) and textiles. Pakistan a 'timber deficit' country needs to improve her wood, plywood, hardboard and particle board to make for shortage of quality wood. Imports of wood and wood products are in excess of 3000 million rupees. Radiation curing can be applied and itexcels over heat treatment. Whereas costs of high energy units (500 KeV) with scanning type are rather high, low energy (100-175 KeV) flat beam self-shielded units costing 200,000 US$ are available. For developing countries ultraviolet (UV) curing is ideally suited because of its low price, flexibility and simplicity in handling. Alternately, multipurpose bunker type facility such as 500 KeV current mA can be utilized in carrying out heat-shrinkables production, irradiation of cable and wire and curing of coatings on wood and wood products. (author)

  11. Studies on cationic UV curing of epoxidised palm oil (EPO) for surface coatings

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Mohd Hilmi Mahmood; Wan Rosli Wan Daud; Kumar, R.N.

    2000-01-01

    Epoxidised palm oil (EPO) resin can be cured by ultraviolet (UV) radiation either by radical, cationic or hybrid system. Cationic curing system has been chosen in this study due to the fact that epoxy groups present in EPO can be utilised directly to form crosslinking. Curing was done by means of a 20 cm wide UV IST machine with the conditions of 7.5 A current and 4 m/min conveyor speed. Sulphonium and ferrocenium salts were used as cationic photoinitiator. A formulations study was performed on the selected grades of EPO with other materials. These include types and concentration of photoinitiator, monomers, concentration of EPO and post-cure. The properties of the cured film such as pendulum hardness, percentage of gel content and tensile strength were determined. It was found that triarylsulphonium hexafluorophosphate has a very low solubility in EPO. Addition of vinyl ether monomer to the formulation did not enhance pendulum hardness and gel content of the cured films. It is also found that the post cure temperature has no significant effect on the cured film

  12. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  13. Ionizing radiation post-curing of objects produced by stereolithography and other methods

    Science.gov (United States)

    Howell, David H.; Eberle, Claude C.; Janke, Christopher J.

    2000-01-01

    An object comprised of a curable material and formed by stereolithography or another three-dimensional prototyping method, in which the object has undergone initial curing, is subjected to post-curing by ionizing radiation, such as an electron beam having a predetermined beam output energy, which is applied in a predetermined dosage and at a predetermined dose rate. The post-cured object exhibits a property profile which is superior to that which existed prior to the ionizing radiation post-curing.

  14. Beam in on curing

    International Nuclear Information System (INIS)

    Holl, Dr.

    1981-01-01

    Electron beam curing of paints and allied materials is discussed. Examples of applications are: silicone papers; painting of metal; bonding of flake adhesives; bonding of grinding media (binders); paints for external uses; painting shaped parts; bi-reactive painting systems. An example is given of the calculation of the cost of irradiation. (U.K.)

  15. Direct synthesis of Fe3 C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction.

    Science.gov (United States)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Huang, Yunjie; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-08-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3 C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electrocatalyst, the graphene-based composite exhibited excellent catalytic activity towards the oxygen reduction reaction in alkaline solution with an onset potential of ca. 1.05 V (vs. the reversible hydrogen electrode) and a half-wave potential of 0.83 V, which is comparable to the commercial Pt/C catalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Experimental evaluation on the influence of autoclave sterilization on the cyclic fatigue of new nickel-titanium rotary instruments.

    Science.gov (United States)

    Plotino, Gianluca; Costanzo, Alberto; Grande, Nicola M; Petrovic, Renata; Testarelli, Luca; Gambarini, Gianluca

    2012-02-01

    The purpose of this study was to evaluate the effect of autoclave sterilization on cyclic fatigue resistance of rotary endodontic instruments made of traditional and new nickel-titanium (NiTi) alloys. Four NiTi rotary endodontic instruments of the same size (tip diameter 0.40 mm and constant .04 taper) were selected: K3, Mtwo, Vortex, and K3 XF prototypes. Each group was then divided into 2 subgroups, unsterilized instruments and sterilized instruments. The sterilized instruments were subjected to 10 cycles of autoclave sterilization. Twelve files from each different subgroup were tested for cyclic fatigue resistance. Means and standard deviations of number of cycles to failure (NCF) and fragment length of the fractured tip were calculated for each group, and data were statistically analyzed (P instruments for each type of file, differences were statistically significant (P instruments did not show significant differences (P > .05) in the mean NCF as a result of sterilization cycles (K3, 424 versus 439 NCF; Mtwo, 409 versus 419 NCF; Vortex, 454 versus 480 NCF). Comparing the results among the different groups, K3 XF (either sterilized or not) showed a mean NCF significantly higher than all other files (P endodontic instruments except for the K3 XF prototypes of rotary instruments that demonstrated a significant increase of cyclic fatigue resistance. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. An Evaluation of Fracture Toughness of Vinyl Ester Composites Cured under Microwave Conditions

    Science.gov (United States)

    Ku, H.; Chan, W. L.; Trada, M.; Baddeley, D.

    2007-12-01

    The shrinkage of vinyl ester particulate composites has been reduced by curing the resins under microwave conditions. The reduction in the shrinkage of the resins by microwaves will enable the manufacture of large vinyl ester composite items possible (H.S. Ku, G. Van Erp, J.A.R. Ball, and S. Ayers, Shrinkage Reduction of Thermoset Fibre Composites during Hardening using Microwaves Irradiation for Curing, Proceedings, Second World Engineering Congress, Kuching, Malaysia, 2002a, 22-25 July, p 177-182; H.S. Ku, Risks Involved in Curing Vinyl Ester Resins Using Microwaves Irradiation. J. Mater. Synth. Proces. 2002b, 10(2), p 97-106; S.H. Ku, Curing Vinyl Ester Particle Reinforced Composites Using Microwaves. J. Comp. Mater., (2003a), 37(22), p 2027-2042; S.H. Ku and E. Siores, Shrinkage Reduction of Thermoset Matrix Particle Reinforced Composites During Hardening Using Microwaves Irradiation, Trans. Hong Kong Inst. Eng., 2004, 11(3), p 29-34). In tensile tests, the yield strengths of samples cured under microwave conditions obtained are within 5% of those obtained by ambient curing; it is also found that with 180 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are also within the 5% of those obtained by ambient curing. While, with 360 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are 5% higher than those obtained by ambient curing. Whereas, with 540 W microwave power, the tensile strengths obtained for most samples are 5% below those obtained by ambient curing (H. Ku, V.C. Puttgunta, and M. Trada, Young’s Modulus of Vinyl Ester Composites Cured by Microwave Irradiation: Preliminary Results, J. Electromagnet. Waves Appl., 2007, 20(14), p. 1911-1924). This project, using 33% by weight fly ash reinforced vinyl ester composite [VE/FLYSH (33%)], is to further investigate the difference in fracture toughness between microwave cured vinyl ester particulate composites and those cured

  18. Flexural behaviour of post-cured composites at oral-simulating temperatures.

    Science.gov (United States)

    Ho, C T; Vijayaraghavan, T V; Lee, S Y; Tsai, A; Huang, H M; Pan, L C

    2001-07-01

    Post-curing treatments have been known to improve the mechanical stability of visible light-cured composites. After individual post-curing treatment, the flexural strength (FS) of four commercial direct/indirect placement composite materials which differ greatly in composition [oligocarbonate dimethacrylate (OCDMA)-based Conquest C & B (CQT), Bisphenol-A glycidyl dimethacrylate (BisGMA)-based Charisma, urethane dimethacrylate (UDMA)-based Concept (CCT), and BisGMA/UDMA-based Dentacolor] was evaluated under water in the temperature range of 12-50 degrees C. A control series was tested in air at room temperature (25 +/- 1 degrees C). Data were analysed using ANOVA and Duncan's test. Flexural strengths overall decreased (20-40%, P OCDMA-based materials. Post-cured composites can be significantly affected by exposure to oral environments. Different composition determines the degree of influence.

  19. Strontium binding to cement paste cured at different temperature

    International Nuclear Information System (INIS)

    Peterson, V.K.; Ray, A.

    1999-01-01

    Concentration - depth profiles were measured using Proton Induced X-ray Emission (PIXE). These results were used as a measure of the Sr 2+ retention abilities of each matrix. Ordinary Portland cement (OPC) and cemented clinoptilolite samples were cured at 25 deg C, 60 deg C and 150 deg C. As expected, the Sr 2+ penetration depth increased with increasing OPC cure temperature, caused by an increase in sample permeability. Surprisingly, the penetration depths of Sr 2+ increased with the addition of clinoptilolite to the OPC, also thought to be caused by an increase in sample permeability. However, the increase in penetration depth was reduced in samples cured at higher temperatures

  20. Current and future market of UV/EB curing in Thailand

    International Nuclear Information System (INIS)

    Suda Kiatkamjornwong; Aran Hanseubsai

    1999-01-01

    Current status and future market of UV/EB curing in Thailand were presented. Included number of printing houses, export, main export market and the role of radiation curing in printing and packaging industries of Thailand

  1. Effects of the different atmospheric steam curing processes on the ...

    Indian Academy of Sciences (India)

    hardness when exposed to different atmospheric steam curing temperatures. ... Use of self-compacting concretes (SCCs) lowered the noise level on the ... Although maximum temperature limit values in curing locations should be from 40 to ...

  2. Promotion time cure rate model with nonparametric form of covariate effects.

    Science.gov (United States)

    Chen, Tianlei; Du, Pang

    2018-05-10

    Survival data with a cured portion are commonly seen in clinical trials. Motivated from a biological interpretation of cancer metastasis, promotion time cure model is a popular alternative to the mixture cure rate model for analyzing such data. The existing promotion cure models all assume a restrictive parametric form of covariate effects, which can be incorrectly specified especially at the exploratory stage. In this paper, we propose a nonparametric approach to modeling the covariate effects under the framework of promotion time cure model. The covariate effect function is estimated by smoothing splines via the optimization of a penalized profile likelihood. Point-wise interval estimates are also derived from the Bayesian interpretation of the penalized profile likelihood. Asymptotic convergence rates are established for the proposed estimates. Simulations show excellent performance of the proposed nonparametric method, which is then applied to a melanoma study. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Qualitative Beam Profiling of Light Curing Units for Resin Based Composites.

    Science.gov (United States)

    Haenel, Thomas; Hausnerová, Berenika; Steinhaus, Johannes; Moeginger, Ing Bernhard

    2016-12-01

    This study investigates two technically simple methods to determine the irradiance distribution of light curing units that governs the performance of a visible-light curing resin-based composites. Insufficient light irradiation leads to under-cured composites with poor mechanical properties and elution of residual monomers. The unknown irradiance distribution and its effect on the final restoration are the main critical issues requiring highly sophisticated experimental equipment. The study shows that irradiance distributions of LCUs can easily be determined qualitatively with generally available equipment. This significantly helps dentists in practices to be informed about the homogeneity of the curing lights. Copyright© 2016 Dennis Barber Ltd.

  4. Preparation of Autoclaved Foamed Concrete Block from Fly Ash and Carbide Slag

    Directory of Open Access Journals (Sweden)

    Tan Xing

    2018-01-01

    Full Text Available To achieve the comprehensive utilization of solid waste and reduce costs, fly ash, carbide slag, and low-clinker cement were used to produce lightweight foamed concrete block. Granulated blast-furnace slag (GBFS was used as composition correction material in the block. The effects of curing temperature and dosage of low-clinker cement on the performance of foamed concrete block were investigated. The optimal material proportioning is obtained: fly ash 58.5%, carbide slag 20%, GBFS 10%, gypsum 1.5% and low-clinker cement 10%. The proper curing regime is “temperature rising 4h-180°C constant temperature 4h-natural cooling”. The results indicate that the compressive strength of the block reaches 3.55 MPa while the density is 616.9 kg/m3. The performance of the product meets JC/T 1062-2007 (China professional standard of foamed concrete block.

  5. An in situ synchrotron energy-dispersive diffraction study of the hydration of oilwell cement systems under high temperature/autoclave conditions up to 130 deg. C

    International Nuclear Information System (INIS)

    Colston, Sally L.; Barnes, Paul; Jupe, Andrew C.; Jacques, Simon D.M.; Hall, Christopher; Livesey, Paul; Dransfield, John; Meller, Nicola; Maitland, Geoffrey C.

    2005-01-01

    The technique of synchrotron energy dispersive diffraction has been developed for in situ studies of cement hydration under autoclave conditions. This has been applied to oilwell cements hydrating at typical oilwell temperatures up to 130 deg. C. The results show clearly the detailed interplay between 11 detectable phases, from which a phase transformation scheme has been derived; this illustrates the progression of hydration up to 130 deg. C for two extreme cases, with and without conservation of water content and autoclave pressure. The monosulphate hydrate phases are found to exhibit different stability bounds, with a surprising sequence of the 14-water, 10-water then 12-water monosulphate as temperature/time increases; the latter form is particularly associated with conditions of water/pressure loss. The effect of retarders on C 3 S dissolution and CH formation is negligible above 70 deg. C, whereas the effect on the calcium sulphoaluminate hydrates is more complex, and possible reasons for this are discussed

  6. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    Science.gov (United States)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  7. Color and oxidative stability of nitrite-free cured meat after gamma irradiation

    International Nuclear Information System (INIS)

    Shahidi, F.; Pegg, R.B.; Shamsuzzaman, K.

    1991-01-01

    The effects of 5 and 10 kGy irradiation on the color and oxidative stability of meats treated with nitrite or a nitrite-free curing system were investigated. The nitrite-free curing system consisted of the preformed cooked cured-meat pigment, sodium ascorbate and sodium tripolyphosphate with or without sodium acid pyrophosphate. Irradiation had no detrimental effects on the color or flavor of either cured samples. Polyphosphates had a beneficial effect on oxidative stability but had a slight detrimental effect on color stability of irradiated samples

  8. A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage.

    Science.gov (United States)

    Holtman, Kevin M; Bozzi, David V; Franqui-Villanueva, Diana; Offeman, Richard D; Orts, William J

    2016-05-01

    A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg(-1) material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg(-1). © The Author(s) 2016.

  9. Evidence-based Nursing in the IED: From Caring to Curing?

    Directory of Open Access Journals (Sweden)

    Jette Ernst

    2016-03-01

    Full Text Available Danish hospitals are major sites of healthcare reform, and new public management accountability and performance management tools have been applied to improve the quality and efficiency of services. One consequence of this is that nurses’ work in hospitals is increasingly standardized through medical evidence. Using Bourdieu’s theory of practice in combination with an ethnographic field study, it is analyzed how the nurses of a Danish Integrated Emergency Department respond to the changing conditions of work. It is illuminated how two opposing approaches to nursing of humanistically and pluralistically oriented caring, and evidence-based scientifically oriented curing inform nursing in the department. The curing approach is however trumping the caring approach. Curing creates new nursing career pathways and is by some nurses embraced with enthusiasm. For others, the new situation creates tension and distress. It is illustrated how the nurses position their practice in relation to the changing working conditions taking sides for either curing or caring, or finding a way to maneuver in between the two. The article argues that the normative enforcement of the curing approach may carry unintended side effects to the goals of quality and efficiency enhancements.

  10. Electron beam curing of dimer acid-based urethane acrylates for pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Takeda, Satoe; Shiraishi, Katsutoshi.

    1995-01-01

    Polyester urethane diacrylate prepolymers prepared from dimer acids (DUA) were cured with low energy electron beams to investigate adhesive properties of cured films. Among various type monomers added, monofunctional methacrylates such as isobornyl methacrylate (IBXMA) were effective for higher peel strength cured films although the dose-to-cure for the mixtures increased to 100 kGy or more. The increase in the molecular weight of prepolymers resulted in lower curing rates but higher peel strength. Aging tests up to 80degC for four weeks proved good stability in peel strength of the stored products. (author)

  11. Stress and flow analyses of ultraviolet-curable resin during curing

    Science.gov (United States)

    Umezaki, Eisaku; Okano, Akira; Koyama, Hiroto

    2014-06-01

    The stress and flow generated in ultraviolet (UV)-curable resin during curing in molds were measured to investigate their relationship. The specimens were molds consisting of glass plates and acrylic bars, and UV-curable liquid resin. The specimens were illuminated from above with UV rays. Photoelastic and visual images were separately obtained at a constant time interval using cameras during curing. To help obtain the visual images, acrylic powder was mixed with the liquid resin. The stress was obtained from the photoelastic images by a digital photoelastic technique with phase stepping, and the flow was obtained from the visual images by a particle-tracking velocimetry technique. Results indicate that the stress generated in the UV-curable resin during curing depends on the degree of contact between the mold and the cured area of the resin, and is hardly related to the flow.

  12. Advances in spot curing technology

    International Nuclear Information System (INIS)

    Burga, R.

    1999-01-01

    A brief review of spot curing technology was presented. The process which a spot of energy of a specific wavelength bandwidth and irradiance is used to cause a coating, encapsulant or adhesive to change from a liquid to a solid state

  13. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    Directory of Open Access Journals (Sweden)

    Anne Peutzfeldt

    2016-01-01

    Full Text Available This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM, High Power mode (HPM, or Xtra Power mode (XPM. Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2 (n=17. Vickers hardness (HV and indentation modulus (EIT were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α=0.05. Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p≤0.0001. Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p≤0.0021. However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  14. Comparative Evaluation of Shear Bond Strength and Debonding Characteristics using Conventional Halogen Light Curing Unit and LED Light Curing Unit: An in vitro Study

    Directory of Open Access Journals (Sweden)

    Amit Bhardwaj

    2013-01-01

    Conclusion: The result of this study showed promise for the orthodontic application of LED as light curing units and 20 seconds of exposure time is adequate for both LED and Halogen light, since increasing the curing time to 40 seconds showed no significant difference.

  15. CUREs in biochemistry?where we are and where we should go

    OpenAIRE

    Bell, Jessica K.; Eckdahl, Todd T.; Hecht, David A.; Killion, Patrick J.; Latzer, Joachim; Mans, Tamara L.; Provost, Joseph J.; Rakus, John F.; Siebrasse, Erica A.; Ellis Bell, J.

    2016-01-01

    Abstract Integration of research experience into classroom is an important and vital experience for all undergraduates. These course?based undergraduate research experiences (CUREs) have grown from independent instructor lead projects to large consortium driven experiences. The impact and importance of CUREs on students at all levels in biochemistry was the focus of a National Science Foundation funded think tank. The state of biochemistry CUREs and suggestions for moving biochemistry forward...

  16. Electron beam curing of composites in North America

    International Nuclear Information System (INIS)

    Berejka, Anthony J.; Eberle, Cliff

    2002-01-01

    Electron beam curing of fiber-reinforced composites was explored over 30 years ago. Since then there have been developments in accelerator technology, in processes for handling materials presented to an accelerator, and in materials that can be used as matrix binders. In recent years in North America, Cooperative Research and Development Agreements (CRADAs) have been formed involving collaboration amongst materials suppliers, accelerator manufacturers and service providers, national laboratories, such as Oak Ridge National Laboratory, and interested potential users. The scope and status of these CRADAs are reviewed along with other recent developments in the electron beam curing of composites in North America. Innovative and proprietary materials technology has been developed and progress made toward implementing commercial practice. Significant market interest has developed in the military/aerospace industries that are finding the process and performance of electron beam cured composites to offer significant benefits

  17. Preliminary study on solar-assisted tobacco curing in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Bamrungwong, S [Chiang Mai Univ.; Suchinda, B; Malila, D

    1982-04-01

    A solar heating system for assisting flue curing of Virginia tobacco leaf was studied. The equipment consisted of a brick and mortar tobacco curing barn of 3.6 m/sup 3/ volume. The solar air heater of 2.8 m/sup 2/ was a non-focus type, made from corrugated galvanized stel sheet coated with flat-black paint. The collector had a single glass cover on top and a 25 mm layer of styrofoam at the bottom. Electrical heating was utilized inside the bar to simulate the main heat source. The system under study had no thermal storage, therefore it was extremely difficult to regulate the temperature inside the barn precisely. Consequently, the solar assisting mode is not recommended during the yellowing stage of curing where very precise temperature control is required. Utilization of solar energy during other stages of curing showed a saving of the main conventional energy up to 33 to 15 percent. The average thermal efficiencies of the collector varied from 70 percent at high flow rate to 67 percent at low flow rate. 6 references.

  18. A novel calorimetry technique for monitoring electron beam curing of polymer resins

    International Nuclear Information System (INIS)

    Chen, J.H.; Johnston, A.; Petrescue, L.; Hojjati, M.

    2006-01-01

    This paper describes the development of a calorimetry-based technique for monitoring of the curing of electron beam (EB) curable resins, including design of the calorimeter hardware and the development of an analytical model for calculating resin cure rates and radiation dose. Factors affecting the performance of the calorimeter were investigated. Experimental trials monitoring the curing of epoxy resin were conducted under single pass and multiple passes of EB irradiation. Results show that the developed calorimeter is a simple, inexpensive and reasonably accurate technique for monitoring the EB curing of cationic epoxies

  19. Manufacturing prepainted steel sheet by electron beam curing

    International Nuclear Information System (INIS)

    Oka, Joji

    1987-01-01

    Several advantages are offered by electron beam curing. A formidably hard and stain resistant paint film which is difficult to obtain by heat curing paint is developed. As a result, a unique new prepainted steel is produced. Four technologies are involved: development high-quality paint, selection of optimum electron beam processor, technology to control electron beam processing atmosphere and secondary X-ray shield technology. These technologies are described in detail. (A.J.)

  20. A combinaison of UV curing technology with ATL process

    Science.gov (United States)

    Balbzioui, I.; Hasiaoui, B.; Barbier, G.; L'hostis, G.; Laurent, F.; Ibrahim, A.; Durand, B.

    2017-10-01

    In order to reduce the time and the cost of manufacturing composite, UV curing technology combined with automated tape placement process (ATL) based on reverse approach by working with a fixed head was studied in this article. First, a brief description of the developed head placement is presented. Mechanical properties are then evaluated by varying process parameters, including compaction force and tape placement speed. Finally, a parametric study is carried out to identify suitable materials and process parameters to manufacture a photo composite material with high mechanical performances. The obtained results show that UV curing is a very good alternative for thermal polymerization because of its fast cure speed due to less dependency on temperature.

  1. Polymerization and curing kinetics of furan resins under conventional and microwave heating

    International Nuclear Information System (INIS)

    Lopez de Vergara, Unai; Sarrionandia, Mariasun; Gondra, Koldo; Aurrekoetxea, Jon

    2014-01-01

    Graphical abstract: - Highlights: • The furan resin structure was investigated using IR and RMN techniques. • The polymerization of furan resins was developed based on multistage kinetics. • Vyazovkin numerical analysis was found the most accurate kinetic method. • Microwave curing of furan resins was much faster than thermal curing. - Abstract: The challenge of this work is the microwave curing study of low free-furfuryl alcohol content furan resins. The chemical characterization of the furan resins has been made by infrared spectroscopy and nuclear magnetic resonance spectroscopy. The chemical composition of the resin and its reactions with p-toluensulfonic acid are proposed, with the aim of understanding the mechanism responsible for the main reactions. The results show the presence of methyl and ether bridges between the furan rings, and the formation of ketone and conjugated structures. Furthermore, the curing kinetics of the furan resins has been characterized by differential scanning calorimetry. Different methods have been applied in order to obtain and compare the activation energy of the process. Vyazovkin numerical analysis was found the most accurate method. Finally, microwave and conventional curing processes has been compared. The analysis showed that microwave curing of furan resins was twice faster than thermal curing

  2. Polymerization and curing kinetics of furan resins under conventional and microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Vergara, Unai, E-mail: bergara@gaiker.es [Plastics and Composites Department, Gaiker IK4 Research Centre, Parque Tecnológico, Ed. 202, 48170 Zamudio Spain (Spain); Mechanical Engineering and Industrial Manufacturing Department, Mondragón Unibertsitatea, Loramendi 4, 20500 Mondragón Spain (Spain); Sarrionandia, Mariasun [Mechanical Engineering and Industrial Manufacturing Department, Mondragón Unibertsitatea, Loramendi 4, 20500 Mondragón Spain (Spain); Gondra, Koldo [Plastics and Composites Department, Gaiker IK4 Research Centre, Parque Tecnológico, Ed. 202, 48170 Zamudio Spain (Spain); Aurrekoetxea, Jon [Mechanical Engineering and Industrial Manufacturing Department, Mondragón Unibertsitatea, Loramendi 4, 20500 Mondragón Spain (Spain)

    2014-04-01

    Graphical abstract: - Highlights: • The furan resin structure was investigated using IR and RMN techniques. • The polymerization of furan resins was developed based on multistage kinetics. • Vyazovkin numerical analysis was found the most accurate kinetic method. • Microwave curing of furan resins was much faster than thermal curing. - Abstract: The challenge of this work is the microwave curing study of low free-furfuryl alcohol content furan resins. The chemical characterization of the furan resins has been made by infrared spectroscopy and nuclear magnetic resonance spectroscopy. The chemical composition of the resin and its reactions with p-toluensulfonic acid are proposed, with the aim of understanding the mechanism responsible for the main reactions. The results show the presence of methyl and ether bridges between the furan rings, and the formation of ketone and conjugated structures. Furthermore, the curing kinetics of the furan resins has been characterized by differential scanning calorimetry. Different methods have been applied in order to obtain and compare the activation energy of the process. Vyazovkin numerical analysis was found the most accurate method. Finally, microwave and conventional curing processes has been compared. The analysis showed that microwave curing of furan resins was twice faster than thermal curing.

  3. Cytotoxicity of Light-Cured Dental Materials according to Different Sample Preparation Methods

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lee

    2017-03-01

    Full Text Available Dental light-cured resins can undergo different degrees of polymerization when applied in vivo. When polymerization is incomplete, toxic monomers may be released into the oral cavity. The present study assessed the cytotoxicity of different materials, using sample preparation methods that mirror clinical conditions. Composite and bonding resins were used and divided into four groups according to sample preparation method: uncured; directly cured samples, which were cured after being placed on solidified agar; post-cured samples were polymerized before being placed on agar; and “removed unreacted layer” samples had their oxygen-inhibition layer removed after polymerization. Cytotoxicity was evaluated using an agar diffusion test, MTT assay, and confocal microscopy. Uncured samples were the most cytotoxic, while removed unreacted layer samples were the least cytotoxic (p < 0.05. In the MTT assay, cell viability increased significantly in every group as the concentration of the extracts decreased (p < 0.05. Extracts from post-cured and removed unreacted layer samples of bonding resin were less toxic than post-cured and removed unreacted layer samples of composite resin. Removal of the oxygen-inhibition layer resulted in the lowest cytotoxicity. Clinicians should remove unreacted monomers on the resin surface immediately after restoring teeth with light-curing resin to improve the restoration biocompatibility.

  4. UV-LED Curing Efficiency of Wood Coatings

    Directory of Open Access Journals (Sweden)

    Véronic Landry

    2015-12-01

    Full Text Available Ultraviolet light emitting diodes (UV-LEDs have attracted great interest in recent years. They can be used to polymerize coatings, such as those used for prefinished wood flooring. In this project, two lamps were compared for their suitability to be used on a wood flooring finishing line: a UV-microwave and a UV-LED lamp. Low heat emission was found for the UV-LED lamp compared to the UV-microwave one. This study also reveals that the 4 W/cm2 UV-LED lamp used is not powerful enough to cure UV high solids acrylate coatings while satisfactory results can be obtained for UV water-based formulations. In fact, conversion percentages were found to be low for the high solids coatings, leaving the coatings tacky. Higher conversion percentages were obtained for the UV water-based formulations. As a result, mass loss, hardness, and scratch resistance found for the samples cured by UV-LED were closed to the ones found for the samples cured using the UV microwave lamp.

  5. Escherichia coli K-12 survives anaerobic exposure at pH 2 without RpoS, Gad, or hydrogenases, but shows sensitivity to autoclaved broth products.

    Directory of Open Access Journals (Sweden)

    Daniel P Riggins

    Full Text Available Escherichia coli and other enteric bacteria survive exposure to extreme acid (pH 2 or lower in gastric fluid. Aerated cultures survive via regulons expressing glutamate decarboxylase (Gad, activated by RpoS, cyclopropane fatty acid synthase (Cfa and others. But extreme-acid survival is rarely tested under low oxygen, a condition found in the stomach and the intestinal tract. We observed survival of E. coli K-12 W3110 at pH 1.2-pH 2.0, conducting all manipulations (overnight culture at pH 5.5, extreme-acid exposure, dilution and plating in a glove box excluding oxygen (10% H2, 5% CO2, balance N2. With dissolved O2 concentrations maintained below 6 µM, survival at pH 2 required Cfa but did not require GadC, RpoS, or hydrogenases. Extreme-acid survival in broth (containing tryptone and yeast extract was diminished in media that had been autoclaved compared to media that had been filtered. The effect of autoclaved media on extreme-acid survival was most pronounced when oxygen was excluded. Exposure to H2O2 during extreme-acid treatment increased the death rate slightly for W3110 and to a greater extent for the rpoS deletion strain. Survival at pH 2 was increased in strains lacking the anaerobic regulator fnr. During anaerobic growth at pH 5.5, strains deleted for fnr showed enhanced transcription of acid-survival genes gadB, cfa, and hdeA, as well as catalase (katE. We show that E. coli cultured under oxygen exclusion (<6 µM O2 requires mechanisms different from those of aerated cultures. Extreme acid survival is more sensitive to autoclave products under oxygen exclusion.

  6. Synthesis and curing of alkyd enamels based on ricinoleic acid

    Directory of Open Access Journals (Sweden)

    Jovičić Mirjana C.

    2010-01-01

    Full Text Available A combination of an alkyd resin with a melamine-formaldehyde resin gives a cured enamel film with the flexibility of the alkyd constituent and the high chemical resistance and hardness of the melamine resin at the same time. The melamine resin is a minor constituent and plays the role of a crosslinking agent. In this paper, alkyd resins of high hydroxyl numbers based on trimethylolpropane, ricinoleic acid and phthalic anhydride were synthesized. Two alkyds having 30 and 40 wt% of ricinoleic acid were formulated by calculation on alkyd constant. Alkyds were characterized by FTIR and by the determination of acid and hydroxyl numbers. Then synthesized alkyds were made into baking enamels by mixing with melamine-formaldehyde resins (weight ratio of 70:30 based on dried mass. Two types of commercial melamine resins were used: threeisobutoxymethyl melamine-formaldehyde resin (TIMMF and hexamethoxymethyl melamine resin (HMMMF. Prepared alkyd/melamine resin mixtures were cured in a differential scanning calorimeter (DSC under non-isothermal mode. Apparent degree of curing as a function of temperature was calculated from the curing enthalpies. Kinetic parameters of curing were calculated using Freeman-Carroll method. TIMMF resin is more reactive with synthesized alkyds than HMMMF resin what was expected. Alkyd resin with 30 wt% of ricinoleic acid is slightly more reactive than alkyd with 40 wt% of ricinoleic acid, probably because it has the high contents of free hydroxyl and acid groups. The gel content, Tg, thermal stability, hardness, elasticity and impact resistance of coated films cured at 150°C for 60 min were measured. Cured films show good thermal stability since the onset of films thermal degradation determined by thermogravimetric analysis (TGA is observed at the temperatures from 281 to 329°C. Films based on alkyd 30 are more thermal stable than those from alkyd 40, with the same melamine resin. The type of alkyd resin has no significant

  7. Comparative study on the effect of boiling, autoclaving and irradiation treatments of artichoke by-product on growth perfor mance and digestibility of broiler chicks

    International Nuclear Information System (INIS)

    Mekkawy, S.H.; Zakaria, S.M.; El-Faramawy, A.A.

    2003-01-01

    Sixty broiler chicks (21 days old) were assigned into six equal groups. artichoke by-product (ABP) was subjected to different treatments (Boiling, autoclaving and gamma irradiation at 75 and 100 kGy). The objective of the present study was to evaluate the effects of using ABP with different treatments on growth performance and their nutrient digestibility. Results revealed that, chicks fed diets containing raw ABP or irradiated with 100 kGy showed the highest values of live body weight, body weight gain, feed intake and dressing percentages compared with those fed a control diet. The lowest values of those parameters resulted by the chicks fed the diets of boiling or autoclaving ABP. Digestibility coefficients of crude protein, nitrogen free extract, crude fiber and organic matter increased by increased by increasing dose level of gamma irradiation. It could be recommended to use ABP in raw state up to 10% replacement of yellow corn without any adverse effects on chick performance. The use of irradiation treatment of ABP at 100 kGy improved remarkable feed utilization and growth performance

  8. Beliefs about the causes and cures of depression

    OpenAIRE

    Furnham, A.; Ritchie, W.; Lay, A.

    2016-01-01

    BACKGROUND: This study used attitude statement and vignette methodology to examine a mixed British sample’s belies about the causes and consequences of depression. AIMS: To test whether the group would recognise both vignettes with having depression and that the favoured cure would be Psychotherapy/Talking Cure. METHOD: In all, 320 adults completed a two-part questionnaire. In the first part, they were given two vignettes describing a 30-year-old female and a 45-year-old male...

  9. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2005-02-01

    Because of the risk of thermal damage to the pulp, the temperature rise induced by light-curing units should not be too high. LED (light emitting diode) curing units have the main part of their irradiation in the blue range and have been reported to generate less heat than QTH (quartz-tungsten-halogen) curing units. This study had two aims: first, to measure the temperature rise induced by ten LED and three QTH curing units; and, second, to relate the measured temperature rise to the power density of the curing units. The light-induced temperature rise was measured by means of a thermocouple embedded in a small cylinder of resin composite. The power density was measured by using a dental radiometer. For LED units, the temperature rise increased with increasing power density, in a statistically significant manner. Two of the three QTH curing units investigated resulted in a higher temperature rise than LED curing units of the same power density. Previous findings, that LED curing units induce less temperature rise than QTH units, does not hold true in general.

  10. Radiation cured polyester compositions containing metal-properties

    Science.gov (United States)

    Szalińska, H.; Pietrzak, M.; Gonerski, A.

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them.

  11. Radiation cured polyester compositions containing metal-properties

    International Nuclear Information System (INIS)

    Szalinska, H.; Pietrzak, M.; Gonerski, A.

    1987-01-01

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60 Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them. (author)

  12. Radiation curing applications of palm oil acrylates

    International Nuclear Information System (INIS)

    Mohd Hilmi Mahmood; Khairul Zaman; Rida, Anak Tajau; Mek Zah Salleh; Rosley Che Ismail

    2007-01-01

    Various palm oil based urethan acrylate prepolymers (UP) were prepared from palm oil based polyols, diisocyanate compounds and hydroxyl terminated acrylate monomers by following procedure derived from established methods. The products were compared with each other in term of their molecular weights (MW), viscosities, curing speed by UV irradiation, gel contents and film hardness. The molecular structure of diisocyanate compounds and hydroxyl acrylate monomers were tend to determine the molecular weights and hence viscosities of the final products of urethan acrylate prepolymers (UP), whereas, the MW of the UP has no direct effects on the UV curing properties of the prepolymers. (author)

  13. Compatibility of anhydride cured epoxies with hexanitroazobenzene (HNAB) and hexanitrostilbene (HNS)

    International Nuclear Information System (INIS)

    Massis, T.M.; Wischmann, K.B.

    1985-01-01

    The explosives HNAB (hexanitroazobenzene) and HNS (hexanitrostilbene) have compatibility problems with amine-cured epoxy systems. A program was instituted to find compatible polymeric substitutes for use with these explosives. These polymeric materials must have rigid structures after curing for both adhesive and encapsulant applications. A promising class of epoxy materials using anhydride curing agents with various catalysts to trigger the cure reaction were developed. These polymeric systems have very good compatibility with HNS. Of those tested with HNAB, the anhydride epoxy system that used uranyl nitrate as the catalyst was found to be marginally compatible while the others were incompatible. These results indicated further studies are needed. The CRT (chemical reactivity test) was used to evaluate the compatibility of these materials. 6 references, 2 figures, 5 tables

  14. Effect of Resident Performance on Midurethral Sling Cure and Complication Rates

    Directory of Open Access Journals (Sweden)

    Sabri Cavkaytar

    2016-01-01

    Full Text Available Aim: To evaluate the cure rates and complications of midurethral slings performed by residents under an experienced surgeon supervision. Material and Method: Between January 2013 and January 2014, one hundred forty-one midurethral slings performed in the urogynecology clinic of Ankara Zekai Tahir Burak Women%u2019s Health Research and Education Hospital were reviewed.Age, parity,body mass index,menopausal status, grade 2 preoperative pelvic organ prolapsus,concomitant vaginal surgery and intraoperative (bladder and bowel perforations,bleeding,vaginal laceration and early postoperative (urinary retention etc.complications were recorded.All women were re-examined at postoperative 6 th month and symptoms were questioned. The patients were classified as %u2018%u2019cured%u2019%u2019 if the stress test was negative , %u2018%u2019partially cured%u2019%u2019 if continence frequency decreased but still continued and %u2018%u2019unsatisfied%u2019%u2019 if there was no change in symptoms. Both TVT and TOT groups were compared in case of complications and cure rates. Results: Among 141 patients who had undergone midurethral sling due to urinary stress incontinence,50(35.5% were TOT , 91(64.5% were TVT. In the TVT group, 3 (3.3% patients had bleeding which requires transfusion and 5(5.5% patients had bladder perforations. But in the TOT group,there was no bladder perforation and bleeding that requires transfusion. In the early postoperative period, urinary retention was encountered in 7(14.0% patients in TOT group and in 17(18.7% patients in TVT group. There was no statistically significant difference between the groups in case of complications. At postoperative 6th month, in the TOT group 76% of patients were cured,18% were partially cured and 6% were unsatisfied. In the TVT group, 83.5% of patients were cured, 12.1% were partially cured and 4.4% were unsatisfied and there was no significant difference in cure rates between the groups. Discussion: The

  15. Hardness measurements of silicon rubber and polyurethane rubber cured by ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.

    1995-01-01

    This work investigates the hardness of both silicon rubber and polyurethane rubber cured by ionizing radiation. Shore A Hardness is used to characterize the subject elastomers in relation to the crosslinking process. Various formulations of both materials have been investigated in order to achieve the optimum cure conditions desired. A small amount of the curing agent has been incorporated in some formulations in order to reduce the required dose to achieve full cure conditions. Silicon rubber has shown improvements in hardness as absorbed dose is increased, whereas hardness remained constant over a range of absorbed doses for polyurethane rubber

  16. Influence of site curing on bond properties of reinforced lightweight ...

    African Journals Online (AJOL)

    ... the requirements for structural lightweight concrete. The developed compressive strength and pull-out strength under both site curing conditions were relatively lower than full water curing condition but still were higher than minimum requirement as per standard. Journal of Civil Engineering Research and Practice Vol.

  17. Electron-beam curing of paints and varnishes on wood panels

    International Nuclear Information System (INIS)

    Grosmaire, P.R.

    1977-01-01

    An analysis is presented of the relative costs of curing polyester coated wood panels using (a) the conventional peroxide cure, (b) treatment with UV light, or (c) electron beams. Electron treatment is shown to compare very favourably with either of the other treatments. (U.K.)

  18. Vanilla--its science of cultivation, curing, chemistry, and nutraceutical properties.

    Science.gov (United States)

    Anuradha, Krushnamurthy; Shyamala, Bellur Nanjundaiah; Naidu, Madeneni Madhava

    2013-01-01

    Vanilla is a tropical orchid belonging to the family Orchidaceae and it is mainly used in food, perfumery, and pharmaceutical preparations. The quality of the bean depends on the volatile constituent's, viz., the vanillin content, the species of the vine used, and the processing conditions adopted. Hence, proper pollination during flowering and curing by exercising utmost care are the important aspects of vanilla cultivation. There are different methods of curing, and each one is unique and named after the places of its origin like Mexican process and Bourbon process. Recently, Central Food Technological Research Institute, Mysore has developed know-how of improved curing process, where the green vanilla beans are cured immediately after harvest and this process takes only 32 days, which otherwise requires minimum of 150-180 days as reported in traditional curing methods. Vanillin is the most essential component of the 200 and odd such compounds present in vanilla beans. Vanillin as such has not shown any antioxidant properties, it is along with other compounds has got nutraceutical properties and therefore its wide usage. The medicinal future of vanilla may definitely lie in further research on basic science and clinical studies on the constituents and their mechanism of action.

  19. The statistics of dose/cure relationships for irradiated tumours

    International Nuclear Information System (INIS)

    Porter, E.H.

    1980-01-01

    Consideration is given to the theoretical effects of different factors on the form of dose/cure relationships. Single-clonogen recurrences, dominant anoxic fractions, asymptotically straight survival curves, variable tumour sizes and variable radiation doses are all discussed. Statistical methods are then reviewed, and the conclusions are summarized in the form of advice to experimenters who are studying dose/cure relationships. (UK)

  20. Evaluating the use of renewable fuel sources to heat flue-cured tobacco barns

    OpenAIRE

    Brown, Robert T

    2018-01-01

    Evaluating the use of renewable fuel sources to heat flue-cured tobacco barns Robert Taylor Brown ABSTRACT The curing of flue-cured tobacco (Nicotiana tabacum L.) is an energy intensive process and represents a significant portion of the overall cost of production. Given the goal of the industry to reduce the environmental footprint of tobacco production and the energy demand of curing, attention has been directed to explore options for the use of renewable fuels for heating to...

  1. Development of a modified dry curing process for beef.

    Science.gov (United States)

    Hayes, J E; Kenny, T A; Ward, P; Kerry, J P

    2007-11-01

    The development of a dry curing process using physical treatments to promote the diffusion of the cure ingredients was studied. Vacuum pulsing with and without tumbling, continuous vacuum, and tumbling only treatments were compared with a conventional static dry cure control method on beef M. supraspinatus. Vacuum tumble and tumble only treatments gave highest core salt content after 7 days conditioning (3.3% and 3.1%, respectively). All test treatments resulted in higher colour uniformity and lower % cook loss in comparison to control (PCured beef slices were stored in modified atmosphere packs (MAP) (80%N(2):20%CO(2)) for up to 28 day at 4°C. Redness (a(∗), Pcured beef products with enhanced organoleptic quality and increased yields.

  2. Application of electron beam curing technology for paper products

    International Nuclear Information System (INIS)

    Takaharu Miura

    1999-01-01

    The electron beam (EB) curing technology has rapidly advanced in recent years. However there were few examples applying this technology to paper products. One reason comes from the high price of EB equipment and the other comes from the difficulty of controlling the irradiation which gives damages to paper. In spite of these problems, the EB cured coating layer shows remarkable features, such as solvent-resistance, water-resistance, heat-resistance and high smoothness using the drum casting technique. Concentrating on application of this technology to paper, we have already developed some products. For example, paper for printings (Super Mirror PN) and for white boards (Super Mirror WB) have been manufactured. In this presentation, we are going to introduce this EB curing technique and the products

  3. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Directory of Open Access Journals (Sweden)

    Roberto De Santis

    2018-03-01

    Full Text Available Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design/CAM (computer-aided manufacturing assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance.

  4. Mechanical and Thermal Properties of Dental Composites Cured with CAD/CAM Assisted Solid-State Laser

    Science.gov (United States)

    De Santis, Roberto; Gloria, Antonio; Maietta, Saverio; Martorelli, Massimo; De Luca, Alessandro; Spagnuolo, Gianrico; Riccitiello, Francesco; Rengo, Sandro

    2018-01-01

    Over the last three decades, it has been frequently reported that the properties of dental restorative composites cured with argon laser are similar or superior to those achieved with conventional halogen and light emitting diode (LED) curing units. Whereas laser curing is not dependent on the distance between the curing unit and the material, such distance represents a drawback for conventional curing units. However, a widespread clinical application of this kind of laser remains difficult due to cost, heavy weight, and bulky size. Recently, with regard to the radiation in the blue region of the spectrum, powerful solid-state lasers have been commercialized. In the current research, CAD (computer-aided design)/CAM (computer-aided manufacturing) assisted solid-state lasers were employed for curing of different dental restorative composites consisting of micro- and nanoparticle-reinforced materials based on acrylic resins. Commercial LED curing units were used as a control. Temperature rise during the photopolymerisation process and bending properties were measured. By providing similar light energy dose, no significant difference in temperature rise was observed when the two light sources provided similar intensity. In addition, after 7 days since curing, bending properties of composites cured with laser and LED were similar. The results suggested that this kind of laser would be suitable for curing dental composites, and the curing process does not suffer from the tip-to-tooth distance. PMID:29584683

  5. Semiparametric accelerated failure time cure rate mixture models with competing risks.

    Science.gov (United States)

    Choi, Sangbum; Zhu, Liang; Huang, Xuelin

    2018-01-15

    Modern medical treatments have substantially improved survival rates for many chronic diseases and have generated considerable interest in developing cure fraction models for survival data with a non-ignorable cured proportion. Statistical analysis of such data may be further complicated by competing risks that involve multiple types of endpoints. Regression analysis of competing risks is typically undertaken via a proportional hazards model adapted on cause-specific hazard or subdistribution hazard. In this article, we propose an alternative approach that treats competing events as distinct outcomes in a mixture. We consider semiparametric accelerated failure time models for the cause-conditional survival function that are combined through a multinomial logistic model within the cure-mixture modeling framework. The cure-mixture approach to competing risks provides a means to determine the overall effect of a treatment and insights into how this treatment modifies the components of the mixture in the presence of a cure fraction. The regression and nonparametric parameters are estimated by a nonparametric kernel-based maximum likelihood estimation method. Variance estimation is achieved through resampling methods for the kernel-smoothed likelihood function. Simulation studies show that the procedures work well in practical settings. Application to a sarcoma study demonstrates the use of the proposed method for competing risk data with a cure fraction. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Predictive Modeling of Fast-Curing Thermosets in Nozzle-Based Extrusion

    Science.gov (United States)

    Xie, Jingjin; Randolph, Robert; Simmons, Gary; Hull, Patrick V.; Mazzeo, Aaron D.

    2017-01-01

    This work presents an approach to modeling the dynamic spreading and curing behavior of thermosets in nozzle-based extrusions. Thermosets cover a wide range of materials, some of which permit low-temperature processing with subsequent high-temperature and high-strength working properties. Extruding thermosets may overcome the limited working temperatures and strengths of conventional thermoplastic materials used in additive manufacturing. This project aims to produce technology for the fabrication of thermoset-based structures leveraging advances made in nozzle-based extrusion, such as fused deposition modeling (FDM), material jetting, and direct writing. Understanding the synergistic interactions between spreading and fast curing of extruded thermosetting materials will provide essential insights for applications that require accurate dimensional controls, such as additive manufacturing [1], [2] and centrifugal coating/forming [3]. Two types of thermally curing thermosets -- one being a soft silicone (Ecoflex 0050) and the other being a toughened epoxy (G/Flex) -- served as the test materials in this work to obtain models for cure kinetics and viscosity. The developed models align with extensive measurements made with differential scanning calorimetry (DSC) and rheology. DSC monitors the change in the heat of reaction, which reflects the rate and degree of cure at different crosslinking stages. Rheology measures the change in complex viscosity, shear moduli, yield stress, and other properties dictated by chemical composition. By combining DSC and rheological measurements, it is possible to establish a set of models profiling the cure kinetics and chemorheology without prior knowledge of chemical composition, which is usually necessary for sophisticated mechanistic modeling. In this work, we conducted both isothermal and dynamic measurements with both DSC and rheology. With the developed models, numerical simulations yielded predictions of diameter and height of

  7. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  8. Electron beam curing polyurethane acrylate oligomer in air

    International Nuclear Information System (INIS)

    Zhu, Zhenkang; Chen, Xing; Zhou, Jichun; Ma, Zue-Teh

    1988-01-01

    It has been found according to our synthesis that a novel kind of polyurethane acrylate oligomer can be cured by electron beam in the presence of oxygen, even at normal atomospheric levels, without any additives. Irradiation of the oligomer with substantially complete cure to a solid non-tacky state is quite remarkable. It has the same gel content (90 %) in air as in nitrogen at dose of 33 kGy. Double bond conversion of the oligomer is about 50 % by I.R. (author)

  9. Nonlinear Modeling of Autoclaved Aerated Concrete Masonry Wall Strengthened using Ferrocement Sandwich Structure

    KAUST Repository

    M., Abdel-Mooty

    2011-01-01

    Autoclaved Aerated Concrete (AAC) block are used mainly as non-load-bearing walls that provide heat insulation. This results in considerable saving in cooling energy particularly in hot desert environment with large variation of daily and seasonal temperatures. However, due to the relatively low strength there use load bearing walls is limited to single storey and low-rise construction. A system to enhance the strength of the AAC masonry wall in resisting both inplane vertical and combined vertical and lateral loads using ferrocement technology is proposed in this research. The proposed system significantly enhances the load carrying capacity and stiffness of the AAC wall without affecting its insulation characteristics. Ferrocement is made of cement mortar reinforced with closely spaced wire mesh. Full scale wall specimens with height of 2100mm and width of 1820mm were tested with different configuration of ferrocement. A finite elementmodel is developed and verified against the experimentalwork. The results of the finite element model correlates well with the experimental results.

  10. Influence of curing rate on softening in ethanol, degree of conversion, and wear of resin composite

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Asmussen, Erik

    2011-01-01

    PURPOSE: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. METHOD: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus......, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared...... exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (Pconversion (P

  11. Radiation cured silicone rubber articles

    International Nuclear Information System (INIS)

    DuPont, J.G.; Goodwin, P.A.

    1984-01-01

    A process for making radiation cured silicone rubber articles is disclosed wherein a hydroxyl-terminated polysilaxane having a molecular weight from about 50,000 to about 2,000,000, optionally modified by mixing with up to 85% of an end-stopped silicone rubber, is mixed with from about 10 to about 70 parts per hundred of rubber of a finely divided silica filler with a particle size in the reinforcing range and other inert fillers as determined by desired final properties; the composition so prepared is formed into the desired shape at room temperature; the article so formed is precured to improve the mechanical properties of the material with which it is made by exposure to ammonia gas, ammonium hydroxide, or to the vapors or solutions of a volatile amine at room temperature; and the precured article is irradiated with high energy electrons or gamma radiation to effect a permanent cure of the material from which the article is formed

  12. E-Beam-Cured Layered-Silicate and Spherical Silica Epoxy Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Chen, Chenggang; Anderson, David P

    2007-01-01

    .... The nanofillers can be two dimensional (layered-silicate) and zero dimensional (spherical silica). Both the spherical silica epoxy nanocomposite and the layered-silicate epoxy nanocomposite can be cured to a high degree of curing...

  13. Influence of amine structure on the post-cured photo-yellowing of novel amine diacrylate terminated ultraviolet and electron beam cured coatings

    International Nuclear Information System (INIS)

    Allen, N.S.; Lo, D.

    1990-01-01

    The post ultraviolet (UV) and electron beam (EB) cured photo-yellowing of nine novel amine terminated diacrylate monomers has been compared with that of standard commercial diethylamine diacrylate monomer using second order derivative UV absorption spectroscopy. Whilst all the UV cured monomers exhibited an initial rapid growth in UV absorption followed by a rapid photo-bleaching, the EB cured monomers exhibited a very slow growth in absorption followed by a plateau and subsequent slow photo-bleaching. In the former case the residual benzophenone photo-initiator is sensitising the photo-yellowing reaction and its subsequent photo-bleaching. Differences in the rates may be determined by the nature of the exciplex between the terminal amine groups and the benzophenone initiator. With regard to the nature of the amine structure all the simple alkylamines exhibit the greatest degree of photo-yellowing whilst hydroxyl containing amines are generally lower. In the former case methylene hydrogen atoms alpha to the nitrogen atom are important for abstraction. Dicyclohexylamine provides the most stable monomer toward photo-yellowing due to the stability of the alpha methylene hydrogen atoms and steric hindrance by the two bulky cyclohexane rings towards the formation of conjugated chromophores. For the EB cured monomers the degree of photo-yellowing increases with increasing alkyl chain length of the amine group due to the increased possibility of the formation of conjugated chromophores. (author)

  14. Effect of Light Curing Unit Characteristics on Light Intensity Output ...

    African Journals Online (AJOL)

    Background: Modern dental composite restorations are wholly dependent on the use of Visible Light Curing devices. The characteristics of these devices may influence the quality of composite resin restorations. Objective: To determine the characteristics of light curing units (LCUs) in dental clinics in Nairobi and their effect ...

  15. Beam in on curing

    International Nuclear Information System (INIS)

    Holl, Dr.

    1981-01-01

    This third part of an article on the electron beam curing of paints covers the following aspects: inertising equipment; working without inert gas; increase in temperature when irradiating; irradiating plants; laboratory plants; plant operating from coil to coil; plant for shaped parts; possible applications; decorative films, paper, PVC; packaging material; metallisation of paper films; film bonding; strengthening of flock; coating; pressure sensitive adhesives. (U.K.)

  16. Development of superhigh-strength mortars with compressive strength of 3000kgf/cm sup 2 or higher. 3000kgf/cm sup 2 ijo no asshuku kyodo wo motsu mortar no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ohama, Y; Izumura, K [Nihon University, Tokyo (Japan). Collete of Engineering; Hayashi, S [Onoda Cement Co. Ltd., Yamaguchi (Japan)

    1991-08-01

    This paper discusses the preparation factors and curing conditions of superhigh-strength mortar, and explains a method of manufacturing superhigh-strength mortar having still higher strength and its superhigh strength generating mechanism. A recommended cement material for the superhigh-strength mortar is a Portland cement mixed with a high-purity silica at 20% and silica fume at 20%. This was made to a water-cement material ratio of 15% and fine aggregate cement material ratio of 1.06, cured in an autoclave, and further heat-cured at 200{degree}C for one day to obtain a superhigh-strength mortar. The compression and bending strengths reach 2,200 kgf/cm{sup 2} and 180 kgf/cm{sup 2} respectively when used with silica sand, and 3000 kgf/cm{sup 2} and 220 kgf/cm{sup 2} or more when used with stainless steel grits. The heat curing at 200{degree}C for a day increases remarkably the compression strength of the superhigh-strength mortar regardless of the curing conditions before the heat curing. 7 refs., 11 figs., 1 tab.

  17. Significance of grafting in radiation curing reactions. Comparison of ionising radiation and UV systems

    International Nuclear Information System (INIS)

    Zilic, E.; Ng, L.; Viengkhou, V.; Garnett, J.L.

    1998-01-01

    Full text: Radiation curing is now an accepted commercial technology where both ionising radiation (electron beam) and ultra violet light (UV) sources are used. Grafting is essentially the copolymerisation of a monomer/oligomer to a backbone polymer whereas curing is the rapid polymerisation of a monomer/oligomer mixture onto the surface of the substrate. There is no time scale theoretically associated with grafting processes which can occur in minutes or hours whereas curing reactions are usually very rapid, occurring within a fraction of a second. An important difference between grafting and curing is the nature of the bonding occurring in each process. In grafting covalent carbon-carbon bonds are formed, whereas in curing, bonding usually involves weaker Van der Waals or London dispersion forces. The bonding properties of the systems are important in determining their use commercially. Thus the possibility that concurrent grafting during curing could occur in a system is important since if present, grafting would not only minimise delamination of the coated product but could also, in some circumstances, render difficulties recycling of the finished product especially if it were cellulosic. Hence the conditions for observing the occurrence of concurrent grafting during radiation curing are important. In the present paper, this problem has been studied by examining the effect that the components used in radiation curing exert on a typical reaction. Instead of electron beam sources, the spent fuel element facility at Lucas Heights is used to simulate such ionising radiation sources. The model system utilised is the grafting of a typical methacrylate to cellulose. This is the generic chemistry used in curing systems. The effect of typical additives from curing systems including polyfunctional monomer and oligomers in the grafting reactions have been studied. The ionising radiation results have been compared with analogous data from UV experiments. The significance

  18. Cure shrinkage in casting resins

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J. Brock [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  19. Are we eliminating cures with antibiotic abuse? A study among ...

    African Journals Online (AJOL)

    Context: The theme of “World Health Day 2011” is “combat drug resistance- No action today, No cure tomorrow” which is very pertinent. The present study emphatically demonstrates the current issues related to the overwhelming concerns regarding indiscriminate use of antibiotics, leading to a bleak tomorrow where cures ...

  20. Thermal curing of PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Cleemann, Lars N.; Li, Qingfeng

    2012-01-01

    (MEAs) is currently hampering the commercial viability of the technology. In the present study, thermoset PBI membranes were prepared by curing the membranes under inert atmosphere at temperatures of up to 350 °C prior to the acid doping. The systematic membrane characterizations with respect...... to solubility, phosphoric acid doping, radical-oxidative resistance and mechanical strength indicated that the PBI membranes were irreversibly cured by the thermal treatment. After curing, the PBI membranes demonstrated features that are fundamental characteristics of a thermoset resin including complete...

  1. Beliefs about the causes and cures of depression

    OpenAIRE

    Furnham, Adrian; Ritchie, William; Lay, Alixe

    2016-01-01

    Aims: To test whether the group would recognise both vignettes with having depression and that the favoured cure would be Psychotherapy/Talking Cure. Method: In all, 320 adults completed a two-part questionnaire. In the first part, they were given two vignettes describing a 30-year-old female and a 45-year-old male both with depression. They were asked what they thought (if anything) was wrong with the person and how they could best be helped. In the second part, they completed two ...

  2. Cure kinetics and mechanical interfacial characteristics of zeolite/DGEBA composites

    International Nuclear Information System (INIS)

    Park, Soo Jin; Kim, Young Mi; Shin, Jae Sup

    2003-01-01

    In this work, the zeolite/diglycidylether of bisphenol A(DGEBA) systems were investigated in terms of the cure kinetics and mechanical interfacial properties of the composites. The 4, 4-Diamino Diphenyl Methane(DDM) was used as a curing agent for epoxy. Two types of zeolite(PZ) were prepared with 15 and 35 wt% KOH treatments(15-BZ and 35-BZ, respectively) for 24 h, and their surface characteristics were studied by X-ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD). Cure kinetics of the composites were examined in the context of Differential Scanning Calorimetry(DSC), and mechanical interfacial properties were investigated in critical stress intensity factor(K IC ) and critical strain energy release rate(G IC ). In the results of XPS and XRD, sodium ion(Na) of zeolite was exchanged for potassium ion(K), resulting from the treatment of KOH. Also, Si 2p /A1 2p composition ratios of the treated zeolite were increased, which could be attributed to the weakening of A1-O bond in framework. Cure activation energy(E a ) of 15-BZ composites was decreased, whereas K IC and G IC were increased, compared with those of the pure zeolite/DGEBA composites. It was probably accounted that the acidity of zeolite was increased by surface treatments and the cure reaction between zeolite and epoxy was influenced on the increased acidity of zeolite

  3. Additives in UV and ionising radiation grafting and curing processes

    International Nuclear Information System (INIS)

    Garnett, J.L.; Ng, L.T.; Viengkhou, V.

    1998-01-01

    Full text: Curing of polymers induced by both UV and ionising radiation are now established technologies. Currently both systems are predominantly based on acrylate chemistry. UV processes use photoinitiators to achieve fast polymerisation. In the proposed paper the significance of the occurrence of concurrent grafting with cure will be examined. particularly with respect to the recycling of finished product. Basic studies on grafting initiated by UV and ionising radiation will be discussed. Polar methyl methacrylate (MMA) and non-polar styrene will be used as representative monomers with cellulose and propylene typifying the backbone polymers. The additives chosen for examination in this study are predominantly components used in radiation curing formulations since grafting and curing are known to be mechanically related. The additives used were mineral acid, photoinitiators, vinyl ethers, oligomers, polyfunctional monomers including multifunctional acrylates (MFAs) and methacrylates (MFMAs). For the first time the use of charge transfer complexes in the Mulliken sense as additives in radiation grafting will be discussed. The CT complexes themselves, being monomers, have also been grafted to the above polymers. Recent developments with excimer laser sources for initiating these processes will be discussed, especially the use of non-acrylate chemistry. Excimer laser sources are shown to complement conventional UV and ionising radiation and are photoinitiator free. Mechanisms for the above grafting and curing processes will be outlined

  4. Glass transition and degree of conversion of a light-cured orthodontic composite

    Directory of Open Access Journals (Sweden)

    Michela M. D. S. Sostena

    2009-12-01

    Full Text Available OBJECTIVE: This study evaluated the glass transition temperature (Tg and degree of conversion (DC of a light-cured (Fill Magic versus a chemically cured (Concise orthodontic composite. MATERIAL AND METHODS: Anelastic relaxation spectroscopy was used for the first time to determine the Tg of a dental composite, while the DC was evaluated by infrared spectroscopy. The light-cured composite specimens were irradiated with a commercial LED light-curing unit using different exposure times (40, 90 and 120 s. RESULTS: Fill Magic presented lower Tg than Concise (35-84ºC versus 135ºC, but reached a higher DC. CONCLUSIONS: The results of this study suggest that Fill Magic has lower Tg than Concise due to its higher organic phase content, and that when this light-cured composite is used to bond orthodontic brackets, a minimum energy density of 7.8 J/cm² is necessary to reach adequate conversion level and obtain satisfactory adhesion.

  5. Preparation of temperature responsive fragrance release membranes by UV curing

    International Nuclear Information System (INIS)

    Nakayama, Hiroshi; Kaetsu, Isao; Uchida, Kumao; Okuda, Jyunya; Kitami, Toshiaki; Matsubara, Yoshio

    2003-01-01

    The authors have studied the preparation and the function of intelligent drug release membranes by UV curing. Temperature responsive fragrance release membranes were prepared by UV curing process and the release functions were investigated as the function of thickness and composition of membrane. Microscopic observations were used to prove the postulated release mechanism

  6. Expert incentives: cure versus prevention

    NARCIS (Netherlands)

    de Jaegher, K.

    This paper distinguishes between two scenarios for the expert-client encounter. In the cure scenario, the client does not know whether a loss can be recovered. In the prevention scenario, the client faces a threat but does not know whether this threat is real enough to justify preventive action. The

  7. Curing Characterisation of Spruce Tannin-based Foams using the Advanced Isoconversional Method

    Directory of Open Access Journals (Sweden)

    Matjaž Čop

    2014-06-01

    Full Text Available The curing kinetics of foam prepared from the tannin of spruce tree bark was investigated using differential scanning calorimetry (DSC and the advanced isoconversional method. An analysis of the formulations with differing amounts of components (furfuryl alcohol, glycerol, tannin, and a catalyst showed that curing was delayed with increasing proportions of glycerol or tannins. An optimum amount of the catalyst constituent was also found during the study. The curing of the foam system was accelerated with increasing temperatures. Finally, the advanced isoconversional method, based on the model-free kinetic algorithm developed by Vyazovkin, appeared to be an appropriate model for the characterisation of the curing kinetics of tannin-based foams.

  8. Effect of rheological parameters on curing rate during NBR injection molding

    Science.gov (United States)

    Kyas, Kamil; Stanek, Michal; Manas, David; Skrobak, Adam

    2013-04-01

    In this work, non-isothermal injection molding process for NBR rubber mixture considering Isayev-Deng curing kinetic model, generalized Newtonian model with Carreau-WLF viscosity was modeled by using finite element method in order to understand the effect of volume flow rate, index of non-Newtonian behavior and relaxation time on the temperature profile and curing rate. It was found that for specific geometry and processing conditions, increase in relaxation time or in the index of non-Newtonian behavior increases the curing rate due to viscous dissipation taking place at the flow domain walls.

  9. 'Every disease has its cure': faith and HIV therapies in Islamic ...

    African Journals Online (AJOL)

    'Every disease has its cure': faith and HIV therapies in Islamic northern Nigeria. ... African Journal of AIDS Research ... a divine cure for HIV exists, many Muslim patients on ART, and the predominantly Muslim biomedical staff who treat them, ...

  10. The influence of curing time on the shear strength of fluidized fly ash

    Directory of Open Access Journals (Sweden)

    Gruchot Andrzej

    2015-06-01

    Full Text Available The paper presents results of research on the influence of compaction and air and water curing on angle of internal friction and cohesion of fluidized fly ash from “Połaniec” Power Plant. It was stated that the increase in compaction resulted in an insignificant increase of the angle of internal friction and a quite significant increase of cohesion. While the type and time of curing had a great influence on the angle of internal friction and cohesion. The highest values of angle of internal friction were obtained in the air curing, and the lowest in the water curing whereas in case of cohesion there was an inverse relation. The rise of curing time resulted in largely increased cohesion and small changes of angle of internal friction.

  11. STRUCTURAL SOLUTIONS AND SPECIAL FEATURES OF THE THERMAL PROTECTION ANALYSIS OF EXTERIOR WALLS OF BUILDINGS MADE OF AUTOCLAVED GAS-CONCRETE BLOCKS

    Directory of Open Access Journals (Sweden)

    Bedov Anatolij Ivanovich

    2012-10-01

    Full Text Available Relevant structural solutions, physical and mechanical characteristics, coefficients of thermal conductivity for exterior masonry walls made of autoclaved gas-concrete blocks are provided in the article. If a single-layer wall is under consideration, an autoclaved gas-concrete block is capable of performing the two principal functions of a shell structure, including the function of thermal protection and the bearing function. The functions are performed simultaneously. Therefore, the application of the above masonry material means the design development and erection of exterior walls of residential buildings noteworthy for their thermal efficiency. In the event of frameless structures, the height of the residential building in question may be up to 5 stories, while the use of a monolithic or a ready-made frame makes it possible to build high-rise buildings, and the number of stories is not limited in this case. If the average block density is equal to 400…500 kilograms per cubic meter, the designed wall thickness is to be equal to 400 mm. Its thermal resistance may be lower than the one set in the event of the per-element design of the thermal protection (Rreq = 3.41 м2 C/Watt, in Ufa, although it will meet the requirements of the applicable regulations if per-unit power consumption rate is considered.

  12. 7 CFR 29.6002 - Air-cured.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Air-cured. 29.6002 Section 29.6002 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... resulting from the application of artificial heat. ...

  13. The chemistry of UV and EB radiation curing

    International Nuclear Information System (INIS)

    Garnett, J.L.

    1987-01-01

    The application of photopolymerisation (UV) and electron beam (EB) technologies in radiation rapid cure (RRC) processing is discussed. The chemistry associated with such reactions and the mechanisms of the processes are treated. The occurrence of concurrent grafting to substrate with radiation curing of film is shown to be an advantage in enhancing the properties of certain finished products. The parameters influencing the optimum grafting yield in such RRC processes are discussed. In many applications, the chemistry of the process combined with the machine, expecially for EB, is shown a so-called ''turn-key'' operation. (author)

  14. The chemistry of UV and BE radiation curing

    International Nuclear Information System (INIS)

    Garnett, J.L.

    1991-01-01

    The application of photopolymerisation (UV) and electron beams (EB) technologies in radiation rapid cure (PRC) processing is discussed. The chemistry associated with such reactions and the mechanisms of the processes are treated. The occurrence of concurrent grafting to substrate with radiation curing of films is shown to be an advantage in enhancing the properties of certain finished products. The parameters influencing the optimum grafting yield in such PRC processes are discussed. In many applications, the chemistry of such processes combined with the machine, specially for EB is shown. (author)

  15. effect of light intensity on the cure characteristics of photo

    African Journals Online (AJOL)

    2012-05-05

    May 5, 2012 ... Objective: To determine the light intensity emitted by light curing units (LCUs) and its effect on the cure characteristics of ... of carbon-carbon double bonds conversion (11-13). Additionally, the light intensity output of a ... increases within the unit and in the restoration. This heat not only contributes to the ...

  16. Properties of ambient cured blended alkali activated cement concrete

    Science.gov (United States)

    Talha Junaid, M.

    2017-11-01

    This paper presents results of the development and strength properties of ambient-cured alkali activated geopolymer concrete (GPC). The study looks at the strength properties, such as compressive strength, splitting tensile strength, and elastic modulus of such concretes and its dependency on various parameters. The parameters studied in this work are the type and proportions of pre-cursor materials, type of activator and their respective ratios and the curing time. Two types of pre-cursor material; low calcium fly ash (FA) and ground granulated blast furnace slag (GGBFS) were activated using different proportions of sodium silicate and sodium hydroxide solutions. The results indicate that ambient cured geopolymer concrete can be manufactured to match strength properties of ordinary Portland cement concrete (OPC). The strength properties of GPC are dependent on the type and ratio of activator and the proportion of GGBFS used. Increasing the percentage of GGBFS increased the compressive and tensile strengths, while reducing the setting time of the mix. The effect of GGBFS on strength was more pronounced in mixes that contained sodium silicate as activator solution. Unlike OPC, ambient-cured GPC containing sodium silicate gain most of their strength in the first 7 days and there is no change in strength thereafter. However, GPC mixes not containing sodium silicate only achieve a fraction of their strength at 7 days and extended curing is required for such concretes to gain full strength. The results also indicate that the elastic modulus values of GPC mixes without sodium silicate are comparable to OPC while mixes with sodium silicate have elastic modulus values much lower than ordinary concrete.

  17. Practical aspects of irradiance and energy in UV curing

    International Nuclear Information System (INIS)

    Stowe, R.W.

    1999-01-01

    The physical properties of UV-cured materials are substantially affected by the lamp systems used to cure them. The development of the intended properties, whether a varnish, an ink, or an adhesive, can depend on how well these lamp factors are designed and managed. The four key factors of UV exposure are: UV irradiance (or intensity), spectral distribution (wavelengths) of UV, effective energy (time-integrated UV irradiance), and infrared radiation. Inks and varnishes will exhibit very different response to peak irradiance or energy, as well as to different UV spectra. The ability to identify the various lamp characteristics and match them to the optical properties of the curable materials, widens the range in which UV curing is a faster, more efficient production process. This paper explores the reasons for clearly identifying these factors for process optimization

  18. A study on the influence of curing on the strength of a standard grade concrete mix

    OpenAIRE

    Krishna Rao M.V.; Kumar Rathish P.; Khan Azhar M.

    2010-01-01

    Curing is essential if concrete is to perform the intended function over the design life of the structure while excessive curing time may lead to the escalation of the construction cost of the project and unnecessary delays. Where there is a scarcity of water and on sloping surfaces where curing with water is difficult and in cases where large areas like pavements have to be cured, the use of curing compound may be resorted to. The parameters of the study include the curing period [1, 3, 7, 1...

  19. Sebastian Kneipp and the Natural Cure Movement of Germany: Between Naturalism and Modern Medicine

    Directory of Open Access Journals (Sweden)

    Youkyung KO

    2016-12-01

    Full Text Available This study discusses the historical significance of the Natural Cure Movement of Germany, centering on the Kneipp Cure, a form of hydrotherapy practiced by Father Sebastian Kneipp (1821-1897. The Kneipp Cure rested on five main tenets: hydrotherapy, exercise, nutrition, herbalism, and the balance of mind and body. This study illuminates the reception of the Kneipp Cure in the context of the trilateral relationship among the Kneipp Cure, the Natural Cure Movement in general, and modern medicine. The Natural Cure Movement was ideologically based on naturalism, criticizing industrialization and urbanization. There existed various theories and methods in it, yet they shared holism and vitalism as common factors. The Natural Cure Movement of Germany began in the early 19th century. During the late 19th century and the early 20th century, it became merged in the Lebensreformbewegung (life reform movement which campaigned for temperance, anti-tobacco, and anti-vaccination. The core of the Natural Cure Movement was to advocate the world view that nature should be respected and to recognize the natural healing powers of sunlight, air, water, etc. Among varied natural therapies, hydrotherapy spread out through the activities of some medical doctors and amateur healers such as Johann Siegmund Hahn and Vincenz Prie β nitz. Later, the supporters of hydrotherapy gathered together under the German Society of Naturopathy. Sebastian Kneipp, one of the forefathers of hydrotherapy, is distinguished from other proponents of natural therapies in two aspects. First, he did not refuse to employ vaccination and medication. Second, he sought to be recognized by the medical world through cooperating with medical doctors who supported his treatment. As a result, the Kneipp cure was able to be gradually accepted into the medical world despite the “quackery” controversy between modern medicine and the Natural Cure Movement. Nowadays, the name of Sebastian Kneipp

  20. Radiation curing of intelligent coating for controlled release and permeation

    International Nuclear Information System (INIS)

    Nakayama, Hiroshi; Kaetsu, Isao; Uchida, Kumao; Sakata, Shoei; Tougou, Kazuhide; Hara, Takamichi; Matsubara, Yoshio

    2002-01-01

    Intelligent membranes for pH and temperature-responsive drug releases were developed by coating and curing of polymer-drug composite film with electrolyte or N-isopropyl acrylamide curable mixture. It was proved that those intelligent membranes showed the stimule-sensitive and responsive release functions and could be produced efficiently by radiation curing processing with a conveyer system

  1. Influence of post pattern and resin cement curing mode on the retention of glass fibre posts.

    Science.gov (United States)

    Poskus, L T; Sgura, R; Paragó, F E M; Silva, E M; Guimarães, J G A

    2010-04-01

    To evaluate the influence of post design and roughness and cement system (dual- or self-cured) on the retention of glass fibre posts. Two tapered and smooth posts (Exacto Cônico No. 2 and White Post No. 1) and two parallel-sided and serrated posts (Fibrekor 1.25 mm and Reforpost No. 2) were adhesively luted with two different resin cements--a dual-cured (Rely-X ARC) and a self-cured (Cement Post)--in 40 single-rooted teeth. The teeth were divided into eight experimental groups (n = 5): PFD--Parallel-serrated-Fibrekor/dual-cured; PRD--Parallel-serrated-Reforpost/dual-cured; TED--Tapered-smooth-Exacto Cônico/dual-cured; TWD--Tapered-smooth-White Post/dual-cured; PFS--Parallel-serrated-Fibrekor/self-cured; PRS--Parallel-serrated-Reforpost/self-cured; TES--Tapered-smooth-Exacto Cônico/self-cured; TWS--Tapered-smooth-White Post/self-cured. The specimens were submitted to a pull-out test at a crosshead speed of 0.5 mm min(-1). Data were analysed using analysis of variance and Bonferroni's multiple comparison test (alpha = 0.05). Pull-out results (MPa) were: PFD = 8.13 (+/-1.71); PRD = 8.30 (+/-0.46); TED = 8.68 (+/-1.71); TWD = 9.35 (+/-1.99); PFS = 8.54 (+/-2.23); PRS = 7.09 (+/-1.96); TES = 8.27 (+/-3.92); TWS = 7.57 (+/-2.35). No statistical significant difference was detected for posts and cement factors and their interaction. The retention of glass fibre posts was not affected by post design or surface roughness nor by resin cement-curing mode. These results imply that the choice for serrated posts and self-cured cements is not related to an improvement in retention.

  2. Comparing two enhancing methods for improving kitchen waste anaerobic digestion: bentonite addition and autoclaved de-oiling pretreatment

    DEFF Research Database (Denmark)

    Zhang, Duojiao; Duan, Na; Tian, Hailin

    2018-01-01

    The effects of different enhancement methods, including adding bentonite (1.25%, w/w, wet substrate) and autoclaved de-oiling pretreatment (121 °C, 30 minutes), on the anaerobic digestion of kitchen waste (KW) were comparably studied. Mesophilic continuous stirred tank reactors were used under...... different organic loading rates (OLRs) of 1.11 to 1.84 gVS (volatile solid)L−1d−1 and two different hydraulic retention times (HRTs) (20 d and 25 d). In this study, two enhancement methods and extending HRT could prevent volatile fatty acids (VFA) accumulation and obtain a high methane production at low OLR...... design and process evaluation of a CSTR biogas plant treating with KW based on the laboratory experiment was stated....

  3. Response behavior of an epoxy resin/amine curing agent/carbon black composite film to various solvents

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yanling [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)]. E-mail: luoyl0401@yahoo.com.cn; Li Zhanqing [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Lan Wenxiang [School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2007-04-25

    A novel polymer based sensitive film was prepared from thermosetting epoxy resins (EP) filled with carbon blacks. The curing reaction of amine curing agents with epoxy resins and the response of the curing resultants to solvent vapors were dealt with. The influence of the types and content of carbon blacks and curing agents, and curing temperatures and time on curing reactions and response selectivity of the conductive films were investigated. The structural characterization was conducted on a Fourier transform infrared spectrophotometer (FTIR). The results indicated that the conductive films showed high response selectivity to polar solvent vapors, especially to chloroform vapor, while no response was observed in non-polar solvent vapors. The responsivity of the film increased with the decreased carbon black contents. The film filled with acetylene carbon black gave an optimal response, with responsivity of about 700 times. The response performances were improved with the amount of curing agents increased, and an optimal response appeared at the amount of the curing agent of 8%. The film's responsivity was remarkably enhanced, the reversibility property, however, rapidly declined in the order of diethyleneltriamine < triethylenetetramine < ethylenediamine. The curing reaction tended to complete with the curing temperature elevated and the curing time prolonged. But the response performance dropped because of over cross-linking as the temperature was too high or the time was too long.

  4. Response behavior of an epoxy resin/amine curing agent/carbon black composite film to various solvents

    International Nuclear Information System (INIS)

    Luo Yanling; Li Zhanqing; Lan Wenxiang

    2007-01-01

    A novel polymer based sensitive film was prepared from thermosetting epoxy resins (EP) filled with carbon blacks. The curing reaction of amine curing agents with epoxy resins and the response of the curing resultants to solvent vapors were dealt with. The influence of the types and content of carbon blacks and curing agents, and curing temperatures and time on curing reactions and response selectivity of the conductive films were investigated. The structural characterization was conducted on a Fourier transform infrared spectrophotometer (FTIR). The results indicated that the conductive films showed high response selectivity to polar solvent vapors, especially to chloroform vapor, while no response was observed in non-polar solvent vapors. The responsivity of the film increased with the decreased carbon black contents. The film filled with acetylene carbon black gave an optimal response, with responsivity of about 700 times. The response performances were improved with the amount of curing agents increased, and an optimal response appeared at the amount of the curing agent of 8%. The film's responsivity was remarkably enhanced, the reversibility property, however, rapidly declined in the order of diethyleneltriamine < triethylenetetramine < ethylenediamine. The curing reaction tended to complete with the curing temperature elevated and the curing time prolonged. But the response performance dropped because of over cross-linking as the temperature was too high or the time was too long

  5. Role of Oxides of Nitrogen in Tobacco-Specific Nitrosamine Formation in Flue-Cured Tobacco

    Directory of Open Access Journals (Sweden)

    Nestor TB

    2014-12-01

    Full Text Available Tobacco is known to contain a class of nitrosamines known as tobacco-specific nitrosamines or TSNA. Nitrosation of naturally occurring tobacco alkaloids is commonly accepted as the mechanism of TSNA formation in tobacco. Because green and freshly harvested tobaccos are virtually free of TSNA, formation and accumulation of TSNA are generally considered to occur during the curing process. Most recent hypotheses have focused on microbial reduction of nitrate to nitrite and other oxides of nitrogen (NOcompounds that react with tobacco alkaloids to form TSNA during curing. This natural microbial process remains the prevalent hypothesis for TSNA formation in burley and other air-cured tobaccos. However, a different mechanism for the formation of TSNA in flue-cured tobacco, independent of microbial activity, is documented in this paper. It is common practice to flue-cure Virginia or blonde tobacco in bulk barns that incorporate forced air ventilation and temperature control. For the last thirty-five years, many modern bulk barns in North America generally have used liquid propane gas (LPG with direct-fired burners that exhaust combustion gases directly into the barn where the tobacco is exposed to those gases. Our studies indicate that LPG combustion by-products in the exhaust stream, namely NO, react with naturally occurring tobacco alkaloids to form TSNA. Heat exchange curing methods preclude exposure of the tobacco to combustion gases and by-products, thereby eliminating this significant source of TSNA formation, without degrading leaf quality or smoking character. Research findings from 1998 and 1999 are presented to demonstrate the role of NOgases in TSNA formation and the significance of direct-fired curing as a primary source of TSNA formation in flue-cured tobacco. Also, data from an extensive barn conversion program in 2000, which resulted in a 94% average reduction in TSNA levels in cured flue-cured leaf, are presented.

  6. Contribution for study on curing of organic coatings in papers, by electron beam

    International Nuclear Information System (INIS)

    Taqueda, M.H.S.

    1986-01-01

    The behaviour of national raw material is studied: paper, resins vamishes used on the surface finishing furniture, when subnitted to electron beam curing in an inert atmosphere. The dosimetric control of the irradiation system was made by using CTA films. The minimum cure dose obtained for the EBC 1650/3009 varnish(national polyester) was 2.4 Mrad and of 2.0 Mrad for the EBC 1650/3010 (imported polyester from Germany). The optimun cure dose for both was 3.0 Mrad. The papers impregnated with EBC varnish of with conventional varnish were measured mechanically for resistance in traction and an evaluation of resistance of the finished surfaces with the ebc varnishes was made. The coatings obtained with the EBC varnishes manufactured nationally were compared with the conventional vamishes of thermal cure and with paper samples impregnated and cured in Germany. (author) [pt

  7. How does duration of curing affect the radiopacity of dental materials?

    Energy Technology Data Exchange (ETDEWEB)

    Bejeh Mir, Arash Poorsattar [School of Dentistry, Babol University of Medical Sciences, Babol (Iran, Islamic Republic of); Bejeh Mir, Morvarid Poorsattar [Private Practice of Orthodontics, Montreal (Canada)

    2012-06-15

    Clinicians commonly encounter cases in which it is difficult to determine whether adjacent radiopacities are normal or pathologic. The ideal radiopacity of composite resin is equal to or higher than that of the same thickness of aluminum. We aimed to investigate the possible effects of different curing times on the post-24-hour radiopacity of composite resins on digital radiographs. One mm thick samples of Filtek P60 and Clearfil resin composites were prepared and cured with three regimens of continuous 400 mW/cm{sup 2} irradiance for 10, 20 and 30 seconds. Along with a 12-step aluminum step wedge, digital radiographs were captured and the radiopacities were transformed to the equivalent aluminum thicknesses. Data were compared by a general linear model and repeated-measures of ANOVA. Overall, the calculated equivalent aluminum thicknesses of composite resins were increased significantly by doubling and tripling the curing times (F(2,8)=8.94, p=0.002). Notably, Bonferroni post-hoc tests confirmed that the radiopacity of the cured Filtek P60 was significantly higher at 30 seconds compared with 10 seconds (p=0.04). Although the higher radiopacity was observed by increasing the time, other comparisons showed no statistical significance (p>0.05). These results supported the hypothesis that the radiopacity of resin composites might be related to the duration of light curing. In addition to the current standards for radiopacity of digital images, defining a standard protocol for curing of dental materials should be considered, and it is suggested that they should be added to the current requirements for dental material.

  8. Development of a fast curing tissue adhesive for meniscus tear repair.

    Science.gov (United States)

    Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W

    2017-01-01

    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.

  9. How does duration of curing affect the radiopacity of dental materials?

    International Nuclear Information System (INIS)

    Bejeh Mir, Arash Poorsattar; Bejeh Mir, Morvarid Poorsattar

    2012-01-01

    Clinicians commonly encounter cases in which it is difficult to determine whether adjacent radiopacities are normal or pathologic. The ideal radiopacity of composite resin is equal to or higher than that of the same thickness of aluminum. We aimed to investigate the possible effects of different curing times on the post-24-hour radiopacity of composite resins on digital radiographs. One mm thick samples of Filtek P60 and Clearfil resin composites were prepared and cured with three regimens of continuous 400 mW/cm 2 irradiance for 10, 20 and 30 seconds. Along with a 12-step aluminum step wedge, digital radiographs were captured and the radiopacities were transformed to the equivalent aluminum thicknesses. Data were compared by a general linear model and repeated-measures of ANOVA. Overall, the calculated equivalent aluminum thicknesses of composite resins were increased significantly by doubling and tripling the curing times (F(2,8)=8.94, p=0.002). Notably, Bonferroni post-hoc tests confirmed that the radiopacity of the cured Filtek P60 was significantly higher at 30 seconds compared with 10 seconds (p=0.04). Although the higher radiopacity was observed by increasing the time, other comparisons showed no statistical significance (p>0.05). These results supported the hypothesis that the radiopacity of resin composites might be related to the duration of light curing. In addition to the current standards for radiopacity of digital images, defining a standard protocol for curing of dental materials should be considered, and it is suggested that they should be added to the current requirements for dental material.

  10. Effect of bench time polymerization on depth of cure of dental composite resin

    Science.gov (United States)

    Harahap, K.; Yudhit, A.; Sari, F.

    2017-07-01

    The aim of this research was to investigate the effect of bench time before light cured polymerization on the depth of cure of dental composite resin. Nanofiller composite resin (Filtek Z350 XT,3M, ESPE,China) was used in this study. Sixty samples of nanofiller composite resin were made and divided into control and test groups with bench time for 0, 15, 30, 45, and 60 min. For the test group, composite resins were stored in refrigerator with 4°C temperatures. Meanwhile, for the control groups, the composite resin was stored at room temperature. The samples were prepared using metal mould with size diameter of 6 mm and 4 mm in thickness. Samples were cured for 20 s by using visible blue light curing unit. Part of samples that unpolymerized were removed by using a plastic spatula. The remaining parts of samples were measured by digital caliper and noted as depth of cure (mm). Data were analyzed to one-way ANOVA and LSD tests (p≤0.05). Results showed there was no significance differences between test groups (p=0.5). A 60 minutes bench time group showed the highest depth of cure value among test group, and it was almost similar with control group value. It can be concluded that longer bench time can increase the depth of cure of composite resin.

  11. UV curing of teak veneers for decorative panel

    International Nuclear Information System (INIS)

    Gatot Trimulyadi Rekso; Darsono

    1999-01-01

    The radiation curing of surface coating of teak veneers for decorative panels has been conducted by using ultra violet (UV) as radiation source. In this experiment teak wood veneer was use as a substrate. Epoxy acrylate (import product,) and unsaturated polyester (locally product) were used as coating materials after being added with difunctional monomer TPGDA, and photo-initiator darocur 1173 or irgacure 184. Irradiation was conducted using 80 watt/cm LTV source at conveyor speed of 3,0 m/min. Parameters observed were viscosity of coating materials, hardness, adhesion, appearance, abrasion and chemical resistance of cured films. In general the results showed that viscosity of the formulations based on epoxy acrylate and unsaturated polyester resin were effected by the storage. Film cured by LTV made of epoxy acrylate and unsaturated polyester on the teak veneer wood have the same adhesion and abrasion resistant properties but the hardness and chemical resistant of epoxy acrylate are better than unsaturated polyester. From the experiment result it can be concluded the unsaturated polyester (locally product) can be used as radiation curable material for coating teak veneer panels

  12. How far is cancer cured by radiation sensitization?

    International Nuclear Information System (INIS)

    Ando, Koichi; Sasaki, Takehito; Ikeda, Hiroshi

    1990-01-01

    Some types of cancer are not cured by radiation alone in view of histology, location, and size. In facing so-called radioresistant cancer, antineoplastic agents, hypoxic cell sensitizers, biological response modifiers, or hyperthermia are used in combination with radiation, with the aim of cancer cure. First of all, this chapter discusses the subject of 'what is tumor cure by radiation therapy'. Current conditions of the aforementioned combined modalities and the future perspectives are presented. The following subjects are covered: (1) tumor control - significance of the number of stem cells; (2) biological evaluation of chemo-radiotherapy with cisplatin; (3) clinical results and experience with combination of radiotherapy and radiosensitizers; (4) radiosensitization with hypoxic cell radiosensitizers - present status (5) hypoxic cell radiosensitizers - present status and problems from the viewpoint of clinical radiotherapy; (6) thermal radiosensitization in vitro and its implications for radiotherapy; (7) clinical assessment of thermoradiotherapy for breast cancer and cancer of the urinary bladder; (8) interactions of radiation and biological response modifiers in the treatment of malignant tumor; (9) improvement in the effects of radiation therapy with biological response modifiers. (N.K.)

  13. Optimal temperature profiles for minimum residual stress in the cure process of polymer composites

    CSIR Research Space (South Africa)

    Gopal, AK

    2000-01-01

    Full Text Available include the minimum residual stresses, minimum cure cycle lime and full degree of cure. The development of residual stresses during the cure cycle is one of the most important problems as they affect the strength and the mechanical properties of the final...

  14. Use of natural ingredients to control growth of Clostridium perfringens in naturally cured frankfurters and hams.

    Science.gov (United States)

    Jackson, Armitra L; Kulchaiyawat, Charlwit; Sullivan, Gary A; Sebranek, Joseph G; Dickson, James S

    2011-03-01

    A major concern for processed meats marketed as natural/organic is that they do not contain nitrite in concentrations known to be most effective for inhibiting foodborne pathogens. Supplemental treatments to increase the level and consistency of antimicrobial protection in these products may be important to provide consumers with the degree of safety that they have come to expect from conventionally cured meats. Therefore, the objective of this study was to identify and test ingredients that might improve processed meat product safety without altering their natural/organic status. Eight treatments of hams and frankfurters were prepared: (A) uncured control (typical ingredients except nitrite and nitrate); (B) conventionally cured control (erythorbate, nitrite, and a lactate-diacetate blend); (C) natural nitrate cure (including starter culture containing Staphylococcus carnosus); (D) natural nitrate cure (culture and natural antimicrobial A containing a vinegar, lemon, and cherry powder blend); (E) natural nitrate cure (culture and antimicrobial B containing a cultured sugar and vinegar blend); (F) natural nitrite cure without additional antimicrobials; (G) natural nitrite cure with natural antimicrobial A; and (H) natural nitrite cure with antimicrobial B. For the hams, treatments C, D, E, and H impacted growth of Clostridium perfringens to the same extent (P cured control (approximately 2 log less growth over time than uncured control). For frankfurters, treatments D, G, and H had an effect (approximately 1 log) on growth equivalent to that of the conventionally cured control (P cured meats have more potential for pathogen growth than conventionally cured products, but supplemental natural ingredients offer safety improvement.

  15. Inkjet-printed silver tracks : low temperature curing and thermal stability investigation

    NARCIS (Netherlands)

    Perelaer, J.; Laat, de A.W.M.; Hendriks, C.E.; Schubert, U.S.

    2008-01-01

    In this contribution the curing behavior and conductivity development of several commercially available silver inks is discussed. In addition, the preparation and characterization of a silver particle ink that shows a curing temperature as low as 80 ÝC is described. Good to excellent conductivity

  16. Low Temperature Cure Powder Coatings (LTCPC)

    Science.gov (United States)

    2010-10-01

    Dr. Glen Merfeld, General Electric Global Research evaluated and optimized the formulation, and cure and performance parameters of candidate LTCPC...Unacceptable test result = Marginal test result = Acceptable test result 80 therefore suffer from brittleness at extremely low temperatures. NASA’s

  17. Prospects of success of radon cures in patients with progressive sclerodermia

    International Nuclear Information System (INIS)

    Brenke, R.; Brenke, A.

    1989-01-01

    Physiotherapy and spa-therapy occupy a high value in the treatment of the progressive sclerodermia. On the basis of 59 radon cures at Bad Brambach in patients with this disease is shown that a success of the cure lasting for a long time is to be expected particularly in patients with a relatively bad initial situation. Above all an amelioration of the subjective condition as well as the movability of the joints is achieved. The necessity of repeated cures for selected patients at an interval of 1 to 2 years is discussed. There was no evidence concerning a possibly specific radon effect. (author)

  18. CUREs in biochemistry—where we are and where we should go

    Science.gov (United States)

    Bell, Jessica K.; Eckdahl, Todd T.; Hecht, David A.; Killion, Patrick J.; Latzer, Joachim; Mans, Tamara L.; Rakus, John F.; Siebrasse, Erica A.; Ellis Bell, J.

    2016-01-01

    Abstract Integration of research experience into classroom is an important and vital experience for all undergraduates. These course‐based undergraduate research experiences (CUREs) have grown from independent instructor lead projects to large consortium driven experiences. The impact and importance of CUREs on students at all levels in biochemistry was the focus of a National Science Foundation funded think tank. The state of biochemistry CUREs and suggestions for moving biochemistry forward as well as a practical guide (supplementary material) are reported here. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):7–12, 2017. PMID:27357379

  19. Inhibition and Cathalysis as a Method to Improve the Mechanical Properties of a Fiberglass-Reinforced Plastic

    Science.gov (United States)

    Protsenko, A. E.; Telesh, V. V.

    2015-11-01

    The possibility of increasing the static flexural strength of polymer composite materials and reducing their anisotropy by vacuum autoclave curing, during which gelation across the whole thickness of prepregs is carried out in a narrow time range, is shown. This is achieved by introducing a preset concentration of catalysts into the less heated layers or inhibitors in the more heated ones of the prepreg.

  20. The characteristics of epoxy resin cured by {gamma}-ray and E-beam

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Y.C. E-mail: ycnho@kaeri.re.kr; Kang, Phil Hyun; Park, Jong Seok

    2004-10-01

    Epoxy resins are widely used as high-performance thermosetting resins for many industrial applications. In this study, the effect of an electron beam (E-beam) and {gamma}-ray irradiation on the curing of epoxy resins was investigated. Diglycidyl ether of bisphenol-A(DGEBA), diglycidyl ether of bisphenol-F(DGEBF) as epoxy resins, triarylsulfonium hexafluoroantimonate(TASHFA), and triarylsulfonium hexafluorophosphate(TASHFP) as initiators were used in this study. The chemical and mechanical characteristics of irradiated epoxy resins were compared after curing of E-beam and {gamma}-ray irradiation up to 50 kGy in N{sub 2} and air atmosphere. We ascertained the effect of oxygen on the radiation curing of epoxy resin. The thermal properties of cured epoxy were investigated using DMA and TGA. Mechanical properties such as flexural strength were measured. The chemical structures of cured epoxy were characterized by FT-NIR. The gel fraction and the stress at yield of epoxy resins irradiated by E-beam and {gamma}-ray in N{sub 2} atmosphere were also compared with those of epoxy resins irradiated by E-beam and {gamma}-ray in air.