WorldWideScience

Sample records for auditory perceptual disorders

  1. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  2. [Design of standard voice sample text for subjective auditory perceptual evaluation of voice disorders].

    Science.gov (United States)

    Li, Jin-rang; Sun, Yan-yan; Xu, Wen

    2010-09-01

    To design a speech voice sample text with all phonemes in Mandarin for subjective auditory perceptual evaluation of voice disorders. The principles for design of a speech voice sample text are: The short text should include the 21 initials and 39 finals, this may cover all the phonemes in Mandarin. Also, the short text should have some meanings. A short text was made out. It had 155 Chinese words, and included 21 initials and 38 finals (the final, ê, was not included because it was rarely used in Mandarin). Also, the text covered 17 light tones and one "Erhua". The constituent ratios of the initials and finals presented in this short text were statistically similar as those in Mandarin according to the method of similarity of the sample and population (r = 0.742, P text were statistically not similar as those in Mandarin (r = 0.731, P > 0.05). A speech voice sample text with all phonemes in Mandarin was made out. The constituent ratios of the initials and finals presented in this short text are similar as those in Mandarin. Its value for subjective auditory perceptual evaluation of voice disorders need further study.

  3. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  4. Visual perceptual load reduces auditory detection in typically developing individuals but not in individuals with autism spectrum disorders.

    Science.gov (United States)

    Tillmann, Julian; Swettenham, John

    2017-02-01

    Previous studies examining selective attention in individuals with autism spectrum disorder (ASD) have yielded conflicting results, some suggesting superior focused attention (e.g., on visual search tasks), others demonstrating greater distractibility. This pattern could be accounted for by the proposal (derived by applying the Load theory of attention, e.g., Lavie, 2005) that ASD is characterized by an increased perceptual capacity (Remington, Swettenham, Campbell, & Coleman, 2009). Recent studies in the visual domain support this proposal. Here we hypothesize that ASD involves an enhanced perceptual capacity that also operates across sensory modalities, and test this prediction, for the first time using a signal detection paradigm. Seventeen neurotypical (NT) and 15 ASD adolescents performed a visual search task under varying levels of visual perceptual load while simultaneously detecting presence/absence of an auditory tone embedded in noise. Detection sensitivity (d') for the auditory stimulus was similarly high for both groups in the low visual perceptual load condition (e.g., 2 items: p = .391, d = 0.31, 95% confidence interval [CI] [-0.39, 1.00]). However, at a higher level of visual load, auditory d' reduced for the NT group but not the ASD group, leading to a group difference (p = .002, d = 1.2, 95% CI [0.44, 1.96]). As predicted, when visual perceptual load was highest, both groups then showed a similarly low auditory d' (p = .9, d = 0.05, 95% CI [-0.65, 0.74]). These findings demonstrate that increased perceptual capacity in ASD operates across modalities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Perceptual Plasticity for Auditory Object Recognition

    Science.gov (United States)

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  6. Correlation of the Dysphonia Severity Index (DSI), Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V), and Gender in Brazilians With and Without Voice Disorders.

    Science.gov (United States)

    Nemr, Katia; Simões-Zenari, Marcia; de Souza, Glaucia S; Hachiya, Adriana; Tsuji, Domingos H

    2016-11-01

    This study aims to analyze the Dysphonia Severity Index (DSI) in Brazilians with or without voice disorders and investigate DSI's correlation with gender and auditory-perceptual evaluation data obtained via the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) protocol. A total of 66 Brazilian adults from both genders participated in the study, including 24 patients with dysphonia confirmed on laryngeal examination (dysphonic group [DG]) and 42 volunteers without voice or hearing complaints and without auditory-perceptual voice disorders (nondysphonic group [NDG]). The vocal tasks included in CAPE-V and DSI were performed and recorded. Data were analyzed by means of the independent t test, the Mann-Whitney U test, and Pearson correlation at the 5% significance level. Differences were found in the mean DSI values between the DG and the NDG. Differences were also found in all DSI items between the groups, except for the highest frequency parameter. In the DG, a moderate negative correlation was detected between overall dysphonia severity (CAPE-V) and DSI value, and between breathiness and DSI value, and a weak negative correlation was detected between DSI value and roughness. In the NDG, the maximum phonation time was higher among males. In both groups, the highest frequency parameter was higher among females. The DSI discriminated among Brazilians with or without voice disorders. A correlation was found between some aspects of the DSI and the CAPE-V but not between DSI and gender. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Uncovering beat deafness: detecting rhythm disorders with synchronized finger tapping and perceptual timing tasks.

    Science.gov (United States)

    Dalla Bella, Simone; Sowiński, Jakub

    2015-03-16

    A set of behavioral tasks for assessing perceptual and sensorimotor timing abilities in the general population (i.e., non-musicians) is presented here with the goal of uncovering rhythm disorders, such as beat deafness. Beat deafness is characterized by poor performance in perceiving durations in auditory rhythmic patterns or poor synchronization of movement with auditory rhythms (e.g., with musical beats). These tasks include the synchronization of finger tapping to the beat of simple and complex auditory stimuli and the detection of rhythmic irregularities (anisochrony detection task) embedded in the same stimuli. These tests, which are easy to administer, include an assessment of both perceptual and sensorimotor timing abilities under different conditions (e.g., beat rates and types of auditory material) and are based on the same auditory stimuli, ranging from a simple metronome to a complex musical excerpt. The analysis of synchronized tapping data is performed with circular statistics, which provide reliable measures of synchronization accuracy (e.g., the difference between the timing of the taps and the timing of the pacing stimuli) and consistency. Circular statistics on tapping data are particularly well-suited for detecting individual differences in the general population. Synchronized tapping and anisochrony detection are sensitive measures for identifying profiles of rhythm disorders and have been used with success to uncover cases of poor synchronization with spared perceptual timing. This systematic assessment of perceptual and sensorimotor timing can be extended to populations of patients with brain damage, neurodegenerative diseases (e.g., Parkinson's disease), and developmental disorders (e.g., Attention Deficit Hyperactivity Disorder).

  8. Modelling the Emergence and Dynamics of Perceptual Organisation in Auditory Streaming

    Science.gov (United States)

    Mill, Robert W.; Bőhm, Tamás M.; Bendixen, Alexandra; Winkler, István; Denham, Susan L.

    2013-01-01

    Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the

  9. Auditory Training for Children with Processing Disorders.

    Science.gov (United States)

    Katz, Jack; Cohen, Carolyn F.

    1985-01-01

    The article provides an overview of central auditory processing (CAP) dysfunction and reviews research on approaches to improve perceptual skills; to provide discrimination training for communicative and reading disorders; to increase memory and analysis skills and dichotic listening; to provide speech-in-noise training; and to amplify speech as…

  10. Data Collection and Analysis Techniques for Evaluating the Perceptual Qualities of Auditory Stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Bonebright, T.L.; Caudell, T.P.; Goldsmith, T.E.; Miner, N.E.

    1998-11-17

    This paper describes a general methodological framework for evaluating the perceptual properties of auditory stimuli. The framework provides analysis techniques that can ensure the effective use of sound for a variety of applications including virtual reality and data sonification systems. Specifically, we discuss data collection techniques for the perceptual qualities of single auditory stimuli including identification tasks, context-based ratings, and attribute ratings. In addition, we present methods for comparing auditory stimuli, such as discrimination tasks, similarity ratings, and sorting tasks. Finally, we discuss statistical techniques that focus on the perceptual relations among stimuli, such as Multidimensional Scaling (MDS) and Pathfinder Analysis. These methods are presented as a starting point for an organized and systematic approach for non-experts in perceptual experimental methods, rather than as a complete manual for performing the statistical techniques and data collection methods. It is our hope that this paper will help foster further interdisciplinary collaboration among perceptual researchers, designers, engineers, and others in the development of effective auditory displays.

  11. Evolutionary conservation and neuronal mechanisms of auditory perceptual restoration.

    Science.gov (United States)

    Petkov, Christopher I; Sutter, Mitchell L

    2011-01-01

    Auditory perceptual 'restoration' occurs when the auditory system restores an occluded or masked sound of interest. Behavioral work on auditory restoration in humans began over 50 years ago using it to model a noisy environmental scene with competing sounds. It has become clear that not only humans experience auditory restoration: restoration has been broadly conserved in many species. Behavioral studies in humans and animals provide a necessary foundation to link the insights being obtained from human EEG and fMRI to those from animal neurophysiology. The aggregate of data resulting from multiple approaches across species has begun to clarify the neuronal bases of auditory restoration. Different types of neural responses supporting restoration have been found, supportive of multiple mechanisms working within a species. Yet a general principle has emerged that responses correlated with restoration mimic the response that would have been given to the uninterrupted sound of interest. Using the same technology to study different species will help us to better harness animal models of 'auditory scene analysis' to clarify the conserved neural mechanisms shaping the perceptual organization of sound and to advance strategies to improve hearing in natural environmental settings. © 2010 Elsevier B.V. All rights reserved.

  12. Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision-making

    Directory of Open Access Journals (Sweden)

    Mohsen Alavash

    2017-06-01

    Full Text Available Perceptual decisions vary in the speed at which we make them. Evidence suggests that translating sensory information into perceptual decisions relies on distributed interacting neural populations, with decision speed hinging on power modulations of the neural oscillations. Yet the dependence of perceptual decisions on the large-scale network organization of coupled neural oscillations has remained elusive. We measured magnetoencephalographic signals in human listeners who judged acoustic stimuli composed of carefully titrated clouds of tone sweeps. These stimuli were used in two task contexts, in which the participants judged the overall pitch or direction of the tone sweeps. We traced the large-scale network dynamics of the source-projected neural oscillations on a trial-by-trial basis using power-envelope correlations and graph-theoretical network discovery. In both tasks, faster decisions were predicted by higher segregation and lower integration of coupled beta-band (∼16–28 Hz oscillations. We also uncovered the brain network states that promoted faster decisions in either lower-order auditory or higher-order control brain areas. Specifically, decision speed in judging the tone sweep direction critically relied on the nodal network configurations of anterior temporal, cingulate, and middle frontal cortices. Our findings suggest that global network communication during perceptual decision-making is implemented in the human brain by large-scale couplings between beta-band neural oscillations. The speed at which we make perceptual decisions varies. This translation of sensory information into perceptual decisions hinges on dynamic changes in neural oscillatory activity. However, the large-scale neural-network embodiment supporting perceptual decision-making is unclear. We addressed this question by experimenting two auditory perceptual decision-making situations. Using graph-theoretical network discovery, we traced the large-scale network

  13. Perceptual processing of a complex auditory context

    DEFF Research Database (Denmark)

    Quiroga Martinez, David Ricardo; Hansen, Niels Christian; Højlund, Andreas

    The mismatch negativity (MMN) is a brain response elicited by deviants in a series of repetitive sounds. It reflects the perception of change in low-level sound features and reliably measures perceptual auditory memory. However, most MMN studies use simple tone patterns as stimuli, failing...

  14. Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia.

    Science.gov (United States)

    Zhang, Manli; Xie, Weiyi; Xu, Yanzhi; Meng, Xiangzhi

    2018-03-01

    Perceptual learning refers to the improvement of perceptual performance as a function of training. Recent studies found that auditory perceptual learning may improve phonological skills in individuals with developmental dyslexia in alphabetic writing system. However, whether auditory perceptual learning could also benefit the reading skills of those learning the Chinese logographic writing system is, as yet, unknown. The current study aimed to investigate the remediation effect of auditory temporal perceptual learning on Mandarin-speaking school children with developmental dyslexia. Thirty children with dyslexia were screened from a large pool of students in 3th-5th grades. They completed a series of pretests and then were assigned to either a non-training control group or a training group. The training group worked on a pure tone duration discrimination task for 7 sessions over 2 weeks with thirty minutes per session. Post-tests immediately after training and a follow-up test 2 months later were conducted. Analyses revealed a significant training effect in the training group relative to non-training group, as well as near transfer to the temporal interval discrimination task and far transfer to phonological awareness, character recognition and reading fluency. Importantly, the training effect and all the transfer effects were stable at the 2-month follow-up session. Further analyses found that a significant correlation between character recognition performance and learning rate mainly existed in the slow learning phase, the consolidation stage of perceptual learning, and this effect was modulated by an individuals' executive function. These findings indicate that adaptive auditory temporal perceptual learning can lead to learning and transfer effects on reading performance, and shed further light on the potential role of basic perceptual learning in the remediation and prevention of developmental dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Factors of Predicted Learning Disorders and their Interaction with Attentional and Perceptual Training Procedures.

    Science.gov (United States)

    Friar, John T.

    Two factors of predicted learning disorders were investigated: (1) inability to maintain appropriate classroom behavior (BEH), (2) perceptual discrimination deficit (PERC). Three groups of first-graders (BEH, PERC, normal control) were administered measures of impulse control, distractability, auditory discrimination, and visual discrimination.…

  16. Perceptual grouping over time within and across auditory and tactile modalities.

    Directory of Open Access Journals (Sweden)

    I-Fan Lin

    Full Text Available In auditory scene analysis, population separation and temporal coherence have been proposed to explain how auditory features are grouped together and streamed over time. The present study investigated whether these two theories can be applied to tactile streaming and whether temporal coherence theory can be applied to crossmodal streaming. The results show that synchrony detection between two tones/taps at different frequencies/locations became difficult when one of the tones/taps was embedded in a perceptual stream. While the taps applied to the same location were streamed over time, the taps applied to different locations were not. This observation suggests that tactile stream formation can be explained by population-separation theory. On the other hand, temporally coherent auditory stimuli at different frequencies were streamed over time, but temporally coherent tactile stimuli applied to different locations were not. When there was within-modality streaming, temporally coherent auditory stimuli and tactile stimuli were not streamed over time, either. This observation suggests the limitation of temporal coherence theory when it is applied to perceptual grouping over time.

  17. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.

    Science.gov (United States)

    Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.

  18. Auditory and visual sustained attention in children with speech sound disorder.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Although research has demonstrated that children with specific language impairment (SLI and reading disorder (RD exhibit sustained attention deficits, no study has investigated sustained attention in children with speech sound disorder (SSD. Given the overlap of symptoms, such as phonological memory deficits, between these different language disorders (i.e., SLI, SSD and RD and the relationships between working memory, attention and language processing, it is worthwhile to investigate whether deficits in sustained attention also occur in children with SSD. A total of 55 children (18 diagnosed with SSD (8.11 ± 1.231 and 37 typically developing children (8.76 ± 1.461 were invited to participate in this study. Auditory and visual sustained-attention tasks were applied. Children with SSD performed worse on these tasks; they committed a greater number of auditory false alarms and exhibited a significant decline in performance over the course of the auditory detection task. The extent to which performance is related to auditory perceptual difficulties and probable working memory deficits is discussed. Further studies are needed to better understand the specific nature of these deficits and their clinical implications.

  19. Auditory event-related potentials associated with perceptual reversals of bistable pitch motion.

    Science.gov (United States)

    Davidson, Gray D; Pitts, Michael A

    2014-01-01

    Previous event-related potential (ERP) experiments have consistently identified two components associated with perceptual transitions of bistable visual stimuli, the "reversal negativity" (RN) and the "late positive complex" (LPC). The RN (~200 ms post-stimulus, bilateral occipital-parietal distribution) is thought to reflect transitions between neural representations that form the moment-to-moment contents of conscious perception, while the LPC (~400 ms, central-parietal) is considered an index of post-perceptual processing related to accessing and reporting one's percept. To explore the generality of these components across sensory modalities, the present experiment utilized a novel bistable auditory stimulus. Pairs of complex tones with ambiguous pitch relationships were presented sequentially while subjects reported whether they perceived the tone pairs as ascending or descending in pitch. ERPs elicited by the tones were compared according to whether perceived pitch motion changed direction or remained the same across successive trials. An auditory reversal negativity (aRN) component was evident at ~170 ms post-stimulus over bilateral fronto-central scalp locations. An auditory LPC component (aLPC) was evident at subsequent latencies (~350 ms, fronto-central distribution). These two components may be auditory analogs of the visual RN and LPC, suggesting functionally equivalent but anatomically distinct processes in auditory vs. visual bistable perception.

  20. Visuo-perceptual capabilities predict sensitivity for coinciding auditory and visual transients in multi-element displays.

    Science.gov (United States)

    Meyerhoff, Hauke S; Gehrer, Nina A

    2017-01-01

    In order to obtain a coherent representation of the outside world, auditory and visual information are integrated during human information processing. There is remarkable variance among observers in the capability to integrate auditory and visual information. Here, we propose that visuo-perceptual capabilities predict detection performance for audiovisually coinciding transients in multi-element displays due to severe capacity limitations in audiovisual integration. In the reported experiment, we employed an individual differences approach in order to investigate this hypothesis. Therefore, we measured performance in a useful-field-of-view task that captures detection performance for briefly presented stimuli across a large perceptual field. Furthermore, we measured sensitivity for visual direction changes that coincide with tones within the same participants. Our results show that individual differences in visuo-perceptual capabilities predicted sensitivity for the presence of audiovisually synchronous events among competing visual stimuli. To ensure that this correlation does not stem from superordinate factors, we also tested performance in an unrelated working memory task. Performance in this task was independent of sensitivity for the presence of audiovisually synchronous events. Our findings strengthen the proposed link between visuo-perceptual capabilities and audiovisual integration. The results also suggest that basic visuo-perceptual capabilities provide the basis for the subsequent integration of auditory and visual information.

  1. EEG synchronization to modulated auditory tones in schizophrenia, schizoaffective disorder, and schizotypal personality disorder.

    Science.gov (United States)

    Brenner, Colleen A; Sporns, Olaf; Lysaker, Paul H; O'Donnell, Brian F

    2003-12-01

    The authors tested whether neural synchronization deficits were present in subjects with schizophrenia and schizotypal personality disorder. Amplitude-modulated tones were used to evaluate auditory steady-state evoked potential entrainment in a combined group of 21 subjects with schizophrenia or schizoaffective disorder, 11 subjects with schizotypal personality disorder, and 22 nonpsychiatric comparison subjects. The schizophrenia or schizoaffective disorder group exhibited decreased power compared to the schizotypal personality disorder and nonpsychiatric comparison groups. There were no differences between groups in N100 amplitude. Subjects with schizophrenia but not subjects with schizotypal personality disorder have deficits in steady-state responses to periodic stimuli, despite an intact response to sensory-evoked potentials (N100). These deficits reflect aberrant neural synchronization or resolution and may contribute to disturbed perceptual and cognitive integration in schizophrenia.

  2. Auditory-Perceptual and Acoustic Methods in Measuring Dysphonia Severity of Korean Speech.

    Science.gov (United States)

    Maryn, Youri; Kim, Hyung-Tae; Kim, Jaeock

    2016-09-01

    The purpose of this study was to explore the criterion-related concurrent validity of two standardized auditory-perceptual rating protocols and the Acoustic Voice Quality Index (AVQI) for measuring dysphonia severity in Korean speech. Sixty native Korean subjects with various voice disorders were asked to sustain the vowel [a:] and to read aloud the Korean text "Walk." A 3-second midvowel portion of the sustained vowel and two sentences (with 25 syllables) were edited, concatenated, and analyzed according to methods described elsewhere. From 56 participants, both continuous speech and sustained vowel recordings had sufficiently high signal-to-noise ratios (35.5 dB and 37 dB on average, respectively) and were therefore subjected to further dysphonia severity analysis with (1) "G" or Grade from the GRBAS protocol, (2) "OS" or Overall Severity from the Consensus Auditory-Perceptual Evaluation of Voice protocol, and (3) AVQI. First, high correlations were found between G and OS (rS = 0.955 for sustained vowels; rS = 0.965 for continuous speech). Second, the AVQI showed a strong correlation with G (rS = 0.911) as well as OS (rP = 0.924). These findings are in agreement with similar studies dealing with continuous speech in other languages. The present study highlights the criterion-related concurrent validity of these methods in Korean speech. Furthermore, it supports the cross-linguistic robustness of the AVQI as a valid and objective marker of overall dysphonia severity. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  4. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  5. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    Science.gov (United States)

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  6. Effects of perceptual load and socially meaningful stimuli on crossmodal selective attention in Autism Spectrum Disorder and neurotypical samples.

    Science.gov (United States)

    Tyndall, Ian; Ragless, Liam; O'Hora, Denis

    2018-04-01

    The present study examined whether increasing visual perceptual load differentially affected both Socially Meaningful and Non-socially Meaningful auditory stimulus awareness in neurotypical (NT, n = 59) adults and Autism Spectrum Disorder (ASD, n = 57) adults. On a target trial, an unexpected critical auditory stimulus (CAS), either a Non-socially Meaningful ('beep' sound) or Socially Meaningful ('hi') stimulus, was played concurrently with the presentation of the visual task. Under conditions of low visual perceptual load both NT and ASD samples reliably noticed the CAS at similar rates (77-81%), whether the CAS was Socially Meaningful or Non-socially Meaningful. However, during high visual perceptual load NT and ASD participants reliably noticed the meaningful CAS (NT = 71%, ASD = 67%), but NT participants were unlikely to notice the Non-meaningful CAS (20%), whereas ASD participants reliably noticed it (80%), suggesting an inability to engage selective attention to ignore non-salient irrelevant distractor stimuli in ASD. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Perceptual-Auditory and Acoustical Analysis of the Voices of Transgender Women.

    Science.gov (United States)

    Schwarz, Karine; Fontanari, Anna Martha Vaitses; Costa, Angelo Brandelli; Soll, Bianca Machado Borba; da Silva, Dhiordan Cardoso; de Sá Villas-Bôas, Anna Paula; Cielo, Carla Aparecida; Bastilha, Gabriele Rodrigues; Ribeiro, Vanessa Veis; Dorfman, Maria Elza Kazumi Yamaguti; Lobato, Maria Inês Rodrigues

    2017-09-28

    Voice is an important gender marker in the transition process as a transgender individual accepts a new gender identity. The objectives of this study were to describe and relate aspects of a perceptual-auditory analysis and the fundamental frequency (F0) of male-to-female (MtF) transsexual individuals. A case-control study was carried out with individuals aged 19-52 years who attended the Gender Identity Program of the Hospital de Clínicas of Porto Alegre. Vocal recordings from the MtF transgender and cisgender individuals (vowel /a:/ and six phrases of Consensus Auditory Perceptual Evaluation Voice [CAPE-V]) were edited and randomly coded before storage in a Dropbox folder. The voices (vowel /a:/) were analyzed by consensus on the same day by two judge speech therapists who had more than 10 years of experience in the voice area using the GRBASI perceptual-auditory vocal evaluation scale. Acoustic analysis of the voices was performed using the advanced Multi-Dimensional Voice Program software. The resonance focus and the degrees of masculinity and femininity for each voice recording were determined by listening to the CAPE-V phrases, for the same judges. There were significant differences between the groups regarding a greater frequency of subjects with F0 between 80 and 150 Hz (P = 0.003), and a greater frequency of hypernasal resonant focus (P < 0.001) in the MtF cases and greater frequency of subjects with absence of roughness (P = 0.031) in the control group. The MtF group of individuals showed altered vertical resonant focus, more masculine voices, and lower fundamental frequencies. The control group showed a significant absence of roughness. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. The effects of interstimulus interval on event-related indices of attention: an auditory selective attention test of perceptual load theory.

    Science.gov (United States)

    Gomes, Hilary; Barrett, Sophia; Duff, Martin; Barnhardt, Jack; Ritter, Walter

    2008-03-01

    We examined the impact of perceptual load by manipulating interstimulus interval (ISI) in two auditory selective attention studies that varied in the difficulty of the target discrimination. In the paradigm, channels were separated by frequency and target/deviant tones were softer in intensity. Three ISI conditions were presented: fast (300ms), medium (600ms) and slow (900ms). Behavioral (accuracy and RT) and electrophysiological measures (Nd, P3b) were observed. In both studies, participants evidenced poorer accuracy during the fast ISI condition than the slow suggesting that ISI impacted task difficulty. However, none of the three measures of processing examined, Nd amplitude, P3b amplitude elicited by unattended deviant stimuli, or false alarms to unattended deviants, were impacted by ISI in the manner predicted by perceptual load theory. The prediction based on perceptual load theory, that there would be more processing of irrelevant stimuli under conditions of low as compared to high perceptual load, was not supported in these auditory studies. Task difficulty/perceptual load impacts the processing of irrelevant stimuli in the auditory modality differently than predicted by perceptual load theory, and perhaps differently than in the visual modality.

  9. A crossmodal crossover: opposite effects of visual and auditory perceptual load on steady-state evoked potentials to irrelevant visual stimuli.

    Science.gov (United States)

    Jacoby, Oscar; Hall, Sarah E; Mattingley, Jason B

    2012-07-16

    Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Auditory Multi-Stability: Idiosyncratic Perceptual Switching Patterns, Executive Functions and Personality Traits.

    Directory of Open Access Journals (Sweden)

    Dávid Farkas

    Full Text Available Multi-stability refers to the phenomenon of perception stochastically switching between possible interpretations of an unchanging stimulus. Despite considerable variability, individuals show stable idiosyncratic patterns of switching between alternative perceptions in the auditory streaming paradigm. We explored correlates of the individual switching patterns with executive functions, personality traits, and creativity. The main dimensions on which individual switching patterns differed from each other were identified using multidimensional scaling. Individuals with high scores on the dimension explaining the largest portion of the inter-individual variance switched more often between the alternative perceptions than those with low scores. They also perceived the most unusual interpretation more often, and experienced all perceptual alternatives with a shorter delay from stimulus onset. The ego-resiliency personality trait, which reflects a tendency for adaptive flexibility and experience seeking, was significantly positively related to this dimension. Taking these results together we suggest that this dimension may reflect the individual's tendency for exploring the auditory environment. Executive functions were significantly related to some of the variables describing global properties of the switching patterns, such as the average number of switches. Thus individual patterns of perceptual switching in the auditory streaming paradigm are related to some personality traits and executive functions.

  11. A hierarchy of event-related potential markers of auditory processing in disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Steve Beukema

    2016-01-01

    Full Text Available Functional neuroimaging of covert perceptual and cognitive processes can inform the diagnoses and prognoses of patients with disorders of consciousness, such as the vegetative and minimally conscious states (VS;MCS. Here we report an event-related potential (ERP paradigm for detecting a hierarchy of auditory processes in a group of healthy individuals and patients with disorders of consciousness. Simple cortical responses to sounds were observed in all 16 patients; 7/16 (44% patients exhibited markers of the differential processing of speech and noise; and 1 patient produced evidence of the semantic processing of speech (i.e. the N400 effect. In several patients, the level of auditory processing that was evident from ERPs was higher than the abilities that were evident from behavioural assessment, indicating a greater sensitivity of ERPs in some cases. However, there were no differences in auditory processing between VS and MCS patient groups, indicating a lack of diagnostic specificity for this paradigm. Reliably detecting semantic processing by means of the N400 effect in passively listening single-subjects is a challenge. Multiple assessment methods are needed in order to fully characterise the abilities of patients with disorders of consciousness.

  12. Comparison of perceptual properties of auditory streaming between spectral and amplitude modulation domains.

    Science.gov (United States)

    Yamagishi, Shimpei; Otsuka, Sho; Furukawa, Shigeto; Kashino, Makio

    2017-07-01

    The two-tone sequence (ABA_), which comprises two different sounds (A and B) and a silent gap, has been used to investigate how the auditory system organizes sequential sounds depending on various stimulus conditions or brain states. Auditory streaming can be evoked by differences not only in the tone frequency ("spectral cue": ΔF TONE , TONE condition) but also in the amplitude modulation rate ("AM cue": ΔF AM , AM condition). The aim of the present study was to explore the relationship between the perceptual properties of auditory streaming for the TONE and AM conditions. A sequence with a long duration (400 repetitions of ABA_) was used to examine the property of the bistability of streaming. The ratio of feature differences that evoked an equivalent probability of the segregated percept was close to the ratio of the Q-values of the auditory and modulation filters, consistent with a "channeling theory" of auditory streaming. On the other hand, for values of ΔF AM and ΔF TONE evoking equal probabilities of the segregated percept, the number of perceptual switches was larger for the TONE condition than for the AM condition, indicating that the mechanism(s) that determine the bistability of auditory streaming are different between or sensitive to the two domains. Nevertheless, the number of switches for individual listeners was positively correlated between the spectral and AM domains. The results suggest a possibility that the neural substrates for spectral and AM processes share a common switching mechanism but differ in location and/or in the properties of neural activity or the strength of internal noise at each level. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Age Differences in Voice Evaluation: From Auditory-Perceptual Evaluation to Social Interactions

    Science.gov (United States)

    Lortie, Catherine L.; Deschamps, Isabelle; Guitton, Matthieu J.; Tremblay, Pascale

    2018-01-01

    Purpose: The factors that influence the evaluation of voice in adulthood, as well as the consequences of such evaluation on social interactions, are not well understood. Here, we examined the effect of listeners' age and the effect of talker age, sex, and smoking status on the auditory-perceptual evaluation of voice, voice-related psychosocial…

  14. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    Science.gov (United States)

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  15. The Effects of Meaning-Based Auditory Training on Behavioral Measures of Perceptual Effort in Individuals with Impaired Hearing.

    Science.gov (United States)

    Sommers, Mitchell S; Tye-Murray, Nancy; Barcroft, Joe; Spehar, Brent P

    2015-11-01

    There has been considerable interest in measuring the perceptual effort required to understand speech, as well as to identify factors that might reduce such effort. In the current study, we investigated whether, in addition to improving speech intelligibility, auditory training also could reduce perceptual or listening effort. Perceptual effort was assessed using a modified version of the n-back memory task in which participants heard lists of words presented without background noise and were asked to continually update their memory of the three most recently presented words. Perceptual effort was indexed by memory for items in the three-back position immediately before, immediately after, and 3 months after participants completed the Computerized Learning Exercises for Aural Rehabilitation (clEAR), a 12-session computerized auditory training program. Immediate posttraining measures of perceptual effort indicated that participants could remember approximately one additional word compared to pretraining. Moreover, some training gains were retained at the 3-month follow-up, as indicated by significantly greater recall for the three-back item at the 3-month measurement than at pretest. There was a small but significant correlation between gains in intelligibility and gains in perceptual effort. The findings are discussed within the framework of a limited-capacity speech perception system.

  16. Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision.

    Science.gov (United States)

    Lim, Sung-Joo; Wöstmann, Malte; Obleser, Jonas

    2015-12-09

    Selective attention to a task-relevant stimulus facilitates encoding of that stimulus into a working memory representation. It is less clear whether selective attention also improves the precision of a stimulus already represented in memory. Here, we investigate the behavioral and neural dynamics of selective attention to representations in auditory working memory (i.e., auditory objects) using psychophysical modeling and model-based analysis of electroencephalographic signals. Human listeners performed a syllable pitch discrimination task where two syllables served as to-be-encoded auditory objects. Valid (vs neutral) retroactive cues were presented during retention to allow listeners to selectively attend to the to-be-probed auditory object in memory. Behaviorally, listeners represented auditory objects in memory more precisely (expressed by steeper slopes of a psychometric curve) and made faster perceptual decisions when valid compared to neutral retrocues were presented. Neurally, valid compared to neutral retrocues elicited a larger frontocentral sustained negativity in the evoked potential as well as enhanced parietal alpha/low-beta oscillatory power (9-18 Hz) during memory retention. Critically, individual magnitudes of alpha oscillatory power (7-11 Hz) modulation predicted the degree to which valid retrocues benefitted individuals' behavior. Our results indicate that selective attention to a specific object in auditory memory does benefit human performance not by simply reducing memory load, but by actively engaging complementary neural resources to sharpen the precision of the task-relevant object in memory. Can selective attention improve the representational precision with which objects are held in memory? And if so, what are the neural mechanisms that support such improvement? These issues have been rarely examined within the auditory modality, in which acoustic signals change and vanish on a milliseconds time scale. Introducing a new auditory memory

  17. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.

    Science.gov (United States)

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  18. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    2017-06-01

    Full Text Available Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  19. The influence of (central) auditory processing disorder in speech sound disorders.

    Science.gov (United States)

    Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Vilela, Nadia; Carvallo, Renata Mota Mamede; Wertzner, Haydée Fiszbein

    2016-01-01

    Considering the importance of auditory information for the acquisition and organization of phonological rules, the assessment of (central) auditory processing contributes to both the diagnosis and targeting of speech therapy in children with speech sound disorders. To study phonological measures and (central) auditory processing of children with speech sound disorder. Clinical and experimental study, with 21 subjects with speech sound disorder aged between 7.0 and 9.11 years, divided into two groups according to their (central) auditory processing disorder. The assessment comprised tests of phonology, speech inconsistency, and metalinguistic abilities. The group with (central) auditory processing disorder demonstrated greater severity of speech sound disorder. The cutoff value obtained for the process density index was the one that best characterized the occurrence of phonological processes for children above 7 years of age. The comparison among the tests evaluated between the two groups showed differences in some phonological and metalinguistic abilities. Children with an index value above 0.54 demonstrated strong tendencies towards presenting a (central) auditory processing disorder, and this measure was effective to indicate the need for evaluation in children with speech sound disorder. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. Structured Activities in Perceptual Training to Aid Retention of Visual and Auditory Images.

    Science.gov (United States)

    Graves, James W.; And Others

    The experimental program in structured activities in perceptual training was said to have two main objectives: to train children in retention of visual and auditory images and to increase the children's motivation to learn. Eight boys and girls participated in the program for two hours daily for a 10-week period. The age range was 7.0 to 12.10…

  1. Comorbidity of Auditory Processing, Language, and Reading Disorders

    Science.gov (United States)

    Sharma, Mridula; Purdy, Suzanne C.; Kelly, Andrea S.

    2009-01-01

    Purpose: The authors assessed comorbidity of auditory processing disorder (APD), language impairment (LI), and reading disorder (RD) in school-age children. Method: Children (N = 68) with suspected APD and nonverbal IQ standard scores of 80 or more were assessed using auditory, language, reading, attention, and memory measures. Auditory processing…

  2. Auditory-Perceptual Evaluation of Dysphonia: A Comparison Between Narrow and Broad Terminology Systems

    DEFF Research Database (Denmark)

    Iwarsson, Jenny

    2017-01-01

    of the terminology used in the multiparameter Danish Dysphonia Assessment (DDA) approach into the five-parameter GRBAS system. Methods. Voice samples illustrating type and grade of the voice qualities included in DDA were rated by five speech language pathologists using the GRBAS system with the aim of estimating...... terms and antagonists, reflecting muscular hypo- and hyperfunction. Key Words: Auditory-perceptual voice analysis–Dysphonia–GRBAS–Listening test–Voice ratings....

  3. The Effect of Working Memory Training on Auditory Stream Segregation in Auditory Processing Disorders Children

    OpenAIRE

    Abdollah Moossavi; Saeideh Mehrkian; Yones Lotfi; Soghrat Faghih zadeh; Hamed Adjedi

    2015-01-01

    Objectives: This study investigated the efficacy of working memory training for improving working memory capacity and related auditory stream segregation in auditory processing disorders children. Methods: Fifteen subjects (9-11 years), clinically diagnosed with auditory processing disorder participated in this non-randomized case-controlled trial. Working memory abilities and auditory stream segregation were evaluated prior to beginning and six weeks after completing the training program...

  4. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  5. Subcortical pathways: Towards a better understanding of auditory disorders.

    Science.gov (United States)

    Felix, Richard A; Gourévitch, Boris; Portfors, Christine V

    2018-05-01

    Hearing loss is a significant problem that affects at least 15% of the population. This percentage, however, is likely significantly higher because of a variety of auditory disorders that are not identifiable through traditional tests of peripheral hearing ability. In these disorders, individuals have difficulty understanding speech, particularly in noisy environments, even though the sounds are loud enough to hear. The underlying mechanisms leading to such deficits are not well understood. To enable the development of suitable treatments to alleviate or prevent such disorders, the affected processing pathways must be identified. Historically, mechanisms underlying speech processing have been thought to be a property of the auditory cortex and thus the study of auditory disorders has largely focused on cortical impairments and/or cognitive processes. As we review here, however, there is strong evidence to suggest that, in fact, deficits in subcortical pathways play a significant role in auditory disorders. In this review, we highlight the role of the auditory brainstem and midbrain in processing complex sounds and discuss how deficits in these regions may contribute to auditory dysfunction. We discuss current research with animal models of human hearing and then consider human studies that implicate impairments in subcortical processing that may contribute to auditory disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The influence of (central) auditory processing disorder on the severity of speech-sound disorders in children.

    Science.gov (United States)

    Vilela, Nadia; Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Sanches, Seisse Gabriela Gandolfi; Wertzner, Haydée Fiszbein; Carvallo, Renata Mota Mamede

    2016-02-01

    To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder . Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) auditory processing evaluation results. When a (central) auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central) auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central) auditory processing disorder. The severity of speech-sound disorder in children was influenced by the presence of (central) auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful.

  7. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    Science.gov (United States)

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  8. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  10. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    Science.gov (United States)

    Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630

  11. Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training.

    Science.gov (United States)

    Eberhardt, Silvio P; Auer, Edward T; Bernstein, Lynne E

    2014-01-01

    In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).

  12. Auditory Hypersensitivity in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Lucker, Jay R.

    2013-01-01

    A review of records was completed to determine whether children with auditory hypersensitivities have difficulty tolerating loud sounds due to auditory-system factors or some other factors not directly involving the auditory system. Records of 150 children identified as not meeting autism spectrum disorders (ASD) criteria and another 50 meeting…

  13. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.

    Science.gov (United States)

    Terband, H; Maassen, B; Guenther, F H; Brumberg, J

    2014-01-01

    Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The nature-disorder paradox: A perceptual study on how nature is disorderly yet aesthetically preferred.

    Science.gov (United States)

    Kotabe, Hiroki P; Kardan, Omid; Berman, Marc G

    2017-08-01

    Natural environments have powerful aesthetic appeal linked to their capacity for psychological restoration. In contrast, disorderly environments are aesthetically aversive, and have various detrimental psychological effects. But in our research, we have repeatedly found that natural environments are perceptually disorderly. What could explain this paradox? We present 3 competing hypotheses: the aesthetic preference for naturalness is more powerful than the aesthetic aversion to disorder (the nature-trumps-disorder hypothesis ); disorder is trivial to aesthetic preference in natural contexts (the harmless-disorder hypothesis ); and disorder is aesthetically preferred in natural contexts (the beneficial-disorder hypothesis ). Utilizing novel methods of perceptual study and diverse stimuli, we rule in the nature-trumps-disorder hypothesis and rule out the harmless-disorder and beneficial-disorder hypotheses. In examining perceptual mechanisms, we find evidence that high-level scene semantics are both necessary and sufficient for the nature-trumps-disorder effect. Necessity is evidenced by the effect disappearing in experiments utilizing only low-level visual stimuli (i.e., where scene semantics have been removed) and experiments utilizing a rapid-scene-presentation procedure that obscures scene semantics. Sufficiency is evidenced by the effect reappearing in experiments utilizing noun stimuli which remove low-level visual features. Furthermore, we present evidence that the interaction of scene semantics with low-level visual features amplifies the nature-trumps-disorder effect-the effect is weaker both when statistically adjusting for quantified low-level visual features and when using noun stimuli which remove low-level visual features. These results have implications for psychological theories bearing on the joint influence of low- and high-level perceptual inputs on affect and cognition, as well as for aesthetic design. (PsycINFO Database Record (c) 2017 APA, all

  15. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  16. The acoustic and perceptual cues affecting melody segregation for listeners with a cochlear implant.

    Directory of Open Access Journals (Sweden)

    Jeremy eMarozeau

    2013-11-01

    Full Text Available Our ability to listen selectively to single sound sources in complex auditory environments is termed ‘auditory stream segregation.’ This ability is affected by peripheral disorders such as hearing loss, as well as plasticity in central processing such as occurs with musical training. Brain plasticity induced by musical training can enhance the ability to segregate sound, leading to improvements in a variety of auditory abilities. The melody segregation ability of 12 cochlear-implant recipients was tested using a new method to determine the perceptual distance needed to segregate a simple 4-note melody from a background of interleaved random-pitch distractor notes. In experiment 1, participants rated the difficulty of segregating the melody from distracter notes. Four physical properties of the distracter notes were changed. In experiment 2, listeners were asked to rate the dissimilarity between melody patterns whose notes differed on the four physical properties simultaneously. Multidimensional scaling analysis transformed the dissimilarity ratings into perceptual distances. Regression between physical and perceptual cues then derived the minimal perceptual distance needed to segregate the melody.The most efficient streaming cue for CI users was loudness. For the normal hearing listeners without musical backgrounds, a greater difference on the perceptual dimension correlated to the temporal envelope is needed for stream segregation in CI users. No differences in streaming efficiency were found between the perceptual dimensions linked to the F0 and the spectral envelope.Combined with our previous results in normally-hearing musicians and non-musicians, the results show that differences in training as well as differences in peripheral auditory processing (hearing impairment and the use of a hearing device influences the way that listeners use different acoustic cues for segregating interleaved musical streams.

  17. Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

    Directory of Open Access Journals (Sweden)

    Guang-Di Chen

    2014-01-01

    Full Text Available Previous studies have shown that sodium salicylate (SS activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus. The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.

  18. Auditory perceptual load: A review.

    Science.gov (United States)

    Murphy, Sandra; Spence, Charles; Dalton, Polly

    2017-09-01

    Selective attention is a crucial mechanism in everyday life, allowing us to focus on a portion of incoming sensory information at the expense of other less relevant stimuli. The circumstances under which irrelevant stimuli are successfully ignored have been a topic of scientific interest for several decades now. Over the last 20 years, the perceptual load theory (e.g. Lavie, 1995) has provided one robust framework for understanding these effects within the visual modality. The suggestion is that successful selection depends on the perceptual demands imposed by the task-relevant information. However, less research has addressed the question of whether the same principles hold in audition and, to date, the existing literature provides a mixed picture. Here, we review the evidence for and against the applicability of perceptual load theory in hearing, concluding that this question still awaits resolution. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  20. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. 2009 Elsevier B.V. All rights reserved.

  1. Neural Correlates of Auditory Perceptual Awareness and Release from Informational Masking Recorded Directly from Human Cortex: A Case Study

    Directory of Open Access Journals (Sweden)

    Andrew R Dykstra

    2016-10-01

    Full Text Available In complex acoustic environments, even salient supra-threshold sounds sometimes go unperceived, a phenomenon known as informational masking. The neural basis of informational masking (and its release has not been well characterized, particularly outside auditory cortex. We combined electrocorticography in a neurosurgical patient undergoing invasive epilepsy monitoring with trial-by-trial perceptual reports of isochronous target-tone streams embedded in random multi-tone maskers. Awareness of such masker-embedded target streams was associated with a focal negativity between 100 and 200 ms and high-gamma activity between 50 and 250 ms (both in auditory cortex on the posterolateral superior temporal gyrus as well as a broad P3b-like potential (between ~300 and 600 ms with generators in ventrolateral frontal and lateral temporal cortex. Unperceived target tones elicited drastically reduced versions of such responses, if at all. While it remains unclear whether these responses reflect conscious perception, itself, as opposed to pre- or post-perceptual processing, the results suggest that conscious perception of target sounds in complex listening environments may engage diverse neural mechanisms in distributed brain areas.

  2. Perceptual load interacts with stimulus processing across sensory modalities.

    Science.gov (United States)

    Klemen, J; Büchel, C; Rose, M

    2009-06-01

    According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.

  3. Audiovisual speech perception development at varying levels of perceptual processing.

    Science.gov (United States)

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-04-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children.

  4. Comparação entre as análises auditiva e acústica nas disartrias Comparison between auditory-perceptual and acoustic analyses in dysarthrias

    Directory of Open Access Journals (Sweden)

    Karin Zazo Ortiz

    2008-01-01

    Full Text Available OBJETIVO: Comparar os dados da análise perceptivo-auditiva (subjetiva com os dados da análise acústica (objetiva. MÉTODOS: Quarenta e dois pacientes disártricos, com diagnósticos neurológicos definidos, 21 do sexo masculino e 21 do sexo feminino foram submetidos à análise perceptual-auditiva e acústica. Todos os pacientes foram submetidos à gravação da voz, tendo sido avaliados, na análise auditiva, tipo de voz, ressonância (equilibrada, hipernasal ou laringo-faríngea, loudness (adequado, diminuído ou aumentado, pitch (adequado, grave, agudo ataque vocal (isocrônico, brusco ou soproso, e estabilidade (estável ou instável. Para a análise acústica foram utilizados os programas GRAM 5.1.7; para a análise da qualidade vocal e comportamento dos harmônicos na espectrografia e o Programa Vox Metria, para a obtenção das medidas objetivas. RESULTADOS: A comparação entre os achados das análises auditiva e acústica em sua maioria não foi significante, ou seja, não houve uma relação direta entre os achados subjetivos e os dados objetivos. Houve diferença estatisticamente significante apenas entre voz soprosa e Shimmer alterado (p=0,048 e entre a definição dos harmônicos e voz soprosa (p=0,040, sendo assim, observou-se correlação entre a presença de ruído à emissão e soprosidade. CONCLUSÕES: As análises perceptual-auditiva e acústica forneceram dados diferentes, porém complementares, auxiliando, de forma conjunta, no diagnóstico clínico das disartrias.PURPOSE: To compare data found in auditory-perceptual analyses (subjective and acoustic analyses (objective in dysarthric patients. METHODS: Forty-two patients with well defined neurological diagnosis, 21 male and 21 female, were evaluated in auditory-perceptual parameters and acoustic measures. All patients had their voices recorded. Auditory-perceptual voice analyses were made considering type of voice, resonance (balanced, hipernasal or laryngopharyngeal

  5. Audiovisual speech perception development at varying levels of perceptual processing

    OpenAIRE

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-01-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the le...

  6. Using Auditory Cues to Perceptually Extract Visual Data in Collaborative, Immersive Big-Data Display Systems

    Science.gov (United States)

    Lee, Wendy

    The advent of multisensory display systems, such as virtual and augmented reality, has fostered a new relationship between humans and space. Not only can these systems mimic real-world environments, they have the ability to create a new space typology made solely of data. In these spaces, two-dimensional information is displayed in three dimensions, requiring human senses to be used to understand virtual, attention-based elements. Studies in the field of big data have predominately focused on visual representations and extractions of information with little focus on sounds. The goal of this research is to evaluate the most efficient methods of perceptually extracting visual data using auditory stimuli in immersive environments. Using Rensselaer's CRAIVE-Lab, a virtual reality space with 360-degree panorama visuals and an array of 128 loudspeakers, participants were asked questions based on complex visual displays using a variety of auditory cues ranging from sine tones to camera shutter sounds. Analysis of the speed and accuracy of participant responses revealed that auditory cues that were more favorable for localization and were positively perceived were best for data extraction and could help create more user-friendly systems in the future.

  7. Musically cued gait-training improves both perceptual and motor timing in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Charles-Etienne eBenoit

    2014-07-01

    Full Text Available It is well established that auditory cueing improves gait in patients with Idiopathic Parkinson’s Disease (IPD. Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a four-week music training program with rhythmic auditory cueing. Long-term effects were assessed one month after the end of the training. Perceptual and motor timing was evaluated with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients’ performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts. The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing.

  8. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    Science.gov (United States)

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  9. Auditory processing in autism spectrum disorder

    DEFF Research Database (Denmark)

    Vlaskamp, Chantal; Oranje, Bob; Madsen, Gitte Falcher

    2017-01-01

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism...... a hyper-responsivity at the attentional level. In addition, as similar MMN deficits are found in schizophrenia, these MMN results may explain some of the frequently reported increased risk of children with ASD to develop schizophrenia later in life. Autism Res 2017, 10: 1857–1865....

  10. Auditory-visual stimulus pairing enhances perceptual learning in a songbird.

    Science.gov (United States)

    Hultsch; Schleuss; Todt

    1999-07-01

    In many oscine birds, song learning is affected by social variables, for example the behaviour of a tutor. This implies that both auditory and visual perceptual systems should be involved in the acquisition process. To examine whether and how particular visual stimuli can affect song acquisition, we tested the impact of a tutoring design in which the presentation of auditory stimuli (i.e. species-specific master songs) was paired with a well-defined nonauditory stimulus (i.e. stroboscope light flashes: Strobe regime). The subjects were male hand-reared nightingales, Luscinia megarhynchos. For controls, males were exposed to tutoring without a light stimulus (Control regime). The males' singing recorded 9 months later showed that the Strobe regime had enhanced the acquisition of song patterns. During this treatment birds had acquired more songs than during the Control regime; the observed increase in repertoire size was from 20 to 30% in most cases. Furthermore, the copy quality of imitations acquired during the Strobe regime was better than that of imitations developed from the Control regime, and this was due to a significant increase in the number of 'perfect' song copies. We conclude that these effects were mediated by an intrinsic component (e.g. attention or arousal) which specifically responded to the Strobe regime. Our findings also show that mechanisms of song learning are well prepared to process information from cross-modal perception. Thus, more detailed enquiries into stimulus complexes that are usually referred to as social variables are promising. Copyright 1999 The Association for the Study of Animal Behaviour.

  11. Audiovisual spoken word training can promote or impede auditory-only perceptual learning: prelingually deafened adults with late-acquired cochlear implants versus normal hearing adults.

    Science.gov (United States)

    Bernstein, Lynne E; Eberhardt, Silvio P; Auer, Edward T

    2014-01-01

    Training with audiovisual (AV) speech has been shown to promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. In Experiment 1, we investigated whether AV speech promotes auditory-only (AO) perceptual learning in prelingually deafened adults with late-acquired cochlear implants. Participants were assigned to learn associations between spoken disyllabic C(=consonant)V(=vowel)CVC non-sense words and non-sense pictures (fribbles), under AV and then AO (AV-AO; or counter-balanced AO then AV, AO-AV, during Periods 1 then 2) training conditions. After training on each list of paired-associates (PA), testing was carried out AO. Across all training, AO PA test scores improved (7.2 percentage points) as did identification of consonants in new untrained CVCVC stimuli (3.5 percentage points). However, there was evidence that AV training impeded immediate AO perceptual learning: During Period-1, training scores across AV and AO conditions were not different, but AO test scores were dramatically lower in the AV-trained participants. During Period-2 AO training, the AV-AO participants obtained significantly higher AO test scores, demonstrating their ability to learn the auditory speech. Across both orders of training, whenever training was AV, AO test scores were significantly lower than training scores. Experiment 2 repeated the procedures with vocoded speech and 43 normal-hearing adults. Following AV training, their AO test scores were as high as or higher than following AO training. Also, their CVCVC identification scores patterned differently than those of the cochlear implant users. In Experiment 1, initial consonants were most accurate, and in Experiment 2, medial consonants were most accurate. We suggest that our results are consistent with a multisensory reverse hierarchy theory, which predicts that, whenever possible, perceivers carry out perceptual tasks immediately based on the experience and biases they bring to the task. We

  12. Auditory feedback perturbation in children with developmental speech disorders

    NARCIS (Netherlands)

    Terband, H.R.; van Brenk, F.J.; van Doornik-van der Zee, J.C.

    2014-01-01

    Background/purpose: Several studies indicate a close relation between auditory and speech motor functions in children with speech sound disorders (SSD). The aim of this study was to investigate the ability to compensate and adapt for perturbed auditory feedback in children with SSD compared to

  13. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  14. Effects of consensus training on the reliability of auditory perceptual ratings of voice quality.

    Science.gov (United States)

    Iwarsson, Jenny; Reinholt Petersen, Niels

    2012-05-01

    This study investigates the effect of consensus training of listeners on intrarater and interrater reliability and agreement of perceptual voice analysis. The use of such training, including a reference voice sample, could be assumed to make the internal standards held in memory common and more robust, which is of great importance to reduce the variability of auditory perceptual ratings. A prospective design with testing before and after training. Thirteen students of audiologopedics served as listening subjects. The ratings were made using a multidimensional protocol with four-point equal-appearing interval scales. The stimuli consisted of text reading by authentic dysphonic patients. The consensus training for each perceptual voice parameter included (1) definition, (2) underlying physiology, (3) presentation of carefully selected sound examples representing the parameter in three different grades followed by group discussions of perceived characteristics, and (4) practical exercises including imitation to make use of the listeners' proprioception. Intrarater reliability and agreement showed a marked improvement for intermittent aphonia but not for vocal fry. Interrater reliability was high for most parameters before training with a slight increase after training. Interrater agreement showed marked increases for most voice quality parameters as a result of the training. The results support the recommendation of specific consensus training, including use of a reference voice sample material, to calibrate, equalize, and stabilize the internal standards held in memory by the listeners. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  15. Biased and unbiased perceptual decision-making on vocal emotions.

    Science.gov (United States)

    Dricu, Mihai; Ceravolo, Leonardo; Grandjean, Didier; Frühholz, Sascha

    2017-11-24

    Perceptual decision-making on emotions involves gathering sensory information about the affective state of another person and forming a decision on the likelihood of a particular state. These perceptual decisions can be of varying complexity as determined by different contexts. We used functional magnetic resonance imaging and a region of interest approach to investigate the brain activation and functional connectivity behind two forms of perceptual decision-making. More complex unbiased decisions on affective voices recruited an extended bilateral network consisting of the posterior inferior frontal cortex, the orbitofrontal cortex, the amygdala, and voice-sensitive areas in the auditory cortex. Less complex biased decisions on affective voices distinctly recruited the right mid inferior frontal cortex, pointing to a functional distinction in this region following decisional requirements. Furthermore, task-induced neural connectivity revealed stronger connections between these frontal, auditory, and limbic regions during unbiased relative to biased decision-making on affective voices. Together, the data shows that different types of perceptual decision-making on auditory emotions have distinct patterns of activations and functional coupling that follow the decisional strategies and cognitive mechanisms involved during these perceptual decisions.

  16. Association between language development and auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Caroline Nunes Rocha-Muniz

    2014-06-01

    Full Text Available INTRODUCTION: It is crucial to understand the complex processing of acoustic stimuli along the auditory pathway ;comprehension of this complex processing can facilitate our understanding of the processes that underlie normal and altered human communication. AIM: To investigate the performance and lateralization effects on auditory processing assessment in children with specific language impairment (SLI, relating these findings to those obtained in children with auditory processing disorder (APD and typical development (TD. MATERIAL AND METHODS: Prospective study. Seventy-five children, aged 6-12 years, were separated in three groups: 25 children with SLI, 25 children with APD, and 25 children with TD. All went through the following tests: speech-in-noise test, Dichotic Digit test and Pitch Pattern Sequencing test. RESULTS: The effects of lateralization were observed only in the SLI group, with the left ear presenting much lower scores than those presented to the right ear. The inter-group analysis has shown that in all tests children from APD and SLI groups had significantly poorer performance compared to TD group. Moreover, SLI group presented worse results than APD group. CONCLUSION: This study has shown, in children with SLI, an inefficient processing of essential sound components and an effect of lateralization. These findings may indicate that neural processes (required for auditory processing are different between auditory processing and speech disorders.

  17. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  18. Presentation of dynamically overlapping auditory messages in user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Papp, III, Albert Louis [Univ. of California, Davis, CA (United States)

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  19. Perceptual learning: top to bottom.

    Science.gov (United States)

    Amitay, Sygal; Zhang, Yu-Xuan; Jones, Pete R; Moore, David R

    2014-06-01

    Perceptual learning has traditionally been portrayed as a bottom-up phenomenon that improves encoding or decoding of the trained stimulus. Cognitive skills such as attention and memory are thought to drive, guide and modulate learning but are, with notable exceptions, not generally considered to undergo changes themselves as a result of training with simple perceptual tasks. Moreover, shifts in threshold are interpreted as shifts in perceptual sensitivity, with no consideration for non-sensory factors (such as response bias) that may contribute to these changes. Accumulating evidence from our own research and others shows that perceptual learning is a conglomeration of effects, with training-induced changes ranging from the lowest (noise reduction in the phase locking of auditory signals) to the highest (working memory capacity) level of processing, and includes contributions from non-sensory factors that affect decision making even on a "simple" auditory task such as frequency discrimination. We discuss our emerging view of learning as a process that increases the signal-to-noise ratio associated with perceptual tasks by tackling noise sources and inefficiencies that cause performance bottlenecks, and present some implications for training populations other than young, smart, attentive and highly-motivated college students. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Auditory perceptual learning in adults with and without age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Hanin eKarawani

    2016-02-01

    Full Text Available Introduction: Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL. Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL.Methods: 56 listeners (60-72 y/o, 35 participants with ARHL and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training and no-training group. Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1 Speech-in-noise (2 time compressed speech and (3 competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results: Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions: ARHL did not preclude auditory perceptual learning but there was little generalization to

  1. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  2. Perceptual Fluency, Auditory Generation, and Metamemory: Analyzing the Perceptual Fluency Hypothesis in the Auditory Modality

    Science.gov (United States)

    Besken, Miri; Mulligan, Neil W.

    2014-01-01

    Judgments of learning (JOLs) are sometimes influenced by factors that do not impact actual memory performance. One recent proposal is that perceptual fluency during encoding affects metamemory and is a basis of metacognitive illusions. In the present experiments, participants identified aurally presented words that contained inter-spliced silences…

  3. The memory systems of children with (central) auditory disorder.

    Science.gov (United States)

    Pires, Mayra Monteiro; Mota, Mailce Borges; Pinheiro, Maria Madalena Canina

    2015-01-01

    This study aims to investigate working, declarative, and procedural memory in children with (central) auditory processing disorder who showed poor phonological awareness. Thirty 9- and 10-year-old children participated in the study and were distributed into two groups: a control group consisting of 15 children with typical development, and an experimental group consisting of 15 children with (central) auditory processing disorder who were classified according to three behavioral tests and who showed poor phonological awareness in the CONFIAS test battery. The memory systems were assessed through the adapted tests in the program E-PRIME 2.0. The working memory was assessed by the Working Memory Test Battery for Children (WMTB-C), whereas the declarative memory was assessed by a picture-naming test and the procedural memory was assessed by means of a morphosyntactic processing test. The results showed that, when compared to the control group, children with poor phonological awareness scored lower in the working, declarative, and procedural memory tasks. The results of this study suggest that in children with (central) auditory processing disorder, phonological awareness is associated with the analyzed memory systems.

  4. Auditory evoked potentials: predicting speech therapy outcomes in children with phonological disorders

    Directory of Open Access Journals (Sweden)

    Renata Aparecida Leite

    2014-03-01

    Full Text Available OBJECTIVES: This study investigated whether neurophysiologic responses (auditory evoked potentials differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. METHODS: The participants included 24 typically developing children (Control Group, mean age: eight years and ten months and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months. Additionally, 12 study group children were enrolled in speech therapy (Study Group 1, and 11 were not enrolled in speech therapy (Study Group 2. The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. RESULTS: Latency differences were observed between the groups (the control and study groups regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. CONCLUSION: The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.

  5. Auditory cortical processing in real-world listening: the auditory system going real.

    Science.gov (United States)

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  6. Speech discrimination difficulties in High-Functioning Autism Spectrum Disorder are likely independent of auditory hypersensitivity.

    Directory of Open Access Journals (Sweden)

    William Andrew Dunlop

    2016-08-01

    Full Text Available Autism Spectrum Disorder (ASD, characterised by impaired communication skills and repetitive behaviours, can also result in differences in sensory perception. Individuals with ASD often perform normally in simple auditory tasks but poorly compared to typically developed (TD individuals on complex auditory tasks like discriminating speech from complex background noise. A common trait of individuals with ASD is hypersensitivity to auditory stimulation. No studies to our knowledge consider whether hypersensitivity to sounds is related to differences in speech-in-noise discrimination. We provide novel evidence that individuals with high-functioning ASD show poor performance compared to TD individuals in a speech-in-noise discrimination task with an attentionally demanding background noise, but not in a purely energetic noise. Further, we demonstrate in our small sample that speech-hypersensitivity does not appear to predict performance in the speech-in-noise task. The findings support the argument that an attentional deficit, rather than a perceptual deficit, affects the ability of individuals with ASD to discriminate speech from background noise. Finally, we piloted a novel questionnaire that measures difficulty hearing in noisy environments, and sensitivity to non-verbal and verbal sounds. Psychometric analysis using 128 TD participants provided novel evidence for a difference in sensitivity to non-verbal and verbal sounds, and these findings were reinforced by participants with ASD who also completed the questionnaire. The study was limited by a small and high-functioning sample of participants with ASD. Future work could test larger sample sizes and include lower-functioning ASD participants.

  7. Consensus paper: the role of the cerebellum in perceptual processes.

    Science.gov (United States)

    Baumann, Oliver; Borra, Ronald J; Bower, James M; Cullen, Kathleen E; Habas, Christophe; Ivry, Richard B; Leggio, Maria; Mattingley, Jason B; Molinari, Marco; Moulton, Eric A; Paulin, Michael G; Pavlova, Marina A; Schmahmann, Jeremy D; Sokolov, Arseny A

    2015-04-01

    Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.

  8. The processing of visual and auditory information for reaching movements.

    Science.gov (United States)

    Glazebrook, Cheryl M; Welsh, Timothy N; Tremblay, Luc

    2016-09-01

    Presenting target and non-target information in different modalities influences target localization if the non-target is within the spatiotemporal limits of perceptual integration. When using auditory and visual stimuli, the influence of a visual non-target on auditory target localization is greater than the reverse. It is not known, however, whether or how such perceptual effects extend to goal-directed behaviours. To gain insight into how audio-visual stimuli are integrated for motor tasks, the kinematics of reaching movements towards visual or auditory targets with or without a non-target in the other modality were examined. When present, the simultaneously presented non-target could be spatially coincident, to the left, or to the right of the target. Results revealed that auditory non-targets did not influence reaching trajectories towards a visual target, whereas visual non-targets influenced trajectories towards an auditory target. Interestingly, the biases induced by visual non-targets were present early in the trajectory and persisted until movement end. Subsequent experimentation indicated that the magnitude of the biases was equivalent whether participants performed a perceptual or motor task, whereas variability was greater for the motor versus the perceptual tasks. We propose that visually induced trajectory biases were driven by the perceived mislocation of the auditory target, which in turn affected both the movement plan and subsequent control of the movement. Such findings provide further evidence of the dominant role visual information processing plays in encoding spatial locations as well as planning and executing reaching action, even when reaching towards auditory targets.

  9. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.

    Science.gov (United States)

    Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A

    2017-01-11

    Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal

  10. Auditory and communicative abilities in the auditory neuropathy spectrum disorder and mutation in the Otoferlin gene: clinical cases study.

    Science.gov (United States)

    Costa, Nayara Thais de Oliveira; Martinho-Carvalho, Ana Claudia; Cunha, Maria Claudia; Lewis, Doris Ruthi

    2012-01-01

    This study had the aim to investigate the auditory and communicative abilities of children diagnosed with Auditory Neuropathy Spectrum Disorder due to mutation in the Otoferlin gene. It is a descriptive and qualitative study in which two siblings with this diagnosis were assessed. The procedures conducted were: speech perception tests for children with profound hearing loss, and assessment of communication abilities using the Behavioral Observation Protocol. Because they were siblings, the subjects in the study shared family and communicative context. However, they developed different communication abilities, especially regarding the use of oral language. The study showed that the Auditory Neuropathy Spectrum Disorder is a heterogeneous condition in all its aspects, and it is not possible to make generalizations or assume that cases with similar clinical features will develop similar auditory and communicative abilities, even when they are siblings. It is concluded that the acquisition of communicative abilities involves subjective factors, which should be investigated based on the uniqueness of each case.

  11. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences.

    Science.gov (United States)

    Grose, John H; Buss, Emily; Hall, Joseph W

    2017-01-01

    The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.

  12. Vocal Acoustic and Auditory-Perceptual Characteristics During Fluctuations in Estradiol Levels During the Menstrual Cycle: A Longitudinal Study.

    Science.gov (United States)

    Arruda, Polyanna; Diniz da Rosa, Marine Raquel; Almeida, Larissa Nadjara Alves; de Araujo Pernambuco, Leandro; Almeida, Anna Alice

    2018-03-07

    Estradiol production varies cyclically, changes in levels are hypothesized to affect the voice. The main objective of this study was to investigate vocal acoustic and auditory-perceptual characteristics during fluctuations in the levels of the hormone estradiol during the menstrual cycle. A total of 44 volunteers aged between 18 and 45 were selected. Of these, 27 women with regular menstrual cycles comprised the test group (TG) and 17 combined oral contraceptive users comprised the control group (CG). The study was performed in two phases. In phase 1, anamnesis was performed. Subsequently, the TG underwent blood sample collection for measurement of estradiol levels and voice recording for later acoustic and auditory-perceptual analysis. The CG underwent only voice recording. Phase 2 involved the same measurements as phase 1 for each group. Variables were evaluated using descriptive and inferential analysis to compare groups and phases and to determine relationships between variables. Voice changes were found during the menstrual cycle, and such changes were determined to be related to variations in estradiol levels. Impaired voice quality was observed to be associated with decreased levels of estradiol. The CG did not demonstrate significant vocal changes during phases 1 and 2. The TG showed significant increases in vocal parameters of roughness, tension, and instability during phase 2 (the period of low estradiol levels) when compared with the CG. Low estradiol levels were also found to be negatively correlated with the parameters of tension, instability, and jitter and positively correlated with fundamental voice frequency. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Music and the auditory brain: where is the connection?

    Directory of Open Access Journals (Sweden)

    Israel eNelken

    2011-09-01

    Full Text Available Sound processing by the auditory system is understood in unprecedented details, even compared with sensory coding in the visual system. Nevertheless, we don't understand yet the way in which some of the simplest perceptual properties of sounds are coded in neuronal activity. This poses serious difficulties for linking neuronal responses in the auditory system and music processing, since music operates on abstract representations of sounds. Paradoxically, although perceptual representations of sounds most probably occur high in auditory system or even beyond it, neuronal responses are strongly affected by the temporal organization of sound streams even in subcortical stations. Thus, to the extent that music is organized sound, it is the organization, rather than the sound, which is represented first in the auditory brain.

  14. Perceptual and Acoustic Reliability Estimates for the Speech Disorders Classification System (SDCS)

    Science.gov (United States)

    Shriberg, Lawrence D.; Fourakis, Marios; Hall, Sheryl D.; Karlsson, Heather B.; Lohmeier, Heather L.; McSweeny, Jane L.; Potter, Nancy L.; Scheer-Cohen, Alison R.; Strand, Edythe A.; Tilkens, Christie M.; Wilson, David L.

    2010-01-01

    A companion paper describes three extensions to a classification system for paediatric speech sound disorders termed the Speech Disorders Classification System (SDCS). The SDCS uses perceptual and acoustic data reduction methods to obtain information on a speaker's speech, prosody, and voice. The present paper provides reliability estimates for…

  15. Steady-state signatures of visual perceptual load, multimodal distractor filtering, and neural competition.

    Science.gov (United States)

    Parks, Nathan A; Hilimire, Matthew R; Corballis, Paul M

    2011-05-01

    The perceptual load theory of attention posits that attentional selection occurs early in processing when a task is perceptually demanding but occurs late in processing otherwise. We used a frequency-tagged steady-state evoked potential paradigm to investigate the modality specificity of perceptual load-induced distractor filtering and the nature of neural-competitive interactions between task and distractor stimuli. EEG data were recorded while participants monitored a stream of stimuli occurring in rapid serial visual presentation (RSVP) for the appearance of previously assigned targets. Perceptual load was manipulated by assigning targets that were identifiable by color alone (low load) or by the conjunction of color and orientation (high load). The RSVP task was performed alone and in the presence of task-irrelevant visual and auditory distractors. The RSVP stimuli, visual distractors, and auditory distractors were "tagged" by modulating each at a unique frequency (2.5, 8.5, and 40.0 Hz, respectively), which allowed each to be analyzed separately in the frequency domain. We report three important findings regarding the neural mechanisms of perceptual load. First, we replicated previous findings of within-modality distractor filtering and demonstrated a reduction in visual distractor signals with high perceptual load. Second, auditory steady-state distractor signals were unaffected by manipulations of visual perceptual load, consistent with the idea that perceptual load-induced distractor filtering is modality specific. Third, analysis of task-related signals revealed that visual distractors competed with task stimuli for representation and that increased perceptual load appeared to resolve this competition in favor of the task stimulus.

  16. Análise de parâmetros perceptivo-auditivos e acústicos em indivíduos gagos Analysis of acoustic and auditory-perceptual parameters in stutterers

    Directory of Open Access Journals (Sweden)

    Bruna Ferreira Valenzuela de Oliveira

    2009-01-01

    institution's Speech-Language Pathology Clinical Center in the period from February 2005 to July 2007, were analyzed. The auditory-perceptual parameters analyzed were vocal quality, type of voice, resonance, vocal tension, speech rate, pneumo-phonic coordination, vocal attack and pitch range; the acoustic parameters analyzed were fundamental frequency and its variability during spontaneous speech. RESULTS: The auditory-perceptual analysis showed that the most frequent characteristics among the subjects were normal vocal quality (60%, altered resonance (66%, vocal tension (86%, altered vocal attack (73%, normal speech rate (54%, altered pitch range (80% and altered pneumo-phonic coordination (100%. However, only the presence of vocal tension and the altered pneumo-phonic coordination and pitch range were statistically significant in the stutterers studied. In the acoustic analysis, fundamental frequency varied from 125,54 to 149,59 Hz, and the variability of the fundamental frequency ranged from 16 to 21 halftones, or from 112,50 to 172,40 Hz. CONCLUSION: The auditory-perceptual parameters that were significantly frequent among stutterers were: presence of vocal tension, altered pneumo-phonic coordination, and altered pitch range. Therefore, it is important to evaluate the vocal aspects of these patients, for the fluency disorders might undermine some vocals parameters, causing dysphonia.

  17. Auditory Stream Segregation in Autism Spectrum Disorder: Benefits and Downsides of Superior Perceptual Processes

    Science.gov (United States)

    Bouvet, Lucie; Mottron, Laurent; Valdois, Sylviane; Donnadieu, Sophie

    2016-01-01

    Auditory stream segregation allows us to organize our sound environment, by focusing on specific information and ignoring what is unimportant. One previous study reported difficulty in stream segregation ability in children with Asperger syndrome. In order to investigate this question further, we used an interleaved melody recognition task with…

  18. Perceptual and cognitive biases in individuals with body dysmorphic disorder symptoms.

    Science.gov (United States)

    Clerkin, Elise M; Teachman, Bethany A

    2008-01-01

    Given the extreme focus on perceived physical defects in body dysmorphic disorder (BDD), we expected that perceptual and cognitive biases related to physical appearance would be associated with BDD symptomology. To examine these hypotheses, participants ( N = 70) high and low in BDD symptoms completed tasks assessing visual perception and cognition. As expected, there were significant group differences in self-, but not other-, relevant cognitive biases. Perceptual bias results were mixed, with some evidence indicating that individuals high (versus low) in BDD symptoms literally see themselves in a less positive light. Further, individuals high in BDD symptoms failed to demonstrate a normative self-enhancement bias. Overall, this research points to the importance of assessing both cognitive and perceptual biases associated with BDD symptoms, and suggests that visual perception may be influenced by non-visual factors.

  19. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder.

    Science.gov (United States)

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-03-01

    This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  20. Electrophysiological assessment of auditory processing disorder in children with non-syndromic cleft lip and/or palate.

    Science.gov (United States)

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2016-01-01

    Cleft lip and/or palate is a common congenital craniofacial malformation found worldwide. A frequently associated disorder is conductive hearing loss, and this disorder has been thoroughly investigated in children with non-syndromic cleft lip and/or palate (NSCL/P). However, analysis of auditory processing function is rarely reported for this population, although this issue should not be ignored since abnormal auditory cortical structures have been found in populations with cleft disorders. The present study utilized electrophysiological tests to assess the auditory status of a large group of children with NSCL/P, and investigated whether this group had less robust central auditory processing abilities compared to craniofacially normal children. 146 children with NSCL/P who had normal peripheral hearing thresholds, and 60 craniofacially normal children aged from 6 to 15 years, were recruited. Electrophysiological tests, including auditory brainstem response (ABR), P1-N1-P2 complex, and P300 component recording, were conducted. ABR and N1 wave latencies were significantly prolonged in children with NSCL/P. An atypical developmental trend was found for long latency potentials in children with cleft compared to control group children. Children with unilateral cleft lip and palate showed a greater level of abnormal results compared with other cleft subgroups, whereas the cleft lip subgroup had the most robust responses for all tests. Children with NSCL/P may have slower than normal neural transmission times between the peripheral auditory nerve and brainstem. Possible delayed development of myelination and synaptogenesis may also influence auditory processing function in this population. Present research outcomes were consistent with previous, smaller sample size, electrophysiological studies on infants and children with cleft lip/palate disorders. In view of the these findings, and reports of educational disadvantage associated with cleft disorders, further research

  1. Comparison of Perceptual Signs of Voice before and after Vocal Hygiene Program in Adults with Dysphonia

    Directory of Open Access Journals (Sweden)

    Seyyedeh Maryam khoddami

    2011-12-01

    Full Text Available Background and Aim: Vocal abuse and misuse are the most frequent causes of voice disorders. Consequently some therapy is needed to stop or modify such behaviors. This research was performed to study the effectiveness of vocal hygiene program on perceptual signs of voice in people with dysphonia.Methods: A Vocal hygiene program was performed to 8 adults with dysphonia for 6 weeks. At first, Consensus Auditory- Perceptual Evaluation of Voice was used to assess perceptual signs. Then the program was delivered, Individuals were followed in second and forth weeks visits. In the last session, perceptual assessment was performed and individuals’ opinions were collected. Perceptual findings were compared before and after the therapy.Results: After the program, mean score of perceptual assessment decreased. Mean score of every perceptual sign revealed significant difference before and after the therapy (p≤0.0001. «Loudness» had maximum score and coordination between speech and respiration indicated minimum score. All participants confirmed efficiency of the therapy.Conclusion: The vocal hygiene program improves all perceptual signs of voice although not equally. This deduction is confirmed by both clinician-based and patient-based assessments. As a result, vocal hygiene program is necessary for a comprehensive voice therapy but is not solely effective to resolve all voice problems.

  2. Perceptual dimensions differentiate emotions.

    Science.gov (United States)

    Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M

    2015-08-26

    Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.

  3. Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology

    Science.gov (United States)

    Olsen, Kirk N.

    Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.

  4. Multisensory Cues Capture Spatial Attention Regardless of Perceptual Load

    Science.gov (United States)

    Santangelo, Valerio; Spence, Charles

    2007-01-01

    We compared the ability of auditory, visual, and audiovisual (bimodal) exogenous cues to capture visuo-spatial attention under conditions of no load versus high perceptual load. Participants had to discriminate the elevation (up vs. down) of visual targets preceded by either unimodal or bimodal cues under conditions of high perceptual load (in…

  5. Prediction of kindergarteners' behavior on Metropolitan Readiness Tests from preschool perceptual and perceptual-motor performances: a validation study.

    Science.gov (United States)

    Belka, D E

    1981-06-01

    Multiple regression equations were generated to predict cognitive achievement for 40 children (ages 57 to 68 mo.) 1 yr. after administration of a battery of 6 perceptual and perceptual-motor tests to determine if previous results from Toledo could be replicated. Regression equations generated from maximum R2 improvement techniques indicated that performance at prekindergarten is useful for prediction of cognitive performance (total score and total score without the copying subtest on the Metropolitan Readiness Tests) 1 yr. later at the end of kindergarten. The optimal battery included scores on auditory perception, fine perceptual-motor, and gross perceptual-motor tasks. The moderate predictive power of the equations obtained was compared with high predictive power generated in the Toledo study.

  6. Visual unimodal grouping mediates auditory attentional bias in visuo-spatial working memory.

    Science.gov (United States)

    Botta, Fabiano; Lupiáñez, Juan; Sanabria, Daniel

    2013-09-01

    Audiovisual links in spatial attention have been reported in many previous studies. However, the effectiveness of auditory spatial cues in biasing the information encoding into visuo-spatial working memory (VSWM) is still relatively unknown. In this study, we addressed this issue by combining a cuing paradigm with a change detection task in VSWM. Moreover, we manipulated the perceptual organization of the to-be-remembered visual stimuli. We hypothesized that the auditory effect on VSWM would depend on the perceptual association between the auditory cue and the visual probe. Results showed, for the first time, a significant auditory attentional bias in VSWM. However, the effect was observed only when the to-be-remembered visual stimuli were organized in two distinctive visual objects. We propose that these results shed new light on audio-visual crossmodal links in spatial attention suggesting that, apart from the spatio-temporal contingency, the likelihood of perceptual association between the auditory cue and the visual target can have a large impact on crossmodal attentional biases. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Perceptual context and individual differences in the language proficiency of preschool children.

    Science.gov (United States)

    Banai, Karen; Yifat, Rachel

    2016-02-01

    Although the contribution of perceptual processes to language skills during infancy is well recognized, the role of perception in linguistic processing beyond infancy is not well understood. In the experiments reported here, we asked whether manipulating the perceptual context in which stimuli are presented across trials influences how preschool children perform visual (shape-size identification; Experiment 1) and auditory (syllable identification; Experiment 2) tasks. Another goal was to determine whether the sensitivity to perceptual context can explain part of the variance in oral language skills in typically developing preschool children. Perceptual context was manipulated by changing the relative frequency with which target visual (Experiment 1) and auditory (Experiment 2) stimuli were presented in arrays of fixed size, and identification of the target stimuli was tested. Oral language skills were assessed using vocabulary, word definition, and phonological awareness tasks. Changes in perceptual context influenced the performance of the majority of children on both identification tasks. Sensitivity to perceptual context accounted for 7% to 15% of the variance in language scores. We suggest that context effects are an outcome of a statistical learning process. Therefore, the current findings demonstrate that statistical learning can facilitate both visual and auditory identification processes in preschool children. Furthermore, consistent with previous findings in infants and in older children and adults, individual differences in statistical learning were found to be associated with individual differences in language skills of preschool children. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2016-03-01

    Full Text Available Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD. Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth and lower negative correlations in the most lateral reference location (60° azimuth in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  9. Quadri-stability of a spatially ambiguous auditory illusion

    Directory of Open Access Journals (Sweden)

    Constance May Bainbridge

    2015-01-01

    Full Text Available In addition to vision, audition plays an important role in sound localization in our world. One way we estimate the motion of an auditory object moving towards or away from us is from changes in volume intensity. However, the human auditory system has unequally distributed spatial resolution, including difficulty distinguishing sounds in front versus behind the listener. Here, we introduce a novel quadri-stable illusion, the Transverse-and-Bounce Auditory Illusion, which combines front-back confusion with changes in volume levels of a nonspatial sound to create ambiguous percepts of an object approaching and withdrawing from the listener. The sound can be perceived as traveling transversely from front to back or back to front, or bouncing to remain exclusively in front of or behind the observer. Here we demonstrate how human listeners experience this illusory phenomenon by comparing ambiguous and unambiguous stimuli for each of the four possible motion percepts. When asked to rate their confidence in perceiving each sound’s motion, participants reported equal confidence for the illusory and unambiguous stimuli. Participants perceived all four illusory motion percepts, and could not distinguish the illusion from the unambiguous stimuli. These results show that this illusion is effectively quadri-stable. In a second experiment, the illusory stimulus was looped continuously in headphones while participants identified its perceived path of motion to test properties of perceptual switching, locking, and biases. Participants were biased towards perceiving transverse compared to bouncing paths, and they became perceptually locked into alternating between front-to-back and back-to-front percepts, perhaps reflecting how auditory objects commonly move in the real world. This multi-stable auditory illusion opens opportunities for studying the perceptual, cognitive, and neural representation of objects in motion, as well as exploring multimodal perceptual

  10. No counterpart of visual perceptual echoes in the auditory system.

    Directory of Open Access Journals (Sweden)

    Barkın İlhan

    Full Text Available It has been previously demonstrated by our group that a visual stimulus made of dynamically changing luminance evokes an echo or reverberation at ~10 Hz, lasting up to a second. In this study we aimed to reveal whether similar echoes also exist in the auditory modality. A dynamically changing auditory stimulus equivalent to the visual stimulus was designed and employed in two separate series of experiments, and the presence of reverberations was analyzed based on reverse correlations between stimulus sequences and EEG epochs. The first experiment directly compared visual and auditory stimuli: while previous findings of ~10 Hz visual echoes were verified, no similar echo was found in the auditory modality regardless of frequency. In the second experiment, we tested if auditory sequences would influence the visual echoes when they were congruent or incongruent with the visual sequences. However, the results in that case similarly did not reveal any auditory echoes, nor any change in the characteristics of visual echoes as a function of audio-visual congruence. The negative findings from these experiments suggest that brain oscillations do not equivalently affect early sensory processes in the visual and auditory modalities, and that alpha (8-13 Hz oscillations play a special role in vision.

  11. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    Science.gov (United States)

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying sustained and divided attention deficits. Attention deficits in children with APD appear to be centred around the auditory modality but further examination of types of attention in both

  12. Behavioral Signs of (Central) Auditory Processing Disorder in Children With Nonsyndromic Cleft Lip and/or Palate: A Parental Questionnaire Approach.

    Science.gov (United States)

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2016-03-01

    Objective Children with nonsyndromic cleft lip and/or palate often have a high prevalence of middle ear dysfunction. However, there are also indications that they may have a higher prevalence of (central) auditory processing disorder. This study used Fisher's Auditory Problems Checklist for caregivers to determine whether children with nonsyndromic cleft lip and/or palate have potentially more auditory processing difficulties compared with craniofacially normal children. Methods Caregivers of 147 school-aged children with nonsyndromic cleft lip and/or palate were recruited for the study. This group was divided into three subgroups: cleft lip, cleft palate, and cleft lip and palate. Caregivers of 60 craniofacially normal children were recruited as a control group. Hearing health tests were conducted to evaluate peripheral hearing. Caregivers of children who passed this assessment battery completed Fisher's Auditory Problems Checklist, which contains 25 questions related to behaviors linked to (central) auditory processing disorder. Results Children with cleft palate showed the lowest scores on the Fisher's Auditory Problems Checklist questionnaire, consistent with a higher index of suspicion for (central) auditory processing disorder. There was a significant difference in the manifestation of (central) auditory processing disorder-linked behaviors between the cleft palate and the control groups. The most common behaviors reported in the nonsyndromic cleft lip and/or palate group were short attention span and reduced learning motivation, along with hearing difficulties in noise. Conclusion A higher occurrence of (central) auditory processing disorder-linked behaviors were found in children with nonsyndromic cleft lip and/or palate, particularly cleft palate. Auditory processing abilities should not be ignored in children with nonsyndromic cleft lip and/or palate, and it is necessary to consider assessment tests for (central) auditory processing disorder when an

  13. A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus

    Directory of Open Access Journals (Sweden)

    Vasiliki (Vivian Iliadou

    2017-11-01

    Full Text Available Current notions of “hearing impairment,” as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other more sophisticated audiometric tests such as speech audiometry in noise or complex non-speech sound perception. This disorder, defined as “Auditory Processing Disorder” (APD or “Central Auditory Processing Disorder” is classified in the current tenth version of the International Classification of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order to further clarify the nature of APD and thus assist in optimum diagnosis and evidence-based management. This European consensus presents the main symptoms, conditions, and specific medical history elements that should lead to auditory processing evaluation. Consensus on definition of the disorder, optimum diagnostic pathway, and appropriate management are highlighted alongside a perspective on future research focus.

  14. Assessment of children with suspected auditory processing disorder: a factor analysis study.

    Science.gov (United States)

    Ahmmed, Ansar U; Ahmmed, Afsara A; Bath, Julie R; Ferguson, Melanie A; Plack, Christopher J; Moore, David R

    2014-01-01

    To identify the factors that may underlie the deficits in children with listening difficulties, despite normal pure-tone audiograms. These children may have auditory processing disorder (APD), but there is no universally agreed consensus as to what constitutes APD. The authors therefore refer to these children as children with suspected APD (susAPD) and aim to clarify the role of attention, cognition, memory, sensorimotor processing speed, speech, and nonspeech auditory processing in susAPD. It was expected that a factor analysis would show how nonauditory and supramodal factors relate to auditory behavioral measures in such children with susAPD. This would facilitate greater understanding of the nature of listening difficulties, thus further helping with characterizing APD and designing multimodal test batteries to diagnose APD. Factor analysis of outcomes from 110 children (68 male, 42 female; aged 6 to 11 years) with susAPD on a widely used clinical test battery (SCAN-C) and a research test battery (MRC Institute of Hearing Research Multi-center Auditory Processing "IMAP"), that have age-based normative data. The IMAP included backward masking, simultaneous masking, frequency discrimination, nonverbal intelligence, working memory, reading, alerting attention and motor reaction times to auditory and visual stimuli. SCAN-C included monaural low-redundancy speech (auditory closure and speech in noise) and dichotic listening tests (competing words and competing sentences) that assess divided auditory attention and hence executive attention. Three factors were extracted: "general auditory processing," "working memory and executive attention," and "processing speed and alerting attention." Frequency discrimination, backward masking, simultaneous masking, and monaural low-redundancy speech tests represented the "general auditory processing" factor. Dichotic listening and the IMAP cognitive tests (apart from nonverbal intelligence) were represented in the "working

  15. Visual and auditory socio-cognitive perception in unilateral temporal lobe epilepsy in children and adolescents: a prospective controlled study.

    Science.gov (United States)

    Laurent, Agathe; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Sfaello, Ignacio; Kahane, Philippe; Ryvlin, Philippe; Hirsch, Edouard; de Schonen, Scania

    2014-12-01

    A high rate of abnormal social behavioural traits or perceptual deficits is observed in children with unilateral temporal lobe epilepsy. In the present study, perception of auditory and visual social signals, carried by faces and voices, was evaluated in children or adolescents with temporal lobe epilepsy. We prospectively investigated a sample of 62 children with focal non-idiopathic epilepsy early in the course of the disorder. The present analysis included 39 children with a confirmed diagnosis of temporal lobe epilepsy. Control participants (72), distributed across 10 age groups, served as a control group. Our socio-perceptual evaluation protocol comprised three socio-visual tasks (face identity, facial emotion and gaze direction recognition), two socio-auditory tasks (voice identity and emotional prosody recognition), and three control tasks (lip reading, geometrical pattern and linguistic intonation recognition). All 39 patients also benefited from a neuropsychological examination. As a group, children with temporal lobe epilepsy performed at a significantly lower level compared to the control group with regards to recognition of facial identity, direction of eye gaze, and emotional facial expressions. We found no relationship between the type of visual deficit and age at first seizure, duration of epilepsy, or the epilepsy-affected cerebral hemisphere. Deficits in socio-perceptual tasks could be found independently of the presence of deficits in visual or auditory episodic memory, visual non-facial pattern processing (control tasks), or speech perception. A normal FSIQ did not exempt some of the patients from an underlying deficit in some of the socio-perceptual tasks. Temporal lobe epilepsy not only impairs development of emotion recognition, but can also impair development of perception of other socio-perceptual signals in children with or without intellectual deficiency. Prospective studies need to be designed to evaluate the results of appropriate re

  16. Top-down (Prior Knowledge) and Bottom-up (Perceptual Modality) Influences on Spontaneous Interpersonal Synchronization.

    Science.gov (United States)

    Gipson, Christina L; Gorman, Jamie C; Hessler, Eric E

    2016-04-01

    Coordination with others is such a fundamental part of human activity that it can happen unintentionally. This unintentional coordination can manifest as synchronization and is observed in physical and human systems alike. We investigated the role of top-down influences (prior knowledge of the perceptual modality their partner is using) and bottom-up factors (perceptual modality combination) on spontaneous interpersonal synchronization. We examine this phenomena with respect to two different theoretical perspectives that differently emphasize top-down and bottom-up factors in interpersonal synchronization: joint-action/shared cognition theories and ecological-interactive theories. In an empirical study twelve dyads performed a finger oscillation task while attending to each other's movements through either visual, auditory, or visual and auditory perceptual modalities. Half of the participants were given prior knowledge of their partner's perceptual capabilities for coordinating across these different perceptual modality combinations. We found that the effect of top-down influence depends on the perceptual modality combination between two individuals. When people used the same perceptual modalities, top-down influence resulted in less synchronization and when people used different perceptual modalities, top-down influence resulted in more synchronization. Furthermore, persistence in the change in behavior as a result of having perceptual information about each other ('social memory') was stronger when this top-down influence was present.

  17. Brain bases for auditory stimulus-driven figure-ground segregation.

    Science.gov (United States)

    Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D

    2011-01-05

    Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.

  18. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Vestibular Stimulation and Auditory Perception in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Azin Salamati

    2014-09-01

    Full Text Available Objectives: Rehabilitation strategies play a pivotal role in reliving the inappropriate behaviors and improving children's performance during school. Concentration and visual and auditory comprehension in children are crucial to effective learning and have drawn interest from researchers and clinicians. Vestibular function deficits usually cause high level of alertness and vigilance, and problems in maintaining focus, paying selective attention, and altering in precision and attention to the stimulus. The aim of this study is to investigate the correlation between vestibular stimulation and auditory perception in children with attention deficit hyperactivity disorder. Methods: Totally 30 children aged from 7 to 12 years with attention deficit hyperactivity disorder participated in this study. They were assessed based on the criteria of diagnostic and statistical manual of mental disorders. After obtaining guardian and parental consent, they were enrolled and randomly matched on age to two groups of intervention and control. Integrated visual and auditory continuous performance test was carried out as a pre-test. Those in the intervention group received vestibular stimulation during the therapy sessions, twice a week for 10 weeks. At the end the test was done to both groups as post-test. Results: The pre-and post-test scores were measured and compared the differences between means for two subject groups. Statistical analyses found a significant difference for the mean differences regarding auditory comprehension improvement. Discussion: The findings suggest that vestibular training is a reliable and powerful option treatment for attention deficit hyperactivity disorder especially along with other trainings, meaning that stimulating the sense of balance highlights the importance of interaction between inhabitation and cognition.

  20. Auditory and Respiratory Health Disorders Among Workers in an ...

    African Journals Online (AJOL)

    For early detection of respiratory and auditory disorders, spirometry and audiometry should be included in the periodic medical examination. Accurate health records of workers, so, those at risk can be monitored, and/or pre-placed. Using personal protective equipments especially masks and ear muffles as well as prohibit ...

  1. A late-emerging auditory deficit in autism.

    Science.gov (United States)

    Erviti, Mayalen; Semal, Catherine; Wright, Beverly A; Amestoy, Anouck; Bouvard, Manuel P; Demany, Laurent

    2015-05-01

    Individuals with autism spectrum disorders (ASD) show enhanced perceptual and memory abilities in the domain of pitch, but also perceptual deficits in other auditory domains. The present study investigated their skills with respect to "echoic memory," a form of short-term sensory memory intimately tied to auditory perception, using a developmental perspective. We tested 23 high-functioning participants with ASD and 26 typically developing (TD) participants, distributed in two age groups (children vs. young adults; mean ages: ∼11 and ∼21 years). By means of an adaptive psychophysical procedure, we measured the longest period for which periodic (i.e., repeated) noise could be reliably discriminated from nonperiodic (i.e., plain random) noise. On each experimental trial, a single noise sample was presented to the participant, who had to classify this sound as periodic or nonperiodic. The TD adults performed, on average, much better than the other three groups, who performed similarly overall. As a function of practice, the measured thresholds improved for the TD participants, but did not change for the ASD participants. Thresholds were not correlated to performance in a test assessing verbal memory. The variance of the participants' response biases was larger among the ASD participants than among the TD participants. The results mainly suggest that echoic memory takes a long time to fully develop in TD humans, and that this development stops prematurely in persons with ASD. (c) 2015 APA, all rights reserved).

  2. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses.

    Science.gov (United States)

    Molloy, Katharine; Griffiths, Timothy D; Chait, Maria; Lavie, Nilli

    2015-12-09

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying "inattentional deafness"--the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼ 100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 "awareness" response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory

  3. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  4. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  5. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva

    2016-01-01

    Children with auditory processing disorder (APD) typically present with "listening difficulties,"' including problems understanding speech in noisy environments. The authors examined, in a group of such children, whether a 12-week computer-based auditory training program with speech material improved the perception of speech-in-noise test performance, and functional listening skills as assessed by parental and teacher listening and communication questionnaires. The authors hypothesized that after the intervention, (1) trained children would show greater improvements in speech-in-noise perception than untrained controls; (2) this improvement would correlate with improvements in observer-rated behaviors; and (3) the improvement would be maintained for at least 3 months after the end of training. This was a prospective randomized controlled trial of 39 children with normal nonverbal intelligence, ages 7 to 11 years, all diagnosed with APD. This diagnosis required a normal pure-tone audiogram and deficits in at least two clinical auditory processing tests. The APD children were randomly assigned to (1) a control group that received only the current standard treatment for children diagnosed with APD, employing various listening/educational strategies at school (N = 19); or (2) an intervention group that undertook a 3-month 5-day/week computer-based auditory training program at home, consisting of a wide variety of speech-based listening tasks with competing sounds, in addition to the current standard treatment. All 39 children were assessed for language and cognitive skills at baseline and on three outcome measures at baseline and immediate postintervention. Outcome measures were repeated 3 months postintervention in the intervention group only, to assess the sustainability of treatment effects. The outcome measures were (1) the mean speech reception threshold obtained from the four subtests of the listening in specialized noise test that assesses sentence perception in

  6. Auditory Processing Disorder in Relation to Developmental Disorders of Language, Communication and Attention: A Review and Critique

    Science.gov (United States)

    Dawes, Piers; Bishop, Dorothy

    2009-01-01

    Background: Auditory Processing Disorder (APD) does not feature in mainstream diagnostic classifications such as the "Diagnostic and Statistical Manual of Mental Disorders, 4th Edition" (DSM-IV), but is frequently diagnosed in the United States, Australia and New Zealand, and is becoming more frequently diagnosed in the United Kingdom. Aims: To…

  7. The speed and accuracy of perceptual decisions in a random-tone pitch task

    NARCIS (Netherlands)

    Mulder, M.J.; Keuken, M.C.; van Maanen, L.; Boekel, W.E.; Forstmann, B.U.; Wagenmakers, E.J.

    2013-01-01

    Research in perceptual decision making is dominated by paradigms that tap the visual system, such as the random-dot motion (RDM) paradigm. In this study, we investigated whether the behavioral signature of perceptual decisions in the auditory domain is similar to those observed in the visual domain.

  8. Defining Auditory-Visual Objects: Behavioral Tests and Physiological Mechanisms.

    Science.gov (United States)

    Bizley, Jennifer K; Maddox, Ross K; Lee, Adrian K C

    2016-02-01

    Crossmodal integration is a term applicable to many phenomena in which one sensory modality influences task performance or perception in another sensory modality. We distinguish the term binding as one that should be reserved specifically for the process that underpins perceptual object formation. To unambiguously differentiate binding form other types of integration, behavioral and neural studies must investigate perception of a feature orthogonal to the features that link the auditory and visual stimuli. We argue that supporting true perceptual binding (as opposed to other processes such as decision-making) is one role for cross-sensory influences in early sensory cortex. These early multisensory interactions may therefore form a physiological substrate for the bottom-up grouping of auditory and visual stimuli into auditory-visual (AV) objects. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Auditory-Acoustic Basis of Consonant Perception. Attachments A thru I

    Science.gov (United States)

    1991-01-22

    conceptual model of the processes whereby the human listener converts the acoustic signal into a string of phonetic elements could be successfully implemented...perceptual aspect is implied. It is within the broad framwork described above that the auditory-perceptual theory will be considered. But before beginning...perceptual and not acoustic or sensory. For example, it is planned to conceptualize the target zones for stops as being physically unrealizable by letting

  10. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014

  11. Auditory disorders and acquisition of the ability to localize sound in children born to HIV-positive mothers

    Directory of Open Access Journals (Sweden)

    Carla Gentile Matas

    Full Text Available The objective of the present study was to evaluate children born to HIV-infected mothers and to determine whether such children present auditory disorders or poor acquisition of the ability to localize sound. The population studied included 143 children (82 males and 61 females, ranging in age from one month to 30 months. The children were divided into three groups according to the classification system devised in 1994 by the Centers for Disease Control and Prevention: infected; seroreverted; and exposed. The children were then submitted to audiological evaluation, including behavioral audiometry, visual reinforcement audiometry and measurement of acoustic immittance. Statistical analysis showed that the incidence of auditory disorders was significantly higher in the infected group. In the seroreverted and exposed groups, there was a marked absence of auditory disorders. In the infected group as a whole, the findings were suggestive of central auditory disorders. Evolution of the ability to localize sound was found to be poorer among the children in the infected group than among those in the seroreverted and exposed groups.

  12. Consequences of comorbidity of developmental coordination disorders and learning disabilities for severity and pattern of perceptual-motor dysfunction

    NARCIS (Netherlands)

    Jongmans, MJ; Smits-Engelsman, BCM; Schoemaker, MM

    2003-01-01

    Children with developmental coordination disorder (DCD) have difficulty learning and performing age-appropriate perceptual-motor skills in the absence of diagnosable neurological disorders. Descriptive studies have shown that comorbidity of DCD exists with attention-deficit/hyperactivity disorder

  13. Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease

    OpenAIRE

    Benoit, C.; Dalla Bella, S.; Farrugia, N.; Obrig, H.; Mainka, S.; Kotz, S.

    2014-01-01

    It is well established that auditory cueing improves gait in patients with idiopathic Parkinson’s disease (IPD). Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor, and sensorimotor integration, auditory ...

  14. Maturation of Rapid Auditory Temporal Processing and Subsequent Nonword Repetition Performance in Children

    Science.gov (United States)

    Fox, Allison M.; Reid, Corinne L.; Anderson, Mike; Richardson, Cassandra; Bishop, Dorothy V. M.

    2012-01-01

    According to the rapid auditory processing theory, the ability to parse incoming auditory information underpins learning of oral and written language. There is wide variation in this low-level perceptual ability, which appears to follow a protracted developmental course. We studied the development of rapid auditory processing using event-related…

  15. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  16. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  17. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  18. Psychophysical indices of perceptual functioning in dyslexia: A psychometric analysis

    OpenAIRE

    Heath, Steve M.; Bishop, Dorothy V. M.; Hogben, John H.; Roach, Neil W.

    2006-01-01

    An influential causal theory attributes dyslexia to visual and/or auditory perceptual deficits. This theory derives from group differences between individuals with dyslexia and controls on a range of psychophysical tasks, but there is substantial variation, both between individuals within a group and from task to task. We addressed two questions. First, do psychophysical measures have sufficient reliability to assess perceptual deficits in individuals? Second, do different psychophysical task...

  19. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    Science.gov (United States)

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017. Published by Oxford University

  20. Random Gap Detection Test (RGDT) performance of individuals with central auditory processing disorders from 5 to 25 years of age.

    Science.gov (United States)

    Dias, Karin Ziliotto; Jutras, Benoît; Acrani, Isabela Olszanski; Pereira, Liliane Desgualdo

    2012-02-01

    The aim of the present study was to assess the auditory temporal resolution ability in individuals with central auditory processing disorders, to examine the maturation effect and to investigate the relationship between the performance on a temporal resolution test with the performance on other central auditory tests. Participants were divided in two groups: 131 with Central Auditory Processing Disorder and 94 with normal auditory processing. They had pure-tone air-conduction thresholds no poorer than 15 dB HL bilaterally, normal admittance measures and presence of acoustic reflexes. Also, they were assessed with a central auditory test battery. Participants who failed at least one or more tests were included in the Central Auditory Processing Disorder group and those in the control group obtained normal performance on all tests. Following the auditory processing assessment, the Random Gap Detection Test was administered to the participants. A three-way ANOVA was performed. Correlation analyses were also done between the four Random Gap Detection Test subtests data as well as between Random Gap Detection Test data and the other auditory processing test results. There was a significant difference between the age-group performances in children with and without Central Auditory Processing Disorder. Also, 48% of children with Central Auditory Processing Disorder failed the Random Gap Detection Test and the percentage decreased as a function of age. The highest percentage (86%) was found in the 5-6 year-old children. Furthermore, results revealed a strong significant correlation between the four Random Gap Detection Test subtests. There was a modest correlation between the Random Gap Detection Test results and the dichotic listening tests. No significant correlation was observed between the Random Gap Detection Test data and the results of the other tests in the battery. Random Gap Detection Test should not be administered to children younger than 7 years old because

  1. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  2. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  3. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  4. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Jana B. Frtusova

    2016-04-01

    Full Text Available This study examined the effect of auditory-visual (AV speech stimuli on working memory in hearing impaired participants (HIP in comparison to age- and education-matched normal elderly controls (NEC. Participants completed a working memory n-back task (0- to 2-back in which sequences of digits were presented in visual-only (i.e., speech-reading, auditory-only (A-only, and AV conditions. Auditory event-related potentials (ERP were collected to assess the relationship between perceptual and working memory processing. The behavioural results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the HIP group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the HIP group showed a more robust AV benefit; however, the NECs showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the HIP to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed.

  5. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  6. Predicting the Perceptual Consequences of Hidden Hearing Loss

    Directory of Open Access Journals (Sweden)

    Andrew J. Oxenham

    2016-12-01

    Full Text Available Recent physiological studies in several rodent species have revealed that permanent damage can occur to the auditory system after exposure to a noise that produces only a temporary shift in absolute thresholds. The damage has been found to occur in the synapses between the cochlea’s inner hair cells and the auditory nerve, effectively severing part of the connection between the ear and the brain. This synaptopathy has been termed hidden hearing loss because its effects are not thought to be revealed in standard clinical, behavioral, or physiological measures of absolute threshold. It is currently unknown whether humans suffer from similar deficits after noise exposure. Even if synaptopathy occurs in humans, it remains unclear what the perceptual consequences might be or how they should best be measured. Here, we apply a simple theoretical model, taken from signal detection theory, to provide some predictions for what perceptual effects could be expected for a given loss of synapses. Predictions are made for a number of basic perceptual tasks, including tone detection in quiet and in noise, frequency discrimination, level discrimination, and binaural lateralization. The model’s predictions are in line with the empirical observations that a 50% loss of synapses leads to changes in threshold that are too small to be reliably measured. Overall, the model provides a simple initial quantitative framework for understanding and predicting the perceptual effects of synaptopathy in humans.

  7. Representation of auditory-filter phase characteristics in the cortex of human listeners

    DEFF Research Database (Denmark)

    Rupp, A.; Sieroka, N.; Gutschalk, A.

    2008-01-01

    consistent with the perceptual data obtained with the same stimuli and with results from simulations of neural activity at the output of cochlear preprocessing. These findings demonstrate that phase effects in peripheral auditory processing are accurately reflected up to the level of the auditory cortex....

  8. Effect of perceptual load on conceptual processing: an extension of Vermeulen's theory.

    Science.gov (United States)

    Xie, Jiushu; Wang, Ruiming; Sun, Xun; Chang, Song

    2013-10-01

    The effect of color and shape load on conceptual processing was studied. Perceptual load effects have been found in visual and auditory conceptual processing, supporting the theory of embodied cognition. However, whether different types of visual concepts, such as color and shape, share the same perceptual load effects is unknown. In the current experiment, 32 participants were administered simultaneous perceptual and conceptual tasks to assess the relation between perceptual load and conceptual processing. Keeping color load in mind obstructed color conceptual processing. Hence, perceptual processing and conceptual load shared the same resources, suggesting embodied cognition. Color conceptual processing was not affected by shape pictures, indicating that different types of properties within vision were separate.

  9. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    Science.gov (United States)

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Science.gov (United States)

    Meilleur, Andrée-Anne S; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent

    2014-01-01

    Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor). Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor), which may drive perceptual abilities differently in autistic and

  11. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Directory of Open Access Journals (Sweden)

    Andrée-Anne S Meilleur

    Full Text Available Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination and mid-level (e.g., pattern matching tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals.We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ and Raven Progressive Matrices (RPM. We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence.In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism.Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor. Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor, which may drive perceptual abilities differently in

  12. Brief Daily Exposures to Asian Females Reverses Perceptual Narrowing for Asian Faces in Caucasian Infants

    Science.gov (United States)

    Anzures, Gizelle; Wheeler, Andrea; Quinn, Paul C.; Pascalis, Olivier; Slater, Alan M.; Heron-Delaney, Michelle; Tanaka, James W.; Lee, Kang

    2012-01-01

    Perceptual narrowing in the visual, auditory, and multisensory domains has its developmental origins during infancy. The current study shows that experimentally induced experience can reverse the effects of perceptual narrowing on infants' visual recognition memory of other-race faces. Caucasian 8- to 10-month-olds who could not discriminate…

  13. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity.

    Science.gov (United States)

    Blais, Mélody; Martin, Elodie; Albaret, Jean-Michel; Tallet, Jessica

    2014-12-15

    Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Motivation and intelligence drive auditory perceptual learning.

    Science.gov (United States)

    Amitay, Sygal; Halliday, Lorna; Taylor, Jenny; Sohoglu, Ediz; Moore, David R

    2010-03-23

    Although feedback on performance is generally thought to promote perceptual learning, the role and necessity of feedback remain unclear. We investigated the effect of providing varying amounts of positive feedback while listeners attempted to discriminate between three identical tones on learning frequency discrimination. Using this novel procedure, the feedback was meaningless and random in relation to the listeners' responses, but the amount of feedback provided (or lack thereof) affected learning. We found that a group of listeners who received positive feedback on 10% of the trials improved their performance on the task (learned), while other groups provided either with excess (90%) or with no feedback did not learn. Superimposed on these group data, however, individual listeners showed other systematic changes of performance. In particular, those with lower non-verbal IQ who trained in the no feedback condition performed more poorly after training. This pattern of results cannot be accounted for by learning models that ascribe an external teacher role to feedback. We suggest, instead, that feedback is used to monitor performance on the task in relation to its perceived difficulty, and that listeners who learn without the benefit of feedback are adept at self-monitoring of performance, a trait that also supports better performance on non-verbal IQ tests. These results show that 'perceptual' learning is strongly influenced by top-down processes of motivation and intelligence.

  15. Cortical Representations of Speech in a Multitalker Auditory Scene.

    Science.gov (United States)

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  16. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment.

    Science.gov (United States)

    Frtusova, Jana B; Phillips, Natalie A

    2016-01-01

    This study examined the effect of auditory-visual (AV) speech stimuli on working memory in older adults with poorer-hearing (PH) in comparison to age- and education-matched older adults with better hearing (BH). Participants completed a working memory n-back task (0- to 2-back) in which sequences of digits were presented in visual-only (i.e., speech-reading), auditory-only (A-only), and AV conditions. Auditory event-related potentials (ERP) were collected to assess the relationship between perceptual and working memory processing. The behavioral results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the PH group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the PH group showed a more robust AV benefit; however, the BH group showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the PH group to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed.

  17. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis.

    Science.gov (United States)

    Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E

    2016-01-01

    Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN.

  18. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis

    Science.gov (United States)

    Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E.

    2016-01-01

    Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN. PMID:26741815

  19. Distraction by deviance: comparing the effects of auditory and visual deviant stimuli on auditory and visual target processing.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-01-01

    We report the results of oddball experiments in which an irrelevant stimulus (standard, deviant) was presented before a target stimulus and the modality of these stimuli was manipulated orthogonally (visual/auditory). Experiment 1 showed that auditory deviants yielded distraction irrespective of the target's modality while visual deviants did not impact on performance. When participants were forced to attend the distractors in order to detect a rare target ("target-distractor"), auditory deviants yielded distraction irrespective of the target's modality and visual deviants yielded a small distraction effect when targets were auditory (Experiments 2 & 3). Visual deviants only produced distraction for visual targets when deviant stimuli were not visually distinct from the other distractors (Experiment 4). Our results indicate that while auditory deviants yield distraction irrespective of the targets' modality, visual deviants only do so when attended and under selective conditions, at least when irrelevant and target stimuli are temporally and perceptually decoupled.

  20. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  1. Auditory Emotional Cues Enhance Visual Perception

    Science.gov (United States)

    Zeelenberg, Rene; Bocanegra, Bruno R.

    2010-01-01

    Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by…

  2. Oscillatory Dynamics Underlying Perceptual Narrowing of Native Phoneme Mapping from 6 to 12 Months of Age.

    Science.gov (United States)

    Ortiz-Mantilla, Silvia; Hämäläinen, Jarmo A; Realpe-Bonilla, Teresa; Benasich, April A

    2016-11-30

    known that, by 12 months of age, human infants move from universal discrimination of most linguistic phonemic contrasts to phonemic expertise in their native language. This perceptual narrowing occurs at the expense of the ability to process non-native phonemes. However, the neural mechanisms underlying this process are still poorly understood. Here we demonstrate that perceptual narrowing is, at least in part, accomplished by decreasing power and phase coherence in the θ range while increasing activity in high-γ in left auditory cortex. Understanding the normative neural mechanisms that support early language acquisition is crucial to understanding and perhaps ameliorating developmental language disorders. Copyright © 2016 the authors 0270-6474/16/3612095-11$15.00/0.

  3. Episodic memory, perceptual memory, and their interaction: foundations for a theory of posttraumatic stress disorder.

    Science.gov (United States)

    Brewin, Chris R

    2014-01-01

    A number of autobiographical memory theories and clinical theories of posttraumatic stress disorder (PTSD) make claims that are different from standard views of memory and have been the subject of controversy. These claims include the existence of a long-term perceptual memory system supporting conscious experience separate to episodic memory; greater involvement of perceptual memory in the response to emotion-laden and personally meaningful events; increased perceptual memory intrusions accompanied by impaired episodic memory for the traumatic event among PTSD patients; and a lack of association, or inverse association, between indices of voluntary recall and involuntary images relating to the same traumatic materials. In this article I review current research on perceptual memory, which supports the presence of long-term representations that are selective or incomplete reflections of sensory input. The functional independence of perceptual and episodic memory is illustrated by research on verbal overshadowing but is most clearly exemplified by the strong evidence in favor of enhanced perceptual memory and impaired episodic memory in PTSD. Theoretical predictions concerning the relation between perceptual priming and the development of intrusive images, the effect of verbal versus visuospatial secondary tasks on intrusive trauma images, and the independence of voluntary and involuntary memory for the same materials have garnered widespread support. Reasons for the continuing controversy over traumatic memory are discussed, and some implications of the review for general theories of recall and recognition, clinical theories of PTSD, and "special mechanism" views of memory are set out. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  4. Cognitive Training Enhances Auditory Attention Efficiency in Older Adults

    Directory of Open Access Journals (Sweden)

    Jennifer L. O’Brien

    2017-10-01

    Full Text Available Auditory cognitive training (ACT improves attention in older adults; however, the underlying neurophysiological mechanisms are still unknown. The present study examined the effects of ACT on the P3b event-related potential reflecting attention allocation (amplitude and speed of processing (latency during stimulus categorization and the P1-N1-P2 complex reflecting perceptual processing (amplitude and latency. Participants completed an auditory oddball task before and after 10 weeks of ACT (n = 9 or a no contact control period (n = 15. Parietal P3b amplitudes to oddball stimuli decreased at post-test in the trained group as compared to those in the control group, and frontal P3b amplitudes show a similar trend, potentially reflecting more efficient attentional allocation after ACT. No advantages for the ACT group were evident for auditory perceptual processing or speed of processing in this small sample. Our results provide preliminary evidence that ACT may enhance the efficiency of attention allocation, which may account for the positive impact of ACT on the everyday functioning of older adults.

  5. Sinusoidal Analysis-Synthesis of Audio Using Perceptual Criteria

    Science.gov (United States)

    Painter, Ted; Spanias, Andreas

    2003-12-01

    This paper presents a new method for the selection of sinusoidal components for use in compact representations of narrowband audio. The method consists of ranking and selecting the most perceptually relevant sinusoids. The idea behind the method is to maximize the matching between the auditory excitation pattern associated with the original signal and the corresponding auditory excitation pattern associated with the modeled signal that is being represented by a small set of sinusoidal parameters. The proposed component-selection methodology is shown to outperform the maximum signal-to-mask ratio selection strategy in terms of subjective quality.

  6. Readability of Questionnaires Assessing Listening Difficulties Associated with (Central) Auditory Processing Disorders

    Science.gov (United States)

    Atcherson, Samuel R.; Richburg, Cynthia M.; Zraick, Richard I.; George, Cassandra M.

    2013-01-01

    Purpose: Eight English-language, student- or parent proxy-administered questionnaires for (central) auditory processing disorders, or (C)APD, were analyzed for readability. For student questionnaires, readability levels were checked against the approximate reading grade levels by intended administration age per the questionnaires' developers. For…

  7. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception.

    Science.gov (United States)

    Mottron, Laurent; Dawson, Michelle; Soulières, Isabelle; Hubert, Benedicte; Burack, Jake

    2006-01-01

    We propose an "Enhanced Perceptual Functioning" model encompassing the main differences between autistic and non-autistic social and non-social perceptual processing: locally oriented visual and auditory perception, enhanced low-level discrimination, use of a more posterior network in "complex" visual tasks, enhanced perception of first order static stimuli, diminished perception of complex movement, autonomy of low-level information processing toward higher-order operations, and differential relation between perception and general intelligence. Increased perceptual expertise may be implicated in the choice of special ability in savant autistics, and in the variability of apparent presentations within PDD (autism with and without typical speech, Asperger syndrome) in non-savant autistics. The overfunctioning of brain regions typically involved in primary perceptual functions may explain the autistic perceptual endophenotype.

  8. Temporal expectation weights visual signals over auditory signals.

    Science.gov (United States)

    Menceloglu, Melisa; Grabowecky, Marcia; Suzuki, Satoru

    2017-04-01

    Temporal expectation is a process by which people use temporally structured sensory information to explicitly or implicitly predict the onset and/or the duration of future events. Because timing plays a critical role in crossmodal interactions, we investigated how temporal expectation influenced auditory-visual interaction, using an auditory-visual crossmodal congruity effect as a measure of crossmodal interaction. For auditory identification, an incongruent visual stimulus produced stronger interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. In contrast, for visual identification, an incongruent auditory stimulus produced weaker interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. The fact that temporal expectation made visual distractors more potent and visual targets less susceptible to auditory interference suggests that temporal expectation increases the perceptual weight of visual signals.

  9. Synchrony of auditory brain responses predicts behavioral ability to keep still in children with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Yuko Yoshimura

    2016-01-01

    Full Text Available The auditory-evoked P1m, recorded by magnetoencephalography, reflects a central auditory processing ability in human children. One recent study revealed that asynchrony of P1m between the right and left hemispheres reflected a central auditory processing disorder (i.e., attention deficit hyperactivity disorder, ADHD in children. However, to date, the relationship between auditory P1m right-left hemispheric synchronization and the comorbidity of hyperactivity in children with autism spectrum disorder (ASD is unknown. In this study, based on a previous report of an asynchrony of P1m in children with ADHD, to clarify whether the P1m right-left hemispheric synchronization is related to the symptom of hyperactivity in children with ASD, we investigated the relationship between voice-evoked P1m right-left hemispheric synchronization and hyperactivity in children with ASD. In addition to synchronization, we investigated the right-left hemispheric lateralization. Our findings failed to demonstrate significant differences in these values between ASD children with and without the symptom of hyperactivity, which was evaluated using the Autism Diagnostic Observational Schedule, Generic (ADOS-G subscale. However, there was a significant correlation between the degrees of hemispheric synchronization and the ability to keep still during 12-minute MEG recording periods. Our results also suggested that asynchrony in the bilateral brain auditory processing system is associated with ADHD-like symptoms in children with ASD.

  10. Membrane potential dynamics of populations of cortical neurons during auditory streaming

    Science.gov (United States)

    Farley, Brandon J.

    2015-01-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts. PMID:26269558

  11. Peeling the Onion of Auditory Processing Disorder: A Language/Curricular-Based Perspective

    Science.gov (United States)

    Wallach, Geraldine P.

    2011-01-01

    Purpose: This article addresses auditory processing disorder (APD) from a language-based perspective. The author asks speech-language pathologists to evaluate the functionality (or not) of APD as a diagnostic category for children and adolescents with language-learning and academic difficulties. Suggestions are offered from a…

  12. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere

  13. Auditory hallucinations: A review of the ERC "VOICE" project.

    Science.gov (United States)

    Hugdahl, Kenneth

    2015-06-22

    In this invited review I provide a selective overview of recent research on brain mechanisms and cognitive processes involved in auditory hallucinations. The review is focused on research carried out in the "VOICE" ERC Advanced Grant Project, funded by the European Research Council, but I also review and discuss the literature in general. Auditory hallucinations are suggested to be perceptual phenomena, with a neuronal origin in the speech perception areas in the temporal lobe. The phenomenology of auditory hallucinations is conceptualized along three domains, or dimensions; a perceptual dimension, experienced as someone speaking to the patient; a cognitive dimension, experienced as an inability to inhibit, or ignore the voices, and an emotional dimension, experienced as the "voices" having primarily a negative, or sinister, emotional tone. I will review cognitive, imaging, and neurochemistry data related to these dimensions, primarily the first two. The reviewed data are summarized in a model that sees auditory hallucinations as initiated from temporal lobe neuronal hyper-activation that draws attentional focus inward, and which is not inhibited due to frontal lobe hypo-activation. It is further suggested that this is maintained through abnormal glutamate and possibly gamma-amino-butyric-acid transmitter mediation, which could point towards new pathways for pharmacological treatment. A final section discusses new methods of acquiring quantitative data on the phenomenology and subjective experience of auditory hallucination that goes beyond standard interview questionnaires, by suggesting an iPhone/iPod app.

  14. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study.

    Science.gov (United States)

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Sugata, Hisato; Hanaie, Ryuzo; Nagatani, Fumiyo; Yamamoto, Tomoka; Tachibana, Masaya; Tominaga, Koji; Hirata, Masayuki; Mohri, Ikuko; Taniike, Masako

    2017-01-01

    Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD), the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG) to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz) in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years) and 13 typically developing boys (mean age, 9.45 ± 1.51 years). We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  15. Autism-Specific Covariation in Perceptual Performances: “g” or “p” Factor?

    Science.gov (United States)

    Meilleur, Andrée-Anne S.; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent

    2014-01-01

    Background Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. Methods We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. Results In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Conclusions Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or “g” factor). Instead, this residual covariation is accounted for by a common perceptual process (or “p” factor), which may drive

  16. Audiomotor Perceptual Training Enhances Speech Intelligibility in Background Noise.

    Science.gov (United States)

    Whitton, Jonathon P; Hancock, Kenneth E; Shannon, Jeffrey M; Polley, Daniel B

    2017-11-06

    Sensory and motor skills can be improved with training, but learning is often restricted to practice stimuli. As an exception, training on closed-loop (CL) sensorimotor interfaces, such as action video games and musical instruments, can impart a broad spectrum of perceptual benefits. Here we ask whether computerized CL auditory training can enhance speech understanding in levels of background noise that approximate a crowded restaurant. Elderly hearing-impaired subjects trained for 8 weeks on a CL game that, like a musical instrument, challenged them to monitor subtle deviations between predicted and actual auditory feedback as they moved their fingertip through a virtual soundscape. We performed our study as a randomized, double-blind, placebo-controlled trial by training other subjects in an auditory working-memory (WM) task. Subjects in both groups improved at their respective auditory tasks and reported comparable expectations for improved speech processing, thereby controlling for placebo effects. Whereas speech intelligibility was unchanged after WM training, subjects in the CL training group could correctly identify 25% more words in spoken sentences or digit sequences presented in high levels of background noise. Numerically, CL audiomotor training provided more than three times the benefit of our subjects' hearing aids for speech processing in noisy listening conditions. Gains in speech intelligibility could be predicted from gameplay accuracy and baseline inhibitory control. However, benefits did not persist in the absence of continuing practice. These studies employ stringent clinical standards to demonstrate that perceptual learning on a computerized audio game can transfer to "real-world" communication challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Auditory conflict and congruence in frontotemporal dementia.

    Science.gov (United States)

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Tone Language Speakers and Musicians Share Enhanced Perceptual and Cognitive Abilities for Musical Pitch: Evidence for Bidirectionality between the Domains of Language and Music

    Science.gov (United States)

    Bidelman, Gavin M.; Hutka, Stefanie; Moreno, Sylvain

    2013-01-01

    Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese) speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory). While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language. PMID:23565267

  19. Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: evidence for bidirectionality between the domains of language and music.

    Science.gov (United States)

    Bidelman, Gavin M; Hutka, Stefanie; Moreno, Sylvain

    2013-01-01

    Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese) speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory). While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language.

  20. Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: evidence for bidirectionality between the domains of language and music.

    Directory of Open Access Journals (Sweden)

    Gavin M Bidelman

    Full Text Available Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory. While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language.

  1. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  2. Music Genre Classification using an Auditory Memory Model

    DEFF Research Database (Denmark)

    Jensen, Kristoffer

    2011-01-01

    Audio feature estimation is potentially improved by including higher- level models. One such model is the Auditory Short Term Memory (STM) model. A new paradigm of audio feature estimation is obtained by adding the influence of notes in the STM. These notes are identified when the perceptual...... results, and an initial experiment with sensory dissonance has been undertaken with good results. The parameters obtained form the auditory memory model, along with the dissonance measure, are shown here to be of interest in genre classification....

  3. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study

    Directory of Open Access Journals (Sweden)

    Junko Matsuzaki

    2017-09-01

    Full Text Available Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD, the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years and 13 typically developing boys (mean age, 9.45 ± 1.51 years. We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  4. Manipulation of Auditory Inputs as Rehabilitation Therapy for Maladaptive Auditory Cortical Reorganization

    Directory of Open Access Journals (Sweden)

    Hidehiko Okamoto

    2018-01-01

    Full Text Available Neurophysiological and neuroimaging data suggest that the brains of not only children but also adults are reorganized based on sensory inputs and behaviors. Plastic changes in the brain are generally beneficial; however, maladaptive cortical reorganization in the auditory cortex may lead to hearing disorders such as tinnitus and hyperacusis. Recent studies attempted to noninvasively visualize pathological neural activity in the living human brain and reverse maladaptive cortical reorganization by the suitable manipulation of auditory inputs in order to alleviate detrimental auditory symptoms. The effects of the manipulation of auditory inputs on maladaptively reorganized brain were reviewed herein. The findings obtained indicate that rehabilitation therapy based on the manipulation of auditory inputs is an effective and safe approach for hearing disorders. The appropriate manipulation of sensory inputs guided by the visualization of pathological brain activities using recent neuroimaging techniques may contribute to the establishment of new clinical applications for affected individuals.

  5. Children with speech sound disorder: Comparing a non-linguistic auditory approach with a phonological intervention approach to improve phonological skills

    Directory of Open Access Journals (Sweden)

    Cristina eMurphy

    2015-02-01

    Full Text Available This study aimed to compare the effects of a non-linguistic auditory intervention approach with a phonological intervention approach on the phonological skills of children with speech sound disorder. A total of 17 children, aged 7-12 years, with speech sound disorder were randomly allocated to either the non-linguistic auditory temporal intervention group (n = 10, average age 7.7 ± 1.2 or phonological intervention group (n = 7, average age 8.6 ± 1.2. The intervention outcomes included auditory-sensory measures (auditory temporal processing skills and cognitive measures (attention, short-term memory, speech production and phonological awareness skills. The auditory approach focused on non-linguistic auditory training (eg. backward masking and frequency discrimination, whereas the phonological approach focused on speech sound training (eg. phonological organisation and awareness. Both interventions consisted of twelve 45-minute sessions delivered twice per week, for a total of nine hours. Intra-group analysis demonstrated that the auditory intervention group showed significant gains in both auditory and cognitive measures, whereas no significant gain was observed in the phonological intervention group. No significant improvement on phonological skills was observed in any of the groups. Inter-group analysis demonstrated significant differences between the improvement following training for both groups, with a more pronounced gain for the non-linguistic auditory temporal intervention in one of the visual attention measures and both auditory measures. Therefore, both analyses suggest that although the non-linguistic auditory intervention approach appeared to be the most effective intervention approach, it was not sufficient to promote the enhancement of phonological skills.

  6. A deafening flash! Visual interference of auditory signal detection.

    Science.gov (United States)

    Fassnidge, Christopher; Cecconi Marcotti, Claudia; Freeman, Elliot

    2017-03-01

    In some people, visual stimulation evokes auditory sensations. How prevalent and how perceptually real is this? 22% of our neurotypical adult participants responded 'Yes' when asked whether they heard faint sounds accompanying flash stimuli, and showed significantly better ability to discriminate visual 'Morse-code' sequences. This benefit might arise from an ability to recode visual signals as sounds, thus taking advantage of superior temporal acuity of audition. In support of this, those who showed better visual relative to auditory sequence discrimination also had poorer auditory detection in the presence of uninformative visual flashes, though this was independent of awareness of visually-evoked sounds. Thus a visually-evoked auditory representation may occur subliminally and disrupt detection of real auditory signals. The frequent natural correlation between visual and auditory stimuli might explain the surprising prevalence of this phenomenon. Overall, our results suggest that learned correspondences between strongly correlated modalities may provide a precursor for some synaesthetic abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates.

    Science.gov (United States)

    Reser, David H; Rosa, Marcello

    2014-12-01

    Ackermann et al. outline a model for elaboration of subcortical motor outputs as a driving force for the development of the apparently unique behaviour of language in humans. They emphasize circuits in the striatum and midbrain, and acknowledge, but do not explore, the importance of the auditory perceptual pathway for evolution of verbal communication. We suggest that understanding the evolution of language will also require understanding of vocalization perception, especially in the auditory cortex.

  8. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  9. Constraints on the Transfer of Perceptual Learning in Accented Speech

    Science.gov (United States)

    Eisner, Frank; Melinger, Alissa; Weber, Andrea

    2013-01-01

    The perception of speech sounds can be re-tuned through a mechanism of lexically driven perceptual learning after exposure to instances of atypical speech production. This study asked whether this re-tuning is sensitive to the position of the atypical sound within the word. We investigated perceptual learning using English voiced stop consonants, which are commonly devoiced in word-final position by Dutch learners of English. After exposure to a Dutch learner’s productions of devoiced stops in word-final position (but not in any other positions), British English (BE) listeners showed evidence of perceptual learning in a subsequent cross-modal priming task, where auditory primes with devoiced final stops (e.g., “seed”, pronounced [si:th]), facilitated recognition of visual targets with voiced final stops (e.g., SEED). In Experiment 1, this learning effect generalized to test pairs where the critical contrast was in word-initial position, e.g., auditory primes such as “town” facilitated recognition of visual targets like DOWN. Control listeners, who had not heard any stops by the speaker during exposure, showed no learning effects. The generalization to word-initial position did not occur when participants had also heard correctly voiced, word-initial stops during exposure (Experiment 2), and when the speaker was a native BE speaker who mimicked the word-final devoicing (Experiment 3). The readiness of the perceptual system to generalize a previously learned adjustment to other positions within the word thus appears to be modulated by distributional properties of the speech input, as well as by the perceived sociophonetic characteristics of the speaker. The results suggest that the transfer of pre-lexical perceptual adjustments that occur through lexically driven learning can be affected by a combination of acoustic, phonological, and sociophonetic factors. PMID:23554598

  10. Auditory Perception and Word Recognition in Cantonese-Chinese Speaking Children with and without Specific Language Impairment

    Science.gov (United States)

    Kidd, Joanna C.; Shum, Kathy K.; Wong, Anita M.-Y.; Ho, Connie S.-H.

    2017-01-01

    Auditory processing and spoken word recognition difficulties have been observed in Specific Language Impairment (SLI), raising the possibility that auditory perceptual deficits disrupt word recognition and, in turn, phonological processing and oral language. In this study, fifty-seven kindergarten children with SLI and fifty-three language-typical…

  11. Suicidality and hospitalisation in patients with borderline personality disorder who experience auditory verbal hallucinations

    NARCIS (Netherlands)

    Slotema, C. W.; Niemantsverdriet, Ellis; Blom, J. D.; van der Gaag, M.; Hoek, H. W.; Sommer, I. E. C.

    Background: In patients with borderline personality disorder (BPD), about 22-50% experience auditory verbal hallucinations (AVH). However, the impact of these hallucinations on suicidal ideation, suicide attempts, crisis-service interventions, and hospital admissions is unknown. Methods: In a

  12. Cortical Auditory Disorders: A Case of Non-Verbal Disturbances Assessed with Event-Related Brain Potentials

    Directory of Open Access Journals (Sweden)

    Sönke Johannes

    1998-01-01

    Full Text Available In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians’ musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19–30 and by event-related potentials (ERP recorded in a modified 'oddball paradigm’. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  13. Cortical auditory disorders: a case of non-verbal disturbances assessed with event-related brain potentials.

    Science.gov (United States)

    Johannes, Sönke; Jöbges, Michael E.; Dengler, Reinhard; Münte, Thomas F.

    1998-01-01

    In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians' musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19-30) and by event-related potentials (ERP) recorded in a modified 'oddball paradigm'. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  14. Cortical potentials in an auditory oddball task reflect individual differences in working memory capacity.

    Science.gov (United States)

    Yurgil, Kate A; Golob, Edward J

    2013-12-01

    This study determined whether auditory cortical responses associated with mechanisms of attention vary with individual differences in working memory capacity (WMC) and perceptual load. The operation span test defined subjects with low versus high WMC, who then discriminated target/nontarget tones while EEG was recorded. Infrequent white noise distracters were presented at midline or ±90° locations, and perceptual load was manipulated by varying nontarget frequency. Amplitude of the N100 to distracters was negatively correlated with WMC. Relative to targets, only high WMC subjects showed attenuated N100 amplitudes to nontargets. In the higher WMC group, increased perceptual load was associated with decreased P3a amplitudes to distracters and longer-lasting negative slow wave to nontargets. Results show that auditory cortical processing is associated with multiple facets of attention related to WMC and possibly higher-level cognition. Copyright © 2013 Society for Psychophysiological Research.

  15. A efetividade do treinamento auditivo na desordem do processamento auditivo central: estudo de caso The effectiveness of the auditory training in the central auditory processing disorder: a case study

    Directory of Open Access Journals (Sweden)

    Lorena Kozlowski

    2004-06-01

    Full Text Available O objetivo deste trabalho é a apresentação de um caso de um indivíduo de 9 anos de idade, do sexo masculino, com queixa de distúrbio de aprendizagem, para o qual a efetividade da fonoterapia pôde ser avaliada através de testes objetivos e comportamentais, compreendendo audiometria tonal, imitanciometria, potenciais auditivos evocados de tronco encefálico, P300 e Avaliação do Processamento Auditivo Central. Foram encontrados resultados normais nos exames otorrinolaringológico e audiológico. O P300 foi realizado mostrando tempo de latência aumentada. A avaliação do Processamento Auditivo Central revelou uma desordem em grau severo, caracterizada por alterações nos processos de codificação, organização e memória, assim como dificuldade significativa para atenção seletiva e fechamento auditivo. Foi diagnosticado Desordem do Processamento Auditivo Central, sendo que o indivíduo foi encaminhado para acompanhamento fonoaudiológico com o objetivo de desenvolvimento das habilidades auditivas alteradas. Após um período de 4 meses de fonoterapia, repetidos os exames acima descritos, observou-se melhora nas latências do P300, a desordem permaneceu em grau moderado, com prejuízo mais significativo no processo de organização e não apresentou dificuldade para o fechamento auditivo. Podemos concluir com este estudo a efetividade da terapia fonoaudiológica para o desenvolvimento das habilidades auditivas, podendo ser verificada através da avaliação objetiva e comportamental.The objective of this study is to present the effectiveness of auditory training in the evaluation of a 9 year-old individual with a learning disorder, which have been evaluated through objective and behavioral tests, including audiometric test, imitanciometry, auditory brain response, P300 and central auditory processing evaluation. The diagnosis of Central Auditory Processing Disorder (CAPD was confirmed by a normal performance on an audiometric test

  16. A eficácia do treinamento auditivo formal em indivíduos com transtorno de processamento auditivo Formal auditory training efficacy in individuals with auditory processing disorder

    Directory of Open Access Journals (Sweden)

    Tatiane Eisencraft Zalcman

    2007-12-01

    Full Text Available OBJETIVO: Verificar a eficácia de um programa de Treinamento Auditivo comparando o desempenho inicial, nos testes comportamentais, com o desempenho após o treinamento auditivo aplicado em indivíduos com Transtorno de Processamento Auditivo. MÉTODOS: Participaram do estudo 30 sujeitos com idades entre oito e 16 anos, que passaram por uma avaliação comportamental inicial do processamento auditivo em que foram utilizados dois testes monóticos e dois dicóticos. Posteriormente foram submetidos a um programa de treinamento de auditivo durante oito semanas, a fim de reabilitar as habilidades auditivas encontradas alteradas na avaliação inicial do processamento auditivo e por fim passaram por uma nova avaliação comportamental do processamento auditivo. RESULTADOS: Após o treinamento auditivo houve melhora em todos os testes aplicados. No teste PSI, pré-treinamento auditivo, as crianças, as crianças tinham uma média de acerto de 66,8% que passou para 86,2% após o treinamento auditivo. No teste de fala com ruído, as crianças tinham uma média de acerto de 69,3% pré-treinamento auditivo que passou a ser 80,5% pós-treinamento auditivo. No teste DNV, a média de acerto pré-treinamento auditivo era de 72,6% e passou a ser 91,4%. Finalmente, no teste SSW a treinamento auditivo média de acerto era de 42,2% pré-treinamento auditivo e passou a ser 88,9% pós. CONCLUSÃO: O programa de treinamento auditivo utilizado foi eficaz na reabilitação das habilidades auditivas encontradas alteradas nas crianças com Transtorno de Processamento Auditivo.PURPOSE: To assess the effectiveness of the Auditory Training comparing the performance in the behavioral tests before and after auditory training in individuals with Auditory Processing Disorders. METHODS: Thirty individuals with ages ranging from eight to 16 years were submitted to an auditory processing evaluation, which consisted of two monotic and two dichotic tests. After that, the

  17. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences

    Directory of Open Access Journals (Sweden)

    Stanislava Knyazeva

    2018-01-01

    Full Text Available This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.

  18. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences.

    Science.gov (United States)

    Knyazeva, Stanislava; Selezneva, Elena; Gorkin, Alexander; Aggelopoulos, Nikolaos C; Brosch, Michael

    2018-01-01

    This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman's population separation model of auditory streaming.

  19. The DiaNAH test battery for visual perceptual disorders : Validity and efficacy in rehabilitation practice

    NARCIS (Netherlands)

    Heutink, Jochem; de Vries, Stefanie; Melis, Bart; Vrijling, Anne; Tucha, Oliver

    2018-01-01

    We developed the DiaNAH test battery for the screening of mid-level and higher-order visual perceptual disorders in clinical practice. The DiaNAH battery comprises 11 different tests and can be administered in 30-60 minutes. Important feature of the DiaNAH battery is that it is administered on a 24”

  20. The Processing of Biologically Plausible and Implausible forms in American Sign Language: Evidence for Perceptual Tuning.

    Science.gov (United States)

    Almeida, Diogo; Poeppel, David; Corina, David

    The human auditory system distinguishes speech-like information from general auditory signals in a remarkably fast and efficient way. Combining psychophysics and neurophysiology (MEG), we demonstrate a similar result for the processing of visual information used for language communication in users of sign languages. We demonstrate that the earliest visual cortical responses in deaf signers viewing American Sign Language (ASL) signs show specific modulations to violations of anatomic constraints that would make the sign either possible or impossible to articulate. These neural data are accompanied with a significantly increased perceptual sensitivity to the anatomical incongruity. The differential effects in the early visual evoked potentials arguably reflect an expectation-driven assessment of somatic representational integrity, suggesting that language experience and/or auditory deprivation may shape the neuronal mechanisms underlying the analysis of complex human form. The data demonstrate that the perceptual tuning that underlies the discrimination of language and non-language information is not limited to spoken languages but extends to languages expressed in the visual modality.

  1. The effects of divided attention on auditory priming.

    Science.gov (United States)

    Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W

    2007-09-01

    Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.

  2. The Impacts of Language Background and Language-Related Disorders in Auditory Processing Assessment

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Bamiou, Doris-Eva; Rosen, Stuart

    2013-01-01

    Purpose: To examine the impact of language background and language-related disorders (LRDs--dyslexia and/or language impairment) on performance in English speech and nonspeech tests of auditory processing (AP) commonly used in the clinic. Method: A clinical database concerning 133 multilingual children (mostly with English as an additional…

  3. Short-Term Memory and Auditory Processing Disorders: Concurrent Validity and Clinical Diagnostic Markers

    Science.gov (United States)

    Maerlender, Arthur

    2010-01-01

    Auditory processing disorders (APDs) are of interest to educators and clinicians, as they impact school functioning. Little work has been completed to demonstrate how children with APDs perform on clinical tests. In a series of studies, standard clinical (psychometric) tests from the Wechsler Intelligence Scale for Children, Fourth Edition…

  4. Heterogeneity in Perceptual Category Learning by High Functioning Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Eduardo eMercado

    2015-06-01

    Full Text Available Previous research suggests that high functioning children with Autism Spectrum Disorder (ASD sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally-based theories account for atypical perceptual category learning shown by high functioning children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children’s performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets.

  5. Heterogeneity in perceptual category learning by high functioning children with autism spectrum disorder.

    Science.gov (United States)

    Mercado, Eduardo; Church, Barbara A; Coutinho, Mariana V C; Dovgopoly, Alexander; Lopata, Christopher J; Toomey, Jennifer A; Thomeer, Marcus L

    2015-01-01

    Previous research suggests that high functioning (HF) children with autism spectrum disorder (ASD) sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally based theories account for atypical perceptual category learning shown by HF children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children's performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets.

  6. Changes in auditory memory performance following the use of frequency-modulated system in children with suspected auditory processing disorders.

    Science.gov (United States)

    Umat, Cila; Mukari, Siti Z; Ezan, Nurul F; Din, Normah C

    2011-08-01

    To examine the changes in the short-term auditory memory following the use of frequency-modulated (FM) system in children with suspected auditory processing disorders (APDs), and also to compare the advantages of bilateral over unilateral FM fitting. This longitudinal study involved 53 children from Sekolah Kebangsaan Jalan Kuantan 2, Kuala Lumpur, Malaysia who fulfilled the inclusion criteria. The study was conducted from September 2007 to October 2008 in the Department of Audiology and Speech Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. The children's age was between 7-10 years old, and they were assigned into 3 groups: 15 in the control group (not fitted with FM); 19 in the unilateral; and 19 in the bilateral FM-fitting group. Subjects wore the FM system during school time for 12 weeks. Their working memory (WM), best learning (BL), and retention of information (ROI) were measured using the Rey Auditory Verbal Learning Test at pre-fitting, post (after 12 weeks of FM usage), and at long term (one year after the usage of FM system ended). There were significant differences in the mean WM (p=0.001), BL (p=0.019), and ROI (p=0.005) scores at the different measurement times, in which the mean scores at long-term were consistently higher than at pre-fitting, despite similar performances at the baseline (p>0.05). There was no significant difference in performance between unilateral- and bilateral-fitting groups. The use of FM might give a long-term effect on improving selected short-term auditory memories of some children with suspected APDs. One may not need to use 2 FM receivers to receive advantages on auditory memory performance.

  7. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations

    NARCIS (Netherlands)

    Curcic-Blake, Branislava; Ford, Judith M.; Hubl, Daniela; Orlov, Natasza D.; Sommer, Iris E.; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W.; David, Olivier; Mulert, Christoph; Woodward, Todd S.; Aleman, Andre

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of

  8. Age effects and normative data on a Dutch test battery for auditory processing disorders.

    NARCIS (Netherlands)

    Neijenhuis, C.A.M.; Snik, A.F.M.; Priester, G.; Kordenoordt, S. van; Broek, P. van den

    2002-01-01

    A test battery compiled to diagnose auditory processing disorders (APDs) in an adult population was used on a population of 9-16-year-old children. The battery consisted of eight tests (words -in noise, filtered speech, binaural fusion, dichotic digits, frequency and duration patterns, backward

  9. Temporal integration of consecutive tones into synthetic vowels demonstrates perceptual assembly in audition

    NARCIS (Netherlands)

    Saija, Jefta D.; Andringa, Tjeerd C.; Başkent, Deniz; Akyürek, Elkan G.

    Temporal integration is the perceptual process combining sensory stimulation over time into longer percepts that can span over 10 times the duration of a minimally detectable stimulus. Particularly in the auditory domain, such "long-term" temporal integration has been characterized as a relatively

  10. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Science.gov (United States)

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055

  11. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Directory of Open Access Journals (Sweden)

    Qingcui eWang

    2015-05-01

    Full Text Available Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ or ‘group motion’. In element motion, the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in group motion, both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside. Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of group motion as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps. The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.

  12. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.

    Science.gov (United States)

    Murphy, Gillian; Greene, Ciara M

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  13. Skilled deaf readers have an enhanced perceptual span in reading.

    Science.gov (United States)

    Bélanger, Nathalie N; Slattery, Timothy J; Mayberry, Rachel I; Rayner, Keith

    2012-07-01

    Recent evidence suggests that, compared with hearing people, deaf people have enhanced visual attention to simple stimuli viewed in the parafovea and periphery. Although a large part of reading involves processing the fixated words in foveal vision, readers also utilize information in parafoveal vision to preprocess upcoming words and decide where to look next. In the study reported here, we investigated whether auditory deprivation affects low-level visual processing during reading by comparing the perceptual span of deaf signers who were skilled and less-skilled readers with the perceptual span of skilled hearing readers. Compared with hearing readers, the two groups of deaf readers had a larger perceptual span than would be expected given their reading ability. These results provide the first evidence that deaf readers' enhanced attentional allocation to the parafovea is used during complex cognitive tasks, such as reading.

  14. Perceptual Load Affects Eyewitness Accuracy & Susceptibility to Leading Questions

    Directory of Open Access Journals (Sweden)

    Gillian Murphy

    2016-08-01

    Full Text Available Load Theory (Lavie, 1995; 2005 states that the level of perceptual load in a task (i.e. the amount of information involved in processing task-relevant stimuli determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator, the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  15. Enhanced association between perceptual stimuli and trauma-related information in individuals with posttraumatic stress disorder symptoms.

    Science.gov (United States)

    Lin, Muyu; Hofmann, Stefan G; Qian, Mingyi; Li, Songwei

    2015-03-01

    Intrusive memories in traumatized individuals are often triggered by stimuli that are perceptually (rather than conceptually) similar to those present just before or during the trauma. The present study examined whether those individuals with high levels of Posttraumatic Stress Disorder (PTSD) symptoms show a memory bias recall to perceptual cues and trauma target words compared to those with low levels of PTSD. The sample consisted of 30 adult participants who were involved in motor-vehicle or work-related accidents; 15 of the participants endorsed clinically elevated symptoms of PTSD, while a comparison group of 15 participants reported low levels of symptoms. Participants performed an associative recognition task with conceptual or perceptual cue words and trauma-related or neutral target words. Participants were tested for their recognition accuracy by reporting the corresponding target when a cue was given. Both groups performed better for the perceptual word pairs than for the conceptual word pairs, irrespective of the target word type. However, only the high PTSD symptoms group exhibited an additional enhancement in performance for the perceptual word pairs with trauma-related target words. A nonclinical sample was utilized for this study; although PTSD was assessed, diagnoses were not confirmed. In addition, there was lack of a healthy non-traumatized control group. These results provide partial support for the cognitive model and the notion that intrusive memories are specific to the trauma-related event rather than to a general associative learning bias.

  16. Psychometric properties of Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit-hyperactivity disorder.

    Science.gov (United States)

    Soltanparast, Sanaz; Jafari, Zahra; Sameni, Seyed Jalal; Salehi, Masoud

    2014-01-01

    The purpose of the present study was to evaluate the psychometric properties (validity and reliability) of the Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit hyperactivity disorder. The Persian version of the Sustained Auditory Attention Capacity Test was constructed to assess sustained auditory attention using the method provided by Feniman and colleagues (2007). In this test, comments were provided to assess the child's attentional deficit by determining inattention and impulsiveness error, the total scores of the sustained auditory attention capacity test and attention span reduction index. In the present study for determining the validity and reliability of in both Rey Auditory Verbal Learning test and the Persian version of the Sustained Auditory Attention Capacity Test (SAACT), 46 normal children and 41 children with Attention Deficit Hyperactivity (ADHD), all right-handed and aged between 7 and 11 of both genders, were evaluated. In determining convergent validity, a negative significant correlation was found between the three parts of the Rey Auditory Verbal Learning test (first, fifth, and immediate recall) and all indicators of the SAACT except attention span reduction. By comparing the test scores between the normal and ADHD groups, discriminant validity analysis showed significant differences in all indicators of the test except for attention span reduction (pAttention Capacity test has good validity and reliability, that matches other reliable tests, and it can be used for the identification of children with attention deficits and if they suspected to have Attention Deficit Hyperactivity Disorder.

  17. Discovering Structure in Auditory Input: Evidence from Williams Syndrome

    Science.gov (United States)

    Elsabbagh, Mayada; Cohen, Henri; Karmiloff-Smith, Annette

    2010-01-01

    We examined auditory perception in Williams syndrome by investigating strategies used in organizing sound patterns into coherent units. In Experiment 1, we investigated the streaming of sound sequences into perceptual units, on the basis of pitch cues, in a group of children and adults with Williams syndrome compared to typical controls. We showed…

  18. Auditory, Tactile, and Audiotactile Information Processing Following Visual Deprivation

    Science.gov (United States)

    Occelli, Valeria; Spence, Charles; Zampini, Massimiliano

    2013-01-01

    We highlight the results of those studies that have investigated the plastic reorganization processes that occur within the human brain as a consequence of visual deprivation, as well as how these processes give rise to behaviorally observable changes in the perceptual processing of auditory and tactile information. We review the evidence showing…

  19. Auditory reafferences: The influence of real-time feedback on movement control

    Directory of Open Access Journals (Sweden)

    Christian eKennel

    2015-01-01

    Full Text Available Auditory reafferences are real-time auditory products created by a person’s own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with nonartificial auditory cues. Our results support the existing theoretical understanding of action–perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  20. Auditory reafferences: the influence of real-time feedback on movement control.

    Science.gov (United States)

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  1. Biases in Visual, Auditory, and Audiovisual Perception of Space

    Science.gov (United States)

    Odegaard, Brian; Wozny, David R.; Shams, Ladan

    2015-01-01

    Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1) if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors), and (2) whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli). Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers) was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s) driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only improves the

  2. Biases in Visual, Auditory, and Audiovisual Perception of Space.

    Directory of Open Access Journals (Sweden)

    Brian Odegaard

    2015-12-01

    Full Text Available Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1 if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors, and (2 whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli. Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only

  3. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Directory of Open Access Journals (Sweden)

    David Alais

    2010-06-01

    Full Text Available An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ. Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones was slightly weaker than visual learning (lateralised grating patches. Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order

  4. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Science.gov (United States)

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be

  5. Treinamento auditivo para transtorno do processamento auditivo: uma proposta de intervenção terapêutica Auditory training for auditory processing disorder: a proposal for therapeutic intervention

    Directory of Open Access Journals (Sweden)

    Alessandra Giannella Samelli

    2010-04-01

    Full Text Available OBJETIVO: verificar a eficácia de um programa informal de treinamento auditivo específico para transtornos do Processamento Auditivo, em um grupo de pacientes com esta alteração, por meio da comparação de pré e pós-testes. MÉTODOS: participaram deste estudo 10 indivíduos de ambos os sexos, da faixa etária entre sete e 20 anos. Todos realizaram avaliação audiológica completa e do processamento auditivo (testes: Fala com Ruído, Sttagered Spondaic Word - SSW, Dicótico de Dígitos, Padrão de Frequência. Após 10 sessões individuais de treinamento auditivo, nas quais foram trabalhadas diretamente as habilidades auditivas alteradas, a avaliação do processamento auditivo foi refeita. RESULTADOS: as porcentagens médias de acertos nas situações pré e pós-treinamento auditivo demonstraram diferenças estatisticamente significantes em todos os testes realizados. CONCLUSÃO: o programa de treinamento auditivo informal empregado mostrou-se eficaz em um grupo de pacientes com transtorno do processamento auditivo, uma vez que determinou diferença estatisticamente significante entre o desempenho pré e pós-testes na avaliação do processamento auditivo, indicando melhora das habilidades auditivas alteradas.PURPOSE: to check the auditory training efficacy in patients with (central auditory processing disorder, by comparing pre and post results. METHODS: ten male and female subjects, from 7 to 20-year old, took part in this study. All participants were submitted to audiological and (central auditory processing evaluations, which included Speech Recognition under in Noise, Staggered Spondaic Word, Dichotic Digits and Frequency Pattern Discrimination tests. Evaluation was carried out after 10 auditory training sessions. RESULTS: statistical differences were verified comparing pre and post results concerning the mean percentage for all tests. CONCLUSION: the informal auditory training program used showed to be efficient for patients with

  6. The Auditory Enhancement Effect is Not Reflected in the 80-Hz Auditory Steady-State Response

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.; Portron, Arthur; Semal, Catherine; Demany, Laurent

    2014-01-01

    The perceptual salience of a target tone presented in a multitone background is increased by the presentation of a precursor sound consisting of the multitone background alone. It has been proposed that this “enhancement” phenomenon results from an effective amplification of the neural response to the target tone. In this study, we tested this hypothesis in humans, by comparing the auditory steady-state response (ASSR) to a target tone that was enhanced by a precursor sound with the ASSR to a...

  7. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise

    Directory of Open Access Journals (Sweden)

    Dana L Strait

    2011-06-01

    Full Text Available Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker’s voice amidst others. Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and nonmusicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not nonmusicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work from our laboratory documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development of language-related skills, musical training may aid in the prevention, habilitation and remediation of children with a wide range of attention-based language and learning impairments.

  8. Relationship between perceptual learning in speech and statistical learning in younger and older adults

    Directory of Open Access Journals (Sweden)

    Thordis Marisa Neger

    2014-09-01

    Full Text Available Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech.In the present study, 73 older adults (aged over 60 years and 60 younger adults (aged between 18 and 30 years performed a visual artificial grammar learning task and were presented with sixty meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory and processing speed. Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

  9. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    Science.gov (United States)

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  10. A Measure of the Auditory-perceptual Quality of Strain from Electroglottographic Analysis of Continuous Dysphonic Speech: Application to Adductor Spasmodic Dysphonia.

    Science.gov (United States)

    Somanath, Keerthan; Mau, Ted

    2016-11-01

    (1) To develop an automated algorithm to analyze electroglottographic (EGG) signal in continuous dysphonic speech, and (2) to identify EGG waveform parameters that correlate with the auditory-perceptual quality of strain in the speech of patients with adductor spasmodic dysphonia (ADSD). Software development with application in a prospective controlled study. EGG was recorded from 12 normal speakers and 12 subjects with ADSD reading excerpts from the Rainbow Passage. Data were processed by a new algorithm developed with the specific goal of analyzing continuous dysphonic speech. The contact quotient, pulse width, a new parameter peak skew, and various contact closing slope quotient and contact opening slope quotient measures were extracted. EGG parameters were compared between normal and ADSD speech. Within the ADSD group, intra-subject comparison was also made between perceptually strained syllables and unstrained syllables. The opening slope quotient SO7525 distinguished strained syllables from unstrained syllables in continuous speech within individual subjects with ADSD. The standard deviations, but not the means, of contact quotient, EGGW50, peak skew, and SO7525 were different between normal and ADSD speakers. The strain-stress pattern in continuous speech can be visualized as color gradients based on the variation of EGG parameter values. EGG parameters may provide a within-subject measure of vocal strain and serve as a marker for treatment response. The addition of EGG to multidimensional assessment may lead to improved characterization of the voice disturbance in ADSD. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  12. Psychoacoustic and cognitive aspects of auditory roughness: definitions, models, and applications

    Science.gov (United States)

    Vassilakis, Pantelis N.; Kendall, Roger A.

    2010-02-01

    The term "auditory roughness" was first introduced in the 19th century to describe the buzzing, rattling auditory sensation accompanying narrow harmonic intervals (i.e. two tones with frequency difference in the range of ~15-150Hz, presented simultaneously). A broader definition and an overview of the psychoacoustic correlates of the auditory roughness sensation, also referred to as sensory dissonance, is followed by an examination of efforts to quantify it over the past one hundred and fifty years and leads to the introduction of a new roughness calculation model and an application that automates spectral and roughness analysis of sound signals. Implementation of spectral and roughness analysis is briefly discussed in the context of two pilot perceptual experiments, designed to assess the relationship among cultural background, music performance practice, and aesthetic attitudes towards the auditory roughness sensation.

  13. Examination of the Relation between an Assessment of Skills and Performance on Auditory-Visual Conditional Discriminations for Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kodak, Tiffany; Clements, Andrea; Paden, Amber R.; LeBlanc, Brittany; Mintz, Joslyn; Toussaint, Karen A.

    2015-01-01

    The current investigation evaluated repertoires that may be related to performance on auditory-to-visual conditional discrimination training with 9 students who had been diagnosed with autism spectrum disorder. The skills included in the assessment were matching, imitation, scanning, an auditory discrimination, and a visual discrimination. The…

  14. Sizing up the competition: quantifying the influence of the mental lexicon on auditory and visual spoken word recognition.

    Science.gov (United States)

    Strand, Julia F; Sommers, Mitchell S

    2011-09-01

    Much research has explored how spoken word recognition is influenced by the architecture and dynamics of the mental lexicon (e.g., Luce and Pisoni, 1998; McClelland and Elman, 1986). A more recent question is whether the processes underlying word recognition are unique to the auditory domain, or whether visually perceived (lipread) speech may also be sensitive to the structure of the mental lexicon (Auer, 2002; Mattys, Bernstein, and Auer, 2002). The current research was designed to test the hypothesis that both aurally and visually perceived spoken words are isolated in the mental lexicon as a function of their modality-specific perceptual similarity to other words. Lexical competition (the extent to which perceptually similar words influence recognition of a stimulus word) was quantified using metrics that are well-established in the literature, as well as a statistical method for calculating perceptual confusability based on the phi-square statistic. Both auditory and visual spoken word recognition were influenced by modality-specific lexical competition as well as stimulus word frequency. These findings extend the scope of activation-competition models of spoken word recognition and reinforce the hypothesis (Auer, 2002; Mattys et al., 2002) that perceptual and cognitive properties underlying spoken word recognition are not specific to the auditory domain. In addition, the results support the use of the phi-square statistic as a better predictor of lexical competition than metrics currently used in models of spoken word recognition. © 2011 Acoustical Society of America

  15. Model cortical responses for the detection of perceptual onsets and beat tracking in singing

    NARCIS (Netherlands)

    Coath, M.; Denham, S.L.; Smith, L.M.; Honing, H.; Hazan, A.; Holonowicz, P.; Purwins, H.

    2009-01-01

    We describe a biophysically motivated model of auditory salience based on a model of cortical responses and present results that show that the derived measure of salience can be used to identify the position of perceptual onsets in a musical stimulus successfully. The salience measure is also shown

  16. The role of the speech-language pathologist in identifying and treating children with auditory processing disorder.

    Science.gov (United States)

    Richard, Gail J

    2011-07-01

    A summary of issues regarding auditory processing disorder (APD) is presented, including some of the remaining questions and challenges raised by the articles included in the clinical forum. Evolution of APD as a diagnostic entity within audiology and speech-language pathology is reviewed. A summary of treatment efficacy results and issues is provided, as well as the continuing dilemma for speech-language pathologists (SLPs) charged with providing treatment for referred APD clients. The role of the SLP in diagnosing and treating APD remains under discussion, despite lack of efficacy data supporting auditory intervention and questions regarding the clinical relevance and validity of APD.

  17. The perceptual nature of the cross-modal priming effect: arguments in favor of a sensory-based conception of memory.

    Science.gov (United States)

    Vallet, Guillaume; Brunel, Lionel; Versace, Rémy

    2010-01-01

    The aim of this study was to demonstrate that the cross-modal priming effect is perceptual and therefore consistent with the idea that knowledge is modality dependent. We used a two-way cross-modal priming paradigm in two experiments. These experiments were constructed on the basis of a two-phase priming paradigm. In the study phase of Experiment 1, participants had to categorize auditory primes as "animal" or "artifact". In the test phase, they had to perform the same categorization task with visual targets which corresponded either to the auditory primes presented in the study phase (old items) or to new stimuli (new items). To demonstrate the perceptual nature of the cross-modal priming effect, half of the auditory primes were presented with a visual mask (old-masked items). In the second experiment, the visual stimuli were used as primes and the auditory stimuli as targets, and half of the visual primes were presented with an auditory mask (a white noise). We hypothesized that if the cross-modal priming effect results from an activation of modality-specific representations, then the mask should interfere with the priming effect. In both experiments, the results corroborated our predictions. In addition, we observed a cross-modal priming effect from pictures to sounds in a long-term paradigm for the first time.

  18. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  19. Multiple benefits of personal FM system use by children with auditory processing disorder (APD).

    Science.gov (United States)

    Johnston, Kristin N; John, Andrew B; Kreisman, Nicole V; Hall, James W; Crandell, Carl C

    2009-01-01

    Children with auditory processing disorders (APD) were fitted with Phonak EduLink FM devices for home and classroom use. Baseline measures of the children with APD, prior to FM use, documented significantly lower speech-perception scores, evidence of decreased academic performance, and psychosocial problems in comparison to an age- and gender-matched control group. Repeated measures during the school year demonstrated speech-perception improvement in noisy classroom environments as well as significant academic and psychosocial benefits. Compared with the control group, the children with APD showed greater speech-perception advantage with FM technology. Notably, after prolonged FM use, even unaided (no FM device) speech-perception performance was improved in the children with APD, suggesting the possibility of fundamentally enhanced auditory system function.

  20. Multimodal Diffusion-MRI and MEG Assessment of Auditory and Language System Development in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey I Berman

    2016-03-01

    Full Text Available Background: Auditory processing and language impairments are prominent in children with autism spectrum disorder (ASD. The present study integrated diffusion MR measures of white-matter microstructure and magnetoencephalography (MEG measures of cortical dynamics to investigate associations between brain structure and function within auditory and language systems in ASD. Based on previous findings, abnormal structure-function relationships in auditory and language systems in ASD were hypothesized. Methods: Evaluable neuroimaging data was obtained from 44 typically developing (TD children (mean age 10.4±2.4years and 95 children with ASD (mean age 10.2±2.6years. Diffusion MR tractography was used to delineate and quantitatively assess the auditory radiation and arcuate fasciculus segments of the auditory and language systems. MEG was used to measure (1 superior temporal gyrus auditory evoked M100 latency in response to pure-tone stimuli as an indicator of auditory system conduction velocity, and (2 auditory vowel-contrast mismatch field (MMF latency as a passive probe of early linguistic processes. Results: Atypical development of white matter and cortical function, along with atypical lateralization, were present in ASD. In both auditory and language systems, white matter integrity and cortical electrophysiology were found to be coupled in typically developing children, with white matter microstructural features contributing significantly to electrophysiological response latencies. However, in ASD, we observed uncoupled structure-function relationships in both auditory and language systems. Regression analyses in ASD indicated that factors other than white-matter microstructure additionally contribute to the latency of neural evoked responses and ultimately behavior. Results also indicated that whereas delayed M100 is a marker for ASD severity, MMF delay is more associated with language impairment. Conclusion: Present findings suggest atypical

  1. Interactions of cognitive and auditory abilities in congenitally blind individuals.

    Science.gov (United States)

    Rokem, Ariel; Ahissar, Merav

    2009-02-01

    Congenitally blind individuals have been found to show superior performance in perceptual and memory tasks. In the present study, we asked whether superior stimulus encoding could account for performance in memory tasks. We characterized the performance of a group of congenitally blind individuals on a series of auditory, memory and executive cognitive tasks and compared their performance to that of sighted controls matched for age, education and musical training. As expected, we found superior verbal spans among congenitally blind individuals. Moreover, we found superior speech perception, measured by resilience to noise, and superior auditory frequency discrimination. However, when memory span was measured under conditions of equivalent speech perception, by adjusting the signal to noise ratio for each individual to the same level of perceptual difficulty (80% correct), the advantage in memory span was completely eliminated. Moreover, blind individuals did not possess any advantage in cognitive executive functions, such as manipulation of items in memory and math abilities. We propose that the short-term memory advantage of blind individuals results from better stimulus encoding, rather than from superiority at subsequent processing stages.

  2. Multisensory perceptual learning is dependent upon task difficulty.

    Science.gov (United States)

    De Niear, Matthew A; Koo, Bonhwang; Wallace, Mark T

    2016-11-01

    There has been a growing interest in developing behavioral tasks to enhance temporal acuity as recent findings have demonstrated changes in temporal processing in a number of clinical conditions. Prior research has demonstrated that perceptual training can enhance temporal acuity both within and across different sensory modalities. Although certain forms of unisensory perceptual learning have been shown to be dependent upon task difficulty, this relationship has not been explored for multisensory learning. The present study sought to determine the effects of task difficulty on multisensory perceptual learning. Prior to and following a single training session, participants completed a simultaneity judgment (SJ) task, which required them to judge whether a visual stimulus (flash) and auditory stimulus (beep) presented in synchrony or at various stimulus onset asynchronies (SOAs) occurred synchronously or asynchronously. During the training session, participants completed the same SJ task but received feedback regarding the accuracy of their responses. Participants were randomly assigned to one of three levels of difficulty during training: easy, moderate, and hard, which were distinguished based on the SOAs used during training. We report that only the most difficult (i.e., hard) training protocol enhanced temporal acuity. We conclude that perceptual training protocols for enhancing multisensory temporal acuity may be optimized by employing audiovisual stimuli for which it is difficult to discriminate temporal synchrony from asynchrony.

  3. A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus

    DEFF Research Database (Denmark)

    IIiadou, Vasiliki; Ptok, Martin; Grech, Helen

    2017-01-01

    Current notions of "hearing impairment," as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other...... of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional......, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order...

  4. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    Science.gov (United States)

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  5. Missing a trick: Auditory load modulates conscious awareness in audition.

    Science.gov (United States)

    Fairnie, Jake; Moore, Brian C J; Remington, Anna

    2016-07-01

    In the visual domain there is considerable evidence supporting the Load Theory of Attention and Cognitive Control, which holds that conscious perception of background stimuli depends on the level of perceptual load involved in a primary task. However, literature on the applicability of this theory to the auditory domain is limited and, in many cases, inconsistent. Here we present a novel "auditory search task" that allows systematic investigation of the impact of auditory load on auditory conscious perception. An array of simultaneous, spatially separated sounds was presented to participants. On half the trials, a critical stimulus was presented concurrently with the array. Participants were asked to detect which of 2 possible targets was present in the array (primary task), and whether the critical stimulus was present or absent (secondary task). Increasing the auditory load of the primary task (raising the number of sounds in the array) consistently reduced the ability to detect the critical stimulus. This indicates that, at least in certain situations, load theory applies in the auditory domain. The implications of this finding are discussed both with respect to our understanding of typical audition and for populations with altered auditory processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Effect- and Performance-Based Auditory Feedback on Interpersonal Coordination

    Directory of Open Access Journals (Sweden)

    Tong-Hun Hwang

    2018-03-01

    Full Text Available When two individuals interact in a collaborative task, such as carrying a sofa or a table, usually spatiotemporal coordination of individual motor behavior will emerge. In many cases, interpersonal coordination can arise independently of verbal communication, based on the observation of the partners' movements and/or the object's movements. In this study, we investigate how social coupling between two individuals can emerge in a collaborative task under different modes of perceptual information. A visual reference condition was compared with three different conditions with new types of additional auditory feedback provided in real time: effect-based auditory feedback, performance-based auditory feedback, and combined effect/performance-based auditory feedback. We have developed a new paradigm in which the actions of both participants continuously result in a seamlessly merged effect on an object simulated by a tablet computer application. Here, participants should temporally synchronize their movements with a 90° phase difference and precisely adjust the finger dynamics in order to keep the object (a ball accurately rotating on a given circular trajectory on the tablet. Results demonstrate that interpersonal coordination in a joint task can be altered by different kinds of additional auditory information in various ways.

  7. Sensory Symptoms and Processing of Nonverbal Auditory and Visual Stimuli in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Stewart, Claire R.; Sanchez, Sandra S.; Grenesko, Emily L.; Brown, Christine M.; Chen, Colleen P.; Keehn, Brandon; Velasquez, Francisco; Lincoln, Alan J.; Müller, Ralph-Axel

    2016-01-01

    Atypical sensory responses are common in autism spectrum disorder (ASD). While evidence suggests impaired auditory-visual integration for verbal information, findings for nonverbal stimuli are inconsistent. We tested for sensory symptoms in children with ASD (using the Adolescent/Adult Sensory Profile) and examined unisensory and bisensory…

  8. It Is Time to Rethink Central Auditory Processing Disorder Protocols for School-Aged Children.

    Science.gov (United States)

    DeBonis, David A

    2015-06-01

    The purpose of this article is to review the literature that pertains to ongoing concerns regarding the central auditory processing construct among school-aged children and to assess whether the degree of uncertainty surrounding central auditory processing disorder (CAPD) warrants a change in current protocols. Methodology on this topic included a review of relevant and recent literature through electronic search tools (e.g., ComDisDome, PsycINFO, Medline, and Cochrane databases); published texts; as well as published articles from the Journal of the American Academy of Audiology; the American Journal of Audiology; the Journal of Speech, Language, and Hearing Research; and Language, Speech, and Hearing Services in Schools. This review revealed strong support for the following: (a) Current testing of CAPD is highly influenced by nonauditory factors, including memory, attention, language, and executive function; (b) the lack of agreement regarding the performance criteria for diagnosis is concerning; (c) the contribution of auditory processing abilities to language, reading, and academic and listening abilities, as assessed by current measures, is not significant; and (d) the effectiveness of auditory interventions for improving communication abilities has not been established. Routine use of CAPD test protocols cannot be supported, and strong consideration should be given to redirecting focus on assessing overall listening abilities. Also, intervention needs to be contextualized and functional. A suggested protocol is provided for consideration. All of these issues warrant ongoing research.

  9. Auditory-Phonetic Projection and Lexical Structure in the Recognition of Sine-Wave Words

    Science.gov (United States)

    Remez, Robert E.; Dubowski, Kathryn R.; Broder, Robin S.; Davids, Morgana L.; Grossman, Yael S.; Moskalenko, Marina; Pardo, Jennifer S.; Hasbun, Sara Maria

    2011-01-01

    Speech remains intelligible despite the elimination of canonical acoustic correlates of phonemes from the spectrum. A portion of this perceptual flexibility can be attributed to modulation sensitivity in the auditory-to-phonetic projection, although signal-independent properties of lexical neighborhoods also affect intelligibility in utterances…

  10. Visual Input Enhances Selective Speech Envelope Tracking in Auditory Cortex at a ‘Cocktail Party’

    Science.gov (United States)

    Golumbic, Elana Zion; Cogan, Gregory B.; Schroeder, Charles E.; Poeppel, David

    2013-01-01

    Our ability to selectively attend to one auditory signal amidst competing input streams, epitomized by the ‘Cocktail Party’ problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared to responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic (MEG) signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker’s face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a ‘Cocktail Party’ setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive. PMID:23345218

  11. Linking social and vocal brains: could social segregation prevent a proper development of a central auditory area in a female songbird?

    Directory of Open Access Journals (Sweden)

    Hugo Cousillas

    Full Text Available Direct social contact and social interaction affect speech development in human infants and are required in order to maintain perceptual abilities; however the processes involved are still poorly known. In the present study, we tested the hypothesis that social segregation during development would prevent the proper development of a central auditory area, using a "classical" animal model of vocal development, a songbird. Based on our knowledge of European starling, we raised young female starlings with peers and only adult male tutors. This ensured that female would show neither social bond with nor vocal copying from males. Electrophysiological recordings performed when these females were adult revealed perceptual abnormalities: they presented a larger auditory area, a lower proportion of specialized neurons and a larger proportion of generalist sites than wild-caught females, whereas these characteristics were similar to those observed in socially deprived (physically separated females. These results confirmed and added to earlier results for males, suggesting that the degree of perceptual deficiency reflects the degree of social separation. To our knowledge, this report constitutes the first evidence that social segregation can, as much as physical separation, alter the development of a central auditory area.

  12. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    Science.gov (United States)

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  13. Perceptual Spaces Induced by Cochlear Implant All-Polar Stimulation Mode

    DEFF Research Database (Denmark)

    Marozeau, Jeremy; McKay, Colette M

    2016-01-01

    sequentially or simultaneously. The dissimilarity ratings were analyzed using a multidimensional scaling technique and three-dimensional stimulus perceptual spaces were produced. For all the conditions (mode and simultaneity), the first perceptual dimension was highly correlated with the position of the most...... apical activated electrode of the electrical stimulation and the second dimension with the position of the most basal electrode. In both sequential and simultaneous conditions, the monopolar and all-polar stimuli were significantly separated by a third dimension, which may indicate that all-polar stimuli....... It was designed to activate all the electrodes simultaneously with appropriate current levels and polarities to recruit narrower regions of auditory nerves at specific intracochlear electrode positions (denoted all-polar electrodes). In this study, the all-polar mode was compared with the current commercial...

  14. From sensation to percept: the neural signature of auditory event-related potentials.

    Science.gov (United States)

    Joos, Kathleen; Gilles, Annick; Van de Heyning, Paul; De Ridder, Dirk; Vanneste, Sven

    2014-05-01

    An external auditory stimulus induces an auditory sensation which may lead to a conscious auditory perception. Although the sensory aspect is well known, it is still a question how an auditory stimulus results in an individual's conscious percept. To unravel the uncertainties concerning the neural correlates of a conscious auditory percept, event-related potentials may serve as a useful tool. In the current review we mainly wanted to shed light on the perceptual aspects of auditory processing and therefore we mainly focused on the auditory late-latency responses. Moreover, there is increasing evidence that perception is an active process in which the brain searches for the information it expects to be present, suggesting that auditory perception requires the presence of both bottom-up, i.e. sensory and top-down, i.e. prediction-driven processing. Therefore, the auditory evoked potentials will be interpreted in the context of the Bayesian brain model, in which the brain predicts which information it expects and when this will happen. The internal representation of the auditory environment will be verified by sensation samples of the environment (P50, N100). When this incoming information violates the expectation, it will induce the emission of a prediction error signal (Mismatch Negativity), activating higher-order neural networks and inducing the update of prior internal representations of the environment (P300). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Rojas Donald C

    2011-07-01

    Full Text Available Abstract Background Stimulus-related γ-band oscillations, which may be related to perceptual binding, are reduced in people with autism spectrum disorders (ASD. The purpose of this study was to examine auditory transient and steady-state γ-band findings in first-degree relatives of people with ASD to assess the potential familiality of these findings in ASD. Methods Magnetoencephalography (MEG recordings in 21 parents who had a child with an autism spectrum disorder (pASD and 20 healthy adult control subjects (HC were obtained. Gamma-band phase locking factor (PLF, and evoked and induced power to 32, 40 and 48 Hz amplitude-modulated sounds were measured for transient and steady-state responses. Participants were also tested on a number of behavioral and cognitive assessments related to the broad autism phenotype (BAP. Results Reliable group differences were seen primarily for steady-state responses. In the left hemisphere, pASD subjects exhibited lower phase-locked steady-state power in all three conditions. Total γ-band power, including the non-phase-locked component, was also reduced in the pASD group. In addition, pASD subjects had significantly lower PLF than the HC group. Correlations were seen between MEG measures and BAP measures. Conclusions The reduction in steady-state γ-band responses in the pASD group is consistent with previous results for children with ASD. Steady-state responses may be more sensitive than transient responses to phase-locking errors in ASD. Together with the lower PLF and phase-locked power in first-degree relatives, correlations between γ-band measures and behavioral measures relevant to the BAP highlight the potential of γ-band deficits as a potential new autism endophenotype.

  16. Temporal Organization of Sound Information in Auditory Memory

    Directory of Open Access Journals (Sweden)

    Kun Song

    2017-06-01

    Full Text Available Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  17. Temporal Organization of Sound Information in Auditory Memory.

    Science.gov (United States)

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  18. Intraoperative Electrocochleographic Characteristics of Auditory Neuropathy Spectrum Disorder in Cochlear Implant Subjects

    Directory of Open Access Journals (Sweden)

    William J. Riggs

    2017-07-01

    Full Text Available Auditory neuropathy spectrum disorder (ANSD is characterized by an apparent discrepancy between measures of cochlear and neural function based on auditory brainstem response (ABR testing. Clinical indicators of ANSD are a present cochlear microphonic (CM with small or absent wave V. Many identified ANSD patients have speech impairment severe enough that cochlear implantation (CI is indicated. To better understand the cochleae identified with ANSD that lead to a CI, we performed intraoperative round window electrocochleography (ECochG to tone bursts in children (n = 167 and adults (n = 163. Magnitudes of the responses to tones of different frequencies were summed to measure the “total response” (ECochG-TR, a metric often dominated by hair cell activity, and auditory nerve activity was estimated visually from the compound action potential (CAP and auditory nerve neurophonic (ANN as a ranked “Nerve Score”. Subjects identified as ANSD (45 ears in children, 3 in adults had higher values of ECochG-TR than adult and pediatric subjects also receiving CIs not identified as ANSD. However, nerve scores of the ANSD group were similar to the other cohorts, although dominated by the ANN to low frequencies more than in the non-ANSD groups. To high frequencies, the common morphology of ANSD cases was a large CM and summating potential, and small or absent CAP. Common morphologies in other groups were either only a CM, or a combination of CM and CAP. These results indicate that responses to high frequencies, derived primarily from hair cells, are the main source of the CM used to evaluate ANSD in the clinical setting. However, the clinical tests do not capture the wide range of neural activity seen to low frequency sounds.

  19. Relação entre desvios fonológicos e processamento auditivo Relationship between phonological disorders and auditory processing

    Directory of Open Access Journals (Sweden)

    Débora Tomazi Moreira Caumo

    2009-01-01

    Full Text Available OBJETIVOS: Pesquisar a relação entre desvio fonológico e processamento auditivo. MÉTODOS: Os dados foram coletados por meio da verificação de prontuários. Foram incluídos no estudo pacientes com diagnóstico de desvio fonológico que realizaram testes de processamento auditivo e que tinham idade mínima de sete anos. Considerou-se a avaliação do processamento auditivo, a avaliação da fala, o gênero, a idade e a série escolar. RESULTADOS: Todas as crianças (100% apresentaram pelo menos um subperfil do processamento auditivo alterado. Ao comparar os processos de substituição e de estruturação silábica aos resultados dos testes de processamento auditivo verificou-se correlação estatisticamente significante para a etapa de integração binaural para a orelha direita do teste dicótico de dígitos (p=0,018 e para a condição nomeando do teste PPS (p=0,041. Na comparação dos testes de processamento auditivo com a idade encontrou-se diferença estatisticamente significante para o teste PSI na orelha direita (p=0,011 para a faixa de 10 a 12 anos. O mesmo ocorreu na comparação com a série escolar, em que o teste SSW na condição direita competitiva (p=0,039 e a atenção direcionada à direita do teste dicótico de dígitos (p=0,037 foram estatisticamente significantes para as séries mais avançadas. CONCLUSÃO: A pesquisa sugere a existência de uma estreita relação entre processamento auditivo e desvio fonológico principalmente em relação ao desempenho da orelha direita, evidenciando a importância de determinar a existência do comprometimento das habilidades auditivas em crianças com desvio fonológico.PURPOSE: To study the relationship between phonological disorder and auditory processing. METHODS: Data were gathered from patients' records, and included individuals with diagnosis of phonological disorder, with seven years old or more, who had carried out auditory processing tests. The study considered auditory

  20. Resource allocation models of auditory working memory.

    Science.gov (United States)

    Joseph, Sabine; Teki, Sundeep; Kumar, Sukhbinder; Husain, Masud; Griffiths, Timothy D

    2016-06-01

    Auditory working memory (WM) is the cognitive faculty that allows us to actively hold and manipulate sounds in mind over short periods of time. We develop here a particular perspective on WM for non-verbal, auditory objects as well as for time based on the consideration of possible parallels to visual WM. In vision, there has been a vigorous debate on whether WM capacity is limited to a fixed number of items or whether it represents a limited resource that can be allocated flexibly across items. Resource allocation models predict that the precision with which an item is represented decreases as a function of total number of items maintained in WM because a limited resource is shared among stored objects. We consider here auditory work on sequentially presented objects of different pitch as well as time intervals from the perspective of dynamic resource allocation. We consider whether the working memory resource might be determined by perceptual features such as pitch or timbre, or bound objects comprising multiple features, and we speculate on brain substrates for these behavioural models. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    Science.gov (United States)

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H

    2016-10-26

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability

  2. Auditory vocal analysis and factors associated with voice disorders among teachers.

    Science.gov (United States)

    de Ceballos, Albanita Gomes da Costa; Carvalho, Fernando Martins; de Araújo, Tânia Maria; Dos Reis, Eduardo José Farias Borges

    2011-06-01

    Teachers are professionals who demand much of their voices and, consequently, present a high risk of developing vocal disorders during the course of employment. To identify factors associated with vocal disorders among teachers. An exploratory cross-sectional study, which investigated 476 teachers in primary and secondary schools in the city of Salvador, Bahia. Teachers answered a questionnaire and were submitted to auditory vocal analysis. The GRBAS was used for the diagnosis of vocal disorders. The study population comprised 82.8% women, teachers with an average age of 40.7 years, teachers with higher education (88.4%), with an average workday of 38 hours per week, average 11.5 years of professional practice and average monthly income of R$1.817.18. The prevalence of voice disorders was 53.6%. (255 teachers). The bivariate analysis showed statistically significant associations between vocal disorders and age above 40 years (PR = 1.83; 95% CI; 1.27-2.64), family history of dysphonia (PR = 1.72; 95% CI; 1.06-2.80), over 20 hours of weekly working hours (PR = 1.66; 95% CI; 1.09-2.52) and presence of chalk dust in the classroom (PR = 1.70; 95% CI; 1.14-2.53). The study concluded that teachers, 40 years old and over, with a family history of dysphonia, working over 20 hours weekly, and teaching in classrooms with chalk dust are more likely to develop voice disorders than others.

  3. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear When Exposed to 65 dB of Auditory Noise.

    Science.gov (United States)

    Söderlund, Göran B W; Jobs, Elisabeth Nilsson

    2016-01-01

    The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD), affecting ∼6-9% of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman's speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB). Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

  4. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear when Exposed to 65 dB of Auditory Noise

    Directory of Open Access Journals (Sweden)

    Göran B W Söderlund

    2016-01-01

    Full Text Available The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD, affecting approximately 6-9 % of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman’s speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB. Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children (TDC and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

  5. Assessment of auditory processing in children with dyslalia

    Directory of Open Access Journals (Sweden)

    Wlodarczyk £.

    2011-09-01

    Full Text Available The objective of the work was to assess occurrence of central auditory processing disorders in children with dyslalia. Material and method. The material included 30 children at the age 798 years old being under long-term speech therapy care due to articulation disorders. All the children were subjected to the phoniatric and speech examination, including tonal and impedance audiometry, speech therapist's consultation and psychologist's consultation. Electrophysi-ological (N2, P2, N2, P2, P300 record and following psychoacoustic test of central auditory functions were performed (Frequency Pattern Test. Results. Analysis of the results revealed disorders in the process of sound analysis within frequency and P300 wave latency prolongation in children with dyslalia. Conclusions. Auditory processing disorders may be significant in development of correct articulation in children, they also may explain unsatisfactory results of long-term speech therapy

  6. Body image disturbance in binge eating disorder: a comparison of obese patients with and without binge eating disorder regarding the cognitive, behavioral and perceptual component of body image.

    Science.gov (United States)

    Lewer, Merle; Nasrawi, Nadia; Schroeder, Dorothea; Vocks, Silja

    2016-03-01

    Whereas the manifestation of body image disturbance in binge eating disorder (BED) has been intensively investigated concerning the cognitive-affective component, with regard to the behavioral and the perceptual components of body image disturbance in BED, research is limited and results are inconsistent. Therefore, the present study assessed body image disturbance in BED with respect to the different components of body image in a sample of obese females (n = 31) with BED compared to obese females without an eating disorder (n = 28). The Eating Disorder Inventory-2, the Eating Disorder Examination-Questionnaire, the Body Image Avoidance Questionnaire and the Body Checking Questionnaire as well as a Digital Photo Distortion Technique based on a picture of each participant taken under standardized conditions were employed. Using two-sample t tests, we found that the participants with BED displayed significantly greater impairments concerning the cognitive-affective component of body image than the control group. Concerning the behavioral component, participants with BED reported more body checking and avoidance behavior than the controls, but group differences failed to reach significance after the Bonferroni corrections. Regarding the perceptual component, a significant group difference was found for the perceived "ideal" figure, with the individuals suffering from BED displaying a greater wish for a slimmer ideal figure than the control group. These results support the assumption that body image disturbance is a relevant factor in BED, similar to other eating disorders.

  7. Deficient Attention Is Hard to Find: Applying the Perceptual Load Model of Selective Attention to Attention Deficit Hyperactivity Disorder Subtypes

    Science.gov (United States)

    Huang-Pollock, Cynthia L.; Nigg, Joel T.; Carr, Thomas H.

    2005-01-01

    Background: Whether selective attention is a primary deficit in childhood Attention Deficit Hyperactivity Disorder (ADHD) remains in active debate. Methods: We used the "perceptual load" paradigm to examine both early and late selective attention in children with the Primarily Inattentive (ADHD-I) and Combined subtypes (ADHD-C) of ADHD. Results:…

  8. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    Science.gov (United States)

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  9. The contribution of perceptual factors and training on varying audiovisual integration capacity.

    Science.gov (United States)

    Wilbiks, Jonathan M P; Dyson, Benjamin J

    2018-06-01

    The suggestion that the capacity of audiovisual integration has an upper limit of 1 was challenged in 4 experiments using perceptual factors and training to enhance the binding of auditory and visual information. Participants were required to note a number of specific visual dot locations that changed in polarity when a critical auditory stimulus was presented, under relatively fast (200-ms stimulus onset asynchrony [SOA]) and slow (700-ms SOA) rates of presentation. In Experiment 1, transient cross-modal congruency between the brightness of polarity change and pitch of the auditory tone was manipulated. In Experiment 2, sustained chunking was enabled on certain trials by connecting varying dot locations with vertices. In Experiment 3, training was employed to determine if capacity would increase through repeated experience with an intermediate presentation rate (450 ms). Estimates of audiovisual integration capacity (K) were larger than 1 during cross-modal congruency at slow presentation rates (Experiment 1), during perceptual chunking at slow and fast presentation rates (Experiment 2), and, during an intermediate presentation rate posttraining (Experiment 3). Finally, Experiment 4 showed a linear increase in K using SOAs ranging from 100 to 600 ms, suggestive of quantitative rather than qualitative changes in the mechanisms in audiovisual integration as a function of presentation rate. The data compromise the suggestion that the capacity of audiovisual integration is limited to 1 and suggest that the ability to bind sounds to sights is contingent on individual and environmental factors. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Musical Experience and the Aging Auditory System: Implications for Cognitive Abilities and Hearing Speech in Noise

    Science.gov (United States)

    Parbery-Clark, Alexandra; Strait, Dana L.; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2011-01-01

    Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18–30), we asked whether musical experience benefits an older cohort of musicians (ages 45–65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline. PMID:21589653

  11. Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise.

    Science.gov (United States)

    Parbery-Clark, Alexandra; Strait, Dana L; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2011-05-11

    Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18-30), we asked whether musical experience benefits an older cohort of musicians (ages 45-65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline.

  12. Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise.

    Directory of Open Access Journals (Sweden)

    Alexandra Parbery-Clark

    Full Text Available Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18-30, we asked whether musical experience benefits an older cohort of musicians (ages 45-65, potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory. Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline.

  13. Perceptual categories enable pattern generalization in songbirds.

    Science.gov (United States)

    Comins, Jordan A; Gentner, Timothy Q

    2013-08-01

    Since Chomsky's pioneering work on syntactic structures, comparative psychologists interested in the study of language evolution have targeted pattern complexity, using formal mathematical grammars, as the key to organizing language-relevant cognitive processes across species. This focus on formal syntactic complexity, however, often disregards the close interaction in real-world signals between the structure of a pattern and its constituent elements. Whether such features of natural auditory signals shape pattern generalization is unknown. In the present paper, we train birds to recognize differently patterned strings of natural signals (song motifs). Instead of focusing on the complexity of the overtly reinforced patterns, we ask how the perceptual groupings of pattern elements influence the generalization pattern knowledge. We find that learning and perception of training patterns is agnostic to the perceptual features of underlying elements. Surprisingly, however, these same features constrain the generalization of pattern knowledge, and thus its broader use. Our results demonstrate that the restricted focus of comparative language research on formal models of syntactic complexity is, at best, insufficient to understand pattern use. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. ERP evidence that auditory-visual speech facilitates working memory in younger and older adults.

    Science.gov (United States)

    Frtusova, Jana B; Winneke, Axel H; Phillips, Natalie A

    2013-06-01

    Auditory-visual (AV) speech enhances speech perception and facilitates auditory processing, as measured by event-related brain potentials (ERPs). Considering a perspective of shared resources between perceptual and cognitive processes, facilitated speech perception may render more resources available for higher-order functions. This study examined whether AV speech facilitation leads to better working memory (WM) performance in 23 younger and 20 older adults. Participants completed an n-back task (0- to 3-back) under visual-only (V-only), auditory-only (A-only), and AV conditions. The results showed faster responses across all memory loads and improved accuracy in the most demanding conditions (2- and 3-back) during AV compared with unisensory conditions. Older adults benefited from the AV presentation to the same extent as younger adults. WM performance of older adults during the AV presentation did not differ from that of younger adults in the A-only condition, suggesting that an AV presentation can help to counteract some of the age-related WM decline. The ERPs showed a decrease in the auditory N1 amplitude during the AV compared with A-only presentation in older adults, suggesting that the facilitation of perceptual processing becomes especially beneficial with aging. Additionally, the N1 occurred earlier in the AV than in the A-only condition for both age groups. These AV-induced modulations of auditory processing correlated with improvement in certain behavioral and ERP measures of WM. These results support an integrated model between perception and cognition, and suggest that processing speech under AV conditions enhances WM performance of both younger and older adults. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  15. Bottom-up influences of voice continuity in focusing selective auditory attention.

    Science.gov (United States)

    Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara

    2014-01-01

    Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the "unit" on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the attentional foreground depends on the interplay of top-down, volitional attention and stimulus-driven, involuntary attention. Here, we test the idea that auditory attention is object based by exploring whether continuity of a non-spatial feature (talker identity, a feature that helps acoustic elements bind into one perceptual object) also influences selective attention performance. In Experiment 1, we show that perceptual continuity of target talker voice helps listeners report a sequence of spoken target digits embedded in competing reversed digits spoken by different talkers. In Experiment 2, we provide evidence that this benefit of voice continuity is obligatory and automatic, as if voice continuity biases listeners by making it easier to focus on a subsequent target digit when it is perceptually linked to what was already in the attentional foreground. Our results support the idea that feature continuity enhances streaming automatically, thereby influencing the dynamic processes that allow listeners to successfully attend to objects through time in the cacophony that assails our ears in many everyday settings.

  16. Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception.

    Science.gov (United States)

    Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma

    2003-01-01

    The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects. PMID:12639334

  17. Temporal and identity prediction in visual-auditory events: Electrophysiological evidence from stimulus omissions.

    Science.gov (United States)

    van Laarhoven, Thijs; Stekelenburg, Jeroen J; Vroomen, Jean

    2017-04-15

    A rare omission of a sound that is predictable by anticipatory visual information induces an early negative omission response (oN1) in the EEG during the period of silence where the sound was expected. It was previously suggested that the oN1 was primarily driven by the identity of the anticipated sound. Here, we examined the role of temporal prediction in conjunction with identity prediction of the anticipated sound in the evocation of the auditory oN1. With incongruent audiovisual stimuli (a video of a handclap that is consistently combined with the sound of a car horn) we demonstrate in Experiment 1 that a natural match in identity between the visual and auditory stimulus is not required for inducing the oN1, and that the perceptual system can adapt predictions to unnatural stimulus events. In Experiment 2 we varied either the auditory onset (relative to the visual onset) or the identity of the sound across trials in order to hamper temporal and identity predictions. Relative to the natural stimulus with correct auditory timing and matching audiovisual identity, the oN1 was abolished when either the timing or the identity of the sound could not be predicted reliably from the video. Our study demonstrates the flexibility of the perceptual system in predictive processing (Experiment 1) and also shows that precise predictions of timing and content are both essential elements for inducing an oN1 (Experiment 2). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia.

    Science.gov (United States)

    Fisher, Melissa; Holland, Christine; Merzenich, Michael M; Vinogradov, Sophia

    2009-07-01

    Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach.

  19. Test-retest reliability of the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA)

    NARCIS (Netherlands)

    Bégel, Valentin; Verga, Laura; Benoit, Charles-Etienne; Kotz, Sonja A; Bella, Simone Dalla

    2018-01-01

    Perceptual and sensorimotor timing skills can be comprehensively assessed with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA). The battery has been used for testing rhythmic skills in healthy adults and patient populations (e.g., with Parkinson disease),

  20. Abnormal Resting-State Quantitative Electroencephalogram in Children With Central Auditory Processing Disorder: A Pilot Study.

    Science.gov (United States)

    Milner, Rafał; Lewandowska, Monika; Ganc, Małgorzata; Włodarczyk, Elżbieta; Grudzień, Diana; Skarżyński, Henryk

    2018-01-01

    In this study, we showed an abnormal resting-state quantitative electroencephalogram (QEEG) pattern in children with central auditory processing disorder (CAPD). Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and no symptoms of other developmental disorders, as well as 23 age- and sex-matched, typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years) underwent examination of central auditory processes (CAPs) and QEEG evaluation consisting of two randomly presented blocks of "Eyes Open" (EO) or "Eyes Closed" (EC) recordings. Significant correlations between individual frequency band powers and CAP tests performance were found. The QEEG studies revealed that in CAPD relative to TDC there was no effect of decreased delta absolute power (1.5-4 Hz) in EO compared to the EC condition. Furthermore, children with CAPD showed increased theta power (4-8 Hz) in the frontal area, a tendency toward elevated theta power in EO block, and reduced low-frequency beta power (12-15 Hz) in the bilateral occipital and the left temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency beta power (15-18 Hz) in children with CAPD was observed only in the EC block. The findings of the present study suggest that QEEG could be an adequate tool to discriminate children with CAPD from normally developing children. Correlation analysis shows relationship between the individual EEG resting frequency bands and the CAPs. Increased power of slow waves and decreased power of fast rhythms could indicate abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not specialized in auditory information processing.

  1. Abnormal Resting-State Quantitative Electroencephalogram in Children With Central Auditory Processing Disorder: A Pilot Study

    Science.gov (United States)

    Milner, Rafał; Lewandowska, Monika; Ganc, Małgorzata; Włodarczyk, Elżbieta; Grudzień, Diana; Skarżyński, Henryk

    2018-01-01

    In this study, we showed an abnormal resting-state quantitative electroencephalogram (QEEG) pattern in children with central auditory processing disorder (CAPD). Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and no symptoms of other developmental disorders, as well as 23 age- and sex-matched, typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years) underwent examination of central auditory processes (CAPs) and QEEG evaluation consisting of two randomly presented blocks of “Eyes Open” (EO) or “Eyes Closed” (EC) recordings. Significant correlations between individual frequency band powers and CAP tests performance were found. The QEEG studies revealed that in CAPD relative to TDC there was no effect of decreased delta absolute power (1.5–4 Hz) in EO compared to the EC condition. Furthermore, children with CAPD showed increased theta power (4–8 Hz) in the frontal area, a tendency toward elevated theta power in EO block, and reduced low-frequency beta power (12–15 Hz) in the bilateral occipital and the left temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency beta power (15–18 Hz) in children with CAPD was observed only in the EC block. The findings of the present study suggest that QEEG could be an adequate tool to discriminate children with CAPD from normally developing children. Correlation analysis shows relationship between the individual EEG resting frequency bands and the CAPs. Increased power of slow waves and decreased power of fast rhythms could indicate abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not specialized in auditory information processing.

  2. Perceptual and conceptual similarities facilitate the generalization of instructed fear.

    Science.gov (United States)

    Bennett, Marc; Vervoort, Ellen; Boddez, Yannick; Hermans, Dirk; Baeyens, Frank

    2015-09-01

    Learned fear can generalize to neutral events due their perceptual and conceptual similarity with threat relevant stimuli. This study simultaneously examined these forms of generalization to model the expansion of fear in anxiety disorders. First, artificial categories involving sounds, nonsense words and animal-like objects were established. Next, the words from one category were paired with threatening information while the words from the other category were paired with safety information. Lastly, we examined if fear generalized to (i) the conceptually related animal-like objects and (ii) other animal like-objects that were perceptually similar. This was measured using behavioral avoidance, US expectancy ratings and self-reported stimulus valence. Animal-like objects conceptually connected to the aversive words evoked heightened fear. Perceptual variants of these animal-like objects also elicit fear. Future research would benefit from the use of online-US expectancy ratings and physiological measures of fear. Investigating the role of both perceptual and conceptual fear generalization is important to better understand the etiology of anxiety disorders symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Hearing illusory sounds in noise: sensory-perceptual transformations in primary auditory cortex.

    NARCIS (Netherlands)

    Riecke, L.; Opstal, A.J. van; Goebel, R.; Formisano, E.

    2007-01-01

    A sound that is interrupted by silence is perceived as discontinuous. However, when the silence is replaced by noise, the target sound may be heard as uninterrupted. Understanding the neural basis of this continuity illusion may elucidate the ability to track sounds of interest in noisy auditory

  4. Auditory processing disorders: an update for speech-language pathologists.

    Science.gov (United States)

    DeBonis, David A; Moncrieff, Deborah

    2008-02-01

    Unanswered questions regarding the nature of auditory processing disorders (APDs), how best to identify at-risk students, how best to diagnose and differentiate APDs from other disorders, and concerns about the lack of valid treatments have resulted in ongoing confusion and skepticism about the diagnostic validity of this label. This poses challenges for speech-language pathologists (SLPs) who are working with school-age children and whose scope of practice includes APD screening and intervention. The purpose of this article is to address some of the questions commonly asked by SLPs regarding APDs in school-age children. This article is also intended to serve as a resource for SLPs to be used in deciding what role they will or will not play with respect to APDs in school-age children. The methodology used in this article included a computerized database review of the latest published information on APD, with an emphasis on the work of established researchers and expert panels, including articles from the American Speech-Language-Hearing Association and the American Academy of Audiology. The article concludes with the authors' recommendations for continued research and their views on the appropriate role of the SLP in performing careful screening, making referrals, and supporting intervention.

  5. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    Directory of Open Access Journals (Sweden)

    Bettina Serrallach

    2016-07-01

    Full Text Available Dyslexia, attention deficit hyperactivity disorder (ADHD, and attention deficit disorder (ADD show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147 using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only a clear discrimination between two subtypes of attentional disorders (ADHD and ADD, a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.

  6. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  7. Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

    Science.gov (United States)

    Molloy, Katharine; Moore, David R; Sohoglu, Ediz; Amitay, Sygal

    2012-01-01

    The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session. We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased. Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

  8. Self-Reported Visual Perceptual Abnormalities Are Strongly Associated with Core Clinical Features in Psychotic Disorders

    Directory of Open Access Journals (Sweden)

    Brian P. Keane

    2018-03-01

    Full Text Available BackgroundPast studies using the Bonn Scale for the Assessment of Basic Symptoms (hereafter, Bonn Scale have shown that self-reported perceptual/cognitive disturbances reveal which persons have or will soon develop schizophrenia. Here, we focused specifically on the clinical value of self-reported visual perceptual abnormalities (VPAs since they are underexplored and have been associated with suicidal ideation, negative symptoms, and objective visual dysfunction.MethodUsing the 17 Bonn Scale vision items, we cross-sectionally investigated lifetime occurrence of VPAs in 21 first-episode psychosis and 22 chronic schizophrenia/schizoaffective disorder (SZ/SA patients. Relationships were probed between VPAs and illness duration, symptom severity, current functioning, premorbid functioning, diagnosis, and age of onset.ResultsIncreased VPAs were associated with: earlier age of onset; more delusions, hallucinations, bizarre behavior, and depressive symptoms; and worse premorbid social functioning, especially in the childhood and early adolescent phases. SZ/SA participants endorsed more VPAs as compared to those with schizophreniform or psychotic disorder-NOS, especially in the perception of color, bodies, faces, object movement, and double/reversed vision. The range of self-reported VPAs was strikingly similar between first-episode and chronic patients and did not depend on the type or amount of antipsychotic medication. As a comparative benchmark, lifetime occurrence of visual hallucinations did not depend on diagnosis and was linked only to poor premorbid social functioning.ConclusionA brief 17-item interview derived from the Bonn Scale is strongly associated with core clinical features in schizophrenia. VPAs hold promise for clarifying diagnosis, predicting outcome, and guiding neurocognitive investigations.

  9. Maturation of auditory neural processes in autism spectrum disorder - A longitudinal MEG study.

    Science.gov (United States)

    Port, Russell G; Edgar, J Christopher; Ku, Matthew; Bloy, Luke; Murray, Rebecca; Blaskey, Lisa; Levy, Susan E; Roberts, Timothy P L

    2016-01-01

    Individuals with autism spectrum disorder (ASD) show atypical brain activity, perhaps due to delayed maturation. Previous studies examining the maturation of auditory electrophysiological activity have been limited due to their use of cross-sectional designs. The present study took a first step in examining magnetoencephalography (MEG) evidence of abnormal auditory response maturation in ASD via the use of a longitudinal design. Initially recruited for a previous study, 27 children with ASD and nine typically developing (TD) children, aged 6- to 11-years-old, were re-recruited two to five years later. At both timepoints, MEG data were obtained while participants passively listened to sinusoidal pure-tones. Bilateral primary/secondary auditory cortex time domain (100 ms evoked response latency (M100)) and spectrotemporal measures (gamma-band power and inter-trial coherence (ITC)) were examined. MEG measures were also qualitatively examined for five children who exhibited "optimal outcome", participants who were initially on spectrum, but no longer met diagnostic criteria at follow-up. M100 latencies were delayed in ASD versus TD at the initial exam (~ 19 ms) and at follow-up (~ 18 ms). At both exams, M100 latencies were associated with clinical ASD severity. In addition, gamma-band evoked power and ITC were reduced in ASD versus TD. M100 latency and gamma-band maturation rates did not differ between ASD and TD. Of note, the cohort of five children that demonstrated "optimal outcome" additionally exhibited M100 latency and gamma-band activity mean values in-between TD and ASD at both timepoints. Though justifying only qualitative interpretation, these "optimal outcome" related data are presented here to motivate future studies. Children with ASD showed perturbed auditory cortex neural activity, as evidenced by M100 latency delays as well as reduced transient gamma-band activity. Despite evidence for maturation of these responses in ASD, the neural abnormalities

  10. Perceptual and Cognitive Impairments and Driving

    Science.gov (United States)

    Korner-Bitensky, Nicol; Coopersmith, Henry; Mayo, Nancy; Leblanc, Ginette; Kaizer, Franceen

    1990-01-01

    Perceptual and cognitive disorders that frequently accompany stroke and head injury influence an individual's ability to drive a motor vehicle. Canadian physicians are legally responsible for identifying patients who are potentially unsafe to drive and, if they fail to do so, may be held liable in a civil action suit. The authors review the guidelines for physicians evaluating a patient's fitness to drive after brain injury. They also examine the actions a physician should take when a patient with perceptual and cognitive problems wants to drive. Ultimately, by taking these actions, physicians will help to prevent driving accidents. PMID:21234047

  11. INFLUENCE INTERHEMISPHERIC FUNCTIONAL ASYMMETRY BRAIN ON HUMAN PERCEPTUAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Eugene Gtnnadyevna Surovyatkina

    2017-11-01

    Full Text Available The goals of the work was to determine linkage between the dominant hemisphere of the brain and the occurrence of perceptual processes of the personality of students of the University of the Ministry of internal Affairs of Russia. Researching of relationship between characteristics of the nature of perceptual processes and lateralization of brain functions supplements the information about professional suitability and reliability of employees of enforcement structure within the individually-typological approach. The experimental psychological research of determination of motor and sensory asymmetries in the measurement system "hand-foot-ear-eye" (was performed by Homskay E.D., the leading channel of the auditory perception for the people with the left-hemispheric dominance, and kinesthetic channel for the people with right-hemispheric dominance were revealed. Features of functioning of system "FMPA-perception" in groups with different type of hemispheric dominance is recommended to consider in academic and professional activities of the cadets, and at the stage of professional selection.

  12. The Persian version of auditory word discrimination test (P-AWDT) for children: Development, validity, and reliability.

    Science.gov (United States)

    Hashemi, Nassim; Ghorbani, Ali; Soleymani, Zahra; Kamali, Mohmmad; Ahmadi, Zohreh Ziatabar; Mahmoudian, Saeid

    2018-07-01

    Auditory discrimination of speech sounds is an important perceptual ability and a precursor to the acquisition of language. Auditory information is at least partially necessary for the acquisition and organization of phonological rules. There are few standardized behavioral tests to evaluate phonemic distinctive features in children with or without speech and language disorders. The main objective of the present study was the development, validity, and reliability of the Persian version of auditory word discrimination test (P-AWDT) for 4-8-year-old children. A total of 120 typical children and 40 children with speech sound disorder (SSD) participated in the present study. The test comprised of 160 monosyllabic paired-words distributed in the Forms A-1 and the Form A-2 for the initial consonants (80 words) and the Forms B-1 and the Form B-2 for the final consonants (80 words). Moreover, the discrimination of vowels was randomly included in all forms. Content validity was calculated and 50 children repeated the test twice with two weeks of interval (test-retest reliability). Further analysis was also implemented including validity, intraclass correlation coefficient (ICC), Cronbach's alpha (internal consistency), age groups, and gender. The content validity index (CVI) and the test-retest reliability of the P-AWDT were achieved 63%-86% and 81%-96%, respectively. Moreover, the total Cronbach's alpha for the internal consistency was estimated relatively high (0.93). Comparison of the mean scores of the P-AWDT in the typical children and the children with SSD revealed a significant difference. The results revealed that the group with SSD had greater severity of deficit than the typical group in auditory word discrimination. In addition, the difference between the age groups was statistically significant, especially in 4-4.11-year-old children. The performance of the two gender groups was relatively same. The comparison of the P-AWDT scores between the typical children

  13. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    International Nuclear Information System (INIS)

    Kamei, Hidekazu

    1989-01-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author)

  14. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  15. Cross-modal perceptual load: the impact of modality and individual differences.

    Science.gov (United States)

    Sandhu, Rajwant; Dyson, Benjamin James

    2016-05-01

    Visual distractor processing tends to be more pronounced when the perceptual load (PL) of a task is low compared to when it is high [perpetual load theory (PLT); Lavie in J Exp Psychol Hum Percept Perform 21(3):451-468, 1995]. While PLT is well established in the visual domain, application to cross-modal processing has produced mixed results, and the current study was designed in an attempt to improve previous methodologies. First, we assessed PLT using response competition, a typical metric from the uni-modal domain. Second, we looked at the impact of auditory load on visual distractors, and of visual load on auditory distractors, within the same individual. Third, we compared individual uni- and cross-modal selective attention abilities, by correlating performance with the visual Attentional Network Test (ANT). Fourth, we obtained a measure of the relative processing efficiency between vision and audition, to investigate whether processing ease influences the extent of distractor processing. Although distractor processing was evident during both attend auditory and attend visual conditions, we found that PL did not modulate processing of either visual or auditory distractors. We also found support for a correlation between the uni-modal (visual) ANT and our cross-modal task but only when the distractors were visual. Finally, although auditory processing was more impacted by visual distractors, our measure of processing efficiency only accounted for this asymmetry in the auditory high-load condition. The results are discussed with respect to the continued debate regarding the shared or separate nature of processing resources across modalities.

  16. Perceptual Integration Deficits in Autism Spectrum Disorders Are Associated with Reduced Interhemispheric Gamma-Band Coherence.

    Science.gov (United States)

    Peiker, Ina; David, Nicole; Schneider, Till R; Nolte, Guido; Schöttle, Daniel; Engel, Andreas K

    2015-12-16

    The integration of visual details into a holistic percept is essential for object recognition. This integration has been reported as a key deficit in patients with autism spectrum disorders (ASDs). The weak central coherence account posits an altered disposition to integrate features into a coherent whole in ASD. Here, we test the hypothesis that such weak perceptual coherence may be reflected in weak neural coherence across different cortical sites. We recorded magnetoencephalography from 20 adult human participants with ASD and 20 matched controls, who performed a slit-viewing paradigm, in which objects gradually passed behind a vertical or horizontal slit so that only fragments of the object were visible at any given moment. Object recognition thus required perceptual integration over time and, in case of the horizontal slit, also across visual hemifields. ASD participants were selectively impaired in the horizontal slit condition, indicating specific difficulties in long-range synchronization between the hemispheres. Specifically, the ASD group failed to show condition-related enhancement of imaginary coherence between the posterior superior temporal sulci in both hemispheres during horizontal slit-viewing in contrast to controls. Moreover, local synchronization reflected in occipitocerebellar beta-band power was selectively reduced for horizontal compared with vertical slit-viewing in ASD. Furthermore, we found disturbed connectivity between right posterior superior temporal sulcus and left cerebellum. Together, our results suggest that perceptual integration deficits co-occur with specific patterns of abnormal global and local synchronization in ASD. The weak central coherence account proposes a tendency of individuals with autism spectrum disorders (ASDs) to focus on details at the cost of an integrated coherent whole. Here, we provide evidence, at the behavioral and the neural level, that visual integration in object recognition is impaired in ASD, when

  17. Analysis of both perceptual and motor skills of children with dyslalia before their entering of the first grade of primary school

    OpenAIRE

    Pešlová, Markéta

    2015-01-01

    The thesis deals with an analysis of both perceptual and motor skills of children with dyslalia before their entering of the first grade of primary school. The aim of this thesis is to determine the level of perceptual and motor skills of both preschool children with dyslalia and intact children. The preschool age of a child is described in the theoretical part of the thesis. The thesis also defines dyslalia. Further chapters deal with auditory and visual perception. The area of motor skills ...

  18. Vocal Function Exercises for Muscle Tension Dysphonia: Auditory-Perceptual Evaluation and Self-Assessment Rating.

    Science.gov (United States)

    Jafari, Narges; Salehi, Abolfazl; Izadi, Farzad; Talebian Moghadam, Saeed; Ebadi, Abbas; Dabirmoghadam, Payman; Faham, Maryam; Shahbazi, Mehdi

    2017-07-01

    Muscle tension dysphonia (MTD) is a functional dysphonia, which appears with an excessive tension in the intrinsic and extrinsic laryngeal musculatures. MTD can affect voice quality and quality of life. The purpose of the present study was to assess the effectiveness of vocal function exercises (VFEs) on perceptual and self-assessment ratings in a group of 15 subjects with MTD. The study comprised 15 subjects with MTD (8 men and 7 women, mean age 39.8 years, standard deviation 10.6, age range 24-62 years). All participants were native Persian speakers who underwent a 6-week course of VFEs. The Voice Handicap Index (VHI) (the self-assessment scale) and Grade, Roughness, Breathiness, Asthenia, Strain (GRBAS) scale (perceptual rating of voice quality) were used to compare pre- and post-VFEs. GRBAS data of patients before and after VFEs were compared using Wilcoxon signed-rank test, and VHI data of patients pre- and post-VFEs were compared using Student paired t test. These perceptual parameters showed a statistically significant improvement in subjects with MTD after voice therapy (significant at P self-assessment ratings measurements (with the VHI). As a result, the data provide evidence regarding the efficacy of VFEs in the treatment of patients with MTD. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  19. Investigating the role of auditory and tactile modalities in violin quality evaluation.

    Science.gov (United States)

    Wollman, Indiana; Fritz, Claudia; Poitevineau, Jacques; McAdams, Stephen

    2014-01-01

    The role of auditory and tactile modalities involved in violin playing and evaluation was investigated in an experiment employing a blind violin evaluation task under different conditions: i) normal playing conditions, ii) playing with auditory masking, and iii) playing with vibrotactile masking. Under each condition, 20 violinists evaluated five violins according to criteria related to violin playing and sound characteristics and rated their overall quality and relative preference. Results show that both auditory and vibrotactile feedback are important in the violinists' evaluations but that their relative importance depends on the violinist, the violin and the type of evaluation (different criteria ratings or preference). In this way, the overall quality ratings were found to be accurately predicted by the rating criteria, which also proved to be perceptually relevant to violinists, but were poorly correlated with the preference ratings; this suggests that the two types of ratings (overall quality vs preference) may stem from different decision-making strategies. Furthermore, the experimental design confirmed that violinists agree more on the importance of criteria in their overall evaluation than on their actual ratings for different violins. In particular, greater agreement was found on the importance of criteria related to the sound of the violin. Nevertheless, this study reveals that there are fundamental differences in the way players interpret and evaluate each criterion, which may explain why correlating physical properties with perceptual properties has been challenging so far in the field of musical acoustics.

  20. Divided attention disrupts perceptual encoding during speech recognition.

    Science.gov (United States)

    Mattys, Sven L; Palmer, Shekeila D

    2015-03-01

    Performing a secondary task while listening to speech has a detrimental effect on speech processing, but the locus of the disruption within the speech system is poorly understood. Recent research has shown that cognitive load imposed by a concurrent visual task increases dependency on lexical knowledge during speech processing, but it does not affect lexical activation per se. This suggests that "lexical drift" under cognitive load occurs either as a post-lexical bias at the decisional level or as a secondary consequence of reduced perceptual sensitivity. This study aimed to adjudicate between these alternatives using a forced-choice task that required listeners to identify noise-degraded spoken words with or without the addition of a concurrent visual task. Adding cognitive load increased the likelihood that listeners would select a word acoustically similar to the target even though its frequency was lower than that of the target. Thus, there was no evidence that cognitive load led to a high-frequency response bias. Rather, cognitive load seems to disrupt sublexical encoding, possibly by impairing perceptual acuity at the auditory periphery.

  1. Increased Early Processing of Task-Irrelevant Auditory Stimuli in Older Adults.

    Directory of Open Access Journals (Sweden)

    Erich S Tusch

    Full Text Available The inhibitory deficit hypothesis of cognitive aging posits that older adults' inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1 observed under an auditory-ignore, but not auditory-attend condition, 2 attenuated in individuals with high executive capacity (EC, and 3 augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study's findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts.

  2. From Hearing Sounds to Recognizing Phonemes: Primary Auditory Cortex is A Truly Perceptual Language Area

    Directory of Open Access Journals (Sweden)

    Byron Bernal

    2016-11-01

    Full Text Available The aim of this article is to present a systematic review about the anatomy, function, connectivity, and functional activation of the primary auditory cortex (PAC (Brodmann areas 41/42 when involved in language paradigms. PAC activates with a plethora of diverse basic stimuli including but not limited to tones, chords, natural sounds, consonants, and speech. Nonetheless, the PAC shows specific sensitivity to speech. Damage in the PAC is associated with so-called “pure word-deafness” (“auditory verbal agnosia”. BA41, and to a lesser extent BA42, are involved in early stages of phonological processing (phoneme recognition. Phonological processing may take place in either the right or left side, but customarily the left exerts an inhibitory tone over the right, gaining dominance in function. BA41/42 are primary auditory cortices harboring complex phoneme perception functions with asymmetrical expression, making it possible to include them as core language processing areas (Wernicke’s area.

  3. Development of Attentional Control of Verbal Auditory Perception from Middle to Late Childhood: Comparisons to Healthy Aging

    Science.gov (United States)

    Passow, Susanne; Müller, Maike; Westerhausen, René; Hugdahl, Kenneth; Wartenburger, Isabell; Heekeren, Hauke R.; Lindenberger, Ulman; Li, Shu-Chen

    2013-01-01

    Multitalker situations confront listeners with a plethora of competing auditory inputs, and hence require selective attention to relevant information, especially when the perceptual saliency of distracting inputs is high. This study augmented the classical forced-attention dichotic listening paradigm by adding an interaural intensity manipulation…

  4. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  5. Loss and persistence of implicit memory for sound: evidence from auditory stream segregation context effects.

    Science.gov (United States)

    Snyder, Joel S; Weintraub, David M

    2013-07-01

    An important question is the extent to which declines in memory over time are due to passive loss or active interference from other stimuli. The purpose of the present study was to determine the extent to which implicit memory effects in the perceptual organization of sound sequences are subject to loss and interference. Toward this aim, we took advantage of two recently discovered context effects in the perceptual judgments of sound patterns, one that depends on stimulus features of previous sounds and one that depends on the previous perceptual organization of these sounds. The experiments measured how listeners' perceptual organization of a tone sequence (test) was influenced by the frequency separation, or the perceptual organization, of the two preceding sequences (context1 and context2). The results demonstrated clear evidence for loss of context effects over time but little evidence for interference. However, they also revealed that context effects can be surprisingly persistent. The robust effects of loss, followed by persistence, were similar for the two types of context effects. We discuss whether the same auditory memories might contain information about basic stimulus features of sounds (i.e., frequency separation), as well as the perceptual organization of these sounds.

  6. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    OpenAIRE

    Bettina Serrallach; Christine Gross; Valdis Bernhofs; Dorte Engelmann; Jan Benner; Jan Benner; Nadine Gündert; Maria Blatow; Martina Wengenroth; Angelika Seitz; Monika Brunner; Stefan Seither; Stefan Seither; Richard Parncutt; Peter Schneider

    2016-01-01

    Dyslexia, attention deficit hyperactivity disorder (ADHD), and attention deficit disorder (ADD) show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147) using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an ...

  7. Differential Diagnosis of Speech Sound Disorder (Phonological Disorder): Audiological Assessment beyond the Pure-tone Audiogram.

    Science.gov (United States)

    Iliadou, Vasiliki Vivian; Chermak, Gail D; Bamiou, Doris-Eva

    2015-04-01

    According to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, diagnosis of speech sound disorder (SSD) requires a determination that it is not the result of other congenital or acquired conditions, including hearing loss or neurological conditions that may present with similar symptomatology. To examine peripheral and central auditory function for the purpose of determining whether a peripheral or central auditory disorder was an underlying factor or contributed to the child's SSD. Central auditory processing disorder clinic pediatric case reports. Three clinical cases are reviewed of children with diagnosed SSD who were referred for audiological evaluation by their speech-language pathologists as a result of slower than expected progress in therapy. Audiological testing revealed auditory deficits involving peripheral auditory function or the central auditory nervous system. These cases demonstrate the importance of increasing awareness among professionals of the need to fully evaluate the auditory system to identify auditory deficits that could contribute to a patient's speech sound (phonological) disorder. Audiological assessment in cases of suspected SSD should not be limited to pure-tone audiometry given its limitations in revealing the full range of peripheral and central auditory deficits, deficits which can compromise treatment of SSD. American Academy of Audiology.

  8. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Directory of Open Access Journals (Sweden)

    Vincent Isnard

    Full Text Available Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs. This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  9. The Use of Music and Other Forms of Organized Sound as a Therapeutic Intervention for Students with Auditory Processing Disorder: Providing the Best Auditory Experience for Children with Learning Differences

    Science.gov (United States)

    Faronii-Butler, Kishasha O.

    2013-01-01

    This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…

  10. The effects of distraction and a brief intervention on auditory and visual-spatial working memory in college students with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Lineweaver, Tara T; Kercood, Suneeta; O'Keeffe, Nicole B; O'Brien, Kathleen M; Massey, Eric J; Campbell, Samantha J; Pierce, Jenna N

    2012-01-01

    Two studies addressed how young adult college students with attention deficit hyperactivity disorder (ADHD) (n = 44) compare to their nonaffected peers (n = 42) on tests of auditory and visual-spatial working memory (WM), are vulnerable to auditory and visual distractions, and are affected by a simple intervention. Students with ADHD demonstrated worse auditory WM than did controls. A near significant trend indicated that auditory distractions interfered with the visual WM of both groups and that, whereas controls were also vulnerable to visual distractions, visual distractions improved visual WM in the ADHD group. The intervention was ineffective. Limited correlations emerged between self-reported ADHD symptoms and objective test performances; students with ADHD who perceived themselves as more symptomatic often had better WM and were less vulnerable to distractions than their ADHD peers.

  11. A homozygous MYO7A mutation associated to Usher syndrome and unilateral auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Xia, Hong; Hu, Pengzhi; Yuan, Lamei; Xiong, Wei; Xu, Hongbo; Yi, Junhui; Yang, Zhijian; Deng, Xiong; Guo, Yi; Deng, Hao

    2017-10-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by sensorineural hearing loss, progressive visual loss and night blindness due to retinitis pigmentosa (RP), with or without vestibular dysfunction. The purpose of this study was to detect the causative gene in a consanguineous Chinese family with USH. A c.3696_3706del (p.R1232Sfs*72) variant in the myosin VIIa gene (MYO7A) was identified in the homozygous state by exome sequencing. The co‑segregation of the MYO7A c.3696_3706del variant with the phenotype of deafness and progressive visual loss in the USH family was confirmed by Sanger sequencing. The variant was absent in 200 healthy controls. Therefore, the c.3696_3706del variant may disrupt the interaction between myosin VIIa and other USH1 proteins, and impair melanosome transport in retinal pigment epithelial cells. Notably, bilateral auditory brainstem responses were absent in two patients of the USH family, while distortion product otoacoustic emissions were elicited in the right ears of the two patients, consistent with clinical diagnosis of unilateral auditory neuropathy spectrum disorder. These data suggested that the homozygous c.3696_3706del variant in the MYO7A gene may be the disease‑causing mutation for the disorder in this family. These findings broaden the phenotype spectrum of the MYO7A gene, and may facilitate understanding of the molecular pathogenesis of the disease, and genetic counseling for the family.

  12. Auditory Processing Assessment in Children with Attention Deficit Hyperactivity Disorder: An Open Study Examining Methylphenidate Effects.

    Science.gov (United States)

    Lanzetta-Valdo, Bianca Pinheiro; Oliveira, Giselle Alves de; Ferreira, Jane Tagarro Correa; Palacios, Ester Miyuki Nakamura

    2017-01-01

    Introduction  Children with Attention Deficit Hyperactivity Disorder can present Auditory Processing (AP) Disorder. Objective  The study examined the AP in ADHD children compared with non-ADHD children, and before and after 3 and 6 months of methylphenidate (MPH) treatment in ADHD children. Methods  Drug-naive children diagnosed with ADHD combined subtype aging between 7 and 11 years, coming from public and private outpatient service or public and private school, and age-gender-matched non-ADHD children, participated in an open, non-randomized study from February 2013 to December 2013. They were submitted to a behavioral battery of AP tests comprising Speech with white Noise, Dichotic Digits (DD), and Pitch Pattern Sequence (PPS) and were compared with non-ADHD children. They were followed for 3 and 6 months of MPH treatment (0.5 mg/kg/day). Results  ADHD children presented larger number of errors in DD ( p  < 0.01), and less correct responses in the PPS ( p  < 0.0001) and in the SN ( p  < 0.05) tests when compared with non-ADHD children. The treatment with MPH, especially along 6 months, significantly decreased the mean errors in the DD ( p  < 0.01) and increased the correct response in the PPS ( p  < 0.001) and SN ( p  < 0.01) tests when compared with the performance before MPH treatment. Conclusions  ADHD children show inefficient AP in selected behavioral auditory battery suggesting impaired in auditory closure, binaural integration, and temporal ordering. Treatment with MPH gradually improved these deficiencies and completely reversed them by reaching a performance similar to non-ADHD children at 6 months of treatment.

  13. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Directory of Open Access Journals (Sweden)

    Jason A Miranda

    Full Text Available Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  14. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Science.gov (United States)

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  15. Cognitive-perceptual deficits and symptom correlates in first-episode schizophrenia

    Directory of Open Access Journals (Sweden)

    Riaan M. Olivier

    2017-08-01

    Full Text Available Background: Thought disorder and visual-perceptual deficits have been well documented, but their relationships with clinical symptoms and cognitive function remain unclear. Cognitive-perceptual deficits may underscore clinical symptoms in schizophrenia patients. Aim: This study aimed to explore how thought disorder and form perception are related with clinical symptoms and cognitive dysfunction in first-episode schizophrenia. Setting: Forty-two patients with a first-episode of schizophrenia, schizophreniform or schizoaffective disorder were recruited from community clinics and state hospitals in the Cape Town area. Methods: Patients were assessed at baseline with the Rorschach Perceptual Thinking Index (PTI, the Positive and Negative Syndrome Scale (PANSS and the MATRICS Cognitive Consensus Battery (MCCB. Spearman correlational analyses were conducted to investigate relationships between PTI scores, PANSS factor analysis-derived domain scores and MCCB composite and subscale scores. Multiple regression models explored these relationships further. Results: Unexpectedly, poor form perception (X- % was inversely correlated with the severity of PANSS positive symptoms (r = -0.42, p = 0.02. Good form perception (XA% correlated significantly with speed of processing (r = 0.59, p < 0.01, working memory (r = 0.48, p < 0.01 and visual learning (r = 0.55, p < 0.01. PTI measures of thought disorder did not correlate significantly with PANSS symptom scores or cognitive performance. Conclusions: Form perception is associated with positive symptoms and impairment in executive function during acute psychosis. These findings suggest that there may be clinical value in including sensory-perceptual processing tasks in cognitive remediation and social cognitive training programmes for schizophrenia patients.

  16. The efficacy of formal auditory training in children with (central auditory processing disorder: behavioral and electrophysiological evaluation A eficácia do treinamento auditivo formal em crianças com transtorno de processamento auditivo (central: avaliação comportamental e eletrofisiológica

    Directory of Open Access Journals (Sweden)

    Renata Alonso

    2009-10-01

    Full Text Available Long Latency Auditory Evoked Potentials can be used to monitor changes in the Central Auditory Nervous System after Auditory Training. AIM: The aim of this study was to investigate the efficacy of Auditory Training in children with (Central Auditory Processing Disorder, comparing behavioral and electrophysiological findings before and after training. MATERIAL AND METHODS: twenty nine individuals between eight and 16 years of age with (Central Auditory Processing Disorder - diagnosed by behavioral tests - were involved in this research. After evaluation with the P300, the subjects were submitted to an Auditory Training program in acoustic booth and, at the end, a new evaluation of (central auditory processing and a new recording of P300. RESULTS: The comparison between the evaluations made before and after the Auditory Training showed that there was a statistically significant difference among P300 latency values and also among behavioral test mean values in evaluation of (central auditory processing. CONCLUSION: P300 appears to be a useful tool to monitor Central Auditory Nervous System changes after Auditory Training, and this program was effective in the rehabilitation of the auditory skills in children with (Central Auditory Processing Disorder.Os Potenciais Evocados Auditivos de Longa Latência podem ser uma ferramenta útil no monitoramento das mudanças ocorridas no Sistema Nervoso Auditivo Central após Treinamento Auditivo. OBJETIVO: O objetivo deste estudo foi verificar a eficácia do Treinamento Auditivo em crianças com Transtorno de Processamento Auditivo (Central, comparando as medidas comportamentais e eletrofisiológicas antes e após o treinamento. MATERIAL E MÉTODO: Participaram do estudo 29 indivíduos com idades entre oito e 16 anos diagnosticados, por meio de testes comportamentais, com Transtorno de Processamento Auditivo (Central. Após serem submetidos à avaliação do P300, foi realizado com os sujeitos um programa de

  17. Perceptual learning.

    Science.gov (United States)

    Seitz, Aaron R

    2017-07-10

    Perceptual learning refers to how experience can change the way we perceive sights, sounds, smells, tastes, and touch. Examples abound: music training improves our ability to discern tones; experience with food and wines can refine our pallet (and unfortunately more quickly empty our wallet), and with years of training radiologists learn to save lives by discerning subtle details of images that escape the notice of untrained viewers. We often take perceptual learning for granted, but it has a profound impact on how we perceive the world. In this Primer, I will explain how perceptual learning is transformative in guiding our perceptual processes, how research into perceptual learning provides insight into fundamental mechanisms of learning and brain processes, and how knowledge of perceptual learning can be used to develop more effective training approaches for those requiring expert perceptual skills or those in need of perceptual rehabilitation (such as individuals with poor vision). I will make a case that perceptual learning is ubiquitous, scientifically interesting, and has substantial practical utility to us all. Copyright © 2017. Published by Elsevier Ltd.

  18. Binaural auditory beats affect long-term memory.

    Science.gov (United States)

    Garcia-Argibay, Miguel; Santed, Miguel A; Reales, José M

    2017-12-08

    The presentation of two pure tones to each ear separately with a slight difference in their frequency results in the perception of a single tone that fluctuates in amplitude at a frequency that equals the difference of interaural frequencies. This perceptual phenomenon is known as binaural auditory beats, and it is thought to entrain electrocortical activity and enhance cognition functions such as attention and memory. The aim of this study was to determine the effect of binaural auditory beats on long-term memory. Participants (n = 32) were kept blind to the goal of the study and performed both the free recall and recognition tasks after being exposed to binaural auditory beats, either in the beta (20 Hz) or theta (5 Hz) frequency bands and white noise as a control condition. Exposure to beta-frequency binaural beats yielded a greater proportion of correctly recalled words and a higher sensitivity index d' in recognition tasks, while theta-frequency binaural-beat presentation lessened the number of correctly remembered words and the sensitivity index. On the other hand, we could not find differences in the conditional probability for recall given recognition between beta and theta frequencies and white noise, suggesting that the observed changes in recognition were due to the recollection component. These findings indicate that the presentation of binaural auditory beats can affect long-term memory both positively and negatively, depending on the frequency used.

  19. A common source of attention for auditory and visual tracking.

    Science.gov (United States)

    Fougnie, Daryl; Cockhren, Jurnell; Marois, René

    2018-05-01

    Tasks that require tracking visual information reveal the severe limitations of our capacity to attend to multiple objects that vary in time and space. Although these limitations have been extensively characterized in the visual domain, very little is known about tracking information in other sensory domains. Does tracking auditory information exhibit characteristics similar to those of tracking visual information, and to what extent do these two tracking tasks draw on the same attention resources? We addressed these questions by asking participants to perform either single or dual tracking tasks from the same (visual-visual) or different (visual-auditory) perceptual modalities, with the difficulty of the tracking tasks being manipulated across trials. The results revealed that performing two concurrent tracking tasks, whether they were in the same or different modalities, affected tracking performance as compared to performing each task alone (concurrence costs). Moreover, increasing task difficulty also led to increased costs in both the single-task and dual-task conditions (load-dependent costs). The comparison of concurrence costs between visual-visual and visual-auditory dual-task performance revealed slightly greater interference when two visual tracking tasks were paired. Interestingly, however, increasing task difficulty led to equivalent costs for visual-visual and visual-auditory pairings. We concluded that visual and auditory tracking draw largely, though not exclusively, on common central attentional resources.

  20. Plasticity in the Primary Auditory Cortex, Not What You Think it is: Implications for Basic and Clinical Auditory Neuroscience

    Science.gov (United States)

    Weinberger, Norman M.

    2013-01-01

    Standard beliefs that the function of the primary auditory cortex (A1) is the analysis of sound have proven to be incorrect. Its involvement in learning, memory and other complex processes in both animals and humans is now well-established, although often not appreciated. Auditory coding is strongly modifed by associative learning, evident as associative representational plasticity (ARP) in which the representation of an acoustic dimension, like frequency, is re-organized to emphasize a sound that has become behaviorally important. For example, the frequency tuning of a cortical neuron can be shifted to match that of a significant sound and the representational area of sounds that acquire behavioral importance can be increased. ARP depends on the learning strategy used to solve an auditory problem and the increased cortical area confers greater strength of auditory memory. Thus, primary auditory cortex is involved in cognitive processes, transcending its assumed function of auditory stimulus analysis. The implications for basic neuroscience and clinical auditory neuroscience are presented and suggestions for remediation of auditory processing disorders are introduced. PMID:25356375

  1. Assessment of auditory and vestibular functions in vitiligo patients

    Directory of Open Access Journals (Sweden)

    Eman Abd Elmohsin Dawoud

    2017-09-01

    Conclusion: The results in this study showed that 50% of vitiligo patients suffered from peripheral vestibular disorders in addition to auditory affection. Vitiligo patients require routine monitoring for auditory and vestibular functions for early identification and monitoring of changes as the disease progress.

  2. Effectiveness of High-Intensity Interval Exercise on Serum Dopamine Level and Improvement of Perceptual-Motor Skills in Male Students with Hyperactivity/Attention Deficit Disorder

    Directory of Open Access Journals (Sweden)

    F. Torabi

    2017-01-01

    Full Text Available Aims: Known by hyperactivity, inattentiveness, and impulsiveness, the attention deficit hyperactivity disorder (ADHD is considered as a behavioral disorder in the children, as well as in the adolescents. The disorder might also damage their motor skill procedure. The aim of the study was to determine the effectiveness of 6-week high intensity interval exercise on the serum dopamine levels and the improvement of perceptual-motor performance in boys with ADHD. Materials & Methods: In the controlled pretest-posttest semi-experimental study, 20 adolescent male students with ADHD of the eastern Tehran schools were studied in 2015. The subjects, selected by random sampling method, were randomly divided into two groups including experimental (n=10 and control (n=10 groups. 6-week high intensity interval training (3 days a week was conducted in experimental group. The anthropometric indices, dopamine levels, and perceptual-motor performance scores were measured both at the beginning and at the end of the course. Data was analyzed by SPSS 16 software using paired T and independent T tests. Findings: In the experimental group, the dopamine levels significantly increased at the posttest stage compared to the pretest (p=0.01, while BMI (p=0.001 and body fat percentage (p=0.002 significantly decreased. In addition, the motor skill score significantly increased in experimental group (p=0.001. No variable was significantly changed in control group during the 6 weeks (p>0.05. Conclusion: 6-week high intensity interval exercise improves perceptual-motor performance and increases serum dopamine levels in boys with ADHD.

  3. Effects of Consensus Training on the Reliability of Auditory Perceptual Ratings of Voice Quality

    DEFF Research Database (Denmark)

    Iwarsson, Jenny; Petersen, Niels Reinholt

    2012-01-01

    Objectives/Hypothesis: This study investigates the effect of consensus training of listeners on intrarater and interrater reliability and agreement of perceptual voice analysis. The use of such training, including a reference voice sample, could be assumed to make the internal standards held in m...

  4. Phonological working memory and auditory processing speed in children with specific language impairment

    Directory of Open Access Journals (Sweden)

    Fatemeh Haresabadi

    2015-02-01

    Full Text Available Background and Aim: Specific language impairment (SLI, one variety of developmental language disorder, has attracted much interest in recent decades. Much research has been conducted to discover why some children have a specific language impairment. So far, research has failed to identify a reason for this linguistic deficiency. Some researchers believe language disorder causes defects in phonological working memory and affects auditory processing speed. Therefore, this study reviews the results of research investigating these two factors in children with specific language impairment.Recent Findings: Studies have shown that children with specific language impairment face constraints in phonological working memory capacity. Memory deficit is one possible cause of linguistic disorder in children with specific language impairment. However, in these children, disorder in information processing speed is observed, especially regarding the auditory aspect.Conclusion: Much more research is required to adequately explain the relationship between phonological working memory and auditory processing speed with language. However, given the role of phonological working memory and auditory processing speed in language acquisition, a focus should be placed on phonological working memory capacity and auditory processing speed in the assessment and treatment of children with a specific language impairment.

  5. Relations between social-perceptual ability in multi- and unisensory contexts, autonomic reactivity, and social functioning in individuals with Williams syndrome.

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Arnold, Andrew J; Woo-VonHoogenstyn, Nicholas; Bellugi, Ursula

    2015-07-01

    Compromised social-perceptual ability has been proposed to contribute to social dysfunction in neurodevelopmental disorders. While such impairments have been identified in Williams syndrome (WS), little is known about emotion processing in auditory and multisensory contexts. Employing a multidimensional approach, individuals with WS and typical development (TD) were tested for emotion identification across fearful, happy, and angry multisensory and unisensory face and voice stimuli. Autonomic responses were monitored in response to unimodal emotion. The WS group was administered an inventory of social functioning. Behaviorally, individuals with WS relative to TD demonstrated impaired processing of unimodal vocalizations and emotionally incongruent audiovisual compounds, reflecting a generalized deficit in social-auditory processing in WS. The TD group outperformed their counterparts with WS in identifying negative (fearful and angry) emotion, with similar between-group performance with happy stimuli. Mirroring this pattern, electrodermal activity (EDA) responses to the emotional content of the stimuli indicated that whereas those with WS showed the highest arousal to happy, and lowest arousal to fearful stimuli, the TD participants demonstrated the contrasting pattern. In WS, more normal social functioning was related to higher autonomic arousal to facial expressions. Implications for underlying neural architecture and emotional functions are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Changes in otoacoustic emissions during selective auditory and visual attention.

    Science.gov (United States)

    Walsh, Kyle P; Pasanen, Edward G; McFadden, Dennis

    2015-05-01

    Previous studies have demonstrated that the otoacoustic emissions (OAEs) measured during behavioral tasks can have different magnitudes when subjects are attending selectively or not attending. The implication is that the cognitive and perceptual demands of a task can affect the first neural stage of auditory processing-the sensory receptors themselves. However, the directions of the reported attentional effects have been inconsistent, the magnitudes of the observed differences typically have been small, and comparisons across studies have been made difficult by significant procedural differences. In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring selective auditory attention (dichotic or diotic listening), selective visual attention, or relative inattention. Within subjects, the differences in nSFOAE magnitude between inattention and attention conditions were about 2-3 dB for both auditory and visual modalities, and the effect sizes for the differences typically were large for both nSFOAE magnitude and phase. These results reveal that the cochlear efferent reflex is differentially active during selective attention and inattention, for both auditory and visual tasks, although they do not reveal how attention is improved when efferent activity is greater.

  7. Changes in otoacoustic emissions during selective auditory and visual attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2015-01-01

    Previous studies have demonstrated that the otoacoustic emissions (OAEs) measured during behavioral tasks can have different magnitudes when subjects are attending selectively or not attending. The implication is that the cognitive and perceptual demands of a task can affect the first neural stage of auditory processing—the sensory receptors themselves. However, the directions of the reported attentional effects have been inconsistent, the magnitudes of the observed differences typically have been small, and comparisons across studies have been made difficult by significant procedural differences. In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring selective auditory attention (dichotic or diotic listening), selective visual attention, or relative inattention. Within subjects, the differences in nSFOAE magnitude between inattention and attention conditions were about 2–3 dB for both auditory and visual modalities, and the effect sizes for the differences typically were large for both nSFOAE magnitude and phase. These results reveal that the cochlear efferent reflex is differentially active during selective attention and inattention, for both auditory and visual tasks, although they do not reveal how attention is improved when efferent activity is greater. PMID:25994703

  8. Tuned with a tune: Talker normalization via general auditory processes

    Directory of Open Access Journals (Sweden)

    Erika J C Laing

    2012-06-01

    Full Text Available Voices have unique acoustic signatures, contributing to the acoustic variability listeners must contend with in perceiving speech, and it has long been proposed that listeners normalize speech perception to information extracted from a talker’s speech. Initial attempts to explain talker normalization relied on extraction of articulatory referents, but recent studies of context-dependent auditory perception suggest that general auditory referents such as the long-term average spectrum (LTAS of a talker’s speech similarly affect speech perception. The present study aimed to differentiate the contributions of articulatory/linguistic versus auditory referents for context-driven talker normalization effects and, more specifically, to identify the specific constraints under which such contexts impact speech perception. Synthesized sentences manipulated to sound like different talkers influenced categorization of a subsequent speech target only when differences in the sentences’ LTAS were in the frequency range of the acoustic cues relevant for the target phonemic contrast. This effect was true both for speech targets preceded by spoken sentence contexts and for targets preceded by nonspeech tone sequences that were LTAS-matched to the spoken sentence contexts. Specific LTAS characteristics, rather than perceived talker, predicted the results suggesting that general auditory mechanisms play an important role in effects considered to be instances of perceptual talker normalization.

  9. Temporal Resolution and Active Auditory Discrimination Skill in Vocal Musicians

    Directory of Open Access Journals (Sweden)

    Kumar, Prawin

    2015-12-01

    Full Text Available Introduction Enhanced auditory perception in musicians is likely to result from auditory perceptual learning during several years of training and practice. Many studies have focused on biological processing of auditory stimuli among musicians. However, there is a lack of literature on temporal resolution and active auditory discrimination skills in vocal musicians. Objective The aim of the present study is to assess temporal resolution and active auditory discrimination skill in vocal musicians. Method The study participants included 15 vocal musicians with a minimum professional experience of 5 years of music exposure, within the age range of 20 to 30 years old, as the experimental group, while 15 age-matched non-musicians served as the control group. We used duration discrimination using pure-tones, pulse-train duration discrimination, and gap detection threshold tasks to assess temporal processing skills in both groups. Similarly, we assessed active auditory discrimination skill in both groups using Differential Limen of Frequency (DLF. All tasks were done using MATLab software installed in a personal computer at 40dBSL with maximum likelihood procedure. The collected data were analyzed using SPSS (version 17.0. Result Descriptive statistics showed better threshold for vocal musicians compared with non-musicians for all tasks. Further, independent t-test showed that vocal musicians performed significantly better compared with non-musicians on duration discrimination using pure tone, pulse train duration discrimination, gap detection threshold, and differential limen of frequency. Conclusion The present study showed enhanced temporal resolution ability and better (lower active discrimination threshold in vocal musicians in comparison to non-musicians.

  10. Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders.

    Science.gov (United States)

    Le Bel, Ronald M; Pineda, Jaime A; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an integration of motor-auditory-visual information processing related to aspects of language learning including action understanding and recognition. Such integration may also form the basis for language-related constructs such as theory of mind. In this article, we review the MNS system as it relates to the cognitive development of language in typically developing children and in children at-risk for communication disorders, such as children with autism spectrum disorder (ASD) or hearing impairment. Studying MNS development in these children may help illuminate an important role of the MNS in children with communication disorders. Studies with deaf children are especially important because they offer potential insights into how the MNS is reorganized when one modality, such as audition, is deprived during early cognitive development, and this may have long-term consequences on language maturation and theory of mind abilities. Readers will be able to (1) understand the concept of mirror neurons, (2) identify cortical areas associated with the MNS in animal and human studies, (3) discuss the use of mu suppression in the EEG for measuring the MNS in humans, and (4) discuss MNS dysfunction in children with (ASD).

  11. Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.

    Science.gov (United States)

    Gunnarson, Adele D.; And Others

    1990-01-01

    This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)

  12. No Need for Templates in the Auditory Enhancement Effect.

    Science.gov (United States)

    Carcagno, Samuele; Semal, Catherine; Demany, Laurent

    2013-01-01

    The audibility of a target tone in a multitone background masker is enhanced by the presentation of a precursor sound consisting of the masker alone. There is evidence that precursor-induced neural adaptation plays a role in this perceptual enhancement. However, the precursor may also be strategically used by listeners as a spectral template of the following masker to better segregate it from the target. In the present study, we tested this hypothesis by measuring the audibility of a target tone in a multitone masker after the presentation of precursors which, in some conditions, were made dissimilar to the masker by gating their components asynchronously. The precursor and the following sound were presented either to the same ear or to opposite ears. In either case, we found no significant difference in the amount of enhancement produced by synchronous and asynchronous precursors. In a second experiment, listeners had to judge whether a synchronous multitone complex contained exactly the same tones as a preceding precursor complex or had one tone less. In this experiment, listeners performed significantly better with synchronous than with asynchronous precursors, showing that asynchronous precursors were poorer perceptual templates of the synchronous multitone complexes. Overall, our findings indicate that precursor-induced auditory enhancement cannot be fully explained by the strategic use of the precursor as a template of the following masker. Our results are consistent with an explanation of enhancement based on selective neural adaptation taking place at a central locus of the auditory system.

  13. Auditory pathways and processes: implications for neuropsychological assessment and diagnosis of children and adolescents.

    Science.gov (United States)

    Bailey, Teresa

    2010-01-01

    Neuroscience research on auditory processing pathways and their behavioral and electrophysiological correlates has taken place largely outside the field of clinical neuropsychology. Deviations and disruptions in auditory pathways in children and adolescents result in a well-documented range of developmental and learning impairments frequently referred for neuropsychological evaluation. This review is an introduction to research from the last decade. It describes auditory cortical and subcortical pathways and processes and relates recent research to specific conditions and questions neuropsychologists commonly encounter. Auditory processing disorders' comorbidity with ADHD and language-based disorders and research addressing the challenges of assessment and differential diagnosis are discussed.

  14. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.

    Science.gov (United States)

    Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W

    2017-06-22

    Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.

  15. Binaural auditory beats affect vigilance performance and mood.

    Science.gov (United States)

    Lane, J D; Kasian, S J; Owens, J E; Marsh, G R

    1998-01-01

    When two tones of slightly different frequency are presented separately to the left and right ears the listener perceives a single tone that varies in amplitude at a frequency equal to the frequency difference between the two tones, a perceptual phenomenon known as the binaural auditory beat. Anecdotal reports suggest that binaural auditory beats within the electroencephalograph frequency range can entrain EEG activity and may affect states of consciousness, although few scientific studies have been published. This study compared the effects of binaural auditory beats in the EEG beta and EEG theta/delta frequency ranges on mood and on performance of a vigilance task to investigate their effects on subjective and objective measures of arousal. Participants (n = 29) performed a 30-min visual vigilance task on three different days while listening to pink noise containing simple tones or binaural beats either in the beta range (16 and 24 Hz) or the theta/delta range (1.5 and 4 Hz). However, participants were kept blind to the presence of binaural beats to control expectation effects. Presentation of beta-frequency binaural beats yielded more correct target detections and fewer false alarms than presentation of theta/delta frequency binaural beats. In addition, the beta-frequency beats were associated with less negative mood. Results suggest that the presentation of binaural auditory beats can affect psychomotor performance and mood. This technology may have applications for the control of attention and arousal and the enhancement of human performance.

  16. EEG signatures accompanying auditory figure-ground segregation.

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P; Szerafin, Ágnes; Shinn-Cunningham, Barbara G; Winkler, István

    2016-11-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased - i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. Copyright © 2016. Published by Elsevier Inc.

  17. EEG signatures accompanying auditory figure-ground segregation

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P.; Szerafin, Ágnes; Shinn-Cunningham, Barbara; Winkler, István

    2017-01-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased – i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. PMID:27421185

  18. Volitional Mechanisms Mediate the Cuing Effect of Pitch on Attention Orienting: The Influences of Perceptual Difficulty and Response Pressure.

    Science.gov (United States)

    Chiou, Rocco; Rich, Anina N

    2015-02-01

    Our cognitive system tends to link auditory pitch with spatial location in a specific manner (ie high-pitched sounds are usually associated with an upper location, and low sounds are associated with a lower location). Recent studies have demonstrated that this cross-modality association biases the allocation of visual attention and affects performance despite the auditory stimuli being irrelevant to the behavioural task. There is, however, a discrepancy between studies in their interpretation of the underlying mechanisms. Whereas we have previously claimed that the pitch-location mapping is mediated by volitional shifts of attention (Chiou & Rich, 2012, Perception, 41: , 339-353), other researchers suggest that this cross-modal effect reflects automatic shifts of attention (Mossbridge, Grabowecky, & Suzuki, 2011, Cognition, 121: , 133-139). Here we report a series of three experiments examining the effects of perceptual and response-related pressure on the ability of nonpredictive pitch to bias visual attention. We compare it with two control cues: a predictive pitch that triggers voluntary attention shifts and a salient peripheral flash that evokes involuntary shifts. The results show that the effect of nonpredictive pitch is abolished by pressure at either perceptual or response levels. By contrast, the effects of the two control cues remain significant, demonstrating the robustness of informative and perceptually salient stimuli in directing attention. This distinction suggests that, in contexts of high perceptual demand and response pressure, cognitive resources are primarily engaged by the task-relevant stimuli, which effectively prevents uninformative pitch from orienting attention to its cross-modally associated location. These findings are consistent with the hypothesis that the link between pitch and location affects attentional deployment via volitional rather than automatic mechanisms. © 2015 SAGE Publications.

  19. Assessing cross-modal target transition effects with a visual-auditory oddball.

    Science.gov (United States)

    Kiat, John E

    2018-04-30

    Prior research has shown contextual manipulations involving temporal and sequence related factors significantly moderate attention-related responses, as indexed by the P3b event-related-potential, towards infrequent (i.e., deviant) target oddball stimuli. However, significantly less research has looked at the influence of cross-modal switching on P3b responding, with the impact of target-to-target cross-modal transitions being virtually unstudied. To address this gap, this study recorded high-density (256 electrodes) EEG data from twenty-five participants as they completed a cross-modal visual-auditory oddball task. This task was comprised of unimodal visual (70% Nontargets: 30% Deviant-targets) and auditory (70% Nontargets: 30% Deviant-targets) oddballs presented in fixed alternating order (i.e., visual-auditory-visual-auditory, etc.) with participants being tasked with detecting deviant-targets in both modalities. Differences in the P3b response towards deviant-targets as a function of preceding deviant-target's presentation modality was analyzed using temporal-spatial PCA decomposition. In line with predictions, the results indicate that the ERP response to auditory deviant-targets preceded by visual deviant-targets exhibits an elevated P3b, relative to the processing of auditory deviant-targets preceded by auditory deviant-targets. However, the processing of visual deviant-targets preceded by auditory deviant-targets exhibited a reduced P3b response, relative to the P3b response towards visual deviant-targets preceded by visual deviant-targets. These findings provide the first demonstration of temporally and perceptually decoupled target-to-target cross-modal transitions moderating P3b responses on the oddball paradigm, generally providing support for the context-updating interpretation of the P3b response. Copyright © 2017. Published by Elsevier B.V.

  20. The Role of Age and Executive Function in Auditory Category Learning

    Science.gov (United States)

    Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath

    2015-01-01

    Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987

  1. Auditory, Visual and Audiovisual Speech Processing Streams in Superior Temporal Sulcus.

    Science.gov (United States)

    Venezia, Jonathan H; Vaden, Kenneth I; Rong, Feng; Maddox, Dale; Saberi, Kourosh; Hickok, Gregory

    2017-01-01

    The human superior temporal sulcus (STS) is responsive to visual and auditory information, including sounds and facial cues during speech recognition. We investigated the functional organization of STS with respect to modality-specific and multimodal speech representations. Twenty younger adult participants were instructed to perform an oddball detection task and were presented with auditory, visual, and audiovisual speech stimuli, as well as auditory and visual nonspeech control stimuli in a block fMRI design. Consistent with a hypothesized anterior-posterior processing gradient in STS, auditory, visual and audiovisual stimuli produced the largest BOLD effects in anterior, posterior and middle STS (mSTS), respectively, based on whole-brain, linear mixed effects and principal component analyses. Notably, the mSTS exhibited preferential responses to multisensory stimulation, as well as speech compared to nonspeech. Within the mid-posterior and mSTS regions, response preferences changed gradually from visual, to multisensory, to auditory moving posterior to anterior. Post hoc analysis of visual regions in the posterior STS revealed that a single subregion bordering the mSTS was insensitive to differences in low-level motion kinematics yet distinguished between visual speech and nonspeech based on multi-voxel activation patterns. These results suggest that auditory and visual speech representations are elaborated gradually within anterior and posterior processing streams, respectively, and may be integrated within the mSTS, which is sensitive to more abstract speech information within and across presentation modalities. The spatial organization of STS is consistent with processing streams that are hypothesized to synthesize perceptual speech representations from sensory signals that provide convergent information from visual and auditory modalities.

  2. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study.

    Directory of Open Access Journals (Sweden)

    Teppo Särkämö

    2010-12-01

    Full Text Available Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm recordings. Fifty-three patients with a left (n = 24 or right (n = 29 hemisphere MCA stroke (MRI verified were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA. We found that amusia caused by right hemisphere damage (RHD, especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD. Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.

  3. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study.

    Science.gov (United States)

    Särkämö, Teppo; Tervaniemi, Mari; Soinila, Seppo; Autti, Taina; Silvennoinen, Heli M; Laine, Matti; Hietanen, Marja; Pihko, Elina

    2010-12-02

    Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA) territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG) measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm) recordings. Fifty-three patients with a left (n = 24) or right (n = 29) hemisphere MCA stroke (MRI verified) were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA). We found that amusia caused by right hemisphere damage (RHD), especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD). Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC) showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.

  4. Central auditory masking by an illusory tone.

    Directory of Open Access Journals (Sweden)

    Christopher J Plack

    Full Text Available Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  5. Organization of Estrogen-Associated Circuits in the Mouse Primary Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Liisa A. Tremere

    2011-01-01

    Full Text Available Sex steroid hormones influence the perceptual processing of sensory signals in vertebrates. In particular, decades of research have shown that circulating levels of estrogen correlate with hearing function. The mechanisms and sites of action supporting this sensory-neuroendocrine modulation, however, remain unknown. Here we combined a molecular cloning strategy, fluorescence in-situ hybridization and unbiased quantification methods to show that estrogen-producing and -sensitive neurons heavily populate the adult mouse primary auditory cortex (AI. We also show that auditory experience in freely-behaving animals engages estrogen-producing and -sensitive neurons in AI. These estrogen-associated networks are greatly stable, and do not quantitatively change as a result of acute episodes of sensory experience. We further demonstrate the neurochemical identity of estrogen-producing and estrogen-sensitive neurons in AI and show that these cell populations are phenotypically distinct. Our findings provide the first direct demonstration that estrogen-associated circuits are highly prevalent and engaged by sensory experience in the mouse auditory cortex, and suggest that previous correlations between estrogen levels and hearing function may be related to brain-generated hormone production. Finally, our findings suggest that estrogenic modulation may be a central component of the operational framework of central auditory networks.

  6. Auditory Scene Analysis and sonified visual images. Does consonance negatively impact on object formation when using complex sonified stimuli?

    Directory of Open Access Journals (Sweden)

    David J Brown

    2015-10-01

    Full Text Available A critical task for the brain is the sensory representation and identification of perceptual objects in the world. When the visual sense is impaired, hearing and touch must take primary roles and in recent times compensatory techniques have been developed that employ the tactile or auditory system as a substitute for the visual system. Visual-to-auditory sonifications provide a complex, feature-based auditory representation that must be decoded and integrated into an object-based representation by the listener. However, we don’t yet know what role the auditory system plays in the object integration stage and whether the principles of auditory scene analysis apply. Here we used coarse sonified images in a two-tone discrimination task to test whether auditory feature-based representations of visual objects would be confounded when their features conflicted with the principles of auditory consonance. We found that listeners (N = 36 performed worse in an object recognition task when the auditory feature-based representation was harmonically consonant. We also found that this conflict was not negated with the provision of congruent audio-visual information. The findings suggest that early auditory processes of harmonic grouping dominate the object formation process and that the complexity of the signal, and additional sensory information have limited effect on this.

  7. Auditory spatial attention to speech and complex non-speech sounds in children with autism spectrum disorder.

    Science.gov (United States)

    Soskey, Laura N; Allen, Paul D; Bennetto, Loisa

    2017-08-01

    One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  8. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Lohmann, Gabriele

    2018-01-01

    Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with "small-world" properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex-and sensory systems in general-in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions.

  9. A new test of attention in listening (TAIL) predicts auditory performance.

    Science.gov (United States)

    Zhang, Yu-Xuan; Barry, Johanna G; Moore, David R; Amitay, Sygal

    2012-01-01

    Attention modulates auditory perception, but there are currently no simple tests that specifically quantify this modulation. To fill the gap, we developed a new, easy-to-use test of attention in listening (TAIL) based on reaction time. On each trial, two clearly audible tones were presented sequentially, either at the same or different ears. The frequency of the tones was also either the same or different (by at least two critical bands). When the task required same/different frequency judgments, presentation at the same ear significantly speeded responses and reduced errors. A same/different ear (location) judgment was likewise facilitated by keeping tone frequency constant. Perception was thus influenced by involuntary orienting of attention along the task-irrelevant dimension. When information in the two stimulus dimensions were congruent (same-frequency same-ear, or different-frequency different-ear), response was faster and more accurate than when they were incongruent (same-frequency different-ear, or different-frequency same-ear), suggesting the involvement of executive control to resolve conflicts. In total, the TAIL yielded five independent outcome measures: (1) baseline reaction time, indicating information processing efficiency, (2) involuntary orienting of attention to frequency and (3) location, and (4) conflict resolution for frequency and (5) location. Processing efficiency and conflict resolution accounted for up to 45% of individual variances in the low- and high-threshold variants of three psychoacoustic tasks assessing temporal and spectral processing. Involuntary orientation of attention to the irrelevant dimension did not correlate with perceptual performance on these tasks. Given that TAIL measures are unlikely to be limited by perceptual sensitivity, we suggest that the correlations reflect modulation of perceptual performance by attention. The TAIL thus has the power to identify and separate contributions of different components of attention

  10. Expressive vocabulary and auditory processing in children with deviant speech acquisition.

    Science.gov (United States)

    Quintas, Victor Gandra; Mezzomo, Carolina Lisbôa; Keske-Soares, Márcia; Dias, Roberta Freitas

    2010-01-01

    expressive vocabulary and auditory processing in children with phonological disorder. to compare the performance of children with phonological disorder in a vocabulary test with the parameters indicated by the same test and to verify a possible relationship between this performance and auditory processing deficits. participants were 12 children diagnosed with phonological disorders, with ages ranging from 5 to 7 years, of both genders. Vocabulary was assessed using the ABFW language test and the simplified auditory processing evaluation (sorting), Alternate Dichotic Dissyllable - Staggered Spondaic Word (SSW), Pitch Pattern Sequence (PPS) and the Binaural Fusion Test (BF). considering performance in the vocabulary test, all children obtained results with no significant statistical. As for the auditory processing assessment, all children presented better results than expected; the only exception was on the sorting process testing, where the mean accuracy score was of 8.25. Regarding the performance in the other auditory processing tests, the mean accuracy averages were 6.50 in the SSW, 10.74 in the PPS and 7.10 in the BF. When correlating the performance obtained in both assessments, considering p>0.05, the results indicated that, despite the normality, the lower the value obtained in the auditory processing assessment, the lower the accuracy presented in the vocabulary test. A trend was observed for the semantic fields of "means of transportation and professions". Considering the classification categories of the vocabulary test, the SP (substitution processes) were the categories that presented the higher significant increase in all semantic fields. there is a correlation between the auditory processing and the lexicon, where vocabulary can be influenced in children with deviant speech acquisition.

  11. Perceptual effects in auralization of virtual rooms

    Science.gov (United States)

    Kleiner, Mendel; Larsson, Pontus; Vastfjall, Daniel; Torres, Rendell R.

    2002-05-01

    By using various types of binaural simulation (or ``auralization'') of physical environments, it is now possible to study basic perceptual issues relevant to room acoustics, as well to simulate the acoustic conditions found in concert halls and other auditoria. Binaural simulation of physical spaces in general is also important to virtual reality systems. This presentation will begin with an overview of the issues encountered in the auralization of room and other environments. We will then discuss the influence of various approximations in room modeling, in particular, edge- and surface scattering, on the perceived room response. Finally, we will discuss cross-modal effects, such as the influence of visual cues on the perception of auditory cues, and the influence of cross-modal effects on the judgement of ``perceived presence'' and the rating of room acoustic quality.

  12. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors.

    Science.gov (United States)

    Chen, Zhaocong; Wong, Francis C K; Jones, Jeffery A; Li, Weifeng; Liu, Peng; Chen, Xi; Liu, Hanjun

    2015-08-17

    Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production.

  13. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.

    Science.gov (United States)

    Trainor, Laurel J; Marie, Céline; Bruce, Ian C; Bidelman, Gavin M

    2014-02-01

    Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human

  14. A perceptual metric for photo retouching.

    Science.gov (United States)

    Kee, Eric; Farid, Hany

    2011-12-13

    In recent years, advertisers and magazine editors have been widely criticized for taking digital photo retouching to an extreme. Impossibly thin, tall, and wrinkle- and blemish-free models are routinely splashed onto billboards, advertisements, and magazine covers. The ubiquity of these unrealistic and highly idealized images has been linked to eating disorders and body image dissatisfaction in men, women, and children. In response, several countries have considered legislating the labeling of retouched photos. We describe a quantitative and perceptually meaningful metric of photo retouching. Photographs are rated on the degree to which they have been digitally altered by explicitly modeling and estimating geometric and photometric changes. This metric correlates well with perceptual judgments of photo retouching and can be used to objectively judge by how much a retouched photo has strayed from reality.

  15. The influence of schizotypal traits on attention under high perceptual load.

    Science.gov (United States)

    Stotesbury, Hanne; Gaigg, Sebastian B; Kirhan, Saim; Haenschel, Corinna

    2018-03-01

    Schizophrenia Spectrum Disorders (SSD) are known to be characterised by abnormalities in attentional processes, but there are inconsistencies in the literature that remain unresolved. This article considers whether perceptual resource limitations play a role in moderating attentional abnormalities in SSD. According to perceptual load theory, perceptual resource limitations can lead to attenuated or superior performance on dual-task paradigms depending on whether participants are required to process, or attempt to ignore, secondary stimuli. If SSD is associated with perceptual resource limitations, and if it represents the extreme end of an otherwise normally distributed neuropsychological phenotype, schizotypal traits in the general population should lead to disproportionate performance costs on dual-task paradigms as a function of the perceptual task demands. To test this prediction, schizotypal traits were quantified via the Schizotypal Personality Questionnaire (SPQ) in 74 healthy volunteers, who also completed a dual-task signal detection paradigm that required participants to detect central and peripheral stimuli across conditions that varied in the overall number of stimuli presented. The results confirmed decreasing performance as the perceptual load of the task increased. More importantly, significant correlations between SPQ scores and task performance confirmed that increased schizotypal traits, particularly in the cognitive-perceptual domain, are associated with greater performance decrements under increasing perceptual load. These results confirm that attentional difficulties associated with SSD extend sub-clinically into the general population and suggest that cognitive-perceptual schizotypal traits may represent a risk factor for difficulties in the regulation of attention under increasing perceptual load.

  16. The influence of schizotypal traits on attention under high perceptual load

    Directory of Open Access Journals (Sweden)

    Hanne Stotesbury

    2018-03-01

    Full Text Available Schizophrenia Spectrum Disorders (SSD are known to be characterised by abnormalities in attentional processes, but there are inconsistencies in the literature that remain unresolved. This article considers whether perceptual resource limitations play a role in moderating attentional abnormalities in SSD. According to perceptual load theory, perceptual resource limitations can lead to attenuated or superior performance on dual-task paradigms depending on whether participants are required to process, or attempt to ignore, secondary stimuli. If SSD is associated with perceptual resource limitations, and if it represents the extreme end of an otherwise normally distributed neuropsychological phenotype, schizotypal traits in the general population should lead to disproportionate performance costs on dual-task paradigms as a function of the perceptual task demands. To test this prediction, schizotypal traits were quantified via the Schizotypal Personality Questionnaire (SPQ in 74 healthy volunteers, who also completed a dual-task signal detection paradigm that required participants to detect central and peripheral stimuli across conditions that varied in the overall number of stimuli presented. The results confirmed decreasing performance as the perceptual load of the task increased. More importantly, significant correlations between SPQ scores and task performance confirmed that increased schizotypal traits, particularly in the cognitive-perceptual domain, are associated with greater performance decrements under increasing perceptual load. These results confirm that attentional difficulties associated with SSD extend sub-clinically into the general population and suggest that cognitive-perceptual schizotypal traits may represent a risk factor for difficulties in the regulation of attention under increasing perceptual load.

  17. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    Science.gov (United States)

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. No Need for Templates in the Auditory Enhancement Effect.

    Directory of Open Access Journals (Sweden)

    Samuele Carcagno

    Full Text Available The audibility of a target tone in a multitone background masker is enhanced by the presentation of a precursor sound consisting of the masker alone. There is evidence that precursor-induced neural adaptation plays a role in this perceptual enhancement. However, the precursor may also be strategically used by listeners as a spectral template of the following masker to better segregate it from the target. In the present study, we tested this hypothesis by measuring the audibility of a target tone in a multitone masker after the presentation of precursors which, in some conditions, were made dissimilar to the masker by gating their components asynchronously. The precursor and the following sound were presented either to the same ear or to opposite ears. In either case, we found no significant difference in the amount of enhancement produced by synchronous and asynchronous precursors. In a second experiment, listeners had to judge whether a synchronous multitone complex contained exactly the same tones as a preceding precursor complex or had one tone less. In this experiment, listeners performed significantly better with synchronous than with asynchronous precursors, showing that asynchronous precursors were poorer perceptual templates of the synchronous multitone complexes. Overall, our findings indicate that precursor-induced auditory enhancement cannot be fully explained by the strategic use of the precursor as a template of the following masker. Our results are consistent with an explanation of enhancement based on selective neural adaptation taking place at a central locus of the auditory system.

  19. Comparison of congruence judgment and auditory localization tasks for assessing the spatial limits of visual capture.

    Science.gov (United States)

    Bosen, Adam K; Fleming, Justin T; Brown, Sarah E; Allen, Paul D; O'Neill, William E; Paige, Gary D

    2016-12-01

    Vision typically has better spatial accuracy and precision than audition and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small, visual capture is likely to occur, and when disparity is large, visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audiovisual disparities over which visual capture was likely to occur was narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner.

  20. Comparison of Congruence Judgment and Auditory Localization Tasks for Assessing the Spatial Limits of Visual Capture

    Science.gov (United States)

    Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.

    2016-01-01

    Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630

  1. Reduced auditory efferent activity in childhood selective mutism.

    Science.gov (United States)

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  2. A psychophysical imaging method evidencing auditory cue extraction during speech perception: a group analysis of auditory classification images.

    Science.gov (United States)

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme.

  3. Hearing with Two Ears: Evidence for Cortical Binaural Interaction during Auditory Processing.

    Science.gov (United States)

    Henkin, Yael; Yaar-Soffer, Yifat; Givon, Lihi; Hildesheimer, Minka

    2015-04-01

    Integration of information presented to the two ears has been shown to manifest in binaural interaction components (BICs) that occur along the ascending auditory pathways. In humans, BICs have been studied predominantly at the brainstem and thalamocortical levels; however, understanding of higher cortically driven mechanisms of binaural hearing is limited. To explore whether BICs are evident in auditory event-related potentials (AERPs) during the advanced perceptual and postperceptual stages of cortical processing. The AERPs N1, P3, and a late negative component (LNC) were recorded from multiple site electrodes while participants performed an oddball discrimination task that consisted of natural speech syllables (/ka/ vs. /ta/) that differed by place-of-articulation. Participants were instructed to respond to the target stimulus (/ta/) while performing the task in three listening conditions: monaural right, monaural left, and binaural. Fifteen (21-32 yr) young adults (6 females) with normal hearing sensitivity. By subtracting the response to target stimuli elicited in the binaural condition from the sum of responses elicited in the monaural right and left conditions, the BIC waveform was derived and the latencies and amplitudes of the components were measured. The maximal interaction was calculated by dividing BIC amplitude by the summed right and left response amplitudes. In addition, the latencies and amplitudes of the AERPs to target stimuli elicited in the monaural right, monaural left, and binaural listening conditions were measured and subjected to analysis of variance with repeated measures testing the effect of listening condition and laterality. Three consecutive BICs were identified at a mean latency of 129, 406, and 554 msec, and were labeled N1-BIC, P3-BIC, and LNC-BIC, respectively. Maximal interaction increased significantly with progression of auditory processing from perceptual to postperceptual stages and amounted to 51%, 55%, and 75% of the sum of

  4. CT of the external auditory canal: Correlation with clinical otoscopy

    International Nuclear Information System (INIS)

    Shankar, L.; Hawke, M.; Leekam, R.N.

    1987-01-01

    CT is the modality of choice in the assessment of external auditory canal abnormalities. Disorders of the complex structures within the ear that may be difficult to define clinically are well visualized on high-resolution CT. This exhibit illustrates various external auditory canal abnormalities and correlates these with color illustrations from clinical otoscopy. Congenital lesions of the external auditory canal - microtia, temporo-bandibular joint herniation, and fistulas - and various acquired lesions - traumatic, inflammatory, and neoplastic - are reviewed in this exhibit

  5. Procedures for central auditory processing screening in schoolchildren.

    Science.gov (United States)

    Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella

    2018-03-22

    Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that

  6. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  7. Perceptual reasoning predicts handwriting impairments in adolescents with autism

    Science.gov (United States)

    Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.

    2010-01-01

    Background: We have previously shown that children with autism spectrum disorder (ASD) have specific handwriting deficits consisting of poor form, and that these deficits are predicted by their motor abilities. It is not known whether the same handwriting impairments persist into adolescence and whether they remain linked to motor deficits. Methods: A case-control study of handwriting samples from adolescents with and without ASD was performed using the Minnesota Handwriting Assessment. Samples were scored on an individual letter basis in 5 categories: legibility, form, alignment, size, and spacing. Subjects were also administered an intelligence test and the Physical and Neurological Examination for Subtle (Motor) Signs (PANESS). Results: We found that adolescents with ASD, like children, show overall worse performance on a handwriting task than do age- and intelligence-matched controls. Also comparable to children, adolescents with ASD showed motor impairments relative to controls. However, adolescents with ASD differ from children in that Perceptual Reasoning Indices were significantly predictive of handwriting performance whereas measures of motor skills were not. Conclusions: Like children with ASD, adolescents with ASD have poor handwriting quality relative to controls. Despite still demonstrating motor impairments, in adolescents perceptual reasoning is the main predictor of handwriting performance, perhaps reflecting subjects' varied abilities to learn strategies to compensate for their motor impairments. GLOSSARY ASD = autism spectrum disorder; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th edition; PANESS = Physical and Neurological Examination for Subtle (Motor) Signs; PRI = Perceptual Reasoning Index; WASI = Wechsler Abbreviated Scale of Intelligence; WISC = Wechsler Intelligence Scale for Children IV. PMID:21079184

  8. Classification of Single-Trial Auditory Events Using Dry-Wireless EEG During Real and Motion Simulated Flight

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2015-02-01

    Full Text Available Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound versus silent periods. Evaluation of Independent component analysis and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs 78.3%, Platform On (73.1% vs 71.6%, Biplane Engine Off (81.1% vs 77.4%, and Biplane Engine On (79.2% vs 66.1%. This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  9. Unbound Bilirubin and Auditory Neuropathy Spectrum Disorder in Late Preterm and Term Infants with Severe Jaundice.

    Science.gov (United States)

    Amin, Sanjiv B; Wang, Hongyue; Laroia, Nirupama; Orlando, Mark

    2016-06-01

    This study evaluates whether unbound bilirubin is a better predictor of auditory neuropathy spectrum disorder (ANSD) than total serum bilirubin (TSB) or the bilirubin:albumin molar ratio (BAMR) in late preterm and term neonates with severe jaundice (TSB ≥20 mg/dL or TSB that met exchange transfusion criteria). Infants ≥34 weeks' gestation with severe jaundice during the first 2 weeks of life were eligible for the prospective observational study. A comprehensive auditory evaluation was performed within 72 hours of peak TSB. ANSD was defined as absent or abnormal auditory brainstem evoked response waveform morphology at 80-decibel click intensity in the presence of normal outer hair cell function. TSB, serum albumin, and unbound bilirubin were measured using the colorimetric, bromocresol green, and modified peroxidase method, respectively. Five of 44 infants developed ANSD. By logistic regression, peak unbound bilirubin but not peak TSB or peak BAMR was associated with ANSD (OR, 4.6; 95% CI, 1.6-13.5; P = .002). On comparing receiver operating characteristic curves, the area under the curve for unbound bilirubin (0.92) was significantly greater (P = .04) compared with the area under the curve for TSB (0.50) or BAMR (0.62). Unbound bilirubin is a more sensitive and specific predictor of ANSD than TSB or BAMR in late preterm and term infants with severe jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Visual speech information: a help or hindrance in perceptual processing of dysarthric speech.

    Science.gov (United States)

    Borrie, Stephanie A

    2015-03-01

    This study investigated the influence of visual speech information on perceptual processing of neurologically degraded speech. Fifty listeners identified spastic dysarthric speech under both audio (A) and audiovisual (AV) conditions. Condition comparisons revealed that the addition of visual speech information enhanced processing of the neurologically degraded input in terms of (a) acuity (percent phonemes correct) of vowels and consonants and (b) recognition (percent words correct) of predictive and nonpredictive phrases. Listeners exploited stress-based segmentation strategies more readily in AV conditions, suggesting that the perceptual benefit associated with adding visual speech information to the auditory signal-the AV advantage-has both segmental and suprasegmental origins. Results also revealed that the magnitude of the AV advantage can be predicted, to some degree, by the extent to which an individual utilizes syllabic stress cues to inform word recognition in AV conditions. Findings inform the development of a listener-specific model of speech perception that applies to processing of dysarthric speech in everyday communication contexts.

  11. In Patients Undergoing Cochlear Implantation, Psychological Burden Affects Tinnitus and the Overall Outcome of Auditory Rehabilitation

    Directory of Open Access Journals (Sweden)

    Petra Brüggemann

    2017-05-01

    Full Text Available Cochlear implantation (CI is increasingly being used in the auditory rehabilitation of deaf patients. Here, we investigated whether the auditory rehabilitation can be influenced by the psychological burden caused by mental conditions. Our sample included 47 patients who underwent implantation. All patients were monitored before and 6 months after CI. Auditory performance was assessed using the Oldenburg Inventory (OI and Freiburg monosyllable (FB MS speech discrimination test. The health-related quality of life was measured with Nijmegen Cochlear implantation Questionnaire (NCIQ whereas tinnitus-related distress was measured with the German version of Tinnitus Questionnaire (TQ. We additionally assessed the general perceived quality of life, the perceived stress, coping abilities, anxiety levels and the depressive symptoms. Finally, a structured interview to detect mental conditions (CIDI was performed before and after surgery. We found that CI led to an overall improvement in auditory performance as well as the anxiety and depression, quality of life, tinnitus distress and coping strategies. CIDI revealed that 81% of patients in our sample had affective, anxiety, and/or somatoform disorders before or after CI. The affective disorders included dysthymia and depression, while anxiety disorders included agoraphobias and unspecified phobias. We also diagnosed cases of somatoform pain disorders and unrecognizable figure somatoform disorders. We found a positive correlation between the auditory performance and the decrease of anxiety and depression, tinnitus-related distress and perceived stress. There was no association between the presence of a mental condition itself and the outcome of auditory rehabilitation. We conclude that the CI candidates exhibit high rates of psychological disorders, and there is a particularly strong association between somatoform disorders and tinnitus. The presence of mental disorders remained unaffected by CI but the

  12. A habilidade de atenção auditiva sustentada em crianças com fissura labiopalatina e transtorno fonológico Sustained auditory attention ability in children with cleft lip and palate and phonological disorders

    Directory of Open Access Journals (Sweden)

    Tâmyne Ferreira Duarte de Moraes

    2011-12-01

    Full Text Available OBJETIVO: Verificar a habilidade de atenção auditiva sustentada em crianças com fissura labiopalatina e transtorno fonológico, comparando o desempenho com crianças com fissura labiopalatina e ausência de transtorno fonológico. MÉTODOS: Dezessete crianças com idade entre 6 e 11 anos, com fissura labiopalatina transforame unilateral operada e ausência de queixa e/ou alteração auditiva, separadas em dois grupos: GI (com transtorno fonológico e GII (com auŝencia de transtorno fonológico. Para detecção de alteração auditiva foram realizadas audiometria e timpanometria. Para avaliação fonológica foram utilizados os seguintes instrumentos: Teste de Linguagem Infantil e Consciência Fonológica: Instrumento de Avaliação Sequencial. Para avaliar a habilidade de atenção auditiva foi aplicado o Teste da Habilidade de Atenção Auditiva Sustentada. RESULTADOS: Das sete crianças com transtorno fonológico (41%, duas (29% apresentaram alteração nos resultados do Teste da Habilidade de Atenção Auditiva Sustentada. Não houve diferença entre as crianças com fissura labiopalatina e transtorno fonológico e as crianças com fissura labiopalatina e ausência de transtorno fonológico quanto aos resultados do Teste de Habilidade de Atenção Auditiva Sustentada. CONCLUSÃO: A habilidade de atenção auditiva sustentada nas crianças com fissura labiopalatina e transtorno fonológico não difere da habilidade de atenção auditiva sustentada de crianças com fissura labiopalatina sem transtorno fonológico.PURPOSE: To verify the ability of sustained auditory attention in children with cleft lip and palate and phonological disorder, in comparison with the performance of children with cleft lip and palate and absence of phonological disorder. METHODS: Seventeen children with ages between 6 and 11 years, with repaired unilateral complete cleft lip and palate and absence of auditory complaints or hearing problems, were divided into two

  13. Missing and delayed auditory responses in young and older children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    J. Christopher eEdgar

    2014-06-01

    Full Text Available Background: The development of left and right superior temporal gyrus (STG 50ms (M50 and 100ms (M100 auditory responses in typically developing children (TD and in children with autism spectrum disorder (ASD was examined. It was hypothesized that (1 M50 responses would be observed equally often in younger and older children, (2 M100 responses would be observed more often in older than younger children indicating later development of secondary auditory areas, and (3 M100 but not M50 would be observed less often in ASD than TD in both age groups, reflecting slower maturation of later developing auditory areas in ASD. Methods: 35 typically developing controls, 63 ASD without language impairment (ASD-LI, and 38 ASD with language impairment (ASD+LI were recruited.The presence or absence of a STG M50 and M100 was scored. Subjects were grouped into younger (6 to 10-years-old and older groups (11 to 15-years-old. Results: Although M50 responses were observed equally often in older and younger subjects and equally often in TD and ASD, left and right M50 responses were delayed in ASD-LI and ASD+LI. Group comparisons showed that in younger subjects M100 responses were observed more often in TD than ASD+LI (90% vs 66%, p=0.04, with no differences between TD and ASD-LI (90% vs 76% p=0.14 or between ASD-LI and ASD+LI (76% vs 66%, p=0.53. In older subjects, whereas no differences were observed between TD and ASD+LI, responses were observed more often in ASD-LI than ASD+LI. Conclusions: Although present in all groups, M50 responses were delayed in ASD, suggesting delayed development of earlier developing auditory areas. Examining the TD data, findings indicated that by 11 years a right M100 should be observed in 100% of subjects and a left M100 in 80% of subjects. Thus, by 11years, lack of a left and especially right M100 offers neurobiological insight into sensory processing that may underlie language or cognitive impairment.

  14. Two-Photon Functional Imaging of the Auditory Cortex in Behaving Mice: From Neural Networks to Single Spines

    Directory of Open Access Journals (Sweden)

    Ruijie Li

    2018-04-01

    Full Text Available In vivo two-photon Ca2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca2+ indicators, we recorded the Ca2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca2+ indicators (GECIs, we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors.

  15. Factors influencing individual variation in perceptual directional microphone benefit.

    Science.gov (United States)

    Keidser, Gitte; Dillon, Harvey; Convery, Elizabeth; Mejia, Jorge

    2013-01-01

    Large variations in perceptual directional microphone benefit, which far exceed the variation expected from physical performance measures of directional microphones, have been reported in the literature. The cause for the individual variation has not been systematically investigated. To determine the factors that are responsible for the individual variation in reported perceptual directional benefit. A correlational study. Physical performance measures of the directional microphones obtained after they had been fitted to individuals, cognitive abilities of individuals, and measurement errors were related to perceptual directional benefit scores. Fifty-nine hearing-impaired adults with varied degrees of hearing loss participated in the study. All participants were bilaterally fitted with a Motion behind-the-ear device (500 M, 501 SX, or 501 P) from Siemens according to the National Acoustic Laboratories' non-linear prescription, version two (NAL-NL2). Using the Bamford-Kowal-Bench (BKB) sentences, the perceptual directional benefit was obtained as the difference in speech reception threshold measured in babble noise (SRTn) with the devices in directional (fixed hypercardioid) and in omnidirectional mode. The SRTn measurements were repeated three times with each microphone mode. Physical performance measures of the directional microphone included the angle of the microphone ports to loudspeaker axis, the frequency range dominated by amplified sound, the in situ signal-to-noise ratio (SNR), and the in situ three-dimensional, articulation-index weighted directivity index (3D AI-DI). The cognitive tests included auditory selective attention, speed of processing, and working memory. Intraparticipant variation on the repeated SRTn's and the interparticipant variation on the average SRTn were used to determine the effect of measurement error. A multiple regression analysis was used to determine the effect of other factors. Measurement errors explained 52% of the variation

  16. New definitions of 6 clinical signs of perceptual disorder in children with cerebral palsy: an observational study through reliability measures.

    Science.gov (United States)

    Ferrari, A; Sghedoni, A; Alboresi, S; Pedroni, E; Lombardi, F

    2014-12-01

    Recently authors have begun to emphasize the non-motor aspects of Cerebral Palsy and their influence on motor control and recovery prognosis. Much has been written about single clinical signs (i.e., startle reaction) but so far no definitions of the six perceptual signs presented in this study have appeared in literature. This study defines 6 signs (startle reaction, upper limbs in startle position, frequent eye blinking, posture freezing, averted eye gaze, grimacing) suggestive of perceptual disorders in children with cerebral palsy and measures agreement on sign recognition among independent observers and consistency of opinions over time. Observational study with both cross-sectional and prospective components. Fifty-six videos presented to observers in random order. Videos were taken from 19 children with a bilateral form of cerebral palsy referred to the Children Rehabilitation Unit in Reggio Emilia. Thirty-five rehabilitation professionals from all over Italy: 9 doctors and 26 physiotherapists. Measure of agreement among 35 independent observers was compiled from a sample of 56 videos. Interobserver reliability was determined using the K index of Fleiss and reliability intra-observer was calculated by the Spearman correlation index between ranks (rho - ρ). Percentage of agreement between observers and Gold Standard was used as criterion validity. Interobserver reliability was moderate for startle reaction, upper limb in startle position, adverted eye gaze and eye-blinking and fair for posture freezing and grimacing. Intraobserver reliability remained consistent over time. Criterion validity revealed very high agreement between independent observer evaluation and gold standard. Semiotics of perceptual disorders can be used as a specific and sensitive instrument in order to identify a new class of patients within existing heterogeneous clinical types of bilateral cerebral palsy forms and could help clinicians in identifying functional prognosis. To provide

  17. Memory for the perceptual and semantic attributes of information in pure amnesic and severe closed-head injured patients.

    Science.gov (United States)

    Carlesimo, Giovanni A; Bonanni, Rita; Caltagirone, Carlo

    2003-05-01

    This study investigated the hypothesis that brain damaged patients with memory disorder are poorer at remembering the semantic than the perceptual attributes of information. Eight patients with memory impairment of different etiology and 24 patients with chronic consequences of severe closed-head injury were compared to similarly sized age- and literacy-matched normal control groups on recognition tests for the physical aspect and the semantic identity of words and pictures lists. In order to avoid interpretative problems deriving from different absolute levels of performance, study conditions were manipulated across subjects to obtain comparable accuracy on the perceptual recognition tests in the memory disordered and control groups. The results of the Picture Recognition test were consistent with the hypothesis. Indeed, having more time for the stimulus encoding, the two memory disordered groups performed at the same level as the normal subjects on the perceptual test but significantly lower on the semantic test. Instead, on the Word Recognition test, following study condition manipulation, patients and controls performed similarly on both the perceptual and the semantic tests. These data only partially support the hypothesis of the study; rather they suggest that in memory disordered patients there is a reduction of the advantage, exhibited by normal controls, of retrieving pictures over words (picture superiority effect).

  18. The Encoding of Sound Source Elevation in the Human Auditory Cortex.

    Science.gov (United States)

    Trapeau, Régis; Schönwiesner, Marc

    2018-03-28

    Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. SIGNIFICANCE STATEMENT This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the

  19. Stimulus-specific suppression preserves information in auditory short-term memory.

    Science.gov (United States)

    Linke, Annika C; Vicente-Grabovetsky, Alejandro; Cusack, Rhodri

    2011-08-02

    Philosophers and scientists have puzzled for millennia over how perceptual information is stored in short-term memory. Some have suggested that early sensory representations are involved, but their precise role has remained unclear. The current study asks whether auditory cortex shows sustained frequency-specific activation while sounds are maintained in short-term memory using high-resolution functional MRI (fMRI). Investigating short-term memory representations within regions of human auditory cortex with fMRI has been difficult because of their small size and high anatomical variability between subjects. However, we overcame these constraints by using multivoxel pattern analysis. It clearly revealed frequency-specific activity during the encoding phase of a change detection task, and the degree of this frequency-specific activation was positively related to performance in the task. Although the sounds had to be maintained in memory, activity in auditory cortex was significantly suppressed. Strikingly, patterns of activity in this maintenance period correlated negatively with the patterns evoked by the same frequencies during encoding. Furthermore, individuals who used a rehearsal strategy to remember the sounds showed reduced frequency-specific suppression during the maintenance period. Although negative activations are often disregarded in fMRI research, our findings imply that decreases in blood oxygenation level-dependent response carry important stimulus-specific information and can be related to cognitive processes. We hypothesize that, during auditory change detection, frequency-specific suppression protects short-term memory representations from being overwritten by inhibiting the encoding of interfering sounds.

  20. Dose-dependent suppression by ethanol of transient auditory 40-Hz response.

    Science.gov (United States)

    Jääskeläinen, I P; Hirvonen, J; Saher, M; Pekkonen, E; Sillanaukee, P; Näätänen, R; Tiitinen, H

    2000-02-01

    Acute alcohol (ethanol) challenge is known to induce various cognitive disturbances, yet the neural basis of the effect is poorly known. The auditory transient evoked gamma-band (40-Hz) oscillatory responses have been suggested to be associated with various perceptual and cognitive functions in humans; however, alcohol effects on auditory 40-Hz responses have not been investigated to date. The objective of the study was to test the dose-related impact of alcohol on auditory transient evoked 40-Hz responses during a selective-attention task. Ten healthy social drinkers ingested, in four separate sessions, 0.00, 0. 25, 0.50, or 0.75 g/kg of 10% (v/v) alcohol solution. The order of the sessions was randomized and a double-blind procedure was employed. During a selective attention task, 300-Hz standard and 330-Hz deviant tones were presented to the left ear, and 1000-Hz standards and 1100-Hz deviants to the right ear of the subjects (P=0. 425 for each standard, P=0.075 for each deviant). The subjects attended to a designated ear, and were to detect the deviants therein while ignoring tones to the other ear. The auditory transient evoked 40-Hz responses elicited by both the attended and unattended standard tones were significantly suppressed by the 0.50 and 0.75 g/kg alcohol doses. Alcohol suppresses auditory transient evoked 40-Hz oscillations already with moderate blood alcohol concentrations. Given the putative role of gamma-band oscillations in cognition, this finding could be associated with certain alcohol-induced cognitive deficits.

  1. Auditory Vigilance and Working Memory in Youth at Familial Risk for Schizophrenia or Affective Psychosis in the Harvard Adolescent Family High Risk Study.

    Science.gov (United States)

    Seidman, Larry J; Pousada-Casal, Andrea; Scala, Silvia; Meyer, Eric C; Stone, William S; Thermenos, Heidi W; Molokotos, Elena; Agnew-Blais, Jessica; Tsuang, Ming T; Faraone, Stephen V

    2016-11-01

    The degree of overlap between schizophrenia (SCZ) and affective psychosis (AFF) has been a recurring question since Kraepelin's subdivision of the major psychoses. Studying nonpsychotic relatives allows a comparison of disorder-associated phenotypes, without potential confounds that can obscure distinctive features of the disorder. Because attention and working memory have been proposed as potential endophenotypes for SCZ and AFF, we compared these cognitive features in individuals at familial high-risk (FHR) for the disorders. Young, unmedicated, first-degree relatives (ages, 13-25 years) at FHR-SCZ (n=41) and FHR-AFF (n=24) and community controls (CCs, n=54) were tested using attention and working memory versions of the Auditory Continuous Performance Test. To determine if schizotypal traits or current psychopathology accounted for cognitive deficits, we evaluated psychosis proneness using three Chapman Scales, Revised Physical Anhedonia, Perceptual Aberration, and Magical Ideation, and assessed psychopathology using the Hopkins Symptom Checklist -90 Revised. Compared to controls, the FHR-AFF sample was significantly impaired in auditory vigilance, while the FHR-SCZ sample was significantly worse in working memory. Both FHR groups showed significantly higher levels of physical anhedonia and some psychopathological dimensions than controls. Adjusting for physical anhedonia, phobic anxiety, depression, psychoticism, and obsessive-compulsive symptoms eliminated the FHR-AFF vigilance effects but not the working memory deficits in FHR-SCZ. The working memory deficit in FHR-SZ was the more robust of the cognitive impairments after accounting for psychopathological confounds and is supported as an endophenotype. Examination of larger samples of people at familial risk for different psychoses remains necessary to confirm these findings and to clarify the role of vigilance in FHR-AFF. (JINS, 2016, 22, 1026-1037).

  2. Perceptual load in sport and the heuristic value of the perceptual load paradigm in examining expertise-related perceptual-cognitive adaptations.

    Science.gov (United States)

    Furley, Philip; Memmert, Daniel; Schmid, Simone

    2013-03-01

    In two experiments, we transferred perceptual load theory to the dynamic field of team sports and tested the predictions derived from the theory using a novel task and stimuli. We tested a group of college students (N = 33) and a group of expert team sport players (N = 32) on a general perceptual load task and a complex, soccer-specific perceptual load task in order to extend the understanding of the applicability of perceptual load theory and further investigate whether distractor interference may differ between the groups, as the sport-specific processing task may not exhaust the processing capacity of the expert participants. In both, the general and the specific task, the pattern of results supported perceptual load theory and demonstrates that the predictions of the theory also transfer to more complex, unstructured situations. Further, perceptual load was the only determinant of distractor processing, as we neither found expertise effects in the general perceptual load task nor the sport-specific task. We discuss the heuristic utility of using response-competition paradigms for studying both general and domain-specific perceptual-cognitive adaptations.

  3. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  4. Automatic phoneme category selectivity in the dorsal auditory stream.

    Science.gov (United States)

    Chevillet, Mark A; Jiang, Xiong; Rauschecker, Josef P; Riesenhuber, Maximilian

    2013-03-20

    Debates about motor theories of speech perception have recently been reignited by a burst of reports implicating premotor cortex (PMC) in speech perception. Often, however, these debates conflate perceptual and decision processes. Evidence that PMC activity correlates with task difficulty and subject performance suggests that PMC might be recruited, in certain cases, to facilitate category judgments about speech sounds (rather than speech perception, which involves decoding of sounds). However, it remains unclear whether PMC does, indeed, exhibit neural selectivity that is relevant for speech decisions. Further, it is unknown whether PMC activity in such cases reflects input via the dorsal or ventral auditory pathway, and whether PMC processing of speech is automatic or task-dependent. In a novel modified categorization paradigm, we presented human subjects with paired speech sounds from a phonetic continuum but diverted their attention from phoneme category using a challenging dichotic listening task. Using fMRI rapid adaptation to probe neural selectivity, we observed acoustic-phonetic selectivity in left anterior and left posterior auditory cortical regions. Conversely, we observed phoneme-category selectivity in left PMC that correlated with explicit phoneme-categorization performance measured after scanning, suggesting that PMC recruitment can account for performance on phoneme-categorization tasks. Structural equation modeling revealed connectivity from posterior, but not anterior, auditory cortex to PMC, suggesting a dorsal route for auditory input to PMC. Our results provide evidence for an account of speech processing in which the dorsal stream mediates automatic sensorimotor integration of speech and may be recruited to support speech decision tasks.

  5. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Directory of Open Access Journals (Sweden)

    Jiagui Qu

    Full Text Available Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  6. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Science.gov (United States)

    Qu, Jiagui; Rizak, Joshua D; Zhao, Lun; Li, Minghong; Ma, Yuanye

    2014-01-01

    Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM) has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP) following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC) may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  7. Top-down modulation of the auditory steady-state response in a task-switch paradigm

    Directory of Open Access Journals (Sweden)

    Nadia Müller

    2009-02-01

    Full Text Available Auditory selective attention is an important mechanism for top-down selection of the vast amount of auditory information our perceptual system is exposed to. In the present study, the impact of attention on auditory steady-state responses - previously shown to be generated in primary auditory regions - was investigated. This issue is still a matter of debate and recent findings point to a complex pattern of attentional effects on the aSSR. The present study aimed at shedding light on the involvement of ipsilateral and contralateral activations to the attended sound taking into account hemispheric differences and a possible dependency on modulation frequency. In aid of this, a dichotic listening experiment was designed using amplitude-modulated tones that were presented to the left and right ear simultaneously. Participants had to detect target tones in a cued ear while their brain activity was assessed using MEG. Thereby, a modulation of the aSSR by attention could be revealed, interestingly restricted to the left hemisphere and 20 Hz responses: Contralateral activations were enhanced while ipsilateral activations turned out to be reduced. Thus, our findings support and extend recent findings, showing that auditory attention can influence the aSSR, but only under specific circumstances and in a complex pattern regarding the different effects for ipsilateral and contralateral activations.

  8. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  9. A comparison of linear and logarithmic auditory tones in pulse oximeters.

    Science.gov (United States)

    Brown, Zoe; Edworthy, Judy; Sneyd, J Robert; Schlesinger, Joseph

    2015-11-01

    This study compared the ability of forty anaesthetists to judge absolute levels of oxygen saturation, direction of change, and size of change in saturation using auditory pitch and pitch difference in two laboratory-based studies that compared a linear pitch scale with a logarithmic scale. In the former the differences in saturation become perceptually closer as the oxygenation level becomes higher whereas in the latter the pitch differences are perceptually equivalent across the whole range of values. The results show that anaesthetist participants produce significantly more accurate judgements of both absolute oxygenation values and size of oxygenation level difference when a logarithmic, rather than a linear, scale is used. The line of best fit for the logarithmic function was also closer to x = y than for the linear function. The results of these studies can inform the development and standardisation of pulse oximetry tones in order to improve patient safety. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. A comparison of several computational auditory scene analysis (CASA) techniques for monaural speech segregation.

    Science.gov (United States)

    Zeremdini, Jihen; Ben Messaoud, Mohamed Anouar; Bouzid, Aicha

    2015-09-01

    Humans have the ability to easily separate a composed speech and to form perceptual representations of the constituent sources in an acoustic mixture thanks to their ears. Until recently, researchers attempt to build computer models of high-level functions of the auditory system. The problem of the composed speech segregation is still a very challenging problem for these researchers. In our case, we are interested in approaches that are addressed to the monaural speech segregation. For this purpose, we study in this paper the computational auditory scene analysis (CASA) to segregate speech from monaural mixtures. CASA is the reproduction of the source organization achieved by listeners. It is based on two main stages: segmentation and grouping. In this work, we have presented, and compared several studies that have used CASA for speech separation and recognition.

  11. Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory.

    Science.gov (United States)

    Buchsbaum, Bradley R; Olsen, Rosanna K; Koch, Paul; Berman, Karen Faith

    2005-11-23

    To hear a sequence of words and repeat them requires sensory-motor processing and something more-temporary storage. We investigated neural mechanisms of verbal memory by using fMRI and a task designed to tease apart perceptually based ("echoic") memory from phonological-articulatory memory. Sets of two- or three-word pairs were presented bimodally, followed by a cue indicating from which modality (auditory or visual) items were to be retrieved and rehearsed over a delay. Although delay-period activation in the planum temporale (PT) was insensible to the source modality and showed sustained delay-period activity, the superior temporal gyrus (STG) activated more vigorously when the retrieved items had arrived to the auditory modality and showed transient delay-period activity. Functional connectivity analysis revealed two topographically distinct fronto-temporal circuits, with STG co-activating more strongly with ventrolateral prefrontal cortex and PT co-activating more strongly with dorsolateral prefrontal cortex. These argue for separate contributions of ventral and dorsal auditory streams in verbal working memory.

  12. A utilização de um software infantil na terapia fonoaudiológica de Distúrbio do Processamento Auditivo Central The use of a children software in the treatment of Central Auditory Processing Disorder

    Directory of Open Access Journals (Sweden)

    Juliana Schwambach Martins

    2008-01-01

    Full Text Available O objetivo deste estudo foi verificar a efetividade do uso de recursos de informática na terapia fonoaudiológica do Distúrbio do Processamento Auditivo Central para a adequação das habilidades auditivas alteradas. Participaram desta pesquisa dois indivíduos, com diagnóstico do Distúrbio do Processamento Auditivo Central, sendo um do sexo masculino e outro do sexo feminino, ambos com nove anos. Os pacientes foram submetidos a oito sessões de terapia fonoaudiológica com a utilização do software e, posteriormente, realizou-se uma re-avaliação do processamento auditivo central para verificar o desenvolvimento das habilidades auditivas e a efetividade do treinamento auditivo. Verificou-se que, após o treinamento auditivo informal, houve adequação das habilidades auditivas de resolução temporal, figura-fundo para sons não verbais e verbais, ordenação temporal para sons verbais e não-verbais para ambos os pacientes. Conclui-se que o computador como instrumento terapêutico é um recurso estimulador e que possibilita o desenvolvimento de habilidades auditivas alteradas em pacientes com Distúrbio do Processamento Auditivo Central.The aim of this study was to verify the effectiveness of the use of computer science resources in the treatment of Central Auditory Processing Disorder, in order to adequate the altered auditory abilities. Two individuals with diagnosis of Central Auditory Processing Disorder, a boy and a girl, both with nine years old, participated on this study. The subjects were submitted to eight sessions of speech therapy using the software and, after this period, a reassessment of the central auditory processing abilities was carried out, in order to verify the development of the auditory abilities and the effectiveness of the auditory training. It was verified that, after this informal auditory training, the auditory abilities of temporal resolution, figure-ground for both verbal and nonverbal sounds, and temporal

  13. Absence of auditory 'global interference' in autism.

    Science.gov (United States)

    Foxton, Jessica M; Stewart, Mary E; Barnard, Louise; Rodgers, Jacqui; Young, Allan H; O'Brien, Gregory; Griffiths, Timothy D

    2003-12-01

    There has been considerable recent interest in the cognitive style of individuals with Autism Spectrum Disorder (ASD). One theory, that of weak central coherence, concerns an inability to combine stimulus details into a coherent whole. Here we test this theory in the case of sound patterns, using a new definition of the details (local structure) and the coherent whole (global structure). Thirteen individuals with a diagnosis of autism or Asperger's syndrome and 15 control participants were administered auditory tests, where they were required to match local pitch direction changes between two auditory sequences. When the other local features of the sequence pairs were altered (the actual pitches and relative time points of pitch direction change), the control participants obtained lower scores compared with when these details were left unchanged. This can be attributed to interference from the global structure, defined as the combination of the local auditory details. In contrast, the participants with ASD did not obtain lower scores in the presence of such mismatches. This was attributed to the absence of interference from an auditory coherent whole. The results are consistent with the presence of abnormal interactions between local and global auditory perception in ASD.

  14. Percepts, not acoustic properties, are the units of auditory short-term memory.

    Science.gov (United States)

    Mathias, Samuel R; von Kriegstein, Katharina

    2014-04-01

    For decades, researchers have sought to understand the organizing principles of auditory and visual short-term memory (STM). Previous work in audition has suggested that there are independent memory stores for different sound features, but the nature of the representations retained within these stores is currently unclear. Do they retain perceptual features, or do they instead retain representations of the sound's specific acoustic properties? In the present study we addressed this question by measuring listeners' abilities to keep one of three acoustic properties (interaural time difference [ITD], interaural level difference [ILD], or frequency) in memory when the target sound was followed by interfering sounds that varied randomly in one of the same properties. Critically, ITD and ILD evoked the same percept (spatial location), despite being acoustically different and having different physiological correlates, whereas frequency evoked a different percept (pitch). The results showed that listeners found it difficult to remember the percept of spatial location when the interfering tones varied either in ITD or ILD, but not when they varied in frequency. The study demonstrates that percepts are the units of auditory STM, and provides testable predictions for future neuroscientific work on both auditory and visual STM.

  15. Adaptive and Selective Time Averaging of Auditory Scenes

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; McDermott, Josh H.

    2018-01-01

    longer than previously reported integration times in the auditory system. Integration also showed signs of being restricted to sound elements attributed to a common source. The results suggest an integration process that depends on stimulus characteristics, integrating over longer extents when......To overcome variability, estimate scene characteristics, and compress sensory input, perceptual systems pool data into statistical summaries. Despite growing evidence for statistical representations in perception, the underlying mechanisms remain poorly understood. One example...... it benefits statistical estimation of variable signals and selectively integrating stimulus components likely to have a common cause in the world. Our methodology could be naturally extended to examine statistical representations of other types of sensory signals. Sound texture perception is thought...

  16. Neural Decoding of Bistable Sounds Reveals an Effect of Intention on Perceptual Organization.

    Science.gov (United States)

    Billig, Alexander J; Davis, Matthew H; Carlyon, Robert P

    2018-03-14

    Auditory signals arrive at the ear as a mixture that the brain must decompose into distinct sources based to a large extent on acoustic properties of the sounds. An important question concerns whether listeners have voluntary control over how many sources they perceive. This has been studied using pure high (H) and low (L) tones presented in the repeating pattern HLH-HLH-, which can form a bistable percept heard either as an integrated whole (HLH-) or as segregated into high (H-H-) and low (-L-) sequences. Although instructing listeners to try to integrate or segregate sounds affects reports of what they hear, this could reflect a response bias rather than a perceptual effect. We had human listeners (15 males, 12 females) continuously report their perception of such sequences and recorded neural activity using MEG. During neutral listening, a classifier trained on patterns of neural activity distinguished between periods of integrated and segregated perception. In other conditions, participants tried to influence their perception by allocating attention either to the whole sequence or to a subset of the sounds. They reported hearing the desired percept for a greater proportion of time than when listening neutrally. Critically, neural activity supported these reports; stimulus-locked brain responses in auditory cortex were more likely to resemble the signature of segregation when participants tried to hear segregation than when attempting to perceive integration. These results indicate that listeners can influence how many sound sources they perceive, as reflected in neural responses that track both the input and its perceptual organization. SIGNIFICANCE STATEMENT Can we consciously influence our perception of the external world? We address this question using sound sequences that can be heard either as coming from a single source or as two distinct auditory streams. Listeners reported spontaneous changes in their perception between these two interpretations while

  17. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    Science.gov (United States)

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  18. Daily Stress, Hearing-Specific Stress and Coping: Self-Reports from Deaf or Hard of Hearing Children and Children with Auditory Processing Disorder

    Science.gov (United States)

    Eschenbeck, Heike; Gillé, Vera; Heim-Dreger, Uwe; Schock, Alexandra; Schott, Andrea

    2017-01-01

    This study evaluated stressors and coping strategies in 70 children who are deaf or hard of hearing (D/HH) or with auditory processing disorder (APD) attending Grades 5 and 6 of a school for deaf and hard-of-hearing children. Everyday general stressors and more hearing-specific stressors were examined in a hearing-specific modified stress and…

  19. Comparing the experience of voices in borderline personality disorder with the experience of voices in a psychotic disorder: A systematic review.

    Science.gov (United States)

    Merrett, Zalie; Rossell, Susan L; Castle, David J

    2016-07-01

    In clinical settings, there is substantial evidence both clinically and empirically to suggest that approximately 50% of individuals with borderline personality disorder experience auditory verbal hallucinations. However, there is limited research investigating the phenomenology of these voices. The aim of this study was to review and compare our current understanding of auditory verbal hallucinations in borderline personality disorder with auditory verbal hallucinations in patients with a psychotic disorder, to critically analyse existing studies investigating auditory verbal hallucinations in borderline personality disorder and to identify gaps in current knowledge, which will help direct future research. The literature was searched using the electronic database Scopus, PubMed and MEDLINE. Relevant studies were included if they were written in English, were empirical studies specifically addressing auditory verbal hallucinations and borderline personality disorder, were peer reviewed, used only adult humans and sample comprising borderline personality disorder as the primary diagnosis, and included a comparison group with a primary psychotic disorder such as schizophrenia. Our search strategy revealed a total of 16 articles investigating the phenomenology of auditory verbal hallucinations in borderline personality disorder. Some studies provided evidence to suggest that the voice experiences in borderline personality disorder are similar to those experienced by people with schizophrenia, for example, occur inside the head, and often involved persecutory voices. Other studies revealed some differences between schizophrenia and borderline personality disorder voice experiences, with the borderline personality disorder voices sounding more derogatory and self-critical in nature and the voice-hearers' response to the voices were more emotionally resistive. Furthermore, in one study, the schizophrenia group's voices resulted in more disruption in daily functioning

  20. Widespread auditory deficits in tune deafness.

    Science.gov (United States)

    Jones, Jennifer L; Zalewski, Christopher; Brewer, Carmen; Lucker, Jay; Drayna, Dennis

    2009-02-01

    The goal of this study was to investigate auditory function in individuals with deficits in musical pitch perception. We hypothesized that such individuals have deficits in nonspeech areas of auditory processing. We screened 865 randomly selected individuals to identify those who scored poorly on the Distorted Tunes test (DTT), a measure of musical pitch recognition ability. Those who scored poorly were given a comprehensive audiologic examination, and those with hearing loss or other confounding audiologic factors were excluded from further testing. Thirty-five individuals with tune deafness constituted the experimental group. Thirty-four individuals with normal hearing and normal DTT scores, matched for age, gender, handedness, and education, and without overt or reported psychiatric disorders made up the normal control group. Individual and group performance for pure-tone frequency discrimination at 1000 Hz was determined by measuring the difference limen for frequency (DLF). Auditory processing abilities were assessed using tests of pitch pattern recognition, duration pattern recognition, and auditory gap detection. In addition, we evaluated both attention and short- and long-term memory as variables that might influence performance on our experimental measures. Differences between groups were evaluated statistically using Wilcoxon nonparametric tests and t-tests as appropriate. The DLF at 1000 Hz in the group with tune deafness was significantly larger than that of the normal control group. However, approximately one-third of participants with tune deafness had DLFs within the range of performance observed in the control group. Many individuals with tune deafness also displayed a high degree of variability in their intertrial frequency discrimination performance that could not be explained by deficits in memory or attention. Pitch and duration pattern discrimination and auditory gap-detection ability were significantly poorer in the group with tune deafness

  1. A psychophysical imaging method evidencing auditory cue extraction during speech perception: a group analysis of auditory classification images.

    Directory of Open Access Journals (Sweden)

    Léo Varnet

    Full Text Available Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme.

  2. Associations of motor co-ordination and attention with motor-perceptual development in 3-year-old preterm and full-term children who needed neonatal intensive care.

    Science.gov (United States)

    Hemgren, E; Persson, K

    2007-01-01

    Children who have needed neonatal intensive care (NIC) are considered to be at risk for deficits such as developmental co-ordination disorder and attention-deficit/hyperactivity disorder. By assessing motor-perceptual development, motor co-ordination and attention already at 3 years of age, it might be possible to identify such deficits earlier than they are today. To investigate the motor-perceptual development in a group of 202 NIC children but had no major impairments, to describe associations of deficits in co-ordination and attention with motor-perceptual delays, and to estimate the prevalence of NIC children with combined deficits together with a motor-perceptual delay. Co-ordination and attention in children born very preterm (n = 57), moderately preterm (n = 75) and full-term (n = 70) were observed according to a model for Combined Assessment of Motor Performance and Behaviour while they were assessed using a developmental scale, Motor-Perceptual Development, 0-7 years, MPU. In two out of 14 MPU areas, a larger proportion of very preterm than of moderately preterm and full-term children had marked developmental delay. Overall, the proportion of NIC children having a motor-perceptual delay increased with increasing incoordination and especially increasing lack of attention. Twenty-one (11%) of the NIC children had different motor-perceptual delays combined with pronounced incoordination and pronounced lack of attention. Deficits in co-ordination and attention were associated with motor-perceptual delays in areas important for daily living and development of academic skills. Therefore, to find children at risk for developmental co-ordination disorder and attention-deficit/hyperactivity disorder, assessments of co-ordination and attention should be added to assessments of motor-perceptual development in 3-year-old NIC children.

  3. Investigating the role of visual and auditory search in reading and developmental dyslexia

    Directory of Open Access Journals (Sweden)

    Marie eLallier

    2013-09-01

    Full Text Available It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9 or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a serial search condition only: the intercepts (but not the slopes of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts but also low auditory search performance (d´ strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in serial search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills.

  4. Investigating the role of visual and auditory search in reading and developmental dyslexia.

    Science.gov (United States)

    Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane

    2013-01-01

    It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span) suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9, or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a "serial" search condition only: the intercepts (but not the slopes) of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts) but also low auditory search performance (d') strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in "serial" search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills.

  5. The brain dynamics of rapid perceptual adaptation to adverse listening conditions.

    Science.gov (United States)

    Erb, Julia; Henry, Molly J; Eisner, Frank; Obleser, Jonas

    2013-06-26

    Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition, human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved, while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on amplitude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening conditions for speech and non-speech. First, the degraded speech task revealed an "executive" network (comprising the anterior insula and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctuations in successful comprehension of degraded speech drove hemodynamic signal change in classic "language" areas (bilateral temporal cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was observable. The present data highlight differential upregulation and downregulation in auditory-language and executive networks, respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.

  6. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    Directory of Open Access Journals (Sweden)

    Jensen Søren Holdt

    2005-01-01

    Full Text Available Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of audio signals. In this paper, we present a new perceptual model that predicts masked thresholds for sinusoidal distortions. The model relies on signal detection theory and incorporates more recent insights about spectral and temporal integration in auditory masking. As a consequence, the model is able to predict the distortion detectability. In fact, the distortion detectability defines a (perceptually relevant norm on the underlying signal space which is beneficial for optimisation algorithms such as rate-distortion optimisation or linear predictive coding. We evaluate the merits of the model by combining it with a sinusoidal extraction method and compare the results with those obtained with the ISO MPEG-1 Layer I-II recommended model. Listening tests show a clear preference for the new model. More specifically, the model presented here leads to a reduction of more than 20% in terms of number of sinusoids needed to represent signals at a given quality level.

  7. Perceptual processing during trauma, priming and the development of intrusive memories

    Science.gov (United States)

    Sündermann, Oliver; Hauschildt, Marit; Ehlers, Anke

    2013-01-01

    Background Intrusive reexperiencing in posttraumatic stress disorder (PTSD) is commonly triggered by stimuli with perceptual similarity to those present during the trauma. Information processing theories suggest that perceptual processing during the trauma and enhanced perceptual priming contribute to the easy triggering of intrusive memories by these cues. Methods Healthy volunteers (N = 51) watched neutral and trauma picture stories on a computer screen. Neutral objects that were unrelated to the content of the stories briefly appeared in the interval between the pictures. Dissociation and data-driven processing (as indicators of perceptual processing) and state anxiety during the stories were assessed with self-report questionnaires. After filler tasks, participants completed a blurred object identification task to assess priming and a recognition memory task. Intrusive memories were assessed with telephone interviews 2 weeks and 3 months later. Results Neutral objects were more strongly primed if they occurred in the context of trauma stories than if they occurred during neutral stories, although the effect size was only moderate (ηp2=.08) and only significant when trauma stories were presented first. Regardless of story order, enhanced perceptual priming predicted intrusive memories at 2-week follow-up (N = 51), but not at 3 months (n = 40). Data-driven processing, dissociation and anxiety increases during the trauma stories also predicted intrusive memories. Enhanced perceptual priming and data-driven processing were associated with lower verbal intelligence. Limitations It is unclear to what extent these findings generalize to real-life traumatic events and whether they are specific to negative emotional events. Conclusions The results provide some support for the role of perceptual processing and perceptual priming in reexperiencing symptoms. PMID:23207970

  8. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D; Chait, Maria

    2016-09-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis." © The Author 2016. Published by Oxford University Press.

  9. Prestimulus influences on auditory perception from sensory representations and decision processes.

    Science.gov (United States)

    Kayser, Stephanie J; McNair, Steven W; Kayser, Christoph

    2016-04-26

    The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task.

  10. Language and short-term memory: the role of perceptual-motor affordance.

    Science.gov (United States)

    Macken, Bill; Taylor, John C; Jones, Dylan M

    2014-09-01

    The advantage for real words over nonwords in serial recall--the lexicality effect--is typically attributed to support for item-level phonology, either via redintegration, whereby partially degraded short-term traces are "cleaned up" via support from long-term representations of the phonological material or via the more robust temporary activation of long-term lexical phonological knowledge that derives from its combination with established lexical and semantic levels of representation. The much smaller effect of lexicality in serial recognition, where the items are re-presented in the recognition cue, is attributed either to the minimal role for redintegration from long-term memory or to the minimal role for item memory itself in such retrieval conditions. We show that the reduced lexicality effect in serial recognition is not a function of the retrieval conditions, but rather because previous demonstrations have used auditory presentation, and we demonstrate a robust lexicality effect for visual serial recognition in a setting where auditory presentation produces no such effect. Furthermore, this effect is abolished under conditions of articulatory suppression. We argue that linguistic knowledge affects the readiness with which verbal material is segmentally recoded via speech motor processes that support rehearsal and therefore affects tasks that involve recoding. On the other hand, auditory perceptual organization affords sequence matching in the absence of such a requirement for segmental recoding and therefore does not show such effects of linguistic knowledge.

  11. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  12. [Short-term sentence memory in children with auditory processing disorders].

    Science.gov (United States)

    Kiese-Himmel, C

    2010-05-01

    To compare sentence repetition performance of different groups of children with Auditory Processing Disorders (APD) and to examine the relationship between age or respectively nonverbal intelligence and sentence recall. Nonverbal intelligence was measured with the COLOURED MATRICES, in addition the children completed a standardized test of SENTENCE REPETITION (SR) which requires to repeat spoken sentences (subtest of the HEIDELBERGER SPRACHENTWICKLUNGSTEST). Three clinical groups (n=49 with monosymptomatic APD; n=29 with APD+developmental language impairment; n=14 with APD+developmental dyslexia); two control groups (n=13 typically developing peers without any clinical developmental disorder; n=10 children with slight reduced nonverbal intelligence). The analysis showed a significant group effect (p=0.0007). The best performance was achieved by the normal controls (T-score 52.9; SD 6.4; Min 42; Max 59) followed by children with monosymptomatic APD (43.2; SD 9.2), children with the co-morbid-conditions APD+developmental dyslexia (43.1; SD 10.3), and APD+developmental language impairment (39.4; SD 9.4). The clinical control group presented the lowest performance, on average (38.6; SD 9.6). Accordingly, language-impaired children and children with slight reductions in intelligence could poorly use their grammatical knowledge for SR. A statistically significant improvement in SR was verified with the increase of age with the exception of children belonging to the small group with lowered intelligence. This group comprised the oldest children. Nonverbal intelligence correlated positively with SR only in children with below average-range intelligence (0.62; p=0.054). The absence of APD, SLI as well as the presence of normal intelligence facilitated the use of phonological information for SR.

  13. Stereotactically-guided Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain.

    Science.gov (United States)

    Lamas, Verónica; Estévez, Sheila; Pernía, Marianni; Plaza, Ignacio; Merchán, Miguel A

    2017-10-11

    The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.

  14. Acquired Auditory Verbal Agnosia and Seizures in Childhood

    Science.gov (United States)

    Cooper, Judith A.; Ferry, Peggy C.

    1978-01-01

    The paper presents a review of cases of children with acquired aphasia with convulsive disorder and discusses clinical features of three additional children in whom the specific syndrome of auditory verbal agnosia was identified. (Author/CL)

  15. Selective auditory grouping by zebra finches: testing the iambic-trochaic law.

    Science.gov (United States)

    Spierings, Michelle; Hubert, Jeroen; Ten Cate, Carel

    2017-07-01

    Humans have a strong tendency to spontaneously group visual or auditory stimuli together in larger patterns. One of these perceptual grouping biases is formulated as the iambic/trochaic law, where humans group successive tones alternating in pitch and intensity as trochees (high-low and loud-soft) and alternating in duration as iambs (short-long). The grouping of alternations in pitch and intensity into trochees is a human universal and is also present in one non-human animal species, rats. The perceptual grouping of sounds alternating in duration seems to be affected by native language in humans and has so far not been found among animals. In the current study, we explore to which extent these perceptual biases are present in a songbird, the zebra finch. Zebra finches were trained to discriminate between short strings of pure tones organized as iambs and as trochees. One group received tones that alternated in pitch, a second group heard tones alternating in duration, and for a third group, tones alternated in intensity. Those zebra finches that showed sustained correct discrimination were next tested with longer, ambiguous strings of alternating sounds. The zebra finches in the pitch condition categorized ambiguous strings of alternating tones as trochees, similar to humans. However, most of the zebra finches in the duration and intensity condition did not learn to discriminate between training stimuli organized as iambs and trochees. This study shows that the perceptual bias to group tones alternating in pitch as trochees is not specific to humans and rats, but may be more widespread among animals.

  16. Using auditory-visual speech to probe the basis of noise-impaired consonant-vowel perception in dyslexia and auditory neuropathy

    Science.gov (United States)

    Ramirez, Joshua; Mann, Virginia

    2005-08-01

    Both dyslexics and auditory neuropathy (AN) subjects show inferior consonant-vowel (CV) perception in noise, relative to controls. To better understand these impairments, natural acoustic speech stimuli that were masked in speech-shaped noise at various intensities were presented to dyslexic, AN, and control subjects either in isolation or accompanied by visual articulatory cues. AN subjects were expected to benefit from the pairing of visual articulatory cues and auditory CV stimuli, provided that their speech perception impairment reflects a relatively peripheral auditory disorder. Assuming that dyslexia reflects a general impairment of speech processing rather than a disorder of audition, dyslexics were not expected to similarly benefit from an introduction of visual articulatory cues. The results revealed an increased effect of noise masking on the perception of isolated acoustic stimuli by both dyslexic and AN subjects. More importantly, dyslexics showed less effective use of visual articulatory cues in identifying masked speech stimuli and lower visual baseline performance relative to AN subjects and controls. Last, a significant positive correlation was found between reading ability and the ameliorating effect of visual articulatory cues on speech perception in noise. These results suggest that some reading impairments may stem from a central deficit of speech processing.

  17. White matter microstructure is associated with auditory and tactile processing in children with and without sensory processing disorder

    Directory of Open Access Journals (Sweden)

    Yi Shin Chang

    2016-01-01

    Full Text Available Sensory processing disorders (SPD affect up to 16% of school-aged children, and contribute to cognitive and behavioral deficits impacting affected individuals and their families. While sensory processing differences are now widely recognized in children with autism, children with sensory-based dysfunction who do not meet autism criteria based on social communication deficits remain virtually unstudied. In a previous pilot diffusion tensor imaging (DTI study, we demonstrated that boys with SPD have altered white matter microstructure primarily affecting the posterior cerebral tracts, which subserve sensory processing and integration. This disrupted microstructural integrity, measured as reduced white matter fractional anisotropy (FA, correlated with parent report measures of atypical sensory behavior. In this present study, we investigate white matter microstructure as it relates to tactile and auditory function in depth with a larger, mixed-gender cohort of children 8 to 12 years of age. We continue to find robust alterations of posterior white matter microstructure in children with SPD relative to typically developing children, along with more spatially distributed alterations. We find strong correlations of FA with both parent report and direct measures of tactile and auditory processing across children, with the direct assessment measures of tactile and auditory processing showing a stronger and more continuous mapping to the underlying white matter integrity than the corresponding parent report measures. Based on these findings of microstructure as a neural correlate of sensory processing ability, diffusion MRI merits further investigation as a tool to find biomarkers for diagnosis, prognosis and treatment response in children with SPD. To our knowledge, this work is the first to demonstrate associations of directly measured tactile and non-linguistic auditory function with white matter microstructural integrity -- not just in children with

  18. Auditory Processing Disorders

    Science.gov (United States)

    ... many processes and problems contribute to APD in children. In adults, neurological disorders such as stroke, tumors, degenerative disease (such as multiple sclerosis), and head trauma can contribute to APD. APD in children and adults often is best managed by a ...

  19. The auditory enhancement effect is not reflected in the 80-Hz auditory steady-state response.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J; Portron, Arthur; Semal, Catherine; Demany, Laurent

    2014-08-01

    The perceptual salience of a target tone presented in a multitone background is increased by the presentation of a precursor sound consisting of the multitone background alone. It has been proposed that this "enhancement" phenomenon results from an effective amplification of the neural response to the target tone. In this study, we tested this hypothesis in humans, by comparing the auditory steady-state response (ASSR) to a target tone that was enhanced by a precursor sound with the ASSR to a target tone that was not enhanced. In order to record neural responses originating in the brainstem, the ASSR was elicited by amplitude modulating the target tone at a frequency close to 80 Hz. The results did not show evidence of an amplified neural response to enhanced tones. In a control condition, we measured the ASSR to a target tone that, instead of being perceptually enhanced by a precursor sound, was acoustically increased in level. This level increase matched the magnitude of enhancement estimated psychophysically with a forward masking paradigm in a previous experimental phase. We found that the ASSR to the tone acoustically increased in level was significantly greater than the ASSR to the tone enhanced by the precursor sound. Overall, our results suggest that the enhancement effect cannot be explained by an amplified neural response at the level of the brainstem. However, an alternative possibility is that brainstem neurons with enhanced responses do not contribute to the scalp-recorded ASSR.

  20. Auditory Temporal-Organization Abilities in School-Age Children with Peripheral Hearing Loss

    Science.gov (United States)

    Koravand, Amineh; Jutras, Benoit

    2013-01-01

    Purpose: The objective was to assess auditory sequential organization (ASO) ability in children with and without hearing loss. Method: Forty children 9 to 12 years old participated in the study: 12 with sensory hearing loss (HL), 12 with central auditory processing disorder (CAPD), and 16 with normal hearing. They performed an ASO task in which…

  1. Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

    Science.gov (United States)

    Seither-Preisler, Annemarie; Parncutt, Richard; Schneider, Peter

    2014-08-13

    Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. Copyright © 2014 the authors 0270-6474/14/3410937-13$15.00/0.

  2. The multi-level impact of chronic intermittent hypoxia on central auditory processing.

    Science.gov (United States)

    Wong, Eddie; Yang, Bin; Du, Lida; Ho, Wai Hong; Lau, Condon; Ke, Ya; Chan, Ying Shing; Yung, Wing Ho; Wu, Ed X

    2017-08-01

    During hypoxia, the tissues do not obtain adequate oxygen. Chronic hypoxia can lead to many health problems. A relatively common cause of chronic hypoxia is sleep apnea. Sleep apnea is a sleep breathing disorder that affects 3-7% of the population. During sleep, the patient's breathing starts and stops. This can lead to hypertension, attention deficits, and hearing disorders. In this study, we apply an established chronic intermittent hypoxemia (CIH) model of sleep apnea to study its impact on auditory processing. Adult rats were reared for seven days during sleeping hours in a gas chamber with oxygen level cycled between 10% and 21% (normal atmosphere) every 90s. During awake hours, the subjects were housed in standard conditions with normal atmosphere. CIH treatment significantly reduces arterial oxygen partial pressure and oxygen saturation during sleeping hours (relative to controls). After treatment, subjects underwent functional magnetic resonance imaging (fMRI) with broadband sound stimulation. Responses are observed in major auditory centers in all subjects, including the auditory cortex (AC) and auditory midbrain. fMRI signals from the AC are statistically significantly increased after CIH by 0.13% in the contralateral hemisphere and 0.10% in the ipsilateral hemisphere. In contrast, signals from the lateral lemniscus of the midbrain are significantly reduced by 0.39%. Signals from the neighboring inferior colliculus of the midbrain are relatively unaffected. Chronic hypoxia affects multiple levels of the auditory system and these changes are likely related to hearing disorders associated with sleep apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Pilot feasibility study of binaural auditory beats for reducing symptoms of inattention in children and adolescents with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Kennel, Susan; Taylor, Ann Gill; Lyon, Debra; Bourguignon, Cheryl

    2010-02-01

    The purpose of this pilot study was to explore the potential for the use of binaural auditory beat stimulation to reduce the symptom of inattention in children and adolescents with attention-deficit/hyperactivity disorder. This pilot study had a randomized, double-blind, placebo-controlled design. Twenty participants were randomly assigned to listen to either an audio program on compact disk that contained binaural auditory beats or a sham audio program that did not have binaural beats for 20 minutes, three times a week for 3 weeks. The Children's Color Trails Test, the Color Trails Test, the Test of Variables of Attention (TOVA), and the Homework Problem Checklist were used to measure changes in inattention pre- and postintervention. Repeated measures analysis of variance was used to analyze pre- and postintervention scores on the Color Trails Tests, Homework Problem Checklist, and the TOVA. The effect of time was significant on the Color Trails Test. However, there were no significant group differences on the Color Trails Test or the TOVA scores postintervention. Parents reported that the study participants had fewer homework problems postintervention. The results from this study indicate that binaural auditory beat stimulation did not significantly reduce the symptom of inattention in the experimental group. However, parents and adolescents stated that homework problems due to inattention improved during the 3-week study. Parents and participants stated that the modality was easy to use and helpful. Therefore, this modality should be studied over a longer time frame in a larger sample to further its effectiveness to reduce the symptom of inattention in those diagnosed with attention-deficit/hyperactivity disorder. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Dissecting auditory verbal hallucinations into two components: audibility (Gedankenlautwerden) and alienation (thought insertion).

    Science.gov (United States)

    Sommer, Iris E; Selten, Jean-Paul; Diederen, Kelly M; Blom, Jan Dirk

    2010-01-01

    This study proposes a theoretical framework which dissects auditory verbal hallucinations (AVH) into 2 essential components: audibility and alienation. Audibility, the perceptual aspect of AVH, may result from a disinhibition of the auditory cortex in response to self-generated speech. In isolation, this aspect leads to audible thoughts: Gedankenlautwerden. The second component is alienation, which is the failure to recognize the content of AVH as self-generated. This failure may be related to the fact that cerebral activity associated with AVH is predominantly present in the speech production area of the right hemisphere. Since normal inner speech is derived from the left speech area, an aberrant source may lead to confusion about the origin of the language fragments. When alienation is not accompanied by audibility, it will result in the experience of thought insertion. The 2 hypothesized components are illustrated using case vignettes. Copyright 2010 S. Karger AG, Basel.

  5. Sex, acceleration, brain imaging, and rhesus monkeys: Converging evidence for an evolutionary bias for looming auditory motion

    Science.gov (United States)

    Neuhoff, John G.

    2003-04-01

    Increasing acoustic intensity is a primary cue to looming auditory motion. Perceptual overestimation of increasing intensity could provide an evolutionary selective advantage by specifying that an approaching sound source is closer than actual, thus affording advanced warning and more time than expected to prepare for the arrival of the source. Here, multiple lines of converging evidence for this evolutionary hypothesis are presented. First, it is shown that intensity change specifying accelerating source approach changes in loudness more than equivalent intensity change specifying decelerating source approach. Second, consistent with evolutionary hunter-gatherer theories of sex-specific spatial abilities, it is shown that females have a significantly larger bias for rising intensity than males. Third, using functional magnetic resonance imaging in conjunction with approaching and receding auditory motion, it is shown that approaching sources preferentially activate a specific neural network responsible for attention allocation, motor planning, and translating perception into action. Finally, it is shown that rhesus monkeys also exhibit a rising intensity bias by orienting longer to looming tones than to receding tones. Together these results illustrate an adaptive perceptual bias that has evolved because it provides a selective advantage in processing looming acoustic sources. [Work supported by NSF and CDC.

  6. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations.

    Science.gov (United States)

    Ćurčić-Blake, Branislava; Ford, Judith M; Hubl, Daniela; Orlov, Natasza D; Sommer, Iris E; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W; David, Olivier; Mulert, Christoph; Woodward, Todd S; Aleman, André

    2017-01-01

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Dissociation of Detection and Discrimination of Pure Tones following Bilateral Lesions of Auditory Cortex

    Science.gov (United States)

    Dykstra, Andrew R.; Koh, Christine K.; Braida, Louis D.; Tramo, Mark Jude

    2012-01-01

    It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5±2.1 dB in the left ear and 6.5±1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6±0.22 dB; right ear: 1.7±0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed. PMID:22957087

  8. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex.

    Science.gov (United States)

    Dykstra, Andrew R; Koh, Christine K; Braida, Louis D; Tramo, Mark Jude

    2012-01-01

    It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5 ± 2.1 dB in the left ear and 6.5 ± 1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6 ± 0.22 dB; right ear: 1.7 ± 0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.

  9. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex.

    Directory of Open Access Journals (Sweden)

    Andrew R Dykstra

    Full Text Available It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5 ± 2.1 dB in the left ear and 6.5 ± 1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6 ± 0.22 dB; right ear: 1.7 ± 0.19 dB. The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.

  10. The singular nature of auditory and visual scene analysis in autism

    OpenAIRE

    Lin, I.-Fan; Shirama, Aya; Kato, Nobumasa; Kashino, Makio

    2017-01-01

    Individuals with autism spectrum disorder often have difficulty acquiring relevant auditory and visual information in daily environments, despite not being diagnosed as hearing impaired or having low vision. Resent psychophysical and neurophysiological studies have shown that autistic individuals have highly specific individual differences at various levels of information processing, including feature extraction, automatic grouping and top-down modulation in auditory and visual scene analysis...

  11. Perceptual load modulates anterior cingulate cortex response to threat distractors in generalized social anxiety disorder.

    Science.gov (United States)

    Wheaton, Michael G; Fitzgerald, Daniel A; Phan, K Luan; Klumpp, Heide

    2014-09-01

    Generalized social anxiety disorder (gSAD) is associated with impoverished anterior cingulate cortex (ACC) engagement during attentional control. Attentional Control Theory proposes such deficiencies may be offset when demands on resources are increased to execute goals. To test the hypothesis attentional demands affect ACC response 23 patients with gSAD and 24 matched controls performed an fMRI task involving a target letter in a string of identical targets (low load) or a target letter in a mixed letter string (high load) superimposed on fearful, angry, and neutral face distractors. Regardless of load condition, groups were similar in accuracy and reaction time. Under low load gSAD patients showed deficient rostral ACC recruitment to fearful (vs. neutral) distractors. For high load, increased activation to fearful (vs. neutral) distractors was observed in gSAD suggesting a compensatory function. Results remained after controlling for group differences in depression level. Findings indicate perceptual demand modulates ACC in gSAD. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Reduced object related negativity response indicates impaired auditory scene analysis in adults with autistic spectrum disorder

    Directory of Open Access Journals (Sweden)

    Veema Lodhia

    2014-02-01

    Full Text Available Auditory Scene Analysis provides a useful framework for understanding atypical auditory perception in autism. Specifically, a failure to segregate the incoming acoustic energy into distinct auditory objects might explain the aversive reaction autistic individuals have to certain auditory stimuli or environments. Previous research with non-autistic participants has demonstrated the presence of an Object Related Negativity (ORN in the auditory event related potential that indexes pre-attentive processes associated with auditory scene analysis. Also evident is a later P400 component that is attention dependent and thought to be related to decision-making about auditory objects. We sought to determine whether there are differences between individuals with and without autism in the levels of processing indexed by these components. Electroencephalography (EEG was used to measure brain responses from a group of 16 autistic adults, and 16 age- and verbal-IQ-matched typically-developing adults. Auditory responses were elicited using lateralized dichotic pitch stimuli in which inter-aural timing differences create the illusory perception of a pitch that is spatially separated from a carrier noise stimulus. As in previous studies, control participants produced an ORN in response to the pitch stimuli. However, this component was significantly reduced in the participants with autism. In contrast, processing differences were not observed between the groups at the attention-dependent level (P400. These findings suggest that autistic individuals have difficulty segregating auditory stimuli into distinct auditory objects, and that this difficulty arises at an early pre-attentive level of processing.

  13. Visual Perceptual Learning and Models.

    Science.gov (United States)

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  14. Changes in Neurocognitive Functioning After 6 Months of Mentalization-Based Treatment for Borderline Personality Disorder

    DEFF Research Database (Denmark)

    Thomsen, Marianne S; Ruocco, Anthony C; Uliaszek, Amanda A

    2017-01-01

    working memory. After 6 months of treatment, patients showed significantly greater increases in sustained attention and perceptual reasoning than controls, with initial deficits in sustained attention among patients resolving after treatment. Improved emotion regulation over the follow-up period...... was associated with increased auditory-verbal working memory capacity, whereas interpersonal functioning improved in parallel with perceptual reasoning. These findings suggest that changes in neurocognitive functioning may track improvements in clinical symptoms in mentalization-based treatment for BPD....

  15. The singular nature of auditory and visual scene analysis in autism.

    Science.gov (United States)

    Lin, I-Fan; Shirama, Aya; Kato, Nobumasa; Kashino, Makio

    2017-02-19

    Individuals with autism spectrum disorder often have difficulty acquiring relevant auditory and visual information in daily environments, despite not being diagnosed as hearing impaired or having low vision. Resent psychophysical and neurophysiological studies have shown that autistic individuals have highly specific individual differences at various levels of information processing, including feature extraction, automatic grouping and top-down modulation in auditory and visual scene analysis. Comparison of the characteristics of scene analysis between auditory and visual modalities reveals some essential commonalities, which could provide clues about the underlying neural mechanisms. Further progress in this line of research may suggest effective methods for diagnosing and supporting autistic individuals.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Author(s).

  16. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    Science.gov (United States)

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  17. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    Directory of Open Access Journals (Sweden)

    Mikkel Wallentin

    2016-01-01

    Full Text Available Klinefelter syndrome (47, XXY (KS is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49 responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors. One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  18. Role of serial order in the impact of talker variability on short-term memory: testing a perceptual organization-based account.

    Science.gov (United States)

    Hughes, Robert W; Marsh, John E; Jones, Dylan M

    2011-11-01

    In two experiments, we examined the impact of the degree of match between sequential auditory perceptual organization processes and the demands of a short-term memory task (memory for order vs. item information). When a spoken sequence of digits was presented so as to promote its perceptual partitioning into two distinct streams by conveying it in alternating female (F) and male (M) voices (FMFMFMFM)--thereby disturbing the perception of true temporal order--recall of item order was greatly impaired (as compared to recall of item identity). Moreover, an order error type consistent with the formation of voice-based streams was committed more quickly in the alternating-voice condition (Exp. 1). In contrast, when the perceptual organization of the sequence mapped well onto an optimal two-group serial rehearsal strategy--by presenting the two voices in discrete clusters (FFFFMMMM)--order, but not item, recall was enhanced (Exp. 2). The results are consistent with the view that the degree of compatibility between perceptual and deliberate sequencing processes is a key determinant of serial short-term memory performance. Alternative accounts of talker variability effects in short-term memory, based on the concept of a dedicated phonological short-term store and a capacity-limited focus of attention, are also reviewed.

  19. Perceptual learning and human expertise.

    Science.gov (United States)

    Kellman, Philip J; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  20. Perceptual learning and human expertise

    Science.gov (United States)

    Kellman, Philip J.; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  1. Auditory brainstem response as a diagnostic tool for patients suffering from schizophrenia, attention deficit hyperactivity disorder, and bipolar disorder: protocol.

    Science.gov (United States)

    Wahlström, Viktor; Åhlander, Fredrik; Wynn, Rolf

    2015-02-12

    Psychiatric disorders, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and bipolar disorder, may sometimes be difficult to diagnose. There is a great need for a valid and reliable diagnostic tool to aid clinicians in arriving at the diagnoses in a timely and accurate manner. Prior studies have suggested that patients suffering from schizophrenia and ADHD may process certain sound stimuli in the brainstem in an unusual manner. When these patient groups have been examined with the electrophysiological method of brainstem audiometry, some studies have found illness-specific aberrations. Such aberrations may also exist for patients suffering from bipolar disorder. In this study, we will examine whether the method of brainstem audiometry can be used as a diagnostic tool for patients suffering from schizophrenia, ADHD, and bipolar disorder. The method includes three steps: (1) auditory stimulation with specific sound stimuli, (2) simultaneous measurement of brainstem activity, and (3) automated interpretation of the resulting brain stem audiograms with data-based signal analysis. We will compare three groups of 12 individuals with confirmed diagnoses of schizophrenia, ADHD, or bipolar disorder with 12 healthy subjects under blinded conditions for a total of 48 participants. The extent to which the method can be used to reach the correct diagnosis will be investigated. The project is now in a recruiting phase. When all patients and controls have been recruited and the measurements have been performed, the data will be analyzed according to a previously arranged algorithm. We expect the recruiting phase and measurements to be completed in early 2015, the analyses to be performed in mid-2015, and the results of the study to be published in early 2016. If the results support previous findings, this will lend strength to the idea that brainstem audiometry can offer objective diagnostic support for patients suffering from schizophrenia, ADHD, and

  2. Listening to another sense: somatosensory integration in the auditory system.

    Science.gov (United States)

    Wu, Calvin; Stefanescu, Roxana A; Martel, David T; Shore, Susan E

    2015-07-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.

  3. Comorbid Diagnosis of Psychotic Disorders in Borderline Personality Disorder: Prevalence and Influence on Outcome

    Directory of Open Access Journals (Sweden)

    C. W. Slotema

    2018-03-01

    Full Text Available BackgroundA diagnosis of psychotic disorder is traditionally considered incompatible with borderline personality disorder (BPD, even though patients sometimes fulfill the diagnostic criteria for both disorders. How often this happens is barely known, as is the influence of comorbid psychotic disorders on the outcome of BPD. Since studies on isolated auditory verbal hallucinations in patients with BPD indicate that these perceptual symptoms have severe consequences and are associated with suicidal behavior and hospitalization, patients with comorbid psychotic disorders are unlikely to fare better.ObjectiveTo examine the point prevalence of psychotic disorders in patients with BPD, their association with the outcome of BPD, and their predictive value for outcome.MethodsIn a cross-sectional design, 84 female outpatients diagnosed with BPD were interviewed with the aid of the MINI-International Neuropsychiatric Interview to establish the point prevalence of comorbid psychotic and other comorbid disorders. After termination of their treatment at a specialized outpatient clinic, the type of referral was considered to be a “good” outcome when they were referred to their general practitioner or to basic psychiatric care for noncomplex patients, and a “poor” outcome when referred to a specialized psychiatric department or to a psychiatric district team for patients with severe psychiatric disorders.ResultsPsychotic disorders were present in 38% of the patients with BPD. With a prevalence of 20%, psychotic disorder not otherwise specified (NOS was the most common subtype; the least common types were schizophrenia (2%, substance-induced psychotic disorder (2%, and brief psychotic disorder (1%. Among six types of comorbid disorders, only psychotic disorders were associated with a poor outcome; they were also predictors for a poor outcome, along with comorbid mood disorders, eating disorders, and somatoform disorders, as well as the severity of BPD

  4. Brain correlates of the orientation of auditory spatial attention onto speaker location in a "cocktail-party" situation.

    Science.gov (United States)

    Lewald, Jörg; Hanenberg, Christina; Getzmann, Stephan

    2016-10-01

    Successful speech perception in complex auditory scenes with multiple competing speakers requires spatial segregation of auditory streams into perceptually distinct and coherent auditory objects and focusing of attention toward the speaker of interest. Here, we focused on the neural basis of this remarkable capacity of the human auditory system and investigated the spatiotemporal sequence of neural activity within the cortical network engaged in solving the "cocktail-party" problem. Twenty-eight subjects localized a target word in the presence of three competing sound sources. The analysis of the ERPs revealed an anterior contralateral subcomponent of the N2 (N2ac), computed as the difference waveform for targets to the left minus targets to the right. The N2ac peaked at about 500 ms after stimulus onset, and its amplitude was correlated with better localization performance. Cortical source localization for the contrast of left versus right targets at the time of the N2ac revealed a maximum in the region around left superior frontal sulcus and frontal eye field, both of which are known to be involved in processing of auditory spatial information. In addition, a posterior-contralateral late positive subcomponent (LPCpc) occurred at a latency of about 700 ms. Both these subcomponents are potential correlates of allocation of spatial attention to the target under cocktail-party conditions. © 2016 Society for Psychophysiological Research.

  5. Auditory Training for Adults Who Have Hearing Loss: A Comparison of Spaced Versus Massed Practice Schedules.

    Science.gov (United States)

    Tye-Murray, Nancy; Spehar, Brent; Barcroft, Joe; Sommers, Mitchell

    2017-08-16

    The spacing effect in human memory research refers to situations in which people learn items better when they study items in spaced intervals rather than massed intervals. This investigation was conducted to compare the efficacy of meaning-oriented auditory training when administered with a spaced versus massed practice schedule. Forty-seven adult hearing aid users received 16 hr of auditory training. Participants in a spaced group (mean age = 64.6 years, SD = 14.7) trained twice per week, and participants in a massed group (mean age = 69.6 years, SD = 17.5) trained for 5 consecutive days each week. Participants completed speech perception tests before training, immediately following training, and then 3 months later. In line with transfer appropriate processing theory, tests assessed both trained tasks and an untrained task. Auditory training improved the speech recognition performance of participants in both groups. Benefits were maintained for 3 months. No effect of practice schedule was found on overall benefits achieved, on retention of benefits, nor on generalizability of benefits to nontrained tasks. The lack of spacing effect in otherwise effective auditory training suggests that perceptual learning may be subject to different influences than are other types of learning, such as vocabulary learning. Hence, clinicians might have latitude in recommending training schedules to accommodate patients' schedules.

  6. Visual Magnocellular Function in Perceptual Disorders

    Directory of Open Access Journals (Sweden)

    David P. Crewther

    2011-05-01

    Full Text Available Developmental disorders such as autism spectrum disorders (ASD, dyslexia, schizophrenia and dyscalculia have also been reported to show abnormal visual perception. Central to the four disorders are observations of altered global/local perception, motion sensation and grouping that are suggestive of a magnocellular abnormality(s. Such psychophysical observations do not easily yield neurophysiological mechanisms that can explain the altered perception/vision. Nonlinear visual evoked potentials have allowed the separation of magnocellular (M and parvocellular (P contributions to the VEP (Klistorner et al., 1997. Using these tools we compare the patterns of abnormality in groups with visual disorders. The second order kernel responses of the VEP in autistic tendency show interference between P and M nonlinearities at high contrast (Sutherland & Crewther, 2010 resulting in a delay of completion of firing. While afferent latencies of M and P cortical activation are not different in ASD, the delay in completion may allow a revision of the ideas surrounding the “magnocellular advantage” which relate to the alterations observed in global and local perception.

  7. The influence of signal type on the internal auditory representation of a room

    Science.gov (United States)

    Teret, Elizabeth

    Currently, architectural acousticians make no real distinction between a room impulse response and the auditory system's internal representation of a room. With this lack of a good model for the auditory representation of a room, it is indirectly assumed that our internal representation of a room is independent of the sound source needed to make the room characteristics audible. The extent to which this assumption holds true is examined with perceptual tests. Listeners are presented with various pairs of signals (music, speech, and noise) convolved with synthesized impulse responses of different reverberation times. They are asked to adjust the reverberation of one of the signals to match the other. Analysis of the data show that the source signal significantly influences perceived reverberance. Listeners are less accurate when matching reverberation times of varied signals than they are with identical signals. Additional testing shows that perception of reverberation can be linked to the existence of transients in the signal.

  8. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682

  9. Plasticity in the Human Speech Motor System Drives Changes in Speech Perception

    Science.gov (United States)

    Lametti, Daniel R.; Rochet-Capellan, Amélie; Neufeld, Emily; Shiller, Douglas M.

    2014-01-01

    Recent studies of human speech motor learning suggest that learning is accompanied by changes in auditory perception. But what drives the perceptual change? Is it a consequence of changes in the motor system? Or is it a result of sensory inflow during learning? Here, subjects participated in a speech motor-learning task involving adaptation to altered auditory feedback and they were subsequently tested for perceptual change. In two separate experiments, involving two different auditory perceptual continua, we show that changes in the speech motor system that accompany learning drive changes in auditory speech perception. Specifically, we obtained changes in speech perception when adaptation to altered auditory feedback led to speech production that fell into the phonetic range of the speech perceptual tests. However, a similar change in perception was not observed when the auditory feedback that subjects' received during learning fell into the phonetic range of the perceptual tests. This indicates that the central motor outflow associated with vocal sensorimotor adaptation drives changes to the perceptual classification of speech sounds. PMID:25080594

  10. Toward the Development of an Objective Index of Dysphonia Severity: A Four-Factor Acoustic Model

    Science.gov (United States)

    Awan, Shaheen N.; Roy, Nelson

    2006-01-01

    During assessment and management of individuals with voice disorders, clinicians routinely attempt to describe or quantify the severity of a patient's dysphonia. This investigation used acoustic measures derived from sustained vowel samples to predict dysphonia severity (as determined by auditory-perceptual ratings), for a diverse set of voice…

  11. Twenty year multi-follow-up of different types of hallucinations in schizophrenia, schizoaffective disorder, bipolar disorder, and depression.

    Science.gov (United States)

    Goghari, Vina M; Harrow, Martin

    2016-10-01

    Hallucinations are a salient feature of both psychotic and mood disorders. Currently there is a call for more research on the phenomenology of different forms of hallucinations, in a broader array of disorders, to further both theoretical knowledge and clinical utility. We investigated auditory, visual, and olfactory hallucinations at index hospitalization and auditory and visual hallucinations prospectively for 20years in 150 young patients, namely 51 schizophrenia, 25 schizoaffective, 28 bipolar, and 79 unipolar depression. For the index hospitalization, the data showed schizophrenia and schizoaffective patients had a greater rate of auditory and visual hallucinations than bipolar and depression patients. However, over the longitudinal trajectory of their illness, a greater percentage of schizophrenia patients had auditory and visual hallucinations than schizoaffective patients, as well as bipolar and depression patients. Also, in contrast to the initial period, schizoaffective patients did not differentiate themselves over the follow-up period from bipolar patients. Bipolar and depression patients did not significantly differ at index hospitalization or at follow-up. We found visual hallucinations differentiated the groups to a greater degree over the 20year course than did auditory hallucinations. These findings suggest the longitudinal course is more important for differentiating schizophrenia and schizoaffective disorder, whereas the initial years may be more useful to differentiate schizoaffective disorder from bipolar disorder. Furthermore, we found that the early presence of auditory hallucinations was associated with a reduced likelihood for a future period of recovery. No olfactory hallucinations were present at the index hospitalization in any patients. Over the course of 20years, a minority of schizophrenia patients presented with olfactory hallucinations, and very few schizoaffective and bipolar patients presented with olfactory hallucinations. This

  12. Relação entre potenciais evocados auditivos de média latência e distúrbio de processamento auditivo: estudo de casos Relationship between auditory evoked potentials and middle latency auditory processing disorder: cases study

    Directory of Open Access Journals (Sweden)

    Ana Carla Leite Romero

    2013-04-01

    . This study aimed to analyze the auditory evoked middle latency response in two patients with auditory processing disorder and relate objective and behavioral measures. This case study was conducted in 2 patients (P1 = 12 years, female, P2 = 17 years old, male, both with the absence of sensory abnormalities, neurological and neuropsychiatric disorders. Both were submitted to anamnesis, inspection of the external ear canal, hearing test and evaluation of Auditory Evoked Middle latency Response. There was a significant association between behavioral test and objectives results. In the interview, there were complaints about the difficulty in listening in a noisy environment, sound localization, inattention, and phonological changes in writing and speaking, as confirmed by evaluation of auditory processing and Auditory Evoked Middle Latency Response. Changes were observed in the right decoding process hearing in both cases on the behavioral assessment of auditory processing; auditory evoked potential test middle latency shows that the right contralateral via response was deficient, confirming the difficulties of the patients in the assignment of meaning in acoustic information in a competitive sound condition at right, in both cases. In these cases it was shown the association between the results, but there is a need for further studies with larger sample population to confirm the data.

  13. Relação entre potenciais evocados auditivos de média latência e distúrbio de processamento auditivo: estudo de casos Relationship between auditory evoked potentials and middle latency auditory processing disorder: cases study

    Directory of Open Access Journals (Sweden)

    Ana Carla Leite Romero

    2013-01-01

    . This study aimed to analyze the auditory evoked middle latency response in two patients with auditory processing disorder and relate objective and behavioral measures. This case study was conducted in 2 patients (P1 = 12 years, female, P2 = 17 years old, male, both with the absence of sensory abnormalities, neurological and neuropsychiatric disorders. Both were submitted to anamnesis, inspection of the external ear canal, hearing test and evaluation of Auditory Evoked Middle latency Response. There was a significant association between behavioral test and objectives results. In the interview, there were complaints about the difficulty in listening in a noisy environment, sound localization, inattention, and phonological changes in writing and speaking, as confirmed by evaluation of auditory processing and Auditory Evoked Middle Latency Response. Changes were observed in the right decoding process hearing in both cases on the behavioral assessment of auditory processing; auditory evoked potential test middle latency shows that the right contralateral via response was deficient, confirming the difficulties of the patients in the assignment of meaning in acoustic information in a competitive sound condition at right, in both cases. In these cases it was shown the association between the results, but there is a need for further studies with larger sample population to confirm the data.

  14. Temporal processing and long-latency auditory evoked potential in stutterers.

    Science.gov (United States)

    Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela

    Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  15. Temporal processing and long-latency auditory evoked potential in stutterers

    Directory of Open Access Journals (Sweden)

    Raquel Prestes

    Full Text Available Abstract Introduction: Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. Objective: To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. Methods: The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n = 20 and non-stutters (n = 21, compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Results: Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Conclusion: Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components.

  16. Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation.

    Science.gov (United States)

    Kolarik, Andrew J; Scarfe, Amy C; Moore, Brian C J; Pardhan, Shahina

    2017-01-01

    Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation) and tactile (using a sensory substitution device, SSD) guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound.

  17. Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation.

    Directory of Open Access Journals (Sweden)

    Andrew J Kolarik

    Full Text Available Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation and tactile (using a sensory substitution device, SSD guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound.

  18. Neurogenetics and auditory processing in developmental dyslexia.

    Science.gov (United States)

    Giraud, Anne-Lise; Ramus, Franck

    2013-02-01

    Dyslexia is a polygenic developmental reading disorder characterized by an auditory/phonological deficit. Based on the latest genetic and neurophysiological studies, we propose a tentative model in which phonological deficits could arise from genetic anomalies of the cortical micro-architecture in the temporal lobe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Segregation and integration of auditory streams when listening to multi-part music.

    Directory of Open Access Journals (Sweden)

    Marie Ragert

    Full Text Available In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment or temporally (asynchronies vs. no asynchronies between parts, and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of

  20. Segregation and integration of auditory streams when listening to multi-part music.

    Science.gov (United States)

    Ragert, Marie; Fairhurst, Merle T; Keller, Peter E

    2014-01-01

    In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment) or temporally (asynchronies vs. no asynchronies between parts), and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads) the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of auditory streams

  1. Increased timing variability in schizophrenia and bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Amanda R Bolbecker

    Full Text Available Theoretical and empirical evidence suggests that impaired time perception and the neural circuitry underlying internal timing mechanisms may contribute to severe psychiatric disorders, including psychotic and mood disorders. The degree to which alterations in temporal perceptions reflect deficits that exist across psychosis-related phenotypes and the extent to which mood symptoms contribute to these deficits is currently unknown. In addition, compared to schizophrenia, where timing deficits have been more extensively investigated, sub-second timing has been studied relatively infrequently in bipolar disorder. The present study compared sub-second duration estimates of schizophrenia (SZ, schizoaffective disorder (SA, non-psychotic bipolar disorder (BDNP, bipolar disorder with psychotic features (BDP, and healthy non-psychiatric controls (HC on a well-established time perception task using sub-second durations. Participants included 66 SZ, 37 BDNP, 34 BDP, 31 SA, and 73 HC who participated in a temporal bisection task that required temporal judgements about auditory durations ranging from 300 to 600 milliseconds. Timing variability was significantly higher in SZ, BDP, and BDNP groups compared to healthy controls. The bisection point did not differ across groups. These findings suggest that both psychotic and mood symptoms may be associated with disruptions in internal timing mechanisms. Yet unexpected findings emerged. Specifically, the BDNP group had significantly increased variability compared to controls, but the SA group did not. In addition, these deficits appeared to exist independent of current symptom status. The absence of between group differences in bisection point suggests that increased variability in the SZ and bipolar disorder groups are due to alterations in perceptual timing in the sub-second range, possibly mediated by the cerebellum, rather than cognitive deficits.

  2. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Computational spectrotemporal auditory model with applications to acoustical information processing

    Science.gov (United States)

    Chi, Tai-Shih

    A computational spectrotemporal auditory model based on neurophysiological findings in early auditory and cortical stages is described. The model provides a unified multiresolution representation of the spectral and temporal features of sound likely critical in the perception of timbre. Several types of complex stimuli are used to demonstrate the spectrotemporal information preserved by the model. Shown by these examples, this two stage model reflects the apparent progressive loss of temporal dynamics along the auditory pathway from the rapid phase-locking (several kHz in auditory nerve), to moderate rates of synchrony (several hundred Hz in midbrain), to much lower rates of modulations in the cortex (around 30 Hz). To complete this model, several projection-based reconstruction algorithms are implemented to resynthesize the sound from the representations with reduced dynamics. One particular application of this model is to assess speech intelligibility. The spectro-temporal Modulation Transfer Functions (MTF) of this model is investigated and shown to be consistent with the salient trends in the human MTFs (derived from human detection thresholds) which exhibit a lowpass function with respect to both spectral and temporal dimensions, with 50% bandwidths of about 16 Hz and 2 cycles/octave. Therefore, the model is used to demonstrate the potential relevance of these MTFs to the assessment of speech intelligibility in noise and reverberant conditions. Another useful feature is the phase singularity emerged in the scale space generated by this multiscale auditory model. The singularity is shown to have certain robust properties and carry the crucial information about the spectral profile. Such claim is justified by perceptually tolerable resynthesized sounds from the nonconvex singularity set. In addition, the singularity set is demonstrated to encode the pitch and formants at different scales. These properties make the singularity set very suitable for traditional

  4. Cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change in speech

    NARCIS (Netherlands)

    Lametti, D.R.; Oostwoud Wijdenes, L.; Bonaiuto, J.; Bestmann, S.; Rothwell, J.C.

    2016-01-01

    Neuroimaging studies suggest that the cerebellum might play a role in both speech perception and speech perceptual learning. However, it remains unclear what this role is: does the cerebellum directly contribute to the perceptual decision? Or does it contribute to the timing of perceptual decisions?

  5. Gender effect on pre-attentive change detection in major depressive disorder patients revealed by auditory MMN.

    Science.gov (United States)

    Qiao, Zhengxue; Yang, Aiying; Qiu, Xiaohui; Yang, Xiuxian; Zhang, Congpei; Zhu, Xiongzhao; He, Jincai; Wang, Lin; Bai, Bing; Sun, Hailian; Zhao, Lun; Yang, Yanjie

    2015-10-30

    Gender differences in rates of major depressive disorder (MDD) are well established, but gender differences in cognitive function have been little studied. Auditory mismatch negativity (MMN) was used to investigate gender differences in pre-attentive information processing in first episode MDD. In the deviant-standard reverse oddball paradigm, duration auditory MMN was obtained in 30 patients (15 males) and 30 age-/education-matched controls. Over frontal-central areas, mean amplitude of increment MMN (to a 150-ms deviant tone) was smaller in female than male patients; there was no sex difference in decrement MMN (to a 50-ms deviant tone). Neither increment nor decrement MMN differed between female and male patients over temporal areas. Frontal-central MMN and temporal MMN did not differ between male and female controls in any condition. Over frontal-central areas, mean amplitude of increment MMN was smaller in female patients than female controls; there was no difference in decrement MMN. Neither increment nor decrement MMN differed between female patients and female controls over temporal areas. Frontal-central MMN and temporal MMN did not differ between male patients and male controls. Mean amplitude of increment MMN in female patients did not correlate with symptoms, suggesting this sex-specific deficit is a trait- not a state-dependent phenomenon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Influences of multiple memory systems on auditory mental image acuity.

    Science.gov (United States)

    Navarro Cebrian, Ana; Janata, Petr

    2010-05-01

    The influence of different memory systems and associated attentional processes on the acuity of auditory images, formed for the purpose of making intonation judgments, was examined across three experiments using three different task types (cued-attention, imagery, and two-tone discrimination). In experiment 1 the influence of implicit long-term memory for musical scale structure was manipulated by varying the scale degree (leading tone versus tonic) of the probe note about which a judgment had to be made. In experiments 2 and 3 the ability of short-term absolute pitch knowledge to develop was manipulated by presenting blocks of trials in the same key or in seven different keys. The acuity of auditory images depended on all of these manipulations. Within individual listeners, thresholds in the two-tone discrimination and cued-attention conditions were closely related. In many listeners, cued-attention thresholds were similar to thresholds in the imagery condition, and depended on the amount of training individual listeners had in playing a musical instrument. The results indicate that mental images formed at a sensory/cognitive interface for the purpose of making perceptual decisions are highly malleable.

  7. Enhanced Pure-Tone Pitch Discrimination among Persons with Autism but not Asperger Syndrome

    Science.gov (United States)

    Bonnel, Anna; McAdams, Stephen; Smith, Bennett; Berthiaume, Claude; Bertone, Armando; Ciocca, Valter; Burack, Jacob A.; Mottron, Laurent

    2010-01-01

    Persons with Autism spectrum disorders (ASD) display atypical perceptual processing in visual and auditory tasks. In vision, Bertone, Mottron, Jelenic, and Faubert (2005) found that enhanced and diminished visual processing is linked to the level of neural complexity required to process stimuli, as proposed in the neural complexity hypothesis.…

  8. Auditory Reserve and the Legacy of Auditory Experience

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2014-11-01

    Full Text Available Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.

  9. Perceptual organization and visual attention.

    Science.gov (United States)

    Kimchi, Ruth

    2009-01-01

    Perceptual organization--the processes structuring visual information into coherent units--and visual attention--the processes by which some visual information in a scene is selected--are crucial for the perception of our visual environment and to visuomotor behavior. Recent research points to important relations between attentional and organizational processes. Several studies demonstrated that perceptual organization constrains attentional selectivity, and other studies suggest that attention can also constrain perceptual organization. In this chapter I focus on two aspects of the relationship between perceptual organization and attention. The first addresses the question of whether or not perceptual organization can take place without attention. I present findings demonstrating that some forms of grouping and figure-ground segmentation can occur without attention, whereas others require controlled attentional processing, depending on the processes involved and the conditions prevailing for each process. These findings challenge the traditional view, which assumes that perceptual organization is a unitary entity that operates preattentively. The second issue addresses the question of whether perceptual organization can affect the automatic deployment of attention. I present findings showing that the mere organization of some elements in the visual field by Gestalt factors into a coherent perceptual unit (an "object"), with no abrupt onset or any other unique transient, can capture attention automatically in a stimulus-driven manner. Taken together, the findings discussed in this chapter demonstrate the multifaceted, interactive relations between perceptual organization and visual attention.

  10. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  11. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  12. State of the art in perceptual design of hearing aids

    Science.gov (United States)

    Edwards, Brent W.; van Tasell, Dianne J.

    2002-05-01

    Hearing aid capabilities have increased dramatically over the past six years, in large part due to the development of small, low-power digital signal processing chips suitable for hearing aid applications. As hearing aid signal processing capabilities increase, there will be new opportunities to apply perceptually based knowledge to technological development. Most hearing loss compensation techniques in today's hearing aids are based on simple estimates of audibility and loudness. As our understanding of the psychoacoustical and physiological characteristics of sensorineural hearing loss improves, the result should be improved design of hearing aids and fitting methods. The state of the art in hearing aids will be reviewed, including form factors, user requirements, and technology that improves speech intelligibility, sound quality, and functionality. General areas of auditory perception that remain unaddressed by current hearing aid technology will be discussed.

  13. Verbal and musical short-term memory: Variety of auditory disorders after stroke.

    Science.gov (United States)

    Hirel, Catherine; Nighoghossian, Norbert; Lévêque, Yohana; Hannoun, Salem; Fornoni, Lesly; Daligault, Sébastien; Bouchet, Patrick; Jung, Julien; Tillmann, Barbara; Caclin, Anne

    2017-04-01

    Auditory cognitive deficits after stroke may concern language and/or music processing, resulting in aphasia and/or amusia. The aim of the present study was to assess the potential deficits of auditory short-term memory for verbal and musical material after stroke and their underlying cerebral correlates with a Voxel-based Lesion Symptom Mapping approach (VLSM). Patients with an ischemic stroke in the right (N=10) or left (N=10) middle cerebral artery territory and matched control participants (N=14) were tested with a detailed neuropsychological assessment including global cognitive functions, music perception and language tasks. All participants then performed verbal and musical auditory short-term memory (STM) tasks that were implemented in the same way for both materials. Participants had to indicate whether series of four words or four tones presented in pairs, were the same or different. To detect domain-general STM deficits, they also had to perform a visual STM task. Behavioral results showed that patients had lower performance for the STM tasks in comparison with control participants, regardless of the material (words, tones, visual) and the lesion side. The individual patient data showed a double dissociation between some patients exhibiting verbal deficits without musical deficits or the reverse. Exploratory VLSM analyses suggested that dorsal pathways are involved in verbal (phonetic), musical (melodic), and visual STM, while the ventral auditory pathway is involved in musical STM. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Congli Liu

    2018-01-01

    Full Text Available Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons, a subset of GABAergic neurons, greatly shape and synchronize neural network activities. However, the change of PV neurons following acoustic trauma remains to be elucidated. The present study investigated how auditory cortical PV neurons change following unilateral 1 hour noise exposure (left ear, one octave band noise centered at 16 kHz, 116 dB SPL. Noise exposure elevated the auditory brainstem response threshold of the exposed ear when examined 7 days later. More detectable PV neurons were observed in both sides of the auditory cortex of noise-exposed rats when compared to control. The detectable PV neurons of the left auditory cortex (ipsilateral to the exposed ear to noise exposure outnumbered those of the right auditory cortex (contralateral to the exposed ear. Quantification of Western blotted bands revealed higher expression level of PV protein in the left cortex. These findings of more active PV neurons in noise-exposed rats suggested that a compensatory mechanism might be initiated to maintain a stable state of the brain.

  15. Processamento auditivo em idosos: implicações e soluções Auditory processing in elderly: implications and solutions

    Directory of Open Access Journals (Sweden)

    Leonardo Henrique Buss

    2010-02-01

    Full Text Available TEMA: processamento auditivo em idosos. OBJETIVO: estudar, através de uma revisão teórica, o processamento auditivo em idosos, as desordens que o envelhecimento auditivo causam, bem como os recursos para reduzir as defasagens nas habilidades auditivas envolvidas no processamento auditivo. CONCLUSÃO: vários são os desajustes ocasionados pela desordem do processamento auditivo em idosos. É necessária a continuidade de estudos científicos nessa área para aplicar adequadas medidas intervencionistas, a fim de garantir a reabilitação do indivíduo a tempo de minimizar os efeitos da desordem auditiva sobre o mesmo.BACKGROUND: auditory processing in elderly. PURPOSE: to promote a theoretical approach on auditory processing in elderly people, the disorders caused by hearing aging, as well as the resources to minimize the auditory aging impairment of the hearing abilities involved in the auditory processing. CONCLUSION: the alterations caused by auditory processing disorder in elderly people are many. It is necessary to continue researching in this field in order to apply adequate interventionist measures, in order to assure the rehabilitation of the individual in time to minimize the effects of the hearing disorder.

  16. Auditory white noise reduces postural fluctuations even in the absence of vision.

    Science.gov (United States)

    Ross, Jessica Marie; Balasubramaniam, Ramesh

    2015-08-01

    The contributions of somatosensory, vestibular, and visual feedback to balance control are well documented, but the influence of auditory information, especially acoustic noise, on balance is less clear. Because somatosensory noise has been shown to reduce postural sway, we hypothesized that noise from the auditory modality might have a similar effect. Given that the nervous system uses noise to optimize signal transfer, adding mechanical or auditory noise should lead to increased feedback about sensory frames of reference used in balance control. In the present experiment, postural sway was analyzed in healthy young adults where they were presented with continuous white noise, in the presence and absence of visual information. Our results show reduced postural sway variability (as indexed by the body's center of pressure) in the presence of auditory noise, even when visual information was not present. Nonlinear time series analysis revealed that auditory noise has an additive effect, independent of vision, on postural stability. Further analysis revealed that auditory noise reduced postural sway variability in both low- and high-frequency regimes (> or noise. Our results support the idea that auditory white noise reduces postural sway, suggesting that auditory noise might be used for therapeutic and rehabilitation purposes in older individuals and those with balance disorders.

  17. Practiced musical style shapes auditory skills.

    Science.gov (United States)

    Vuust, Peter; Brattico, Elvira; Seppänen, Miia; Näätänen, Risto; Tervaniemi, Mari

    2012-04-01

    Musicians' processing of sounds depends highly on instrument, performance practice, and level of expertise. Here, we measured the mismatch negativity (MMN), a preattentive brain response, to six types of musical feature change in musicians playing three distinct styles of music (classical, jazz, and rock/pop) and in nonmusicians using a novel, fast, and musical sounding multifeature MMN paradigm. We found MMN to all six deviants, showing that MMN paradigms can be adapted to resemble a musical context. Furthermore, we found that jazz musicians had larger MMN amplitude than all other experimental groups across all sound features, indicating greater overall sensitivity to auditory outliers. Furthermore, we observed a tendency toward shorter latency of the MMN to all feature changes in jazz musicians compared to band musicians. These findings indicate that the characteristics of the style of music played by musicians influence their perceptual skills and the brain processing of sound features embedded in music. © 2012 New York Academy of Sciences.

  18. Disorders of visual perception

    NARCIS (Netherlands)

    Ffytche, Dominic H.; Blom, J. D.; Catani, M.

    Visual perceptual disorders are often presented as a disparate group of neurological deficits with little consideration given to the wide range of visual symptoms found in psychiatric and neurodevelopmental disease. Here, the authors attempt a functional anatomical classification of all disorders

  19. Disorders of visual perception

    NARCIS (Netherlands)

    Ffytche, Dominic H.; Blom, J. D.; Catani, M.

    2010-01-01

    Visual perceptual disorders are often presented as a disparate group of neurological deficits with little consideration given to the wide range of visual symptoms found in psychiatric and neurodevelopmental disease. Here, the authors attempt a functional anatomical classification of all disorders

  20. Learning of arbitrary association between visual and auditory novel stimuli in adults: the "bond effect" of haptic exploration.

    Directory of Open Access Journals (Sweden)

    Benjamin Fredembach

    Full Text Available BACKGROUND: It is well-known that human beings are able to associate stimuli (novel or not perceived in their environment. For example, this ability is used by children in reading acquisition when arbitrary associations between visual and auditory stimuli must be learned. The studies tend to consider it as an "implicit" process triggered by the learning of letter/sound correspondences. The study described in this paper examined whether the addition of the visuo-haptic exploration would help adults to learn more effectively the arbitrary association between visual and auditory novel stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Adults were asked to learn 15 new arbitrary associations between visual stimuli and their corresponding sounds using two learning methods which differed according to the perceptual modalities involved in the exploration of the visual stimuli. Adults used their visual modality in the "classic" learning method and both their visual and haptic modalities in the "multisensory" learning one. After both learning methods, participants showed a similar above-chance ability to recognize the visual and auditory stimuli and the audio-visual associations. However, the ability to recognize the visual-auditory associations was better after the multisensory method than after the classic one. CONCLUSION/SIGNIFICANCE: This study revealed that adults learned more efficiently the arbitrary association between visual and auditory novel stimuli when the visual stimuli were explored with both vision and touch. The results are discussed from the perspective of how they relate to the functional differences of the manual haptic modality and the hypothesis of a "haptic bond" between visual and auditory stimuli.

  1. Lightening the load: perceptual load impairs visual detection in typical adults but not in autism.

    Science.gov (United States)

    Remington, Anna M; Swettenham, John G; Lavie, Nilli

    2012-05-01

    Autism spectrum disorder (ASD) research portrays a mixed picture of attentional abilities with demonstrations of enhancements (e.g., superior visual search) and deficits (e.g., higher distractibility). Here we test a potential resolution derived from the Load Theory of Attention (e.g., Lavie, 2005). In Load Theory, distractor processing depends on the perceptual load of the task and as such can only be eliminated under high load that engages full capacity. We hypothesize that ASD involves enhanced perceptual capacity, leading to the superior performance and increased distractor processing previously reported. Using a signal-detection paradigm, we test this directly and demonstrate that, under higher levels of load, perceptual sensitivity was reduced in typical adults but not in adults with ASD. These findings confirm our hypothesis and offer a promising solution to the previous discrepancies by suggesting that increased distractor processing in ASD results not from a filtering deficit but from enhanced perceptual capacity.

  2. Perceptual Processing Affects Conceptual Processing

    Science.gov (United States)

    van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.

    2008-01-01

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…

  3. Potential use of MEG to understand abnormalities in auditory function in clinical populations

    Directory of Open Access Journals (Sweden)

    Eric eLarson

    2014-03-01

    Full Text Available Magnetoencephalography (MEG provides a direct, non-invasive view of neural activity with millisecond temporal precision. Recent developments in MEG analysis allow for improved source localization and mapping of connectivity between brain regions, expanding the possibilities for using MEG as a diagnostic tool. In this paper, we first describe inverse imaging methods (e.g., minimum-norm estimation and functional connectivity measures, and how they can provide insights into cortical processing. We then offer a perspective on how these techniques could be used to understand and evaluate auditory pathologies that often manifest during development. Here we focus specifically on how MEG inverse imaging, by providing anatomically-based interpretation of neural activity, may allow us to test which aspects of cortical processing play a role in (central auditory processing disorder ([C]APD. Appropriately combining auditory paradigms with MEG analysis could eventually prove useful for a hypothesis-driven understanding and diagnosis of (CAPD or other disorders, as well as the evaluation of the effectiveness of intervention strategies.

  4. Increased Auditory Startle Reflex in Children with Functional Abdominal Pain

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; Benninga, Marc A.; Koelman, Johannes H. T. M.; Tijssen, Marina A. J.

    2010-01-01

    Objective To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Study design Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal

  5. Increased Auditory Startle Reflex in Children with Functional Abdominal Pain

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; Benninga, Marc A.; Koelman, Johannes H. T. M.; Tijssen, Marina A. J.

    Objective To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Study design Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal

  6. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  7. Speech and non-speech processing in children with phonological disorders: an electrophysiological study

    Directory of Open Access Journals (Sweden)

    Isabela Crivellaro Gonçalves

    2011-01-01

    Full Text Available OBJECTIVE: To determine whether neurophysiological auditory brainstem responses to clicks and repeated speech stimuli differ between typically developing children and children with phonological disorders. INTRODUCTION: Phonological disorders are language impairments resulting from inadequate use of adult phonological language rules and are among the most common speech and language disorders in children (prevalence: 8 - 9%. Our hypothesis is that children with phonological disorders have basic differences in the way that their brains encode acoustic signals at brainstem level when compared to normal counterparts. METHODS: We recorded click and speech evoked auditory brainstem responses in 18 typically developing children (control group and in 18 children who were clinically diagnosed with phonological disorders (research group. The age range of the children was from 7-11 years. RESULTS: The research group exhibited significantly longer latency responses to click stimuli (waves I, III and V and speech stimuli (waves V and A when compared to the control group. DISCUSSION: These results suggest that the abnormal encoding of speech sounds may be a biological marker of phonological disorders. However, these results cannot define the biological origins of phonological problems. We also observed that speech-evoked auditory brainstem responses had a higher specificity/sensitivity for identifying phonological disorders than click-evoked auditory brainstem responses. CONCLUSIONS: Early stages of the auditory pathway processing of an acoustic stimulus are not similar in typically developing children and those with phonological disorders. These findings suggest that there are brainstem auditory pathway abnormalities in children with phonological disorders.

  8. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  9. Speech comprehension training and auditory and cognitive processing in older adults.

    Science.gov (United States)

    Pichora-Fuller, M Kathleen; Levitt, Harry

    2012-12-01

    To provide a brief history of speech comprehension training systems and an overview of research on auditory and cognitive aging as background to recommendations for future directions for rehabilitation. Two distinct domains were reviewed: one concerning technological and the other concerning psychological aspects of training. Historical trends and advances in these 2 domains were interrelated to highlight converging trends and directions for future practice. Over the last century, technological advances have influenced both the design of hearing aids and training systems. Initially, training focused on children and those with severe loss for whom amplification was insufficient. Now the focus has shifted to older adults with relatively little loss but difficulties listening in noise. Evidence of brain plasticity from auditory and cognitive neuroscience provides new insights into how to facilitate perceptual (re-)learning by older adults. There is a new imperative to complement training to increase bottom-up processing of the signal with more ecologically valid training to boost top-down information processing based on knowledge of language and the world. Advances in digital technologies enable the development of increasingly sophisticated training systems incorporating complex meaningful materials such as music, audiovisual interactive displays, and conversation.

  10. Intelligibility of degraded speech and the relationship between symptoms of inattention, hyperactivity/impulsivity and language impairment in children with suspected auditory processing disorder.

    Science.gov (United States)

    Ahmmed, Ansar Uddin

    2017-10-01

    To compare the sensitivity and specificity of Auditory Figure Ground sub-tests of the SCAN-3 battery, using signal to noise ratio (SNR) of +8 dB (AFG+8) and 0 dB (AFG0), in identifying auditory processing disorder (APD). A secondary objective was to evaluate any difference in auditory processing (AP) between children with symptoms of inattention versus combined sub-types of Attention Deficit Hyperactivity Disorder (ADHD). Data from 201 children, aged 6 to 16 years (mean: 10 years 6 months, SD: 2 years 8 months), who were assessed for suspected APD were reviewed retrospectively. The outcomes of the SCAN-3 APD test battery, Swanson Nolan and Pelham-IV parental rating (SNAP-IV) and Children's Communication Checklist-2 (CCC-2) were analysed. AFG0 had a sensitivity of 56.3% and specificity of 100% in identifying children performing poorly in at least two of six SCAN-3 sub-tests or one of the two questionnaires, in contrast to 42.1% and 80% respectively for AFG+8. Impaired AP was mostly associated with symptoms of ADHD and /or language impairment (LI). LI was present in 92.9% of children with ADHD symptoms. Children with symptoms of combined ADHD plus LI performed significantly poorly (p Speech in noise tests using SNR of 0 dB is better than +8 dB in assessing APD. The better FW performance of the inattention ADHD plus LI group can be speculated to be related to known difference in activity in a neural network between different sub-types of ADHD. The findings of the study and existing literature suggest that neural networks connecting the cerebral hemispheres, basal ganglia and cerebellum are involved in APD, ADHD and LI. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Young Drivers Perceptual Learning Styles Preferences and Traffic Accidents

    Directory of Open Access Journals (Sweden)

    Svetlana Čičević

    2011-05-01

    Full Text Available Young drivers are over-represented in crash and fatality statistics. One way of dealing with this problem is to achieve primary prevention through driver education and training. Factors of traffic accidents related to gender, age, driving experience, and self-assessments of safety and their relationship to perceptual learning styles (LS preferences have been analyzed in this study. The results show that auditory is the most prominent LS. Drivers in general, as well as drivers without traffic accidents favour visual and tactile LS. Both inexperienced and highly experienced drivers show relatively high preference of kinaesthetic style. Yet, taking into account driving experience we could see that the role of kinaesthetic LS is reduced, since individual LS has become more important. Based on the results of this study it can be concluded that a multivariate and multistage approach to driver education, taking into account differences in LS preferences, would be highly beneficial for traffic safety.

  12. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.

    Science.gov (United States)

    Scott, Brian H; Malone, Brian J; Semple, Malcolm N

    2009-04-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level.

  13. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    Science.gov (United States)

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  14. Chronic fluoxetine dissociates contextual from auditory fear memory.

    Science.gov (United States)

    Sanders, Jeff; Mayford, Mark

    2016-10-06

    Fluoxetine is a medication used to treat Major Depressive Disorder and other psychiatric conditions. These experiments studied the effects of chronic fluoxetine treatment on the contextual versus auditory fear memory of mice. We found that chronic fluoxetine treatment of adult mice impaired their contextual fear memory, but spared auditory fear memory. Hippocampal perineuronal nets, which are involved in contextual fear memory plasticity, were unaltered by fluoxetine treatment. These data point to a selective inability to form contextual fear memory as a result of fluoxetine treatment, and they suggest that a blunting of hippocampal-mediated aversive memory may be a therapeutic action for this medication. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Reality of auditory verbal hallucinations.

    Science.gov (United States)

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  16. Longitudinal variations of laryngeal overpressure and voice-related quality of life in spasmodic dysphonia.

    Science.gov (United States)

    Yeung, Jeffrey C; Fung, Kevin; Davis, Eric; Rai, Sunita K; Day, Adam M B; Dzioba, Agnieszka; Bornbaum, Catherine; Doyle, Philip C

    2015-03-01

    Adductor spasmodic dysphonia (AdSD) is a voice disorder characterized by variable symptom severity and voice disability. Those with the disorder experience a wide spectrum of symptom severity over time, resulting in varied degrees of perceived voice disability. This study investigated the longitudinal variability of AdSD, with a focus on auditory-perceptual judgments of a dimension termed laryngeal overpressure (LO) and patient self-assessments of voice-related quality of life (V-RQOL). Longitudinal, correlational study. Ten adults with AdSD were followed over three time periods. At each, both voice samples and self-ratings of V-RQOL were gathered prior to their scheduled Botox injection. Voice recordings subsequently were perceptually evaluated by eight listeners for LO using a visual analog scale. LO ratings for all-voiced and Rainbow Passage sentence stimuli were found to be highly correlated. However, only the LO ratings obtained from judgments of AV stimuli were found to correlate moderately with self-ratings of voice disability for both the physical functioning and social-emotional subscores, as well as the total V-RQOL score. Based on perceptual judgments, LO appears to provide a reliable means of quantifying the severity of voice abnormalities in AdSD. Variability in self-ratings of the V-RQOL suggest that perceived disability related to AdSD should be actively monitored. Further, auditory-perceptual judgments may provide an accurate index of the potential impact of the disorder on the speaker. Similarly, LO was supported as a simple clinical measure that serves as a reliable index of voice change over time. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  17. The assessment of auditory function in CSWS: lessons from long-term outcome.

    Science.gov (United States)

    Metz-Lutz, Marie-Noëlle

    2009-08-01

    In Landau-Kleffner syndrome (LKS), the prominent and often first symptom is auditory verbal agnosia, which may affect nonverbal sounds. It was early suggested that the subsequent decline of speech expression might result from defective auditory analysis of the patient's own speech. Indeed, despite normal hearing levels, the children behave as if they were deaf, and very rapidly speech expression deteriorates and leads to the receptive aphasia typical of LKS. The association of auditory agnosia more or less restricted to speech with severe language decay prompted numerous studies aimed at specifying the defect in auditory processing and its pathophysiology. Long-term follow-up studies have addressed the issue of the outcome of verbal auditory processing and the development of verbal working memory capacities following the deprivation of phonologic input during the critical period of language development. Based on a review of neurophysiologic and neuropsychological studies of auditory and phonologic disorders published these last 20 years, we discuss the association of verbal agnosia and speech production decay, and try to explain the phonologic working memory deficit in the late outcome of LKS within the Hickok and Poeppel dual-stream model of speech processing.

  18. (A)musicality in Williams syndrome: examining relationships among auditory perception, musical skill, and emotional responsiveness to music.

    Science.gov (United States)

    Lense, Miriam D; Shivers, Carolyn M; Dykens, Elisabeth M

    2013-01-01

    Williams syndrome (WS), a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing (TD) population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and TD individuals with and without amusia.

  19. Development of auditory sensory memory from 2 to 6 years: an MMN study.

    Science.gov (United States)

    Glass, Elisabeth; Sachse, Steffi; von Suchodoletz, Waldemar

    2008-08-01

    Short-term storage of auditory information is thought to be a precondition for cognitive development, and deficits in short-term memory are believed to underlie learning disabilities and specific language disorders. We examined the development of the duration of auditory sensory memory in normally developing children between the ages of 2 and 6 years. To probe the lifetime of auditory sensory memory we elicited the mismatch negativity (MMN), a component of the late auditory evoked potential, with tone stimuli of two different frequencies presented with various interstimulus intervals between 500 and 5,000 ms. Our findings suggest that memory traces for tone characteristics have a duration of 1-2 s in 2- and 3-year-old children, more than 2 s in 4-year-olds and 3-5 s in 6-year-olds. The results provide insights into the maturational processes involved in auditory sensory memory during the sensitive period of cognitive development.

  20. Transcranial direct current stimulation as a treatment for auditory hallucinations

    NARCIS (Netherlands)

    Koops, Sanne; van den Brink, Hilde; Sommer, Iris E C

    2015-01-01

    Auditory hallucinations (AH) are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication resistant group are scarce and most of them focus on coping with