WorldWideScience

Sample records for auditory fatigue

  1. Comparison on driving fatigue related hemodynamics activated by auditory and visual stimulus

    Science.gov (United States)

    Deng, Zishan; Gao, Yuan; Li, Ting

    2018-02-01

    As one of the main causes of traffic accidents, driving fatigue deserves researchers' attention and its detection and monitoring during long-term driving require a new technique to realize. Since functional near-infrared spectroscopy (fNIRS) can be applied to detect cerebral hemodynamic responses, we can promisingly expect its application in fatigue level detection. Here, we performed three different kinds of experiments on a driver and recorded his cerebral hemodynamic responses when driving for long hours utilizing our device based on fNIRS. Each experiment lasted for 7 hours and one of the three specific experimental tests, detecting the driver's response to sounds, traffic lights and direction signs respectively, was done every hour. The results showed that visual stimulus was easier to cause fatigue compared with auditory stimulus and visual stimulus induced by traffic lights scenes was easier to cause fatigue compared with visual stimulus induced by direction signs in the first few hours. We also found that fatigue related hemodynamics caused by auditory stimulus increased fastest, then traffic lights scenes, and direction signs scenes slowest. Our study successfully compared audio, visual color, and visual character stimulus in sensitivity to cause driving fatigue, which is meaningful for driving safety management.

  2. Cognitive fatigue in patients with myasthenia gravis.

    Science.gov (United States)

    Jordan, Berit; Schweden, Tabea L K; Mehl, Theresa; Menge, Uwe; Zierz, Stephan

    2017-09-01

    Cognitive fatigue has frequently been reported in myasthenia gravis (MG). However, objective assessment of cognitive fatigability has never been evaluated. Thirty-three MG patients with stable generalized disease and 17 healthy controls underwent a test battery including repeated testing of attention and concentration (d2-R) and Paced Auditory Serial Addition Test. Fatigability was based on calculation of linear trend (LT) reflecting dynamic performance within subsequent constant time intervals. Additionally, fatigue questionnaires were used. MG patients showed a negative LT in second d2-R testing, indicating cognitive fatigability. This finding significantly differed from stable cognitive performance in controls (P fatigue was significantly higher in MG patients compared with controls (P fatigue is not correlated with objective findings. Muscle Nerve 56: 449-457, 2017. © 2016 Wiley Periodicals, Inc.

  3. Usage of drip drops as stimuli in an auditory P300 BCI paradigm.

    Science.gov (United States)

    Huang, Minqiang; Jin, Jing; Zhang, Yu; Hu, Dewen; Wang, Xingyu

    2018-02-01

    Recently, many auditory BCIs are using beeps as auditory stimuli, while beeps sound unnatural and unpleasant for some people. It is proved that natural sounds make people feel comfortable, decrease fatigue, and improve the performance of auditory BCI systems. Drip drop is a kind of natural sounds that makes humans feel relaxed and comfortable. In this work, three kinds of drip drops were used as stimuli in an auditory-based BCI system to improve the user-friendness of the system. This study explored whether drip drops could be used as stimuli in the auditory BCI system. The auditory BCI paradigm with drip-drop stimuli, which was called the drip-drop paradigm (DP), was compared with the auditory paradigm with beep stimuli, also known as the beep paradigm (BP), in items of event-related potential amplitudes, online accuracies and scores on the likability and difficulty to demonstrate the advantages of DP. DP obtained significantly higher online accuracy and information transfer rate than the BP ( p  < 0.05, Wilcoxon signed test; p  < 0.05, Wilcoxon signed test). Besides, DP obtained higher scores on the likability with no significant difference on the difficulty ( p  < 0.05, Wilcoxon signed test). The results showed that the drip drops were reliable acoustic materials as stimuli in an auditory BCI system.

  4. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  5. Designing Fatigue Warning Systems: The perspective of professional drivers.

    Science.gov (United States)

    Meng, Fanxing; Li, Shuling; Cao, Lingzhi; Peng, Qijia; Li, Musen; Wang, Chunhui; Zhang, Wei

    2016-03-01

    Professional drivers have been characterized as experiencing heavy fatigue resulting from long driving time in their daily work. This study aimed to explore the potential demand of Fatigue Warning Systems (FWSs) among professional drivers as a means of reducing the danger of fatigue driving and to examine their opinions regarding the design of FWSs. Six focus groups with 35 participants and a questionnaire survey with 600 respondents were conducted among Chinese truck and taxi drivers to collect qualitative and quantitative data concerning the current situation of fatigue driving and opinions regarding the design of FWSs. The results revealed that both truck and taxi drivers had a positive attitude toward FWSs, and they hoped this system could not only monitor and warn them regarding their fatigue but also somewhat relieve their fatigue before they could stop and rest. As for warning signals, participants preferred auditory warnings, as opposed to visual, vibrotactile or electric stimuli. Interestingly, it was proposed that verbal warnings involving the information regarding consequences of fatigue driving or the wishes of drivers' family members would be more effective. Additionally, different warning patterns, including graded, single and continuous warnings, were discussed in the focus group. Finally, the participants proposed many other suggestions, as well as their concerns regarding FWSs, which will provide valuable information for companies who wish to develop FWSs for professional drivers. Copyright © 2015. Published by Elsevier Ltd.

  6. Cognition, depression, fatigue, and quality of life in primary Sjögren's syndrome: correlations.

    Science.gov (United States)

    Koçer, Belgin; Tezcan, Mehmet Engin; Batur, Hale Zeynep; Haznedaroğlu, Şeminur; Göker, Berna; İrkeç, Ceyla; Çetinkaya, Rümeysa

    2016-12-01

    The aim of the present study was to investigate the prevalence and pattern of cognitive dysfunction observed in primary Sjögren's syndrome (PSS) and to examine the relationships between cognitive abilities, depression, fatigue, and quality of life. Thirty-two subjects with PSS were compared with 19 healthy controls on comprehensive neuropsychological, depression, fatigue, health state, and daily-life activities tests. There was low performance in Clock Drawing, COWAT, Paced Auditory Serial Addition Test (PASAT), Colorless Word Reading (Stroop1) and Recognizing Colors (Stroop2) Patterns of STROOP test, SDLT, Auditory-Verbal Learning Test (AVLT), immediate and long-term verbal memory, Benton Judgment of Line Orientation Test (BJLOT), and in all the patterns of RCFT in PSS patients compared to the healthy control group ( p  < .05). It was observed an increased depression frequency and fatigue severity, impairment in health condition, and a decreased quality of life in PSS cases compared to the healthy controls ( p  < .05). All the depression, fatigue severity, and quality of life tests showed a significant positive correlation with each other ( p  < .05). A significant negative correlation between Clock Drawing and SF-36-BP ( p  = .031, r  = -.382) and SF-36-GH ( p  = .027, r  = -.392) was observed. Clock Drawing, PASAT, and AVLT are very useful tests to determine the subclinical and clinical cognitive dysfunction to evaluate attention, information processing speed, executive functions, and short-term and long-term verbal memory in PSS patients. Depression and fatigue may not affect the neuropsychological tests performance.

  7. Executive function and attention in patients with stress-related exhaustion: perceived fatigue and effect of distraction.

    Science.gov (United States)

    Krabbe, David; Ellbin, Susanne; Nilsson, Michael; Jonsdottir, Ingibjörg H; Samuelsson, Hans

    2017-07-01

    Cognitive impairment has frequently been shown in patients who seek medical care for stress-related mental health problems. This study aims to extend the current knowledge of cognitive impairments in these patients by focusing on perceived fatigue and effects of distraction during cognitive testing. Executive function and attention were tested in a group of patients with stress-related exhaustion (n = 25) and compared with healthy controls (n = 25). Perceived fatigue was measured before, during and after the test session, and some of the tests were administered with and without standardized auditory distraction. Executive function and complex attention performance were poorer among the patients compared to controls. Interestingly, their performance was not significantly affected by auditory distraction but, in contrast to the controls, they reported a clear-cut increase in mental tiredness, during and after the test session. Thus, patients with stress-related exhaustion manage to perform during distraction but this was achieved at a great cost. These findings are discussed in terms of a possible tendency to adopt a high-effort approach despite cognitive impairments and the likelihood that such an approach will require increased levels of effort, which can result in increased fatigue. We tentatively conclude that increased fatigue during cognitive tasks is a challenge for patients with stress-related exhaustion and plausibly of major importance when returning to work demanding high cognitive performance.

  8. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  9. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Auditory Reserve and the Legacy of Auditory Experience

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2014-11-01

    Full Text Available Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.

  11. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  12. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  13. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  14. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  15. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  16. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    Science.gov (United States)

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  17. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  18. Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis.

    Science.gov (United States)

    Fiene, Marina; Rufener, Katharina S; Kuehne, Maria; Matzke, Mike; Heinze, Hans-Jochen; Zaehle, Tino

    2018-03-01

    Fatigue is one of the most common and debilitating symptoms affecting patients with multiple sclerosis (MS). Sustained cognitive effort induces cognitive fatigue, operationalized as subjective exhaustion and fatigue-related objective alertness decrements with time-on-task. During prolonged cognitive testing, MS patients show increased simple reaction times (RT) accompanied by lower amplitudes and prolonged latencies of the P300 event-related potential. Previous studies suggested a major role of structural and functional abnormalities in the frontal cortex including a frontal hypo-activation in fatigue pathogenesis. In the present study we investigated the neuromodulatory effect of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on objective measures of fatigue-related decrements in cognitive performance in MS patients. P300 during an auditory oddball task and simple reaction times in an alertness test were recorded at baseline, during and after stimulation. Compared to sham, anodal tDCS caused an increase in P300 amplitude that persisted after the end of stimulation and eliminated the fatigue-related increase in RT over the course of a testing session. Our findings demonstrate that anodal tDCS over the left DLPFC can counteract performance decrements associated with fatigue thereby leading to an improvement in the patient's ability to cope with sustained cognitive demands. This provides causal evidence for the functional relevance of the left DLPFC in fatigue pathophysiology. The results indicate that tDCS-induced modulations of frontal activity can be an effective therapeutic option for the treatment of fatigue-related declines in cognitive performance in MS patients.

  19. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  20. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    Science.gov (United States)

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  1. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Low visual information-processing speed and attention are predictors of fatigue in elementary and junior high school students.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Fukuda, Sanae; Yamano, Emi; Shigihara, Yoshihito; Imai-Matsumura, Kyoko; Watanabe, Yasuyoshi

    2011-06-14

    Fatigue is a common complaint among elementary and junior high school students, and is known to be associated with reduced academic performance. Recently, we demonstrated that fatigue was correlated with decreased cognitive function in these students. However, no studies have identified cognitive predictors of fatigue. Therefore, we attempted to determine independent cognitive predictors of fatigue in these students. We performed a prospective cohort study. One hundred and forty-two elementary and junior high school students without fatigue participated. They completed a variety of paper-and-pencil tests, including list learning and list recall tests, kana pick-out test, semantic fluency test, figure copying test, digit span forward test, and symbol digit modalities test. The participants also completed computerized cognitive tests (tasks A to E on the modified advanced trail making test). These cognitive tests were used to evaluate motor- and information-processing speed, immediate and delayed memory function, auditory and visual attention, divided and switching attention, retrieval of learned material, and spatial construction. One year after the tests, a questionnaire about fatigue (Japanese version of the Chalder Fatigue Scale) was administered to all the participants. After the follow-up period, we confirmed 40 cases of fatigue among 118 students. In multivariate logistic regression analyses adjusted for grades and gender, poorer performance on visual information-processing speed and attention tasks was associated with increased risk of fatigue. Reduced visual information-processing speed and poor attention are independent predictors of fatigue in elementary and junior high school students. © 2011 Mizuno et al; licensee BioMed Central Ltd.

  3. Low visual information-processing speed and attention are predictors of fatigue in elementary and junior high school students

    Directory of Open Access Journals (Sweden)

    Yamano Emi

    2011-06-01

    Full Text Available Abstract Background Fatigue is a common complaint among elementary and junior high school students, and is known to be associated with reduced academic performance. Recently, we demonstrated that fatigue was correlated with decreased cognitive function in these students. However, no studies have identified cognitive predictors of fatigue. Therefore, we attempted to determine independent cognitive predictors of fatigue in these students. Methods We performed a prospective cohort study. One hundred and forty-two elementary and junior high school students without fatigue participated. They completed a variety of paper-and-pencil tests, including list learning and list recall tests, kana pick-out test, semantic fluency test, figure copying test, digit span forward test, and symbol digit modalities test. The participants also completed computerized cognitive tests (tasks A to E on the modified advanced trail making test. These cognitive tests were used to evaluate motor- and information-processing speed, immediate and delayed memory function, auditory and visual attention, divided and switching attention, retrieval of learned material, and spatial construction. One year after the tests, a questionnaire about fatigue (Japanese version of the Chalder Fatigue Scale was administered to all the participants. Results After the follow-up period, we confirmed 40 cases of fatigue among 118 students. In multivariate logistic regression analyses adjusted for grades and gender, poorer performance on visual information-processing speed and attention tasks was associated with increased risk of fatigue. Conclusions Reduced visual information-processing speed and poor attention are independent predictors of fatigue in elementary and junior high school students.

  4. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  5. Auditory skills of figure-ground and closure in air traffic controllers.

    Science.gov (United States)

    Villar, Anna Carolina Nascimento Waack Braga; Pereira, Liliane Desgualdo

    2017-12-04

    To investigate the auditory skills of closure and figure-ground and factors associated with health, communication, and attention in air traffic controllers, and compare these variables with those of other civil and military servants. Study participants were sixty adults with normal audiometric thresholds divided into two groups matched for age and gender: study group (SG), comprising 30 air traffic controllers and control group (CG), composed of 30 other military and civil servants. All participants were asked a number of questions regarding their health, communication, and attention, and underwent the Speech-in-Noise Test (SIN) to assess their closure skills and the Synthetic Sentence Identification Test - Ipsilateral Competitive Message (SSI-ICM) in monotic listening to evaluate their figure-ground abilities. Data were compared using nonparametric statistical tests and logistic regression analysis. More individuals in the SG reported fatigue and/or burnout and work-related stress and showed better performance than that of individuals in the CG for the figure-ground ability. Both groups performed similarly and satisfactorily in the other hearing tests. The odds ratio for participants belonging in the SG was 5.59 and 1.24 times regarding work-related stress and SSI-ICM (right ear), respectively. Results for the variables auditory closure, self-reported health, attention, and communication were similar in both groups. The SG presented significantly better performance in auditory figure-ground compared with that of the CG. Self-reported stress and right-ear SSI-ICM were significant predictors of individuals belonging to the SG.

  6. Multichannel auditory search: toward understanding control processes in polychotic auditory listening.

    Science.gov (United States)

    Lee, M D

    2001-01-01

    Two experiments are presented that serve as a framework for exploring auditory information processing. The framework is referred to as polychotic listening or auditory search, and it requires a listener to scan multiple simultaneous auditory streams for the appearance of a target word (the name of a letter such as A or M). Participants' ability to scan between two and six simultaneous auditory streams of letter and digit names for the name of a target letter was examined using six loudspeakers. The main independent variable was auditory load, or the number of active audio streams on a given trial. The primary dependent variables were target localization accuracy and reaction time. Results showed that as load increased, performance decreased. The performance decrease was evident in reaction time, accuracy, and sensitivity measures. The second study required participants to practice the same task for 10 sessions, for a total of 1800 trials. Results indicated that even with extensive practice, performance was still affected by auditory load. The present results are compared with findings in the visual search literature. The implications for the use of multiple auditory displays are discussed. Potential applications include cockpit and automobile warning displays, virtual reality systems, and training systems.

  7. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.

    Science.gov (United States)

    Hopkins, Kevin; Kass, Steven J; Blalock, Lisa Durrance; Brill, J Christopher

    2017-05-01

    In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.

  9. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (pfatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  10. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Vroomen, Jean

    2015-11-11

    The amplitude of auditory components of the event-related potential (ERP) is attenuated when sounds are self-generated compared to externally generated sounds. This effect has been ascribed to internal forward modals predicting the sensory consequences of one's own motor actions. Auditory potentials are also attenuated when a sound is accompanied by a video of anticipatory visual motion that reliably predicts the sound. Here, we investigated whether the neural underpinnings of prediction of upcoming auditory stimuli are similar for motor-auditory (MA) and visual-auditory (VA) events using a stimulus omission paradigm. In the MA condition, a finger tap triggered the sound of a handclap whereas in the VA condition the same sound was accompanied by a video showing the handclap. In both conditions, the auditory stimulus was omitted in either 50% or 12% of the trials. These auditory omissions induced early and mid-latency ERP components (oN1 and oN2, presumably reflecting prediction and prediction error), and subsequent higher-order error evaluation processes. The oN1 and oN2 of MA and VA were alike in amplitude, topography, and neural sources despite that the origin of the prediction stems from different brain areas (motor versus visual cortex). This suggests that MA and VA predictions activate a sensory template of the sound in auditory cortex. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  13. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  14. Areva fatigue concept. Fast fatigue evaluation, a new method for fatigue analysis

    International Nuclear Information System (INIS)

    Heinz, Benedikt; Bergholz, Steffen; Rudolph, Juergen

    2011-01-01

    Within the discussions on the long term operation (LTO) of nuclear power plants the ageing management is on the focus of that analysis. The knowledge of the operational thermal cyclic load data on components of the power plants and their evaluation in the fatigue analysis is a central concern. The changes in fatigue requirements (e.g. the consideration of environmentally assisted fatigue - EAF) recently discussed and LTO efforts are a strong motivation for the identification of margins in the existing fatigue analysis approaches. These margins should be considered within new approaches in order to obtain realistic (or more accurate) analysis results. Of course, these new analysis approaches have to be manageable and efficient. The Areva Fatigue Concept (AFC) offers the comprehensive conceptual basis for the consideration of fatigue on different levels and depths. The combination of data logging and automated fatigue evaluation are important modules of the AFC. Besides the established simplified stress based fatigue estimation Areva develops a further automated fatigue analysis method called Fast Fatigue Evaluation (FFE). This method comprises highly automated stress analyses at the fatigue relevant locations of the component. Hence, a component specific course of stress as a function of time is determined based on FAMOS or similar temperature measurement systems. The subsequent application of the rain flow cycle counting algorithm allows for the determination of the usage factor following the rules of the design code requirements. The new FFE approach constitutes a cycle counting method based on the real stresses in the component, and determined as result a rule-conformity cumulative usage factor. (orig.)

  15. Effect of mental fatigue caused by mobile 3D viewing on selective attention: an ERP study.

    Science.gov (United States)

    Mun, Sungchul; Kim, Eun-Soo; Park, Min-Chul

    2014-12-01

    This study investigated behavioral responses to and auditory event-related potential (ERP) correlates of mental fatigue caused by mobile three-dimensional (3D) viewing. Twenty-six participants (14 women) performed a selective attention task in which they were asked to respond to the sounds presented at the attended side while ignoring sounds at the ignored side before and after mobile 3D viewing. Considering different individual susceptibilities to 3D, participants' subjective fatigue data were used to categorize them into two groups: fatigued and unfatigued. The amplitudes of d-ERP components were defined as differences in amplitudes between time-locked brain oscillations of the attended and ignored sounds, and these values were used to calculate the degree to which spatial selective attention was impaired by 3D mental fatigue. The fatigued group showed significantly longer response times after mobile 3D viewing compared to before the viewing. However, response accuracy did not significantly change between the two conditions, implying that the participants used a behavioral strategy to cope with their performance accuracy decrement by increasing their response times. No significant differences were observed for the unfatigued group. Analysis of covariance revealed group differences with significant and trends toward significant decreases in the d-P200 and d-late positive potential (LPP) amplitudes at the occipital electrodes of the fatigued and unfatigued groups. Our findings indicate that mentally fatigued participants did not effectively block out distractors in their information processing mechanism, providing support for the hypothesis that 3D mental fatigue impairs spatial selective attention and is characterized by changes in d-P200 and d-LPP amplitudes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Improvement of auditory hallucinations and reduction of primary auditory area's activation following TMS

    International Nuclear Information System (INIS)

    Giesel, Frederik L.; Mehndiratta, Amit; Hempel, Albrecht; Hempel, Eckhard; Kress, Kai R.; Essig, Marco; Schröder, Johannes

    2012-01-01

    Background: In the present case study, improvement of auditory hallucinations following transcranial magnetic stimulation (TMS) therapy was investigated with respect to activation changes of the auditory cortices. Methods: Using functional magnetic resonance imaging (fMRI), activation of the auditory cortices was assessed prior to and after a 4-week TMS series of the left superior temporal gyrus in a schizophrenic patient with medication-resistant auditory hallucinations. Results: Hallucinations decreased slightly after the third and profoundly after the fourth week of TMS. Activation in the primary auditory area decreased, whereas activation in the operculum and insula remained stable. Conclusions: Combination of TMS and repetitive fMRI is promising to elucidate the physiological changes induced by TMS.

  17. Auditory Perspective Taking

    National Research Council Canada - National Science Library

    Martinson, Eric; Brock, Derek

    2006-01-01

    .... From this knowledge of another's auditory perspective, a conversational partner can then adapt his or her auditory output to overcome a variety of environmental challenges and insure that what is said is intelligible...

  18. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas

    Science.gov (United States)

    Mao, Yu-Ting; Hua, Tian-Miao

    2011-01-01

    Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to input pathways, especially early in development. Although plasticity can often be restorative, sometimes novel, ectopic inputs invade the affected cortical area. Invading inputs from other sensory modalities may compromise the original function or even take over, imposing a new function and preventing recovery. Using ferrets whose retinal axons were rerouted into auditory thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-modal input on reorganization of developing auditory cortex. In particular, we assayed whether the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic targets and whether the convergence of input modalities would induce multisensory processing. We demonstrate that although the cross-modal inputs create new visual neurons in auditory cortex, some auditory processing remains. The degree of damage to auditory input to the medial geniculate nucleus was directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual and residual auditory inputs compete for cortical territory. Visual neurons were not segregated from auditory neurons but shared target space even on individual target cells, substantially increasing the proportion of multisensory neurons. Thus spatial convergence of visual and auditory input modalities may be sufficient to expand multisensory representations. Together these findings argue that early, patterned visual activity does not drive segregation of visual and auditory afferents and suggest that auditory function might be compromised by converging visual inputs. These results indicate possible ways in which multisensory cortical areas may form during development and evolution. They also suggest that rehabilitative strategies designed to promote recovery of function after sensory deprivation or damage need to take into

  19. Differential Recruitment of Auditory Cortices in the Consolidation of Recent Auditory Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Sacchetti, Benedetto

    2016-08-17

    Memories of frightening events require a protracted consolidation process. Sensory cortex, such as the auditory cortex, is involved in the formation of fearful memories with a more complex sensory stimulus pattern. It remains controversial, however, whether the auditory cortex is also required for fearful memories related to simple sensory stimuli. In the present study, we found that, 1 d after training, the temporary inactivation of either the most anterior region of the auditory cortex, including the primary (Te1) cortex, or the most posterior region, which included the secondary (Te2) component, did not affect the retention of recent memories, which is consistent with the current literature. However, at this time point, the inactivation of the entire auditory cortices completely prevented the formation of new memories. Amnesia was site specific and was not due to auditory stimuli perception or processing and strictly related to the interference with memory consolidation processes. Strikingly, at a late time interval 4 d after training, blocking the posterior part (encompassing the Te2) alone impaired memory retention, whereas the inactivation of the anterior part (encompassing the Te1) left memory unaffected. Together, these data show that the auditory cortex is necessary for the consolidation of auditory fearful memories related to simple tones in rats. Moreover, these results suggest that, at early time intervals, memory information is processed in a distributed network composed of both the anterior and the posterior auditory cortical regions, whereas, at late time intervals, memory processing is concentrated in the most posterior part containing the Te2 region. Memories of threatening experiences undergo a prolonged process of "consolidation" to be maintained for a long time. The dynamic of fearful memory consolidation is poorly understood. Here, we show that 1 d after learning, memory is processed in a distributed network composed of both primary Te1 and

  20. Task Related Cerebral Blood Flow Changes of Patients with Chronic Fatigue Syndrome: An Arterial Spin Labeling Study.

    Science.gov (United States)

    Staud, Roland; Boissoneault, Jeff; Craggs, Jason G; Lai, Song; Robinson, Michael E

    2018-01-01

    One hallmark of chronic fatigue syndrome (ME/CFS) is task related worsening of fatigue. Global brain hypoperfusion, abnormal regional activation, and altered functional connectivity of brain areas associated with cognition and memory have been reported but remain controversial. We enrolled 17 female participants fulfilling the CDC Criteria for ME/CFS and 16 matched healthy controls (HC). Using a 3T-Phillips Achieva MRI-scanner, pseudo-continuous arterial spin-labeling (pCASL), was used to study the dynamics of regional cerebral blood flow (rCBF) and their relationship to mental fatigue in ME/CFS patients and HC during a demanding cognitive task, i.e. modified Paced-Auditory-Serial-Addition-Testing (PASAT). ME/CFS subjects reported more fatigue than HC at baseline (p fatigue in ME/CFS participants and HC. Although not different between groups, overall CBF significantly increased over the first 3 min of the PASAT and then decreased thereafter. Regional CBF (rCBF) changes were significantly different between groups during the post-task recovery period. Whereas improvement of fatigue of ME/CFS subjects was associated with decreased rCBF in both superior temporal gyri (STG), precuneus, and fusiform gyrus, it was associated with increased rCBF in the same areas in HC. Our results suggest that ME/CFS is associated with normal global CBF at rest and during a strenuous task (PASAT); however rCBF of several brain regions associated with memory, goal-oriented attention, and visual function was differentially associated with recovery from fatigue in ME/CFS patients and HC.

  1. Manipulation of Auditory Inputs as Rehabilitation Therapy for Maladaptive Auditory Cortical Reorganization

    Directory of Open Access Journals (Sweden)

    Hidehiko Okamoto

    2018-01-01

    Full Text Available Neurophysiological and neuroimaging data suggest that the brains of not only children but also adults are reorganized based on sensory inputs and behaviors. Plastic changes in the brain are generally beneficial; however, maladaptive cortical reorganization in the auditory cortex may lead to hearing disorders such as tinnitus and hyperacusis. Recent studies attempted to noninvasively visualize pathological neural activity in the living human brain and reverse maladaptive cortical reorganization by the suitable manipulation of auditory inputs in order to alleviate detrimental auditory symptoms. The effects of the manipulation of auditory inputs on maladaptively reorganized brain were reviewed herein. The findings obtained indicate that rehabilitation therapy based on the manipulation of auditory inputs is an effective and safe approach for hearing disorders. The appropriate manipulation of sensory inputs guided by the visualization of pathological brain activities using recent neuroimaging techniques may contribute to the establishment of new clinical applications for affected individuals.

  2. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    Science.gov (United States)

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  3. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  4. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  5. The Effect of Working Memory Training on Auditory Stream Segregation in Auditory Processing Disorders Children

    OpenAIRE

    Abdollah Moossavi; Saeideh Mehrkian; Yones Lotfi; Soghrat Faghih zadeh; Hamed Adjedi

    2015-01-01

    Objectives: This study investigated the efficacy of working memory training for improving working memory capacity and related auditory stream segregation in auditory processing disorders children. Methods: Fifteen subjects (9-11 years), clinically diagnosed with auditory processing disorder participated in this non-randomized case-controlled trial. Working memory abilities and auditory stream segregation were evaluated prior to beginning and six weeks after completing the training program...

  6. Fatigue

    Science.gov (United States)

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  7. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  8. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  9. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere

  10. What determines auditory distraction? On the roles of local auditory changes and expectation violations.

    Directory of Open Access Journals (Sweden)

    Jan P Röer

    Full Text Available Both the acoustic variability of a distractor sequence and the degree to which it violates expectations are important determinants of auditory distraction. In four experiments we examined the relative contribution of local auditory changes on the one hand and expectation violations on the other hand in the disruption of serial recall by irrelevant sound. We present evidence for a greater disruption by auditory sequences ending in unexpected steady state distractor repetitions compared to auditory sequences with expected changing state endings even though the former contained fewer local changes. This effect was demonstrated with piano melodies (Experiment 1 and speech distractors (Experiment 2. Furthermore, it was replicated when the expectation violation occurred after the encoding of the target items (Experiment 3, indicating that the items' maintenance in short-term memory was disrupted by attentional capture and not their encoding. This seems to be primarily due to the violation of a model of the specific auditory distractor sequences because the effect vanishes and even reverses when the experiment provides no opportunity to build up a specific neural model about the distractor sequence (Experiment 4. Nevertheless, the violation of abstract long-term knowledge about auditory regularities seems to cause a small and transient capture effect: Disruption decreased markedly over the course of the experiments indicating that participants habituated to the unexpected distractor repetitions across trials. The overall pattern of results adds to the growing literature that the degree to which auditory distractors violate situation-specific expectations is a more important determinant of auditory distraction than the degree to which a distractor sequence contains local auditory changes.

  11. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2014-01-01

    Conclusion: Based on the obtained results, significant reduction in auditory memory was seen in aged group and the Persian version of dichotic auditory-verbal memory test, like many other auditory verbal memory tests, showed the aging effects on auditory verbal memory performance.

  13. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    Science.gov (United States)

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  14. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  15. The Nature of Fatigue in Chronic Fatigue Syndrome.

    Science.gov (United States)

    Olson, Karin; Zimka, Oksana; Stein, Eleanor

    2015-10-01

    In this article, we report the findings of our study on the nature of fatigue in patients diagnosed with chronic fatigue syndrome. Using ethnoscience as a design, we conducted a series of unstructured interviews and card sorts to learn more about how people with chronic fatigue syndrome describe fatigue. Participants (N = 14) described three distinct domains: tiredness, fatigue, and exhaustion. Most participants experienced tiredness prior to diagnosis, fatigue during daily life, and exhaustion after overexertion. We also discuss participants' ability to adapt to a variety of stressors and prevent shifts to exhaustion, and relate our findings to stress theory and other current research. Primary strategies that promoted adaptation to stressors included pacing and extended rest periods. These findings can aid health care professionals in detecting impending shifts between tiredness, fatigue, and exhaustion and in improving adaptive strategies, thereby improving quality of life. © The Author(s) 2015.

  16. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  18. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. 2009 Elsevier B.V. All rights reserved.

  19. Developmental programming of auditory learning

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2012-10-01

    Full Text Available The basic structures involved in the development of auditory function and consequently in language acquisition are directed by genetic code, but the expression of individual genes may be altered by exposure to environmental factors, which if favorable, orient it in the proper direction, leading its development towards normality, if unfavorable, they deviate it from its physiological course. Early sensorial experience during the foetal period (i.e. intrauterine noise floor, sounds coming from the outside and attenuated by the uterine filter, particularly mother’s voice and modifications induced by it at the cochlear level represent the first example of programming in one of the earliest critical periods in development of the auditory system. This review will examine the factors that influence the developmental programming of auditory learning from the womb to the infancy. In particular it focuses on the following points: the prenatal auditory experience and the plastic phenomena presumably induced by it in the auditory system from the basilar membrane to the cortex;the involvement of these phenomena on language acquisition and on the perception of language communicative intention after birth;the consequences of auditory deprivation in critical periods of auditory development (i.e. premature interruption of foetal life.

  20. Auditory short-term memory in the primate auditory cortex

    OpenAIRE

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ���working memory��� bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive sho...

  1. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  2. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  3. Weak responses to auditory feedback perturbation during articulation in persons who stutter: evidence for abnormal auditory-motor transformation.

    Directory of Open Access Journals (Sweden)

    Shanqing Cai

    Full Text Available Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking functions abnormally in the speech motor systems of persons who stutter (PWS. Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants' compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls' and had close-to-normal latencies (∼150 ms, but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05. Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands.

  4. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding.

    Science.gov (United States)

    Atilgan, Huriye; Town, Stephen M; Wood, Katherine C; Jones, Gareth P; Maddox, Ross K; Lee, Adrian K C; Bizley, Jennifer K

    2018-02-07

    How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations

    NARCIS (Netherlands)

    Curcic-Blake, Branislava; Ford, Judith M.; Hubl, Daniela; Orlov, Natasza D.; Sommer, Iris E.; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W.; David, Olivier; Mulert, Christoph; Woodward, Todd S.; Aleman, Andre

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of

  6. Procedures for central auditory processing screening in schoolchildren.

    Science.gov (United States)

    Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella

    2018-03-22

    Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that

  7. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors.

    Science.gov (United States)

    Hall, Daniel L; Antoni, Michael H; Lattie, Emily G; Jutagir, Devika R; Czaja, Sara J; Perdomo, Dolores; Lechner, Suzanne C; Stagl, Jamie M; Bouchard, Laura C; Gudenkauf, Lisa M; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G

    Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one's daily functioning in both patient populations to better understand their relationships with depressed mood. Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants' fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p's fatigued breast cancer survivors (β=.18, p =.19). CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed.

  8. Auditory prediction during speaking and listening.

    Science.gov (United States)

    Sato, Marc; Shiller, Douglas M

    2018-02-02

    In the present EEG study, the role of auditory prediction in speech was explored through the comparison of auditory cortical responses during active speaking and passive listening to the same acoustic speech signals. Two manipulations of sensory prediction accuracy were used during the speaking task: (1) a real-time change in vowel F1 feedback (reducing prediction accuracy relative to unaltered feedback) and (2) presenting a stable auditory target rather than a visual cue to speak (enhancing auditory prediction accuracy during baseline productions, and potentially enhancing the perturbing effect of altered feedback). While subjects compensated for the F1 manipulation, no difference between the auditory-cue and visual-cue conditions were found. Under visually-cued conditions, reduced N1/P2 amplitude was observed during speaking vs. listening, reflecting a motor-to-sensory prediction. In addition, a significant correlation was observed between the magnitude of behavioral compensatory F1 response and the magnitude of this speaking induced suppression (SIS) for P2 during the altered auditory feedback phase, where a stronger compensatory decrease in F1 was associated with a stronger the SIS effect. Finally, under the auditory-cued condition, an auditory repetition-suppression effect was observed in N1/P2 amplitude during the listening task but not active speaking, suggesting that auditory predictive processes during speaking and passive listening are functionally distinct. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The Identification of Fatigue Resistant and Fatigue Susceptible Individuals

    National Research Council Canada - National Science Library

    Harrison, Richard; Chaiken, Scott; Harville, Donald; Fischer, Joseph; Fisher, Dion; Whitmore, Jeff

    2008-01-01

    The present study was designed to target two specific areas regarding fatigue. The primary purpose was to begin investigations into possible genetic markers linked to fatigue resistance and fatigue susceptibility...

  10. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  11. Fatigue testing of wood composites for aerogenerator blades. Pt. 11: Assessment of fatigue damage accumulation using a fatigue modulus approach

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, C L; Ansell, M P [Bath Univ. (United Kingdom)

    1996-12-31

    Stress-strain hysteresis loops have been captured during fatigue tests performed at R=10 (compression-compression) and R=0.1 (tension-tension) on Khaya epoxy wood composites. A fatigue modulus approach, proposed by Hwang and Han in 1989, has been applied to the data and a relationship established between the initial change in fatigue modulus and fatigue life. By following changes in fatigue modulus during the first 100 test cycles it is possible to predict the life of the sample allowing rapid evaluation of the fatigue performance of wood composites. Fatigue modulus values have also been calculated for hysteresis loops captured during complex load - time history tests. Similar trends in change in fatigue modulus suggest that this approach could be used in complex loading conditions to evaluate fatigue damage accumulation and predict fatigue life. (Author)

  12. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    Science.gov (United States)

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  13. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  14. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    Science.gov (United States)

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  15. Perceived Fatigue Interference and Depressed Mood: Comparison of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients with Fatigued Breast Cancer Survivors

    Science.gov (United States)

    Hall, Daniel L.; Antoni, Michael H.; Lattie, Emily G.; Jutagir, Devika R.; Czaja, Sara J.; Perdomo, Dolores; Lechner, Suzanne C.; Stagl, Jamie M.; Bouchard, Laura C.; Gudenkauf, Lisa M.; Traeger, Lara; Fletcher, MaryAnn; Klimas, Nancy G.

    2015-01-01

    Objective Persistent fatigue and depressive symptoms are both highly prevalent among patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) as well as breast cancer survivors. This study aimed to assess and directly compare perceptions of fatigue as highly interfering in one’s daily functioning in both patient populations to better understand their relationships with depressed mood. Methods Participants were 95 female CFS/ME patients and 67 females who were approximately 5 years post-treatment for stage 0-III breast cancer presenting with clinically elevated fatigue severity. Self-report measures were obtained on participants’ fatigue-related interference in daily functioning and fatigue severity as well as depressed mood. Hierarchical regression was used to test effects controlling for relevant demographic, psychosocial, and medical covariates. Results CFS/ME patients endorsed greater depressed mood and fatigue interference than did fatigued breast cancer survivors, p’sfatigued breast cancer survivors (β=.18, p=.19). Conclusions CFS/ME patients reported elevated fatigue symptoms and depression relative to fatigued breast cancer survivors. In the former group, greater depressed mood was highly and significantly associated with greater fatigue-related inference in daily activities. Potential targets for cognitive behavioral interventions are discussed. PMID:26180660

  16. Auditory preferences of young children with and without hearing loss for meaningful auditory-visual compound stimuli.

    Science.gov (United States)

    Zupan, Barbra; Sussman, Joan E

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both experiments was to evaluate the role of familiarity in these preferences. Participants were exposed to randomized blocks of photographs and sounds of ten familiar and ten unfamiliar animals in auditory-only, visual-only and auditory-visual trials. Results indicated an overall auditory preference in children, regardless of hearing status, and a visual preference in adults. Familiarity only affected modality preferences in adults who showed a strong visual preference to unfamiliar stimuli only. The similar degree of auditory responses in children with hearing loss to those from children with normal hearing is an original finding and lends support to an auditory emphasis for habilitation. Readers will be able to (1) Describe the pattern of modality preferences reported in young children without hearing loss; (2) Recognize that differences in communication mode may affect modality preferences in young children with hearing loss; and (3) Understand the role of familiarity in modality preferences in children with and without hearing loss.

  17. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    Science.gov (United States)

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying sustained and divided attention deficits. Attention deficits in children with APD appear to be centred around the auditory modality but further examination of types of attention in both

  18. Auditory interfaces: The human perceiver

    Science.gov (United States)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  19. Auditory attention activates peripheral visual cortex.

    Directory of Open Access Journals (Sweden)

    Anthony D Cate

    Full Text Available BACKGROUND: Recent neuroimaging studies have revealed that putatively unimodal regions of visual cortex can be activated during auditory tasks in sighted as well as in blind subjects. However, the task determinants and functional significance of auditory occipital activations (AOAs remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We examined AOAs in an intermodal selective attention task to distinguish whether they were stimulus-bound or recruited by higher-level cognitive operations associated with auditory attention. Cortical surface mapping showed that auditory occipital activations were localized to retinotopic visual cortex subserving the far peripheral visual field. AOAs depended strictly on the sustained engagement of auditory attention and were enhanced in more difficult listening conditions. In contrast, unattended sounds produced no AOAs regardless of their intensity, spatial location, or frequency. CONCLUSIONS/SIGNIFICANCE: Auditory attention, but not passive exposure to sounds, routinely activated peripheral regions of visual cortex when subjects attended to sound sources outside the visual field. Functional connections between auditory cortex and visual cortex subserving the peripheral visual field appear to underlie the generation of AOAs, which may reflect the priming of visual regions to process soon-to-appear objects associated with unseen sound sources.

  20. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  1. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences

    Directory of Open Access Journals (Sweden)

    Stanislava Knyazeva

    2018-01-01

    Full Text Available This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.

  2. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences.

    Science.gov (United States)

    Knyazeva, Stanislava; Selezneva, Elena; Gorkin, Alexander; Aggelopoulos, Nikolaos C; Brosch, Michael

    2018-01-01

    This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman's population separation model of auditory streaming.

  3. Neurofeedback-Based Enhancement of Single-Trial Auditory Evoked Potentials: Treatment of Auditory Verbal Hallucinations in Schizophrenia.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Diaz Hernandez, Laura; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t (4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t (7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback

  4. Pre-Attentive Auditory Processing of Lexicality

    Science.gov (United States)

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  5. Fatigue data compilation and evaluation of fatigue on design

    International Nuclear Information System (INIS)

    Nyilas, A.

    1985-05-01

    The aim of this report is a review of the available fatigue data of various materials necessary for the design of large superconducting magnets for fusion. One of the primary objectives of this work is to present a broad outline of the low temperature fatigue data of relevant materials within the scope of available data. Besides the classical fatigue data of materials the fatigue crack propagation measurements are outlined widely. The existing recommendations for the design of cryogenic structures are described. A brief introduction of fracture mechanics as well as a historical background of the development of our present day understanding of fatigue has been done. (orig.) [de

  6. Plasticity in the Primary Auditory Cortex, Not What You Think it is: Implications for Basic and Clinical Auditory Neuroscience

    Science.gov (United States)

    Weinberger, Norman M.

    2013-01-01

    Standard beliefs that the function of the primary auditory cortex (A1) is the analysis of sound have proven to be incorrect. Its involvement in learning, memory and other complex processes in both animals and humans is now well-established, although often not appreciated. Auditory coding is strongly modifed by associative learning, evident as associative representational plasticity (ARP) in which the representation of an acoustic dimension, like frequency, is re-organized to emphasize a sound that has become behaviorally important. For example, the frequency tuning of a cortical neuron can be shifted to match that of a significant sound and the representational area of sounds that acquire behavioral importance can be increased. ARP depends on the learning strategy used to solve an auditory problem and the increased cortical area confers greater strength of auditory memory. Thus, primary auditory cortex is involved in cognitive processes, transcending its assumed function of auditory stimulus analysis. The implications for basic neuroscience and clinical auditory neuroscience are presented and suggestions for remediation of auditory processing disorders are introduced. PMID:25356375

  7. Fatigue approach for addressing environmental effects in fatigue usage calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany); Steinmann, Paul [Erlangen-Nuremberg Univ., erlangen (Germany). Chair of Applied Mechanics

    2015-04-15

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  8. Fatigue approach for addressing environmental effects in fatigue usage calculation

    International Nuclear Information System (INIS)

    Wilhelm, Paul; Rudolph, Juergen; Steinmann, Paul

    2015-01-01

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  9. Predictors and Trajectories of Morning Fatigue Are Distinct from Evening Fatigue

    Science.gov (United States)

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is the most common symptom in oncology patients during chemotherapy (CTX). Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. Objectives An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index (BMI), who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance and depressive symptoms, reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients’ ethnicity and younger age. Conclusion The modifiable risk factors that were associated with only morning fatigue were BMI, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828559

  10. Catastrophe models for cognitive workload and fatigue in N-back tasks.

    Science.gov (United States)

    Guastello, Stephen J; Reiter, Katherine; Malon, Matthew; Timm, Paul; Shircel, Anton; Shaline, James

    2015-04-01

    N-back tasks place a heavy load on working memory, and thus make good candidates for studying cognitive workload and fatigue (CWLF). This study extended previous work on CWLF which separated the two phenomena with two cusp catastrophe models. Participants were 113 undergraduates who completed 2-back and 3-back tasks with both auditory and visual stimuli simultaneously. Task data were complemented by several measures hypothesized to be related to cognitive elasticity and compensatory abilities and the NASA TLX ratings of subjective workload. The adjusted R2 was .980 for the workload model, which indicated a highly accurate prediction with six bifurcation (elasticity versus rigidity) effects: algebra flexibility, TLX performance, effort, and frustration; and psychosocial measures of inflexibility and monitoring. There were also two cognitive load effects (asymmetry): 2 vs. 3-back and TLX temporal demands. The adjusted R2 was .454 for the fatigue model, which contained two bifurcation variables indicating the amount of work done, and algebra flexibility as the compensatory ability variable. Both cusp models were stronger than the next best linear alternative model. The study makes an important step forward by uncovering an apparently complete model for workload, finding the role of subjective workload in the context of performance dynamics, and finding CWLF dynamics in yet another type of memory-intensive task. The results were also consistent with the developing notion that performance deficits induced by workload and deficits induced by fatigue result from the impact of the task on the workspace and executive functions of working memory respectively.

  11. SI:FatiguePro 4 Advanced Approach for Fatigue Monitoring

    International Nuclear Information System (INIS)

    Evon, Keith; Gilman, Tim; Carney, Curt

    2012-01-01

    Many nuclear plants are making commitments to implement fatigue monitoring systems in support of license renewal. Current fatigue monitoring systems use the methodology of ASME Code Subarticle NB-3200, which is a design code intended to compute a bounding cumulative usage factor (CUF). The first generation of fatigue monitoring software utilized a simplified, single stress term assumption and classical stress cycle-counting methods that take order into account such as Rainflow or Ordered Overall Range counting. Recently, the NRC has indicated in Regulatory Issue Summary 2008-30 that any fatigue analyses in support of License Renewal should use ASME Code Section III methodologies considering all six stress components. In addition, fatigue calculations for the license renewal term are required to consider the effects of environment. The implementation of a six stress term NB-3200 fatigue calculation to a Boiling Water Reactor (BWR) feedwater nozzle, including environmental effects, is the topic of this paper. Differences in results between the advanced methodology and the simplified methodology are discussed. (author)

  12. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  13. Functional studies of the human auditory cortex, auditory memory and musical hallucinations

    International Nuclear Information System (INIS)

    Goycoolea, Marcos; Mena, Ismael; Neubauer, Sonia

    2004-01-01

    Objectives. 1. To determine which areas of the cerebral cortex are activated stimulating the left ear with pure tones, and what type of stimulation occurs (eg. excitatory or inhibitory) in these different areas. 2. To use this information as an initial step to develop a normal functional data base for future studies. 3. To try to determine if there is a biological substrate to the process of recalling previous auditory perceptions and if possible, suggest a locus for auditory memory. Method. Brain perfusion single photon emission computerized tomography (SPECT) evaluation was conducted: 1-2) Using auditory stimulation with pure tones in 4 volunteers with normal hearing. 3) In a patient with bilateral profound hearing loss who had auditory perception of previous musical experiences; while injected with Tc99m HMPAO while she was having the sensation of hearing a well known melody. Results. Both in the patient with auditory hallucinations and the normal controls -stimulated with pure tones- there was a statistically significant increase in perfusion in Brodmann's area 39, more intense on the right side (right to left p < 0.05). With a lesser intensity there was activation in the adjacent area 40 and there was intense activation also in the executive frontal cortex areas 6, 8, 9, and 10 of Brodmann. There was also activation of area 7 of Brodmann; an audio-visual association area; more marked on the right side in the patient and the normal stimulated controls. In the subcortical structures there was also marked activation in the patient with hallucinations in both lentiform nuclei, thalamus and caudate nuclei also more intense in the right hemisphere, 5, 4.7 and 4.2 S.D. above the mean respectively and 5, 3.3, and 3 S.D. above the normal mean in the left hemisphere respectively. Similar findings were observed in normal controls. Conclusions. After auditory stimulation with pure tones in the left ear of normal female volunteers, there is bilateral activation of area 39

  14. Are nurses able to assess fatigue, exertion fatigue and types of fatigue in residential home patients?

    NARCIS (Netherlands)

    Tiesinga, L.J.; Dijkstra, Ate; Dassen, T.W.N.; Halfens, R.J.G.; van den Heuvel, W.J.A.

    Although fatigue is recognized as a subjective, generalized, extensive and disabling health care problem with a relatively high prevalence among the chronically ill, there have been no studies to show whether nurses caring for fatigued subjects are able to accurately assess the level of fatigue that

  15. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    Science.gov (United States)

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  16. Predictors of auditory performance in hearing-aid users: The role of cognitive function and auditory lifestyle (A)

    DEFF Research Database (Denmark)

    Vestergaard, Martin David

    2006-01-01

    no objective benefit can be measured. It has been suggested that lack of agreement between various hearing-aid outcome components can be explained by individual differences in cognitive function and auditory lifestyle. We measured speech identification, self-report outcome, spectral and temporal resolution...... of hearing, cognitive skills, and auditory lifestyle in 25 new hearing-aid users. The purpose was to assess the predictive power of the nonauditory measures while looking at the relationships between measures from various auditory-performance domains. The results showed that only moderate correlation exists...... between objective and subjective hearing-aid outcome. Different self-report outcome measures showed a different amount of correlation with objective auditory performance. Cognitive skills were found to play a role in explaining speech performance and spectral and temporal abilities, and auditory lifestyle...

  17. Central auditory processing outcome after stroke in children

    Directory of Open Access Journals (Sweden)

    Karla M. I. Freiria Elias

    2014-09-01

    Full Text Available Objective To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. Method 23 children (13 male between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure; dichotic digit test and staggered spondaic word test (selective attention; pitch pattern and duration pattern sequence tests (temporal processing and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Results Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Conclusion Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.

  18. Experience and information loss in auditory and visual memory.

    Science.gov (United States)

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  19. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  20. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  1. Auditory-vocal mirroring in songbirds.

    Science.gov (United States)

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  2. Noise perception in the workplace and auditory and extra-auditory symptoms referred by university professors.

    Science.gov (United States)

    Servilha, Emilse Aparecida Merlin; Delatti, Marina de Almeida

    2012-01-01

    To investigate the correlation between noise in the work environment and auditory and extra-auditory symptoms referred by university professors. Eighty five professors answered a questionnaire about identification, functional status, and health. The relationship between occupational noise and auditory and extra-auditory symptoms was investigated. Statistical analysis considered the significance level of 5%. None of the professors indicated absence of noise. Responses were grouped in Always (A) (n=21) and Not Always (NA) (n=63). Significant sources of noise were both the yard and another class, which were classified as high intensity; poor acoustic and echo. There was no association between referred noise and health complaints, such as digestive, hormonal, osteoarticular, dental, circulatory, respiratory and emotional complaints. There was also no association between referred noise and hearing complaints, and the group A showed higher occurrence of responses regarding noise nuisance, hearing difficulty and dizziness/vertigo, tinnitus, and earache. There was association between referred noise and voice alterations, and the group NA presented higher percentage of cases with voice alterations than the group A. The university environment was considered noisy; however, there was no association with auditory and extra-auditory symptoms. The hearing complaints were more evident among professors in the group A. Professors' health is a multi-dimensional product and, therefore, noise cannot be considered the only aggravation factor.

  3. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder.

    Science.gov (United States)

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-03-01

    This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  4. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  5. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva

    2016-01-01

    Children with auditory processing disorder (APD) typically present with "listening difficulties,"' including problems understanding speech in noisy environments. The authors examined, in a group of such children, whether a 12-week computer-based auditory training program with speech material improved the perception of speech-in-noise test performance, and functional listening skills as assessed by parental and teacher listening and communication questionnaires. The authors hypothesized that after the intervention, (1) trained children would show greater improvements in speech-in-noise perception than untrained controls; (2) this improvement would correlate with improvements in observer-rated behaviors; and (3) the improvement would be maintained for at least 3 months after the end of training. This was a prospective randomized controlled trial of 39 children with normal nonverbal intelligence, ages 7 to 11 years, all diagnosed with APD. This diagnosis required a normal pure-tone audiogram and deficits in at least two clinical auditory processing tests. The APD children were randomly assigned to (1) a control group that received only the current standard treatment for children diagnosed with APD, employing various listening/educational strategies at school (N = 19); or (2) an intervention group that undertook a 3-month 5-day/week computer-based auditory training program at home, consisting of a wide variety of speech-based listening tasks with competing sounds, in addition to the current standard treatment. All 39 children were assessed for language and cognitive skills at baseline and on three outcome measures at baseline and immediate postintervention. Outcome measures were repeated 3 months postintervention in the intervention group only, to assess the sustainability of treatment effects. The outcome measures were (1) the mean speech reception threshold obtained from the four subtests of the listening in specialized noise test that assesses sentence perception in

  7. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    Science.gov (United States)

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  8. Intraoperative Noise Increases Perceived Task Load and Fatigue in Anesthesiology Residents: A Simulation-Based Study.

    Science.gov (United States)

    McNeer, Richard R; Bennett, Christopher L; Dudaryk, Roman

    2016-02-01

    Operating rooms are identified as being one of the noisiest of clinical environments, and intraoperative noise is associated with adverse effects on staff and patient safety. Simulation-based experiments would offer controllable and safe venues for investigating this noise problem. However, realistic simulation of the clinical auditory environment is rare in current simulators. Therefore, we retrofitted our operating room simulator to be able to produce immersive auditory simulations with the use of typical sound sources encountered during surgeries. Then, we tested the hypothesis that anesthesia residents would perceive greater task load and fatigue while being given simulated lunch breaks in noisy environments rather than in quiet ones. As a secondary objective, we proposed and tested the plausibility of a novel psychometric instrument for the assessment of stress. In this simulation-based, randomized, repeated-measures, crossover study, 2 validated psychometric survey instruments, the NASA Task Load Index (NASA-TLX), composed of 6 items, and the Swedish Occupational Fatigue Inventory (SOFI), composed of 5 items, were used to assess perceived task load and fatigue, respectively, in first-year anesthesia residents. Residents completed the psychometric instruments after being given lunch breaks in quiet and noisy intraoperative environments (soundscapes). The effects of soundscape grouping on the psychometric instruments and their comprising items were analyzed with a split-plot analysis. A model for a new psychometric instrument for measuring stress that combines the NASA-TLX and SOFI instruments was proposed, and a factor analysis was performed on the collected data to determine the model's plausibility. Twenty residents participated in this study. Multivariate analysis of variance showed an effect of soundscape grouping on the combined NASA-TLX and SOFI instrument items (P = 0.003) and the comparisons of univariate item reached significance for the NASA Temporal

  9. Neural circuits in auditory and audiovisual memory.

    Science.gov (United States)

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Chronic Fatigue Syndrome (CFS) and Cancer Related Fatigue (CRF): two "fatigue" syndromes with overlapping symptoms and possibly related aetiologies.

    Science.gov (United States)

    Rovigatti, Ugo

    2012-12-01

    In July 2010, at the Muscle Fatigue Meeting, I presented an overview of Chronic Fatigue Syndrome and Cancer Related Fatigue, emphasizing a critical interpretation of the potential association between Chronic Fatigue Syndrome and Cancer Related Fatigue and a newly discovered retrovirus: Xenotropic Murine Related Virus. Since this association was hotly debated at that time, I suggested at the Meeting that it was wrong and most likely due to the identification of the wrong virus culprit. Today, 20 months after the Meeting, the first part of our prediction has turned out to be correct, as Xenotropic Murine Related Virus was shown to be a laboratory-created artefact. Still, the potential association of fatigue-syndromes with an infection (most likely viral) is sustained by a plethora of evidence and this overview will initially summarize data suggesting prior viral infection(s). The principal hypothesized mechanisms for both peripheral and central Chronic Fatigue Syndrome/Cancer Related Fatigue will be then summarized, also indicating plausible associations and triggering factors. All evidence accrued so far suggests that further research work should be performed in this interesting area and in order to identify an infectious agent for Chronic Fatigue Syndrome/Cancer Related Fatigue. One candidate RNA virus, Micro-Foci inducing Virus, will be described in this overview. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Fatigue in adults with post-infectious fatigue syndrome: a qualitative content analysis.

    Science.gov (United States)

    Stormorken, Eva; Jason, Leonard A; Kirkevold, Marit

    2015-01-01

    Fatigue is a major problem among individuals with post-infectious fatigue syndrome (PIFS), also known as chronic fatigue syndrome or myalgic encephalomyelitis. It is a complex phenomenon that varies across illnesses. From a nursing perspective, knowledge and understanding of fatigue in this illness is limited. Nurses lack confidence in caring for these patients and devalue their professional role. The aim of this study was to explore in-depth the experiences of fatigue among individuals with PIFS. A detailed description of the phenomenon of fatigue is presented. Increased knowledge would likely contribute to more confident nurses and improved nursing care. A qualitative study with open interviews was employed. In-depth interviews with patients were fully transcribed and underwent a qualitative content analysis. A maximum variation sample of 26 affected adults between 26-59 years old was recruited from a population diagnosed at a fatigue outpatient clinic. The fatigue was a post-exertional, multidimensional, fluctuating phenomenon with varying degrees of severity and several distinct characteristics and was accompanied by concomitant symptoms. Fatigue was perceived to be an all-pervasive complex experience that substantially reduced the ability to function personally or professionally. A range of trigger mechanisms evoked or worsened the fatigue, but the affected were not always aware of what triggered it. There was an excessive increase in fatigue in response to even minor activities. An increase in fatigue resulted in the exacerbation of other concomitant symptoms. The term fatigue does not capture the participants' experiences, which are accompanied by a considerable symptom burden that contributes to the illness experience and the severe disability. Although some aspects of the fatigue experience have been reported previously, more were added in our study, such as the dimension of awakening fatigue and the characteristic beyond time, when time passes unnoticed

  12. Auditory motion-specific mechanisms in the primate brain.

    Directory of Open Access Journals (Sweden)

    Colline Poirier

    2017-05-01

    Full Text Available This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI. We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream.

  13. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  14. Seafarer fatigue

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Zhao, Zhiwei; van Leeuwen, Wessel M. A.

    2015-01-01

    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating...... to seafarer fatigue. Materials and methods: A literature study was conducted aiming to collect publications that address risk factors for fatigue, short-term and long-term consequences for health and safety, and options for fatigue mitigation at sea. Due to the limited number of publications that deals...... with seafarers, experiences from other populations sharing the same exposures (e.g. shift work) were also included when appropriate. Results: Work at sea involves multiple risk factors for fatigue, which in addition to acute effects (e.g., impaired cognition, accidents) contributes through autonomic, immunologic...

  15. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  16. Fundamental deficits of auditory perception in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    Science.gov (United States)

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  19. Cognitive factors shape brain networks for auditory skills: spotlight on auditory working memory

    Science.gov (United States)

    Kraus, Nina; Strait, Dana; Parbery-Clark, Alexandra

    2012-01-01

    Musicians benefit from real-life advantages such as a greater ability to hear speech in noise and to remember sounds, although the biological mechanisms driving such advantages remain undetermined. Furthermore, the extent to which these advantages are a consequence of musical training or innate characteristics that predispose a given individual to pursue music training is often debated. Here, we examine biological underpinnings of musicians’ auditory advantages and the mediating role of auditory working memory. Results from our laboratory are presented within a framework that emphasizes auditory working memory as a major factor in the neural processing of sound. Within this framework, we provide evidence for music training as a contributing source of these abilities. PMID:22524346

  20. Fatigue processes in thermoplastic fibres; Les mecanismes de fatigue dans les fibres thermoplastiques

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Ramirez, J.M.

    2004-09-15

    The present study examines and compares the behaviour of the two types of PA66 fibres and two types of PET fibres under fatigue loading up to failure, and the correlation between the fibres (nano)structures and their structural heterogeneities, with fatigue lifetimes. Several techniques have been used to analyze the materials, such as scanning electron microscopy (SEM), microanalysis (EDS), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and micro-Raman spectroscopy. A meticulous analysis by scanning electron microscopy of the fracture morphology of fibres broken in tension and in fatigue, as well as a study of the fatigue life, were undertaken. The fatigue process occurs when the cyclic load amplitude is sufficiently large, however a condition for fatigue failure is that the minimum load each cycle must be lower than a threshold stress level. Failure under fatigue conditions leads to distinctive fracture morphologies which are very different from those seen after tensile or creep failure and this allows easy identification of the fatigue process. The fibres have been analyzed in the as received state and after fatigue failure in order to observe the microstructural changes resulting from the fatigue loading. The results will be compared with those obtained for fibres loaded under conditions where the fatigue process was hindered. The role of the microstructure of the fibres in determining fatigue will be discussed in this work and the possibility of improving their resistance to fatigue or eliminating the fatigue process will be discussed. (author)

  1. The role of central and peripheral muscle fatigue in postcancer fatigue: a randomized controlled trial.

    Science.gov (United States)

    Prinsen, Hetty; van Dijk, Johannes P; Zwarts, Machiel J; Leer, Jan Willem H; Bleijenberg, Gijs; van Laarhoven, Hanneke W M

    2015-02-01

    Postcancer fatigue is a frequently occurring problem, impairing quality of life. Little is known about (neuro)physiological factors determining postcancer fatigue. It may be hypothesized that postcancer fatigue is characterized by low peripheral muscle fatigue and high central muscle fatigue. The aims of this study were to examine whether central and peripheral muscle fatigue differ between fatigued and non-fatigued cancer survivors and to examine the effect of cognitive behavioral therapy (CBT) on peripheral and central muscle fatigue of fatigued cancer survivors in a randomized controlled trial. Sixteen fatigued patients in the intervention group (CBT) and eight fatigued patients in the waiting list group were successfully assessed at baseline and six months later. Baseline measurements of 20 fatigued patients were compared with 20 non-fatigued patients. A twitch interpolation technique and surface electromyography were applied, respectively, during sustained contraction of the biceps brachii muscle. Muscle fiber conduction velocity (MFCV) and central activation failure (CAF) were not significantly different between fatigued and non-fatigued patients. Change scores of MFCV and CAF were not significantly different between patients in the CBT and waiting list groups. Patients in the CBT group reported a significantly larger decrease in fatigue scores than patients in the waiting list group. Postcancer fatigue is neither characterized by abnormally high central muscle fatigue nor by low peripheral muscle fatigue. These findings suggest a difference in the underlying physiological mechanism of postcancer fatigue vs. other fatigue syndromes. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  2. The relative importance of real-time in-cab and external feedback in managing fatigue in real-world commercial transport operations.

    Science.gov (United States)

    Fitzharris, Michael; Liu, Sara; Stephens, Amanda N; Lenné, Michael G

    2017-05-29

    Real-time driver monitoring systems represent a solution to address key behavioral risks as they occur, particularly distraction and fatigue. The efficacy of these systems in real-world settings is largely unknown. This article has three objectives: (1) to document the incidence and duration of fatigue in real-world commercial truck-driving operations, (2) to determine the reduction, if any, in the incidence of fatigue episodes associated with providing feedback, and (3) to tease apart the relative contribution of in-cab warnings from 24/7 monitoring and feedback to employers. Data collected from a commercially available in-vehicle camera-based driver monitoring system installed in a commercial truck fleet operating in Australia were analyzed. The real-time driver monitoring system makes continuous assessments of driver drowsiness based on eyelid position and other factors. Data were collected in a baseline period where no feedback was provided to drivers. Real-time feedback to drivers then occurred via in-cab auditory and haptic warnings, which were further enhanced by direct feedback by company management when fatigue events were detected by external 24/7 monitors. Fatigue incidence rates and their timing of occurrence across the three time periods were compared. Relative to no feedback being provided to drivers when fatigue events were detected, in-cab warnings resulted in a 66% reduction in fatigue events, with a 95% reduction achieved by the real-time provision of direct feedback in addition to in-cab warnings (p safety culture of the company in terms of how the information is used. Data were analysed on a per-truck trip basis, and the findings are indicative of fatigue events in a large-scale commercial transport fleet. Future research ought to account for individual driver performance, which was not possible with the available data in this retrospective analysis. Evidence that real-time driver monitoring feedback is effective in reducing fatigue events is

  3. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  4. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  5. Side Effects: Fatigue

    Science.gov (United States)

    Fatigue is a common side effect of many cancer treatments such as chemotherapy, radiation therapy, immunotherapy, and surgery. Anemia and pain can also cause fatigue. Learn about symptoms and way to manage fatigue.

  6. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2016-03-01

    Full Text Available Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD. Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth and lower negative correlations in the most lateral reference location (60° azimuth in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  7. Myoelectrical manifestation of fatigue less prominent in patients with cancer related fatigue.

    Directory of Open Access Journals (Sweden)

    Katarzyna Kisiel-Sajewicz

    Full Text Available PURPOSE: A lack of fatigue-related muscle contractile property changes at time of perceived physical exhaustion and greater central than peripheral fatigue detected by twitch interpolation technique have recently been reported in cancer survivors with fatigue symptoms. Based on these observations, it was hypothesized that compared to healthy people, myoelectrical manifestation of fatigue in the performing muscles would be less significant in these individuals while sustaining a prolonged motor task to self-perceived exhaustion (SPE since their central fatigue was more prominent. The purpose of this study was to test this hypothesis by examining electromyographic (EMG signal changes during fatiguing muscle performance. METHODS: Twelve individuals who had advanced solid cancer and cancer-related fatigue (CRF, and 12 age- and gender-matched healthy controls performed a sustained elbow flexion at 30% maximal voluntary contraction till SPE. Amplitude and mean power frequency (MPF of EMG signals of the biceps brachii, brachioradialis, and triceps brachii muscles were evaluated when the individuals experienced minimal, moderate, and severe fatigue. RESULTS: CRF patients perceived physical "exhaustion" significantly sooner than the controls. The myoelectrical manifestation of muscular fatigue assessed by EMG amplitude and MPF was less significant in CRF than controls. The lower MPF even at minimal fatigue stage in CRF may indicate pathophysiologic condition of the muscle. CONCLUSIONS: CRF patients experience less myoelectrical manifestation of muscle fatigue than healthy individuals near the time of SPE. The data suggest that central nervous system fatigue plays a more important role in limiting endurance-type of motor performance in patients with CRF.

  8. A randomized controlled trial of qigong exercise on fatigue symptoms, functioning, and telomerase activity in persons with chronic fatigue or chronic fatigue syndrome.

    Science.gov (United States)

    Ho, Rainbow T H; Chan, Jessie S M; Wang, Chong-Wen; Lau, Benson W M; So, Kwok Fai; Yuen, Li Ping; Sham, Jonathan S T; Chan, Cecilia L W

    2012-10-01

    Chronic fatigue is common in the general population. Complementary therapies are often used by patients with chronic fatigue or chronic fatigue syndrome to manage their symptoms. This study aimed to assess the effect of a 4-month qigong intervention program among patients with chronic fatigue or chronic fatigue syndrome. Sixty-four participants were randomly assigned to either an intervention group or a wait list control group. Outcome measures included fatigue symptoms, physical functioning, mental functioning, and telomerase activity. Fatigue symptoms and mental functioning were significantly improved in the qigong group compared to controls. Telomerase activity increased in the qigong group from 0.102 to 0.178 arbitrary units (p chronic fatigue and chronic fatigue syndrome.

  9. Random non-proportional fatigue tests with planar tri-axial fatigue testing machine

    Directory of Open Access Journals (Sweden)

    T. Inoue

    2016-10-01

    Full Text Available Complex stresses, which occur on the mechanical surfaces of transport machinery in service, bring a drastic degradation in fatigue life. However, it is hard to reproduce such complex stress states for evaluating the fatigue life with conventional multiaxial fatigue machines. We have developed a fatigue testing machine that enables reproduction of such complex stresses. The testing machine can reproduce arbitrary in-plane stress states by applying three independent loads to the test specimen using actuators which apply loads in the 0, 45, and 90 degree directions. The reproduction was tested with complex stress data obtained from the actual operation of transport machinery. As a result, it was found that the reproduced stress corresponded to the measured stress with an error range of less than 10 %. Then, we made a comparison between measured fatigue lives under random non-proportional loading conditions and predicted fatigue lives. It was found that predicted fatigue lives with cr, stress on critical plane, were over a factor of 10 against measured fatigue lives. On the other hand, predicted fatigue lives with ma, stress in consideration of a non-proportional level evaluated by using amplitude and direction of principal stress, were within a factor of 3 against measured fatigue lives

  10. Auditory conflict and congruence in frontotemporal dementia.

    Science.gov (United States)

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. An overview of fatigue

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    Four topics are briefly discussed in this paper: fatigue crack initiation and growth in a nickel-base superalloy single crystal, the environment effect on near-threshold fatigue crack growth behaviour, the role of crack closure in load-interaction effects in fatigue crack growth, and the nature of creep-fatigue interactions, if any, during fatigue crack growth. (Author)

  12. Fatigue with HIV/AIDS

    Science.gov (United States)

    ... 21, 2014 Select a Language: Fact Sheet 551 Fatigue WHAT IS FATIGUE? IS FATIGUE IMPORTANT? HOW DO ... It can be physical or psychological. With physical fatigue , your muscles cannot do things as easily as ...

  13. Multi-purpose fatigue sensor. Part 1. Uniaxial and multiaxial fatigue

    Directory of Open Access Journals (Sweden)

    M.V. Karuskevich

    2016-10-01

    Full Text Available The paper describes the key principles and results of preliminary experiments aimed at the development of new technique for the fatigue life prediction under conditions of biaxial cyclic tension. The foundations of the method were developed early by the numerous tests with monitoring the process of surface deformation relief formation, which is proved to be an indicator of accumulated fatigue damage under uniaxial fatigue. The employed phenomenon was early applied for the development of a family of uniaxial loading fatigue sensors. The formation of strain induced relief has been recently taken into consideration as a part of damage accumulation criteria under biaxial fatigue as well. The home-made testing machine has been designed to implement combined bending and torsion loading that simulates loads experienced by an aircraft wing skin. The experimental evidences on formation and evolution of the deformation relief revealed under conditions of combined loading, supports the proposed concept of biaxial fatigue sensor

  14. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014

  15. Effects of Auditory Stimuli on Visual Velocity Perception

    Directory of Open Access Journals (Sweden)

    Michiaki Shibata

    2011-10-01

    Full Text Available We investigated the effects of auditory stimuli on the perceived velocity of a moving visual stimulus. Previous studies have reported that the duration of visual events is perceived as being longer for events filled with auditory stimuli than for events not filled with auditory stimuli, ie, the so-called “filled-duration illusion.” In this study, we have shown that auditory stimuli also affect the perceived velocity of a moving visual stimulus. In Experiment 1, a moving comparison stimulus (4.2∼5.8 deg/s was presented together with filled (or unfilled white-noise bursts or with no sound. The standard stimulus was a moving visual stimulus (5 deg/s presented before or after the comparison stimulus. The participants had to judge which stimulus was moving faster. The results showed that the perceived velocity in the auditory-filled condition was lower than that in the auditory-unfilled and no-sound conditions. In Experiment 2, we investigated the effects of auditory stimuli on velocity adaptation. The results showed that the effects of velocity adaptation in the auditory-filled condition were weaker than those in the no-sound condition. These results indicate that auditory stimuli tend to decrease the perceived velocity of a moving visual stimulus.

  16. The attenuation of auditory neglect by implicit cues.

    Science.gov (United States)

    Coleman, A Rand; Williams, J Michael

    2006-09-01

    This study examined implicit semantic and rhyming cues on perception of auditory stimuli among nonaphasic participants who suffered a lesion of the right cerebral hemisphere and auditory neglect of sound perceived by the left ear. Because language represents an elaborate processing of auditory stimuli and the language centers were intact among these patients, it was hypothesized that interactive verbal stimuli presented in a dichotic manner would attenuate neglect. The selected participants were administered an experimental dichotic listening test composed of six types of word pairs: unrelated words, synonyms, antonyms, categorically related words, compound words, and rhyming words. Presentation of word pairs that were semantically related resulted in a dramatic reduction of auditory neglect. Dichotic presentations of rhyming words exacerbated auditory neglect. These findings suggest that the perception of auditory information is strongly affected by the specific content conveyed by the auditory system. Language centers will process a degraded stimulus that contains salient language content. A degraded auditory stimulus is neglected if it is devoid of content that activates the language centers or other cognitive systems. In general, these findings suggest that auditory neglect involves a complex interaction of intact and impaired cerebral processing centers with content that is selectively processed by these centers.

  17. Evidence for sensitized fatigue pathways in patients with chronic fatigue syndrome.

    Science.gov (United States)

    Staud, Roland; Mokthech, Meriem; Price, Donald D; Robinson, Michael E

    2015-04-01

    Patients with chronic fatigue syndrome (CFS) frequently demonstrate intolerance to physical exertion that is often reported as increased and long-lasting fatigue. Because no specific metabolic alterations have been identified in CFS patients, we hypothesized that sensitized fatigue pathways become activated during exercise corresponding with increased fatigue. After exhausting handgrip exercise, muscle metabolites were trapped in the forearm tissues of 39 CFS patients and 29 normal control (NC) by sudden occlusion for up to 5 minutes. A nonocclusive condition of similar duration was used as control. Repeated fatigue and pain ratings were obtained before and after exercise. Mechanical and heat hyperalgesia were assessed by quantitative sensory testing. All subjects fulfilled the 1994 Fukuda Criteria for CFS. Normal control and CFS subjects exercised for 6.6 (2.4) and 7.0 (2.7) minutes (P > 0.05). Forearm occlusion lasted for 4.7 (1.3) and 4.9 (1.8) minutes in NC and CFS subjects, respectively (P > 0.05). Although fatigue ratings of CFS subjects increased from 4.8 (2.0) to 5.6 (2.1) visual analogue scale (VAS) units during forearm occlusion, they decreased from 5.0 (1.8) to 4.8 (2.0) VAS units during the control condition without occlusion (P = 0.04). A similar time course of fatigue ratings was observed in NC (P > 0.05), although their ratings were significantly lower than those of CFS subjects (P fatigue in CFS patients consistent with sensitization of fatigue pathways. Future interventions that reduce sensitization of fatigue pathways in CFS patients may be of therapeutic benefit.

  18. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  19. Clinical neurophysiology of fatigue.

    Science.gov (United States)

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic disease has been established. If certain criteria are met, chronic fatigue syndrome can be diagnosed. The 4-item Abbreviated Fatigue Questionnaire allows the extent of the experienced fatigue to be assessed with a high degree of reliability and validity. Physiological fatigue has been well defined and originates in both the peripheral and central nervous system. The condition can be assessed by combining force and surface-EMG measurements (including frequency analyses and muscle-fibre conduction estimations), twitch interpolation, magnetic stimulation of the motor cortex and analysis of changes in the readiness potential. Fatigue is a well-known phenomenon in both central and peripheral neurological disorders. Examples of the former conditions are multiple sclerosis, Parkinson's disease and stroke. Although it seems to be a universal symptom of many brain disorders, the unique characteristics of the concomitant fatigue also point to a specific relationship with several of these syndromes. As regards neuromuscular disorders, fatigue has been reported in patients with post-polio syndrome, myasthenia gravis, Guillain-Barré syndrome, facioscapulohumeral dystrophy, myotonic dystrophy and hereditary motor and sensory neuropathy type-I. More than 60% of all neuromuscular patients suffer from severe fatigue, a prevalence resembling that of patients with MS. Except for several rare myopathies with specific metabolic derangements leading to exercise-induced muscle fatigue, most studies have not identified a prominent peripheral cause for the fatigue in this population. In contrast, the central activation of the diseased neuromuscular system is generally found to be suboptimal. The

  20. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    Science.gov (United States)

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Reduced Electromyographic Fatigue Threshold after Performing a Cognitive Fatiguing Task.

    Science.gov (United States)

    Ferris, Justine R; Tomlinson, Mary A; Ward, Tayler N; Pepin, Marie E; Malek, Moh H

    2018-02-22

    Cognitive fatigue tasks performed prior to exercise may reduce exercise capacity. The electromyographic fatigue threshold (EMGFT) is the highest exercise intensity that can be maintained without significant increase in the EMG amplitude versus time relationship. To date, no studies have examined the effect of cognitive fatigue on the estimation of the EMGFT. The purpose of this study, therefore, was to determine whether or not cognitive fatigue prior to performing exercise reduces the estimated EMGFT. Eight healthy college-aged men were recruited from a university student population and visited the laboratory on multiple occasions. In a randomized order, subjects performed either the cognitive fatigue task (AX Continuous Performance Test; AX-CPT) for 60 min on one visit (experimental condition) or watched a video on trains for 60 min on the other visit (control condition). After each condition, subjects performed the incremental single-leg knee-extensor ergometry test while the EMG amplitude was recorded from the rectus femoris muscle and heart rate was monitored throughout. Thereafter, the EMGFT was calculated for each participant for each visit and compared using paired samples t-test. For exercise outcomes, there were no significant mean differences for maximal power output between the two conditions (control: 51 ± 5 vs. fatigue: 50 ± 3 W), but a significant decrease in EMGFT between the two conditions (control: 31 ± 3 vs. fatigue: 24 ± 2 W; p = 0.013). Moreover, maximal heart rate was significantly different between the two conditions (control: 151 ± 5 vs. fatigue: 132 ± 6; p = 0.027). These results suggest that performing the cognitive fatiguing task reduces the EMGFT with a corresponding reduction in maximal heart rate response.

  2. The Nature of Self-Regulatory Fatigue and "Ego Depletion": Lessons From Physical Fatigue.

    Science.gov (United States)

    Evans, Daniel R; Boggero, Ian A; Segerstrom, Suzanne C

    2015-07-30

    Self-regulation requires overriding a dominant response and leads to temporary self-regulatory fatigue. Existing theories of the nature and causes of self-regulatory fatigue highlight physiological substrates such as glucose, or psychological processes such as motivation, but these explanations are incomplete on their own. Historically, theories of physical fatigue demonstrate a similar pattern of useful but incomplete explanations, as recent views of physical fatigue emphasize the roles of both physiological and psychological factors. In addition to accounting for multiple inputs, these newer views also explain how fatigue can occur even in the presence of sufficient resources. Examining these newer theories of physical fatigue can serve as a foundation on which to build a more comprehensive understanding of self-regulatory fatigue that integrates possible neurobiological underpinnings of physical and self-regulatory fatigue, and suggests the possible function of self-regulatory fatigue. © 2015 by the Society for Personality and Social Psychology, Inc.

  3. Feature Assignment in Perception of Auditory Figure

    Science.gov (United States)

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  4. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  5. Continuous fatigue crack monitoring of bridges: Long-Term Electrochemical Fatigue Sensor (LTEFS)

    Science.gov (United States)

    Moshier, Monty A.; Nelson, Levi; Brinkerhoff, Ryan; Miceli, Marybeth

    2016-04-01

    Fatigue cracks in steel bridges degrade the load-carrying capacity of these structures. Fatigue damage accumulation caused by the repetitive loading of everyday truck traffic can cause small fatigue cracks initiate. Understanding the growth of these fatigue cracks is critical to the safety and reliability of our transportation infrastructure. However, modeling fatigue in bridges is difficult due to the nature of the loading and variations in connection integrity. When fatigue cracks reach critical lengths failures occur causing partial or full closures, emergency repairs, and even full structural failure. Given the aging US highway and the trend towards asset management and life extension, the need for reliable, cost effective sensors and monitoring technologies to alert bridge owners when fatigue cracks are growing is higher than ever. In this study, an innovative Long-Term Electrochemical Fatigue Sensor (LTEFS) has been developed and introduced to meet the growing NDT marketplace demand for sensors that have the ability to continuously monitor fatigue cracks. The performance of the LTEFS has been studied in the laboratory and in the field. Data was collected using machined specimens with different lengths of naturally initiated fatigue cracks, applied stress levels, applied stress ratios, and for both sinusoidal and real-life bridge spectrum type loading. The laboratory data was evaluated and used to develop an empirically based algorithm used for crack detection. Additionally, beta-tests on a real bridge structure has been completed. These studies have conclusively demonstrated that LTEFS holds great potential for long-term monitoring of fatigue cracks in steel structures

  6. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  7. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  8. Fatigue Perceived by Multiple Sclerosis Patients Is Associated With Muscle Fatigue

    NARCIS (Netherlands)

    Steens, Anneke; de Vries, Astrid; Hemmen, Jolien; Heersema, Thea; Heerings, Marco; Maurits, Natasha; Zijdewind, Inge

    Background. Fatigue is a debilitating symptom in multiple sclerosis (MS). Previous studies showed no association between fatigue as perceived by the patient and physiological measures of fatigability. Objective. The authors investigated associations between perceived fatigue and measures of

  9. Maps of the Auditory Cortex.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2016-07-08

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

  10. Rapid Auditory System Adaptation Using a Virtual Auditory Environment

    Directory of Open Access Journals (Sweden)

    Gaëtan Parseihian

    2011-10-01

    Full Text Available Various studies have highlighted plasticity of the auditory system from visual stimuli, limiting the trained field of perception. The aim of the present study is to investigate auditory system adaptation using an audio-kinesthetic platform. Participants were placed in a Virtual Auditory Environment allowing the association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues or Head-Related Transfer Function (HRTF through the use of a tracked ball manipulated by the subject. This set-up has the advantage to be not being limited to the visual field while also offering a natural perception-action coupling through the constant awareness of one's hand position. Adaptation process to non-individualized HRTF was realized through a spatial search game application. A total of 25 subjects participated, consisting of subjects presented with modified cues using non-individualized HRTF and a control group using individual measured HRTFs to account for any learning effect due to the game itself. The training game lasted 12 minutes and was repeated over 3 consecutive days. Adaptation effects were measured with repeated localization tests. Results showed a significant performance improvement for vertical localization and a significant reduction in the front/back confusion rate after 3 sessions.

  11. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Maojin Liang

    2017-10-01

    Full Text Available Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP and ten were poor (PCP. Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC, with a downward trend in the primary auditory cortex (PAC activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls before CI use (0M and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  12. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants.

    Science.gov (United States)

    Liang, Maojin; Zhang, Junpeng; Liu, Jiahao; Chen, Yuebo; Cai, Yuexin; Wang, Xianjun; Wang, Junbo; Zhang, Xueyuan; Chen, Suijun; Li, Xianghui; Chen, Ling; Zheng, Yiqing

    2017-01-01

    Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI) patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP) and ten were poor (PCP). Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs) were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC), with a downward trend in the primary auditory cortex (PAC) activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls) before CI use (0M) and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  13. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  14. Fatigue and creep-fatigue in sodium of 316 L stainless-steel

    International Nuclear Information System (INIS)

    Ardellier, A.

    1981-03-01

    The present paper describes test-facility developed to perform low-cycle fatigue and creep-fatigue interaction in sodium on stainless steel - 316 L . Fatigue life in sodium and in air are compared. A beneficial effect in sodium is noted

  15. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    OpenAIRE

    Zahra Shahidipour; Ahmad Geshani; Zahra Jafari; Shohreh Jalaie; Elham Khosravifard

    2014-01-01

    Background and Aim: Memory is one of the aspects of cognitive function which is widely affected among aged people. Since aging has different effects on different memorial systems and little studies have investigated auditory-verbal memory function in older adults using dichotic listening techniques, the purpose of this study was to evaluate the auditory-verbal memory function among old people using Persian version of dichotic auditory-verbal memory test. Methods: The Persian version of dic...

  16. Perceptual Plasticity for Auditory Object Recognition

    Science.gov (United States)

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  17. Cortical Representations of Speech in a Multitalker Auditory Scene.

    Science.gov (United States)

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  18. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    Science.gov (United States)

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  19. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  20. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  1. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2008-01-01

    In the present study, a novel multichannel loudspeaker-based virtual auditory environment (VAE) is introduced. The VAE aims at providing a versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room...... reverberation. The environment is based on the ODEON room acoustic simulation software to render the acoustical scene. ODEON outputs are processed using a combination of different order Ambisonic techniques to calculate multichannel room impulse responses (mRIR). Auralization is then obtained by the convolution...... the VAE development, special care was taken in order to achieve a realistic auditory percept and to avoid “artifacts” such as unnatural coloration. The performance of the VAE has been evaluated and optimized on a 29 loudspeaker setup using both objective and subjective measurement techniques....

  2. Auditory, visual, and auditory-visual perceptions of emotions by young children with hearing loss versus children with normal hearing.

    Science.gov (United States)

    Most, Tova; Michaelis, Hilit

    2012-08-01

    This study aimed to investigate the effect of hearing loss (HL) on emotion-perception ability among young children with and without HL. A total of 26 children 4.0-6.6 years of age with prelingual sensory-neural HL ranging from moderate to profound and 14 children with normal hearing (NH) participated. They were asked to identify happiness, anger, sadness, and fear expressed by an actress when uttering the same neutral nonsense sentence. Their auditory, visual, and auditory-visual perceptions of the emotional content were assessed. The accuracy of emotion perception among children with HL was lower than that of the NH children in all 3 conditions: auditory, visual, and auditory-visual. Perception through the combined auditory-visual mode significantly surpassed the auditory or visual modes alone in both groups, indicating that children with HL utilized the auditory information for emotion perception. No significant differences in perception emerged according to degree of HL. In addition, children with profound HL and cochlear implants did not perform differently from children with less severe HL who used hearing aids. The relatively high accuracy of emotion perception by children with HL may be explained by their intensive rehabilitation, which emphasizes suprasegmental and paralinguistic aspects of verbal communication.

  3. Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.

    Directory of Open Access Journals (Sweden)

    Andreas L. Schulz

    2016-01-01

    Full Text Available Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.

  4. Distraction by deviance: comparing the effects of auditory and visual deviant stimuli on auditory and visual target processing.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-01-01

    We report the results of oddball experiments in which an irrelevant stimulus (standard, deviant) was presented before a target stimulus and the modality of these stimuli was manipulated orthogonally (visual/auditory). Experiment 1 showed that auditory deviants yielded distraction irrespective of the target's modality while visual deviants did not impact on performance. When participants were forced to attend the distractors in order to detect a rare target ("target-distractor"), auditory deviants yielded distraction irrespective of the target's modality and visual deviants yielded a small distraction effect when targets were auditory (Experiments 2 & 3). Visual deviants only produced distraction for visual targets when deviant stimuli were not visually distinct from the other distractors (Experiment 4). Our results indicate that while auditory deviants yield distraction irrespective of the targets' modality, visual deviants only do so when attended and under selective conditions, at least when irrelevant and target stimuli are temporally and perceptually decoupled.

  5. Effects of mental fatigue on the development of physical fatigue: a neuroergonomic approach.

    Science.gov (United States)

    Mehta, Ranjana K; Parasuraman, Raja

    2014-06-01

    The present study used a neuroergonomic approach to examine the interaction of mental and physical fatigue by assessing prefrontal cortex activation during submaximal fatiguing handgrip exercises. Mental fatigue is known to influence muscle function and motor performance, but its contribution to the development of voluntary physical fatigue is not well understood. A total of 12 participants performed separate physical (control) and physical and mental fatigue (concurrent) conditions at 30% of their maximal handgrip strength until exhaustion. Functional near infrared spectroscopy was employed to measure prefrontal cortex activation, whereas electromyography and joint steadiness were used simultaneously to quantify muscular effort. Compared to the control condition, blood oxygenation in the bilateral prefrontal cortex was significantly lower during submaximal fatiguing contractions associated with mental fatigue at exhaustion, despite comparable muscular responses. The findings suggest that interference in the prefrontal cortex may influence motor output during tasks that require both physical and cognitive processing. A neuroergonomic approach involving simultaneous monitoring of brain and body functions can provide critical information on fatigue development that may be overlooked during traditional fatigue assessments.

  6. Modelling fatigue and the use of fatigue models in work settings.

    Science.gov (United States)

    Dawson, Drew; Ian Noy, Y; Härmä, Mikko; Akerstedt, Torbjorn; Belenky, Gregory

    2011-03-01

    In recent years, theoretical models of the sleep and circadian system developed in laboratory settings have been adapted to predict fatigue and, by inference, performance. This is typically done using the timing of prior sleep and waking or working hours as the primary input and the time course of the predicted variables as the primary output. The aim of these models is to provide employers, unions and regulators with quantitative information on the likely average level of fatigue, or risk, associated with a given pattern of work and sleep with the goal of better managing the risk of fatigue-related errors and accidents/incidents. The first part of this review summarises the variables known to influence workplace fatigue and draws attention to the considerable variability attributable to individual and task variables not included in current models. The second part reviews the current fatigue models described in the scientific and technical literature and classifies them according to whether they predict fatigue directly by using the timing of prior sleep and wake (one-step models) or indirectly by using work schedules to infer an average sleep-wake pattern that is then used to predict fatigue (two-step models). The third part of the review looks at the current use of fatigue models in field settings by organizations and regulators. Given their limitations it is suggested that the current generation of models may be appropriate for use as one element in a fatigue risk management system. The final section of the review looks at the future of these models and recommends a standardised approach for their use as an element of the 'defenses-in-depth' approach to fatigue risk management. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. The nature of self-regulatory fatigue and “ego depletion”: Lessons from physical fatigue

    Science.gov (United States)

    Evans, Daniel R.; Boggero, Ian A.; Segerstrom, Suzanne C.

    2016-01-01

    Self-regulation requires overriding a dominant response, and leads to temporary self-regulatory fatigue. Existing theories of the nature and causes of self-regulatory fatigue highlight physiological substrates such as glucose or psychological processes such as motivation, but these explanations are incomplete on their own. Historically, theories of physical fatigue demonstrate a similar pattern of useful but incomplete explanations, as recent views of physical fatigue emphasize the roles of both physiological and psychological factors. In addition to accounting for multiple inputs, these newer views also explain how fatigue can occur even in the presence of sufficient resources. Examining these newer theories of physical fatigue can serve as a foundation on which to build a more comprehensive understanding of self-regulatory fatigue that integrates possible neurobiological underpinnings of physical and self-regulatory fatigue, and suggests the possible function of self-regulatory fatigue. PMID:26228914

  8. Visual-induced expectations modulate auditory cortical responses

    Directory of Open Access Journals (Sweden)

    Virginie evan Wassenhove

    2015-02-01

    Full Text Available Active sensing has important consequences on multisensory processing (Schroeder et al. 2010. Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient colour changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the where and the when of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG while maintaining the position of their eyes on the left, right, or centre of the screen. Participants counted colour changes of the fixation cross while neglecting sounds which could be presented to the left, right or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants’ attention directed to visual inputs. Second, colour changes elicited robust modulations of auditory cortex responses (when prediction seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of when a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that where predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds.

  9. The concept of fatigue fracture toughness in fatigue delamination growth behavior

    NARCIS (Netherlands)

    Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This paper provides a study on mode I fatigue delamination growth in composite laminates using energy principles. Experimental data has been obtained from fatigue tests conducted on Double Cantilever Beam (DCB) specimens at various stress ratios. A concept of fatigue fracture toughness is proposed

  10. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    Science.gov (United States)

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  11. Formal auditory training in adult hearing aid users

    Directory of Open Access Journals (Sweden)

    Daniela Gil

    2010-01-01

    Full Text Available INTRODUCTION: Individuals with sensorineural hearing loss are often able to regain some lost auditory function with the help of hearing aids. However, hearing aids are not able to overcome auditory distortions such as impaired frequency resolution and speech understanding in noisy environments. The coexistence of peripheral hearing loss and a central auditory deficit may contribute to patient dissatisfaction with amplification, even when audiological tests indicate nearly normal hearing thresholds. OBJECTIVE: This study was designed to validate the effects of a formal auditory training program in adult hearing aid users with mild to moderate sensorineural hearing loss. METHODS: Fourteen bilateral hearing aid users were divided into two groups: seven who received auditory training and seven who did not. The training program was designed to improve auditory closure, figure-to-ground for verbal and nonverbal sounds and temporal processing (frequency and duration of sounds. Pre- and post-training evaluations included measuring electrophysiological and behavioral auditory processing and administration of the Abbreviated Profile of Hearing Aid Benefit (APHAB self-report scale. RESULTS: The post-training evaluation of the experimental group demonstrated a statistically significant reduction in P3 latency, improved performance in some of the behavioral auditory processing tests and higher hearing aid benefit in noisy situations (p-value < 0,05. No changes were noted for the control group (p-value <0,05. CONCLUSION: The results demonstrated that auditory training in adult hearing aid users can lead to a reduction in P3 latency, improvements in sound localization, memory for nonverbal sounds in sequence, auditory closure, figure-to-ground for verbal sounds and greater benefits in reverberant and noisy environments.

  12. The role of auditory cortices in the retrieval of single-trial auditory-visual object memories.

    Science.gov (United States)

    Matusz, Pawel J; Thelen, Antonia; Amrein, Sarah; Geiser, Eveline; Anken, Jacques; Murray, Micah M

    2015-03-01

    Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Emergence of auditory-visual relations from a visual-visual baseline with auditory-specific consequences in individuals with autism.

    Science.gov (United States)

    Varella, André A B; de Souza, Deisy G

    2014-07-01

    Empirical studies have demonstrated that class-specific contingencies may engender stimulus-reinforcer relations. In these studies, crossmodal relations emerged when crossmodal relations comprised the baseline, and intramodal relations emerged when intramodal relations were taught during baseline. This study investigated whether auditory-visual relations (crossmodal) would emerge after participants learned a visual-visual baseline (intramodal) with auditory stimuli presented as specific consequences. Four individuals with autism learned AB and CD relations with class-specific reinforcers. When A1 and C1 were presented as samples, the selections of B1 and D1, respectively, were followed by an edible (R1) and a sound (S1). Selections of B2 and D2 under the control of A2 and C2, respectively, were followed by R2 and S2. Probe trials tested for visual-visual AC, CA, AD, DA, BC, CB, BD, and DB emergent relations and auditory-visual SA, SB, SC, and SD emergent relations. All of the participants demonstrated the emergence of all auditory-visual relations, and three of four participants showed emergence of all visual-visual relations. Thus, the emergence of auditory-visual relations from specific auditory consequences suggests that these relations do not depend on crossmodal baseline training. The procedure has great potential for applied technology to generate auditory-visual discriminations and stimulus classes in the context of behavior-analytic interventions for autism. © Society for the Experimental Analysis of Behavior.

  14. Auditory cortex involvement in emotional learning and memory.

    Science.gov (United States)

    Grosso, A; Cambiaghi, M; Concina, G; Sacco, T; Sacchetti, B

    2015-07-23

    Emotional memories represent the core of human and animal life and drive future choices and behaviors. Early research involving brain lesion studies in animals lead to the idea that the auditory cortex participates in emotional learning by processing the sensory features of auditory stimuli paired with emotional consequences and by transmitting this information to the amygdala. Nevertheless, electrophysiological and imaging studies revealed that, following emotional experiences, the auditory cortex undergoes learning-induced changes that are highly specific, associative and long lasting. These studies suggested that the role played by the auditory cortex goes beyond stimulus elaboration and transmission. Here, we discuss three major perspectives created by these data. In particular, we analyze the possible roles of the auditory cortex in emotional learning, we examine the recruitment of the auditory cortex during early and late memory trace encoding, and finally we consider the functional interplay between the auditory cortex and subcortical nuclei, such as the amygdala, that process affective information. We conclude that, starting from the early phase of memory encoding, the auditory cortex has a more prominent role in emotional learning, through its connections with subcortical nuclei, than is typically acknowledged. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Experiences of Fatigue at Sea

    DEFF Research Database (Denmark)

    Zhao, Zhiwei; Jepsen, Jørgen Riis; Chen, Zhonglong

    2016-01-01

    Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T-test t......-test to compare strata of seafarers to analyse work and sleep patterns in global seafaring. Qualitative analysis are also employed to explore the impacts of fatigue on seafarer’s occupational health and safety.......Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T...

  16. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  17. Auditory cortical processing in real-world listening: the auditory system going real.

    Science.gov (United States)

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  18. Adrenal Fatigue

    Science.gov (United States)

    ... Search Featured Resource New Mobile App DOWNLOAD Adrenal Fatigue October 2017 Download PDFs English Editors Irina Bancos, MD Additional Resources Mayo Clinic What is adrenal fatigue? The term “adrenal fatigue” has been used to ...

  19. Neuromuscular fatigue during exercise: Methodological considerations, etiology and potential role in chronic fatigue.

    Science.gov (United States)

    Twomey, Rosie; Aboodarda, Saied Jalal; Kruger, Renata; Culos-Reed, Susan Nicole; Temesi, John; Millet, Guillaume Y

    2017-04-01

    The term fatigue is used to describe a distressing and persistent symptom of physical and/or mental tiredness in certain clinical populations, with distinct but ultimately complex, multifactorial and heterogenous pathophysiology. Chronic fatigue impacts on quality of life, reduces the capacity to perform activities of daily living, and is typically measured using subjective self-report tools. Fatigue also refers to an acute reduction in the ability to produce maximal force or power due to exercise. The classical measurement of exercise-induced fatigue involves neuromuscular assessments before and after a fatiguing task. The limitations and alternatives to this approach are reviewed in this paper in relation to the lower limb and whole-body exercise, given the functional relevance to locomotion, rehabilitation and activities of daily living. It is suggested that under some circumstances, alterations in the central and/or peripheral mechanisms of fatigue during exercise may be related to the sensations of chronic fatigue. As such, the neurophysiological correlates of exercise-induced fatigue are briefly examined in two clinical examples where chronic fatigue is common: cancer survivors and people with multiple sclerosis. This review highlights the relationship between objective measures of fatigability with whole-body exercise and perceptions of fatigue as a priority for future research, given the importance of exercise in relieving symptoms of chronic fatigue and/or overall disease management. As chronic fatigue is likely to be specific to the individual and unlikely to be due to a simple biological or psychosocial explanation, tailored exercise programmes are a potential target for therapeutic intervention. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Kroon, I. B.

    1993-01-01

    life experiments for the same purpose. The methodology is basedon modern probabilistic concepts amd classical decision theory. The special case where the fatigue life experiments are given in terms of SN curves is considered in Particular. The proposed techniques are illustrated by an example.......This paper considers the reassessment of the reliability of tubular joints subjected to fatigue load. The reassessment is considered in two parts namely the task of utilizing new experimental data on fatigue life to update the reliability of the tubular joint ant the task of planning new fatigue...

  1. Fatigue-Arrestor Bolts

    Science.gov (United States)

    Onstott, Joseph W.; Gilster, Mark; Rodriguez, Sergio; Larson, John E.; Wickham, Mark D.; Schoonover, Kevin E.

    1995-01-01

    Bolts that arrest (or, more precisely, retard) onset of fatigue cracking caused by inelastic strains developed. Specifically developed to be installed in flange holes of unrestrained rocket engine nozzle. Fanges sometimes used to bolt nozzle to test stand; however, when rocket engine operated without this restraint, region around bolt holes experience severe inelastic strains causing fatigue cracking. Interference fits introduce compressive preloads that retard fatigue by reducing ranges of strains. Principle of these fatigue-arrestor bolts also applicable to holes in plates made of other materials and/or used for different purposes.

  2. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  3. Tinnitus alters resting state functional connectivity (RSFC in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS.

    Directory of Open Access Journals (Sweden)

    Juan San Juan

    Full Text Available Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex and non-region of interest (adjacent non-auditory cortices and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz, broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to

  4. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  5. Auditory Neuropathy

    Science.gov (United States)

    ... children and adults with auditory neuropathy. Cochlear implants (electronic devices that compensate for damaged or nonworking parts ... and Drug Administration: Information on Cochlear Implants Telecommunications Relay Services Your Baby's Hearing Screening News Deaf health ...

  6. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  7. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  8. Auditory and visual memory in musicians and nonmusicians.

    Science.gov (United States)

    Cohen, Michael A; Evans, Karla K; Horowitz, Todd S; Wolfe, Jeremy M

    2011-06-01

    Numerous studies have shown that musicians outperform nonmusicians on a variety of tasks. Here we provide the first evidence that musicians have superior auditory recognition memory for both musical and nonmusical stimuli, compared to nonmusicians. However, this advantage did not generalize to the visual domain. Previously, we showed that auditory recognition memory is inferior to visual recognition memory. Would this be true even for trained musicians? We compared auditory and visual memory in musicians and nonmusicians using familiar music, spoken English, and visual objects. For both groups, memory for the auditory stimuli was inferior to memory for the visual objects. Thus, although considerable musical training is associated with better musical and nonmusical auditory memory, it does not increase the ability to remember sounds to the levels found with visual stimuli. This suggests a fundamental capacity difference between auditory and visual recognition memory, with a persistent advantage for the visual domain.

  9. Auditory hallucinations and PTSD in ex-POWS

    DEFF Research Database (Denmark)

    Crompton, Laura; Lahav, Yael; Solomon, Zahava

    2017-01-01

    (PTSD) symptoms, over time. Former prisoners of war (ex-POWs) from the 1973 Yom Kippur War (n = 99) with and without PTSD and comparable veterans (n = 103) were assessed twice, in 1991 (T1) and 2003 (T2) in regard to auditory hallucinations and PTSD symptoms. Findings indicated that ex-POWs who suffered...... from PTSD reported higher levels of auditory hallucinations at T2 as well as increased hallucinations over time, compared to ex-POWs without PTSD and combatants who did not endure captivity. The relation between PTSD and auditory hallucinations was unidirectional, so that the PTSD overall score at T1...... predicted an increase in auditory hallucinations between T1 and T2, but not vice versa. Assessing the role of PTSD clusters in predicting hallucinations revealed that intrusion symptoms had a unique contribution, compared to avoidance and hyperarousal symptoms. The findings suggest that auditory...

  10. Application of a unified fatigue modelling to some thermomechanical fatigue problems

    International Nuclear Information System (INIS)

    Dang, K. van; Maitournam, H.; Moumni, Z.

    2005-01-01

    Fatigue under thermomechanical loadings is an important topic for nuclear industries. For instance, thermal fatigue cracking is observed in the mixing zones of the nuclear reactor. Classical computations using existing methods based on strain amplitude or fracture mechanics are not sufficiently predictive. In this paper an alternative approach is proposed based on a multiscale modelling thanks to shakedown hypothesis. Examples of predictive results are presented. Finally an application to the RHR problem is discussed. Main ideas of the fatigue modelling: Following an idea of Professor D. Drucker who wrote in 1963 'when applied to the microstructure there is a hope that the concept of endurance limit and shakedown are related, and that fatigue failure can be related to energy dissipated in idealized material when shakedown does not occur.' we have developed a theory of fatigue based on this concept which is different from classical fatigue approaches. Many predictive applications have been already done particularly for the automotive industry. Fatigue resistance of structures undergoing thermomechanical loadings in the high cycle regime as well as in the low cycle regime are calculated using this modelling. However, this fatigue theory is until now rarely used in nuclear engineering. After recalling the main points of the theory, we shall present some relevant applications which were done in different industrial sectors. We shall apply this modelling to the prediction of thermal cracking observed in the mixing zones of RHR. (authors)

  11. Functional mapping of the primate auditory system.

    Science.gov (United States)

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  12. Auditory recognition memory is inferior to visual recognition memory.

    Science.gov (United States)

    Cohen, Michael A; Horowitz, Todd S; Wolfe, Jeremy M

    2009-04-07

    Visual memory for scenes is surprisingly robust. We wished to examine whether an analogous ability exists in the auditory domain. Participants listened to a variety of sound clips and were tested on their ability to distinguish old from new clips. Stimuli ranged from complex auditory scenes (e.g., talking in a pool hall) to isolated auditory objects (e.g., a dog barking) to music. In some conditions, additional information was provided to help participants with encoding. In every situation, however, auditory memory proved to be systematically inferior to visual memory. This suggests that there exists either a fundamental difference between auditory and visual stimuli, or, more plausibly, an asymmetry between auditory and visual processing.

  13. Fatigue Reliability and Calibration of Fatigue Design Factors for Offshore Wind Turbines

    Directory of Open Access Journals (Sweden)

    Sergio Márquez-Domínguez

    2012-06-01

    Full Text Available Consequences of failure of offshore wind turbines (OWTs is in general lower than consequences of failure of, e.g., oil & gas platforms. It is reasonable that lower fatigue design factors can be applied for fatigue design of OWTs when compared to other fixed offshore structures. Calibration of appropriate partial safety factors/Fatigue Design Factors (FDF for steel substructures for OWTs is the scope of this paper. A reliability-based approach is used and a probabilistic model has been developed, where design and limit state equations are established for fatigue failure. The strength and load uncertainties are described by stochastic variables. SN and fracture mechanics approaches are considered for to model the fatigue life. Further, both linear and bi-linear SN-curves are formulated and various approximations are investigated. The acceptable reliability level for fatigue failure of OWTs is discussed and results are presented for calibrated optimal fatigue design factors. Further, the influence of inspections is considered in order to extend and maintain a given target safety level.

  14. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  15. Reduced auditory efferent activity in childhood selective mutism.

    Science.gov (United States)

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  16. The effects of divided attention on auditory priming.

    Science.gov (United States)

    Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W

    2007-09-01

    Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.

  17. Random non-proportional fatigue tests with planar tri-axial fatigue testing machine

    OpenAIRE

    Inoue, T.; Nagao, R.; Takeda, N.

    2016-01-01

    Complex stresses, which occur on the mechanical surfaces of transport machinery in service, bring a drastic degradation in fatigue life. However, it is hard to reproduce such complex stress states for evaluating the fatigue life with conventional multiaxial fatigue machines. We have developed a fatigue testing machine that enables reproduction of such complex stresses. The testing machine can reproduce arbitrary in-plane stress states by applying three independent loads to the test specimen u...

  18. Auditory memory function in expert chess players.

    Science.gov (United States)

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  19. Aging increases distraction by auditory oddballs in visual, but not auditory tasks.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-05-01

    Aging is typically considered to bring a reduction of the ability to resist distraction by task-irrelevant stimuli. Yet recent work suggests that this conclusion must be qualified and that the effect of aging is mitigated by whether irrelevant and target stimuli emanate from the same modalities or from distinct ones. Some studies suggest that aging is especially sensitive to distraction within-modality while others suggest it is greater across modalities. Here we report the first study to measure the effect of aging on deviance distraction in cross-modal (auditory-visual) and uni-modal (auditory-auditory) oddball tasks. Young and older adults were asked to judge the parity of target digits (auditory or visual in distinct blocks of trials), each preceded by a task-irrelevant sound (the same tone on most trials-the standard sound-or, on rare and unpredictable trials, a burst of white noise-the deviant sound). Deviant sounds yielded distraction (longer response times relative to standard sounds) in both tasks and age groups. However, an age-related increase in distraction was observed in the cross-modal task and not in the uni-modal task. We argue that aging might affect processes involved in the switching of attention across modalities and speculate that this may due to the slowing of this type of attentional shift or a reduction in cognitive control required to re-orient attention toward the target's modality.

  20. Mediators of the effects on fatigue of pragmatic rehabilitation for chronic fatigue syndrome.

    Science.gov (United States)

    Wearden, Alison J; Emsley, Richard

    2013-10-01

    To examine potential mediators of the effect of pragmatic rehabilitation on improvements in fatigue following a randomized controlled trial for patients with chronic fatigue syndrome (CFS/ME) in primary care (IRCTN 74156610). Patients fulfilled the Oxford criteria for CFS. Ninety-five patients were randomized to pragmatic rehabilitation and 100 to general practitioner (GP) treatment as usual. The outcome was the Chalder fatigue scale score (0123 scoring) at end of treatment (20 weeks) and 1-year follow up (70 weeks). First, the effect of treatment on potential mediators was assessed. Then fatigue was regressed on significant mediators, treatment allocation, and baseline measures of fatigue and significant mediators. Reduction in limiting activities at 20 weeks mediated the positive effect of pragmatic rehabilitation on fatigue at 70 weeks (mediated effect size = -2.64, SE = 0.81, p = .001, proportion of effect mediated = 82.0%). Reduction in catastrophizing at 20 weeks mediated the positive effect of pragmatic rehabilitation on fatigue at 70 weeks (mediated effect size = -1.39, SE = 0.61, p = .023, proportion of effect mediated = 43.2%). Reductions in 70-week measures of fear avoidance, embarrassment avoidance, limiting activities, and all-or-nothing behavior all mediated improvement in fatigue at 70 weeks, although the causal direction of these cross-sectional effects cannot be determined. There were no between-group differences on measures of exercise capacity (a timed step test). Improvements in fatigue following pragmatic rehabilitation are related to changes in behavioral responses to and beliefs about fatigue.

  1. MODELS OF FATIGUE LIFE CURVES IN FATIGUE LIFE CALCULATIONS OF MACHINE ELEMENTS – EXAMPLES OF RESEARCH

    Directory of Open Access Journals (Sweden)

    Grzegorz SZALA

    2014-03-01

    Full Text Available In the paper there was attempted to analyse models of fatigue life curves possible to apply in calculations of fatigue life of machine elements. The analysis was limited to fatigue life curves in stress approach enabling cyclic stresses from the range of low cycle fatigue (LCF, high cycle fatigue (HCF, fatigue limit (FL and giga cycle fatigue (GCF appearing in the loading spectrum at the same time. Chosen models of the analysed fatigue live curves will be illustrated with test results of steel and aluminium alloys.

  2. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  3. Comorbidity of Auditory Processing, Language, and Reading Disorders

    Science.gov (United States)

    Sharma, Mridula; Purdy, Suzanne C.; Kelly, Andrea S.

    2009-01-01

    Purpose: The authors assessed comorbidity of auditory processing disorder (APD), language impairment (LI), and reading disorder (RD) in school-age children. Method: Children (N = 68) with suspected APD and nonverbal IQ standard scores of 80 or more were assessed using auditory, language, reading, attention, and memory measures. Auditory processing…

  4. Auditory Preferences of Young Children with and without Hearing Loss for Meaningful Auditory-Visual Compound Stimuli

    Science.gov (United States)

    Zupan, Barbra; Sussman, Joan E.

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both…

  5. [Research Progress on the Interaction Effects and Its Neural Mechanisms between Physical Fatigue and Mental Fatigue].

    Science.gov (United States)

    Zhang, Lixin; Zhang, Chuncui; He, Feng; Zhao, Xin; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2015-10-01

    Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring.

  6. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  7. Cross-modal processing in auditory and visual working memory.

    Science.gov (United States)

    Suchan, Boris; Linnewerth, Britta; Köster, Odo; Daum, Irene; Schmid, Gebhard

    2006-02-01

    This study aimed to further explore processing of auditory and visual stimuli in working memory. Smith and Jonides (1997) [Smith, E.E., Jonides, J., 1997. Working memory: A view from neuroimaging. Cogn. Psychol. 33, 5-42] described a modified working memory model in which visual input is automatically transformed into a phonological code. To study this process, auditory and the corresponding visual stimuli were presented in a variant of the 2-back task which involved changes from the auditory to the visual modality and vice versa. Brain activation patterns underlying visual and auditory processing as well as transformation mechanisms were analyzed. Results yielded a significant activation in the left primary auditory cortex associated with transformation of visual into auditory information which reflects the matching and recoding of a stored item and its modality. This finding yields empirical evidence for a transformation of visual input into a phonological code, with the auditory cortex as the neural correlate of the recoding process in working memory.

  8. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  9. Chemotherapy-Induced Fatigue Correlates With Higher Fatigue Scores Before Treatment.

    Science.gov (United States)

    Araújo, José Klerton Luz; Giglio, Adriana Del; Munhoz, Bruna Antenusse; Fonseca, Fernando Luiz Affonso; Cruz, Felipe Melo; Giglio, Auro Del

    2017-06-01

    Cancer chemotherapy can induce fatigue in about 20% to 30% of patients. So far, there is very little information as to the predictors of chemotherapy-induced fatigue (CIF). We evaluated potential predictors of CIF in a sample of patients with cancer with several types of solid tumors scheduled to receive chemotherapy according to institutional protocols. Before their first and second chemotherapy cycles, patients answered to the Brief Fatigue Inventory (BFI), Chalder, Mini Nutritional Assessment (MNA), Stress thermometer, and HADS questionnaires as well as provided blood samples for inflammatory markers. We evaluated 52 patients, 37 (71%) were female and mean age was 53 years. The most common tumors were breast cancer 21 (40%) and gastrointestinal tumors 12 (23%). Although 14 (25.2%) patients had an increase in their fatigue BFI scores equal or above 3 points from baseline, we observed no significant overall differences between BFI scores before and after chemotherapy. The only 2 factors associated with an increase of 3 points in the BFI scores after chemotherapy were race and higher baseline BFI levels. By multivariate analysis, overall BFI and Chalder scores after chemotherapy also correlated significantly with their respective baseline scores before treatment. HADS scores before treatment correlated with overall BFI scores postchemotherapy, whereas MNA scores before chemotherapy and female sex correlated with higher Chalder scores after treatment. We conclude that fatigue induced by chemotherapy is common and consistently associated with higher fatigue scores before treatment. Screening for fatigue before chemotherapy may help to identify patients who are prone to develop CIF.

  10. Modafinil May Alleviate Poststroke Fatigue

    DEFF Research Database (Denmark)

    Poulsen, Mai Bang; Damgaard, Bodil; Zerahn, Bo

    2015-01-01

    was randomized, double-blinded, and placebo-controlled. Patients were treated with 400-mg modafinil or placebo for 90 days. Assessments were done at inclusion, 30, 90, and 180 days. The primary end point was fatigue at 90 days measured by the Multidimensional Fatigue Inventory-20 general fatigue domain......BACKGROUND AND PURPOSE: Poststroke fatigue is common and reduces quality of life. Current evidence for intervention is limited, and this is the first placebo-controlled trial to investigate treatment of poststroke fatigue with the wakefulness promoting drug modafinil. METHODS: The trial....... Secondary end points included the Fatigue Severity Scale, the Montreal Cognitive Assessment, the modified Rankin Scale and the Stroke-specific quality of Life questionnaire. Adult patients with a recent stroke achieving a score of ≥12 on the Multidimensional Fatigue Inventory-20 general fatigue domain were...

  11. Auditory/visual distance estimation: accuracy and variability

    Directory of Open Access Journals (Sweden)

    Paul Wallace Anderson

    2014-10-01

    Full Text Available Past research has shown that auditory distance estimation improves when listeners are given the opportunity to see all possible sound sources when compared to no visual input. It has also been established that distance estimation is more accurate in vision than in audition. The present study investigates the degree to which auditory distance estimation is improved when matched with a congruent visual stimulus. Virtual sound sources based on binaural room impulse response (BRIR measurements made from distances ranging from approximately 0.3 to 9.8 m in a concert hall were used as auditory stimuli. Visual stimuli were photographs taken from the listener’s perspective at each distance in the impulse response measurement setup presented on a large HDTV monitor. Listeners were asked to estimate egocentric distance to the sound source in each of three conditions: auditory only (A, visual only (V, and congruent auditory/visual stimuli (A+V. Each condition was presented within its own block. Sixty-two listeners were tested in order to quantify the response variability inherent in auditory distance perception. Distance estimates from both the V and A+V conditions were found to be considerably more accurate and less variable than estimates from the A condition.

  12. Auditory Hypersensitivity in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Lucker, Jay R.

    2013-01-01

    A review of records was completed to determine whether children with auditory hypersensitivities have difficulty tolerating loud sounds due to auditory-system factors or some other factors not directly involving the auditory system. Records of 150 children identified as not meeting autism spectrum disorders (ASD) criteria and another 50 meeting…

  13. The effect of creep cavitation on the fatigue life under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Nam, S.W.

    1995-01-01

    Low cycle fatigue tests have been carried out with three different materials (1Cr-Mo-V steel, 12Cr-Mo-V steel and 304 stainless steel) for the investigation of the effect of surface roughness on the fatigue life. To see the effect systematically, we have chosen those materials which may or may not form grain boundary cavities.Test results show that the continuous fatigue life of 1Cr-Mo-V steel and aged 304 stainless steel with a rough surface is decreased compared with that of the specimens with a smooth surface. These two alloys are found to have no grain boundary cavities formed under creep-fatigue test conditions. On the contrary, the fatigue life of 12Cr-Mo-V steel and solutionized 304 stainless steel in which grain boundary cavities are formed under creep-fatigue test conditions is not influenced by the states of surface roughness.The characteristic test results strongly confirm that the fatigue life of the specimen under creep-fatigue interaction, during which creep cavities are forming, may be controlled by the cavity nucleation and growth processes rather than the process of surface crack initiation. ((orig.))

  14. Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism.

    Science.gov (United States)

    Louwerens, Marloes; Appelhof, Bente C; Verloop, Herman; Medici, Marco; Peeters, Robin P; Visser, Theo J; Boelen, Anita; Fliers, Eric; Smit, Johannes W A; Dekkers, Olaf M

    2012-12-01

    Research on determinants of well-being in patients on thyroid hormone replacement therapy is warranted, as persistent fatigue-related complaints are common in this population. In this study, we evaluated the impact of different states of hypothyroidism on fatigue and fatigue-related symptoms. Furthermore, the relationship between fatigue and the TSH receptor (TSHR)-Asp727Glu polymorphism, a common genetic variant of the TSHR, was analyzed. A cross-sectional study was performed in 278 patients (140 patients treated for differentiated thyroid carcinoma (DTC) and 138 with autoimmune hypothyroidism (AIH)) genotyped for the TSHR-Asp727Glu polymorphism. The multidimensional fatigue inventory (MFI-20) was used to assess fatigue, with higher MFI-20 scores indicating more fatigue-related complaints. MFI-20 scores were related to disease status and Asp727Glu polymorphism status. AIH patients scored significantly higher than DTC patients on all five MFI-20 subscales (P<0.001), independent of clinical and thyroid hormone parameters. The frequency of the TSHR-Glu727 allele was 7.2%. Heterozygous DTC patients had more favorable MFI-20 scores than wild-type DTC patients on four of five subscales. The modest effect of the TSHR-Asp727Glu polymorphism on fatigue was found in DTC patients only. AIH patients had significantly higher levels of fatigue compared with DTC patients, which could not be attributed to clinical or thyroid hormone parameters. The modest effect of the TSHR-Asp727Glu polymorphism on fatigue in DTC patients should be confirmed in other cohorts.

  15. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high......When an early wall reflection is added to a direct sound, a spectral modulation is introduced to the signal's power spectrum. This spectral modulation typically produces an auditory sensation of coloration or pitch. Throughout this study, auditory spectral-integration effects involved in coloration...... detection are investigated. Coloration detection thresholds were therefore measured as a function of reflection delay and stimulus bandwidth. In order to investigate the involved auditory mechanisms, an auditory model was employed that was conceptually similar to the peripheral weighting model [Yost, JASA...

  16. Auditory temporal processing skills in musicians with dyslexia.

    Science.gov (United States)

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations.

    Science.gov (United States)

    Ćurčić-Blake, Branislava; Ford, Judith M; Hubl, Daniela; Orlov, Natasza D; Sommer, Iris E; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W; David, Olivier; Mulert, Christoph; Woodward, Todd S; Aleman, André

    2017-01-01

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Auditory memory can be object based.

    Science.gov (United States)

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  19. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    Directory of Open Access Journals (Sweden)

    Francisco Jose Alvarez

    Full Text Available Hypoxia-ischemia (HI is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets.Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs of newborn piglets exposed to acute hypoxia/ischemia (n = 6 and a control group with no such exposure (n = 10. ABRs were recorded for both ears before the start of the experiment (baseline, after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury.Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant.The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  20. Auditory short-term memory activation during score reading.

    Science.gov (United States)

    Simoens, Veerle L; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.

  1. Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals

    Science.gov (United States)

    Okazaki, Yoshimitsu

    2012-01-01

    The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK) than Ti alloy.

  2. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  3. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  4. Is the auditory sensory memory sensitive to visual information?

    Science.gov (United States)

    Besle, Julien; Fort, Alexandra; Giard, Marie-Hélène

    2005-10-01

    The mismatch negativity (MMN) component of auditory event-related brain potentials can be used as a probe to study the representation of sounds in auditory sensory memory (ASM). Yet it has been shown that an auditory MMN can also be elicited by an illusory auditory deviance induced by visual changes. This suggests that some visual information may be encoded in ASM and is accessible to the auditory MMN process. It is not known, however, whether visual information affects ASM representation for any audiovisual event or whether this phenomenon is limited to specific domains in which strong audiovisual illusions occur. To highlight this issue, we have compared the topographies of MMNs elicited by non-speech audiovisual stimuli deviating from audiovisual standards on the visual, the auditory, or both dimensions. Contrary to what occurs with audiovisual illusions, each unimodal deviant elicited sensory-specific MMNs, and the MMN to audiovisual deviants included both sensory components. The visual MMN was, however, different from a genuine visual MMN obtained in a visual-only control oddball paradigm, suggesting that auditory and visual information interacts before the MMN process occurs. Furthermore, the MMN to audiovisual deviants was significantly different from the sum of the two sensory-specific MMNs, showing that the processes of visual and auditory change detection are not completely independent.

  5. Biological impact of music and software-based auditory training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based training can improve these biological signals. These findings of biological plasticity, in a variety of subject populations, relate to attention and auditory memory, and represent an integrated auditory system influenced by both sensation and cognition. Learning outcomes The reader will (1) understand that the auditory system is malleable to experience and training, (2) learn the ingredients necessary for auditory learning to successfully be applied to communication, (3) learn that the auditory brainstem response to complex sounds (cABR) is a window into the integrated auditory system, and (4) see examples of how cABR can be used to track the outcome of experience and training. PMID:22789822

  6. Visual form predictions facilitate auditory processing at the N1.

    Science.gov (United States)

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2017-02-20

    Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.

  7. [Epidemiology of fatigue in general practice].

    Science.gov (United States)

    Fuhrer, R

    1994-11-01

    The epidemiology of fatigue is not well known in France, and this study reports on factors associated with fatigue in a sample of 3,784 general practice patients. Prevalence rates according to several definitions of fatigue are presented and factors are examined that have been reported to be associated with fatigue. Although 41.2% of the sample report having experienced symptoms of fatigue for at least three days, only 7.6% declare fatigue as a reason for consulting a doctor. Women report more symptoms of fatigue, but they do not consult more often than men for this reason. Age is strongly correlated with fatigue, but this is found only for men. Socioprofessional category bears no relationship to fatigue as a reason for consultation, however, the diagnosis of fatigue is more often attributed to professionals and upper management than it is to office staff or skilled and unskilled workers. We do find a strong relationship between depressive symptomatology as measured by the Center for Epidemiologic Studies (CES-D) and fatigue; nonetheless, fatigue is neither sensitive nor specific to the diagnosis of depression.

  8. Temporal expectation weights visual signals over auditory signals.

    Science.gov (United States)

    Menceloglu, Melisa; Grabowecky, Marcia; Suzuki, Satoru

    2017-04-01

    Temporal expectation is a process by which people use temporally structured sensory information to explicitly or implicitly predict the onset and/or the duration of future events. Because timing plays a critical role in crossmodal interactions, we investigated how temporal expectation influenced auditory-visual interaction, using an auditory-visual crossmodal congruity effect as a measure of crossmodal interaction. For auditory identification, an incongruent visual stimulus produced stronger interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. In contrast, for visual identification, an incongruent auditory stimulus produced weaker interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. The fact that temporal expectation made visual distractors more potent and visual targets less susceptible to auditory interference suggests that temporal expectation increases the perceptual weight of visual signals.

  9. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    Science.gov (United States)

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  10. Effects of sequential streaming on auditory masking using psychoacoustics and auditory evoked potentials.

    Science.gov (United States)

    Verhey, Jesko L; Ernst, Stephan M A; Yasin, Ifat

    2012-03-01

    The present study was aimed at investigating the relationship between the mismatch negativity (MMN) and psychoacoustical effects of sequential streaming on comodulation masking release (CMR). The influence of sequential streaming on CMR was investigated using a psychoacoustical alternative forced-choice procedure and electroencephalography (EEG) for the same group of subjects. The psychoacoustical data showed, that adding precursors comprising of only off-signal-frequency maskers abolished the CMR. Complementary EEG data showed an MMN irrespective of the masker envelope correlation across frequency when only the off-signal-frequency masker components were present. The addition of such precursors promotes a separation of the on- and off-frequency masker components into distinct auditory objects preventing the auditory system from using comodulation as an additional cue. A frequency-specific adaptation changing the representation of the flanking bands in the streaming conditions may also contribute to the reduction of CMR in the stream conditions, however, it is unlikely that adaptation is the primary reason for the streaming effect. A neurophysiological correlate of sequential streaming was found in EEG data using MMN, but the magnitude of the MMN was not correlated with the audibility of the signal in CMR experiments. Dipole source analysis indicated different cortical regions involved in processing auditory streaming and modulation detection. In particular, neural sources for processing auditory streaming include cortical regions involved in decision-making. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Prolonged unexplained fatigue in paediatrics

    NARCIS (Netherlands)

    Bakker, R.J.

    2010-01-01

    Prolonged Unexplained Fatigue in Paediatrics. Fatigue, as the result of mental or physical exertion, will disappear after rest, drinks and food. Fatigue as a symptom of illness will recover with the recovering of the illness. But when fatigue is ongoing for a long time, and not the result of

  12. Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator.

    Science.gov (United States)

    Jagannath, M; Balasubramanian, Venkatesh

    2014-07-01

    Driver fatigue is an important contributor to road accidents. This paper reports a study that evaluated driver fatigue using multimodal fatigue measures, i.e., surface electromyography (sEMG), electroencephalography (EEG), seat interface pressure, blood pressure, heart rate and oxygen saturation level. Twenty male participants volunteered in this study by performing 60 min of driving on a static simulator. Results from sEMG showed significant physical fatiguefatigue. This will help us understand the influence of physical and mental fatigue on driver during monotonous driving. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Effect of omega-3 on auditory system

    Directory of Open Access Journals (Sweden)

    Vida Rahimi

    2014-01-01

    Full Text Available Background and Aim: Omega-3 fatty acid have structural and biological roles in the body 's various systems . Numerous studies have tried to research about it. Auditory system is affected a s well. The aim of this article was to review the researches about the effect of omega-3 on auditory system.Methods: We searched Medline , Google Scholar, PubMed, Cochrane Library and SID search engines with the "auditory" and "omega-3" keywords and read textbooks about this subject between 19 70 and 20 13.Conclusion: Both excess and deficient amounts of dietary omega-3 fatty acid can cause harmful effects on fetal and infant growth and development of brain and central nervous system esspesially auditory system. It is important to determine the adequate dosage of omega-3.

  14. Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism

    NARCIS (Netherlands)

    Louwerens, M.; Appelhof, B.C.; Verloop, H.; Medici, M.; Peeters, R.P.; Visser, T.J.; Boelen, A.; Fliers, E.; Smit, J.W.A.; Dekkers, O.M.

    2012-01-01

    OBJECTIVE: Research on determinants of well-being in patients on thyroid hormone replacement therapy is warranted, as persistent fatigue-related complaints are common in this population. In this study, we evaluated the impact of different states of hypothyroidism on fatigue and fatigue-related

  15. Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism

    NARCIS (Netherlands)

    Louwerens, Marloes; Appelhof, Bente C.; Verloop, Herman; Medici, Marco; Peeters, Robin P.; Visser, Theo J.; Boelen, Anita; Fliers, Eric; Smit, Johannes W. A.; Dekkers, Olaf M.

    2012-01-01

    Objective: Research on determinants of well-being in patients on thyroid hormone replacement therapy is warranted, as persistent fatigue-related complaints are common in this population. In this study, we evaluated the impact of different states of hypothyroidism on fatigue and fatigue-related

  16. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  17. Facilitated auditory detection for speech sounds

    Directory of Open Access Journals (Sweden)

    Carine eSignoret

    2011-07-01

    Full Text Available If it is well known that knowledge facilitates higher cognitive functions, such as visual and auditory word recognition, little is known about the influence of knowledge on detection, particularly in the auditory modality. Our study tested the influence of phonological and lexical knowledge on auditory detection. Words, pseudo words and complex non phonological sounds, energetically matched as closely as possible, were presented at a range of presentation levels from sub threshold to clearly audible. The participants performed a detection task (Experiments 1 and 2 that was followed by a two alternative forced choice recognition task in Experiment 2. The results of this second task in Experiment 2 suggest a correct recognition of words in the absence of detection with a subjective threshold approach. In the detection task of both experiments, phonological stimuli (words and pseudo words were better detected than non phonological stimuli (complex sounds, presented close to the auditory threshold. This finding suggests an advantage of speech for signal detection. An additional advantage of words over pseudo words was observed in Experiment 2, suggesting that lexical knowledge could also improve auditory detection when listeners had to recognize the stimulus in a subsequent task. Two simulations of detection performance performed on the sound signals confirmed that the advantage of speech over non speech processing could not be attributed to energetic differences in the stimuli.

  18. Musical experience, auditory perception and reading-related skills in children.

    Science.gov (United States)

    Banai, Karen; Ahissar, Merav

    2013-01-01

    The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Participants' previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less likely to study music and if so, why this is the case.

  19. Musical experience, auditory perception and reading-related skills in children.

    Directory of Open Access Journals (Sweden)

    Karen Banai

    Full Text Available BACKGROUND: The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. METHODOLOGY/PRINCIPAL FINDINGS: Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. CONCLUSIONS/SIGNIFICANCE: Participants' previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and

  20. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex.

    Directory of Open Access Journals (Sweden)

    Elsa van der Loo

    Full Text Available BACKGROUND: Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. METHODS AND FINDINGS: In unilateral tinnitus patients (N = 15; 10 right, 5 left source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05. CONCLUSION: Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception.

  1. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  2. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  3. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of lo...... of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem. J. Comp. Neurol. 520:17841799, 2012. (C) 2011 Wiley Periodicals, Inc...

  4. Hyperthermia and fatigue

    DEFF Research Database (Denmark)

    Nybo, Lars

    2008-01-01

    The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is to a large extent related to perturbation...... of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise...... in the heat, because increased oxygen extraction compensates for the reduction in systemic blood flow. The decrease in endurance seems to involve changes in the function of the central nervous system (CNS) that lead to fatigue. The CNS fatigue appears to be influenced by neurotransmitter activity...

  5. Fatigue Experiences Among OCD Outpatients.

    Science.gov (United States)

    Pasquini, Massimo; Piacentino, Daria; Berardelli, Isabella; Roselli, Valentina; Maraone, Annalisa; Tarsitani, Lorenzo; Biondi, Massimo

    2015-12-01

    Patients with OCD are impaired in multiple domains of functioning and quality of life. While associated psychopathology complaints and neuropsychological deficits were reported, the subjective experience of general fatigue and mental fatigue was scarcely investigated. In this single-center case-control study we compared 50 non-depressed OCD outpatients consecutively recruited and 50 panic disorder (PD) outpatients, to determine whether they experienced fatigue differently. Assessment consisted of structured clinical interview for DSM-IV criteria by using the SCID-I and the SCID-II. Symptom severity was assessed using the Yale-Brown Obsessive-Compulsive Scale, the Hamilton Anxiety Rating Scale, the Hamilton Depression Rating Scale, the Clinical Global Impressions Scale, severity and the Global Assessment of Functioning Scale. Fatigue was assessed by using the Multidimensional Fatigue Inventory (MFI). Regarding MFI physical fatigue, an OR of 0.196 (95 % CI 0.080-0.478) was found, suggesting that its presence is associated with lower odds of OCD compared to PD. The same can be said for MFI mental fatigue, as an OR of 0.138 (95 % CI 0.049-0.326) was found, suggesting that its presence is associated with lower odds of OCD. Notably, OCD patients with OCDP co-morbidity reported higher scores of mental fatigue. In this study fatigue, including mental fatigue, seems not to be a prominent experience among adult non-depressed OCD patients.

  6. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  7. Fatigue Crack Topography.

    Science.gov (United States)

    1984-01-01

    alloys (2). [--I Fig. 6. Fatigue fracture in Nitrile- butadien rubber ( NBR ). Fig. 7. The characteristic features of fatigue fracture in press moulded...in plastics and even in rubber . It follows therefore, that fatigue fractures must also occur in the mineral layers of our earth or in the rock on...effective until the weakest point yields and forms a crack. To get a feeling for this process, you can imagine that the stressed article is made of rubber

  8. Attention, awareness, and the perception of auditory scenes

    Directory of Open Access Journals (Sweden)

    Joel S Snyder

    2012-02-01

    Full Text Available Auditory perception and cognition entails both low-level and high-level processes, which are likely to interact with each other to create our rich conscious experience of soundscapes. Recent research that we review has revealed numerous influences of high-level factors, such as attention, intention, and prior experience, on conscious auditory perception. And recently, studies have shown that auditory scene analysis tasks can exhibit multistability in a manner very similar to ambiguous visual stimuli, presenting a unique opportunity to study neural correlates of auditory awareness and the extent to which mechanisms of perception are shared across sensory modalities. Research has also led to a growing number of techniques through which auditory perception can be manipulated and even completely suppressed. Such findings have important consequences for our understanding of the mechanisms of perception and also should allow scientists to precisely distinguish the influences of different higher-level influences.

  9. Stress management skills, neuroimmune processes and fatigue levels in persons with chronic fatigue syndrome.

    Science.gov (United States)

    Lattie, Emily G; Antoni, Michael H; Fletcher, Mary Ann; Penedo, Frank; Czaja, Sara; Lopez, Corina; Perdomo, Dolores; Sala, Andreina; Nair, Sankaran; Fu, Shih Hua; Klimas, Nancy

    2012-08-01

    Stressors and emotional distress responses impact chronic fatigue syndrome (CFS) symptoms, including fatigue. Having better stress management skills might mitigate fatigue by decreasing emotional distress. Because CFS patients comprise a heterogeneous population, we hypothesized that the role of stress management skills in decreasing fatigue may be most pronounced in the subgroup manifesting the greatest neuroimmune dysfunction. In total, 117 individuals with CFS provided blood and saliva samples, and self-report measures of emotional distress, perceived stress management skills (PSMS), and fatigue. Plasma interleukin-1-beta (IL-1β, IL-2, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α), and diurnal salivary cortisol were analyzed. We examined relations among PSMS, emotional distress, and fatigue in CFS patients who did and did not evidence neuroimmune abnormalities. Having greater PSMS related to less fatigue (p=.019) and emotional distress (pfatigue levels most strongly in CFS patients in the top tercile of IL-6, and emotional distress mediated the relationship between PSMS and fatigue most strongly in patients with the greatest circulating levels of IL-6 and a greater inflammatory (IL-6):anti-inflammatory (IL-10) cytokine ratio. CFS patients having greater PSMS show less emotional distress and fatigue, and the influence of stress management skills on distress and fatigue appear greatest among patients who have elevated IL-6 levels. These findings support the need for research examining the impact of stress management interventions in subgroups of CFS patients showing neuroimmune dysfunction. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, Antoine; Gourdin, Cedric [DM2S/SEMT/LISN, Gif sur Yvette (France); Vincent, Ludovic [DMN/SRMA/LCD, Gif sur Yvette (France)

    2009-07-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  11. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    International Nuclear Information System (INIS)

    Fissolo, Antoine; Gourdin, Cedric; Vincent, Ludovic

    2009-01-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  12. A deafening flash! Visual interference of auditory signal detection.

    Science.gov (United States)

    Fassnidge, Christopher; Cecconi Marcotti, Claudia; Freeman, Elliot

    2017-03-01

    In some people, visual stimulation evokes auditory sensations. How prevalent and how perceptually real is this? 22% of our neurotypical adult participants responded 'Yes' when asked whether they heard faint sounds accompanying flash stimuli, and showed significantly better ability to discriminate visual 'Morse-code' sequences. This benefit might arise from an ability to recode visual signals as sounds, thus taking advantage of superior temporal acuity of audition. In support of this, those who showed better visual relative to auditory sequence discrimination also had poorer auditory detection in the presence of uninformative visual flashes, though this was independent of awareness of visually-evoked sounds. Thus a visually-evoked auditory representation may occur subliminally and disrupt detection of real auditory signals. The frequent natural correlation between visual and auditory stimuli might explain the surprising prevalence of this phenomenon. Overall, our results suggest that learned correspondences between strongly correlated modalities may provide a precursor for some synaesthetic abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A Neural Circuit for Auditory Dominance over Visual Perception.

    Science.gov (United States)

    Song, You-Hyang; Kim, Jae-Hyun; Jeong, Hye-Won; Choi, Ilsong; Jeong, Daun; Kim, Kwansoo; Lee, Seung-Hee

    2017-02-22

    When conflicts occur during integration of visual and auditory information, one modality often dominates the other, but the underlying neural circuit mechanism remains unclear. Using auditory-visual discrimination tasks for head-fixed mice, we found that audition dominates vision in a process mediated by interaction between inputs from the primary visual (VC) and auditory (AC) cortices in the posterior parietal cortex (PTLp). Co-activation of the VC and AC suppresses VC-induced PTLp responses, leaving AC-induced responses. Furthermore, parvalbumin-positive (PV+) interneurons in the PTLp mainly receive AC inputs, and muscimol inactivation of the PTLp or optogenetic inhibition of its PV+ neurons abolishes auditory dominance in the resolution of cross-modal sensory conflicts without affecting either sensory perception. Conversely, optogenetic activation of PV+ neurons in the PTLp enhances the auditory dominance. Thus, our results demonstrate that AC input-specific feedforward inhibition of VC inputs in the PTLp is responsible for the auditory dominance during cross-modal integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Absence of auditory 'global interference' in autism.

    Science.gov (United States)

    Foxton, Jessica M; Stewart, Mary E; Barnard, Louise; Rodgers, Jacqui; Young, Allan H; O'Brien, Gregory; Griffiths, Timothy D

    2003-12-01

    There has been considerable recent interest in the cognitive style of individuals with Autism Spectrum Disorder (ASD). One theory, that of weak central coherence, concerns an inability to combine stimulus details into a coherent whole. Here we test this theory in the case of sound patterns, using a new definition of the details (local structure) and the coherent whole (global structure). Thirteen individuals with a diagnosis of autism or Asperger's syndrome and 15 control participants were administered auditory tests, where they were required to match local pitch direction changes between two auditory sequences. When the other local features of the sequence pairs were altered (the actual pitches and relative time points of pitch direction change), the control participants obtained lower scores compared with when these details were left unchanged. This can be attributed to interference from the global structure, defined as the combination of the local auditory details. In contrast, the participants with ASD did not obtain lower scores in the presence of such mismatches. This was attributed to the absence of interference from an auditory coherent whole. The results are consistent with the presence of abnormal interactions between local and global auditory perception in ASD.

  15. Functional sex differences in human primary auditory cortex

    International Nuclear Information System (INIS)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W.J.; Willemsen, Antoon T.M.

    2007-01-01

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  16. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  17. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  18. Examining fatigue in COPD

    DEFF Research Database (Denmark)

    Al-Shair, Khaled; Muellerova, Hana; Yorke, Janelle

    2012-01-01

    ABSTRACT: INTRODUCTION: Fatigue is a disruptive symptom that inhibits normal functional performance of COPD patients in daily activities. The availability of a short, simple, reliable and valid scale would improve assessment of the characteristics and influence of fatigue in COPD. METHODS......: At baseline, 2107 COPD patients from the ECLIPSE cohort completed the Functional Assessment of Chronic Illness Therapy Fatigue (FACIT-F) scale. We used well-structured classic method, the principal components analysis (PCA) and Rasch analysis for structurally examining the 13-item FACIT-F. RESULTS: Four items...... were less able to capture fatigue characteristics in COPD and were deleted. PCA was applied to the remaining 9 items of the modified FACIT-F and resulted in three interpretable dimensions: i) general (5 items); ii) functional ability (2 items); and iii) psychosocial fatigue (2 items). The modified...

  19. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  20. Auditory Masking Effects on Speech Fluency in Apraxia of Speech and Aphasia: Comparison to Altered Auditory Feedback

    Science.gov (United States)

    Jacks, Adam; Haley, Katarina L.

    2015-01-01

    Purpose: To study the effects of masked auditory feedback (MAF) on speech fluency in adults with aphasia and/or apraxia of speech (APH/AOS). We hypothesized that adults with AOS would increase speech fluency when speaking with noise. Altered auditory feedback (AAF; i.e., delayed/frequency-shifted feedback) was included as a control condition not…

  1. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  2. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  3. Translating Fatigue to Human Performance

    Science.gov (United States)

    Enoka, Roger M.; Duchateau, Jacques

    2016-01-01

    Despite flourishing interest in the topic of fatigue—as indicated by the many presentations on fatigue at the 2015 annual meeting of the American College of Sports Medicine—surprisingly little is known about its impact on human performance. There are two main reasons for this dilemma: (1) the inability of current terminology to accommodate the scope of the conditions ascribed to fatigue, and (2) a paucity of validated experimental models. In contrast to current practice, a case is made for a unified definition of fatigue to facilitate its management in health and disease. Based on the classic two-domain concept of Mosso, fatigue is defined as a disabling symptom in which physical and cognitive function is limited by interactions between performance fatigability and perceived fatigability. As a symptom, fatigue can only be measured by self-report, quantified as either a trait characteristic or a state variable. One consequence of such a definition is that the word fatigue should not be preceded by an adjective (e.g., central, mental, muscle, peripheral, and supraspinal) to suggest the locus of the changes responsible for an observed level of fatigue. Rather, mechanistic studies should be performed with validated experimental models to identify the changes responsible for the reported fatigue. As indicated by three examples (walking endurance in old adults, time trials by endurance athletes, and fatigue in persons with multiple sclerosis) discussed in the review, however, it has proven challenging to develop valid experimental models of fatigue. The proposed framework provides a foundation to address the many gaps in knowledge of how laboratory measures of fatigue and fatigability impact real-world performance. PMID:27015386

  4. Determinants of seafarers’ fatigue

    DEFF Research Database (Denmark)

    Bøggild Dohrmann, Solveig; Leppin, Anja

    2017-01-01

    in the review. The main reason for exclusion was fatigue not being the outcome variable. Results: Most evidence was available for work time-related factors suggesting that working nights was most fatiguing, that fatigue levels were higher toward the end of watch or shift, and that the 6-h on–6-h off watch...

  5. Are There Any Natural Remedies That Reduce Chronic Fatigue Associated with Chronic Fatigue Syndrome?

    Science.gov (United States)

    ... natural remedies that reduce chronic fatigue associated with chronic fatigue syndrome? Answers from Brent A. Bauer, M.D. Researchers ... a variety of natural products for effectiveness against chronic fatigue syndrome. Most results have been disappointing. A few remedies — ...

  6. Rapid estimation of high-parameter auditory-filter shapes

    Science.gov (United States)

    Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M.

    2014-01-01

    A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials. PMID:25324086

  7. Opposite brain laterality in analogous auditory and visual tests.

    Science.gov (United States)

    Oltedal, Leif; Hugdahl, Kenneth

    2017-11-01

    Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.

  8. Subcortical pathways: Towards a better understanding of auditory disorders.

    Science.gov (United States)

    Felix, Richard A; Gourévitch, Boris; Portfors, Christine V

    2018-05-01

    Hearing loss is a significant problem that affects at least 15% of the population. This percentage, however, is likely significantly higher because of a variety of auditory disorders that are not identifiable through traditional tests of peripheral hearing ability. In these disorders, individuals have difficulty understanding speech, particularly in noisy environments, even though the sounds are loud enough to hear. The underlying mechanisms leading to such deficits are not well understood. To enable the development of suitable treatments to alleviate or prevent such disorders, the affected processing pathways must be identified. Historically, mechanisms underlying speech processing have been thought to be a property of the auditory cortex and thus the study of auditory disorders has largely focused on cortical impairments and/or cognitive processes. As we review here, however, there is strong evidence to suggest that, in fact, deficits in subcortical pathways play a significant role in auditory disorders. In this review, we highlight the role of the auditory brainstem and midbrain in processing complex sounds and discuss how deficits in these regions may contribute to auditory dysfunction. We discuss current research with animal models of human hearing and then consider human studies that implicate impairments in subcortical processing that may contribute to auditory disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  10. Research progress of exercise-induced fatigue

    Directory of Open Access Journals (Sweden)

    Peng-yi DAI

    2016-12-01

    Full Text Available Exercise-induced fatigue is a comprehensive response to a variety of physiological and biochemical changes in the body, and can affect people's quality of life to different extents. If no timely recovery after occurrence of fatigue, accumulated gradually, it can lead to "burnout", a "overtraining syndrome", "chronic fatigue syndrome", etc., which will cause endocrine disturbance, immune suppression, even physical illness. Exercise-induced fatigue becomes an important factor endangering human health. In recent years, many experts and scholars at home and abroad are committed to the research of exercise-induced fatigue, and have put forward a variety of hypothesis to explain the cause of exercise-induced fatigue. They expect to find out the methods for preventing and eliminating exercise-induced fatigue. This article discusses mainly the pathogenesis, model building, elimination/ relief, etc. of exercise-induced fatigue to point out the research achievements of exercise-induced fatigue and its existing problems. DOI: 10.11855/j.issn.0577-7402.2016.11.14

  11. Fatigue after Stroke: The Patient's Perspective

    Directory of Open Access Journals (Sweden)

    Victoria Louise Barbour

    2012-01-01

    Full Text Available Background. Fatigue after stroke is common and distressing to patients. Aims. Our aims were to explore patients' perceptions of post-stroke fatigue, including the causes of fatigue and the factors that alleviate fatigue, in a mixed methods study. Results. We interviewed 15 patients who had had a stroke and were inpatients on stroke rehabilitation wards. A substantial proportion of patients reported that their fatigue started at the time of their stroke. Various different factors were reported to improve fatigue, including exercise, good sleep, rehabilitation and rest. Fatigue influences patients' sense of “control” after their stroke. Conclusion. Our results are consistent with the possibility that poststroke fatigue might be triggered by factors that occur at the time of the stroke (e.g., the stroke lesion itself, or admission to hospital and then exacerbated by poor sleep and boredom. These factors should be considered when developing complex interventions to improve post-stroke fatigue.

  12. Auditory and visual memory in musicians and nonmusicians

    OpenAIRE

    Cohen, Michael A.; Evans, Karla K.; Horowitz, Todd S.; Wolfe, Jeremy M.

    2011-01-01

    Numerous studies have shown that musicians outperform nonmusicians on a variety of tasks. Here we provide the first evidence that musicians have superior auditory recognition memory for both musical and nonmusical stimuli, compared to nonmusicians. However, this advantage did not generalize to the visual domain. Previously, we showed that auditory recognition memory is inferior to visual recognition memory. Would this be true even for trained musicians? We compared auditory and visual memory ...

  13. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; D'Angiulli, Amedeo; Kulesza, Randy J; Torres-Jardón, Ricardo; Osnaya, Norma; Romero, Lina; Keefe, Sheyla; Herritt, Lou; Brooks, Diane M; Avila-Ramirez, Jose; Delgado-Chávez, Ricardo; Medina-Cortina, Humberto; González-González, Luis Oscar

    2011-06-01

    We assessed brainstem inflammation in children exposed to air pollutants by comparing brainstem auditory evoked potentials (BAEPs) and blood inflammatory markers in children age 96.3±8.5 months from highly polluted (n=34) versus a low polluted city (n=17). The brainstems of nine children with accidental deaths were also examined. Children from the highly polluted environment had significant delays in wave III (t(50)=17.038; p7.501; p<0.0001), consisting with delayed central conduction time of brainstem neural transmission. Highly exposed children showed significant evidence of inflammatory markers and their auditory and vestibular nuclei accumulated α synuclein and/or β amyloid(1-42). Medial superior olive neurons, critically involved in BAEPs, displayed significant pathology. Children's exposure to urban air pollution increases their risk for auditory and vestibular impairment. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Fretting fatigue life estimation using fatigue damage gradient correction factor in various contact configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong Hyeon; Cho, Sung-San [Hongik University, Seoul (Korea, Republic of)

    2017-03-15

    A fretting fatigue life estimation method that takes into account the stress gradient effect was developed by the authors [Journal of Mechanical Science and Technology, 28 (2014) 2153-2159]. In the developed method, fatigue damage value at the cracking location is corrected with fatigue damage gradient and the corrected value is compared directly with the plain fatigue data for life estimation. In other words, the correction factor is the ratio of plain fatigue damage to fretting fatigue damage at the same life and a function of fatigue damage gradient. Since reliability of the method was verified only for cylinder-on-flat contact configuration in the previous study, the present study extends application of the method to flat-on-flat contact configurations by developing the correction factor for both the contact configuration. Fretting fatigue experiments were conducted to obtain fatigue life data for various fretting pads. Finite element analyses were conducted to evaluate the Smith-Watson-Topper (SWT) fatigue damage parameter in the cracking region. It is revealed that the SWT parameter in fat-on-flat contact configuration decreases exponentially away from the surface as in cylinder-on-flat contact configuration, and thus the SWT gradient at the surface can be evaluated reliably. Moreover, it is found that decrease in the SWT parameter around the cracking location can be expressed by piecewise exponential curves. If the gradient of SWT at the surface is used as a representative value of SWT gradient, it is impossible to establish functional relationship between the SWT gradient and the correction factor for both the contact configurations although it was possible for cylinder-on-flat contact configuration. However, if weighted average of the SWT gradient values obtained from each exponential curve in the piecewise exponential curve is used as a representative value, the correction factor for both the contact configurations becomes a function of the SWT gradient

  15. Fatigue in soccer

    DEFF Research Database (Denmark)

    Mohr, Magni; Krustrup, Peter; Bangsbo, Jens

    2005-01-01

    This review describes when fatigue may develop during soccer games and the potential physiological mechanisms that cause fatigue in soccer. According to time?-?motion analyses and performance measures during match-play, fatigue or reduced performance seems to occur at three different stages......, acidity or the breakdown of creatine phosphate. Instead, it may be related to disturbances in muscle ion homeostasis and an impaired excitation of the sarcolemma. Soccer players' ability to perform maximally is inhibited in the initial phase of the second half, which may be due to lower muscle...... concentrations in a considerable number of individual muscle fibres. In a hot and humid environment, dehydration and a reduced cerebral function may also contribute to the deterioration in performance. In conclusion, fatigue or impaired performance in soccer occurs during various phases in a game, and different...

  16. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    Science.gov (United States)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids

  17. Auditory reafferences: The influence of real-time feedback on movement control

    Directory of Open Access Journals (Sweden)

    Christian eKennel

    2015-01-01

    Full Text Available Auditory reafferences are real-time auditory products created by a person’s own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with nonartificial auditory cues. Our results support the existing theoretical understanding of action–perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  18. Auditory reafferences: the influence of real-time feedback on movement control.

    Science.gov (United States)

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  19. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements...

  20. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Lehericy, Y.

    2007-05-01

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  1. Auditory memory for temporal characteristics of sound.

    Science.gov (United States)

    Zokoll, Melanie A; Klump, Georg M; Langemann, Ulrike

    2008-05-01

    This study evaluates auditory memory for variations in the rate of sinusoidal amplitude modulation (SAM) of noise bursts in the European starling (Sturnus vulgaris). To estimate the extent of the starling's auditory short-term memory store, a delayed non-matching-to-sample paradigm was applied. The birds were trained to discriminate between a series of identical "sample stimuli" and a single "test stimulus". The birds classified SAM rates of sample and test stimuli as being either the same or different. Memory performance of the birds was measured as the percentage of correct classifications. Auditory memory persistence time was estimated as a function of the delay between sample and test stimuli. Memory performance was significantly affected by the delay between sample and test and by the number of sample stimuli presented before the test stimulus, but was not affected by the difference in SAM rate between sample and test stimuli. The individuals' auditory memory persistence times varied between 2 and 13 s. The starlings' auditory memory persistence in the present study for signals varying in the temporal domain was significantly shorter compared to that of a previous study (Zokoll et al. in J Acoust Soc Am 121:2842, 2007) applying tonal stimuli varying in the spectral domain.

  2. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  3. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  4. Strategy choice mediates the link between auditory processing and spelling.

    Science.gov (United States)

    Kwong, Tru E; Brachman, Kyle J

    2014-01-01

    Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes). Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a) moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b) weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils) and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities.

  5. Maintenance of auditory-nonverbal information in working memory.

    Science.gov (United States)

    Soemer, Alexander; Saito, Satoru

    2015-12-01

    According to the multicomponent view of working memory, both auditory-nonverbal information and auditory-verbal information are stored in a phonological code and are maintained by an articulation-based rehearsal mechanism (Baddeley, 2012). Two experiments have been carried out to investigate this hypothesis using sound materials that are difficult to label verbally and difficult to articulate. Participants were required to maintain 2 to 4 sounds differing in timbre over a delay of up to 12 seconds while performing different secondary tasks. While there was no convincing evidence for articulatory rehearsal as a main maintenance mechanism for auditory-nonverbal information, the results suggest that processes similar or identical to auditory imagery might contribute to maintenance. We discuss the implications of these results for multicomponent models of working memory.

  6. Contextual modulation of primary visual cortex by auditory signals.

    Science.gov (United States)

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  7. Magnetic resonance imaging of the internal auditory canal

    International Nuclear Information System (INIS)

    Daniels, D.L.; Herfkins, R.; Koehler, P.R.; Millen, S.J.; Shaffer, K.A.; Williams, A.L.; Haughton, V.M.

    1984-01-01

    Three patients with exclusively or predominantly intracanalicular neuromas and 5 with presumably normal internal auditory canals were examined with prototype 1.4- or 1.5-tesla magnetic resonance (MR) scanners. MR images showed the 7th and 8th cranial nerves in the internal auditory canal. The intracanalicular neuromas had larger diameter and slightly greater signal strength than the nerves. Early results suggest that minimal enlargement of the nerves can be detected even in the internal auditory canal

  8. A basic study on universal design of auditory signals in automobiles.

    Science.gov (United States)

    Yamauchi, Katsuya; Choi, Jong-dae; Maiguma, Ryo; Takada, Masayuki; Iwamiya, Shin-ichiro

    2004-11-01

    In this paper, the impression of various kinds of auditory signals currently used in automobiles and a comprehensive evaluation were measured by a semantic differential method. The desirable acoustic characteristic was examined for each type of auditory signal. Sharp sounds with dominant high-frequency components were not suitable for auditory signals in automobiles. This trend is expedient for the aged whose auditory sensitivity in the high frequency region is lower. When intermittent sounds were used, a longer OFF time was suitable. Generally, "dull (not sharp)" and "calm" sounds were appropriate for auditory signals. Furthermore, the comparison between the frequency spectrum of interior noise in automobiles and that of suitable sounds for various auditory signals indicates that the suitable sounds are not easily masked. The suitable auditory signals for various purposes is a good solution from the viewpoint of universal design.

  9. Visual perception of fatigued lifting actions.

    Science.gov (United States)

    Fischer, Steven L; Albert, Wayne J; McGarry, Tim

    2012-12-01

    Fatigue-related changes in lifting kinematics may expose workers to undue injury risks. Early detection of accumulating fatigue offers the prospect of intervention strategies to mitigate such fatigue-related risks. In a first step towards this objective, this study investigated whether fatigue detection was accessible to visual perception and, if so, what was the key visual information required for successful fatigue discrimination. Eighteen participants were tasked with identifying fatigued lifts when viewing 24 trials presented using both video and point-light representations. Each trial comprised a pair of lifting actions containing a fresh and a fatigued lift from the same individual presented in counter-balanced sequence. Confidence intervals demonstrated that the frequency of correct responses for both sexes exceeded chance expectations (50%) for both video (68%±12%) and point-light representations (67%±10%), demonstrating that fatigued lifting kinematics are open to visual perception. There were no significant differences between sexes or viewing condition, the latter result indicating kinematic dynamics as providing sufficient information for successful fatigue discrimination. Moreover, results from single viewer investigation reported fatigue detection (75%) from point-light information describing only the kinematics of the box lifted. These preliminary findings may have important workplace applications if fatigue discrimination rates can be improved upon through future research. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Corrosion fatigue of steels

    International Nuclear Information System (INIS)

    Spaehn, H.; Wagner, G.H.

    1976-01-01

    Corrosion fatigue phenomena can be classified into two main groups according to the electrochemical state of the metal surface in the presence of electrolytes: the active and the passive state with an important sub-group of corrosion fatigue in the unstable passive state. The allowable stress for structures exposed to the conjoint action of corrosion and fatigue is influenced by many factors: kind of media, number of cycles, frequency, mean stress, size, notches, loading mode, alloy composition and mechanical strength. A critical literature review shows contradictory results if a classification by the electrochemical surface state is not applied. Case histories and counter measures illustrate the practical importance of corrosion fatigue in many branches of industry as well as the urgent need for a better knowledge about the mutual influence of the phenomena to get rules by which the engineer can appraise the risk of corrosion fatigue. (orig.) [de

  11. Presbycusis and auditory brainstem responses: a review

    Directory of Open Access Journals (Sweden)

    Shilpa Khullar

    2011-06-01

    Full Text Available Age-related hearing loss or presbycusis is a complex phenomenon consisting of elevation of hearing levels as well as changes in the auditory processing. It is commonly classified into four categories depending on the cause. Auditory brainstem responses (ABRs are a type of early evoked potentials recorded within the first 10 ms of stimulation. They represent the synchronized activity of the auditory nerve and the brainstem. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABRs in comparison with the ABRs of the young adults. The waves of ABRs are described in terms of amplitude, latencies and interpeak latency of the different waves. There is a tendency of the amplitude to decrease and the absolute latencies to increase with advancing age but these trends are not always clear due to increase in threshold with advancing age that act a major confounding factor in the interpretation of ABRs.

  12. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  13. Negative emotion provides cues for orienting auditory spatial attention

    Directory of Open Access Journals (Sweden)

    Erkin eAsutay

    2015-05-01

    Full Text Available The auditory stimuli provide information about the objects and events around us. They can also carry biologically significant emotional information (such as unseen dangers and conspecific vocalizations, which provides cues for allocation of attention and mental resources. Here, we investigated whether task-irrelevant auditory emotional information can provide cues for orientation of auditory spatial attention. We employed a covert spatial orienting task: the dot-probe task. In each trial, two task irrelevant auditory cues were simultaneously presented at two separate locations (left-right or front-back. Environmental sounds were selected to form emotional vs. neutral, emotional vs. emotional, and neutral vs. neutral cue pairs. The participants’ task was to detect the location of an acoustic target that was presented immediately after the task-irrelevant auditory cues. The target was presented at the same location as one of the auditory cues. The results indicated that participants were significantly faster to locate the target when it replaced the negative cue compared to when it replaced the neutral cue. The positive cues did not produce a clear attentional bias. Further, same valence pairs (emotional-emotional or neutral-neutral did not modulate reaction times due to a lack of spatial attention capture by one cue in the pair. Taken together, the results indicate that negative affect can provide cues for the orientation of spatial attention in the auditory domain.

  14. Effect of ratchet strain on fatigue and creep–fatigue strength of Mod.9Cr–1Mo steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Isobe, Nobuhiro; Kikuchi, Koichi; Enuma, Yasuhiro

    2012-01-01

    Highlights: ► Uniaxial fatigue and creep–fatigue tests with superimposed strain were performed. ► Variety of superimposed strain were applied as ratchet strain in the tests. ► Effect of superimposed strain on fatigue and creep–fatigue life is negligible. ► A cyclic softening character reducing the effect of superimposed strain. - Abstract: The effect of ratcheting deformation on fatigue and creep–fatigue life in Mod.9Cr–1Mo steel was investigated. Uniaxial fatigue and creep–fatigue testing with superimposed strain were performed to evaluate the effect of ratcheting deformation on the failure cycle. In a series of tests, a specific amount of superimposed strain was accumulated in each cycle. The accumulated strain as ratcheting deformation, cycles to reach the accumulated strain, and test temperatures were varied in the tests. In the fatigue tests with superimposed strain at 550 °C, slight reductions of failure lives were observed. All of the numbers of cycles to failure in the fatigue tests with superimposed strain were within a factor of 1.5 of that of the fatigue test without superimposed strain at 550 °C. The apparent relationship between failure cycles and testing parameters was not observed. In fatigue tests with superimposed strain at 550 °C, maximum mean stress was insignificant and generated in early cycles because Mod.9Cr–1Mo steel exhibits cyclic softening characteristics. It was assumed that suppression of mean stress generation by cyclic softening reduces the effect of ratcheting strain. Conversely, failure lives were increased by accumulated strain in the test conducted at 450 °C because of stress–strain hysteresis loop shrinkage caused by cyclic softening induced by the accumulated strain. In the creep–fatigue tests with superimposed strain, test results indicated that the accumulated stain was negligible. It was concluded that the effect of ratcheting deformation on fatigue and creep–fatigue life is negligible as long

  15. All Fatigue is Not Created Equal: The Association of Fatigue and Its Subtypes on Pain Interference in Orofacial Pain.

    Science.gov (United States)

    Boggero, Ian A; Rojas-Ramirez, Marcia V; Carlson, Charles R

    2017-03-01

    Fatigue is known to be a pathway through which depression, psychological distress, pain intensity, and sleep disturbance influence pain interference, but the independent effects of fatigue on pain interference after controlling for these variables remains unknown. In addition, no study to date has tested whether fatigue subtypes of general fatigue, mental fatigue, emotional fatigue, physical fatigue, or vigor differentially predict pain interference. The current study tested these associations using archival medical data of 2133 chronic orofacial pain patients, who completed a battery of psychological questionnaires at the time of their first appointment at an orofacial pain clinic. Hierarchical linear regression analysis revealed that after controlling for depression, psychological distress, sleep disturbance, pain intensity, and demographic variables, fatigue predicted higher pain interference (B=0.70, SE=0.17, Ppain interference after controlling for the aforementioned variables. The findings suggest that fatigue is an important independent predictor of pain interference and not merely a mediator. These findings also suggest that not all fatigue is created equal. Interventions aimed at reducing pain interference should target specific fatigue symptoms of physical fatigue and vigor. Future research investigating the independent associations of fatigue subtypes on pain outcomes may help clarify the nature of the interrelationships between pain and fatigue.

  16. [Low level auditory skills compared to writing skills in school children attending third and fourth grade: evidence for the rapid auditory processing deficit theory?].

    Science.gov (United States)

    Ptok, M; Meisen, R

    2008-01-01

    The rapid auditory processing defi-cit theory holds that impaired reading/writing skills are not caused exclusively by a cognitive deficit specific to representation and processing of speech sounds but arise due to sensory, mainly auditory, deficits. To further explore this theory we compared different measures of auditory low level skills to writing skills in school children. prospective study. School children attending third and fourth grade. just noticeable differences for intensity and frequency (JNDI, JNDF), gap detection (GD) monaural and binaural temporal order judgement (TOJb and TOJm); grade in writing, language and mathematics. correlation analysis. No relevant correlation was found between any auditory low level processing variable and writing skills. These data do not support the rapid auditory processing deficit theory.

  17. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  18. Bilateral duplication of the internal auditory canal

    International Nuclear Information System (INIS)

    Weon, Young Cheol; Kim, Jae Hyoung; Choi, Sung Kyu; Koo, Ja-Won

    2007-01-01

    Duplication of the internal auditory canal is an extremely rare temporal bone anomaly that is believed to result from aplasia or hypoplasia of the vestibulocochlear nerve. We report bilateral duplication of the internal auditory canal in a 28-month-old boy with developmental delay and sensorineural hearing loss. (orig.)

  19. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  20. Auditory and communicative abilities in the auditory neuropathy spectrum disorder and mutation in the Otoferlin gene: clinical cases study.

    Science.gov (United States)

    Costa, Nayara Thais de Oliveira; Martinho-Carvalho, Ana Claudia; Cunha, Maria Claudia; Lewis, Doris Ruthi

    2012-01-01

    This study had the aim to investigate the auditory and communicative abilities of children diagnosed with Auditory Neuropathy Spectrum Disorder due to mutation in the Otoferlin gene. It is a descriptive and qualitative study in which two siblings with this diagnosis were assessed. The procedures conducted were: speech perception tests for children with profound hearing loss, and assessment of communication abilities using the Behavioral Observation Protocol. Because they were siblings, the subjects in the study shared family and communicative context. However, they developed different communication abilities, especially regarding the use of oral language. The study showed that the Auditory Neuropathy Spectrum Disorder is a heterogeneous condition in all its aspects, and it is not possible to make generalizations or assume that cases with similar clinical features will develop similar auditory and communicative abilities, even when they are siblings. It is concluded that the acquisition of communicative abilities involves subjective factors, which should be investigated based on the uniqueness of each case.

  1. Thermal fatigue strength estimation of 2.25Cr-1Mo steel under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Kuwahara, Kazuo; Nitta, Akihito; Kitamura, Takayuki

    1980-01-01

    A 2-1/4Cr-1Mo steel is one of principal materials for high temperature equipments in nuclear and thermal power plants. The authors experimentally analyzed the high temperature fatigue strength and creep strength of a 2-1/4 Cr-1Mo steel main steam pipe which had been used in a thermal plant for operation up to 130,000 hours, and pointed out that the strain-range vs. life curves crossed each other due to the difference of temperature-strain phase in thermal fatigue. This suggests that it is difficult to estimate thermal fatigue life of steel materials having been subjected to different temperature-strain phase on the basis of isothermal low-cycle fatigue life at the upper limit temperature of thermal fatigue, and that it is urgently required to establish an appropriate method of evaluating thermal fatigue life. The authors attempted to prove that the strain range partitioning method used for the evaluation of thermal fatigue life in SUS 304 steels is applicable to this 2-1/4Cr-1Mo steel. Consequently, it was found that the thermal fatigue life could be estimated within a factor of 2.5 by the application of this method. (author)

  2. Reduced auditory processing capacity during vocalization in children with Selective Mutism.

    Science.gov (United States)

    Arie, Miri; Henkin, Yael; Lamy, Dominique; Tetin-Schneider, Simona; Apter, Alan; Sadeh, Avi; Bar-Haim, Yair

    2007-02-01

    Because abnormal Auditory Efferent Activity (AEA) is associated with auditory distortions during vocalization, we tested whether auditory processing is impaired during vocalization in children with Selective Mutism (SM). Participants were children with SM and abnormal AEA, children with SM and normal AEA, and normally speaking controls, who had to detect aurally presented target words embedded within word lists under two conditions: silence (single task), and while vocalizing (dual task). To ascertain specificity of auditory-vocal deficit, effects of concurrent vocalizing were also examined during a visual task. Children with SM and abnormal AEA showed impaired auditory processing during vocalization relative to children with SM and normal AEA, and relative to control children. This impairment is specific to the auditory modality and does not reflect difficulties in dual task per se. The data extends previous findings suggesting that deficient auditory processing is involved in speech selectivity in SM.

  3. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    Science.gov (United States)

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  4. Fatigue and radiotherapy. A literature review; Fatigue et radiotherapie. Revue de la litterature

    Energy Technology Data Exchange (ETDEWEB)

    Dilhuydy, J.M.; Ouhtatou, F.; Laporte, C.; Nguyen, T.V.F.; Vendrely, V. [Institut Bergonie Centre Regional de Lutte Contre le Cancer, 33 - Bordeaux (France); Dilhuydy, J.M. [Federation Nationale des Centres de Lutte Contre le Cancer, FNCLCC, Groupe Rehabilitation, 75 - Paris (France); Dilhuydy, M.S. [Hopital Saint-Andre, Service de Medecine Interne, 33 - Bordeaux (France)

    2001-11-01

    Fatigue is a common complaint for the cancer patient during and after radiotherapy, according to the published studies. Fatigue is a subjective symptom mostly underestimated by oncologists and other care givers. Etiology is complex, poorly understood in spite of obvious causes like insomnia, nausea, pain, depression, psychological distress, anemia, hypothyroidism, menopause disturbances, treatment adverse effects. Fatigue presents multi-factorial and multidimensional aspects. To evaluate it, many tools can be used as single-item, unidimensional and multidimensional instruments. Practically, the open discussion with the patient throughout radiotherapy is essential to define it. Taking charge fatigue requires its acknowledgement by radiotherapist, treatment of associated symptoms with a multidisciplinary approach. (authors)

  5. Development and characterization of fatigue resistant aramid reinforced aluminium laminates (ARALL) for fatigue critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2013-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced Aluminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft. (author)

  6. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    Science.gov (United States)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  7. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M H; Umar, S; Nauman, S

    2014-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft

  8. Inflammatory fatigue and sickness behaviour - lessons for the diagnosis and management of chronic fatigue syndrome.

    Science.gov (United States)

    Arnett, S V; Clark, I A

    2012-12-10

    Persistent and severe fatigue is a common part of the presentation of a diverse range of disease processes. There is a growing body of evidence indicating a common inflammatory pathophysiology underlying many conditions where fatigue is a primary patient concern, including chronic fatigue syndrome. This review explores current models of how inflammatory mediators act on the central nervous system to produce fatigue and sickness behaviour, and the commonality of these processes in conditions as diverse as surgical trauma, infection, various cancers, inflammatory bowel disease, connective tissue diseases and autoimmune diseases. We also discuss evidence indicating chronic fatigue syndrome may have important pathophysiological similarities with cytokine mediated sickness behaviour, and what lessons can be applied from sickness behaviour to chronic fatigue syndrome with regards to the diagnosis and management. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Mental Fatigue Affects Visual Selective Attention

    NARCIS (Netherlands)

    Faber, Leon G.; Maurits, Natasha M.; Lorist, Monicque M.

    2012-01-01

    Mental fatigue is a form of fatigue, induced by continuous task performance. Mentally fatigued people often report having a hard time keeping their attention focussed and being easily distracted. In this study, we examined the relation between mental fatigue, as induced by time on task, and

  10. Auditory motion in the sighted and blind: Early visual deprivation triggers a large-scale imbalance between auditory and "visual" brain regions.

    Science.gov (United States)

    Dormal, Giulia; Rezk, Mohamed; Yakobov, Esther; Lepore, Franco; Collignon, Olivier

    2016-07-01

    How early blindness reorganizes the brain circuitry that supports auditory motion processing remains controversial. We used fMRI to characterize brain responses to in-depth, laterally moving, and static sounds in early blind and sighted individuals. Whole-brain univariate analyses revealed that the right posterior middle temporal gyrus and superior occipital gyrus selectively responded to both in-depth and laterally moving sounds only in the blind. These regions overlapped with regions selective for visual motion (hMT+/V5 and V3A) that were independently localized in the sighted. In the early blind, the right planum temporale showed enhanced functional connectivity with right occipito-temporal regions during auditory motion processing and a concomitant reduced functional connectivity with parietal and frontal regions. Whole-brain searchlight multivariate analyses demonstrated higher auditory motion decoding in the right posterior middle temporal gyrus in the blind compared to the sighted, while decoding accuracy was enhanced in the auditory cortex bilaterally in the sighted compared to the blind. Analyses targeting individually defined visual area hMT+/V5 however indicated that auditory motion information could be reliably decoded within this area even in the sighted group. Taken together, the present findings demonstrate that early visual deprivation triggers a large-scale imbalance between auditory and "visual" brain regions that typically support the processing of motion information. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Standard guide for fretting fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide defines terminology and covers general requirements for conducting fretting fatigue tests and reporting the results. It describes the general types of fretting fatigue tests and provides some suggestions on developing and conducting fretting fatigue test programs. 1.2 Fretting fatigue tests are designed to determine the effects of mechanical and environmental parameters on the fretting fatigue behavior of metallic materials. This guide is not intended to establish preference of one apparatus or specimen design over others, but will establish guidelines for adherence in the design, calibration, and use of fretting fatigue apparatus and recommend the means to collect, record, and reporting of the data. 1.3 The number of cycles to form a fretting fatigue crack is dependent on both the material of the fatigue specimen and fretting pad, the geometry of contact between the two, and the method by which the loading and displacement are imposed. Similar to wear behavior of materials, it is important t...

  12. Using Facebook to Reach People Who Experience Auditory Hallucinations.

    Science.gov (United States)

    Crosier, Benjamin Sage; Brian, Rachel Marie; Ben-Zeev, Dror

    2016-06-14

    Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. The objective of this proof-of-concept study was to examine the viability of leveraging Web-based social media as a method of engaging people who experience auditory hallucinations and to evaluate their attitudes toward using social media platforms as a resource for Web-based support and technology-based treatment. We used Facebook advertisements to recruit individuals who experience auditory hallucinations to complete an 18-item Web-based survey focused on issues related to auditory hallucinations and technology use in American adults. We systematically tested multiple elements of the advertisement and survey layout including image selection, survey pagination, question ordering, and advertising targeting strategy. Each element was evaluated sequentially and the most cost-effective strategy was implemented in the subsequent steps, eventually deriving an optimized approach. Three open-ended question responses were analyzed using conventional inductive content analysis. Coded responses were quantified into binary codes, and frequencies were then calculated. Recruitment netted N=264 total sample over a 6-week period. Ninety-seven participants fully completed all measures at a total cost of $8.14 per participant across testing phases. Systematic adjustments to advertisement design, survey layout, and targeting strategies improved data quality and cost efficiency. People were willing to provide information on what triggered their auditory hallucinations along with strategies they use to cope, as well as provide suggestions to others who experience auditory hallucinations. Women, people

  13. Using Facebook to Reach People Who Experience Auditory Hallucinations

    Science.gov (United States)

    Brian, Rachel Marie; Ben-Zeev, Dror

    2016-01-01

    Background Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. Objective The objective of this proof-of-concept study was to examine the viability of leveraging Web-based social media as a method of engaging people who experience auditory hallucinations and to evaluate their attitudes toward using social media platforms as a resource for Web-based support and technology-based treatment. Methods We used Facebook advertisements to recruit individuals who experience auditory hallucinations to complete an 18-item Web-based survey focused on issues related to auditory hallucinations and technology use in American adults. We systematically tested multiple elements of the advertisement and survey layout including image selection, survey pagination, question ordering, and advertising targeting strategy. Each element was evaluated sequentially and the most cost-effective strategy was implemented in the subsequent steps, eventually deriving an optimized approach. Three open-ended question responses were analyzed using conventional inductive content analysis. Coded responses were quantified into binary codes, and frequencies were then calculated. Results Recruitment netted N=264 total sample over a 6-week period. Ninety-seven participants fully completed all measures at a total cost of $8.14 per participant across testing phases. Systematic adjustments to advertisement design, survey layout, and targeting strategies improved data quality and cost efficiency. People were willing to provide information on what triggered their auditory hallucinations along with strategies they use to cope, as well as provide suggestions to others who experience

  14. Molecular approach of auditory neuropathy.

    Science.gov (United States)

    Silva, Magali Aparecida Orate Menezes da; Piatto, Vânia Belintani; Maniglia, Jose Victor

    2015-01-01

    Mutations in the otoferlin gene are responsible for auditory neuropathy. To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. The 16 index cases included nine (56%) females and seven (44%) males. The 13 deaf patients comprised seven (54%) males and six (46%) females. Among the 20 normal-hearing subjects, 13 (65%) were males and seven were (35%) females. Thirteen (81%) index cases had wild-type genotype (AA) and three (19%) had the heterozygous AG genotype for IVS8-2A-G (intron 8) mutation. The 5473C-G (exon 44) mutation was found in a heterozygous state (CG) in seven (44%) index cases and nine (56%) had the wild-type allele (CC). Of these mutants, two (25%) were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%). There are differences at the molecular level in patients with and without auditory neuropathy. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  15. Visual and auditory perception in preschool children at risk for dyslexia.

    Science.gov (United States)

    Ortiz, Rosario; Estévez, Adelina; Muñetón, Mercedes; Domínguez, Carolina

    2014-11-01

    Recently, there has been renewed interest in perceptive problems of dyslexics. A polemic research issue in this area has been the nature of the perception deficit. Another issue is the causal role of this deficit in dyslexia. Most studies have been carried out in adult and child literates; consequently, the observed deficits may be the result rather than the cause of dyslexia. This study addresses these issues by examining visual and auditory perception in children at risk for dyslexia. We compared children from preschool with and without risk for dyslexia in auditory and visual temporal order judgment tasks and same-different discrimination tasks. Identical visual and auditory, linguistic and nonlinguistic stimuli were presented in both tasks. The results revealed that the visual as well as the auditory perception of children at risk for dyslexia is impaired. The comparison between groups in auditory and visual perception shows that the achievement of children at risk was lower than children without risk for dyslexia in the temporal tasks. There were no differences between groups in auditory discrimination tasks. The difficulties of children at risk in visual and auditory perceptive processing affected both linguistic and nonlinguistic stimuli. Our conclusions are that children at risk for dyslexia show auditory and visual perceptive deficits for linguistic and nonlinguistic stimuli. The auditory impairment may be explained by temporal processing problems and these problems are more serious for processing language than for processing other auditory stimuli. These visual and auditory perceptive deficits are not the consequence of failing to learn to read, thus, these findings support the theory of temporal processing deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Probabilistic Fatigue Damage Program (FATIG)

    Science.gov (United States)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  17. Evolutionary conservation and neuronal mechanisms of auditory perceptual restoration.

    Science.gov (United States)

    Petkov, Christopher I; Sutter, Mitchell L

    2011-01-01

    Auditory perceptual 'restoration' occurs when the auditory system restores an occluded or masked sound of interest. Behavioral work on auditory restoration in humans began over 50 years ago using it to model a noisy environmental scene with competing sounds. It has become clear that not only humans experience auditory restoration: restoration has been broadly conserved in many species. Behavioral studies in humans and animals provide a necessary foundation to link the insights being obtained from human EEG and fMRI to those from animal neurophysiology. The aggregate of data resulting from multiple approaches across species has begun to clarify the neuronal bases of auditory restoration. Different types of neural responses supporting restoration have been found, supportive of multiple mechanisms working within a species. Yet a general principle has emerged that responses correlated with restoration mimic the response that would have been given to the uninterrupted sound of interest. Using the same technology to study different species will help us to better harness animal models of 'auditory scene analysis' to clarify the conserved neural mechanisms shaping the perceptual organization of sound and to advance strategies to improve hearing in natural environmental settings. © 2010 Elsevier B.V. All rights reserved.

  18. Auditory and visual evoked potentials during hyperoxia

    Science.gov (United States)

    Smith, D. B. D.; Strawbridge, P. J.

    1974-01-01

    Experimental study of the auditory and visual averaged evoked potentials (AEPs) recorded during hyperoxia, and investigation of the effect of hyperoxia on the so-called contingent negative variation (CNV). No effect of hyperoxia was found on the auditory AEP, the visual AEP, or the CNV. Comparisons with previous studies are discussed.

  19. Classifying post-stroke fatigue: Optimal cut-off on the Fatigue Assessment Scale.

    Science.gov (United States)

    Cumming, Toby B; Mead, Gillian

    2017-12-01

    Post-stroke fatigue is common and has debilitating effects on independence and quality of life. The Fatigue Assessment Scale (FAS) is a valid screening tool for fatigue after stroke, but there is no established cut-off. We sought to identify the optimal cut-off for classifying post-stroke fatigue on the FAS. In retrospective analysis of two independent datasets (the '2015' and '2007' studies), we evaluated the predictive validity of FAS score against a case definition of fatigue (the criterion standard). Area under the curve (AUC) and sensitivity and specificity at the optimal cut-off were established in the larger 2015 dataset (n=126), and then independently validated in the 2007 dataset (n=52). In the 2015 dataset, AUC was 0.78 (95% CI 0.70-0.86), with the optimal ≥24 cut-off giving a sensitivity of 0.82 and specificity of 0.66. The 2007 dataset had an AUC of 0.83 (95% CI 0.71-0.94), and applying the ≥24 cut-off gave a sensitivity of 0.84 and specificity of 0.67. Post-hoc analysis of the 2015 dataset revealed that using only the 3 most predictive FAS items together ('FAS-3') also yielded good validity: AUC 0.81 (95% CI 0.73-0.89), with sensitivity of 0.83 and specificity of 0.75 at the optimal ≥8 cut-off. We propose ≥24 as a cut-off for classifying post-stroke fatigue on the FAS. While further validation work is needed, this is a positive step towards a coherent approach to reporting fatigue prevalence using the FAS. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Fatigue Analysis of Large-scale Wind turbine

    Directory of Open Access Journals (Sweden)

    Zhu Yongli

    2017-01-01

    Full Text Available The paper does research on top flange fatigue damage of large-scale wind turbine generator. It establishes finite element model of top flange connection system with finite element analysis software MSC. Marc/Mentat, analyzes its fatigue strain, implements load simulation of flange fatigue working condition with Bladed software, acquires flange fatigue load spectrum with rain-flow counting method, finally, it realizes fatigue analysis of top flange with fatigue analysis software MSC. Fatigue and Palmgren-Miner linear cumulative damage theory. The analysis result indicates that its result provides new thinking for flange fatigue analysis of large-scale wind turbine generator, and possesses some practical engineering value.

  1. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    -ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...... was found to steadily decrease with decreasing center frequency. Although the observed decrease in filter bandwidth with decreasing center frequency was only approximately monotonic, the preliminary data indicates the filter bandwidth does not stabilize around 100 Hz, e.g. it still decreases below...

  2. Left hemispheric dominance during auditory processing in a noisy environment

    Directory of Open Access Journals (Sweden)

    Ross Bernhard

    2007-11-01

    Full Text Available Abstract Background In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG. Results We observed significant decrements of auditory evoked responses and a significant inter-hemispheric difference for the N1m response during both ipsi- and contra-lateral masking. Conclusion The decrements of auditory evoked neural activities during simultaneous masking can be explained by neural interactions evoked by masker and test stimulus in peripheral and central auditory systems. The inter-hemispheric differences of N1m decrements during ipsi- and contra-lateral masking reflect a basic hemispheric specialization contributing to the processing of complex auditory stimuli such as speech signals in noisy environments.

  3. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    Science.gov (United States)

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  4. Using Facebook to Reach People Who Experience Auditory Hallucinations

    OpenAIRE

    Crosier, Benjamin Sage; Brian, Rachel Marie; Ben-Zeev, Dror

    2016-01-01

    Background Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. Objective The objective of this proof-of-concept study was to examine the viability of leveraging...

  5. Auditory and Non-Auditory Contributions for Unaided Speech Recognition in Noise as a Function of Hearing Aid Use.

    Science.gov (United States)

    Gieseler, Anja; Tahden, Maike A S; Thiel, Christiane M; Wagener, Kirsten C; Meis, Markus; Colonius, Hans

    2017-01-01

    Differences in understanding speech in noise among hearing-impaired individuals cannot be explained entirely by hearing thresholds alone, suggesting the contribution of other factors beyond standard auditory ones as derived from the audiogram. This paper reports two analyses addressing individual differences in the explanation of unaided speech-in-noise performance among n = 438 elderly hearing-impaired listeners ( mean = 71.1 ± 5.8 years). The main analysis was designed to identify clinically relevant auditory and non-auditory measures for speech-in-noise prediction using auditory (audiogram, categorical loudness scaling) and cognitive tests (verbal-intelligence test, screening test of dementia), as well as questionnaires assessing various self-reported measures (health status, socio-economic status, and subjective hearing problems). Using stepwise linear regression analysis, 62% of the variance in unaided speech-in-noise performance was explained, with measures Pure-tone average (PTA), Age , and Verbal intelligence emerging as the three most important predictors. In the complementary analysis, those individuals with the same hearing loss profile were separated into hearing aid users (HAU) and non-users (NU), and were then compared regarding potential differences in the test measures and in explaining unaided speech-in-noise recognition. The groupwise comparisons revealed significant differences in auditory measures and self-reported subjective hearing problems, while no differences in the cognitive domain were found. Furthermore, groupwise regression analyses revealed that Verbal intelligence had a predictive value in both groups, whereas Age and PTA only emerged significant in the group of hearing aid NU.

  6. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  7. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    Science.gov (United States)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  8. Fatigue of vanadium--hydrogen alloys

    International Nuclear Information System (INIS)

    Lee, K.S.; Stoloff, N.S.

    1975-01-01

    Hydrogen contents near and above the room temperature solubility limit increase the high cycle fatigue life but decrease low cycle life of polycrystalline vanadium. Changes in endurance limit with hydrides may be a consequence of decreased cyclic strain hardening coefficient, n'. 132 ppM hydrogen in solution has only a slightly beneficial effect on stress controlled fatigue life and essentially no effect on low cycle fatigue life. Unalloyed vanadium exhibits profuse striations, while hydrides produce cleavage cracks in fatigued samples. 10 fig

  9. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  10. Modification of sudden onset auditory ERP by involuntary attention to visual stimuli.

    Science.gov (United States)

    Oray, Serkan; Lu, Zhong-Lin; Dawson, Michael E

    2002-03-01

    To investigate the cross-modal nature of the exogenous attention system, we studied how involuntary attention in the visual modality affects ERPs elicited by sudden onset of events in the auditory modality. Relatively loud auditory white noise bursts were presented to subjects with random and long inter-trial intervals. The noise bursts were either presented alone, or paired with a visual stimulus with a visual to auditory onset asynchrony of 120 ms. In a third condition, the visual stimuli were shown alone. All three conditions, auditory alone, visual alone, and paired visual/auditory, were randomly inter-mixed and presented with equal probabilities. Subjects were instructed to fixate on a point in front of them without task instructions concerning either the auditory or visual stimuli. ERPs were recorded from 28 scalp sites throughout every experimental session. Compared to ERPs in the auditory alone condition, pairing the auditory noise bursts with the visual stimulus reduced the amplitude of the auditory N100 component at Cz by 40% and the auditory P200/P300 component at Cz by 25%. No significant topographical change was observed in the scalp distributions of the N100 and P200/P300. Our results suggest that involuntary attention to visual stimuli suppresses early sensory (N100) as well as late cognitive (P200/P300) processing of sudden auditory events. The activation of the exogenous attention system by sudden auditory onset can be modified by involuntary visual attention in a cross-model, passive prepulse inhibition paradigm.

  11. Neuronal activity in primate auditory cortex during the performance of audiovisual tasks.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2015-03-01

    This study aimed at a deeper understanding of which cognitive and motivational aspects of tasks affect auditory cortical activity. To this end we trained two macaque monkeys to perform two different tasks on the same audiovisual stimulus and to do this with two different sizes of water rewards. The monkeys had to touch a bar after a tone had been turned on together with an LED, and to hold the bar until either the tone (auditory task) or the LED (visual task) was turned off. In 399 multiunits recorded from core fields of auditory cortex we confirmed that during task engagement neurons responded to auditory and non-auditory stimuli that were task-relevant, such as light and water. We also confirmed that firing rates slowly increased or decreased for several seconds during various phases of the tasks. Responses to non-auditory stimuli and slow firing changes were observed during both the auditory and the visual task, with some differences between them. There was also a weak task-dependent modulation of the responses to auditory stimuli. In contrast to these cognitive aspects, motivational aspects of the tasks were not reflected in the firing, except during delivery of the water reward. In conclusion, the present study supports our previous proposal that there are two response types in the auditory cortex that represent the timing and the type of auditory and non-auditory elements of a auditory tasks as well the association between elements. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Further Evidence of Auditory Extinction in Aphasia

    Science.gov (United States)

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  13. Muscle injections with lidocaine improve resting fatigue and pain in patients with chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Staud R

    2017-06-01

    Full Text Available Roland Staud,1 Taylor Kizer,1 Michael E Robinson2 1Department of Medicine, College of Medicine, 2Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA Objective: Patients with chronic fatigue syndrome (CFS complain of long-lasting fatigue and pain which are not relieved by rest and worsened by physical exertion. Previous research has implicated metaboreceptors of muscles to play an important role for chronic fatigue and pain. Therefore, we hypothesized that blocking impulse input from deep tissues with intramuscular lidocaine injections would improve not only the pain but also fatigue of CFS patients. Methods: In a double-blind, placebo-controlled study, 58 CFS patients received 20 mL of 1% lidocaine (200 mg or normal saline once into both trapezius and gluteal muscles. Study outcomes included clinical fatigue and pain, depression, and anxiety. In addition, mechanical and heat hyperalgesia were assessed and serum levels of lidocaine were obtained after the injections. Results: Fatigue ratings of CFS patients decreased significantly more after lidocaine compared to saline injections (p = 0.03. In contrast, muscle injections reduced pain, depression, and anxiety (p < 0.001, but these changes were not statistically different between lidocaine and saline (p > 0.05. Lidocaine injections increased mechanical pain thresholds of CFS patients (p = 0.04 but did not affect their heat hyperalgesia. Importantly, mood changes or lidocaine serum levels did not significantly predict fatigue reductions. Conclusion: These results demonstrate that lidocaine injections reduce clinical fatigue of CFS patients significantly more than placebo, suggesting an important role of peripheral tissues for chronic fatigue. Future investigations will be necessary to evaluate the clinical benefits of such interventions. Keywords: muscle injections, lidocaine, metaboreceptor, chronic fatigue 

  14. Fatigue Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress Spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability as well as systems reliability is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  15. Effect of conductive hearing loss on central auditory function.

    Science.gov (United States)

    Bayat, Arash; Farhadi, Mohammad; Emamdjomeh, Hesam; Saki, Nader; Mirmomeni, Golshan; Rahim, Fakher

    It has been demonstrated that long-term Conductive Hearing Loss (CHL) may influence the precise detection of the temporal features of acoustic signals or Auditory Temporal Processing (ATP). It can be argued that ATP may be the underlying component of many central auditory processing capabilities such as speech comprehension or sound localization. Little is known about the consequences of CHL on temporal aspects of central auditory processing. This study was designed to assess auditory temporal processing ability in individuals with chronic CHL. During this analytical cross-sectional study, 52 patients with mild to moderate chronic CHL and 52 normal-hearing listeners (control), aged between 18 and 45 year-old, were recruited. In order to evaluate auditory temporal processing, the Gaps-in-Noise (GIN) test was used. The results obtained for each ear were analyzed based on the gap perception threshold and the percentage of correct responses. The average of GIN thresholds was significantly smaller for the control group than for the CHL group for both ears (right: p=0.004; left: phearing for both sides (phearing loss in either group (p>0.05). The results suggest reduced auditory temporal processing ability in adults with CHL compared to normal hearing subjects. Therefore, developing a clinical protocol to evaluate auditory temporal processing in this population is recommended. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Neural Correlates of Auditory Processing, Learning and Memory Formation in Songbirds

    Science.gov (United States)

    Pinaud, R.; Terleph, T. A.; Wynne, R. D.; Tremere, L. A.

    Songbirds have emerged as powerful experimental models for the study of auditory processing of complex natural communication signals. Intact hearing is necessary for several behaviors in developing and adult animals including vocal learning, territorial defense, mate selection and individual recognition. These behaviors are thought to require the processing, discrimination and memorization of songs. Although much is known about the brain circuits that participate in sensorimotor (auditory-vocal) integration, especially the ``song-control" system, less is known about the anatomical and functional organization of central auditory pathways. Here we discuss findings associated with a telencephalic auditory area known as the caudomedial nidopallium (NCM). NCM has attracted significant interest as it exhibits functional properties that may support higher order auditory functions such as stimulus discrimination and the formation of auditory memories. NCM neurons are vigorously dr iven by auditory stimuli. Interestingly, these responses are selective to conspecific, relative to heterospecific songs and artificial stimuli. In addition, forms of experience-dependent plasticity occur in NCM and are song-specific. Finally, recent experiments employing high-throughput quantitative proteomics suggest that complex protein regulatory pathways are engaged in NCM as a result of auditory experience. These molecular cascades are likely central to experience-associated plasticity of NCM circuitry and may be part of a network of calcium-driven molecular events that support the formation of auditory memory traces.

  17. Comparison of auditory and visual oddball fMRI in schizophrenia.

    Science.gov (United States)

    Collier, Azurii K; Wolf, Daniel H; Valdez, Jeffrey N; Turetsky, Bruce I; Elliott, Mark A; Gur, Raquel E; Gur, Ruben C

    2014-09-01

    Individuals with schizophrenia often suffer from attentional deficits, both in focusing on task-relevant targets and in inhibiting responses to distractors. Schizophrenia also has a differential impact on attention depending on modality: auditory or visual. However, it remains unclear how abnormal activation of attentional circuitry differs between auditory and visual modalities, as these two modalities have not been directly compared in the same individuals with schizophrenia. We utilized event-related functional magnetic resonance imaging (fMRI) to compare patterns of brain activation during an auditory and visual oddball task in order to identify modality-specific attentional impairment. Healthy controls (n=22) and patients with schizophrenia (n=20) completed auditory and visual oddball tasks in separate sessions. For responses to targets, the auditory modality yielded greater activation than the visual modality (A-V) in auditory cortex, insula, and parietal operculum, but visual activation was greater than auditory (V-A) in visual cortex. For responses to novels, A-V differences were found in auditory cortex, insula, and supramarginal gyrus; and V-A differences in the visual cortex, inferior temporal gyrus, and superior parietal lobule. Group differences in modality-specific activation were found only for novel stimuli; controls showed larger A-V differences than patients in prefrontal cortex and the putamen. Furthermore, for patients, greater severity of negative symptoms was associated with greater divergence of A-V novel activation in the visual cortex. Our results demonstrate that patients have more pronounced activation abnormalities in auditory compared to visual attention, and link modality specific abnormalities to negative symptom severity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Auditory and visual sustained attention in Down syndrome.

    Science.gov (United States)

    Faught, Gayle G; Conners, Frances A; Himmelberger, Zachary M

    2016-01-01

    Sustained attention (SA) is important to task performance and development of higher functions. It emerges as a separable component of attention during preschool and shows incremental improvements during this stage of development. The current study investigated if auditory and visual SA match developmental level or are particular challenges for youth with DS. Further, we sought to determine if there were modality effects in SA that could predict those seen in short-term memory (STM). We compared youth with DS to typically developing youth matched for nonverbal mental age and receptive vocabulary. Groups completed auditory and visual sustained attention to response tests (SARTs) and STM tasks. Results indicated groups performed similarly on both SARTs, even over varying cognitive ability. Further, within groups participants performed similarly on auditory and visual SARTs, thus SA could not predict modality effects in STM. However, SA did generally predict a significant portion of unique variance in groups' STM. Ultimately, results suggested both auditory and visual SA match developmental level in DS. Further, SA generally predicts STM, though SA does not necessarily predict the pattern of poor auditory relative to visual STM characteristic of DS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Increased Early Processing of Task-Irrelevant Auditory Stimuli in Older Adults.

    Directory of Open Access Journals (Sweden)

    Erich S Tusch

    Full Text Available The inhibitory deficit hypothesis of cognitive aging posits that older adults' inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1 observed under an auditory-ignore, but not auditory-attend condition, 2 attenuated in individuals with high executive capacity (EC, and 3 augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study's findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts.

  20. Biaxial fatigue of metals the present understanding

    CERN Document Server

    Schijve, Jaap

    2016-01-01

    Problems of fatigue under multiaxial fatigue loads have been addressed in a very large number of research publications. The present publication is primarily a survey of biaxial fatigue under constant amplitude loading on metal specimens. It starts with the physical understanding of the fatigue phenomenon under biaxial fatigue loads. Various types of proportional and non-proportional biaxial fatigue loads and biaxial stress distributions in a material are specified. Attention is paid to the fatigue limit, crack nucleation, initial micro crack growth and subsequent macro-crack in different modes of crack growth. The interference between the upper and lower surfaces of a fatigue crack is discussed. Possibilities for predictions of biaxial fatigue properties are analysed with reference to the similarity concept. The significance of the present understanding for structural design problems is considered. The book is completed with a summary of major observations.

  1. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  2. Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement.

    Science.gov (United States)

    Fernández, Thalía; Bosch-Bayard, Jorge; Harmony, Thalía; Caballero, María I; Díaz-Comas, Lourdes; Galán, Lídice; Ricardo-Garcell, Josefina; Aubert, Eduardo; Otero-Ojeda, Gloria

    2016-03-01

    Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.

  3. Fatigue Strength of Weathering Steel

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Klusák, Jan

    2012-01-01

    Roč. 18, č. 1 (2012), s. 18-22 ISSN 1392-1320 Grant - others:GA MPO(CZ) FT/TA5/076 Institutional support: RVO:68081723 Keywords : fatigue of weathering steel * corrosion pits * fatigue notch factor Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.522, year: 2012

  4. Motor Training: Comparison of Visual and Auditory Coded Proprioceptive Cues

    Directory of Open Access Journals (Sweden)

    Philip Jepson

    2012-05-01

    Full Text Available Self-perception of body posture and movement is achieved through multi-sensory integration, particularly the utilisation of vision, and proprioceptive information derived from muscles and joints. Disruption to these processes can occur following a neurological accident, such as stroke, leading to sensory and physical impairment. Rehabilitation can be helped through use of augmented visual and auditory biofeedback to stimulate neuro-plasticity, but the effective design and application of feedback, particularly in the auditory domain, is non-trivial. Simple auditory feedback was tested by comparing the stepping accuracy of normal subjects when given a visual spatial target (step length and an auditory temporal target (step duration. A baseline measurement of step length and duration was taken using optical motion capture. Subjects (n=20 took 20 ‘training’ steps (baseline ±25% using either an auditory target (950 Hz tone, bell-shaped gain envelope or visual target (spot marked on the floor and were then asked to replicate the target step (length or duration corresponding to training with all feedback removed. Visual cues (mean percentage error=11.5%; SD ± 7.0%; auditory cues (mean percentage error = 12.9%; SD ± 11.8%. Visual cues elicit a high degree of accuracy both in training and follow-up un-cued tasks; despite the novelty of the auditory cues present for subjects, the mean accuracy of subjects approached that for visual cues, and initial results suggest a limited amount of practice using auditory cues can improve performance.

  5. Impact of Educational Level on Performance on Auditory Processing Tests.

    Science.gov (United States)

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  6. Normal time course of auditory recognition in schizophrenia, despite impaired precision of the auditory sensory ("echoic") memory code.

    Science.gov (United States)

    March, L; Cienfuegos, A; Goldbloom, L; Ritter, W; Cowan, N; Javitt, D C

    1999-02-01

    Prior studies have demonstrated impaired precision of processing within the auditory sensory memory (ASM) system in schizophrenia. This study used auditory backward masking to evaluate the degree to which such deficits resulted from impaired overall precision versus premature decay of information within the short-term auditory store. ASM performance was evaluated in 14 schizophrenic participants and 16 controls. Schizophrenic participants were severely impaired in their ability to match tones following delay. However, when no-mask performance was equated across participants, schizophrenic participants were no more susceptible to the effects of backward maskers than were controls. Thus, despite impaired precision of ASM performance, schizophrenic participants showed no deficits in the time course over which short-term representations could be used within the ASM system.

  7. A Time-Frequency Auditory Model Using Wavelet Packets

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    1996-01-01

    A time-frequency auditory model is presented. The model uses the wavelet packet analysis as the preprocessor. The auditory filters are modelled by the rounded exponential filters, and the excitation is smoothed by a window function. By comparing time-frequency excitation patterns it is shown...... that the change in the time-frequency excitation pattern introduced when a test tone at masked threshold is added to the masker is approximately equal to 7 dB for all types of maskers. The classic detection ratio therefore overrates the detection efficiency of the auditory system....

  8. Auditory agnosia as a clinical symptom of childhood adrenoleukodystrophy.

    Science.gov (United States)

    Furushima, Wakana; Kaga, Makiko; Nakamura, Masako; Gunji, Atsuko; Inagaki, Masumi

    2015-08-01

    To investigate detailed auditory features in patients with auditory impairment as the first clinical symptoms of childhood adrenoleukodystrophy (CSALD). Three patients who had hearing difficulty as the first clinical signs and/or symptoms of ALD. Precise examination of the clinical characteristics of hearing and auditory function was performed, including assessments of pure tone audiometry, verbal sound discrimination, otoacoustic emission (OAE), and auditory brainstem response (ABR), as well as an environmental sound discrimination test, a sound lateralization test, and a dichotic listening test (DLT). The auditory pathway was evaluated by MRI in each patient. Poor response to calling was detected in all patients. Two patients were not aware of their hearing difficulty, and had been diagnosed with normal hearing by otolaryngologists at first. Pure-tone audiometry disclosed normal hearing in all patients. All patients showed a normal wave V ABR threshold. Three patients showed obvious difficulty in discriminating verbal sounds, environmental sounds, and sound lateralization and strong left-ear suppression in a dichotic listening test. However, once they discriminated verbal sounds, they correctly understood the meaning. Two patients showed elongation of the I-V and III-V interwave intervals in ABR, but one showed no abnormality. MRIs of these three patients revealed signal changes in auditory radiation including in other subcortical areas. The hearing features of these subjects were diagnosed as auditory agnosia and not aphasia. It should be emphasized that when patients are suspected to have hearing impairment but have no abnormalities in pure tone audiometry and/or ABR, this should not be diagnosed immediately as psychogenic response or pathomimesis, but auditory agnosia must also be considered. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Presentation of dynamically overlapping auditory messages in user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Papp, III, Albert Louis [Univ. of California, Davis, CA (United States)

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  10. Importance of fatiguing, overtraining and chronic fatigue in athletes

    Directory of Open Access Journals (Sweden)

    Adam Piesik

    2017-09-01

    Full Text Available Each training that requires achieving a higher heart rate limit and/or increased concentration in time may cause fatigue, considered to be a natural defence mechanism of a body. In the case of excessive fatigue and insufficient time designated for rest and regeneration, an overtraining syndrome (OTS may develop. The main symptom of overtraining is increased fatigue that fails to become reversed in normal conditions of regeneration. Although authors are familiar with the overtraining syndrome and associated symptoms, as of today no diagnostic tool has been developed that may form a basis for a final diagnosis, and the diagnosis itself is frequently based on a subjective assessment of the athlete. Possible causes of the band overtraining syndrome are disorders of sodium, inflammatory processes resulting from physical activity and / or disorders of the autonomic nervous system.

  11. Comparing Fatigue Life Estimations of Composite Wind Turbine Blades using different Fatigue Analysis Tools

    DEFF Research Database (Denmark)

    Ardila, Oscar Gerardo Castro; Lennie, Matthew; Branner, Kim

    2015-01-01

    In this paper, fatigue lifetime prediction of NREL 5MW reference wind turbine is presented. The fatigue response of materials used in selected blade cross sections was obtained by applying macroscopic fatigue approaches and assuming uniaxial stress states. Power production and parked load cases...... suggested by the IEC 61400-1 standard were studied employing different load time intervals and by using two novel fatigue tools called ALBdeS and BECAS+F. The aeroelastic loads were defined thought aeroelastic simulations performed with both FAST and HAWC2 tools. The stress spectra at each layer were...... calculated employing laminated composite theory and beam cross section methods. The Palmgren-Miner linear damage rule was used to calculate the accumulation damage. The theoretical results produced by both fatigue tools proved a prominent effect of analysed design load conditions on the estimated lifetime...

  12. [Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles].

    Science.gov (United States)

    Arch-Tirado, Emilio; Collado-Corona, Miguel Angel; Morales-Martínez, José de Jesús

    2004-01-01

    amphibians, Frog catesbiana (frog bull, 30 animals); reptiles, Sceloporus torcuatus (common small lizard, 22 animals); birds: Columba livia (common dove, 20 animals), and mammals, Cavia porcellus, (guinea pig, 20 animals). With regard to lodging, all animals were maintained at the Institute of Human Communication Disorders, were fed with special food for each species, and had water available ad libitum. Regarding procedure, for carrying out analysis of auditory evoked potentials of brain stem SPL amphibians, birds, and mammals were anesthetized with ketamine 20, 25, and 50 mg/kg, by injection. Reptiles were anesthetized by freezing (6 degrees C). Study subjects had needle electrodes placed in an imaginary line on the half sagittal line between both ears and eyes, behind right ear, and behind left ear. Stimulation was carried out inside a no noise site by means of a horn in free field. The sign was filtered at between 100 and 3,000 Hz and analyzed in a computer for provoked potentials (Racia APE 78). In data shown by amphibians, wave-evoked responses showed greater latency than those of the other species. In reptiles, latency was observed as reduced in comparison with amphibians. In the case of birds, lesser latency values were observed, while in the case of guinea pigs latencies were greater than those of doves but they were stimulated by 10 dB, which demonstrated best auditory threshold in the four studied species. Last, it was corroborated that as the auditory threshold of each species it descends conforms to it advances in the phylogenetic scale. Beginning with these registrations, we care able to say that response for evoked brain stem potential showed to be more complex and lesser values of absolute latency as we advance along the phylogenetic scale; thus, the opposing auditory threshold is better agreement with regard to the phylogenetic scale among studied species. These data indicated to us that seeking of auditory information is more complex in more

  13. Neural oscillations in auditory working memory

    OpenAIRE

    Wilsch, A.

    2015-01-01

    The present thesis investigated memory load and memory decay in auditory working memory. Alpha power as a marker for memory load served as the primary indicator for load and decay fluctuations hypothetically reflecting functional inhibition of irrelevant information. Memory load was induced by presenting auditory signals (syllables and pure-tone sequences) in noise because speech-in-noise has been shown before to increase memory load. The aim of the thesis was to assess with magnetoencephalog...

  14. Prevalence of fatigue and chronic fatigue syndrome in a primary care practice.

    Science.gov (United States)

    Bates, D W; Schmitt, W; Buchwald, D; Ware, N C; Lee, J; Thoyer, E; Kornish, R J; Komaroff, A L

    1993-12-27

    Our goals were to determine the prevalence of unusual, debilitating fatigue and the frequency with which it was associated with the chronic fatigue syndrome (CFS) or other physical or psychological illness in an outpatient clinic population. We prospectively evaluated a cohort of 1000 consecutive patients in a primary care clinic in an urban, hospital-based general medicine practice. The study protocol included a detailed history, physical examination, and laboratory and psychiatric testing. Five patients who came because of CFS studies were excluded. Of the remaining 995, 323 reported fatigue, and 271 (27%) complained of at least 6 months of unusual fatigue that interfered with their daily lives. Of the 271, self-report or record review revealed a medical or psychiatric condition that could have explained the fatigue in 186 (69%). Thus, 85 (8.5%) of 995 patients had a debilitating fatigue of at least 6 months' duration, without apparent cause. Of these patients, 48 refused further evaluation, and 11 were unavailable for follow-up; 26 completed the protocol. Three of the 26 were hypothyroid, and one had a major psychiatric disorder. Of the remaining 22 patients, three met Centers for Disease Control and Prevention criteria for CFS, four met British criteria, and 10 met the Australian case definition. The point prevalences of CFS were thus 0.3% (95% confidence interval [CI], 0% to 0.6%), 0.4% (95% CI, 0% to 0.8%), and 1.0% (95% CI, 0.4% to 1.6%) using the Centers for Disease Control and Prevention, British, and Australian case definitions, respectively. These estimates were conservative, because they assumed that none of the patients who refused evaluation or were unavailable for follow-up would meet criteria for CFS. While chronic, debilitating fatigue is common in medical outpatients, CFS is relatively uncommon. Prevalence depends substantially on the case definition used.

  15. Changes in the Adult Vertebrate Auditory Sensory Epithelium After Trauma

    Science.gov (United States)

    Oesterle, Elizabeth C.

    2012-01-01

    Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes. PMID:23178236

  16. Work fatigue in urban bus drivers

    Directory of Open Access Journals (Sweden)

    Teresa Makowiec-Dąbrowska

    2015-10-01

    Full Text Available Background: Bus drivers are a special group of professional drivers who are at a very high risk of fatigue. The aim of the study was to examine whether the driver’s subjective assessment of fatigue allows for the determination of its level and identification of its causes. Material and Methods: The study group comprised 45 randomly selected bus drivers (mean age – 43.7±7.9 years, period of employment as drivers – 14.7±8.6 years. Examinations were performed in all subjects four times – before and after work on the “easy” route (outside the city center, small traffic intensity and before and after work on the “difficult” route (city center, heavy traffic. The fatigue test questionnaire, based on the list of symptoms of fatigue prepared by the Japan Research Committee of Fatigue, was used in the study. Results: The rating of fatigue after the work was significantly higher than that before the work. The profile of fatigue after work was not influenced by the type of route, but the assessment of most symptoms of fatigue reached a higher level after the “difficult” routes and the differences were statistically significant for 7 symptoms. Only the ratings of leg fatigue, feeling of heaviness, and the necessity to squint eyes and gaze with effort reached the higher levels after driving the “easy” routes. It has been found that the level of fatigue was significantly correlated with the job characteristics (driving time, the length of the route, number of stops, etc. and with the abundance of food ingested and type of beverage (coffee vs. others drunk prior to driving. Conclusions: The questionnaire used in our study to assess the subjective feeling of fatigue has proved to be a sensitive and useful tool for indicating the level and causes of fatigue. The relationship between the symptoms of fatigue and the characteristics of job and lifestyle shows that actions must be taken by both the employers and employees to prevent fatigue

  17. Fatigue 󈨛. Volume 2,

    Science.gov (United States)

    1987-06-01

    ROLAND STICKLER Absolute Fatigue Thresholds in Metallic 801 Materials - J.A. LEWIS Thermometrical Investigations on the Near 809 Threshold Fatigue...impurities reported by Semi- Alloys Inc. totaled less than 0.1%. Specimens were cast in a flat open aluminum mold. Each specimen was 6 mm thick and 12...and 2024-T351 Aluminum Alloy", in "Fatigue Crack Growth Threshold Concepts", D.L. Davidson, S. Suresh, editors, TMS-AIME. 1984, pp. 63-82. (2) Bailon

  18. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  19. Factors related to fatigue; priority of interventions to reduce or eliminate fatigue and the exploration of a multidisciplinary research model for further study of fatigue

    NARCIS (Netherlands)

    Tiesinga, LJ; Dassen, TWN; Halfens, RJG; van den Heuvel, WJA

    A growing interest in the health problem presented by fatigue, both in clinical practice and research, coupled with a decreasing number of reported studies on fatigue in the last decade, make an updated and systematic review of factors related to fatigue necessary. A search of the literature,

  20. Missing a trick: Auditory load modulates conscious awareness in audition.

    Science.gov (United States)

    Fairnie, Jake; Moore, Brian C J; Remington, Anna

    2016-07-01

    In the visual domain there is considerable evidence supporting the Load Theory of Attention and Cognitive Control, which holds that conscious perception of background stimuli depends on the level of perceptual load involved in a primary task. However, literature on the applicability of this theory to the auditory domain is limited and, in many cases, inconsistent. Here we present a novel "auditory search task" that allows systematic investigation of the impact of auditory load on auditory conscious perception. An array of simultaneous, spatially separated sounds was presented to participants. On half the trials, a critical stimulus was presented concurrently with the array. Participants were asked to detect which of 2 possible targets was present in the array (primary task), and whether the critical stimulus was present or absent (secondary task). Increasing the auditory load of the primary task (raising the number of sounds in the array) consistently reduced the ability to detect the critical stimulus. This indicates that, at least in certain situations, load theory applies in the auditory domain. The implications of this finding are discussed both with respect to our understanding of typical audition and for populations with altered auditory processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. No counterpart of visual perceptual echoes in the auditory system.

    Directory of Open Access Journals (Sweden)

    Barkın İlhan

    Full Text Available It has been previously demonstrated by our group that a visual stimulus made of dynamically changing luminance evokes an echo or reverberation at ~10 Hz, lasting up to a second. In this study we aimed to reveal whether similar echoes also exist in the auditory modality. A dynamically changing auditory stimulus equivalent to the visual stimulus was designed and employed in two separate series of experiments, and the presence of reverberations was analyzed based on reverse correlations between stimulus sequences and EEG epochs. The first experiment directly compared visual and auditory stimuli: while previous findings of ~10 Hz visual echoes were verified, no similar echo was found in the auditory modality regardless of frequency. In the second experiment, we tested if auditory sequences would influence the visual echoes when they were congruent or incongruent with the visual sequences. However, the results in that case similarly did not reveal any auditory echoes, nor any change in the characteristics of visual echoes as a function of audio-visual congruence. The negative findings from these experiments suggest that brain oscillations do not equivalently affect early sensory processes in the visual and auditory modalities, and that alpha (8-13 Hz oscillations play a special role in vision.

  2. The Study of Frequency Self Care Strategies against Auditory Hallucinations

    Directory of Open Access Journals (Sweden)

    Mahin Nadem

    2012-03-01

    Full Text Available Background: In schizophrenic clients, self-care strategies against auditory hallucinations can decrease disturbances results in hallucination. This study was aimed to assess frequency of self-care strategies against auditory hallucinations in paranoid schizophrenic patients, hospitalized in Shafa Hospital.Materials and Method: This was a descriptive study on 201 patients with paranoid schizophrenia hospitalized in psychiatry unit with convenience sampling in Rasht. The gathered data consists of two parts, first unit demographic characteristic and the second part, self- report questionnaire include 38 items about self-care strategies.Results: There were statistically significant relationship between demographic variables and knowledg effect and self-care strategies against auditory hallucinaions. Sex with phisical domain p0.07, marriage status with cognitive domain (p>0.07 and life status with behavioural domain (p>0.01. 53.2% of reported type of our auditory hallucinations were command hallucinations, furtheremore the most effective self-care strategies against auditory hallucinations were from physical domain and substance abuse (82.1% was the most effective strategies in this domain.Conclusion: The client with paranoid schizophrenia used more than physical domain strategies against auditory hallucinaions and this result highlight need those to approprait nursing intervention. Instruction and leading about selection the effective self-care strategies against auditory ha

  3. Fatigue and creep-fatigue strength of 304 steel under biaxial strain conditions

    International Nuclear Information System (INIS)

    Asayama, Tai; Aoto, Kazumi; Wada, Yusaku

    1990-01-01

    A series of fatigue and creep-fatigue tests were conducted with 304 stainless steel at 550degC under a variety of biaxial strain conditions. Fatigue life under nonproportional loading conditions showed a significant life reduction compared with that of proportional loading, and this life reduction was reasonably estimated by taking into account the strain paths along which the strain history is imposed. Furthermore, a marked life reduction was shown to occur under nonproportional loading by imposing a strain hold period at a peak tensile strain. This life reduction was evaluated by the linear damage rule. It was shown to be possible to estimate the fatigue damage and the creep damage under nonproportional loading by a linear damage rule by estimating a stress relaxation behavior by Mises-type equivalent stress or Huddleston-type equivalent stress. (author)

  4. A comparison of patients with Q fever fatigue syndrome and patients with chronic fatigue syndrome with a focus on inflammatory markers and possible fatigue perpetuating cognitions and behaviour.

    Science.gov (United States)

    Keijmel, Stephan P; Saxe, Johanna; van der Meer, Jos W M; Nikolaus, Stephanie; Netea, Mihai G; Bleijenberg, Gijs; Bleeker-Rovers, Chantal P; Knoop, Hans

    2015-10-01

    Comparison of Q fever fatigue syndrome (QFS) and chronic fatigue syndrome (CFS) patients, with a focus on markers of inflammation and fatigue-related cognitive-behavioural variables. Data from two independent prospective studies on QFS (n=117) and CFS (n=173), respectively, were pooled and analyzed. QFS patients were less often female, had a higher BMI, and had less often received treatment for depression before the onset of symptoms. After controlling for symptom duration and correcting for differences in diagnostic criteria for QFS and CFS with respect to the level of impairment and the presence of additional symptoms, differences in the proportion of females and BMI remained significant. After correction, QFS patients were also significantly older. In all analyses QFS patients were as fatigued and distressed as CFS patients, but reported less additional symptoms. QFS patients had stronger somatic attributions, and higher levels of physical activity. No differences were found with regard to inflammatory markers and in other fatigue-related cognitive-behavioural variables. The relationship between cognitive-behavioural variables and fatigue, previously established in CFS, could not be confirmed in QFS patients with the exception of the negative relationship between physical activity and fatigue. Differences and similarities between QFS and CFS patients were found. Although the relationship between perpetuating factors and fatigue previously established in CFS could not be confirmed in QFS patients, the considerable overlap in fatigue-related cognitive-behavioural variables and the relationship found between physical activity and fatigue may suggest that behavioural interventions could reduce fatigue severity in QFS patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Hormone levels in radiotherapy treatment related fatigue

    International Nuclear Information System (INIS)

    Biswal, B.M.; Mallik, G.S.

    2003-01-01

    Radiotherapy is known to cause debilitating treatment related fatigue. Fatigue in general is a conglomeration of psychological, physical, hematological and unknown factors influencing the internal milieu of the cancer patient. Radiotherapy can add stress at the cellular and somatic level to aggravate further fatigue in cancer patients undergoing radiotherapy. Stress related hormones might be mediating in the development of fatigue. This is an ongoing prospective study to evaluate if the hormonal profile related to stress is influenced by radiotherapy treatment related fatigue. The study was conducted from September 2002 onwards in the division of Radiotherapy and Oncology of our Medical School. Previously untreated patients with histopathology proof of malignancy requiring external beam radiotherapy were considered for this study. Selection criteria were applied to exclude other causes of fatigue. Initial fatigue score was obtained using Pipers Fatigue Score questionnaire containing 23 questions, subsequently final fatigue score was obtained at the end of radiotherapy. Blood samples were obtained to estimate the levels of ACTH, TSH, HGH, and cortisol on the final assessment. The hormone levels were compared with resultant post radiotherapy fatigue score. At the time of reporting 50 patients were evaluable for the study. The total significant fatigue score was observed among 12 (24%) patients. The individual debilitating fatigue score were behavioral severity 14 (28%), affective meaning 14(28%), Sensory 13 (26%) and cognitive mood 10 (20%) respectively. From the analysis of hormonal profile, growth hormone level > 1 ng/mL and TSH <0.03 appears to be associated with high fatigue score (though statistically not significant); whereas there was no correlation with ACTH and serum cortisol level. In our prospective study severe radiotherapy treatment related fatigue was found among our patient population. Low levels of TSH and high levels of GH appear to be associated

  6. A eficácia do treinamento auditivo formal em indivíduos com transtorno de processamento auditivo Formal auditory training efficacy in individuals with auditory processing disorder

    Directory of Open Access Journals (Sweden)

    Tatiane Eisencraft Zalcman

    2007-12-01

    Full Text Available OBJETIVO: Verificar a eficácia de um programa de Treinamento Auditivo comparando o desempenho inicial, nos testes comportamentais, com o desempenho após o treinamento auditivo aplicado em indivíduos com Transtorno de Processamento Auditivo. MÉTODOS: Participaram do estudo 30 sujeitos com idades entre oito e 16 anos, que passaram por uma avaliação comportamental inicial do processamento auditivo em que foram utilizados dois testes monóticos e dois dicóticos. Posteriormente foram submetidos a um programa de treinamento de auditivo durante oito semanas, a fim de reabilitar as habilidades auditivas encontradas alteradas na avaliação inicial do processamento auditivo e por fim passaram por uma nova avaliação comportamental do processamento auditivo. RESULTADOS: Após o treinamento auditivo houve melhora em todos os testes aplicados. No teste PSI, pré-treinamento auditivo, as crianças, as crianças tinham uma média de acerto de 66,8% que passou para 86,2% após o treinamento auditivo. No teste de fala com ruído, as crianças tinham uma média de acerto de 69,3% pré-treinamento auditivo que passou a ser 80,5% pós-treinamento auditivo. No teste DNV, a média de acerto pré-treinamento auditivo era de 72,6% e passou a ser 91,4%. Finalmente, no teste SSW a treinamento auditivo média de acerto era de 42,2% pré-treinamento auditivo e passou a ser 88,9% pós. CONCLUSÃO: O programa de treinamento auditivo utilizado foi eficaz na reabilitação das habilidades auditivas encontradas alteradas nas crianças com Transtorno de Processamento Auditivo.PURPOSE: To assess the effectiveness of the Auditory Training comparing the performance in the behavioral tests before and after auditory training in individuals with Auditory Processing Disorders. METHODS: Thirty individuals with ages ranging from eight to 16 years were submitted to an auditory processing evaluation, which consisted of two monotic and two dichotic tests. After that, the

  7. Neural Correlates of Realistic and Unrealistic Auditory Space Perception

    Directory of Open Access Journals (Sweden)

    Akiko Callan

    2011-10-01

    Full Text Available Binaural recordings can simulate externalized auditory space perception over headphones. However, if the orientation of the recorder's head and the orientation of the listener's head are incongruent, the simulated auditory space is not realistic. For example, if a person lying flat on a bed listens to an environmental sound that was recorded by microphones inserted in ears of a person who was in an upright position, the sound simulates an auditory space rotated 90 degrees to the real-world horizontal axis. Our question is whether brain activation patterns are different between the unrealistic auditory space (ie, the orientation of the listener's head and the orientation of the recorder's head are incongruent and the realistic auditory space (ie, the orientations are congruent. River sounds that were binaurally recorded either in a supine position or in an upright body position were served as auditory stimuli. During fMRI experiments, participants listen to the stimuli and pressed one of two buttons indicating the direction of the water flow (horizontal/vertical. Behavioral results indicated that participants could not differentiate between the congruent and the incongruent conditions. However, neuroimaging results showed that the congruent condition activated the planum temporale significantly more than the incongruent condition.

  8. Auditory white noise reduces age-related fluctuations in balance.

    Science.gov (United States)

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Thermal fatigue of beryllium

    International Nuclear Information System (INIS)

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-01-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m 2 to 5 MW/m 2 and under pulsed heat fluxes (10-20 MW/m 2 ) for which the time averaged heat flux is 5 MW/m 2 . These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures ≤ 600 degrees C produced no visible fatigue cracks. In the second series of tests, with T max ≤ 750 degrees C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with Φ = 25 MW/m 2 and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed

  10. Comparisons of memory for nonverbal auditory and visual sequential stimuli.

    Science.gov (United States)

    McFarland, D J; Cacace, A T

    1995-01-01

    Properties of auditory and visual sensory memory were compared by examining subjects' recognition performance of randomly generated binary auditory sequential frequency patterns and binary visual sequential color patterns within a forced-choice paradigm. Experiment 1 demonstrated serial-position effects in auditory and visual modalities consisting of both primacy and recency effects. Experiment 2 found that retention of auditory and visual information was remarkably similar when assessed across a 10s interval. Experiments 3 and 4, taken together, showed that the recency effect in sensory memory is affected more by the type of response required (recognition vs. reproduction) than by the sensory modality employed. These studies suggest that auditory and visual sensory memory stores for nonverbal stimuli share similar properties with respect to serial-position effects and persistence over time.

  11. Fatigue and workload among Danish fishermen

    DEFF Research Database (Denmark)

    Remmen, Line Nørgaard; Herttua, Kimmo; Riss-Jepsen, Jørgen

    2017-01-01

    . Highest levels of fatigue were observed among fishermen at Danish seiners (mean 10.21), and fatigue scores decreased with more days at sea. However, none of these results were significant. Adjusted analyses showed that physical workload was significantly related to general fatigue (b = 0.20, 95% CI: 0...... was additionally significantly associated to the levels of physical and mental fatigue. Fishermen had a lower average score for all fatigue dimensions compared to those seen in general Danish working population. Prospective studies are required to assess whether the identified associations are causal....

  12. Significance of bone changes at the meatus acusticus internus in tumours of the auditory nerve and in the 'empty' extended internal auditory meatus

    Energy Technology Data Exchange (ETDEWEB)

    Grehn, S.

    1988-06-01

    The unilateral extension of shortening of the internal auditory meatus is a very safe bony sign of the presence of a neurinoma of the auditory nerve. Differential diagnosis is necessary to exclude an 'empty' extended internal auditory meatus. On the other hand, 31% of the definitely established neurinomas do not show up in the plain tomogram. These facts prove that despite the presence or absence of allegedly definite bony changes at the internal auditory meatus further diagnostic measures are imperative, especially an air meatography in conjunction with high resolution computed tomography.

  13. Fatigue: Is it all neurochemistry?

    Science.gov (United States)

    Meeusen, Romain; Roelands, Bart

    2018-02-01

    Fatigue during exercise can be approached from different angles. Peripheral fatigue is usually described as an impairment located in the muscle and characterized by a metabolic end point, while central fatigue is defined as a failure of the central nervous system to adequately drive the muscle. The aim of the present narrative review paper is to look at the mechanisms involved in the occurrence of fatigue during prolonged exercise, predominantly from a brain neurochemical point of view. From studies in rodents it is clear that exercise increases the release of several neurotransmitters in different brain regions, and that the onset of fatigue can be manipulated when dopaminergic influx in the preoptic and anterior hypothalamus is increased, interfering with thermoregulation. This is however not as straightforward in humans, in which most studies manipulating brain neurotransmission failed to change the onset of fatigue in normal ambient temperatures. When the ambient temperature was increased, dopaminergic and combined dopaminergic and noradrenergic reuptake inhibition appeared to override a safety switch, allowing subjects to push harder and become much warmer, without changing their perception. In general, we can conclude that brain neurochemistry is clearly involved in the complex regulation of fatigue, but many other mediators also play a role.

  14. From sensation to percept: the neural signature of auditory event-related potentials.

    Science.gov (United States)

    Joos, Kathleen; Gilles, Annick; Van de Heyning, Paul; De Ridder, Dirk; Vanneste, Sven

    2014-05-01

    An external auditory stimulus induces an auditory sensation which may lead to a conscious auditory perception. Although the sensory aspect is well known, it is still a question how an auditory stimulus results in an individual's conscious percept. To unravel the uncertainties concerning the neural correlates of a conscious auditory percept, event-related potentials may serve as a useful tool. In the current review we mainly wanted to shed light on the perceptual aspects of auditory processing and therefore we mainly focused on the auditory late-latency responses. Moreover, there is increasing evidence that perception is an active process in which the brain searches for the information it expects to be present, suggesting that auditory perception requires the presence of both bottom-up, i.e. sensory and top-down, i.e. prediction-driven processing. Therefore, the auditory evoked potentials will be interpreted in the context of the Bayesian brain model, in which the brain predicts which information it expects and when this will happen. The internal representation of the auditory environment will be verified by sensation samples of the environment (P50, N100). When this incoming information violates the expectation, it will induce the emission of a prediction error signal (Mismatch Negativity), activating higher-order neural networks and inducing the update of prior internal representations of the environment (P300). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Auditory evacuation beacons

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Boer, L.C.

    2005-01-01

    Auditory evacuation beacons can be used to guide people to safe exits, even when vision is totally obscured by smoke. Conventional beacons make use of modulated noise signals. Controlled evacuation experiments show that such signals require explicit instructions and are often misunderstood. A new

  16. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth was almost the same regardless of the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  17. Depth-Dependent Temporal Response Properties in Core Auditory Cortex

    OpenAIRE

    Christianson, G. Björn; Sahani, Maneesh; Linden, Jennifer F.

    2011-01-01

    The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, an...

  18. Fatigue, burnout, and chronic fatigue syndrome among employees on sick leave: do attributions make the difference?

    NARCIS (Netherlands)

    Huibers, M.J.H.; Beurskens, A.J.H.M.; Prins, J.B.; Kant, I.J.; Bazelmans, H.M.; Schayck, C.P. van; Knottnerus, J.A.; Bleijenberg, G.

    2003-01-01

    BACKGROUND: Persistent fatigue among employees, burnout, and chronic fatigue syndrome (CFS) are three fatigue conditions that share some characteristics in theory. However, these conditions have not been compared in empirical research, despite conceptual similarities. METHODS: This cross sectional

  19. Fatigue property and fatigue cracks of ultra-fine grained copper processed by equal-channel angular pressing

    Czech Academy of Sciences Publication Activity Database

    Wang, Q.; Du, Z.; Liu, X.; Kunz, Ludvík

    2011-01-01

    Roč. 2011, č. 682 (2011), s. 231-237 ISSN 1013-9826 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained copper * equal channel angular pressing * fatigue * fatigue cracks Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. Gymnasts utilize visual and auditory information for behavioural synchronization in trampolining.

    Science.gov (United States)

    Heinen, T; Koschnick, J; Schmidt-Maaß, D; Vinken, P M

    2014-08-01

    In synchronized trampolining, two gymnasts perform the same routine at the same time. While trained gymnasts are thought to coordinate their own movements with the movements of another gymnast by detecting relevant movement information, the question arises how visual and auditory information contribute to the emergence of synchronicity between both gymnasts. Therefore the aim of this study was to examine the role of visual and auditory information in the emergence of coordinated behaviour in synchronized trampolining. Twenty female gymnasts were asked to synchronize their leaps with the leaps of a model gymnast, while visual and auditory information was manipulated. The results revealed that gymnasts needed more leaps to reach synchronicity when only either auditory (12.9 leaps) or visual information (10.8 leaps) was available, as compared to when both auditory and visual information was available (8.1 leaps). It is concluded that visual and auditory information play significant roles in synchronized trampolining, whilst visual information seems to be the dominant source for emerging behavioural synchronization, and auditory information supports this emergence.

  1. Synchronization with competing visual and auditory rhythms: bouncing ball meets metronome.

    Science.gov (United States)

    Hove, Michael J; Iversen, John R; Zhang, Allen; Repp, Bruno H

    2013-07-01

    Synchronization of finger taps with periodically flashing visual stimuli is known to be much more variable than synchronization with an auditory metronome. When one of these rhythms is the synchronization target and the other serves as a distracter at various temporal offsets, strong auditory dominance is observed. However, it has recently been shown that visuomotor synchronization improves substantially with moving stimuli such as a continuously bouncing ball. The present study pitted a bouncing ball against an auditory metronome in a target-distracter synchronization paradigm, with the participants being auditory experts (musicians) and visual experts (video gamers and ball players). Synchronization was still less variable with auditory than with visual target stimuli in both groups. For musicians, auditory stimuli tended to be more distracting than visual stimuli, whereas the opposite was the case for the visual experts. Overall, there was no main effect of distracter modality. Thus, a distracting spatiotemporal visual rhythm can be as effective as a distracting auditory rhythm in its capacity to perturb synchronous movement, but its effectiveness also depends on modality-specific expertise.

  2. Multiple time scales of adaptation in auditory cortex neurons.

    Science.gov (United States)

    Ulanovsky, Nachum; Las, Liora; Farkas, Dina; Nelken, Israel

    2004-11-17

    Neurons in primary auditory cortex (A1) of cats show strong stimulus-specific adaptation (SSA). In probabilistic settings, in which one stimulus is common and another is rare, responses to common sounds adapt more strongly than responses to rare sounds. This SSA could be a correlate of auditory sensory memory at the level of single A1 neurons. Here we studied adaptation in A1 neurons, using three different probabilistic designs. We showed that SSA has several time scales concurrently, spanning many orders of magnitude, from hundreds of milliseconds to tens of seconds. Similar time scales are known for the auditory memory span of humans, as measured both psychophysically and using evoked potentials. A simple model, with linear dependence on both short-term and long-term stimulus history, provided a good fit to A1 responses. Auditory thalamus neurons did not show SSA, and their responses were poorly fitted by the same model. In addition, SSA increased the proportion of failures in the responses of A1 neurons to the adapting stimulus. Finally, SSA caused a bias in the neuronal responses to unbiased stimuli, enhancing the responses to eccentric stimuli. Therefore, we propose that a major function of SSA in A1 neurons is to encode auditory sensory memory on multiple time scales. This SSA might play a role in stream segregation and in binding of auditory objects over many time scales, a property that is crucial for processing of natural auditory scenes in cats and of speech and music in humans.

  3. Translation and adaptation of functional auditory performance indicators (FAPI

    Directory of Open Access Journals (Sweden)

    Karina Ferreira

    2011-12-01

    Full Text Available Work with deaf children has gained new attention since the expectation and goal of therapy has expanded to language development and subsequent language learning. Many clinical tests were developed for evaluation of speech sound perception in young children in response to the need for accurate assessment of hearing skills that developed from the use of individual hearing aids or cochlear implants. These tests also allow the evaluation of the rehabilitation program. However, few of these tests are available in Portuguese. Evaluation with the Functional Auditory Performance Indicators (FAPI generates a child's functional auditory skills profile, which lists auditory skills in an integrated and hierarchical order. It has seven hierarchical categories, including sound awareness, meaningful sound, auditory feedback, sound source localizing, auditory discrimination, short-term auditory memory, and linguistic auditory processing. FAPI evaluation allows the therapist to map the child's hearing profile performance, determine the target for increasing the hearing abilities, and develop an effective therapeutic plan. Objective: Since the FAPI is an American test, the inventory was adapted for application in the Brazilian population. Material and Methods: The translation was done following the steps of translation and back translation, and reproducibility was evaluated. Four translated versions (two originals and two back-translated were compared, and revisions were done to ensure language adaptation and grammatical and idiomatic equivalence. Results: The inventory was duly translated and adapted. Conclusion: Further studies about the application of the translated FAPI are necessary to make the test practicable in Brazilian clinical use.

  4. Noncontact fatigue crack evaluation using thermoelastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Min; An, Yun Kyu; Sohn, Hoon [KAIST, Daejeon (Korea, Republic of)

    2012-12-15

    This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

  5. Design fatigue curve for Hastelloy-X

    International Nuclear Information System (INIS)

    Nishiguchi, Isoharu; Muto, Yasushi; Tsuji, Hirokazu

    1983-12-01

    In the design of components intended for elevated temperature service as the experimental Very High-Temperature gas-cooled Reactor (VHTR), it is essential to prevent fatigue failure and creep-fatigue failure. The evaluation method which uses design fatigue curves is adopted in the design rules. This report discussed several aspects of these design fatigue curves for Hastelloy-X (-XR) which is considered for use as a heat-resistant alloy in the VHTR. Examination of fatigue data gathered by a literature search including unpublished data showed that Brinkman's equation is suitable for the design curve of Hastelloy-X (-XR), where total strain range Δ epsilon sub(t) is used as independent variable and fatigue life Nsub(f) is transformed into log(log Nsub(f)). (author)

  6. Motor-related signals in the auditory system for listening and learning.

    Science.gov (United States)

    Schneider, David M; Mooney, Richard

    2015-08-01

    In the auditory system, corollary discharge signals are theorized to facilitate normal hearing and the learning of acoustic behaviors, including speech and music. Despite clear evidence of corollary discharge signals in the auditory cortex and their presumed importance for hearing and auditory-guided motor learning, the circuitry and function of corollary discharge signals in the auditory cortex are not well described. In this review, we focus on recent developments in the mouse and songbird that provide insights into the circuitry that transmits corollary discharge signals to the auditory system and the function of these signals in the context of hearing and vocal learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. In search of an auditory engram

    OpenAIRE

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C.

    2005-01-01

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that mo...

  8. The Role of Auditory Cues in the Spatial Knowledge of Blind Individuals

    Science.gov (United States)

    Papadopoulos, Konstantinos; Papadimitriou, Kimon; Koutsoklenis, Athanasios

    2012-01-01

    The study presented here sought to explore the role of auditory cues in the spatial knowledge of blind individuals by examining the relation between the perceived auditory cues and the landscape of a given area and by investigating how blind individuals use auditory cues to create cognitive maps. The findings reveal that several auditory cues…

  9. Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography

    OpenAIRE

    Ishii, Akira; Tanaka, Masaaki; Iwamae, Masayoshi; Kim, Chongsoo; Yamano, Emi; Watanabe, Yasuyoshi

    2013-01-01

    Background It has been proposed that an inappropriately conditioned fatigue sensation could be one cause of chronic fatigue. Although classical conditioning of the fatigue sensation has been reported in rats, there have been no reports in humans. Our aim was to examine whether classical conditioning of the mental fatigue sensation can take place in humans and to clarify the neural mechanisms of fatigue sensation using magnetoencephalography (MEG). Methods Ten and 9 healthy volunteers particip...

  10. Auditory interfaces in automated driving: an international survey

    NARCIS (Netherlands)

    Bazilinskyy, P.; de Winter, J.C.F.

    2015-01-01

    This study investigated peoples’ opinion on auditory interfaces in contemporary
    cars and their willingness to be exposed to auditory feedback in automated driving. We used an Internet-based survey to collect 1,205 responses from 91 countries. The respondents stated their attitudes towards two

  11. Basic Auditory Processing and Developmental Dyslexia in Chinese

    Science.gov (United States)

    Wang, Hsiao-Lan Sharon; Huss, Martina; Hamalainen, Jarmo A.; Goswami, Usha

    2012-01-01

    The present study explores the relationship between basic auditory processing of sound rise time, frequency, duration and intensity, phonological skills (onset-rime and tone awareness, sound blending, RAN, and phonological memory) and reading disability in Chinese. A series of psychometric, literacy, phonological, auditory, and character…

  12. Entrainment to an auditory signal: Is attention involved?

    NARCIS (Netherlands)

    Kunert, R.; Jongman, S.R.

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of

  13. Music and the auditory brain: where is the connection?

    Directory of Open Access Journals (Sweden)

    Israel eNelken

    2011-09-01

    Full Text Available Sound processing by the auditory system is understood in unprecedented details, even compared with sensory coding in the visual system. Nevertheless, we don't understand yet the way in which some of the simplest perceptual properties of sounds are coded in neuronal activity. This poses serious difficulties for linking neuronal responses in the auditory system and music processing, since music operates on abstract representations of sounds. Paradoxically, although perceptual representations of sounds most probably occur high in auditory system or even beyond it, neuronal responses are strongly affected by the temporal organization of sound streams even in subcortical stations. Thus, to the extent that music is organized sound, it is the organization, rather than the sound, which is represented first in the auditory brain.

  14. Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Hyeong; Myung, NohJun; Choi, Nak-Sam [Hanyang Univ., Seoul (Korea, Republic of)

    2016-12-15

    In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

  15. Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia.

    Science.gov (United States)

    Biagianti, Bruno; Roach, Brian J; Fisher, Melissa; Loewy, Rachel; Ford, Judith M; Vinogradov, Sophia; Mathalon, Daniel H

    2017-01-01

    Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. Compared to HC, ESZ individuals showed significant MMN reductions at baseline ( p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals ( p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group ( p = .02), but not in the CG group. In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN

  16. Exploring nurse leader fatigue: a mixed methods study.

    Science.gov (United States)

    Steege, Linsey M; Pinekenstein, Barbara J; Arsenault Knudsen, Élise; Rainbow, Jessica G

    2017-05-01

    To describe hospital nurse leaders' experiences of fatigue. Fatigue is a critical challenge in nursing. Existing literature focuses on staff nurse fatigue, yet nurse leaders are exposed to high demands that may contribute to fatigue and associated risks to patient, nurse and organisational outcomes. A mixed method approach comprising semi-structured interviews and the Occupational Fatigue Exhaustion Recovery scale with 21 nurse administrators (10 nurse managers and 11 nurse executives) from hospitals in a Midwestern state. Most nurse leaders experience fatigue; nurse managers reported higher levels of chronic fatigue. Participants identified multiple sources of fatigue including 24 h accountability and intensity of role expectations, and used a combination of wellness, restorative, social support and boundary setting strategies to cope with fatigue. The consequences of nurse leader fatigue include an impact on decision-making, work-life balance and turnover intent. The high prevalence of nurse leader fatigue could impact the turnover intent of nurse administrators and quality of care. This study highlights the significance and consequences of nurse leader fatigue. As health care organisations continue to raise awareness and establish systems to reduce nurse fatigue, policies and programmes must be adapted to address nurse leader fatigue. © 2017 John Wiley & Sons Ltd.

  17. Variable amplitude fatigue, modelling and testing

    International Nuclear Information System (INIS)

    Svensson, Thomas.

    1993-01-01

    Problems related to metal fatigue modelling and testing are here treated in four different papers. In the first paper different views of the subject are summarised in a literature survey. In the second paper a new model for fatigue life is investigated. Experimental results are established which are promising for further development of the mode. In the third paper a method is presented that generates a stochastic process, suitable to fatigue testing. The process is designed in order to resemble certain fatigue related features in service life processes. In the fourth paper fatigue problems in transport vibrations are treated

  18. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  19. Auditory comprehension: from the voice up to the single word level

    OpenAIRE

    Jones, Anna Barbara

    2016-01-01

    Auditory comprehension, the ability to understand spoken language, consists of a number of different auditory processing skills. In the five studies presented in this thesis I investigated both intact and impaired auditory comprehension at different levels: voice versus phoneme perception, as well as single word auditory comprehension in terms of phonemic and semantic content. In the first study, using sounds from different continua of ‘male’-/pæ/ to ‘female’-/tæ/ and ‘male’...

  20. Metabolomic markers of fatigue: Association between circulating metabolome and fatigue in women with chronic widespread pain.

    Science.gov (United States)

    Freidin, Maxim B; Wells, Helena R R; Potter, Tilly; Livshits, Gregory; Menni, Cristina; Williams, Frances M K

    2018-02-01

    Fatigue is a sensation of unbearable tiredness that frequently accompanies chronic widespread musculoskeletal pain (CWP) and inflammatory joint disease. Its mechanisms are poorly understood and there is a lack of effective biomarkers for diagnosis and onset prediction. We studied the circulating metabolome in a population sample characterised for CWP to identify biomarkers showing specificity for fatigue. Untargeted metabolomic profiling was conducted on fasting plasma and serum samples of 1106 females with and without CWP from the TwinsUK cohort. Linear mixed-effects models accounting for covariates were used to determine relationships between fatigue and metabolites. Receiver operating curve (ROC)-analysis was used to determine predictive value of metabolites for fatigue. While no association between fatigue and metabolites was identified in twins without CWP (n=711), in participants with CWP (n=395), levels of eicosapentaenoate (EPA) ω-3 fatty acid were significantly reduced in those with fatigue (β=-0.452±0.116; p=1.2×10 -4 ). A significant association between fatigue and two other metabolites also emerged when BMI was excluded from the model: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), and C-glycosyltryptophan (p=1.5×10 -4 and p=3.1×10 -4 , respectively). ROC analysis has identified a combination of 15 circulating metabolites with good predictive potential for fatigue in CWP (AUC=75%; 95% CI 69-80%). The results of this agnostic metabolomics screening show that fatigue is metabolically distinct from CWP, and is associated with a decrease in circulating levels of EPA. Our panel of circulating metabolites provides the starting point for a diagnostic test for fatigue in CWP. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Auditory beat stimulation and its effects on cognition and mood states

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-05-01

    Full Text Available Auditory beat stimulation may be a promising new tool for the manipulation of cognitive processes and the modulation of mood-states. Here we aim to review the literature examining the most current applications of auditory beat stimulation and its targets. We give a brief overview of research on auditory steady-state responses and its relationship to auditory beat stimulation. We have summarized relevant studies investigating the neurophysiological changes related to auditory beat stimulation and how they impact upon the design of appropriate stimulation protocols. Focusing on binaural beat stimulation, we then discuss the role of monaural and binaural beat frequencies in cognition and mood-states, in addition to their efficacy in targeting disease symptoms. We aim to highlight important points concerning stimulation parameters and try to address why there are often contradictory findings with regard to the outcomes of auditory beat stimulation.

  2. Real-Time Assessment of Fatigue in Patients With Multiple Sclerosis: How Does It Relate to Commonly Used Self-Report Fatigue Questionnaires?

    Science.gov (United States)

    Heine, Martin; van den Akker, Lizanne Eva; Blikman, Lyan; Hoekstra, Trynke; van Munster, Erik; Verschuren, Olaf; Visser-Meily, Anne; Kwakkel, Gert

    2016-11-01

    (1) To assess real-time patterns of fatigue; (2) to assess the association between a real-time fatigue score and 3 commonly used questionnaires (Checklist Individual Strength [CIS] fatigue subscale, Modified Fatigue Impact Scale (MFIS), and Fatigue Severity Scale [FSS]); and (3) to establish factors that confound the association between the real-time fatigue score and the conventional fatigue questionnaires in patients with multiple sclerosis (MS). Cross-sectional study. MS-specialized outpatient facility. Ambulant patients with MS (N=165) experiencing severe self-reported fatigue. Not applicable. A real-time fatigue score was assessed by sending participants 4 text messages on a particular day (How fatigued do you feel at this moment?; score range, 0-10). Latent class growth mixed modeling was used to determine diurnal patterns of fatigue. Regression analyses were used to assess the association between the mean real-time fatigue score and the CIS fatigue subscale, MFIS, and FSS. Significant associations were tested for candidate confounders (eg, disease severity, work status, sleepiness). Four significantly different fatigue profiles were identified by the real-time fatigue score, namely a stable high (n=79), increasing (n=57), stable low (n=16), and decreasing (n=13). The conventional questionnaires correlated poorly (rquestionnaires, ranging from 15.4% to 35%. Perceived fatigue showed 4 different diurnal patterns in patients with MS. Severity of sleepiness is an important confounder to take into account in the assessment of fatigue. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Research on driver fatigue detection

    Science.gov (United States)

    Zhang, Ting; Chen, Zhong; Ouyang, Chao

    2018-03-01

    Driver fatigue is one of the main causes of frequent traffic accidents. In this case, driver fatigue detection system has very important significance in avoiding traffic accidents. This paper presents a real-time method based on fusion of multiple facial features, including eye closure, yawn and head movement. The eye state is classified as being open or closed by a linear SVM classifier trained using HOG features of the detected eye. The mouth state is determined according to the width-height ratio of the mouth. The head movement is detected by head pitch angle calculated by facial landmark. The driver's fatigue state can be reasoned by the model trained by above features. According to experimental results, drive fatigue detection obtains an excellent performance. It indicates that the developed method is valuable for the application of avoiding traffic accidents caused by driver's fatigue.

  4. Damage assessment of low-cycle fatigue by crack growth prediction. Fatigue life under cyclic thermal stress

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2013-01-01

    The number of cycles to failure of specimens in fatigue tests can be estimated by predicting crack growth. Under a cyclic thermal stress caused by fluctuation of fluid temperature, due to the stress gradient in the thickness direction, the estimated fatigue life differs from that estimated for mechanical fatigue tests. In this paper, the influence of crack growth under cyclic thermal loading on the fatigue life was investigated. First, the thermal stress was derived by superposing analytical solutions, and then, the stress intensity factor was obtained by the weight function method. It was shown that the thermal stress depended not on the rate of the fluid temperature change but on the rise time, and the magnitude of the stress was increased as the rise time was decreased. The stress intensity factor under the cyclic thermal stress was smaller than that under the uniform stress distribution. The change in the stress intensity factor with the crack depth did not depend on the heat transfer coefficient and only slightly depended on the rise time. The estimated fatigue life under the cyclic thermal loading could be 1.6 times longer than that under the uniform stress distribution. The critical size for the fatigue life determination was assumed to be 3 mm for fatigue test specimens of 10 mm diameter. By evaluating the critical size by structural integrity analyses, the fatigue life was increased and the effect of the critical size on the fatigue life was more pronounced for the cyclic thermal stress. (author)

  5. Category-specific responses to faces and objects in primate auditory cortex

    Directory of Open Access Journals (Sweden)

    Kari L Hoffman

    2008-03-01

    Full Text Available Auditory and visual signals often occur together, and the two sensory channels are known to infl uence each other to facilitate perception. The neural basis of this integration is not well understood, although other forms of multisensory infl uences have been shown to occur at surprisingly early stages of processing in cortex. Primary visual cortex neurons can show frequency-tuning to auditory stimuli, and auditory cortex responds selectively to certain somatosensory stimuli, supporting the possibility that complex visual signals may modulate early stages of auditory processing. To elucidate which auditory regions, if any, are responsive to complex visual stimuli, we recorded from auditory cortex and the superior temporal sulcus while presenting visual stimuli consisting of various objects, neutral faces, and facial expressions generated during vocalization. Both objects and conspecifi c faces elicited robust fi eld potential responses in auditory cortex sites, but the responses varied by category: both neutral and vocalizing faces had a highly consistent negative component (N100 followed by a broader positive component (P180 whereas object responses were more variable in time and shape, but could be discriminated consistently from the responses to faces. The face response did not vary within the face category, i.e., for expressive vs. neutral face stimuli. The presence of responses for both objects and neutral faces suggests that auditory cortex receives highly informative visual input that is not restricted to those stimuli associated with auditory components. These results reveal selectivity for complex visual stimuli in a brain region conventionally described as non-visual unisensory cortex.

  6. Auditory Processing Testing: In the Booth versus Outside the Booth.

    Science.gov (United States)

    Lucker, Jay R

    2017-09-01

    Many audiologists believe that auditory processing testing must be carried out in a soundproof booth. This expectation is especially a problem in places such as elementary schools. Research comparing pure-tone thresholds obtained in sound booths compared to quiet test environments outside of these booths does not support that belief. Auditory processing testing is generally carried out at above threshold levels, and therefore may be even less likely to require a soundproof booth. The present study was carried out to compare test results in soundproof booths versus quiet rooms. The purpose of this study was to determine whether auditory processing tests can be administered in a quiet test room rather than in the soundproof test suite. The outcomes would identify that audiologists can provide auditory processing testing for children under various test conditions including quiet rooms at their school. A battery of auditory processing tests was administered at a test level equivalent to 50 dB HL through headphones. The same equipment was used for testing in both locations. Twenty participants identified with normal hearing were included in this study, ten having no auditory processing concerns and ten exhibiting auditory processing problems. All participants underwent a battery of tests, both inside the test booth and outside the booth in a quiet room. Order of testing (inside versus outside) was counterbalanced. Participants were first determined to have normal hearing thresholds for tones and speech. Auditory processing tests were recorded and presented from an HP EliteBook laptop computer with noise-canceling headphones attached to a y-cord that not only presented the test stimuli to the participants but also allowed monitor headphones to be worn by the evaluator. The same equipment was used inside as well as outside the booth. No differences were found for each auditory processing measure as a function of the test setting or the order in which testing was done

  7. A Preliminary Review of Fatigue Among Rail Staff

    Directory of Open Access Journals (Sweden)

    Jialin Fan

    2018-05-01

    Full Text Available Background: Fatigue is a severe problem in the rail industry, which may jeopardize train crew's health and safety. Nonetheless, a preliminary review of all empirical evidence for train crew fatigue is still lacking. The aim of the present paper is, therefore, to provide a preliminary description of occupational fatigue in the rail industry. This paper reviews the literature with the research question examining the risk factors associated with train crew fatigue, covering both papers published in refereed journals and reports from trade organizations and regulators. It assesses the progress of research on railway fatigue, including research on the main risk factors for railway fatigue, the association between fatigue and railway incidents, and how to better manage fatigue in the railway industry.Methods: Systematic searches were performed in both science and industry databases. The searches considered studies published before August 2017. The main exclusion criterion was fatigue not being directly measured through subjective or objective methods.Results: A total of 31 studies were included in the main review. The causes of fatigue included long working hours, heavy workload, early morning or night shifts, and insufficient sleep. Poor working environment, particular job roles, and individual differences also contributed to fatigue.Conclusion: Fatigue in the rail industry includes most of the features of occupational fatigue, and it is also subject to industry-specific factors. The effect of fatigue on well-being and the fatigued population in the railway industry are still not clear. Future studies can consider associations between occupational risk factors and perceived fatigue by examining the prevalence of fatigue and identifying the potential risk factors in staff within the railway industry.

  8. Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening

    International Nuclear Information System (INIS)

    Ganesh, P.; Sundar, R.; Kumar, H.; Kaul, R.; Ranganathan, K.; Hedaoo, P.; Raghavendra, G.; Anand Kumar, S.; Tiwari, P.; Nagpure, D.C.; Bindra, K.S.; Kukreja, L.M.; Oak, S.M.

    2014-01-01

    Highlights: • Laser peening significantly extended fatigue life of pre-fatigued spring steel. • Increase in fatigue life of laser peened specimens was more than 15 times. • Black PVC tape is an effective coating for laser peening of ground surfaces. • Repeat peening repaired local surface melted regions on laser peened surface. • Technique is effective for life extension of in-service automobile parts. - Abstract: SAE 9260 spring steel specimens after enduring 50% of their mean fatigue life were subjected to laser shock peening using an in-house developed 2.5 J/7 ns pulsed Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) laser for studying their fatigue life enhancement. In the investigated range of process parameters, laser shock peening resulted in the extension of fatigue life of these partly fatigue damaged specimens by more than 15 times. Contributing factors for the enhanced fatigue life of laser peened specimens are: about 400 μm thick compressed surface layer with magnitude of surface stress in the range of −600 to −700 MPa, about 20% increase in surface hardness and unaltered surface finish. For laser peening of ground steel surface, an adhesive-backed black polyvinyl chloride (PVC) tape has been found to be a superior sacrificial coating than conventionally used black paint. The effect of repeated laser peening treatment was studied to repair locally surface melted regions and the treatment has been found to be effective in re-establishing desired compressive stress pattern on the erstwhile tensile-stressed surface

  9. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  10. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  11. Towards an auditory account of speech rhythm: application of a model of the auditory 'primal sketch' to two multi-language corpora.

    Science.gov (United States)

    Lee, Christopher S; Todd, Neil P McAngus

    2004-10-01

    The world's languages display important differences in their rhythmic organization; most particularly, different languages seem to privilege different phonological units (mora, syllable, or stress foot) as their basic rhythmic unit. There is now considerable evidence that such differences have important consequences for crucial aspects of language acquisition and processing. Several questions remain, however, as to what exactly characterizes the rhythmic differences, how they are manifested at an auditory/acoustic level and how listeners, whether adult native speakers or young infants, process rhythmic information. In this paper it is proposed that the crucial determinant of rhythmic organization is the variability in the auditory prominence of phonetic events. In order to test this auditory prominence hypothesis, an auditory model is run on two multi-language data-sets, the first consisting of matched pairs of English and French sentences, and the second consisting of French, Italian, English and Dutch sentences. The model is based on a theory of the auditory primal sketch, and generates a primitive representation of an acoustic signal (the rhythmogram) which yields a crude segmentation of the speech signal and assigns prominence values to the obtained sequence of events. Its performance is compared with that of several recently proposed phonetic measures of vocalic and consonantal variability.

  12. The spectrotemporal filter mechanism of auditory selective attention

    Science.gov (United States)

    Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.

    2013-01-01

    SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126

  13. Preschool-Age Children and Adults Flexibly Shift Their Preferences for Auditory versus Visual Modalities but Do Not Exhibit Auditory Dominance

    Science.gov (United States)

    Noles, Nicholaus S.; Gelman, Susan A.

    2012-01-01

    The goal of this study was to evaluate the claim that young children display preferences for auditory stimuli over visual stimuli. This study was motivated by concerns that the visual stimuli employed in prior studies were considerably more complex and less distinctive than the competing auditory stimuli, resulting in an illusory preference for…

  14. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  15. Multivariate sensitivity to voice during auditory categorization.

    Science.gov (United States)

    Lee, Yune Sang; Peelle, Jonathan E; Kraemer, David; Lloyd, Samuel; Granger, Richard

    2015-09-01

    Past neuroimaging studies have documented discrete regions of human temporal cortex that are more strongly activated by conspecific voice sounds than by nonvoice sounds. However, the mechanisms underlying this voice sensitivity remain unclear. In the present functional MRI study, we took a novel approach to examining voice sensitivity, in which we applied a signal detection paradigm to the assessment of multivariate pattern classification among several living and nonliving categories of auditory stimuli. Within this framework, voice sensitivity can be interpreted as a distinct neural representation of brain activity that correctly distinguishes human vocalizations from other auditory object categories. Across a series of auditory categorization tests, we found that bilateral superior and middle temporal cortex consistently exhibited robust sensitivity to human vocal sounds. Although the strongest categorization was in distinguishing human voice from other categories, subsets of these regions were also able to distinguish reliably between nonhuman categories, suggesting a general role in auditory object categorization. Our findings complement the current evidence of cortical sensitivity to human vocal sounds by revealing that the greatest sensitivity during categorization tasks is devoted to distinguishing voice from nonvoice categories within human temporal cortex. Copyright © 2015 the American Physiological Society.

  16. Visual and Auditory Memory in Spelling: An Exploratory Study

    Science.gov (United States)

    Day, J. B.; Wedell, K.

    1972-01-01

    Using visual and auditory memory sequencing tests with 140 children aged 8-10, this study aimed to investigate the assumption that visual and auditory memory are important component functions in children's spelling. (Author)

  17. Fatigue Reliability of Offshore Wind Turbine Systems

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2012-01-01

    of appropriate partial safety factors / fatigue design factors (FDF) for steel substructures of offshore wind turbines (OWTs). The fatigue life is modeled by the SN approach. Design and limit state equations are established based on the accumulated fatigue damage. The acceptable reliability level for optimal...... fatigue design of OWTs is discussed and results for reliability assessment of typical fatigue critical design of offshore steel support structures are presented....

  18. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning.

    Science.gov (United States)

    Puschmann, Sebastian; Brechmann, André; Thiel, Christiane M

    2013-11-01

    Animal experiments provide evidence that learning to associate an auditory stimulus with a reward causes representational changes in auditory cortex. However, most studies did not investigate the temporal formation of learning-dependent plasticity during the task but rather compared auditory cortex receptive fields before and after conditioning. We here present a functional magnetic resonance imaging study on learning-related plasticity in the human auditory cortex during operant appetitive conditioning. Participants had to learn to associate a specific category of frequency-modulated tones with a reward. Only participants who learned this association developed learning-dependent plasticity in left auditory cortex over the course of the experiment. No differential responses to reward predicting and nonreward predicting tones were found in auditory cortex in nonlearners. In addition, learners showed similar learning-induced differential responses to reward-predicting and nonreward-predicting tones in the ventral tegmental area and the nucleus accumbens, two core regions of the dopaminergic neurotransmitter system. This may indicate a dopaminergic influence on the formation of learning-dependent plasticity in auditory cortex, as it has been suggested by previous animal studies. Copyright © 2012 Wiley Periodicals, Inc.

  19. Fatigue Reliability and Calibration of Fatigue Design Factors for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Dominguez, Sergio Marquez; Sørensen, John Dalsgaard

    2012-01-01

    Consequences of failure of offshore wind turbines (OWTs) are in general lower than consequences of failure of, e.g., oil & gas platforms. It is reasonable that lower fatigue design factors can be applied for fatigue design of OWTs when compared to other fixed offshore structures. Calibration...

  20. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    International Nuclear Information System (INIS)

    Asayama, Tai; Tachibana, Yukio

    2007-01-01

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  1. Auditory recognition memory is inferior to visual recognition memory

    OpenAIRE

    Cohen, Michael A.; Horowitz, Todd S.; Wolfe, Jeremy M.

    2009-01-01

    Visual memory for scenes is surprisingly robust. We wished to examine whether an analogous ability exists in the auditory domain. Participants listened to a variety of sound clips and were tested on their ability to distinguish old from new clips. Stimuli ranged from complex auditory scenes (e.g., talking in a pool hall) to isolated auditory objects (e.g., a dog barking) to music. In some conditions, additional information was provided to help participants with encoding. In every situation, h...

  2. Guide to safe work : fatigue management : an employer's guide to designing and implementing a fatigue management program. 2 ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    The impacts of fatigue on workplace safety are now commonly recognized. Many employers now wish to include fatigue management as part of their overall health and safety programs. This guide to fatigue management was written to help companies in the petroleum industry design and implement effective fatigue management programs that reduce incidents and injuries among employees. The guide provided information about workplace fatigue and discussed fatigue management issues and strategies. It was suggested that workplace culture can play a significant role in managing fatigue by allowing fatigue factors to be quickly recognized and managed. Employers who wish to build fatigue management programs should involve all levels of employees, and should consider all workplace practices and procedures. Consideration must also be given to the development of employee competency in managing fatigue. The guide included step-by-step recommendations for implementing a fatigue management program. It was concluded that the benefits of fatigue management include reduced worker absence and turnover, as well as avoiding the costs of safety incidents. 1 tab., 1 fig.

  3. Fatigue failure by in-line flow-induced vibration and fatigue life evaluation

    International Nuclear Information System (INIS)

    Odahara, Satoru; Murakami, Yukitaka; Inoue, Masahiro; Sueoka, Atsuo

    2004-01-01

    The phenomenon of fatigue failure by the In-line flow-induced vibration was studied. A newly water-flow-induced vibration system was made and used to reproduce fatigue failure by flow-induced vibration. A medium carbon steel specimen was fixed to the experimental equipment. A small artificial hole was introduced onto the specimen surface. Fatigue crack initiated from the artificial hole. A small portable strain histogram recorder (Mini Rainflow Corder, MRC) developed in another project of the authors' team was used to acquire the service strain hisogram at a critical point of the specimen and to measure the variation of natural frequency. Cumulative fatigue damage D defined by the Modified Miner Rule was calculated by using the strain histogram at the initial stage of test. The value of D was almost unity in the case of In-line vibration, while the values of D in the case of the Cross-flow vibration ranged from 0.2 to 0.8. (author)

  4. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.

    Science.gov (United States)

    Morrill, Ryan J; Hasenstaub, Andrea R

    2018-03-14

    The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.

  5. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  6. Task-specific reorganization of the auditory cortex in deaf humans.

    Science.gov (United States)

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  7. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  8. Fatigue design 1998

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, G.; Solin, J. [eds.] [VTT Manufacturing Technology, Espoo (Finland)

    1998-12-31

    These preprints contain the presentations to be delivered at the Fatigue Design 1998 symposium held on May 26-29, 1998 in Espoo. Fatigue Design 1998 is the tenth in a series of VTT symposia addressing the challenge of fatigue of materials, components and structures. Previous international events were in 1992 and 1995. The key theme of the current meeting is `RELIABILITY`. The two volumes (VTT symposium 181-182) represent 56 contributions by authors representing 26 countries. Emphasis has been given to application oriented research topics that report new technologies, new uses of existing methods and case studies. The objective of the symposium is to bring together researchers and engineers to share experiences and new innovations in designing reliable components to resist alternating loads. (orig.)

  9. IEA Joint Action. Wind turbine fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B [ed.

    1996-09-01

    Fatigue research on wind turbine blade material has been an important issue over the years in many countries and in the E.U. As a result of the effort the knowledge on fatigue properties of fibre reinforced materials has been expanded enormously. Practical fatigue design properties are available for constant amplitude tests at ambient temperatures. A lack of knowledge can be shown in several other fields, such as variable amplitude and multi-axial testing and the influence of the environment and carbon fibres. Fatigue is seen as dominant for the blade design, improvements in both the load prediction and material fatigue properties should be strove for. In discussions with blade manufacturers and subsidy agencies (E.U. DGXII, NOVEM, ETSU, etc.) on the importance of continuous materials fatigue research the improvement in reliability should be stressed. (au)

  10. Auditory Phoneme Discrimination in Illiterates: Mismatch Negativity--A Question of Literacy?

    Science.gov (United States)

    Schaadt, Gesa; Pannekamp, Ann; van der Meer, Elke

    2013-01-01

    These days, illiteracy is still a major problem. There is empirical evidence that auditory phoneme discrimination is one of the factors contributing to written language acquisition. The current study investigated auditory phoneme discrimination in participants who did not acquire written language sufficiently. Auditory phoneme discrimination was…

  11. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a

  12. Fatigue and damage tolerance scatter models

    Science.gov (United States)

    Raikher, Veniamin L.

    1994-09-01

    Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.

  13. Measurement of fatigue in industries.

    Science.gov (United States)

    Saito, K

    1999-04-01

    Fatigue of workers is a complex phenomenon resulting from various factors in technically innovated modern industries, and it appears as a feeling of exhaustion, lowering of physiological functions, breakdown of autonomic nervous balance, and decrease in work efficiency. On the other hand industrial fatigue is caused by excessive workload, remarkable alteration in working posture and diurnal and nocturnal rhythms in daily life. Working modes in modern industries have changed from work with the whole body into that with the hands, arms, legs and/or eyes which are parts of the body, and from physical work to mental work. Visual display terminal (VDT) work is one of the most characteristic jobs in the various kinds of workplaces. A large number of fatigue tests have already been adopted, but it is still hard to draw a generalized conclusion as to the method of selecting the most appropriate test battery for a given work load. As apparatus for fatigue measurement of VDT work we have developed VRT (Visual Reaction Test) and the Portable Fatigue Meter. Furthermore, we have presented immune parameters of peripheral blood and splenic T cells for physical fatigue.

  14. How do auditory cortex neurons represent communication sounds?

    Science.gov (United States)

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris; Laudanski, Jonathan; Occelli, Florian; Edeline, Jean-Marc

    2013-11-01

    A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia

    Science.gov (United States)

    Morey, Rajendra A.; Mitchell, Teresa V.; Inan, Seniha; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group. PMID:19196926

  16. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  17. Fatigue Strength of Titanium Risers - Defect Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Babalola, Olusegun Tunde

    2001-07-01

    This study is centred on assessment of the fatigue strength of titanium fusion welds for deep-water riser's applications. Deep-water risers are subjected to significant fatigue loading. Relevant fatigue data for titanium fusion welds are very scarce. Hence there is a need for fatigue data and life prediction models for such weldments. The study has covered three topics: Fatigue testing, Fractography and defect assessment, and Fracture Mechanics modelling of fatigue crack growth. Two series of welded grade of titanium consisting of 14 specimens in each series were fatigue tested under constant amplitude loading. Prior to fatigue testing, strain gauge measurements of some specimens was conducted to enable the definition of stress range in the fatigue assessment procedure. The results were compared with finite solid element analysis and related to fatigue stresses in a riser pipe wall. Distribution and geometry of internal and surface defects both in the as-welded and in the post-weld machined conditions were assessed using fractography. This served as a tool to determine the fatigue initiation point in the welds. Fracture mechanics was applied to model fatigue strength of titanium welds with initiation from weld defects. Two different stress intensity factor formulations for embedded eccentrically placed cracks were used for analysis of elliptical cracks with the major axis parallel and close to one of the free surfaces. The methods were combined to give a satisfactory model for crack growth analysis. The model analyses crack growth of elliptical and semi-elliptical cracks in two directions, with updating of the crack geometry. Fatigue strength assessment was conducted using two crack growth models, the Paris-Erdogan relation with no threshold and the Donahue et al. relation with an implied threshold. The model was validated against experimental data, with a discussion on the choice of crack growth model. (author)

  18. Fatigue in cancer: A review of literature

    Directory of Open Access Journals (Sweden)

    Vijayakumar Narayanan

    2009-01-01

    Full Text Available Fatigue is a common symptom of advanced cancer limiting one′s activity and affecting the quality of life. It is a multidimensional symptom complex with subjective and objective components. Hence, its definition and assessment seems arbitrary, incomplete, and elusive. Components of fatigue often merge with other ′disease states′ as anemia, depression and so on, compounding difficulty to assess it separately. Fatigue has a high prevalence rate, and lasts longer in chronic diseases like cancer. Its association with treatment modalities like chemotherapy, radiotherapy alongside the primary disease process makes it seemingly ubiquitous in many cases. Systemic manifestation of cancer causes excess demand on body resources on cell repair, uncontrolled growth with metabolite accumulation causing fatigue. Co-morbid conditions of organic and psychological nature causes fatigue. There are many assessment tools for fatigue with different uses and objectives, simple and reproducible tools like Brief Fatigue Inventory, Edmonton Symptom assessment scale seem feasible in everyday practice. Management of fatigue is not straightforward and rewarding. Although treatment of cause appears to be an attractive option, it is not possible in all cases. Therapeutic agents targeting cytokine load is in early stages of study and available results are not favorable. Specific measures aimed at pain relief, prevention/treatment of sepsis, management of depression, avoidance of drugs causing fatigue, restoring the metabolic profile are important. Methyl phenidate, megestrol, and modafinil are some drugs with promising effect to treat fatigue, though confirmatory studies are yet to be established. Non-pharmacological methods are also helpful. Forewarning patients on upcoming fatigue, active regular exercise, and stress management are some of them. Fatigue being a multidimensional entity, single mode of therapy is insufficient. Combined modality tailored to individual

  19. Fatigue Monitoring Tool for Airline Operators (FMT

    Directory of Open Access Journals (Sweden)

    Gislason Sigurdur Hrafn

    2017-12-01

    Full Text Available A Fatigue Monitoring Tool (FMT model was constructed for an operational airline in order to manage the fatigue levels of their crews in accordance with Fatigue Risk Management System (FRMS practices. This article describes the implementation of the Fatigue Monitoring Tool model and the airline’s aims to put the recent scientific findings on aviation fatigue into practical use. The model consists of proxy points allotted to various duties and rest periods.

  20. Diagnostik der Fatigue bei Multipler Sklerose [Assessment of fatigue in multiple sclerosis

    NARCIS (Netherlands)

    Sander, C.; Voelter, H.U.; Schlake, H.P.; Eling, P.A.T.M.; Hildebrandt, H.

    2017-01-01

    Hintergrund: Fatigue ist eines der häufigsten Symptome bei Multipler Sklerose (MS) und hat deutliche Auswirkungen auf die Lebensqualität sowie die Berufstätigkeit. Die adäquate Messung der erlebten Fatigue ist aber auch heutzutage noch mit erheblicher Unsicherheit behaftet. Ziel der Arbeit: In dem

  1. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Directory of Open Access Journals (Sweden)

    Jason A Miranda

    Full Text Available Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  2. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Science.gov (United States)

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  3. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates.

    Science.gov (United States)

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-07-20

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys.

  4. Visual face-movement sensitive cortex is relevant for auditory-only speech recognition.

    Science.gov (United States)

    Riedel, Philipp; Ragert, Patrick; Schelinski, Stefanie; Kiebel, Stefan J; von Kriegstein, Katharina

    2015-07-01

    It is commonly assumed that the recruitment of visual areas during audition is not relevant for performing auditory tasks ('auditory-only view'). According to an alternative view, however, the recruitment of visual cortices is thought to optimize auditory-only task performance ('auditory-visual view'). This alternative view is based on functional magnetic resonance imaging (fMRI) studies. These studies have shown, for example, that even if there is only auditory input available, face-movement sensitive areas within the posterior superior temporal sulcus (pSTS) are involved in understanding what is said (auditory-only speech recognition). This is particularly the case when speakers are known audio-visually, that is, after brief voice-face learning. Here we tested whether the left pSTS involvement is causally related to performance in auditory-only speech recognition when speakers are known by face. To test this hypothesis, we applied cathodal transcranial direct current stimulation (tDCS) to the pSTS during (i) visual-only speech recognition of a speaker known only visually to participants and (ii) auditory-only speech recognition of speakers they learned by voice and face. We defined the cathode as active electrode to down-regulate cortical excitability by hyperpolarization of neurons. tDCS to the pSTS interfered with visual-only speech recognition performance compared to a control group without pSTS stimulation (tDCS to BA6/44 or sham). Critically, compared to controls, pSTS stimulation additionally decreased auditory-only speech recognition performance selectively for voice-face learned speakers. These results are important in two ways. First, they provide direct evidence that the pSTS is causally involved in visual-only speech recognition; this confirms a long-standing prediction of current face-processing models. Secondly, they show that visual face-sensitive pSTS is causally involved in optimizing auditory-only speech recognition. These results are in line

  5. Threatening auditory hallucinations and Cotard syndrome in Parkinson disease.

    Science.gov (United States)

    Factor, Stewart A; Molho, Eric S

    2004-01-01

    Psychotic symptoms are commonly reported in patients with Parkinson disease (PD). In particular, patients experience nonthreatening visual hallucinations that can occur with insight (so called hallucinosis) or without. Auditory hallucinations are uncommon, and schizophrenialike symptoms such as pejorative and threatening auditory hallucinations and delusions that are persecutory, referential, somatic, religious, or grandiose have rarely been reported. The authors present 2 PD patients who experienced threatening auditory hallucinations, without visual hallucinations, and schizophrenialike delusions with detailed description of the clinical phenomenology including 1 patient with Cotard syndrome.

  6. Possible use of repeated cold stress for reducing fatigue in Chronic Fatigue Syndrome: a hypothesis

    Directory of Open Access Journals (Sweden)

    Shevchuk Nikolai A

    2007-10-01

    Full Text Available Abstract Background Physiological fatigue can be defined as a reduction in the force output and/or energy-generating capacity of skeletal muscle after exertion, which may manifest itself as an inability to continue exercise or usual activities at the same intensity. A typical example of a fatigue-related disorder is chronic fatigue syndrome (CFS, a disabling condition of unknown etiology and with uncertain therapeutic options. Recent advances in elucidating pathophysiology of this disorder revealed hypofunction of the hypothalamic-pituitary-adrenal axis and that fatigue in CFS patients appears to be associated with reduced motor neurotransmission in the central nervous system (CNS and to a smaller extent with increased fatigability of skeletal muscle. There is also some limited evidence that CFS patients may have excessive serotonergic activity in the brain and low opioid tone. Presentation of the hypothesis This work hypothesizes that repeated cold stress may reduce fatigue in CFS because brief exposure to cold may transiently reverse some physiological changes associated with this illness. For example, exposure to cold can activate components of the reticular activating system such as raphe nuclei and locus ceruleus, which can result in activation of behavior and increased capacity of the CNS to recruit motoneurons. Cold stress has also been shown to reduce the level of serotonin in most regions of the brain (except brainstem, which would be consistent with reduced fatigue according to animal models of exercise-related fatigue. Finally, exposure to cold increases metabolic rate and transiently activates the hypothalamic-pituitary-adrenal axis as evidenced by a temporary increase in the plasma levels of adrenocorticotropic hormone, beta-endorphin and a modest increase in cortisol. The increased opioid tone and high metabolic rate could diminish fatigue by reducing muscle pain and accelerating recovery of fatigued muscle, respectively. Testing

  7. Integration of auditory and tactile inputs in musical meter perception.

    Science.gov (United States)

    Huang, Juan; Gamble, Darik; Sarnlertsophon, Kristine; Wang, Xiaoqin; Hsiao, Steven

    2013-01-01

    Musicians often say that they not only hear but also "feel" music. To explore the contribution of tactile information to "feeling" music, we investigated the degree that auditory and tactile inputs are integrated in humans performing a musical meter-recognition task. Subjects discriminated between two types of sequences, "duple" (march-like rhythms) and "triple" (waltz-like rhythms), presented in three conditions: (1) unimodal inputs (auditory or tactile alone); (2) various combinations of bimodal inputs, where sequences were distributed between the auditory and tactile channels such that a single channel did not produce coherent meter percepts; and (3) bimodal inputs where the two channels contained congruent or incongruent meter cues. We first show that meter is perceived similarly well (70-85 %) when tactile or auditory cues are presented alone. We next show in the bimodal experiments that auditory and tactile cues are integrated to produce coherent meter percepts. Performance is high (70-90 %) when all of the metrically important notes are assigned to one channel and is reduced to 60 % when half of these notes are assigned to one channel. When the important notes are presented simultaneously to both channels, congruent cues enhance meter recognition (90 %). Performance dropped dramatically when subjects were presented with incongruent auditory cues (10 %), as opposed to incongruent tactile cues (60 %), demonstrating that auditory input dominates meter perception. These observations support the notion that meter perception is a cross-modal percept with tactile inputs underlying the perception of "feeling" music.

  8. Clinical neurophysiology of fatigue.

    NARCIS (Netherlands)

    Zwarts, M.J.; Bleijenberg, G.; Engelen, B.G.M. van

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic

  9. Auditory-visual integration modulates location-specific repetition suppression of auditory responses.

    Science.gov (United States)

    Shrem, Talia; Murray, Micah M; Deouell, Leon Y

    2017-11-01

    Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition-suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound-flash incongruence reduced accuracy in a same-different location discrimination task (i.e., the ventriloquism effect) and reduced the location-specific repetition-suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information. © 2017 Society for Psychophysiological Research.

  10. Congenital Deafness Reduces, But Does Not Eliminate Auditory Responsiveness in Cat Extrastriate Visual Cortex.

    Science.gov (United States)

    Land, Rüdiger; Radecke, Jan-Ole; Kral, Andrej

    2018-04-01

    Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex. We demonstrate that auditory activity, which is normally present in the lateral suprasylvian visual areas in normal hearing cats, can also be elicited by electrical activation of the auditory system with cochlear implants. We then show that in adult congenitally deaf cats auditory activity in this region was reduced when tested with cochlear implant stimulation. However, the change in this area was small and auditory activity was not completely abolished despite years of congenital deafness. The results document that congenital deafness leads not only to changes in the auditory cortex but also affects auditory modulation of visual areas. However, the results further show a persistence of fundamental cortical sensory functional organization despite congenital deafness. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Fatigue in Patients with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Kazuo Abe

    2000-01-01

    Full Text Available Purpose: Fatigue is a complaint frequently encountered among patients with Parkinson’s disease (PD, however, the pathophysiological mechanism remains unclear. Methods: We evaluated fatigue in 26 patients clinically diagnosed to have PD (16 men, 10 women and age- and sex- matched 26 controls (16 men, 10 women without neurological deficits by using a fatigue scale. In addition to neurological and neuropsychological examinations, all patients underwent MRI and SPECT using 99mTc-HMPAO. Results: Patients with PD had normal cognitive function as judged by the MMSE, but showed significantly high scores with the fatigue and depression scales in comparison to controls (p. There was no significant correlation between the depression scale and the fatigue scale, or between the degree of disability and the fatigue scale in patients with PD, although a significant correlation existed between the depression scale and the fatigue scale in controls. With SPECT, a significant correlation was found between the fatigue scale and the reduction of perfusion in the frontal lobe (p in patients with PD. Conclusions: The present study suggested that sense of fatigue in patients with PD might be associated with frontal lobe dysfunction.

  12. Association between language development and auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Caroline Nunes Rocha-Muniz

    2014-06-01

    Full Text Available INTRODUCTION: It is crucial to understand the complex processing of acoustic stimuli along the auditory pathway ;comprehension of this complex processing can facilitate our understanding of the processes that underlie normal and altered human communication. AIM: To investigate the performance and lateralization effects on auditory processing assessment in children with specific language impairment (SLI, relating these findings to those obtained in children with auditory processing disorder (APD and typical development (TD. MATERIAL AND METHODS: Prospective study. Seventy-five children, aged 6-12 years, were separated in three groups: 25 children with SLI, 25 children with APD, and 25 children with TD. All went through the following tests: speech-in-noise test, Dichotic Digit test and Pitch Pattern Sequencing test. RESULTS: The effects of lateralization were observed only in the SLI group, with the left ear presenting much lower scores than those presented to the right ear. The inter-group analysis has shown that in all tests children from APD and SLI groups had significantly poorer performance compared to TD group. Moreover, SLI group presented worse results than APD group. CONCLUSION: This study has shown, in children with SLI, an inefficient processing of essential sound components and an effect of lateralization. These findings may indicate that neural processes (required for auditory processing are different between auditory processing and speech disorders.

  13. Fatigue damage of ultrafine-grain copper in very-high cycle fatigue region

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Navrátilová, Lucie; Bokůvka, O.

    2011-01-01

    Roč. 528, - (2011), s. 7036-7040 ISSN 0921-5093 R&D Projects: GA ČR GAP108/10/2001 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained microstructure * ultrasonic fatigue * crack initiation * copper Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.003, year: 2011

  14. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  15. Risk factors of fatigue status among Chinese adolescents.

    Science.gov (United States)

    Jin, Yuelong; Peng, Baozhen; Li, Yijun; Song, Lei; He, Lianping; Fu, Rui; Wu, Qianqian; Fan, Qingxiu; Yao, Yingshui

    2015-01-01

    In recent years, fatigue is common among adolescents. The aim of this study is to evaluate fatigue status and find related factors of fatigue among students ranged from 13-26 years from Wuhu, China. This is a case-control, cross-sectional observational study. The students from six middle schools (high school? 26 years old?) in Wuhu city were recruited, Self-Rating Fatigue Scale (SFS) was used to measure the fatigue status among students ranged from 13-26 years, and some demographic characteristics of students also was determined. A total of 726 students are included in our study. A significant difference was observed between fatigue status and grade, a balanced diet, the partial eclipse, picky for food, lack of sleep, excessive fatigue, drinking (P sleep, drinking; grade while a balanced diet is the protective factor of fatigue. Therefore, the school should pay more attention to the fatigue among students in middle school in China, and take some properly measures to reduce the fatigue.

  16. The impact of educational level on performance on auditory processing tests

    Directory of Open Access Journals (Sweden)

    Cristina F.B. Murphy

    2016-03-01

    Full Text Available Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor years of schooling was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  17. Sleep complaints and fatigue of airline pilots.

    Science.gov (United States)

    Reis, Cátia; Mestre, Catarina; Canhão, Helena; Gradwell, David; Paiva, Teresa

    2016-01-01

    This work aimed to determine daytime sleepiness and sleep complaints prevalence and the corresponding influence on perceived fatigue and to evaluate the influence of sociodemographic parameters and labour variables on sleep complaints, sleepiness and fatigue. A questionnaire was developed including socio-economic and labour issues and instruments, focused in sleep and fatigue. The response rate was 32% and the final sample had 435 pilots. The prevalence of sleep complaints was 34.9%, daytime sleepiness 59.3% and fatigue 90.6%. The high prevalence of sleep complaints, sleepiness and fatigue was disclosed in pilots, with those who fly short/medium having an added risk of fatigue.

  18. Verbal working memory deficits predict levels of auditory hallucination in first-episode psychosis.

    Science.gov (United States)

    Gisselgård, Jens; Anda, Liss Gøril; Brønnick, Kolbjørn; Langeveld, Johannes; Ten Velden Hegelstad, Wenche; Joa, Inge; Johannessen, Jan Olav; Larsen, Tor Ketil

    2014-03-01

    Auditory verbal hallucinations are a characteristic symptom in schizophrenia. Recent causal models of auditory verbal hallucinations propose that cognitive mechanisms involving verbal working memory are involved in the genesis of auditory verbal hallucinations. Thus, in the present study, we investigate the hypothesis that verbal working memory is a specific factor behind auditory verbal hallucinations. In the present study, we investigated the association between verbal working memory manipulation (Backward Digit Span and Letter-Number Sequencing) and auditory verbal hallucinations in a population study (N=52) of first episode psychosis. The degree of auditory verbal hallucination as reported in the P3-subscale of the PANSS interview was included as dependent variable using sequential multiple regression, while controlling for age, psychosis symptom severity, executive cognitive functions and simple auditory working memory span. Multiple sequential regression analyses revealed verbal working memory manipulation to be the only significant predictor of verbal hallucination severity. Consistent with cognitive data from auditory verbal hallucinations in healthy individuals, the present results suggest a specific association between auditory verbal hallucinations, and cognitive processes involving the manipulation of phonological representations during a verbal working memory task. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.

    Science.gov (United States)

    Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C

    2015-11-04

    Deficits in auditory emotion recognition (AER) are a core feature of schizophrenia and a key component of social cognitive impairment. AER deficits are tied behaviorally to impaired ability to interpret tonal ("prosodic") features of speech that normally convey emotion, such as modulations in base pitch (F0M) and pitch variability (F0SD). These modulations can be recreated using synthetic frequency modulated (FM) tones that mimic the prosodic contours of specific emotional stimuli. The present study investigates neural mechanisms underlying impaired AER using a combined event-related potential/resting-state functional connectivity (rsfMRI) approach in 84 schizophrenia/schizoaffective disorder patients and 66 healthy comparison subjects. Mismatch negativity (MMN) to FM tones was assessed in 43 patients/36 controls. rsfMRI between auditory cortex and medial temporal (insula) regions was assessed in 55 patients/51 controls. The relationship between AER, MMN to FM tones, and rsfMRI was assessed in the subset who performed all assessments (14 patients, 21 controls). As predicted, patients showed robust reductions in MMN across FM stimulus type (p = 0.005), particularly to modulations in F0M, along with impairments in AER and FM tone discrimination. MMN source analysis indicated dipoles in both auditory cortex and anterior insula, whereas rsfMRI analyses showed reduced auditory-insula connectivity. MMN to FM tones and functional connectivity together accounted for ∼50% of the variance in AER performance across individuals. These findings demonstrate that impaired preattentive processing of tonal information and reduced auditory-insula connectivity are critical determinants of social cognitive dysfunction in schizophrenia, and thus represent key targets for future research and clinical intervention. Schizophrenia patients show deficits in the ability to infer emotion based upon tone of voice [auditory emotion recognition (AER)] that drive impairments in social cognition

  20. Auditory training and challenges associated with participation and compliance.

    Science.gov (United States)

    Sweetow, Robert W; Sabes, Jennifer Henderson

    2010-10-01

    When individuals have hearing loss, physiological changes in their brain interact with relearning of sound patterns. Some individuals utilize compensatory strategies that may result in successful hearing aid use. Others, however, are not so fortunate. Modern hearing aids can provide audibility but may not rectify spectral and temporal resolution, susceptibility to noise interference, or degradation of cognitive skills, such as declining auditory memory and slower speed of processing associated with aging. Frequently, these deficits are not identified during a typical "hearing aid evaluation." Aural rehabilitation has long been advocated to enhance communication but has not been considered time or cost-effective. Home-based, interactive adaptive computer therapy programs are available that are designed to engage the adult hearing-impaired listener in the hearing aid fitting process, provide listening strategies, build confidence, and address cognitive changes. Despite the availability of these programs, many patients and professionals are reluctant to engage in and complete therapy. The purposes of this article are to discuss the need for identifying auditory and nonauditory factors that may adversely affect the overall audiological rehabilitation process, to discuss important features that should be incorporated into training, and to examine reasons for the lack of compliance with therapeutic options. Possible solutions to maximizing compliance are explored. Only a small portion of audiologists (fewer than 10%) offer auditory training to patients with hearing impairment, even though auditory training appears to lower the rate of hearing aid returns for credit. Patients to whom auditory training programs are recommended often do not complete the training, however. Compliance for a cohort of home-based auditory therapy trainees was less than 30%. Activities to increase patient compliance to auditory training protocols are proposed. American Academy of Audiology.

  1. Age at implantation and auditory memory in cochlear implanted children.

    Science.gov (United States)

    Mikic, B; Miric, D; Nikolic-Mikic, M; Ostojic, S; Asanovic, M

    2014-05-01

    Early cochlear implantation, before the age of 3 years, provides the best outcome regarding listening, speech, cognition an memory due to maximal central nervous system plasticity. Intensive postoperative training improves not only auditory performance and language, but affects auditory memory as well. The aim of this study was to discover if the age at implantation affects auditory memory function in cochlear implanted children. A total of 50 cochlear implanted children aged 4 to 8 years were enrolled in this study: early implanted (1-3y) n = 27 and late implanted (4-6y) n = 23. Two types of memory tests were used: Immediate Verbal Memory Test and Forward and Backward Digit Span Test. Early implanted children performed better on both verbal and numeric tasks of auditory memory. The difference was statistically significant, especially on the complex tasks. Early cochlear implantation, before the age of 3 years, significantly improve auditory memory and contribute to better cognitive and education outcomes.

  2. Auditory and cognitive performance in elderly musicians and nonmusicians.

    Directory of Open Access Journals (Sweden)

    Massimo Grassi

    Full Text Available Musicians represent a model for examining brain and behavioral plasticity in terms of cognitive and auditory profile, but few studies have investigated whether elderly musicians have better auditory and cognitive abilities than nonmusicians. The aim of the present study was to examine whether being a professional musician attenuates the normal age-related changes in hearing and cognition. Elderly musicians still active in their profession were compared with nonmusicians on auditory performance (absolute threshold, frequency intensity, duration and spectral shape discrimination, gap and sinusoidal amplitude-modulation detection, and on simple (short-term memory and more complex and higher-order (working memory [WM] and visuospatial abilities cognitive tasks. The sample consisted of adults at least 65 years of age. The results showed that older musicians had similar absolute thresholds but better supra-threshold discrimination abilities than nonmusicians in four of the six auditory tasks administered. They also had a better WM performance, and stronger visuospatial abilities than nonmusicians. No differences were found between the two groups' short-term memory. Frequency discrimination and gap detection for the auditory measures, and WM complex span tasks and one of the visuospatial tasks for the cognitive ones proved to be very good classifiers of the musicians. These findings suggest that life-long music training may be associated with enhanced auditory and cognitive performance, including complex cognitive skills, in advanced age. However, whether this music training represents a protective factor or not needs further investigation.

  3. Roughness Effects on Fretting Fatigue

    Science.gov (United States)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  4. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    Science.gov (United States)

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Common Mathematical Model of Fatigue Characteristics

    Directory of Open Access Journals (Sweden)

    Z. Maléř

    2004-01-01

    Full Text Available This paper presents a new common mathematical model which is able to describe fatigue characteristics in the whole necessary range by one equation only:log N = A(R + B(R ∙ log Sawhere A(R = AR2 + BR + C and B(R = DR2 + AR + F.This model was verified by five sets of fatigue data taken from the literature and by our own three additional original fatigue sets. The fatigue data usually described the region of N 104 to 3 x 106 and stress ratio of R = -2 to 0.5. In all these cases the proposed model described fatigue results with small scatter. Studying this model, following knowledge was obtained:– the parameter ”stress ratio R” was a good physical characteristic– the proposed model provided a good description of the eight collections of fatigue test results by one equation only– the scatter of the results through the whole scope is only a little greater than that round the individual S/N curve– using this model while testing may reduce the number of test samples and shorten the test time– as the proposed model represents a common form of the S/N curve, it may be used for processing uniform objective fatigue life results, which may enable mutual comparison of fatigue characteristics.

  6. Modulation frequency as a cue for auditory speed perception.

    Science.gov (United States)

    Senna, Irene; Parise, Cesare V; Ernst, Marc O

    2017-07-12

    Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities. © 2017 The Author(s).

  7. Effect- and Performance-Based Auditory Feedback on Interpersonal Coordination

    Directory of Open Access Journals (Sweden)

    Tong-Hun Hwang

    2018-03-01

    Full Text Available When two individuals interact in a collaborative task, such as carrying a sofa or a table, usually spatiotemporal coordination of individual motor behavior will emerge. In many cases, interpersonal coordination can arise independently of verbal communication, based on the observation of the partners' movements and/or the object's movements. In this study, we investigate how social coupling between two individuals can emerge in a collaborative task under different modes of perceptual information. A visual reference condition was compared with three different conditions with new types of additional auditory feedback provided in real time: effect-based auditory feedback, performance-based auditory feedback, and combined effect/performance-based auditory feedback. We have developed a new paradigm in which the actions of both participants continuously result in a seamlessly merged effect on an object simulated by a tablet computer application. Here, participants should temporally synchronize their movements with a 90° phase difference and precisely adjust the finger dynamics in order to keep the object (a ball accurately rotating on a given circular trajectory on the tablet. Results demonstrate that interpersonal coordination in a joint task can be altered by different kinds of additional auditory information in various ways.

  8. Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Congli Liu

    2018-01-01

    Full Text Available Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons, a subset of GABAergic neurons, greatly shape and synchronize neural network activities. However, the change of PV neurons following acoustic trauma remains to be elucidated. The present study investigated how auditory cortical PV neurons change following unilateral 1 hour noise exposure (left ear, one octave band noise centered at 16 kHz, 116 dB SPL. Noise exposure elevated the auditory brainstem response threshold of the exposed ear when examined 7 days later. More detectable PV neurons were observed in both sides of the auditory cortex of noise-exposed rats when compared to control. The detectable PV neurons of the left auditory cortex (ipsilateral to the exposed ear to noise exposure outnumbered those of the right auditory cortex (contralateral to the exposed ear. Quantification of Western blotted bands revealed higher expression level of PV protein in the left cortex. These findings of more active PV neurons in noise-exposed rats suggested that a compensatory mechanism might be initiated to maintain a stable state of the brain.

  9. Prevalence of fatigue in general practice.

    Science.gov (United States)

    Cullen, W; Kearney, Y; Bury, G

    2002-01-01

    Fatigue is an important symptom in general practice due to its association with physical, psychological and social problems. To determine the prevalence of fatigue as an unsolicited symptom during general practice consultations. A random sample of GPs practising in Ireland was invited to provide data on consultations held over one day. Data were recorded on the presence of fatigue as a main or supporting symptom, social and demographic characteristics. Data were recorded by 89 GPs on 1,428 consultations. The prevalence of fatigue was 25%. It was the main reason for attending the doctor in 6.5% and a secondary reason in 19%. Sixty-two per cent of patients were female and 48% were eligible for free GP services. The mean age was 47.1 years. The presence of fatigue was associated with: attending a female GP, being female, attending a GP who had been qualified for fewer years and attending the GP frequently. The prevalence of fatigue reported in this study is over three times higher than that reported in earlier work. Doctor characteristics appear to be as important as patient characteristics in determining fatigue.

  10. Fatigue Lifetime of ADI from Ultimate Tensile Strength to Permanent Fatigue Limit

    Czech Academy of Sciences Publication Activity Database

    Zapletal, J.; Věchet, S.; Kohout, J.; Obrtlík, Karel

    -, č. 1 (2008), s. 40-43 ISSN 0556-171X. [MSMF /5./. Brno, 27.06.2007-29.06.2007] R&D Projects: GA ČR GA106/03/1265 Institutional research plan: CEZ:AV0Z20410507 Keywords : austempered ductile iron * fatigue behaviour * S N curve Subject RIV: JL - Materials Fatigue , Friction Mechanics

  11. Fatigue and fatigue-related symptoms in patients treated for different causes of hypothyroidism

    NARCIS (Netherlands)

    J.W.K. Louwerens; B.C. Appelhof (Bente); H. Verloop (Herman); M. Medici (Marco); R.P. Peeters (Robin); T.J. Visser (Theo); A. Boelen (Anita); E. Fliers (Eric); J.W.A. Smit (Jan); O.M. Dekkers (Olaf)

    2012-01-01

    textabstractObjective: Research on determinants of well-being in patients on thyroid hormone replacement therapy is warranted, as persistent fatigue-related complaints are common in this population. In this study, we evaluated the impact of different states of hypothyroidism on fatigue and

  12. A loudspeaker-based room auralization system for auditory perception research

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Favrot, Sylvain Emmanuel

    2009-01-01

    Most research on basic auditory function has been conducted in anechoic or almost anechoic environments. The knowledge derived from these experiments cannot directly be transferred to reverberant environments. In order to investigate the auditory signal processing of reverberant sounds....... This system provides a flexible research platform for conducting auditory experiments with normal-hearing, hearing-impaired, and aided hearing-impaired listeners in a fully controlled and realistic environment. This includes measures of basic auditory function (e.g., signal detection, distance perception......) and measures of speech intelligibility. A battery of objective tests (e.g., reverberation time, clarity, interaural correlation coefficient) and subjective tests (e.g., speech reception thresholds) is presented that demonstrates the applicability of the LoRA system....

  13. Fatigue proofing: The role of protective behaviours in mediating fatigue-related risk in a defence aviation environment.

    Science.gov (United States)

    Dawson, Drew; Cleggett, Courtney; Thompson, Kirrilly; Thomas, Matthew J W

    2017-02-01

    In the military or emergency services, operational requirements and/or community expectations often preclude formal prescriptive working time arrangements as a practical means of reducing fatigue-related risk. In these environments, workers sometimes employ adaptive or protective behaviours informally to reduce the risk (i.e. likelihood or consequence) associated with a fatigue-related error. These informal behaviours enable employees to reduce risk while continuing to work while fatigued. In this study, we documented the use of informal protective behaviours in a group of defence aviation personnel including flight crews. Semi-structured interviews were conducted to determine whether and which protective behaviours were used to mitigate fatigue-related error. The 18 participants were from aviation-specific trades and included aircrew (pilots and air-crewman) and aviation maintenance personnel (aeronautical engineers and maintenance personnel). Participants identified 147 ways in which they and/or others act to reduce the likelihood or consequence of a fatigue-related error. These formed seven categories of fatigue-reduction strategies. The two most novel categories are discussed in this paper: task-related and behaviour-based strategies. Broadly speaking, these results indicate that fatigued military flight and maintenance crews use protective 'fatigue-proofing' behaviours to reduce the likelihood and/or consequence of fatigue-related error and were aware of the potential benefits. It is also important to note that these behaviours are not typically part of the formal safety management system. Rather, they have evolved spontaneously as part of the culture around protecting team performance under adverse operating conditions. When compared with previous similar studies, aviation personnel were more readily able to understand the idea of fatigue proofing than those from a fire-fighting background. These differences were thought to reflect different cultural

  14. Differing leukocyte gene expression profiles associated with fatigue in patients with prostate cancer versus chronic fatigue syndrome.

    Science.gov (United States)

    Light, Kathleen C; Agarwal, Neeraj; Iacob, Eli; White, Andrea T; Kinney, Anita Y; VanHaitsma, Timothy A; Aizad, Hannah; Hughen, Ronald W; Bateman, Lucinda; Light, Alan R

    2013-12-01

    Androgen deprivation therapy (ADT) often worsens fatigue in patients with prostate cancer, producing symptoms similar to chronic fatigue syndrome (CFS). Comparing expression (mRNA) of many fatigue-related genes in patients with ADT-treated prostate cancer versus with CFS versus healthy controls, and correlating mRNA with fatigue severity may clarify the differing pathways underlying fatigue in these conditions. Quantitative real-time PCR was performed on leukocytes from 30 fatigued, ADT-treated prostate cancer patients (PCF), 39 patients with CFS and 22 controls aged 40-79, together with ratings of fatigue and pain severity. 46 genes from these pathways were included: (1) adrenergic/monoamine/neuropeptides, (2) immune, (3) metabolite-detecting, (4) mitochondrial/energy, (5) transcription factors. PCF patients showed higher expression than controls or CFS of 2 immune transcription genes (NR3C1 and TLR4), chemokine CXCR4, and mitochondrial gene SOD2. They showed lower expression of 2 vasodilation-related genes (ADRB2 and VIPR2), 2 cytokines (TNF and LTA), and 2 metabolite-detecting receptors (ASIC3 and P2RX7). CFS patients showed higher P2RX7 and lower HSPA2 versus controls and PCF. Correlations with fatigue severity were similar in PCF and CFS for only DBI, the GABA-A receptor modulator (r=-0.50, pfatigue and pain severity (r=+0.43 and +0.59, p=0.025 and p=0.001). PCF patients differed from controls and CFS in mean expression of 10 genes from all 5 pathways. Correlations with fatigue severity implicated DBI for both patient groups and P2RY1 for PCF only. These pathways may provide new targets for interventions to reduce fatigue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Fatigue-free PZT-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H J; Sando, M [Nat. Ind. Res. Inst., Nagoya (Japan); Tajima, K [Synergy Ceramics Lab., Fine Ceramics Research Association, Nagoya (Japan); Niihara, K [ISIR, Osaka Univ., Mihogaoka, Ibaraki (Japan)

    1999-03-01

    The goal of this study is to fabricate fatigue-free piezoelectrics-based nanocomposites. Lead zirconate titanate (PZT) and metallic platinum (Pt) were selected as a matrix and secondary phase dispersoid. Fine Pt particles were homogeneously dispersed in the PZT matrix. Fatigue properties of the unpoled PZT-based nanocomposite under electrical cyclic loading were investigated. The electrical-field-induced crack growth was monitored by an optical microscope, and it depended on the number of cycles the sample was subjected to. Resistance to fatigue was significantly enhanced in the nanocomposite. The excellent fatigue behavior of the PZT/Pt nanocomposites may result from the grain boundary strenghtening due to the interaction between the matrix and Pt particles. (orig.) 8 refs.

  16. Effects of loading sequences and size of repeated stress block of loads on fatigue life calculated using fatigue functions

    International Nuclear Information System (INIS)

    Schott, G.

    1989-01-01

    It is well-known that collective form, stress intensity and loading sequence of individual stresses as well as size of repeated stress blocks can influence fatigue life, significantly. The basic variant of the consecutive Woehler curve concept will permit these effects to be involved into fatigue life computation. The paper presented will demonstrate that fatigue life computations using fatigue functions reflect the loading sequence effect with multilevel loading precisely and provide reliable fatigue life data. Effects of size of repeated stress block and loading sequence on fatigue life as observed with block program tests can be reproduced using the new computation method. (orig.) [de

  17. Demonstrating the potential for dynamic auditory stimulation to contribute to motion sickness.

    Directory of Open Access Journals (Sweden)

    Behrang Keshavarz

    Full Text Available Auditory cues can create the illusion of self-motion (vection in the absence of visual or physical stimulation. The present study aimed to determine whether auditory cues alone can also elicit motion sickness and how auditory cues contribute to motion sickness when added to visual motion stimuli. Twenty participants were seated in front of a curved projection display and were exposed to a virtual scene that constantly rotated around the participant's vertical axis. The virtual scene contained either visual-only, auditory-only, or a combination of corresponding visual and auditory cues. All participants performed all three conditions in a counterbalanced order. Participants tilted their heads alternately towards the right or left shoulder in all conditions during stimulus exposure in order to create pseudo-Coriolis effects and to maximize the likelihood for motion sickness. Measurements of motion sickness (onset, severity, vection (latency, strength, duration, and postural steadiness (center of pressure were recorded. Results showed that adding auditory cues to the visual stimuli did not, on average, affect motion sickness and postural steadiness, but it did reduce vection onset times and increased vection strength compared to pure visual or pure auditory stimulation. Eighteen of the 20 participants reported at least slight motion sickness in the two conditions including visual stimuli. More interestingly, six participants also reported slight motion sickness during pure auditory stimulation and two of the six participants stopped the pure auditory test session due to motion sickness. The present study is the first to demonstrate that motion sickness may be caused by pure auditory stimulation, which we refer to as "auditorily induced motion sickness".

  18. Frequency-specific modulation of population-level frequency tuning in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Roberts Larry E

    2009-01-01

    Full Text Available Abstract Background Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random under auditory focused attention by means of magnetoencephalography (MEG. Results In total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands. Conclusion The present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

  19. Auditory processing in autism spectrum disorder

    DEFF Research Database (Denmark)

    Vlaskamp, Chantal; Oranje, Bob; Madsen, Gitte Falcher

    2017-01-01

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism...... a hyper-responsivity at the attentional level. In addition, as similar MMN deficits are found in schizophrenia, these MMN results may explain some of the frequently reported increased risk of children with ASD to develop schizophrenia later in life. Autism Res 2017, 10: 1857–1865....

  20. Auditory white noise reduces postural fluctuations even in the absence of vision.

    Science.gov (United States)

    Ross, Jessica Marie; Balasubramaniam, Ramesh

    2015-08-01

    The contributions of somatosensory, vestibular, and visual feedback to balance control are well documented, but the influence of auditory information, especially acoustic noise, on balance is less clear. Because somatosensory noise has been shown to reduce postural sway, we hypothesized that noise from the auditory modality might have a similar effect. Given that the nervous system uses noise to optimize signal transfer, adding mechanical or auditory noise should lead to increased feedback about sensory frames of reference used in balance control. In the present experiment, postural sway was analyzed in healthy young adults where they were presented with continuous white noise, in the presence and absence of visual information. Our results show reduced postural sway variability (as indexed by the body's center of pressure) in the presence of auditory noise, even when visual information was not present. Nonlinear time series analysis revealed that auditory noise has an additive effect, independent of vision, on postural stability. Further analysis revealed that auditory noise reduced postural sway variability in both low- and high-frequency regimes (> or noise. Our results support the idea that auditory white noise reduces postural sway, suggesting that auditory noise might be used for therapeutic and rehabilitation purposes in older individuals and those with balance disorders.

  1. Chronic fatigue in cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Rucinska, M.; Wojtukiewicz, M.Z.; Tokajuk, P.

    2004-01-01

    Fatigue is one of the most prevalent and profound symptoms related to both malignancy and anti-neoplastic treatment. It is being reported in 60% to 80% of cancer patients. We review the correlation between the cancer-related fatigue syndrome and radiotherapy. In patients undergoing radiotherapy, fatigue is often cumulative and may reach its peak during the last weeks of treatment. The presence of fatigue prior to therapy initiation is the most important predictive factor of the occurrence of radiotherapy-related cancer fatigue syndrome. Occasionally, fatigue persists for a prolonged period of months and even years beyond radiotherapy. Anemia may be one of major causative factors responsible for the development of the cancer-related fatigue syndrome. Fatigue has an enormous physical, mental, emotional, and economic impact on cancer patients, their families and care-providers. The treatment of radiation-related fatigue remains unknown. The initial approach should cover efforts aimed at the correction of potential etiologies, especially anemia. Education concerning fatigue greatly benefits some patients. It seems that exercise may be beneficial in relieving fatigue, bearing in mind that the exercise program for cancer patients should be initiated gradually and significantly individualized. (author)

  2. Postpartum fatigue in the active-duty military woman.

    Science.gov (United States)

    Rychnovsky, Jacqueline D

    2007-01-01

    (a) To describe fatigue levels in military active-duty women, (b) to describe the relationship among selected predictor variables of fatigue, and (c) to examine the relationship between predictor variables, fatigue levels, and performance (as measured by functional status) after childbirth. Based on the Theory of Unpleasant Symptoms, a longitudinal, prospective design. A large military medical facility in the southwest United States. A convenience sample of 109 military active-duty women. Postpartum fatigue. Women were found to be moderately fatigued across time, with no change in fatigue levels from 2 to 6 weeks after delivery. All variables correlated with fatigue during hospitalization and at 2 weeks after delivery, and depression, anxiety, maternal sleep, and functional status correlated with fatigue at 6 weeks after delivery. Regression analyses indicated that maternal anxiety predicted fatigue at 6 weeks after delivery. Over half the women had not regained full functional status when they returned to work, and 40% still displayed symptoms of postpartum depression and anxiety. Military women continue to experiencing postpartum fatigue when they return to the workplace. Future research is needed to examine issues surrounding fatigue and its associated variables during the first year after delivery.

  3. Auditory changes in acromegaly.

    Science.gov (United States)

    Tabur, S; Korkmaz, H; Baysal, E; Hatipoglu, E; Aytac, I; Akarsu, E

    2017-06-01

    The aim of this study is to determine the changes involving auditory system in cases with acromegaly. Otological examinations of 41 cases with acromegaly (uncontrolled n = 22, controlled n = 19) were compared with those of age and gender-matched 24 healthy subjects. Whereas the cases with acromegaly underwent examination with pure tone audiometry (PTA), speech audiometry for speech discrimination (SD), tympanometry, stapedius reflex evaluation and otoacoustic emission tests, the control group did only have otological examination and PTA. Additionally, previously performed paranasal sinus-computed tomography of all cases with acromegaly and control subjects were obtained to measure the length of internal acoustic canal (IAC). PTA values were higher (p acromegaly group was narrower compared to that in control group (p = 0.03 for right ears and p = 0.02 for left ears). When only cases with acromegaly were taken into consideration, PTA values in left ears had positive correlation with growth hormone and insulin-like growth factor-1 levels (r = 0.4, p = 0.02 and r = 0.3, p = 0.03). Of all cases with acromegaly 13 (32%) had hearing loss in at least one ear, 7 (54%) had sensorineural type and 6 (46%) had conductive type hearing loss. Acromegaly may cause certain changes in the auditory system in cases with acromegaly. The changes in the auditory system may be multifactorial causing both conductive and sensorioneural defects.

  4. Fatigue and creep-fatigue in sodium of 316 1 stainless steel

    International Nuclear Information System (INIS)

    Ardellier, A.

    1982-01-01

    Equipment and results obtained on type 316 L stainless stee1 at 450 0 C and 600 0 C with low-cycle fatique and creep fatigue tests are described. Comparison with runs in air on type 316 L stainless steel shows a better low-cycle fatigue behavior in a sodium environment. This beneficial effect can be attributed to the low oxygen content which limits the surface oxidazation

  5. Capturing the post-exertional exacerbation of fatigue following physical and cognitive challenge in patients with chronic fatigue syndrome.

    Science.gov (United States)

    Keech, Andrew; Sandler, Carolina X; Vollmer-Conna, Ute; Cvejic, Erin; Lloyd, Andrew R; Barry, Benjamin K

    2015-12-01

    To design and validate an instrument to capture the characteristic post-exertional exacerbation of fatigue in patients with chronic fatigue syndrome (CFS). Firstly, patients with CFS (N=19) participated in five focus group discussions to jointly explore the nature of fatigue and dynamic changes after activity, and inform development of a self-report instrument - the Fatigue and Energy Scale (FES). The psychometric properties of the FES were then examined in two case-control challenge studies: a physically-demanding challenge (moderate-intensity aerobic exercise; N=10 patients), and a cognitively-demanding challenge (simulated driving; N=11 patients). Finally, ecological validity was evaluated by recording in association with tasks of daily living (N=9). Common descriptors for fatigue included 'exhaustion', 'tiredness', 'drained of energy', 'heaviness in the limbs', and 'foggy in the head'. Based on the qualitative data, fatigue was conceptualised as consisting of 'physical' and 'cognitive' dimensions. Analysis of the psychometric properties of the FES showed good sensitivity to the changing symptoms during a post-exertional exacerbation of fatigue following both physical exercise and driving simulation challenges, as well as tasks of daily living. The 'fatigue' experienced by patients with CFS covers both physical and cognitive components. The FES captured the phenomenon of a post-exertional exacerbation of fatigue commonly reported by patients with CFS. The characteristics of the symptom response to physical and cognitive challenges were similar. Both the FES and the challenge paradigms offer key tools to reliably investigate biological correlates of the dynamic changes in fatigue. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Monitoring and Managing Fatigue in Basketball

    Directory of Open Access Journals (Sweden)

    Toby Edwards

    2018-02-01

    Full Text Available The sport of basketball exposes athletes to frequent high intensity movements including sprinting, jumping, accelerations, decelerations and changes of direction during training and competition which can lead to acute and accumulated chronic fatigue. Fatigue may affect the ability of the athlete to perform over the course of a lengthy season. The ability of practitioners to quantify the workload and subsequent fatigue in basketball athletes in order to monitor and manage fatigue levels may be beneficial in maintaining high levels of performance and preventing unfavorable physical and physiological training adaptations. There is currently limited research quantifying training or competition workload outside of time motion analysis in basketball. In addition, systematic research investigating methods to monitor and manage athlete fatigue in basketball throughout a season is scarce. To effectively optimize and maintain peak training and playing performance throughout a basketball season, potential workload and fatigue monitoring strategies need to be discussed.

  7. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  8. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  9. Fatigue characteristics of dual-phase steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Onn, Irwan Herman; Ahmad, Norhayati; Tamin, Mohd Nasir [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-01-15

    Fatigue characteristics of dual-phase steel sheets, commonly used in automobile body construction were established. For this purpose, a series of fatigue tests, each at constant stress amplitude were conducted on 1.2 mm-thick, dual-phase DP600 steel sheet specimens with two different load ratios of minimum-to-maximum stress, R = 0.1 and -1. The resulting fatigue behavior is expressed in terms of fatigue strength-life (S-N) curves. Fatigue behavior of the steel sheets in the high-cycle fatigue region can be represented by Basquin's equation with coefficient and exponent value of 921.2 and 0.093, respectively. An endurance limit of 255 MPa is observed. In addition, fatigue strengths of the dual-phase steel sheets display lower magnitude than their bulk counterparts. Effect of mean stress on fatigue behavior of the steel sheets is well predicted by Walker's model. Exponential calibration factor is introduced to the models by SWT, Goodman and Morrow with comparable prediction to the Walker's model.

  10. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  11. Modelling the Emergence and Dynamics of Perceptual Organisation in Auditory Streaming

    Science.gov (United States)

    Mill, Robert W.; Bőhm, Tamás M.; Bendixen, Alexandra; Winkler, István; Denham, Susan L.

    2013-01-01

    Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the

  12. Neural basis of the time window for subjective motor-auditory integration

    Directory of Open Access Journals (Sweden)

    Koichi eToida

    2016-01-01

    Full Text Available Temporal contiguity between an action and corresponding auditory feedback is crucial to the perception of self-generated sound. However, the neural mechanisms underlying motor–auditory temporal integration are unclear. Here, we conducted four experiments with an oddball paradigm to examine the specific event-related potentials (ERPs elicited by delayed auditory feedback for a self-generated action. The first experiment confirmed that a pitch-deviant auditory stimulus elicits mismatch negativity (MMN and P300, both when it is generated passively and by the participant’s action. In our second and third experiments, we investigated the ERP components elicited by delayed auditory feedback of for a self-generated action. We found that delayed auditory feedback elicited an enhancement of P2 (enhanced-P2 and a N300 component, which were apparently different from the MMN and P300 components observed in the first experiment. We further investigated the sensitivity of the enhanced-P2 and N300 to delay length in our fourth experiment. Strikingly, the amplitude of the N300 increased as a function of the delay length. Additionally, the N300 amplitude was significantly correlated with the conscious detection of the delay (the 50% detection point was around 200 ms, and hence reduction in the feeling of authorship of the sound (the sense of agency. In contrast, the enhanced-P2 was most prominent in short-delay (≤ 200 ms conditions and diminished in long-delay conditions. Our results suggest that different neural mechanisms are employed for the processing of temporally-deviant and pitch-deviant auditory feedback. Additionally, the temporal window for subjective motor–auditory integration is likely about 200 ms, as indicated by these auditory ERP components.

  13. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  14. Prevalence of operator fatigue in winter maintenance operations.

    Science.gov (United States)

    Camden, Matthew C; Medina-Flintsch, Alejandra; Hickman, Jeffrey S; Bryce, James; Flintsch, Gerardo; Hanowski, Richard J

    2018-02-02

    Similar to commercial motor vehicle drivers, winter maintenance operators are likely to be at an increased risk of becoming fatigued while driving due to long, inconsistent shifts, environmental stressors, and limited opportunities for sleep. Despite this risk, there is little research concerning the prevalence of winter maintenance operator fatigue during winter emergencies. The purpose of this research was to investigate the prevalence, sources, and countermeasures of fatigue in winter maintenance operations. Questionnaires from 1043 winter maintenance operators and 453 managers were received from 29 Clear Road member states. Results confirmed that fatigue was prevalent in winter maintenance operations. Over 70% of the operators and managers believed that fatigue has a moderate to significant impact on winter maintenance operations. Approximately 75% of winter maintenance operators reported to at least sometimes drive while fatigued, and 96% of managers believed their winter maintenance operators drove while fatigued at least some of the time. Furthermore, winter maintenance operators and managers identified fatigue countermeasures and sources of fatigue related to winter maintenance equipment. However, the countermeasures believed to be the most effective at reducing fatigue during winter emergencies (i.e., naps) were underutilized. For example, winter maintenance operators reported to never use naps to eliminate fatigue. These results indicated winter maintenance operations are impacted by operator fatigue. These results support the increased need for research and effective countermeasures targeting winter maintenance operator fatigue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Usefulness of multiple dimensions of fatigue in fibromyalgia.

    Science.gov (United States)

    Ericsson, Anna; Bremell, Tomas; Mannerkorpi, Kaisa

    2013-07-01

    To explore in which contexts ratings of multiple dimensions of fatigue are useful in fibromyalgia, and to compare multidimensional fatigue between women with fibromyalgia and healthy women. A cross-sectional study. The Multidimensional Fatigue Inventory (MFI-20), comprising 5 subscales of fatigue, was compared with the 1-dimensional subscale of fatigue from the Fibromyalgia Impact Questionnaire (FIQ) in 133 women with fibromyalgia (mean age 46 years; standard deviation 8.6), in association with socio-demographic and health-related aspects and analyses of explanatory variables of severe fatigue. The patients were also compared with 158 healthy women (mean age 45 years; standard deviation 9.1) for scores on MFI-20 and FIQ fatigue. The MFI-20 was associated with employment, physical activity and walking capacity (rs = -0.27 to -0.36), while FIQ fatigue was not. MFI-20 and FIQ fatigue were equally associated with pain, sleep, depression and anxiety (rs = 0.32-0.63). Regression analyses showed that the MFI-20 increased the explained variance (R2) for the models of pain intensity, sleep, depression and anxiety, by between 7 and 29 percentage points, compared with if FIQ fatigue alone was included in the models. Women with fibromyalgia rated their fatigue higher than healthy women for all subscales of the MFI-20 and the FIQ fatigue (p fibromyalgia. The patients reported higher levels on all fatigue dimensions in comparison with healthy women.

  16. Subdividing the beat: auditory and motor contributions to synchronization

    NARCIS (Netherlands)

    Loehr, J.D.; Palmer, C.

    2009-01-01

    THE CURRENT STUDY EXAMINED HOW AUDITORY AND kinematic information influenced pianists' ability to synchronize musical sequences with a metronome. Pianists performed melodies in which quarter-note beats were subdivided by intervening eighth notes that resulted from auditory information (heard tones),

  17. The effect of background music in auditory health persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2013-01-01

    In auditory health persuasion, threatening information regarding health is communicated by voice only. One relevant context of auditory persuasion is the addition of background music. There are different mechanisms through which background music might influence persuasion, for example through mood

  18. Resource allocation models of auditory working memory.

    Science.gov (United States)

    Joseph, Sabine; Teki, Sundeep; Kumar, Sukhbinder; Husain, Masud; Griffiths, Timothy D

    2016-06-01

    Auditory working memory (WM) is the cognitive faculty that allows us to actively hold and manipulate sounds in mind over short periods of time. We develop here a particular perspective on WM for non-verbal, auditory objects as well as for time based on the consideration of possible parallels to visual WM. In vision, there has been a vigorous debate on whether WM capacity is limited to a fixed number of items or whether it represents a limited resource that can be allocated flexibly across items. Resource allocation models predict that the precision with which an item is represented decreases as a function of total number of items maintained in WM because a limited resource is shared among stored objects. We consider here auditory work on sequentially presented objects of different pitch as well as time intervals from the perspective of dynamic resource allocation. We consider whether the working memory resource might be determined by perceptual features such as pitch or timbre, or bound objects comprising multiple features, and we speculate on brain substrates for these behavioural models. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mosaic evolution of the mammalian auditory periphery.

    Science.gov (United States)

    Manley, Geoffrey A

    2013-01-01

    The classical mammalian auditory periphery, i.e., the type of middle ear and coiled cochlea seen in modern therian mammals, did not arise as one unit and did not arise in all mammals. It is also not the only kind of auditory periphery seen in modern mammals. This short review discusses the fact that the constituents of modern mammalian auditory peripheries arose at different times over an extremely long period of evolution (230 million years; Ma). It also attempts to answer questions as to the selective pressures that led to three-ossicle middle ears and the coiled cochlea. Mammalian middle ears arose de novo, without an intermediate, single-ossicle stage. This event was the result of changes in eating habits of ancestral animals, habits that were unrelated to hearing. The coiled cochlea arose only after 60 Ma of mammalian evolution, driven at least partly by a change in cochlear bone structure that improved impedance matching with the middle ear of that time. This change only occurred in the ancestors of therian mammals and not in other mammalian lineages. There is no single constellation of structural features of the auditory periphery that characterizes all mammals and not even all modern mammals.

  20. Nonverbal auditory agnosia with lesion to Wernicke's area.

    Science.gov (United States)

    Saygin, Ayse Pinar; Leech, Robert; Dick, Frederic

    2010-01-01

    We report the case of patient M, who suffered unilateral left posterior temporal and parietal damage, brain regions typically associated with language processing. Language function largely recovered since the infarct, with no measurable speech comprehension impairments. However, the patient exhibited a severe impairment in nonverbal auditory comprehension. We carried out extensive audiological and behavioral testing in order to characterize M's unusual neuropsychological profile. We also examined the patient's and controls' neural responses to verbal and nonverbal auditory stimuli using functional magnetic resonance imaging (fMRI). We verified that the patient exhibited persistent and severe auditory agnosia for nonverbal sounds in the absence of verbal comprehension deficits or peripheral hearing problems. Acoustical analyses suggested that his residual processing of a minority of environmental sounds might rely on his speech processing abilities. In the patient's brain, contralateral (right) temporal cortex as well as perilesional (left) anterior temporal cortex were strongly responsive to verbal, but not to nonverbal sounds, a pattern that stands in marked contrast to the controls' data. This substantial reorganization of auditory processing likely supported the recovery of M's speech processing.