WorldWideScience

Sample records for auditory cortex

  1. Auditory attention activates peripheral visual cortex.

    Directory of Open Access Journals (Sweden)

    Anthony D Cate

    Full Text Available BACKGROUND: Recent neuroimaging studies have revealed that putatively unimodal regions of visual cortex can be activated during auditory tasks in sighted as well as in blind subjects. However, the task determinants and functional significance of auditory occipital activations (AOAs remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We examined AOAs in an intermodal selective attention task to distinguish whether they were stimulus-bound or recruited by higher-level cognitive operations associated with auditory attention. Cortical surface mapping showed that auditory occipital activations were localized to retinotopic visual cortex subserving the far peripheral visual field. AOAs depended strictly on the sustained engagement of auditory attention and were enhanced in more difficult listening conditions. In contrast, unattended sounds produced no AOAs regardless of their intensity, spatial location, or frequency. CONCLUSIONS/SIGNIFICANCE: Auditory attention, but not passive exposure to sounds, routinely activated peripheral regions of visual cortex when subjects attended to sound sources outside the visual field. Functional connections between auditory cortex and visual cortex subserving the peripheral visual field appear to underlie the generation of AOAs, which may reflect the priming of visual regions to process soon-to-appear objects associated with unseen sound sources.

  2. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  3. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  4. Maps of the Auditory Cortex.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2016-07-08

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

  5. Auditory cortex involvement in emotional learning and memory.

    Science.gov (United States)

    Grosso, A; Cambiaghi, M; Concina, G; Sacco, T; Sacchetti, B

    2015-07-23

    Emotional memories represent the core of human and animal life and drive future choices and behaviors. Early research involving brain lesion studies in animals lead to the idea that the auditory cortex participates in emotional learning by processing the sensory features of auditory stimuli paired with emotional consequences and by transmitting this information to the amygdala. Nevertheless, electrophysiological and imaging studies revealed that, following emotional experiences, the auditory cortex undergoes learning-induced changes that are highly specific, associative and long lasting. These studies suggested that the role played by the auditory cortex goes beyond stimulus elaboration and transmission. Here, we discuss three major perspectives created by these data. In particular, we analyze the possible roles of the auditory cortex in emotional learning, we examine the recruitment of the auditory cortex during early and late memory trace encoding, and finally we consider the functional interplay between the auditory cortex and subcortical nuclei, such as the amygdala, that process affective information. We conclude that, starting from the early phase of memory encoding, the auditory cortex has a more prominent role in emotional learning, through its connections with subcortical nuclei, than is typically acknowledged. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  7. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  8. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex.

    Directory of Open Access Journals (Sweden)

    Elsa van der Loo

    Full Text Available BACKGROUND: Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. METHODS AND FINDINGS: In unilateral tinnitus patients (N = 15; 10 right, 5 left source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05. CONCLUSION: Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception.

  9. Contextual modulation of primary visual cortex by auditory signals.

    Science.gov (United States)

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  10. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding.

    Science.gov (United States)

    Atilgan, Huriye; Town, Stephen M; Wood, Katherine C; Jones, Gareth P; Maddox, Ross K; Lee, Adrian K C; Bizley, Jennifer K

    2018-02-07

    How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    Science.gov (United States)

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex.

    Science.gov (United States)

    Chen, Xi; Guo, Yiping; Feng, Jingyu; Liao, Zhengli; Li, Xinjian; Wang, Haitao; Li, Xiao; He, Jufang

    2013-06-12

    Damage to the medial temporal lobe impairs the encoding of new memories and the retrieval of memories acquired immediately before the damage in human. In this study, we demonstrated that artificial visuoauditory memory traces can be established in the rat auditory cortex and that their encoding and retrieval depend on the entorhinal cortex of the medial temporal lobe in the rat. We trained rats to associate a visual stimulus with electrical stimulation of the auditory cortex using a classical conditioning protocol. After conditioning, we examined the associative memory traces electrophysiologically (i.e., visual stimulus-evoked responses of auditory cortical neurons) and behaviorally (i.e., visual stimulus-induced freezing and visual stimulus-guided reward retrieval). The establishment of a visuoauditory memory trace in the auditory cortex, which was detectable by electrophysiological recordings, was achieved over 20-30 conditioning trials and was blocked by unilateral, temporary inactivation of the entorhinal cortex. Retrieval of a previously established visuoauditory memory was also affected by unilateral entorhinal cortex inactivation. These findings suggest that the entorhinal cortex is necessary for the encoding and involved in the retrieval of artificial visuoauditory memory in the auditory cortex, at least during the early stages of memory consolidation.

  14. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.

    Science.gov (United States)

    Morrill, Ryan J; Hasenstaub, Andrea R

    2018-03-14

    The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.

  15. Functional sex differences in human primary auditory cortex

    International Nuclear Information System (INIS)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W.J.; Willemsen, Antoon T.M.

    2007-01-01

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  16. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  17. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning.

    Science.gov (United States)

    Puschmann, Sebastian; Brechmann, André; Thiel, Christiane M

    2013-11-01

    Animal experiments provide evidence that learning to associate an auditory stimulus with a reward causes representational changes in auditory cortex. However, most studies did not investigate the temporal formation of learning-dependent plasticity during the task but rather compared auditory cortex receptive fields before and after conditioning. We here present a functional magnetic resonance imaging study on learning-related plasticity in the human auditory cortex during operant appetitive conditioning. Participants had to learn to associate a specific category of frequency-modulated tones with a reward. Only participants who learned this association developed learning-dependent plasticity in left auditory cortex over the course of the experiment. No differential responses to reward predicting and nonreward predicting tones were found in auditory cortex in nonlearners. In addition, learners showed similar learning-induced differential responses to reward-predicting and nonreward-predicting tones in the ventral tegmental area and the nucleus accumbens, two core regions of the dopaminergic neurotransmitter system. This may indicate a dopaminergic influence on the formation of learning-dependent plasticity in auditory cortex, as it has been suggested by previous animal studies. Copyright © 2012 Wiley Periodicals, Inc.

  18. Category-specific responses to faces and objects in primate auditory cortex

    Directory of Open Access Journals (Sweden)

    Kari L Hoffman

    2008-03-01

    Full Text Available Auditory and visual signals often occur together, and the two sensory channels are known to infl uence each other to facilitate perception. The neural basis of this integration is not well understood, although other forms of multisensory infl uences have been shown to occur at surprisingly early stages of processing in cortex. Primary visual cortex neurons can show frequency-tuning to auditory stimuli, and auditory cortex responds selectively to certain somatosensory stimuli, supporting the possibility that complex visual signals may modulate early stages of auditory processing. To elucidate which auditory regions, if any, are responsive to complex visual stimuli, we recorded from auditory cortex and the superior temporal sulcus while presenting visual stimuli consisting of various objects, neutral faces, and facial expressions generated during vocalization. Both objects and conspecifi c faces elicited robust fi eld potential responses in auditory cortex sites, but the responses varied by category: both neutral and vocalizing faces had a highly consistent negative component (N100 followed by a broader positive component (P180 whereas object responses were more variable in time and shape, but could be discriminated consistently from the responses to faces. The face response did not vary within the face category, i.e., for expressive vs. neutral face stimuli. The presence of responses for both objects and neutral faces suggests that auditory cortex receives highly informative visual input that is not restricted to those stimuli associated with auditory components. These results reveal selectivity for complex visual stimuli in a brain region conventionally described as non-visual unisensory cortex.

  19. Depth-Dependent Temporal Response Properties in Core Auditory Cortex

    OpenAIRE

    Christianson, G. Björn; Sahani, Maneesh; Linden, Jennifer F.

    2011-01-01

    The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, an...

  20. How do auditory cortex neurons represent communication sounds?

    Science.gov (United States)

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris; Laudanski, Jonathan; Occelli, Florian; Edeline, Jean-Marc

    2013-11-01

    A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Task-specific reorganization of the auditory cortex in deaf humans.

    Science.gov (United States)

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  2. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  4. Auditory and visual connectivity gradients in frontoparietal cortex.

    Science.gov (United States)

    Braga, Rodrigo M; Hellyer, Peter J; Wise, Richard J S; Leech, Robert

    2017-01-01

    A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal-ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior-anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top-down modulation of modality-specific information to occur within higher-order cortex. This could provide a potentially faster and more efficient pathway by which top-down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long-range connections to sensory cortices. Hum Brain Mapp 38:255-270, 2017. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  5. Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Congli Liu

    2018-01-01

    Full Text Available Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons, a subset of GABAergic neurons, greatly shape and synchronize neural network activities. However, the change of PV neurons following acoustic trauma remains to be elucidated. The present study investigated how auditory cortical PV neurons change following unilateral 1 hour noise exposure (left ear, one octave band noise centered at 16 kHz, 116 dB SPL. Noise exposure elevated the auditory brainstem response threshold of the exposed ear when examined 7 days later. More detectable PV neurons were observed in both sides of the auditory cortex of noise-exposed rats when compared to control. The detectable PV neurons of the left auditory cortex (ipsilateral to the exposed ear to noise exposure outnumbered those of the right auditory cortex (contralateral to the exposed ear. Quantification of Western blotted bands revealed higher expression level of PV protein in the left cortex. These findings of more active PV neurons in noise-exposed rats suggested that a compensatory mechanism might be initiated to maintain a stable state of the brain.

  6. The Encoding of Sound Source Elevation in the Human Auditory Cortex.

    Science.gov (United States)

    Trapeau, Régis; Schönwiesner, Marc

    2018-03-28

    Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. SIGNIFICANCE STATEMENT This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the

  7. Auditory-Cortex Short-Term Plasticity Induced by Selective Attention

    Science.gov (United States)

    Jääskeläinen, Iiro P.; Ahveninen, Jyrki

    2014-01-01

    The ability to concentrate on relevant sounds in the acoustic environment is crucial for everyday function and communication. Converging lines of evidence suggests that transient functional changes in auditory-cortex neurons, “short-term plasticity”, might explain this fundamental function. Under conditions of strongly focused attention, enhanced processing of attended sounds can take place at very early latencies (~50 ms from sound onset) in primary auditory cortex and possibly even at earlier latencies in subcortical structures. More robust selective-attention short-term plasticity is manifested as modulation of responses peaking at ~100 ms from sound onset in functionally specialized nonprimary auditory-cortical areas by way of stimulus-specific reshaping of neuronal receptive fields that supports filtering of selectively attended sound features from task-irrelevant ones. Such effects have been shown to take effect in ~seconds following shifting of attentional focus. There are findings suggesting that the reshaping of neuronal receptive fields is even stronger at longer auditory-cortex response latencies (~300 ms from sound onset). These longer-latency short-term plasticity effects seem to build up more gradually, within tens of seconds after shifting the focus of attention. Importantly, some of the auditory-cortical short-term plasticity effects observed during selective attention predict enhancements in behaviorally measured sound discrimination performance. PMID:24551458

  8. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a

  9. Congenital Deafness Reduces, But Does Not Eliminate Auditory Responsiveness in Cat Extrastriate Visual Cortex.

    Science.gov (United States)

    Land, Rüdiger; Radecke, Jan-Ole; Kral, Andrej

    2018-04-01

    Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex. We demonstrate that auditory activity, which is normally present in the lateral suprasylvian visual areas in normal hearing cats, can also be elicited by electrical activation of the auditory system with cochlear implants. We then show that in adult congenitally deaf cats auditory activity in this region was reduced when tested with cochlear implant stimulation. However, the change in this area was small and auditory activity was not completely abolished despite years of congenital deafness. The results document that congenital deafness leads not only to changes in the auditory cortex but also affects auditory modulation of visual areas. However, the results further show a persistence of fundamental cortical sensory functional organization despite congenital deafness. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats.

    Science.gov (United States)

    Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun

    2016-12-01

    Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.

  11. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Bleichner, Martin G; Debener, Stefan

    2016-01-01

    Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  12. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS

    Directory of Open Access Journals (Sweden)

    Ling-Chia Chen

    2016-01-01

    Full Text Available Cochlear implant (CI users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users’ speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS. Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.

  13. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    Science.gov (United States)

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  14. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    Science.gov (United States)

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is

  15. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  16. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    Science.gov (United States)

    Wengenroth, Martina; Blatow, Maria; Bendszus, Martin; Schneider, Peter

    2010-08-23

    Individuals with the rare genetic disorder Williams-Beuren syndrome (WS) are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  17. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Martina Wengenroth

    Full Text Available BACKGROUND: Individuals with the rare genetic disorder Williams-Beuren syndrome (WS are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. METHODOLOGY/PRINCIPAL FINDINGS: Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. CONCLUSIONS/SIGNIFICANCE: There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  18. Altered intrinsic connectivity of the auditory cortex in congenital amusia.

    Science.gov (United States)

    Leveque, Yohana; Fauvel, Baptiste; Groussard, Mathilde; Caclin, Anne; Albouy, Philippe; Platel, Hervé; Tillmann, Barbara

    2016-07-01

    Congenital amusia, a neurodevelopmental disorder of music perception and production, has been associated with abnormal anatomical and functional connectivity in a right frontotemporal pathway. To investigate whether spontaneous connectivity in brain networks involving the auditory cortex is altered in the amusic brain, we ran a seed-based connectivity analysis, contrasting at-rest functional MRI data of amusic and matched control participants. Our results reveal reduced frontotemporal connectivity in amusia during resting state, as well as an overconnectivity between the auditory cortex and the default mode network (DMN). The findings suggest that the auditory cortex is intrinsically more engaged toward internal processes and less available to external stimuli in amusics compared with controls. Beyond amusia, our findings provide new evidence for the link between cognitive deficits in pathology and abnormalities in the connectivity between sensory areas and the DMN at rest. Copyright © 2016 the American Physiological Society.

  19. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  20. Sparse representation of sounds in the unanesthetized auditory cortex.

    Directory of Open Access Journals (Sweden)

    Tomás Hromádka

    2008-01-01

    Full Text Available How do neuronal populations in the auditory cortex represent acoustic stimuli? Although sound-evoked neural responses in the anesthetized auditory cortex are mainly transient, recent experiments in the unanesthetized preparation have emphasized subpopulations with other response properties. To quantify the relative contributions of these different subpopulations in the awake preparation, we have estimated the representation of sounds across the neuronal population using a representative ensemble of stimuli. We used cell-attached recording with a glass electrode, a method for which single-unit isolation does not depend on neuronal activity, to quantify the fraction of neurons engaged by acoustic stimuli (tones, frequency modulated sweeps, white-noise bursts, and natural stimuli in the primary auditory cortex of awake head-fixed rats. We find that the population response is sparse, with stimuli typically eliciting high firing rates (>20 spikes/second in less than 5% of neurons at any instant. Some neurons had very low spontaneous firing rates (<0.01 spikes/second. At the other extreme, some neurons had driven rates in excess of 50 spikes/second. Interestingly, the overall population response was well described by a lognormal distribution, rather than the exponential distribution that is often reported. Our results represent, to our knowledge, the first quantitative evidence for sparse representations of sounds in the unanesthetized auditory cortex. Our results are compatible with a model in which most neurons are silent much of the time, and in which representations are composed of small dynamic subsets of highly active neurons.

  1. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  2. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    Science.gov (United States)

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  3. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  4. Sustained selective attention to competing amplitude-modulations in human auditory cortex.

    Science.gov (United States)

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control.

  5. Sustained Selective Attention to Competing Amplitude-Modulations in Human Auditory Cortex

    Science.gov (United States)

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control. PMID:25259525

  6. Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf

    Science.gov (United States)

    Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z.; Zhang, Fan; Gonçalves, Óscar F.; Fang, Fang; Bi, Yanchao

    2016-01-01

    Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus—a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex. PMID:26423461

  7. Self-Regulation of the Primary Auditory Cortex Attention Via Directed Attention Mediated By Real Time fMRI Neurofeedback

    Science.gov (United States)

    2017-05-05

    NELSON FROM: 59 MDW /SGYU SUBJECT: Professional Presentation Approval 1. Your paper, entitled Self - regulation of the Primary Auditory Cortex Attention via...DATE Sherwood - p.1 Self - regulation of the primary auditory cortex attention via directed attention mediated by real-time fMRI neurofeedback M S...auditory cortex hyperactivity by self - regulation of the primary auditory cortex (A 1) based on real-time functional magnetic resonance imaging neurofeedback

  8. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences

    Directory of Open Access Journals (Sweden)

    Stanislava Knyazeva

    2018-01-01

    Full Text Available This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.

  9. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences.

    Science.gov (United States)

    Knyazeva, Stanislava; Selezneva, Elena; Gorkin, Alexander; Aggelopoulos, Nikolaos C; Brosch, Michael

    2018-01-01

    This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman's population separation model of auditory streaming.

  10. Plasticity in the Primary Auditory Cortex, Not What You Think it is: Implications for Basic and Clinical Auditory Neuroscience

    Science.gov (United States)

    Weinberger, Norman M.

    2013-01-01

    Standard beliefs that the function of the primary auditory cortex (A1) is the analysis of sound have proven to be incorrect. Its involvement in learning, memory and other complex processes in both animals and humans is now well-established, although often not appreciated. Auditory coding is strongly modifed by associative learning, evident as associative representational plasticity (ARP) in which the representation of an acoustic dimension, like frequency, is re-organized to emphasize a sound that has become behaviorally important. For example, the frequency tuning of a cortical neuron can be shifted to match that of a significant sound and the representational area of sounds that acquire behavioral importance can be increased. ARP depends on the learning strategy used to solve an auditory problem and the increased cortical area confers greater strength of auditory memory. Thus, primary auditory cortex is involved in cognitive processes, transcending its assumed function of auditory stimulus analysis. The implications for basic neuroscience and clinical auditory neuroscience are presented and suggestions for remediation of auditory processing disorders are introduced. PMID:25356375

  11. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    Science.gov (United States)

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  12. Dissociation of Detection and Discrimination of Pure Tones following Bilateral Lesions of Auditory Cortex

    Science.gov (United States)

    Dykstra, Andrew R.; Koh, Christine K.; Braida, Louis D.; Tramo, Mark Jude

    2012-01-01

    It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5±2.1 dB in the left ear and 6.5±1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6±0.22 dB; right ear: 1.7±0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed. PMID:22957087

  13. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex.

    Science.gov (United States)

    Dykstra, Andrew R; Koh, Christine K; Braida, Louis D; Tramo, Mark Jude

    2012-01-01

    It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5 ± 2.1 dB in the left ear and 6.5 ± 1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6 ± 0.22 dB; right ear: 1.7 ± 0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.

  14. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex.

    Directory of Open Access Journals (Sweden)

    Andrew R Dykstra

    Full Text Available It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5 ± 2.1 dB in the left ear and 6.5 ± 1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6 ± 0.22 dB; right ear: 1.7 ± 0.19 dB. The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.

  15. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey.

    Science.gov (United States)

    Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-11-01

    In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.

  16. Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall.

    Science.gov (United States)

    Moczulska, Kaja Ewa; Tinter-Thiede, Juliane; Peter, Manuel; Ushakova, Lyubov; Wernle, Tanja; Bathellier, Brice; Rumpel, Simon

    2013-11-05

    Long-lasting changes in synaptic connections induced by relevant experiences are believed to represent the physical correlate of memories. Here, we combined chronic in vivo two-photon imaging of dendritic spines with auditory-cued classical conditioning to test if the formation of a fear memory is associated with structural changes of synapses in the mouse auditory cortex. We find that paired conditioning and unpaired conditioning induce a transient increase in spine formation or spine elimination, respectively. A fraction of spines formed during paired conditioning persists and leaves a long-lasting trace in the network. Memory recall triggered by the reexposure of mice to the sound cue did not lead to changes in spine dynamics. Our findings provide a synaptic mechanism for plasticity in sound responses of auditory cortex neurons induced by auditory-cued fear conditioning; they also show that retrieval of an auditory fear memory does not lead to a recapitulation of structural plasticity in the auditory cortex as observed during initial memory consolidation.

  17. Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex.

    Science.gov (United States)

    Bidet-Caulet, Aurélie; Fischer, Catherine; Besle, Julien; Aguera, Pierre-Emmanuel; Giard, Marie-Helene; Bertrand, Olivier

    2007-08-29

    In noisy environments, we use auditory selective attention to actively ignore distracting sounds and select relevant information, as during a cocktail party to follow one particular conversation. The present electrophysiological study aims at deciphering the spatiotemporal organization of the effect of selective attention on the representation of concurrent sounds in the human auditory cortex. Sound onset asynchrony was manipulated to induce the segregation of two concurrent auditory streams. Each stream consisted of amplitude modulated tones at different carrier and modulation frequencies. Electrophysiological recordings were performed in epileptic patients with pharmacologically resistant partial epilepsy, implanted with depth electrodes in the temporal cortex. Patients were presented with the stimuli while they either performed an auditory distracting task or actively selected one of the two concurrent streams. Selective attention was found to affect steady-state responses in the primary auditory cortex, and transient and sustained evoked responses in secondary auditory areas. The results provide new insights on the neural mechanisms of auditory selective attention: stream selection during sound rivalry would be facilitated not only by enhancing the neural representation of relevant sounds, but also by reducing the representation of irrelevant information in the auditory cortex. Finally, they suggest a specialization of the left hemisphere in the attentional selection of fine-grained acoustic information.

  18. Cochlear injury and adaptive plasticity of the auditory cortex

    Directory of Open Access Journals (Sweden)

    ANNA R. eFETONI

    2015-02-01

    Full Text Available Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug- or age-related injury. The oxidative stress is central to current theories of induced sensory neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage.

  19. Dopamine modulates memory consolidation of discrimination learning in the auditory cortex.

    Science.gov (United States)

    Schicknick, Horst; Reichenbach, Nicole; Smalla, Karl-Heinz; Scheich, Henning; Gundelfinger, Eckart D; Tischmeyer, Wolfgang

    2012-03-01

    In Mongolian gerbils, the auditory cortex is critical for discriminating rising vs. falling frequency-modulated tones. Based on our previous studies, we hypothesized that dopaminergic inputs to the auditory cortex during and shortly after acquisition of the discrimination strategy control long-term memory formation. To test this hypothesis, we studied frequency-modulated tone discrimination learning of gerbils in a shuttle box GO/NO-GO procedure following differential treatments. (i) Pre-exposure of gerbils to the frequency-modulated tones at 1 day before the first discrimination training session severely impaired the accuracy of the discrimination acquired in that session during the initial trials of a second training session, performed 1 day later. (ii) Local injection of the D1/D5 dopamine receptor antagonist SCH-23390 into the auditory cortex after task acquisition caused a discrimination deficit of similar extent and time course as with pre-exposure. This effect was dependent on the dose and time point of injection. (iii) Injection of the D1/D5 dopamine receptor agonist SKF-38393 into the auditory cortex after retraining caused a further discrimination improvement at the beginning of subsequent sessions. All three treatments, which supposedly interfered with dopamine signalling during conditioning and/or retraining, had a substantial impact on the dynamics of the discrimination performance particularly at the beginning of subsequent training sessions. These findings suggest that auditory-cortical dopamine activity after acquisition of a discrimination of complex sounds and after retrieval of weak frequency-modulated tone discrimination memory further improves memory consolidation, i.e. the correct association of two sounds with their respective GO/NO-GO meaning, in support of future memory recall. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Neuronal activity in primate auditory cortex during the performance of audiovisual tasks.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2015-03-01

    This study aimed at a deeper understanding of which cognitive and motivational aspects of tasks affect auditory cortical activity. To this end we trained two macaque monkeys to perform two different tasks on the same audiovisual stimulus and to do this with two different sizes of water rewards. The monkeys had to touch a bar after a tone had been turned on together with an LED, and to hold the bar until either the tone (auditory task) or the LED (visual task) was turned off. In 399 multiunits recorded from core fields of auditory cortex we confirmed that during task engagement neurons responded to auditory and non-auditory stimuli that were task-relevant, such as light and water. We also confirmed that firing rates slowly increased or decreased for several seconds during various phases of the tasks. Responses to non-auditory stimuli and slow firing changes were observed during both the auditory and the visual task, with some differences between them. There was also a weak task-dependent modulation of the responses to auditory stimuli. In contrast to these cognitive aspects, motivational aspects of the tasks were not reflected in the firing, except during delivery of the water reward. In conclusion, the present study supports our previous proposal that there are two response types in the auditory cortex that represent the timing and the type of auditory and non-auditory elements of a auditory tasks as well the association between elements. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Different patterns of auditory cortex activation revealed by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Formisano, E.; Pepino, A.; Bracale, M.; Di Salle, F.; Lanfermann, H.; Zanella, F.E.

    1998-01-01

    In the last few years, functional Magnetic Resonance Imaging (fMRI) has been widely accepted as an effective tool for mapping brain activities in both the sensorimotor and the cognitive field. The present work aims to assess the possibility of using fMRI methods to study the cortical response to different acoustic stimuli. Furthermore, we refer to recent data collected at Frankfurt University on the cortical pattern of auditory hallucinations. Healthy subjects showed broad bilateral activation, mostly located in the transverse gyrus of Heschl. The analysis of the cortical activation induced by different stimuli has pointed out a remarkable difference in the spatial and temporal features of the auditory cortex response to pulsed tones and pure tones. The activated areas during episodes of auditory hallucinations match the location of primary auditory cortex as defined in control measurements with the same patients and in the experiments on healthy subjects. (authors)

  2. Functional Changes in the Human Auditory Cortex in Ageing

    Science.gov (United States)

    Profant, Oliver; Tintěra, Jaroslav; Balogová, Zuzana; Ibrahim, Ibrahim; Jilek, Milan; Syka, Josef

    2015-01-01

    Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years) and compared the results with young subjects (presbycusis (EP) differed from the elderly group with mild presbycusis (MP) in hearing thresholds measured by pure tone audiometry, presence and amplitudes of transient otoacoustic emissions (TEOAE) and distortion-product oto-acoustic emissions (DPOAE), as well as in speech-understanding under noisy conditions. Acoustically evoked activity (pink noise centered around 350 Hz, 700 Hz, 1.5 kHz, 3 kHz, 8 kHz), recorded by BOLD fMRI from an area centered on Heschl’s gyrus, was used to determine age-related changes at the level of the auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC) leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing. PMID:25734519

  3. Representation of auditory-filter phase characteristics in the cortex of human listeners

    DEFF Research Database (Denmark)

    Rupp, A.; Sieroka, N.; Gutschalk, A.

    2008-01-01

    consistent with the perceptual data obtained with the same stimuli and with results from simulations of neural activity at the output of cochlear preprocessing. These findings demonstrate that phase effects in peripheral auditory processing are accurately reflected up to the level of the auditory cortex....

  4. Left auditory cortex is involved in pairwise comparisons of the direction of frequency modulated tones

    Directory of Open Access Journals (Sweden)

    Nicole eAngenstein

    2013-07-01

    Full Text Available Evaluating series of complex sounds like those in speech and music requires sequential comparisons to extract task-relevant relations between subsequent sounds. With the present functional magnetic resonance imaging (fMRI study, we investigated whether sequential comparison of a specific acoustic feature within pairs of tones leads to a change in lateralized processing in the auditory cortex of humans. For this we used the active categorization of the direction (up versus down of slow frequency modulated (FM tones. Several studies suggest that this task is mainly processed in the right auditory cortex. These studies, however, tested only the categorization of the FM direction of each individual tone. In the present study we ask the question whether the right lateralized processing changes when, in addition, the FM direction is compared within pairs of successive tones. For this we use an experimental approach involving contralateral noise presentation in order to explore the contributions made by the left and right auditory cortex in the completion of the auditory task. This method has already been applied to confirm the right-lateralized processing of the FM direction of individual tones. In the present study, the subjects were required to perform, in addition, a sequential comparison of the FM-direction in pairs of tones. The results suggest a division of labor between the two hemispheres such that the FM direction of each individual tone is mainly processed in the right auditory cortex whereas the sequential comparison of this feature between tones in a pair is probably performed in the left auditory cortex.

  5. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates.

    Science.gov (United States)

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-07-20

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys.

  6. Different patterns of auditory cortex activation revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Formisano, E; Pepino, A; Bracale, M [Department of Electronic Engineering, Biomedical Unit, Universita di Napoli, Federic II, Italy, Via Claudio 21, 80125 Napoli (Italy); Di Salle, F [Department of Biomorphological and Functional Sciences, Radiologucal Unit, Universita di Napoli, Federic II, Italy, Via Claudio 21, 80125 Napoli (Italy); Lanfermann, H; Zanella, F E [Department of Neuroradiology, J.W. Goethe Universitat, Frankfurt/M. (Germany)

    1999-12-31

    In the last few years, functional Magnetic Resonance Imaging (fMRI) has been widely accepted as an effective tool for mapping brain activities in both the sensorimotor and the cognitive field. The present work aims to assess the possibility of using fMRI methods to study the cortical response to different acoustic stimuli. Furthermore, we refer to recent data collected at Frankfurt University on the cortical pattern of auditory hallucinations. Healthy subjects showed broad bilateral activation, mostly located in the transverse gyrus of Heschl. The analysis of the cortical activation induced by different stimuli has pointed out a remarkable difference in the spatial and temporal features of the auditory cortex response to pulsed tones and pure tones. The activated areas during episodes of auditory hallucinations match the location of primary auditory cortex as defined in control measurements with the same patients and in the experiments on healthy subjects. (authors) 17 refs., 4 figs.

  7. Location coding by opponent neural populations in the auditory cortex.

    Directory of Open Access Journals (Sweden)

    G Christopher Stecker

    2005-03-01

    Full Text Available Although the auditory cortex plays a necessary role in sound localization, physiological investigations in the cortex reveal inhomogeneous sampling of auditory space that is difficult to reconcile with localization behavior under the assumption of local spatial coding. Most neurons respond maximally to sounds located far to the left or right side, with few neurons tuned to the frontal midline. Paradoxically, psychophysical studies show optimal spatial acuity across the frontal midline. In this paper, we revisit the problem of inhomogeneous spatial sampling in three fields of cat auditory cortex. In each field, we confirm that neural responses tend to be greatest for lateral positions, but show the greatest modulation for near-midline source locations. Moreover, identification of source locations based on cortical responses shows sharp discrimination of left from right but relatively inaccurate discrimination of locations within each half of space. Motivated by these findings, we explore an opponent-process theory in which sound-source locations are represented by differences in the activity of two broadly tuned channels formed by contra- and ipsilaterally preferring neurons. Finally, we demonstrate a simple model, based on spike-count differences across cortical populations, that provides bias-free, level-invariant localization-and thus also a solution to the "binding problem" of associating spatial information with other nonspatial attributes of sounds.

  8. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Gregory D. Scott

    2014-03-01

    Full Text Available Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl’s gyrus. In addition to reorganized auditory cortex (cross-modal plasticity, a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case, as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral versus perifoveal visual stimulation (11-15° vs. 2°-7° in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl’s gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl’s gyrus indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral versus perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory and multisensory and/or supramodal regions, such as posterior parietal cortex, frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal and multisensory regions, to altered visual processing in

  9. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    Directory of Open Access Journals (Sweden)

    Akihiro Funamizu

    Full Text Available Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS of a 20-kHz tone and an unconditioned stimulus (US of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  10. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    Science.gov (United States)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    2013-01-01

    Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS) of a 20-kHz tone and an unconditioned stimulus (US) of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  11. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    Science.gov (United States)

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  12. Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2012-06-07

    In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Functional studies of the human auditory cortex, auditory memory and musical hallucinations

    International Nuclear Information System (INIS)

    Goycoolea, Marcos; Mena, Ismael; Neubauer, Sonia

    2004-01-01

    Objectives. 1. To determine which areas of the cerebral cortex are activated stimulating the left ear with pure tones, and what type of stimulation occurs (eg. excitatory or inhibitory) in these different areas. 2. To use this information as an initial step to develop a normal functional data base for future studies. 3. To try to determine if there is a biological substrate to the process of recalling previous auditory perceptions and if possible, suggest a locus for auditory memory. Method. Brain perfusion single photon emission computerized tomography (SPECT) evaluation was conducted: 1-2) Using auditory stimulation with pure tones in 4 volunteers with normal hearing. 3) In a patient with bilateral profound hearing loss who had auditory perception of previous musical experiences; while injected with Tc99m HMPAO while she was having the sensation of hearing a well known melody. Results. Both in the patient with auditory hallucinations and the normal controls -stimulated with pure tones- there was a statistically significant increase in perfusion in Brodmann's area 39, more intense on the right side (right to left p < 0.05). With a lesser intensity there was activation in the adjacent area 40 and there was intense activation also in the executive frontal cortex areas 6, 8, 9, and 10 of Brodmann. There was also activation of area 7 of Brodmann; an audio-visual association area; more marked on the right side in the patient and the normal stimulated controls. In the subcortical structures there was also marked activation in the patient with hallucinations in both lentiform nuclei, thalamus and caudate nuclei also more intense in the right hemisphere, 5, 4.7 and 4.2 S.D. above the mean respectively and 5, 3.3, and 3 S.D. above the normal mean in the left hemisphere respectively. Similar findings were observed in normal controls. Conclusions. After auditory stimulation with pure tones in the left ear of normal female volunteers, there is bilateral activation of area 39

  14. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  15. Hierarchical differences in population coding within auditory cortex.

    Science.gov (United States)

    Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L

    2017-08-01

    Most models of auditory cortical (AC) population coding have focused on primary auditory cortex (A1). Thus our understanding of how neural coding for sounds progresses along the cortical hierarchy remains obscure. To illuminate this, we recorded from two AC fields: A1 and middle lateral belt (ML) of rhesus macaques. We presented amplitude-modulated (AM) noise during both passive listening and while the animals performed an AM detection task ("active" condition). In both fields, neurons exhibit monotonic AM-depth tuning, with A1 neurons mostly exhibiting increasing rate-depth functions and ML neurons approximately evenly distributed between increasing and decreasing functions. We measured noise correlation ( r noise ) between simultaneously recorded neurons and found that whereas engagement decreased average r noise in A1, engagement increased average r noise in ML. This finding surprised us, because attentive states are commonly reported to decrease average r noise We analyzed the effect of r noise on AM coding in both A1 and ML and found that whereas engagement-related shifts in r noise in A1 enhance AM coding, r noise shifts in ML have little effect. These results imply that the effect of r noise differs between sensory areas, based on the distribution of tuning properties among the neurons within each population. A possible explanation of this is that higher areas need to encode nonsensory variables (e.g., attention, choice, and motor preparation), which impart common noise, thus increasing r noise Therefore, the hierarchical emergence of r noise -robust population coding (e.g., as we observed in ML) enhances the ability of sensory cortex to integrate cognitive and sensory information without a loss of sensory fidelity. NEW & NOTEWORTHY Prevailing models of population coding of sensory information are based on a limited subset of neural structures. An important and under-explored question in neuroscience is how distinct areas of sensory cortex differ in their

  16. Functional changes in the human auditory cortex in ageing.

    Directory of Open Access Journals (Sweden)

    Oliver Profant

    Full Text Available Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years and compared the results with young subjects (auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing.

  17. Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex

    Science.gov (United States)

    Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O.; Roopun, Anita K.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2013-01-01

    Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to > 100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30 – 45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50 – 80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases. PMID:22114273

  18. Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture.

    Science.gov (United States)

    Dick, Frederic K; Lehet, Matt I; Callaghan, Martina F; Keller, Tim A; Sereno, Martin I; Holt, Lori L

    2017-12-13

    Auditory selective attention is vital in natural soundscapes. But it is unclear how attentional focus on the primary dimension of auditory representation-acoustic frequency-might modulate basic auditory functional topography during active listening. In contrast to visual selective attention, which is supported by motor-mediated optimization of input across saccades and pupil dilation, the primate auditory system has fewer means of differentially sampling the world. This makes spectrally-directed endogenous attention a particularly crucial aspect of auditory attention. Using a novel functional paradigm combined with quantitative MRI, we establish in male and female listeners that human frequency-band-selective attention drives activation in both myeloarchitectonically estimated auditory core, and across the majority of tonotopically mapped nonprimary auditory cortex. The attentionally driven best-frequency maps show strong concordance with sensory-driven maps in the same subjects across much of the temporal plane, with poor concordance in areas outside traditional auditory cortex. There is significantly greater activation across most of auditory cortex when best frequency is attended, versus ignored; the same regions do not show this enhancement when attending to the least-preferred frequency band. Finally, the results demonstrate that there is spatial correspondence between the degree of myelination and the strength of the tonotopic signal across a number of regions in auditory cortex. Strong frequency preferences across tonotopically mapped auditory cortex spatially correlate with R 1 -estimated myeloarchitecture, indicating shared functional and anatomical organization that may underlie intrinsic auditory regionalization. SIGNIFICANCE STATEMENT Perception is an active process, especially sensitive to attentional state. Listeners direct auditory attention to track a violin's melody within an ensemble performance, or to follow a voice in a crowded cafe. Although

  19. Changes in auditory perceptions and cortex resulting from hearing recovery after extended congenital unilateral hearing loss

    Directory of Open Access Journals (Sweden)

    Jill B Firszt

    2013-12-01

    Full Text Available Monaural hearing induces auditory system reorganization. Imbalanced input also degrades time-intensity cues for sound localization and signal segregation for listening in noise. While there have been studies of bilateral auditory deprivation and later hearing restoration (e.g. cochlear implants, less is known about unilateral auditory deprivation and subsequent hearing improvement. We investigated effects of long-term congenital unilateral hearing loss on localization, speech understanding, and cortical organization following hearing recovery. Hearing in the congenitally affected ear of a 41 year old female improved significantly after stapedotomy and reconstruction. Pre-operative hearing threshold levels showed unilateral, mixed, moderately-severe to profound hearing loss. The contralateral ear had hearing threshold levels within normal limits. Testing was completed prior to, and three and nine months after surgery. Measurements were of sound localization with intensity-roved stimuli and speech recognition in various noise conditions. We also evoked magnetic resonance signals with monaural stimulation to the unaffected ear. Activation magnitudes were determined in core, belt, and parabelt auditory cortex regions via an interrupted single event design. Hearing improvement following 40 years of congenital unilateral hearing loss resulted in substantially improved sound localization and speech recognition in noise. Auditory cortex also reorganized. Contralateral auditory cortex responses were increased after hearing recovery and the extent of activated cortex was bilateral, including a greater portion of the posterior superior temporal plane. Thus, prolonged predominant monaural stimulation did not prevent auditory system changes consequent to restored binaural hearing. Results support future research of unilateral auditory deprivation effects and plasticity, with consideration for length of deprivation, age at hearing correction, degree and type

  20. [(1)H-MRS study of auditory cortex in patients with presbycusis].

    Science.gov (United States)

    Chen, Xian-ming; Dou, Xiao-qing; Liang, Yong-hui; Zhang, Li-wei; Luo, Bi-qiang; Deng, Yi-hong

    2012-10-01

    To study the metabolic changes of auditory cortex in patients with presbycusis by using proton magnetic resonance spectroscopy ((1)H-MRS). Ten normal hearing volunteers (youth group), 10 normal hearing of elderly (aged group) and 8 patients with presbycusis (presbycusis group) were checked with proton magnetic resonance spectroscopy. N-acetylaspartic acid (NAA), creatine (Cr), choline (Cho), γ-aminobutyric acid (GABA), glutamic acid (Glu) compound were measured. The differences between the groups were semi-quantitatively analyzed. When compared with youth group, reduced NAA/Cr, increased Cho/Cr were found in the aged group and presbycusis group (P presbycusis group and youth group (P 0.05). When compared with aged group, the metabolic changes of auditory cortex in patients with presbycusis were remarkable (P presbycusis.

  1. Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation.

    Science.gov (United States)

    Javitt, D C; Steinschneider, M; Schroeder, C E; Vaughan, H G; Arezzo, J C

    1994-12-26

    Mismatch negativity (MMN) is a cognitive, auditory event-related potential (AEP) that reflects preattentive detection of stimulus deviance and indexes the operation of the auditory sensory ('echoic') memory system. MMN is elicited most commonly in an auditory oddball paradigm in which a sequence of repetitive standard stimuli is interrupted infrequently and unexpectedly by a physically deviant 'oddball' stimulus. Electro- and magnetoencephalographic dipole mapping studies have localized the generators of MMN to supratemporal auditory cortex in the vicinity of Heschl's gyrus, but have not determined the degree to which MMN reflects activation within primary auditory cortex (AI) itself. The present study, using moveable multichannel electrodes inserted acutely into superior temporal plane, demonstrates a significant contribution of AI to scalp-recorded MMN in the monkey, as reflected by greater response of AI to loud or soft clicks presented as deviants than to the same stimuli presented as repetitive standards. The MMN-like activity was localized primarily to supragranular laminae within AI. Thus, standard and deviant stimuli elicited similar degrees of initial, thalamocortical excitation. In contrast, responses within supragranular cortex were significantly larger to deviant stimuli than to standards. No MMN-like activity was detected in a limited number to passes that penetrated anterior and medial to AI. AI plays a well established role in the decoding of the acoustic properties of individual stimuli. The present study demonstrates that primary auditory cortex also plays an important role in processing the relationships between stimuli, and thus participates in cognitive, as well as purely sensory, processing of auditory information.

  2. Temporal Sequence of Visuo-Auditory Interaction in Multiple Areas of the Guinea Pig Visual Cortex

    Science.gov (United States)

    Nishimura, Masataka; Song, Wen-Jie

    2012-01-01

    Recent studies in humans and monkeys have reported that acoustic stimulation influences visual responses in the primary visual cortex (V1). Such influences can be generated in V1, either by direct auditory projections or by feedback projections from extrastriate cortices. To test these hypotheses, cortical activities were recorded using optical imaging at a high spatiotemporal resolution from multiple areas of the guinea pig visual cortex, to visual and/or acoustic stimulations. Visuo-auditory interactions were evaluated according to differences between responses evoked by combined auditory and visual stimulation, and the sum of responses evoked by separate visual and auditory stimulations. Simultaneous presentation of visual and acoustic stimulations resulted in significant interactions in V1, which occurred earlier than in other visual areas. When acoustic stimulation preceded visual stimulation, significant visuo-auditory interactions were detected only in V1. These results suggest that V1 is a cortical origin of visuo-auditory interaction. PMID:23029483

  3. Two-Photon Functional Imaging of the Auditory Cortex in Behaving Mice: From Neural Networks to Single Spines

    Directory of Open Access Journals (Sweden)

    Ruijie Li

    2018-04-01

    Full Text Available In vivo two-photon Ca2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca2+ indicators, we recorded the Ca2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca2+ indicators (GECIs, we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors.

  4. Bioacoustic Signal Classification in Cat Auditory Cortex

    Science.gov (United States)

    1994-01-01

    of the cat’s WINER. 1. A. Anatomy of layer IV in cat primary auditory cortex t4,1). J miedial geniculate body Ideintified by projections to binaural...34language" (see for example Tartter, 1986, chapter 8; and Lieberman, 1984). Attempts have been made to train animals (mainly apes, gorillas , _ _ ___I 3...gestures of a gorilla : Language acquisition in another Pongid. Brain and Language, 1978a, 5, 72-97. Patterson, F. Conversations with a gorilla

  5. Stereotactically-guided Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain.

    Science.gov (United States)

    Lamas, Verónica; Estévez, Sheila; Pernía, Marianni; Plaza, Ignacio; Merchán, Miguel A

    2017-10-11

    The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.

  6. Organization of Estrogen-Associated Circuits in the Mouse Primary Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Liisa A. Tremere

    2011-01-01

    Full Text Available Sex steroid hormones influence the perceptual processing of sensory signals in vertebrates. In particular, decades of research have shown that circulating levels of estrogen correlate with hearing function. The mechanisms and sites of action supporting this sensory-neuroendocrine modulation, however, remain unknown. Here we combined a molecular cloning strategy, fluorescence in-situ hybridization and unbiased quantification methods to show that estrogen-producing and -sensitive neurons heavily populate the adult mouse primary auditory cortex (AI. We also show that auditory experience in freely-behaving animals engages estrogen-producing and -sensitive neurons in AI. These estrogen-associated networks are greatly stable, and do not quantitatively change as a result of acute episodes of sensory experience. We further demonstrate the neurochemical identity of estrogen-producing and estrogen-sensitive neurons in AI and show that these cell populations are phenotypically distinct. Our findings provide the first direct demonstration that estrogen-associated circuits are highly prevalent and engaged by sensory experience in the mouse auditory cortex, and suggest that previous correlations between estrogen levels and hearing function may be related to brain-generated hormone production. Finally, our findings suggest that estrogenic modulation may be a central component of the operational framework of central auditory networks.

  7. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Lohmann, Gabriele

    2018-01-01

    Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with "small-world" properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex-and sensory systems in general-in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions.

  8. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS

    Directory of Open Access Journals (Sweden)

    Paul Fredrick Sowman

    2014-06-01

    Full Text Available Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time of stimulation. This result demonstrates for the first time that paired associative stimulation (PAS -induced plasticity within the motor cortex is applicable with auditory stimuli. We propose that the method developed here might provide a useful tool for future studies that measure auditory-motor connectivity in communication disorders.

  9. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input.

    Directory of Open Access Journals (Sweden)

    Max F K Happel

    Full Text Available Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex.

  10. Functional MR imaging of cerebral auditory cortex with linguistic and non-linguistic stimulation: preliminary study

    International Nuclear Information System (INIS)

    Kang, Su Jin; Kim, Jae Hyoung; Shin, Tae Min

    1999-01-01

    To obtain preliminary data for understanding the central auditory neural pathway by means of functional MR imaging (fMRI) of the cerebral auditory cortex during linguistic and non-linguistic auditory stimulation. In three right-handed volunteers we conducted fMRI of auditory cortex stimulation at 1.5 T using a conventional gradient-echo technique (TR/TE/flip angle: 80/60/40 deg). Using a pulsed tone of 1000 Hz and speech as non-linguistic and linguistic auditory stimuli, respectively, images-including those of the superior temporal gyrus of both hemispheres-were obtained in sagittal plases. Both stimuli were separately delivered binaurally or monoaurally through a plastic earphone. Images were activated by processing with homemade software. In order to analyze patterns of auditory cortex activation according to type of stimulus and which side of the ear was stimulated, the number and extent of activated pixels were compared between both temporal lobes. Biaural stimulation led to bilateral activation of the superior temporal gyrus, while monoaural stimulation led to more activation in the contralateral temporal lobe than in the ipsilateral. A trend toward slight activation of the left (dominant) temporal lobe in ipsilateral stimulation, particularly with a linguistic stimulus, was observed. During both biaural and monoaural stimulation, a linguistic stimulus produced more widespread activation than did a non-linguistic one. The superior temporal gyri of both temporal lobes are associated with acoustic-phonetic analysis, and the left (dominant) superior temporal gyrus is likely to play a dominant role in this processing. For better understanding of physiological and pathological central auditory pathways, further investigation is needed

  11. Functionally Specific Oscillatory Activity Correlates between Visual and Auditory Cortex in the Blind

    Science.gov (United States)

    Schepers, Inga M.; Hipp, Joerg F.; Schneider, Till R.; Roder, Brigitte; Engel, Andreas K.

    2012-01-01

    Many studies have shown that the visual cortex of blind humans is activated in non-visual tasks. However, the electrophysiological signals underlying this cross-modal plasticity are largely unknown. Here, we characterize the neuronal population activity in the visual and auditory cortex of congenitally blind humans and sighted controls in a…

  12. Effects of musical training on the auditory cortex in children.

    Science.gov (United States)

    Trainor, Laurel J; Shahin, Antoine; Roberts, Larry E

    2003-11-01

    Several studies of the effects of musical experience on sound representations in the auditory cortex are reviewed. Auditory evoked potentials are compared in response to pure tones, violin tones, and piano tones in adult musicians versus nonmusicians as well as in 4- to 5-year-old children who have either had or not had extensive musical experience. In addition, the effects of auditory frequency discrimination training in adult nonmusicians on auditory evoked potentials are examined. It was found that the P2-evoked response is larger in both adult and child musicians than in nonmusicians and that auditory training enhances this component in nonmusician adults. The results suggest that the P2 is particularly neuroplastic and that the effects of musical experience can be seen early in development. They also suggest that although the effects of musical training on cortical representations may be greater if training begins in childhood, the adult brain is also open to change. These results are discussed with respect to potential benefits of early musical training as well as potential benefits of musical experience in aging.

  13. Frequency-specific attentional modulation in human primary auditory cortex and midbrain

    NARCIS (Netherlands)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2018-01-01

    Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning,

  14. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.

    Science.gov (United States)

    Andoh, Jamila; Zatorre, Robert J

    2012-09-12

    Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS. However, this

  15. Multiple time scales of adaptation in auditory cortex neurons.

    Science.gov (United States)

    Ulanovsky, Nachum; Las, Liora; Farkas, Dina; Nelken, Israel

    2004-11-17

    Neurons in primary auditory cortex (A1) of cats show strong stimulus-specific adaptation (SSA). In probabilistic settings, in which one stimulus is common and another is rare, responses to common sounds adapt more strongly than responses to rare sounds. This SSA could be a correlate of auditory sensory memory at the level of single A1 neurons. Here we studied adaptation in A1 neurons, using three different probabilistic designs. We showed that SSA has several time scales concurrently, spanning many orders of magnitude, from hundreds of milliseconds to tens of seconds. Similar time scales are known for the auditory memory span of humans, as measured both psychophysically and using evoked potentials. A simple model, with linear dependence on both short-term and long-term stimulus history, provided a good fit to A1 responses. Auditory thalamus neurons did not show SSA, and their responses were poorly fitted by the same model. In addition, SSA increased the proportion of failures in the responses of A1 neurons to the adapting stimulus. Finally, SSA caused a bias in the neuronal responses to unbiased stimuli, enhancing the responses to eccentric stimuli. Therefore, we propose that a major function of SSA in A1 neurons is to encode auditory sensory memory on multiple time scales. This SSA might play a role in stream segregation and in binding of auditory objects over many time scales, a property that is crucial for processing of natural auditory scenes in cats and of speech and music in humans.

  16. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    Science.gov (United States)

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  17. Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex

    Science.gov (United States)

    Da Costa, Sandra; van der Zwaag, Wietske; Miller, Lee M.; Clarke, Stephanie

    2013-01-01

    Cocktail parties, busy streets, and other noisy environments pose a difficult challenge to the auditory system: how to focus attention on selected sounds while ignoring others? Neurons of primary auditory cortex, many of which are sharply tuned to sound frequency, could help solve this problem by filtering selected sound information based on frequency-content. To investigate whether this occurs, we used high-resolution fMRI at 7 tesla to map the fine-scale frequency-tuning (1.5 mm isotropic resolution) of primary auditory areas A1 and R in six human participants. Then, in a selective attention experiment, participants heard low (250 Hz)- and high (4000 Hz)-frequency streams of tones presented at the same time (dual-stream) and were instructed to focus attention onto one stream versus the other, switching back and forth every 30 s. Attention to low-frequency tones enhanced neural responses within low-frequency-tuned voxels relative to high, and when attention switched the pattern quickly reversed. Thus, like a radio, human primary auditory cortex is able to tune into attended frequency channels and can switch channels on demand. PMID:23365225

  18. Direct recordings from the auditory cortex in a cochlear implant user.

    Science.gov (United States)

    Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A

    2013-06-01

    Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.

  19. The roles of superficial amygdala and auditory cortex in music-evoked fear and joy.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Fritz, Thomas; Herrera, Perfecto; Bonhage, Corinna; Küssner, Mats B; Jacobs, Arthur M

    2013-11-01

    This study investigates neural correlates of music-evoked fear and joy with fMRI. Studies on neural correlates of music-evoked fear are scant, and there are only a few studies on neural correlates of joy in general. Eighteen individuals listened to excerpts of fear-evoking, joy-evoking, as well as neutral music and rated their own emotional state in terms of valence, arousal, fear, and joy. Results show that BOLD signal intensity increased during joy, and decreased during fear (compared to the neutral condition) in bilateral auditory cortex (AC) and bilateral superficial amygdala (SF). In the right primary somatosensory cortex (area 3b) BOLD signals increased during exposure to fear-evoking music. While emotion-specific activity in AC increased with increasing duration of each trial, SF responded phasically in the beginning of the stimulus, and then SF activity declined. Psychophysiological Interaction (PPI) analysis revealed extensive emotion-specific functional connectivity of AC with insula, cingulate cortex, as well as with visual, and parietal attentional structures. These findings show that the auditory cortex functions as a central hub of an affective-attentional network that is more extensive than previously believed. PPI analyses also showed functional connectivity of SF with AC during the joy condition, taken to reflect that SF is sensitive to social signals with positive valence. During fear music, SF showed functional connectivity with visual cortex and area 7 of the superior parietal lobule, taken to reflect increased visual alertness and an involuntary shift of attention during the perception of auditory signals of danger. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    OpenAIRE

    Scott, Gregory D.; Karns, Christina M.; Dow, Mark W.; Stevens, Courtney; Neville, Helen J.

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants wer...

  1. Metabolic changes in the auditory cortex in presbycusis demonstrated by MR spectroscopy.

    Science.gov (United States)

    Profant, Oliver; Balogová, Zuzana; Dezortová, Monika; Wagnerová, Dita; Hájek, Milan; Syka, Josef

    2013-08-01

    In humans, aging is accompanied by the deterioration of the hearing function--presbycusis. The major etiology for presbycusis is the loss of hair cells in the inner ear; less well known are changes in the central auditory system. Therefore, we used 1H magnetic resonance spectroscopy at 3T tomograph to examine metabolite levels in the auditory cortex of three groups of subjects: young healthy subjects less than 30 years old and subjects older than 65 years either with mild presbycusis corresponding to their age or with expressed presbycusis. Hearing function in all subjects was examined by pure tone audiometry (125-16,000 Hz). Significant differences were found in the concentrations of glutamate and N-acetylaspartate, with lower levels in aged subjects. Lactate was particularly increased in subjects with expressed presbycusis. Significant differences were not found in other metabolites, including GABA, between young and elderly subjects. The results demonstrate that the age-related changes of the inner ear are accompanied by a decrease in the excitatory neurotransmitter glutamate as well as a lactate increase in the auditory cortex that is more expressed in elderly subjects with large hearing threshold shifts. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. New perspectives on the auditory cortex: learning and memory.

    Science.gov (United States)

    Weinberger, Norman M

    2015-01-01

    Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex. © 2015 Elsevier B.V. All rights reserved.

  3. Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques.

    Science.gov (United States)

    Scott, Brian H; Malone, Brian J; Semple, Malcolm N

    2009-04-01

    Neurons in auditory cortex of awake primates are selective for the spatial location of a sound source, yet the neural representation of the binaural cues that underlie this tuning remains undefined. We examined this representation in 283 single neurons across the low-frequency auditory core in alert macaques, trained to discriminate binaural cues for sound azimuth. In response to binaural beat stimuli, which mimic acoustic motion by modulating the relative phase of a tone at the two ears, these neurons robustly modulate their discharge rate in response to this directional cue. In accordance with prior studies, the preferred interaural phase difference (IPD) of these neurons typically corresponds to azimuthal locations contralateral to the recorded hemisphere. Whereas binaural beats evoke only transient discharges in anesthetized cortex, neurons in awake cortex respond throughout the IPD cycle. In this regard, responses are consistent with observations at earlier stations of the auditory pathway. Discharge rate is a band-pass function of the frequency of IPD modulation in most neurons (73%), but both discharge rate and temporal synchrony are independent of the direction of phase modulation. When subjected to a receiver operator characteristic analysis, the responses of individual neurons are insufficient to account for the perceptual acuity of these macaques in an IPD discrimination task, suggesting the need for neural pooling at the cortical level.

  4. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Science.gov (United States)

    Engell, Alva; Junghöfer, Markus; Stein, Alwina; Lau, Pia; Wunderlich, Robert; Wollbrink, Andreas; Pantev, Christo

    2016-01-01

    Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI) due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency), followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  5. Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex.

    Directory of Open Access Journals (Sweden)

    Verónica Lamas

    Full Text Available INTRODUCTION: This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. METHOD: Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR were recorded at post-surgery day (PSD 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. RESULTS: Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. CONCLUSION: Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7, most likely resulting from axonal degeneration; and a long-term period (up to PSD7, with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound.

  6. Multi-sensory integration in brainstem and auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2012-11-16

    Tinnitus is the perception of sound in the absence of a physical sound stimulus. It is thought to arise from aberrant neural activity within central auditory pathways that may be influenced by multiple brain centers, including the somatosensory system. Auditory-somatosensory (bimodal) integration occurs in the dorsal cochlear nucleus (DCN), where electrical activation of somatosensory regions alters pyramidal cell spike timing and rates of sound stimuli. Moreover, in conditions of tinnitus, bimodal integration in DCN is enhanced, producing greater spontaneous and sound-driven neural activity, which are neural correlates of tinnitus. In primary auditory cortex (A1), a similar auditory-somatosensory integration has been described in the normal system (Lakatos et al., 2007), where sub-threshold multisensory modulation may be a direct reflection of subcortical multisensory responses (Tyll et al., 2011). The present work utilized simultaneous recordings from both DCN and A1 to directly compare bimodal integration across these separate brain stations of the intact auditory pathway. Four-shank, 32-channel electrodes were placed in DCN and A1 to simultaneously record tone-evoked unit activity in the presence and absence of spinal trigeminal nucleus (Sp5) electrical activation. Bimodal stimulation led to long-lasting facilitation or suppression of single and multi-unit responses to subsequent sound in both DCN and A1. Immediate (bimodal response) and long-lasting (bimodal plasticity) effects of Sp5-tone stimulation were facilitation or suppression of tone-evoked firing rates in DCN and A1 at all Sp5-tone pairing intervals (10, 20, and 40 ms), and greater suppression at 20 ms pairing-intervals for single unit responses. Understanding the complex relationships between DCN and A1 bimodal processing in the normal animal provides the basis for studying its disruption in hearing loss and tinnitus models. This article is part of a Special Issue entitled: Tinnitus Neuroscience

  7. Latency modulation of collicular neurons induced by electric stimulation of the auditory cortex in Hipposideros pratti: In vivo intracellular recording.

    Directory of Open Access Journals (Sweden)

    Kang Peng

    Full Text Available In the auditory pathway, the inferior colliculus (IC receives and integrates excitatory and inhibitory inputs from the lower auditory nuclei, contralateral IC, and auditory cortex (AC, and then uploads these inputs to the thalamus and cortex. Meanwhile, the AC modulates the sound signal processing of IC neurons, including their latency (i.e., first-spike latency. Excitatory and inhibitory corticofugal projections to the IC may shorten and prolong the latency of IC neurons, respectively. However, the synaptic mechanisms underlying the corticofugal latency modulation of IC neurons remain unclear. Thus, this study probed these mechanisms via in vivo intracellular recording and acoustic and focal electric stimulation. The AC latency modulation of IC neurons is possibly mediated by pre-spike depolarization duration, pre-spike hyperpolarization duration, and spike onset time. This study suggests an effective strategy for the timing sequence determination of auditory information uploaded to the thalamus and cortex.

  8. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging

    Czech Academy of Sciences Publication Activity Database

    Profant, Oliver; Škoch, A.; Balogová, Zuzana; Tintěra, J.; Hlinka, Jaroslav; Syka, Josef

    2014-01-01

    Roč. 260, FEB 28 (2014), s. 87-97 ISSN 0306-4522 R&D Projects: GA ČR GAP304/10/1872; GA ČR(CZ) GBP304/12/G069; GA ČR GA13-23940S Grant - others:GA MŠk(CZ) Prvouk-P27/LF1/1 Institutional support: RVO:68378041 ; RVO:67985807 Keywords : presbycusis * aging * auditory cortex Subject RIV: FH - Neurology Impact factor: 3.357, year: 2014

  9. Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real-time fMRI - A pilot study

    Directory of Open Access Journals (Sweden)

    Kirsten Emmert

    2017-01-01

    Overall, these results show that continuous feedback is suitable for long-term neurofeedback experiments while intermittent feedback presentation promises good results for single session experiments when using the auditory cortex as a target region. In particular, the down-regulation effect is more pronounced in the secondary auditory cortex, which might be more susceptible to voluntary modulation in comparison to a primary sensory region.

  10. Metabolic changes in the auditory cortex in presbycusis demonstrated by MR spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Profant, Oliver; Balogová, Zuzana; Dezortová, M.; Wagnerová, D.; Hájek, M.; Syka, Josef

    2013-01-01

    Roč. 48, č. 8 (2013), s. 795-800 ISSN 0531-5565 R&D Projects: GA ČR GAP304/10/1872 Grant - others:GA MZd(CZ) 00023001IKEM Institutional support: RVO:68378041 Keywords : Presbycusis * Auditory cortex * MR spectroscopy Subject RIV: FH - Neurology Impact factor: 3.529, year: 2013

  11. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Alva Engell

    Full Text Available Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency, followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  12. Frequency-specific modulation of population-level frequency tuning in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Roberts Larry E

    2009-01-01

    Full Text Available Abstract Background Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random under auditory focused attention by means of magnetoencephalography (MEG. Results In total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands. Conclusion The present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

  13. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging.

    Science.gov (United States)

    Profant, O; Škoch, A; Balogová, Z; Tintěra, J; Hlinka, J; Syka, J

    2014-02-28

    Age-related hearing loss (presbycusis) is caused mainly by the hypofunction of the inner ear, but recent findings point also toward a central component of presbycusis. We used MR morphometry and diffusion tensor imaging (DTI) with a 3T MR system with the aim to study the state of the central auditory system in a group of elderly subjects (>65years) with mild presbycusis, in a group of elderly subjects with expressed presbycusis and in young controls. Cortical reconstruction, volumetric segmentation and auditory pathway tractography were performed. Three parameters were evaluated by morphometry: the volume of the gray matter, the surface area of the gyrus and the thickness of the cortex. In all experimental groups the surface area and gray matter volume were larger on the left side in Heschl's gyrus and planum temporale and slightly larger in the gyrus frontalis superior, whereas they were larger on the right side in the primary visual cortex. Almost all of the measured parameters were significantly smaller in the elderly subjects in Heschl's gyrus, planum temporale and gyrus frontalis superior. Aging did not change the side asymmetry (laterality) of the gyri. In the central part of the auditory pathway above the inferior colliculus, a trend toward an effect of aging was present in the axial vector of the diffusion (L1) variable of DTI, with increased values observed in elderly subjects. A trend toward a decrease of L1 on the left side, which was more pronounced in the elderly groups, was observed. The effect of hearing loss was present in subjects with expressed presbycusis as a trend toward an increase of the radial vectors (L2L3) in the white matter under Heschl's gyrus. These results suggest that in addition to peripheral changes, changes in the central part of the auditory system in elderly subjects are also present; however, the extent of hearing loss does not play a significant role in the central changes. Copyright © 2013 IBRO. Published by Elsevier Ltd

  14. SPET monitoring of perfusion changes in auditory cortex following mono- and multi-frequency stimuli

    Energy Technology Data Exchange (ETDEWEB)

    De Rossi, G. [Nuclear Medicine Inst., Policlinico A. Gemelli, Rome (Italy); Paludetti, G. [Otorhinolaryngology Inst., Policlinico A. Gemelli, Rome (Italy); Di Nardo, W. [Otorhinolaryngology Inst., Policlinico A. Gemelli, Rome (Italy); Calcagni, M.L. [Nuclear Medicine Inst., Policlinico A. Gemelli, Rome (Italy); Di Giuda, D. [Nuclear Medicine Inst., Policlinico A. Gemelli, Rome (Italy); Almadori, G. [Otorhinolaryngology Inst., Policlinico A. Gemelli, Rome (Italy); Galli, J. [Otorhinolaryngology Inst., Policlinico A. Gemelli, Rome (Italy)

    1996-08-01

    In order to assess the relationship between auditory cortex perfusion and the frequency of acoustic stimuli, twenty normally-hearing subjects underwent cerebral SPET. In 10 patients a multi-frequency stimulus (250-4000 Hz at 40 dB SL) was delivered, while 10 subjects were stimulated with a 500 Hz pure tone at 40 dB SL. The prestimulation SPET was subtracted from poststimulation study and auditory cortex activation was expressed as percent increments. Contralateral cortex was the most active area with multifrequency and monofrequency stimuli as well. A clear demonstration of a tonotopic distribution of acoustic stimuli in the auditory cortex was achieved. In addition, the accessory role played by homolateral accoustic areas was confirmed. The results of the present research support the hypothesis that brain SPET may be useful to obtain semiquantitative reliable information on low frequency auditory level in profoundly deaf patients. This may be achieved comparing the extension of the cortical areas activated by high-intensity multifrequency stimuli. (orig.) [Deutsch] Zur Aufklaerung der Beziehung von regionaler Perfusion des auditorischen Kortex und Frequenz des akustischen Stimulus wurden 20 Normalpatienten mit Hilfe von Hirn-SPECT untersucht. Bei je 10 Patienten wurde ein Multifrequenzstimulus (250-2000 Hz bei 60 dB) bzw. ein Monofrequenzstimulus (500 Hz bei 60 dB) verwendet. Die vor der Stimulation akquirierten SPECT-Daten wurden jeweils von den nach der Stimulation akquirierten SPECT-Daten abgezogen und die aditorische Kortexaktivation als prozentuale Steigerung ausgedrueckt. Der kontralaterale Kortex war das am staerksten aktivierte Areal sowohl bei der Multifrequenz- als auch bei der Monofrequenzstimulation. Es konnte eine klare tonotopische Verteilung der akustischen Stimuli im auditorischen Koretx demonstriert werden. Zusaetzlich konnte die akzessorische Rolle des homolateralen akustischen Kortex bestaetigt werden. Die Ergebnisse dieser Studie unterstuetzen

  15. Encoding of frequency-modulation (FM) rates in human auditory cortex.

    Science.gov (United States)

    Okamoto, Hidehiko; Kakigi, Ryusuke

    2015-12-14

    Frequency-modulated sounds play an important role in our daily social life. However, it currently remains unclear whether frequency modulation rates affect neural activity in the human auditory cortex. In the present study, using magnetoencephalography, we investigated the auditory evoked N1m and sustained field responses elicited by temporally repeated and superimposed frequency-modulated sweeps that were matched in the spectral domain, but differed in frequency modulation rates (1, 4, 16, and 64 octaves per sec). The results obtained demonstrated that the higher rate frequency-modulated sweeps elicited the smaller N1m and the larger sustained field responses. Frequency modulation rate had a significant impact on the human brain responses, thereby providing a key for disentangling a series of natural frequency-modulated sounds such as speech and music.

  16. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Science.gov (United States)

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  17. Differential Recruitment of Auditory Cortices in the Consolidation of Recent Auditory Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Sacchetti, Benedetto

    2016-08-17

    Memories of frightening events require a protracted consolidation process. Sensory cortex, such as the auditory cortex, is involved in the formation of fearful memories with a more complex sensory stimulus pattern. It remains controversial, however, whether the auditory cortex is also required for fearful memories related to simple sensory stimuli. In the present study, we found that, 1 d after training, the temporary inactivation of either the most anterior region of the auditory cortex, including the primary (Te1) cortex, or the most posterior region, which included the secondary (Te2) component, did not affect the retention of recent memories, which is consistent with the current literature. However, at this time point, the inactivation of the entire auditory cortices completely prevented the formation of new memories. Amnesia was site specific and was not due to auditory stimuli perception or processing and strictly related to the interference with memory consolidation processes. Strikingly, at a late time interval 4 d after training, blocking the posterior part (encompassing the Te2) alone impaired memory retention, whereas the inactivation of the anterior part (encompassing the Te1) left memory unaffected. Together, these data show that the auditory cortex is necessary for the consolidation of auditory fearful memories related to simple tones in rats. Moreover, these results suggest that, at early time intervals, memory information is processed in a distributed network composed of both the anterior and the posterior auditory cortical regions, whereas, at late time intervals, memory processing is concentrated in the most posterior part containing the Te2 region. Memories of threatening experiences undergo a prolonged process of "consolidation" to be maintained for a long time. The dynamic of fearful memory consolidation is poorly understood. Here, we show that 1 d after learning, memory is processed in a distributed network composed of both primary Te1 and

  18. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    Science.gov (United States)

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that

  19. Anatomical pathways for auditory memory II: Information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Directory of Open Access Journals (Sweden)

    Monica eMunoz-Lopez

    2015-05-01

    Full Text Available Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 minutes. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 seconds. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys’ auditory memory performance. It is possible, therefore, that the anatomical pathways differ. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC. We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG, and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY and anterograde (10% BDA 10,000 MW tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex, and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  20. Visual Input Enhances Selective Speech Envelope Tracking in Auditory Cortex at a ‘Cocktail Party’

    Science.gov (United States)

    Golumbic, Elana Zion; Cogan, Gregory B.; Schroeder, Charles E.; Poeppel, David

    2013-01-01

    Our ability to selectively attend to one auditory signal amidst competing input streams, epitomized by the ‘Cocktail Party’ problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared to responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic (MEG) signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker’s face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a ‘Cocktail Party’ setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive. PMID:23345218

  1. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  2. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex.

    Science.gov (United States)

    Sugihara, Tadashi; Diltz, Mark D; Averbeck, Bruno B; Romanski, Lizabeth M

    2006-10-25

    The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The multisensory interactions included both enhancement and suppression of a predominantly auditory or a predominantly visual response, although multisensory suppression was the more common mode of response. The multisensory neurons were distributed across the VLPFC and within previously identified unimodal auditory and visual regions (O'Scalaidhe et al., 1997; Romanski and Goldman-Rakic, 2002). Thus, our study demonstrates, for the first time, that single prefrontal neurons integrate communication information from the auditory and visual domains, suggesting that these neurons are an important node in the cortical network responsible for communication.

  3. Retrosplenial Cortex Is Required for the Retrieval of Remote Memory for Auditory Cues

    Science.gov (United States)

    Todd, Travis P.; Mehlman, Max L.; Keene, Christopher S.; DeAngeli, Nicole E.; Bucci, David J.

    2016-01-01

    The retrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of…

  4. Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.

    Science.gov (United States)

    Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro P; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko

    2017-08-15

    During a conversation or when listening to music, auditory and visual information are combined automatically into audiovisual objects. However, it is still poorly understood how specific type of visual information shapes neural processing of sounds in lifelike stimulus environments. Here we applied multi-voxel pattern analysis to investigate how naturally matching visual input modulates supratemporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or singing. The predictive performances of the classifiers were tested by leaving one participant at a time for testing and training the model using the remaining 15 participants. The signature patterns associated with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, revealed that activity in some of these MTG and STG areas were associated with acoustic features present in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech), lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results suggest that specific supratemporal brain areas are involved in processing complex natural speech, singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-related hand actions) supratemporal cortex are influenced by related visual information. Those anterior and posterior supratemporal areas have been linked to stimulus identification and sensory-motor integration, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  6. Hearing loss alters serotonergic modulation of intrinsic excitability in auditory cortex.

    Science.gov (United States)

    Rao, Deepti; Basura, Gregory J; Roche, Joseph; Daniels, Scott; Mancilla, Jaime G; Manis, Paul B

    2010-11-01

    Sensorineural hearing loss during early childhood alters auditory cortical evoked potentials in humans and profoundly changes auditory processing in hearing-impaired animals. Multiple mechanisms underlie the early postnatal establishment of cortical circuits, but one important set of developmental mechanisms relies on the neuromodulator serotonin (5-hydroxytryptamine [5-HT]). On the other hand, early sensory activity may also regulate the establishment of adultlike 5-HT receptor expression and function. We examined the role of 5-HT in auditory cortex by first investigating how 5-HT neurotransmission and 5-HT(2) receptors influence the intrinsic excitability of layer II/III pyramidal neurons in brain slices of primary auditory cortex (A1). A brief application of 5-HT (50 μM) transiently and reversibly decreased firing rates, input resistance, and spike rate adaptation in normal postnatal day 12 (P12) to P21 rats. Compared with sham-operated animals, cochlear ablation increased excitability at P12-P21, but all the effects of 5-HT, except for the decrease in adaptation, were eliminated in both sham-operated and cochlear-ablated rats. At P30-P35, cochlear ablation did not increase intrinsic excitability compared with shams, but it did prevent a pronounced decrease in excitability that appeared 10 min after 5-HT application. We also tested whether the effects on excitability were mediated by 5-HT(2) receptors. In the presence of the 5-HT(2)-receptor antagonist, ketanserin, 5-HT significantly decreased excitability compared with 5-HT or ketanserin alone in both sham-operated and cochlear-ablated P12-P21 rats. However, at P30-P35, ketanserin had no effect in sham-operated and only a modest effect cochlear-ablated animals. The 5-HT(2)-specific agonist 5-methoxy-N,N-dimethyltryptamine also had no effect at P12-P21. These results suggest that 5-HT likely regulates pyramidal cell excitability via multiple receptor subtypes with opposing effects. These data also show that

  7. [Effect of Electroacupuncture on Expression of Catechol-O-methyltransferase in the Inferior Colliculus and Auditory Cortex in Age-related Hearing Loss Guinea Pigs].

    Science.gov (United States)

    Liu, Shu-Yun; Deng, Li-Qiang; Yang, Ye; Yin, Ze-Deng

    2017-04-25

    To observe the expression of catechol-O-methyltransferase (COMT) in inferior colliculus and auditory cortex of guinea pigs with age-related hearing loss(AHL) induced by D-galactose, so as to explore the possible mechanism of electroacupuncture(EA) underlying preventing AHL. Thirty 3-month-old guinea pigs were randomly divided into control group, model group and EA group( n =10 in each group), and ten 18-month-old guinea pigs were allocated as elderly group. The AHL model was established by subcutaneous injection of D-galactose. EA was applied to bilateral "Yifeng"(SJ 17) and "Tinggong"(SI 19) for 15 min in the EA group while modeling, once daily for 6 weeks. After treatment, the latency of auditory brainstem response(ABR) Ⅲ wave was measured by a brain-stem evoked potentiometer. The expressions of COMT in the inferior colliculus and auditory cortex were detected by Western blot. Compared with the control group, the latencies of ABR Ⅲ wave were significantly prolonged and the expressions of COMT in the inferior colliculus and auditory cortex were significantly decreased in the model group and the elderly group( P guinea pigs, which may contribute to its effect in up-regulating the expression of COMT in the inferior colliculus and auditory cortex.

  8. Decoding sound level in the marmoset primary auditory cortex.

    Science.gov (United States)

    Sun, Wensheng; Marongelli, Ellisha N; Watkins, Paul V; Barbour, Dennis L

    2017-10-01

    Neurons that respond favorably to a particular sound level have been observed throughout the central auditory system, becoming steadily more common at higher processing areas. One theory about the role of these level-tuned or nonmonotonic neurons is the level-invariant encoding of sounds. To investigate this theory, we simulated various subpopulations of neurons by drawing from real primary auditory cortex (A1) neuron responses and surveyed their performance in forming different sound level representations. Pure nonmonotonic subpopulations did not provide the best level-invariant decoding; instead, mixtures of monotonic and nonmonotonic neurons provided the most accurate decoding. For level-fidelity decoding, the inclusion of nonmonotonic neurons slightly improved or did not change decoding accuracy until they constituted a high proportion. These results indicate that nonmonotonic neurons fill an encoding role complementary to, rather than alternate to, monotonic neurons. NEW & NOTEWORTHY Neurons with nonmonotonic rate-level functions are unique to the central auditory system. These level-tuned neurons have been proposed to account for invariant sound perception across sound levels. Through systematic simulations based on real neuron responses, this study shows that neuron populations perform sound encoding optimally when containing both monotonic and nonmonotonic neurons. The results indicate that instead of working independently, nonmonotonic neurons complement the function of monotonic neurons in different sound-encoding contexts. Copyright © 2017 the American Physiological Society.

  9. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion.

    Science.gov (United States)

    Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Huang, Xiang; Zhang, Honglian; Kong, Weijia

    2012-12-01

    The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the Cc

  10. Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.

    Science.gov (United States)

    Bareham, Corinne A; Georgieva, Stanimira D; Kamke, Marc R; Lloyd, David; Bekinschtein, Tristan A; Mattingley, Jason B

    2018-02-01

    Selective attention is the process of directing limited capacity resources to behaviourally relevant stimuli while ignoring competing stimuli that are currently irrelevant. Studies in healthy human participants and in individuals with focal brain lesions have suggested that the right parietal cortex is crucial for resolving competition for attention. Following right-hemisphere damage, for example, patients may have difficulty reporting a brief, left-sided stimulus if it occurs with a competitor on the right, even though the same left stimulus is reported normally when it occurs alone. Such "extinction" of contralesional stimuli has been documented for all the major sense modalities, but it remains unclear whether its occurrence reflects involvement of one or more specific subregions of the temporo-parietal cortex. Here we employed repetitive transcranial magnetic stimulation (rTMS) over the right hemisphere to examine the effect of disruption of two candidate regions - the supramarginal gyrus (SMG) and the superior temporal gyrus (STG) - on auditory selective attention. Eighteen neurologically normal, right-handed participants performed an auditory task, in which they had to detect target digits presented within simultaneous dichotic streams of spoken distractor letters in the left and right channels, both before and after 20 min of 1 Hz rTMS over the SMG, STG or a somatosensory control site (S1). Across blocks, participants were asked to report on auditory streams in the left, right, or both channels, which yielded focused and divided attention conditions. Performance was unchanged for the two focused attention conditions, regardless of stimulation site, but was selectively impaired for contralateral left-sided targets in the divided attention condition following stimulation of the right SMG, but not the STG or S1. Our findings suggest a causal role for the right inferior parietal cortex in auditory selective attention. Copyright © 2017 Elsevier Ltd. All rights

  11. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    Science.gov (United States)

    Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.

    2014-01-01

    The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory

  13. Effects of damage to auditory cortex on the discrimination of speech sounds by rats

    Czech Academy of Sciences Publication Activity Database

    Floody, O. R.; Ouda, Ladislav; Porter, B. A.; Kilgard, M. P.

    2010-01-01

    Roč. 101, č. 2 (2010), s. 260-268 ISSN 0031-9384 R&D Projects: GA ČR GA309/07/1336 Institutional research plan: CEZ:AV0Z50390703 Keywords : auditory cortex * brain lesions * prepulse inhibition Subject RIV: FH - Neurology Impact factor: 2.891, year: 2010

  14. Task-dependent modulation of regions in the left temporal cortex during auditory sentence comprehension.

    Science.gov (United States)

    Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping

    2015-01-01

    Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Acute administration of nicotine into the higher order auditory Te2 cortex specifically decreases the fear-related charge of remote emotional memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Concina, Giulia; Sacchetti, Benedetto

    2015-12-01

    Nicotine elicits several behavioural effects on mood as well as on stress and anxiety processes. Recently, it was found that the higher order components of the sensory cortex, such as the secondary auditory cortex Te2, are essential for the long-term storage of remote fear memories. Therefore, in the present study, we examined the effects of acute nicotine injection into the higher order auditory cortex Te2, on the remote emotional memories of either threat or incentive experiences in rats. We found that intra-Te2 nicotine injection decreased the fear-evoked responses to a tone previously paired with footshock. This effect was cue- and dose-specific and was not due to any interference with auditory stimuli processing, innate anxiety and fear processes, or with motor responses. Nicotine acts acutely in the presence of threat stimuli but it did not determine the permanent degradation of the fear-memory trace, since memories tested one week after nicotine injection were unaffected. Remarkably, nicotine did not affect the memory of a similar tone that was paired to incentive stimuli. We conclude from our results that nicotine, when acting acutely in the auditory cortex, relieves the fear charge embedded by learned stimuli. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Neural correlates of auditory recognition memory in primate lateral prefrontal cortex.

    Science.gov (United States)

    Plakke, B; Ng, C-W; Poremba, A

    2013-08-06

    The neural underpinnings of working and recognition memory have traditionally been studied in the visual domain and these studies pinpoint the lateral prefrontal cortex (lPFC) as a primary region for visual memory processing (Miller et al., 1996; Ranganath et al., 2004; Kennerley and Wallis, 2009). Herein, we utilize single-unit recordings for the same region in monkeys (Macaca mulatta) but investigate a second modality examining auditory working and recognition memory during delayed matching-to-sample (DMS) performance. A large portion of neurons in the dorsal and ventral banks of the principal sulcus (area 46, 46/9) show DMS event-related activity to one or more of the following task events: auditory cues, memory delay, decision wait time, response, and/or reward portions. Approximately 50% of the neurons show evidence of auditory-evoked activity during the task and population activity demonstrated encoding of recognition memory in the form of match enhancement. However, neither robust nor sustained delay activity was observed. The neuronal responses during the auditory DMS task are similar in many respects to those found within the visual working memory domain, which supports the hypothesis that the lPFC, particularly area 46, functionally represents key pieces of information for recognition memory inclusive of decision-making, but regardless of modality. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Auditory cortex processes variation in our own speech.

    Directory of Open Access Journals (Sweden)

    Kevin R Sitek

    Full Text Available As we talk, we unconsciously adjust our speech to ensure it sounds the way we intend it to sound. However, because speech production involves complex motor planning and execution, no two utterances of the same sound will be exactly the same. Here, we show that auditory cortex is sensitive to natural variations in self-produced speech from utterance to utterance. We recorded event-related potentials (ERPs from ninety-nine subjects while they uttered "ah" and while they listened to those speech sounds played back. Subjects' utterances were sorted based on their formant deviations from the previous utterance. Typically, the N1 ERP component is suppressed during talking compared to listening. By comparing ERPs to the least and most variable utterances, we found that N1 was less suppressed to utterances that differed greatly from their preceding neighbors. In contrast, an utterance's difference from the median formant values did not affect N1. Trial-to-trial pitch (f0 deviation and pitch difference from the median similarly did not affect N1. We discuss mechanisms that may underlie the change in N1 suppression resulting from trial-to-trial formant change. Deviant utterances require additional auditory cortical processing, suggesting that speaking-induced suppression mechanisms are optimally tuned for a specific production.

  19. Auditory Cortex Processes Variation in Our Own Speech

    Science.gov (United States)

    Sitek, Kevin R.; Mathalon, Daniel H.; Roach, Brian J.; Houde, John F.; Niziolek, Caroline A.; Ford, Judith M.

    2013-01-01

    As we talk, we unconsciously adjust our speech to ensure it sounds the way we intend it to sound. However, because speech production involves complex motor planning and execution, no two utterances of the same sound will be exactly the same. Here, we show that auditory cortex is sensitive to natural variations in self-produced speech from utterance to utterance. We recorded event-related potentials (ERPs) from ninety-nine subjects while they uttered “ah” and while they listened to those speech sounds played back. Subjects' utterances were sorted based on their formant deviations from the previous utterance. Typically, the N1 ERP component is suppressed during talking compared to listening. By comparing ERPs to the least and most variable utterances, we found that N1 was less suppressed to utterances that differed greatly from their preceding neighbors. In contrast, an utterance's difference from the median formant values did not affect N1. Trial-to-trial pitch (f0) deviation and pitch difference from the median similarly did not affect N1. We discuss mechanisms that may underlie the change in N1 suppression resulting from trial-to-trial formant change. Deviant utterances require additional auditory cortical processing, suggesting that speaking-induced suppression mechanisms are optimally tuned for a specific production. PMID:24349399

  20. Cooling of the auditory cortex modifies neuronal activity in the inferior colliculus in rats

    Czech Academy of Sciences Publication Activity Database

    Popelář, Jiří; Šuta, Daniel; Lindovský, Jiří; Bureš, Zbyněk; Pysaněnko, Kateryna; Chumak, Tetyana; Syka, Josef

    2016-01-01

    Roč. 332, feb (2016), s. 7-16 ISSN 0378-5955 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP303/12/1347 Institutional support: RVO:68378041 Keywords : auditory cortex * cooling * cortical inactivation * efferent system Subject RIV: ED - Physiology Impact factor: 2.906, year: 2016

  1. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.

    Science.gov (United States)

    Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I

    2015-07-01

    Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Binaural fusion and the representation of virtual pitch in the human auditory cortex.

    Science.gov (United States)

    Pantev, C; Elbert, T; Ross, B; Eulitz, C; Terhardt, E

    1996-10-01

    The auditory system derives the pitch of complex tones from the tone's harmonics. Research in psychoacoustics predicted that binaural fusion was an important feature of pitch processing. Based on neuromagnetic human data, the first neurophysiological confirmation of binaural fusion in hearing is presented. The centre of activation within the cortical tonotopic map corresponds to the location of the perceived pitch and not to the locations that are activated when the single frequency constituents are presented. This is also true when the different harmonics of a complex tone are presented dichotically. We conclude that the pitch processor includes binaural fusion to determine the particular pitch location which is activated in the auditory cortex.

  3. Aging Affects Adaptation to Sound-Level Statistics in Human Auditory Cortex.

    Science.gov (United States)

    Herrmann, Björn; Maess, Burkhard; Johnsrude, Ingrid S

    2018-02-21

    Optimal perception requires efficient and adaptive neural processing of sensory input. Neurons in nonhuman mammals adapt to the statistical properties of acoustic feature distributions such that they become sensitive to sounds that are most likely to occur in the environment. However, whether human auditory responses adapt to stimulus statistical distributions and how aging affects adaptation to stimulus statistics is unknown. We used MEG to study how exposure to different distributions of sound levels affects adaptation in auditory cortex of younger (mean: 25 years; n = 19) and older (mean: 64 years; n = 20) adults (male and female). Participants passively listened to two sound-level distributions with different modes (either 15 or 45 dB sensation level). In a control block with long interstimulus intervals, allowing neural populations to recover from adaptation, neural response magnitudes were similar between younger and older adults. Critically, both age groups demonstrated adaptation to sound-level stimulus statistics, but adaptation was altered for older compared with younger people: in the older group, neural responses continued to be sensitive to sound level under conditions in which responses were fully adapted in the younger group. The lack of full adaptation to the statistics of the sensory environment may be a physiological mechanism underlying the known difficulty that older adults have with filtering out irrelevant sensory information. SIGNIFICANCE STATEMENT Behavior requires efficient processing of acoustic stimulation. Animal work suggests that neurons accomplish efficient processing by adjusting their response sensitivity depending on statistical properties of the acoustic environment. Little is known about the extent to which this adaptation to stimulus statistics generalizes to humans, particularly to older humans. We used MEG to investigate how aging influences adaptation to sound-level statistics. Listeners were presented with sounds drawn from

  4. Early continuous white noise exposure alters auditory spatial sensitivity and expression of GAD65 and GABAA receptor subunits in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2010-04-01

    Sensory experiences have important roles in the functional development of the mammalian auditory cortex. Here, we show how early continuous noise rearing influences spatial sensitivity in the rat primary auditory cortex (A1) and its underlying mechanisms. By rearing infant rat pups under conditions of continuous, moderate level white noise, we found that noise rearing markedly attenuated the spatial sensitivity of A1 neurons. Compared with rats reared under normal conditions, spike counts of A1 neurons were more poorly modulated by changes in stimulus location, and their preferred locations were distributed over a larger area. We further show that early continuous noise rearing induced significant decreases in glutamic acid decarboxylase 65 and gamma-aminobutyric acid (GABA)(A) receptor alpha1 subunit expression, and an increase in GABA(A) receptor alpha3 expression, which indicates a returned to the juvenile form of GABA(A) receptor, with no effect on the expression of N-methyl-D-aspartate receptors. These observations indicate that noise rearing has powerful adverse effects on the maturation of cortical GABAergic inhibition, which might be responsible for the reduced spatial sensitivity.

  5. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex.

    Science.gov (United States)

    Norman-Haignere, Sam; Kanwisher, Nancy; McDermott, Josh H

    2013-12-11

    Pitch is a defining perceptual property of many real-world sounds, including music and speech. Classically, theories of pitch perception have differentiated between temporal and spectral cues. These cues are rendered distinct by the frequency resolution of the ear, such that some frequencies produce "resolved" peaks of excitation in the cochlea, whereas others are "unresolved," providing a pitch cue only via their temporal fluctuations. Despite longstanding interest, the neural structures that process pitch, and their relationship to these cues, have remained controversial. Here, using fMRI in humans, we report the following: (1) consistent with previous reports, all subjects exhibited pitch-sensitive cortical regions that responded substantially more to harmonic tones than frequency-matched noise; (2) the response of these regions was mainly driven by spectrally resolved harmonics, although they also exhibited a weak but consistent response to unresolved harmonics relative to noise; (3) the response of pitch-sensitive regions to a parametric manipulation of resolvability tracked psychophysical discrimination thresholds for the same stimuli; and (4) pitch-sensitive regions were localized to specific tonotopic regions of anterior auditory cortex, extending from a low-frequency region of primary auditory cortex into a more anterior and less frequency-selective region of nonprimary auditory cortex. These results demonstrate that cortical pitch responses are located in a stereotyped region of anterior auditory cortex and are predominantly driven by resolved frequency components in a way that mirrors behavior.

  6. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    Directory of Open Access Journals (Sweden)

    Bettina Serrallach

    2016-07-01

    Full Text Available Dyslexia, attention deficit hyperactivity disorder (ADHD, and attention deficit disorder (ADD show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147 using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only a clear discrimination between two subtypes of attentional disorders (ADHD and ADD, a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.

  7. Data on the effect of conductive hearing loss on auditory and visual cortex activity revealed by intrinsic signal imaging.

    Science.gov (United States)

    Teichert, Manuel; Bolz, Jürgen

    2017-10-01

    This data article provides additional data related to the research article entitled "Simultaneous intrinsic signal imaging of auditory and visual cortex reveals profound effects of acute hearing loss on visual processing" (Teichert and Bolz, 2017) [1]. The primary auditory and visual cortex (A1 and V1) of adult male C57BL/6J mice (P120-P240) were mapped simultaneously using intrinsic signal imaging (Kalatsky and Stryker, 2003) [2]. A1 and V1 activity evoked by combined auditory and visual stimulation were measured before and after conductive hearing loss (CHL) induced by bilateral malleus removal. We provide data showing that A1 responsiveness evoked by sounds of different sound pressure levels (SPL) decreased after CHL whereas visually evoked V1 activity increased after this intervention. In addition, we also provide imaging data on percentage of V1 activity increases after CHL compared to pre-CHL.

  8. Impaired Facilitatory Mechanisms of Auditory Attention After Damage of the Lateral Prefrontal Cortex

    OpenAIRE

    Bidet-Caulet, Aurélie; Buchanan, Kelly G.; Viswanath, Humsini; Black, Jessica; Scabini, Donatella; Bonnet-Brilhault, Frédérique; Knight, Robert T.

    2014-01-01

    There is growing evidence that auditory selective attention operates via distinct facilitatory and inhibitory mechanisms enabling selective enhancement and suppression of sound processing, respectively. The lateral prefrontal cortex (LPFC) plays a crucial role in the top-down control of selective attention. However, whether the LPFC controls facilitatory, inhibitory, or both attentional mechanisms is unclear. Facilitatory and inhibitory mechanisms were assessed, in patients with LPFC damage, ...

  9. Noise-invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise

    Science.gov (United States)

    Moore, R. Channing; Lee, Tyler; Theunissen, Frédéric E.

    2013-01-01

    Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex. PMID:23505354

  10. Noise-invariant neurons in the avian auditory cortex: hearing the song in noise.

    Science.gov (United States)

    Moore, R Channing; Lee, Tyler; Theunissen, Frédéric E

    2013-01-01

    Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex.

  11. Noise-invariant neurons in the avian auditory cortex: hearing the song in noise.

    Directory of Open Access Journals (Sweden)

    R Channing Moore

    Full Text Available Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex.

  12. GABAA receptors in visual and auditory cortex and neural activity changes during basic visual stimulation

    Directory of Open Access Journals (Sweden)

    Pengmin eQin

    2012-12-01

    Full Text Available Recent imaging studies have demonstrated that levels of resting GABA in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABAA receptors, in the changes in brain activity between the eyes closed (EC and eyes open (EO state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: An EO and EC block design, allowing the modelling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [18F]Flumazenil PET measure GABAA receptor binding potentials. It was demonstrated that the local-to-global ratio of GABAA receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABAA receptor binding potential in the visual cortex also predicts the change of functional connectivity between visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABAA receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  13. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  14. Focal Suppression of Distractor Sounds by Selective Attention in Auditory Cortex.

    Science.gov (United States)

    Schwartz, Zachary P; David, Stephen V

    2018-01-01

    Auditory selective attention is required for parsing crowded acoustic environments, but cortical systems mediating the influence of behavioral state on auditory perception are not well characterized. Previous neurophysiological studies suggest that attention produces a general enhancement of neural responses to important target sounds versus irrelevant distractors. However, behavioral studies suggest that in the presence of masking noise, attention provides a focal suppression of distractors that compete with targets. Here, we compared effects of attention on cortical responses to masking versus non-masking distractors, controlling for effects of listening effort and general task engagement. We recorded single-unit activity from primary auditory cortex (A1) of ferrets during behavior and found that selective attention decreased responses to distractors masking targets in the same spectral band, compared with spectrally distinct distractors. This suppression enhanced neural target detection thresholds, suggesting that limited attention resources serve to focally suppress responses to distractors that interfere with target detection. Changing effort by manipulating target salience consistently modulated spontaneous but not evoked activity. Task engagement and changing effort tended to affect the same neurons, while attention affected an independent population, suggesting that distinct feedback circuits mediate effects of attention and effort in A1. © The Author 2017. Published by Oxford University Press.

  15. Gray matter density of auditory association cortex relates to knowledge of sound concepts in primary progressive aphasia.

    Science.gov (United States)

    Bonner, Michael F; Grossman, Murray

    2012-06-06

    Long-term memory integrates the multimodal information acquired through perception into unified concepts, supporting object recognition, thought, and language. While some theories of human cognition have considered concepts to be abstract symbols, recent functional neuroimaging evidence has supported an alternative theory: that concepts are multimodal representations associated with the sensory and motor systems through which they are acquired. However, few studies have examined the effects of cortical lesions on the sensory and motor associations of concepts. We tested the hypothesis that individuals with disease in auditory association cortex would have difficulty processing concepts with strong sound associations (e.g., thunder). Human participants with the logopenic variant of primary progressive aphasia (lvPPA) performed a recognition task on words with strong associations in three modalities: Sound, Sight, and Manipulation. LvPPA participants had selective difficulty on Sound words relative to other modalities. Structural MRI analysis in lvPPA revealed gray matter atrophy in auditory association cortex, as defined functionally in a separate BOLD fMRI study of healthy adults. Moreover, lvPPA showed reduced gray matter density in the region of auditory association cortex that healthy participants activated when processing the same Sound words in a separate BOLD fMRI experiment. Finally, reduced gray matter density in this region in lvPPA directly correlated with impaired performance on Sound words. These findings support the hypothesis that conceptual memories are represented in the sensory and motor association cortices through which they are acquired.

  16. Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model

    Directory of Open Access Journals (Sweden)

    Troy A Hackett

    2014-04-01

    Full Text Available Our working model of the primate auditory cortex recognizes three major regions (core, belt, parabelt, subdivided into thirteen areas. The connections between areas are topographically ordered in a manner consistent with information flow along two major anatomical axes: core-belt-parabelt and caudal-rostral. Remarkably, most of the connections supporting this model were revealed using retrograde tracing techniques. Little is known about laminar circuitry, as anterograde tracing of axon terminations has rarely been used. The purpose of the present study was to examine the laminar projections of three areas of auditory cortex, pursuant to analysis of all areas. The selected areas were: middle lateral belt (ML; caudomedial belt (CM; and caudal parabelt (CPB. Injections of anterograde tracers yielded data consistent with major features of our model, and also new findings that compel modifications. Results supporting the model were: 1 feedforward projection from ML and CM terminated in CPB; 2 feedforward projections from ML and CPB terminated in rostral areas of the belt and parabelt; and 3 feedback projections typified inputs to the core region from belt and parabelt. At odds with the model was the convergence of feedforward inputs into rostral medial belt from ML and CPB. This was unexpected since CPB is at a higher stage of the processing hierarchy, with mainly feedback projections to all other belt areas. Lastly, extending the model, feedforward projections from CM, ML, and CPB overlapped in the temporal parietal occipital area (TPO in the superior temporal sulcus, indicating significant auditory influence on sensory processing in this region. The combined results refine our working model and highlight the need to complete studies of the laminar inputs to all areas of auditory cortex. Their documentation is essential for developing informed hypotheses about the neurophysiological influences of inputs to each layer and area.

  17. Age-related changes in mitochondrial antioxidant enzyme Trx2 and TXNIP-Trx2-ASK1 signal pathways in the auditory cortex of a mimetic aging rat model: changes to Trx2 in the auditory cortex.

    Science.gov (United States)

    Sun, Hai-Ying; Hu, Yu-Juan; Zhao, Xue-Yan; Zhong, Yi; Zeng, Ling-Ling; Chen, Xu-Bo; Yuan, Jie; Wu, Jing; Sun, Yu; Kong, Wen; Kong, Wei-Jia

    2015-07-01

    Age-associated degeneration in the central auditory system, which is defined as central presbycusis, can impair sound localization and speech perception. Research has shown that oxidative stress plays a central role in the pathological process of central presbycusis. Thioredoxin 2 (Trx2), one member of thioredoxin family, plays a key role in regulating the homeostasis of cellular reactive oxygen species and anti-apoptosis. The purpose of this study was to explore the association between Trx2 and the phenotype of central presbycusis using a mimetic aging animal model induced by long-term exposure to d-galactose (d-Gal). We also explored changes in thioredoxin-interacting protein (TXNIP), apoptosis signal regulating kinase 1 (ASK1) and phosphorylated ASK1 (p-ASK1) expression, as well as the Trx2-TXNIP/Trx2-ASK1 binding complex in the auditory cortex of mimetic aging rats. Our results demonstrate that, compared with control groups, the levels of Trx2 and Trx2-ASK1 binding complex were significantly reduced, whereas TXNIP, ASK1 p-ASK1 expression, and Trx2-TXNIP binding complex were significantly increased in the auditory cortex of the mimetic aging groups. Our results indicated that changes in Trx2 and the TXNIP-Trx2-ASK1 signal pathway may participate in the pathogenesis of central presbycusis. © 2015 FEBS.

  18. Auditory motion-specific mechanisms in the primate brain.

    Directory of Open Access Journals (Sweden)

    Colline Poirier

    2017-05-01

    Full Text Available This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI. We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream.

  19. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Directory of Open Access Journals (Sweden)

    Andrew C. Talk

    2016-12-01

    Full Text Available Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity.

  20. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Science.gov (United States)

    Talk, Andrew C.; Grasby, Katrina L.; Rawson, Tim; Ebejer, Jane L.

    2016-01-01

    Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity. PMID:27999366

  1. GABA(A) receptors in visual and auditory cortex and neural activity changes during basic visual stimulation.

    Science.gov (United States)

    Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg

    2012-01-01

    Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.

  2. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas

    Science.gov (United States)

    Mao, Yu-Ting; Hua, Tian-Miao

    2011-01-01

    Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to input pathways, especially early in development. Although plasticity can often be restorative, sometimes novel, ectopic inputs invade the affected cortical area. Invading inputs from other sensory modalities may compromise the original function or even take over, imposing a new function and preventing recovery. Using ferrets whose retinal axons were rerouted into auditory thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-modal input on reorganization of developing auditory cortex. In particular, we assayed whether the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic targets and whether the convergence of input modalities would induce multisensory processing. We demonstrate that although the cross-modal inputs create new visual neurons in auditory cortex, some auditory processing remains. The degree of damage to auditory input to the medial geniculate nucleus was directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual and residual auditory inputs compete for cortical territory. Visual neurons were not segregated from auditory neurons but shared target space even on individual target cells, substantially increasing the proportion of multisensory neurons. Thus spatial convergence of visual and auditory input modalities may be sufficient to expand multisensory representations. Together these findings argue that early, patterned visual activity does not drive segregation of visual and auditory afferents and suggest that auditory function might be compromised by converging visual inputs. These results indicate possible ways in which multisensory cortical areas may form during development and evolution. They also suggest that rehabilitative strategies designed to promote recovery of function after sensory deprivation or damage need to take into

  3. Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

    Science.gov (United States)

    Seither-Preisler, Annemarie; Parncutt, Richard; Schneider, Peter

    2014-08-13

    Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. Copyright © 2014 the authors 0270-6474/14/3410937-13$15.00/0.

  4. Distinct timescales of population coding across cortex.

    Science.gov (United States)

    Runyan, Caroline A; Piasini, Eugenio; Panzeri, Stefano; Harvey, Christopher D

    2017-08-03

    The cortex represents information across widely varying timescales. For instance, sensory cortex encodes stimuli that fluctuate over few tens of milliseconds, whereas in association cortex behavioural choices can require the maintenance of information over seconds. However, it remains poorly understood whether diverse timescales result mostly from features intrinsic to individual neurons or from neuronal population activity. This question remains unanswered, because the timescales of coding in populations of neurons have not been studied extensively, and population codes have not been compared systematically across cortical regions. Here we show that population codes can be essential to achieve long coding timescales. Furthermore, we find that the properties of population codes differ between sensory and association cortices. We compared coding for sensory stimuli and behavioural choices in auditory cortex and posterior parietal cortex as mice performed a sound localization task. Auditory stimulus information was stronger in auditory cortex than in posterior parietal cortex, and both regions contained choice information. Although auditory cortex and posterior parietal cortex coded information by tiling in time neurons that were transiently informative for approximately 200 milliseconds, the areas had major differences in functional coupling between neurons, measured as activity correlations that could not be explained by task events. Coupling among posterior parietal cortex neurons was strong and extended over long time lags, whereas coupling among auditory cortex neurons was weak and short-lived. Stronger coupling in posterior parietal cortex led to a population code with long timescales and a representation of choice that remained consistent for approximately 1 second. In contrast, auditory cortex had a code with rapid fluctuations in stimulus and choice information over hundreds of milliseconds. Our results reveal that population codes differ across cortex

  5. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    Science.gov (United States)

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Assessment of Styrene Oxide Neurotoxicity Using In Vitro Auditory Cortex Networks

    Science.gov (United States)

    Gopal, Kamakshi V.; Wu, Calvin; Moore, Ernest J.; Gross, Guenter W.

    2011-01-01

    Styrene oxide (SO) (C8H8O), the major metabolite of styrene (C6H5CH=CH2), is widely used in industrial applications. Styrene and SO are neurotoxic and cause damaging effects on the auditory system. However, little is known about their concentration-dependent electrophysiological and morphological effects. We used spontaneously active auditory cortex networks (ACNs) growing on microelectrode arrays (MEA) to characterize neurotoxic effects of SO. Acute application of 0.1 to 3.0 mM SO showed concentration-dependent inhibition of spike activity with no noticeable morphological changes. The spike rate IC50 (concentration inducing 50% inhibition) was 511 ± 60 μM (n = 10). Subchronic (5 hr) single applications of 0.5 mM SO also showed 50% activity reduction with no overt changes in morphology. The results imply that electrophysiological toxicity precedes cytotoxicity. Five-hour exposures to 2 mM SO revealed neuronal death, irreversible activity loss, and pronounced glial swelling. Paradoxical “protection” by 40 μM bicuculline suggests binding of SO to GABA receptors. PMID:23724250

  7. Functional significance of the electrocorticographic auditory responses in the premotor cortex

    Directory of Open Access Journals (Sweden)

    Kazuyo eTanji

    2015-03-01

    Full Text Available Other than well-known motor activities in the precentral gyrus, functional magnetic resonance imaging (fMRI studies have found that the ventral part of the precentral gyrus is activated in response to linguistic auditory stimuli. It has been proposed that the premotor cortex in the precentral gyrus is responsible for the comprehension of speech, but the precise function of this area is still debated because patients with frontal lesions that include the precentral gyrus do not exhibit disturbances in speech comprehension. We report on a patient who underwent resection of the tumor in the precentral gyrus with electrocorticographic recordings while she performed the verb generation task during awake brain craniotomy. Consistent with previous fMRI studies, high-gamma band auditory activity was observed in the precentral gyrus. Due to the location of the tumor, the patient underwent resection of the auditory responsive precentral area which resulted in the post-operative expression of a characteristic articulatory disturbance known as apraxia of speech (AOS. The language function of the patient was otherwise preserved and she exhibited intact comprehension of both spoken and written language. The present findings demonstrated that a lesion restricted to the ventral precentral gyrus is sufficient for the expression of AOS and suggest that the auditory-responsive area plays an important role in the execution of fluent speech rather than the comprehension of speech. These findings also confirm that the function of the premotor area is predominantly motor in nature and its sensory responses is more consistent with the ‘sensory theory of speech production’, in which it was proposed that sensory representations are used to guide motor-articulatory processes.

  8. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  9. Effects of noise-induced hearing loss on parvalbumin and perineuronal net expression in the mouse primary auditory cortex.

    Science.gov (United States)

    Nguyen, Anna; Khaleel, Haroun M; Razak, Khaleel A

    2017-07-01

    Noise induced hearing loss is associated with increased excitability in the central auditory system but the cellular correlates of such changes remain to be characterized. Here we tested the hypothesis that noise-induced hearing loss causes deterioration of perineuronal nets (PNNs) in the auditory cortex of mice. PNNs are specialized extracellular matrix components that commonly enwrap cortical parvalbumin (PV) containing GABAergic interneurons. Compared to somatosensory and visual cortex, relatively less is known about PV/PNN expression patterns in the primary auditory cortex (A1). Whether changes to cortical PNNs follow acoustic trauma remains unclear. The first aim of this study was to characterize PV/PNN expression in A1 of adult mice. PNNs increase excitability of PV+ inhibitory neurons and confer protection to these neurons against oxidative stress. Decreased PV/PNN expression may therefore lead to a reduction in cortical inhibition. The second aim of this study was to examine PV/PNN expression in superficial (I-IV) and deep cortical layers (V-VI) following noise trauma. Exposing mice to loud noise caused an increase in hearing threshold that lasted at least 30 days. PV and PNN expression in A1 was analyzed at 1, 10 and 30 days following the exposure. No significant changes were observed in the density of PV+, PNN+, or PV/PNN co-localized cells following hearing loss. However, a significant layer- and cell type-specific decrease in PNN intensity was seen following hearing loss. Some changes were present even at 1 day following noise exposure. Attenuation of PNN may contribute to changes in excitability in cortex following noise trauma. The regulation of PNN may open up a temporal window for altered excitability in the adult brain that is then stabilized at a new and potentially pathological level such as in tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    Directory of Open Access Journals (Sweden)

    Christo ePantev

    2012-06-01

    Full Text Available Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG. Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for three hours inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus - tailor-made notched music training (TMNMT. By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs were significantly reduced after training. The subsequent short-term (5 days training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies > 8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy are planned. A goal is to transfer this novel, completely non-invasive, and low-cost treatment approach for tonal tinnitus into routine clinical practice.

  11. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.

    Science.gov (United States)

    Higgins, Nathan C; McLaughlin, Susan A; Rinne, Teemu; Stecker, G Christopher

    2017-09-05

    Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues-particularly interaural time and level differences (ITD and ILD)-that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and-critically-for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues.

  12. Neural Correlates of Auditory Perceptual Awareness and Release from Informational Masking Recorded Directly from Human Cortex: A Case Study

    Directory of Open Access Journals (Sweden)

    Andrew R Dykstra

    2016-10-01

    Full Text Available In complex acoustic environments, even salient supra-threshold sounds sometimes go unperceived, a phenomenon known as informational masking. The neural basis of informational masking (and its release has not been well characterized, particularly outside auditory cortex. We combined electrocorticography in a neurosurgical patient undergoing invasive epilepsy monitoring with trial-by-trial perceptual reports of isochronous target-tone streams embedded in random multi-tone maskers. Awareness of such masker-embedded target streams was associated with a focal negativity between 100 and 200 ms and high-gamma activity between 50 and 250 ms (both in auditory cortex on the posterolateral superior temporal gyrus as well as a broad P3b-like potential (between ~300 and 600 ms with generators in ventrolateral frontal and lateral temporal cortex. Unperceived target tones elicited drastically reduced versions of such responses, if at all. While it remains unclear whether these responses reflect conscious perception, itself, as opposed to pre- or post-perceptual processing, the results suggest that conscious perception of target sounds in complex listening environments may engage diverse neural mechanisms in distributed brain areas.

  13. Sensitivity of human auditory cortex to rapid frequency modulation revealed by multivariate representational similarity analysis.

    Science.gov (United States)

    Joanisse, Marc F; DeSouza, Diedre D

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) was used to investigate the extent, magnitude, and pattern of brain activity in response to rapid frequency-modulated sounds. We examined this by manipulating the direction (rise vs. fall) and the rate (fast vs. slow) of the apparent pitch of iterated rippled noise (IRN) bursts. Acoustic parameters were selected to capture features used in phoneme contrasts, however the stimuli themselves were not perceived as speech per se. Participants were scanned as they passively listened to sounds in an event-related paradigm. Univariate analyses revealed a greater level and extent of activation in bilateral auditory cortex in response to frequency-modulated sweeps compared to steady-state sounds. This effect was stronger in the left hemisphere. However, no regions showed selectivity for either rate or direction of frequency modulation. In contrast, multivoxel pattern analysis (MVPA) revealed feature-specific encoding for direction of modulation in auditory cortex bilaterally. Moreover, this effect was strongest when analyses were restricted to anatomical regions lying outside Heschl's gyrus. We found no support for feature-specific encoding of frequency modulation rate. Differential findings of modulation rate and direction of modulation are discussed with respect to their relevance to phonetic discrimination.

  14. Auditory attention enhances processing of positive and negative words in inferior and superior prefrontal cortex.

    Science.gov (United States)

    Wegrzyn, Martin; Herbert, Cornelia; Ethofer, Thomas; Flaisch, Tobias; Kissler, Johanna

    2017-11-01

    Visually presented emotional words are processed preferentially and effects of emotional content are similar to those of explicit attention deployment in that both amplify visual processing. However, auditory processing of emotional words is less well characterized and interactions between emotional content and task-induced attention have not been fully understood. Here, we investigate auditory processing of emotional words, focussing on how auditory attention to positive and negative words impacts their cerebral processing. A Functional magnetic resonance imaging (fMRI) study manipulating word valence and attention allocation was performed. Participants heard negative, positive and neutral words to which they either listened passively or attended by counting negative or positive words, respectively. Regardless of valence, active processing compared to passive listening increased activity in primary auditory cortex, left intraparietal sulcus, and right superior frontal gyrus (SFG). The attended valence elicited stronger activity in left inferior frontal gyrus (IFG) and left SFG, in line with these regions' role in semantic retrieval and evaluative processing. No evidence for valence-specific attentional modulation in auditory regions or distinct valence-specific regional activations (i.e., negative > positive or positive > negative) was obtained. Thus, allocation of auditory attention to positive and negative words can substantially increase their processing in higher-order language and evaluative brain areas without modulating early stages of auditory processing. Inferior and superior frontal brain structures mediate interactions between emotional content, attention, and working memory when prosodically neutral speech is processed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. From Hearing Sounds to Recognizing Phonemes: Primary Auditory Cortex is A Truly Perceptual Language Area

    Directory of Open Access Journals (Sweden)

    Byron Bernal

    2016-11-01

    Full Text Available The aim of this article is to present a systematic review about the anatomy, function, connectivity, and functional activation of the primary auditory cortex (PAC (Brodmann areas 41/42 when involved in language paradigms. PAC activates with a plethora of diverse basic stimuli including but not limited to tones, chords, natural sounds, consonants, and speech. Nonetheless, the PAC shows specific sensitivity to speech. Damage in the PAC is associated with so-called “pure word-deafness” (“auditory verbal agnosia”. BA41, and to a lesser extent BA42, are involved in early stages of phonological processing (phoneme recognition. Phonological processing may take place in either the right or left side, but customarily the left exerts an inhibitory tone over the right, gaining dominance in function. BA41/42 are primary auditory cortices harboring complex phoneme perception functions with asymmetrical expression, making it possible to include them as core language processing areas (Wernicke’s area.

  16. Functional and structural aspects of tinnitus-related enhancement and suppression of auditory cortex activity.

    Science.gov (United States)

    Diesch, Eugen; Andermann, Martin; Flor, Herta; Rupp, Andre

    2010-05-01

    The steady-state auditory evoked magnetic field was recorded in tinnitus patients and controls, both either musicians or non-musicians, all of them with high-frequency hearing loss. Stimuli were AM-tones with two modulation frequencies and three carrier frequencies matching the "audiometric edge", i.e. the frequency above which hearing loss increases more rapidly, the tinnitus frequency or the frequency 1 1/2 octaves above the audiometric edge in controls, and a frequency 1 1/2 octaves below the audiometric edge. Stimuli equated in carrier frequency, but differing in modulation frequency, were simultaneously presented to the two ears. The modulation frequency-specific components of the dual steady-state response were recovered by bandpass filtering. In both hemispheres, the source amplitude of the response was larger for contralateral than ipsilateral input. In non-musicians with tinnitus, this laterality effect was enhanced in the hemisphere contralateral and reduced in the hemisphere ipsilateral to the tinnitus ear, especially for the tinnitus frequency. The hemisphere-by-input laterality dominance effect was smaller in musicians than in non-musicians. In both patient groups, source amplitude change over time, i.e. amplitude slope, was increasing with tonal frequency for contralateral input and decreasing for ipsilateral input. However, slope was smaller for musicians than non-musicians. In patients, source amplitude was negatively correlated with the MRI-determined volume of the medial partition of Heschl's gyrus. Tinnitus patients show an altered excitatory-inhibitory balance reflecting the downregulation of inhibition and resulting in a steeper dominance hierarchy among simultaneous processes in auditory cortex. Direction and extent of this alteration are modulated by musicality and auditory cortex volume. 2010 Elsevier Inc. All rights reserved.

  17. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment.

    Science.gov (United States)

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus-tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  18. Auditory short-term memory in the primate auditory cortex

    OpenAIRE

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ���working memory��� bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive sho...

  19. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  20. Parvalbumin immunoreactivity in the auditory cortex of a mouse model of presbycusis.

    Science.gov (United States)

    Martin del Campo, H N; Measor, K R; Razak, K A

    2012-12-01

    Age-related hearing loss (presbycusis) affects ∼35% of humans older than sixty-five years. Symptoms of presbycusis include impaired discrimination of sounds with fast temporal features, such as those present in speech. Such symptoms likely arise because of central auditory system plasticity, but the underlying components are incompletely characterized. The rapid spiking inhibitory interneurons that co-express the calcium binding protein Parvalbumin (PV) are involved in shaping neural responses to fast spectrotemporal modulations. Here, we examined cortical PV expression in the C57bl/6 (C57) mouse, a strain commonly studied as a presbycusis model. We examined if PV expression showed auditory cortical field- and layer-specific susceptibilities with age. The percentage of PV-expressing cells relative to Nissl-stained cells was counted in the anterior auditory field (AAF) and primary auditory cortex (A1) in three age groups: young (1-2 months), middle-aged (6-8 months) and old (14-20 months). There were significant declines in the percentage of cells expressing PV at a detectable level in layers I-IV of both A1 and AAF in the old mice compared to young mice. In layers V-VI, there was an increase in the percentage of PV-expressing cells in the AAF of the old group. There were no changes in percentage of PV-expressing cells in layers V-VI of A1. These data suggest cortical layer(s)- and field-specific susceptibility of PV+ cells with presbycusis. The results are consistent with the hypothesis that a decline in inhibitory neurotransmission, particularly in the superficial cortical layers, occurs with presbycusis. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans.

    Science.gov (United States)

    Cui, Zhuang; Wang, Qian; Gao, Yayue; Wang, Jing; Wang, Mengyang; Teng, Pengfei; Guan, Yuguang; Zhou, Jian; Li, Tianfu; Luan, Guoming; Li, Liang

    2017-01-01

    The arrival of sound signals in the auditory cortex (AC) triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC) and extrinsic functional connectivity (eFC) of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices). Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  2. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  3. Cortical Representations of Speech in a Multitalker Auditory Scene.

    Science.gov (United States)

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  4. Auditory Cortex tACS and tRNS for Tinnitus: Single versus Multiple Sessions

    Directory of Open Access Journals (Sweden)

    Laura Claes

    2014-01-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external acoustic source, which often exerts a significant impact on the quality of life. Currently there is evidence that neuroplastic changes in both neural pathways are involved in the generation and maintaining of tinnitus. Neuromodulation has been suggested to interfere with these neuroplastic alterations. In this study we aimed to compare the effect of two upcoming forms of transcranial electrical neuromodulation: alternating current stimulation (tACS and random noise stimulation (tRNS, both applied on the auditory cortex. A database with 228 patients with chronic tinnitus who underwent noninvasive neuromodulation was retrospectively analyzed. The results of this study show that a single session of tRNS induces a significant suppressive effect on tinnitus loudness and distress, in contrast to tACS. Multiple sessions of tRNS augment the suppressive effect on tinnitus loudness but have no effect on tinnitus distress. In conclusion this preliminary study shows a possibly beneficial effect of tRNS on tinnitus and can be a motivation for future randomized placebo-controlled clinical studies with auditory tRNS for tinnitus. Auditory alpha-modulated tACS does not seem to be contributing to the treatment of tinnitus.

  5. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Maojin Liang

    2017-10-01

    Full Text Available Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP and ten were poor (PCP. Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC, with a downward trend in the primary auditory cortex (PAC activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls before CI use (0M and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  6. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants.

    Science.gov (United States)

    Liang, Maojin; Zhang, Junpeng; Liu, Jiahao; Chen, Yuebo; Cai, Yuexin; Wang, Xianjun; Wang, Junbo; Zhang, Xueyuan; Chen, Suijun; Li, Xianghui; Chen, Ling; Zheng, Yiqing

    2017-01-01

    Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI) patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP) and ten were poor (PCP). Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs) were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC), with a downward trend in the primary auditory cortex (PAC) activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls) before CI use (0M) and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  7. Representation of individual elements of a complex call sequence in primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Mark Nelson Wallace

    2013-10-01

    Full Text Available Conspecific communication calls can be rhythmic or contain extended, discontinuous series of either constant or frequency modulated harmonic tones and noise bursts separated by brief periods of silence. In the guinea pig, rhythmic calls can produce isomorphic responses within the primary auditory cortex (AI where single units respond to every call element. Other calls such as the chutter comprise a series of short irregular syllables that vary in their spectral content and are more like human speech. These calls can also evoke isomorphic responses, but may only do so in fields in the auditory belt and not in AI. Here we present evidence that cells in AI treat the individual elements within a syllable as separate auditory objects and respond selectively to one or a subset of them. We used a single chutter exemplar to compare single/multi-unit responses in the low-frequency portion of AI - AI(LF and the low-frequency part of the thalamic medial geniculate body - MGB(LF in urethane anaesthetised guinea pigs. Both thalamic and cortical cells responded with brief increases in firing rate to one, or more, of the 8 main elements present in the chutter call. Almost none of the units responded to all 8 elements. While there were many different combinations of responses to between one and five of the elements, MBG(LF and AI(LF neurons exhibited the same specific types of response combinations. Nearby units in the upper layers of the cortex tended to respond to similar combinations of elements while the deep layers were less responsive. Thus the responses from a number of AI units would need to be combined in order to represent the entire chutter call. Our results don’t rule out the possibility of constructive convergence but there was no evidence that a convergence of inputs within AI led to a complete representation of all eight elements.

  8. The non-lemniscal auditory cortex in ferrets: convergence of corticotectal inputs in the superior colliculus

    Directory of Open Access Journals (Sweden)

    Victoria M Bajo

    2010-05-01

    Full Text Available Descending cortical inputs to the superior colliculus (SC contribute to the unisensory response properties of the neurons found there and are critical for multisensory integration. However, little is known about the relative contribution of different auditory cortical areas to this projection or the distribution of their terminals in the SC. We characterized this projection in the ferret by injecting tracers in the SC and auditory cortex. Large pyramidal neurons were labeled in layer V of different parts of the ectosylvian gyrus after tracer injections in the SC. Those cells were most numerous in the anterior ectosylvian gyrus (AEG, and particularly in the anterior ventral field, which receives both auditory and visual inputs. Labeling was also found in the posterior ectosylvian gyrus (PEG, predominantly in the tonotopically-organized posterior suprasylvian field. Profuse anterograde labeling was present in the SC following tracer injections at the site of acoustically-responsive neurons in the AEG or PEG, with terminal fields being both more prominent and clustered for inputs originating from the AEG. Terminals from both cortical areas were located throughout the intermediate and deep layers, but were most concentrated in the posterior half of the SC, where peripheral stimulus locations are represented. No inputs were identified from primary auditory cortical areas, although some labeling was found in the surrounding sulci. Our findings suggest that higher level auditory cortical areas, including those involved in multisensory processing, may modulate SC function via their projections into its deeper layers.

  9. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans

    Directory of Open Access Journals (Sweden)

    Zhuang Cui

    2017-08-01

    Full Text Available The arrival of sound signals in the auditory cortex (AC triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC and extrinsic functional connectivity (eFC of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices. Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  10. Comparison of auditory and visual oddball fMRI in schizophrenia.

    Science.gov (United States)

    Collier, Azurii K; Wolf, Daniel H; Valdez, Jeffrey N; Turetsky, Bruce I; Elliott, Mark A; Gur, Raquel E; Gur, Ruben C

    2014-09-01

    Individuals with schizophrenia often suffer from attentional deficits, both in focusing on task-relevant targets and in inhibiting responses to distractors. Schizophrenia also has a differential impact on attention depending on modality: auditory or visual. However, it remains unclear how abnormal activation of attentional circuitry differs between auditory and visual modalities, as these two modalities have not been directly compared in the same individuals with schizophrenia. We utilized event-related functional magnetic resonance imaging (fMRI) to compare patterns of brain activation during an auditory and visual oddball task in order to identify modality-specific attentional impairment. Healthy controls (n=22) and patients with schizophrenia (n=20) completed auditory and visual oddball tasks in separate sessions. For responses to targets, the auditory modality yielded greater activation than the visual modality (A-V) in auditory cortex, insula, and parietal operculum, but visual activation was greater than auditory (V-A) in visual cortex. For responses to novels, A-V differences were found in auditory cortex, insula, and supramarginal gyrus; and V-A differences in the visual cortex, inferior temporal gyrus, and superior parietal lobule. Group differences in modality-specific activation were found only for novel stimuli; controls showed larger A-V differences than patients in prefrontal cortex and the putamen. Furthermore, for patients, greater severity of negative symptoms was associated with greater divergence of A-V novel activation in the visual cortex. Our results demonstrate that patients have more pronounced activation abnormalities in auditory compared to visual attention, and link modality specific abnormalities to negative symptom severity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. "When Music Speaks": Auditory Cortex Morphology as a Neuroanatomical Marker of Language Aptitude and Musicality.

    Science.gov (United States)

    Turker, Sabrina; Reiterer, Susanne M; Seither-Preisler, Annemarie; Schneider, Peter

    2017-01-01

    Recent research has shown that the morphology of certain brain regions may indeed correlate with a number of cognitive skills such as musicality or language ability. The main aim of the present study was to explore the extent to which foreign language aptitude, in particular phonetic coding ability, is influenced by the morphology of Heschl's gyrus (HG; auditory cortex), working memory capacity, and musical ability. In this study, the auditory cortices of German-speaking individuals ( N = 30; 13 males/17 females; aged 20-40 years) with high and low scores in a number of language aptitude tests were compared. The subjects' language aptitude was measured by three different tests, namely a Hindi speech imitation task (phonetic coding ability), an English pronunciation assessment, and the Modern Language Aptitude Test (MLAT). Furthermore, working memory capacity and musical ability were assessed to reveal their relationship with foreign language aptitude. On the behavioral level, significant correlations were found between phonetic coding ability, English pronunciation skills, musical experience, and language aptitude as measured by the MLAT. Parts of all three tests measuring language aptitude correlated positively and significantly with each other, supporting their validity for measuring components of language aptitude. Remarkably, the number of instruments played by subjects showed significant correlations with all language aptitude measures and musicality, whereas, the number of foreign languages did not show any correlations. With regard to the neuroanatomy of auditory cortex, adults with very high scores in the Hindi testing and the musicality test (AMMA) demonstrated a clear predominance of complete posterior HG duplications in the right hemisphere. This may reignite the discussion of the importance of the right hemisphere for language processing, especially when linked or common resources are involved, such as the inter-dependency between phonetic and musical

  12. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex.

    Science.gov (United States)

    Downer, Joshua D; Rapone, Brittany; Verhein, Jessica; O'Connor, Kevin N; Sutter, Mitchell L

    2017-05-24

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations ( r noise ) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on r noise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in r noise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations ( r noise ) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on r noise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning

  13. Topography of sound level representation in the FM sweep selective region of the pallid bat auditory cortex.

    Science.gov (United States)

    Measor, Kevin; Yarrow, Stuart; Razak, Khaleel A

    2018-05-26

    Sound level processing is a fundamental function of the auditory system. To determine how the cortex represents sound level, it is important to quantify how changes in level alter the spatiotemporal structure of cortical ensemble activity. This is particularly true for echolocating bats that have control over, and often rapidly adjust, call level to actively change echo level. To understand how cortical activity may change with sound level, here we mapped response rate and latency changes with sound level in the auditory cortex of the pallid bat. The pallid bat uses a 60-30 kHz downward frequency modulated (FM) sweep for echolocation. Neurons tuned to frequencies between 30 and 70 kHz in the auditory cortex are selective for the properties of FM sweeps used in echolocation forming the FM sweep selective region (FMSR). The FMSR is strongly selective for sound level between 30 and 50 dB SPL. Here we mapped the topography of level selectivity in the FMSR using downward FM sweeps and show that neurons with more monotonic rate level functions are located in caudomedial regions of the FMSR overlapping with high frequency (50-60 kHz) neurons. Non-monotonic neurons dominate the FMSR, and are distributed across the entire region, but there is no evidence for amplitopy. We also examined how first spike latency of FMSR neurons change with sound level. The majority of FMSR neurons exhibit paradoxical latency shift wherein the latency increases with sound level. Moreover, neurons with paradoxical latency shifts are more strongly level selective and are tuned to lower sound level than neurons in which latencies decrease with level. These data indicate a clustered arrangement of neurons according to monotonicity, with no strong evidence for finer scale topography, in the FMSR. The latency analysis suggests mechanisms for strong level selectivity that is based on relative timing of excitatory and inhibitory inputs. Taken together, these data suggest how the spatiotemporal

  14. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex.

    Science.gov (United States)

    Chen, Yu-Chen; Xia, Wenqing; Chen, Huiyou; Feng, Yuan; Xu, Jin-Jing; Gu, Jian-Ping; Salvi, Richard; Yin, Xindao

    2017-05-01

    The phantom sound of tinnitus is believed to be triggered by aberrant neural activity in the central auditory pathway, but since this debilitating condition is often associated with emotional distress and anxiety, these comorbidities likely arise from maladaptive functional connections to limbic structures such as the amygdala and hippocampus. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant effective connectivity of the amygdala and hippocampus in tinnitus patients and to determine the relationship with tinnitus characteristics. Chronic tinnitus patients (n = 26) and age-, sex-, and education-matched healthy controls (n = 23) were included. Both groups were comparable for hearing level. Granger causality analysis utilizing the amygdala and hippocampus as seed regions were used to investigate the directional connectivity and the relationship with tinnitus duration or distress. Relative to healthy controls, tinnitus patients demonstrated abnormal directional connectivity of the amygdala and hippocampus, including primary and association auditory cortex, and other non-auditory areas. Importantly, scores on the Tinnitus Handicap Questionnaires were positively correlated with increased connectivity from the left amygdala to left superior temporal gyrus (r = 0.570, P = 0.005), and from the right amygdala to right superior temporal gyrus (r = 0.487, P = 0.018). Moreover, enhanced effective connectivity from the right hippocampus to left transverse temporal gyrus was correlated with tinnitus duration (r = 0.452, P = 0.030). The results showed that tinnitus distress strongly correlates with enhanced effective connectivity that is directed from the amygdala to the auditory cortex. The longer the phantom sensation, the more likely acute tinnitus becomes permanently encoded by memory traces in the hippocampus. Hum Brain Mapp 38:2384-2397, 2017. © 2017 Wiley Periodicals, Inc.

  15. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model.

    Science.gov (United States)

    Zeng, Lingling; Yang, Yang; Hu, Yujuan; Sun, Yu; Du, Zhengde; Xie, Zhen; Zhou, Tao; Kong, Weijia

    2014-01-01

    Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal). We showed that malondialdehyde (MDA) levels were increased and manganese superoxide dismutase (SOD2) activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA) 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS) homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.

  16. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Vroomen, Jean

    2015-11-11

    The amplitude of auditory components of the event-related potential (ERP) is attenuated when sounds are self-generated compared to externally generated sounds. This effect has been ascribed to internal forward modals predicting the sensory consequences of one's own motor actions. Auditory potentials are also attenuated when a sound is accompanied by a video of anticipatory visual motion that reliably predicts the sound. Here, we investigated whether the neural underpinnings of prediction of upcoming auditory stimuli are similar for motor-auditory (MA) and visual-auditory (VA) events using a stimulus omission paradigm. In the MA condition, a finger tap triggered the sound of a handclap whereas in the VA condition the same sound was accompanied by a video showing the handclap. In both conditions, the auditory stimulus was omitted in either 50% or 12% of the trials. These auditory omissions induced early and mid-latency ERP components (oN1 and oN2, presumably reflecting prediction and prediction error), and subsequent higher-order error evaluation processes. The oN1 and oN2 of MA and VA were alike in amplitude, topography, and neural sources despite that the origin of the prediction stems from different brain areas (motor versus visual cortex). This suggests that MA and VA predictions activate a sensory template of the sound in auditory cortex. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Age-Related Deterioration of Perineuronal Nets in the Primary Auditory Cortex of Mice

    Directory of Open Access Journals (Sweden)

    Dustin H Brewton

    2016-11-01

    Full Text Available Age-related changes in inhibitory neurotransmission in sensory cortex may underlie deficits in sensory function. Perineuronal nets (PNNs are extracellular matrix components that ensheath some inhibitory neurons, particularly parvalbumin positive (PV+ interneurons. PNNs may protect PV+ cells from oxidative stress and help establish their rapid spiking properties. Although PNN expression has been well characterized during development, possible changes in aging sensory cortex have not been investigated. Here we tested the hypothesis that PNN+, PV+ and PV/PNN co-localized cell densities decline with age in the primary auditory cortex (A1. This hypothesis was tested using immunohistochemistry in two strains of mice (C57BL/6 and CBA/CaJ with different susceptibility to age-related hearing loss and at three different age ranges (1-3, 6-8 and 14-24 months old. We report that PNN+ and PV/PNN co-localized cell densities decline significantly with age in A1 in both mouse strains. In the PNN+ cells that remain in the old group, the intensity of PNN staining is reduced in the C57 strain, but not the CBA strain. PV+ cell density also declines only in the C57, but not the CBA, mouse suggesting a potential exacerbation of age-effects by hearing loss in the PV/PNN system. Taken together, these data suggest that PNN deterioration may be a key component of altered inhibition in the aging sensory cortex, that may lead to altered synaptic function, susceptibility to oxidative stress and processing deficits.

  18. “When Music Speaks”: Auditory Cortex Morphology as a Neuroanatomical Marker of Language Aptitude and Musicality

    Directory of Open Access Journals (Sweden)

    Sabrina Turker

    2017-12-01

    Full Text Available Recent research has shown that the morphology of certain brain regions may indeed correlate with a number of cognitive skills such as musicality or language ability. The main aim of the present study was to explore the extent to which foreign language aptitude, in particular phonetic coding ability, is influenced by the morphology of Heschl’s gyrus (HG; auditory cortex, working memory capacity, and musical ability. In this study, the auditory cortices of German-speaking individuals (N = 30; 13 males/17 females; aged 20–40 years with high and low scores in a number of language aptitude tests were compared. The subjects’ language aptitude was measured by three different tests, namely a Hindi speech imitation task (phonetic coding ability, an English pronunciation assessment, and the Modern Language Aptitude Test (MLAT. Furthermore, working memory capacity and musical ability were assessed to reveal their relationship with foreign language aptitude. On the behavioral level, significant correlations were found between phonetic coding ability, English pronunciation skills, musical experience, and language aptitude as measured by the MLAT. Parts of all three tests measuring language aptitude correlated positively and significantly with each other, supporting their validity for measuring components of language aptitude. Remarkably, the number of instruments played by subjects showed significant correlations with all language aptitude measures and musicality, whereas, the number of foreign languages did not show any correlations. With regard to the neuroanatomy of auditory cortex, adults with very high scores in the Hindi testing and the musicality test (AMMA demonstrated a clear predominance of complete posterior HG duplications in the right hemisphere. This may reignite the discussion of the importance of the right hemisphere for language processing, especially when linked or common resources are involved, such as the inter-dependency between

  19. “When Music Speaks”: Auditory Cortex Morphology as a Neuroanatomical Marker of Language Aptitude and Musicality

    Science.gov (United States)

    Turker, Sabrina; Reiterer, Susanne M.; Seither-Preisler, Annemarie; Schneider, Peter

    2017-01-01

    Recent research has shown that the morphology of certain brain regions may indeed correlate with a number of cognitive skills such as musicality or language ability. The main aim of the present study was to explore the extent to which foreign language aptitude, in particular phonetic coding ability, is influenced by the morphology of Heschl’s gyrus (HG; auditory cortex), working memory capacity, and musical ability. In this study, the auditory cortices of German-speaking individuals (N = 30; 13 males/17 females; aged 20–40 years) with high and low scores in a number of language aptitude tests were compared. The subjects’ language aptitude was measured by three different tests, namely a Hindi speech imitation task (phonetic coding ability), an English pronunciation assessment, and the Modern Language Aptitude Test (MLAT). Furthermore, working memory capacity and musical ability were assessed to reveal their relationship with foreign language aptitude. On the behavioral level, significant correlations were found between phonetic coding ability, English pronunciation skills, musical experience, and language aptitude as measured by the MLAT. Parts of all three tests measuring language aptitude correlated positively and significantly with each other, supporting their validity for measuring components of language aptitude. Remarkably, the number of instruments played by subjects showed significant correlations with all language aptitude measures and musicality, whereas, the number of foreign languages did not show any correlations. With regard to the neuroanatomy of auditory cortex, adults with very high scores in the Hindi testing and the musicality test (AMMA) demonstrated a clear predominance of complete posterior HG duplications in the right hemisphere. This may reignite the discussion of the importance of the right hemisphere for language processing, especially when linked or common resources are involved, such as the inter-dependency between phonetic and

  20. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    Science.gov (United States)

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model.

    Directory of Open Access Journals (Sweden)

    Lingling Zeng

    Full Text Available Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal. We showed that malondialdehyde (MDA levels were increased and manganese superoxide dismutase (SOD2 activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.

  3. Gap detection threshold in the rat before and after auditory cortex ablation.

    Science.gov (United States)

    Syka, J; Rybalko, N; Mazelová, J; Druga, R

    2002-10-01

    Gap detection threshold (GDT) was measured in adult female pigmented rats (strain Long-Evans) by an operant conditioning technique with food reinforcement, before and after bilateral ablation of the auditory cortex. GDT was dependent on the frequency spectrum and intensity of the continuously present noise in which the gaps were embedded. The mean values of GDT for gaps embedded in white noise or low-frequency noise (upper cutoff frequency 3 kHz) at 70 dB sound pressure level (SPL) were 1.57+/-0.07 ms and 2.9+/-0.34 ms, respectively. Decreasing noise intensity from 80 dB SPL to 20 dB SPL produced a significant increase in GDT. The increase in GDT was relatively small in the range of 80-50 dB SPL for white noise and in the range of 80-60 dB for low-frequency noise. The minimal intensity level of the noise that enabled GDT measurement was 20 dB SPL for white noise and 30 dB SPL for low-frequency noise. Mean GDT values at these intensities were 10.6+/-3.9 ms and 31.3+/-4.2 ms, respectively. Bilateral ablation of the primary auditory cortex (complete destruction of the Te1 and partial destruction of the Te2 and Te3 areas) resulted in an increase in GDT values. The fifth day after surgery, the rats were able to detect gaps in the noise. The values of GDT observed at this time were 4.2+/-1.1 ms for white noise and 7.4+/-3.1 ms for low-frequency noise at 70 dB SPL. During the first month after cortical ablation, recovery of GDT was observed. However, 1 month after cortical ablation GDT still remained slightly higher than in controls (1.8+/-0.18 for white noise, 3.22+/-0.15 for low-frequency noise, Pdecrease in GDT values during the subsequent months was not observed.

  4. Frequency-specific attentional modulation in human primary auditory cortex and midbrain.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2018-07-01

    Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning, yet comparable evidence in humans is scarce. Moreover, whether the spotlight operates in human midbrain is unknown. To address these issues, we studied the spectral tuning of frequency channels in human PAC and inferior colliculus (IC), using 7-T functional magnetic resonance imaging (FMRI) and frequency mapping, while participants focused on different frequency-specific sounds. We found that shifts in frequency-specific attention alter the response gain, but not tuning profile, of PAC frequency channels. The gain modulation was strongest in low-frequency channels and varied near-monotonically across the tonotopic axis, giving rise to the attentional spotlight. We observed less prominent, non-tonotopic spatial patterns of attentional modulation in IC. These results indicate that the frequency-specific attentional spotlight in human PAC as measured with FMRI arises primarily from tonotopic gain modulation, rather than adapted frequency tuning. Moreover, frequency-specific attentional modulation of afferent sound processing in human IC seems to be considerably weaker, suggesting that the spotlight diminishes toward this lower-order processing stage. Our study sheds light on how the human auditory pathway adapts to the different demands of selective hearing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Processing of harmonics in the lateral belt of macaque auditory cortex.

    Science.gov (United States)

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer; Rauschecker, Josef P

    2014-01-01

    Many speech sounds and animal vocalizations contain components, referred to as complex tones, that consist of a fundamental frequency (F0) and higher harmonics. In this study we examined single-unit activity recorded in the core (A1) and lateral belt (LB) areas of auditory cortex in two rhesus monkeys as they listened to pure tones and pitch-shifted conspecific vocalizations ("coos"). The latter consisted of complex-tone segments in which F0 was matched to a corresponding pure-tone stimulus. In both animals, neuronal latencies to pure-tone stimuli at the best frequency (BF) were ~10 to 15 ms longer in LB than in A1. This might be expected, since LB is considered to be at a hierarchically higher level than A1. On the other hand, the latency of LB responses to coos was ~10 to 20 ms shorter than to the corresponding pure-tone BF, suggesting facilitation in LB by the harmonics. This latency reduction by coos was not observed in A1, resulting in similar coo latencies in A1 and LB. Multi-peaked neurons were present in both A1 and LB; however, harmonically-related peaks were observed in LB for both early and late response components, whereas in A1 they were observed only for late components. Our results suggest that harmonic features, such as relationships between specific frequency intervals of communication calls, are processed at relatively early stages of the auditory cortical pathway, but preferentially in LB.

  6. Rapid-rate transcranial magnetic stimulation of animal auditory cortex impairs short-term but not long-term memory formation.

    Science.gov (United States)

    Wang, Hong; Wang, Xu; Wetzel, Wolfram; Scheich, Henning

    2006-04-01

    Bilateral rapid-rate transcranial magnetic stimulation (rTMS) of gerbil auditory cortex with a miniature coil device was used to study short-term and long-term effects on discrimination learning of frequency-modulated tones. We found previously that directional discrimination of frequency modulation (rising vs. falling) relies on auditory cortex processing and that formation of its memory depends on local protein synthesis. Here we show that, during training over 5 days, certain rTMS regimes contingent on training had differential effects on the time course of learning. When rTMS was applied several times per day, i.e. four blocks of 5 min rTMS each followed 5 min later by a 3-min training block and 15-min intervals between these blocks (experiment A), animals reached a high discrimination performance more slowly over 5 days than did controls. When rTMS preceded only the first two of four training blocks (experiment B), or when prolonged rTMS (20 min) preceded only the first block, or when blocks of experiment A had longer intervals (experiments C and D), no significant day-to-day effects were found. However, in experiment A, and to some extent in experiment B, rTMS reduced the within-session discrimination performance. Nevertheless the animals learned, as demonstrated by a higher performance the next day. Thus, our results indicate that rTMS treatments accumulate over a day but not strongly over successive days. We suggest that rTMS of sensory cortex, as used in our study, affects short-term memory but not long-term memory formation.

  7. Evidence of functional connectivity between auditory cortical areas revealed by amplitude modulation sound processing.

    Science.gov (United States)

    Guéguin, Marie; Le Bouquin-Jeannès, Régine; Faucon, Gérard; Chauvel, Patrick; Liégeois-Chauvel, Catherine

    2007-02-01

    The human auditory cortex includes several interconnected areas. A better understanding of the mechanisms involved in auditory cortical functions requires a detailed knowledge of neuronal connectivity between functional cortical regions. In human, it is difficult to track in vivo neuronal connectivity. We investigated the interarea connection in vivo in the auditory cortex using a method of directed coherence (DCOH) applied to depth auditory evoked potentials (AEPs). This paper presents simultaneous AEPs recordings from insular gyrus (IG), primary and secondary cortices (Heschl's gyrus and planum temporale), and associative areas (Brodmann area [BA] 22) with multilead intracerebral electrodes in response to sinusoidal modulated white noises in 4 epileptic patients who underwent invasive monitoring with depth electrodes for epilepsy surgery. DCOH allowed estimation of the causality between 2 signals recorded from different cortical sites. The results showed 1) a predominant auditory stream within the primary auditory cortex from the most medial region to the most lateral one whatever the modulation frequency, 2) unidirectional functional connection from the primary to secondary auditory cortex, 3) a major auditory propagation from the posterior areas to the anterior ones, particularly at 8, 16, and 32 Hz, and 4) a particular role of Heschl's sulcus dispatching information to the different auditory areas. These findings suggest that cortical processing of auditory information is performed in serial and parallel streams. Our data showed that the auditory propagation could not be associated to a unidirectional traveling wave but to a constant interaction between these areas that could reflect the large adaptive and plastic capacities of auditory cortex. The role of the IG is discussed.

  8. Visual-induced expectations modulate auditory cortical responses

    Directory of Open Access Journals (Sweden)

    Virginie evan Wassenhove

    2015-02-01

    Full Text Available Active sensing has important consequences on multisensory processing (Schroeder et al. 2010. Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient colour changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the where and the when of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG while maintaining the position of their eyes on the left, right, or centre of the screen. Participants counted colour changes of the fixation cross while neglecting sounds which could be presented to the left, right or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants’ attention directed to visual inputs. Second, colour changes elicited robust modulations of auditory cortex responses (when prediction seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of when a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that where predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds.

  9. Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.

    Directory of Open Access Journals (Sweden)

    Andreas L. Schulz

    2016-01-01

    Full Text Available Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.

  10. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.

    Science.gov (United States)

    Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab

    2005-08-01

    Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.

  11. IMPAIRED PROCESSING IN THE PRIMARY AUDITORY CORTEX OF AN ANIMAL MODEL OF AUTISM

    Directory of Open Access Journals (Sweden)

    Renata eAnomal

    2015-11-01

    Full Text Available Autism is a neurodevelopmental disorder clinically characterized by deficits in communication, lack of social interaction and, repetitive behaviors with restricted interests. A number of studies have reported that sensory perception abnormalities are common in autistic individuals and might contribute to the complex behavioral symptoms of the disorder. In this context, hearing incongruence is particularly prevalent. Considering that some of this abnormal processing might stem from the unbalance of inhibitory and excitatory drives in brain circuitries, we used an animal model of autism induced by valproic acid (VPA during pregnancy in order to investigate the tonotopic organization of the primary auditory cortex (AI and its local inhibitory circuitry. Our results show that VPA rats have distorted primary auditory maps with over-representation of high frequencies, broadly tuned receptive fields and higher sound intensity thresholds as compared to controls. However, we did not detect differences in the number of parvalbumin-positive interneurons in AI of VPA and control rats. Altogether our findings show that neurophysiological impairments of hearing perception in this autism model occur independently of alterations in the number of parvalbumin-expressing interneurons. These data support the notion that fine circuit alterations, rather than gross cellular modification, could lead to neurophysiological changes in the autistic brain.

  12. Silent reading of direct versus indirect speech activates voice-selective areas in the auditory cortex.

    Science.gov (United States)

    Yao, Bo; Belin, Pascal; Scheepers, Christoph

    2011-10-01

    In human communication, direct speech (e.g., Mary said: "I'm hungry") is perceived to be more vivid than indirect speech (e.g., Mary said [that] she was hungry). However, for silent reading, the representational consequences of this distinction are still unclear. Although many of us share the intuition of an "inner voice," particularly during silent reading of direct speech statements in text, there has been little direct empirical confirmation of this experience so far. Combining fMRI with eye tracking in human volunteers, we show that silent reading of direct versus indirect speech engenders differential brain activation in voice-selective areas of the auditory cortex. This suggests that readers are indeed more likely to engage in perceptual simulations (or spontaneous imagery) of the reported speaker's voice when reading direct speech as opposed to meaning-equivalent indirect speech statements as part of a more vivid representation of the former. Our results may be interpreted in line with embodied cognition and form a starting point for more sophisticated interdisciplinary research on the nature of auditory mental simulation during reading.

  13. Monosialotetrahexosylganglioside Inhibits the Expression of p-CREB and NR2B in the Auditory Cortex in Rats with Salicylate-Induced Tinnitus.

    Science.gov (United States)

    Song, Rui-Biao; Lou, Wei-Hua

    2015-01-01

    This study investigated the effects of monosialotetrahexosylganglioside (GM1) on the expression of N-methyl-D-aspartate receptor subunit 2B (NR2B) and phosphorylated (p)-cyclic AMP response element-binding protein (CREB) in the auditory cortex of rats with tinnitus. Tinnitus-like behavior in rats was tested with the gap prepulse inhibition of acoustic startle paradigm. We then investigated the NR2B mRNA and protein and p-CREB protein levels in the auditory cortex of tinnitus rats compared with normal rats. Rats treated for 4 days with salicylate exhibited tinnitus. NR2B mRNA and protein and p-CREB protein levels were upregulated in these animals, with expression returning to normal levels 14 days after cessation of treatment; baseline levels of NR2B and p-CREB were also restored by GM1 administration. These data suggest that chronic salicylate administration induces tinnitus via upregulation of p-CREB and NR2B expression, and that GM1 can potentially be used to treat tinnitus.

  14. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    Science.gov (United States)

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Assessment of auditory cortical function in cochlear implant patients using 15O PET

    International Nuclear Information System (INIS)

    Young, J.P.; O'Sullivan, B.T.; Gibson, W.P.; Sefton, A.E.; Mitchell, T.E.; Sanli, H.; Cervantes, R.; Withall, A.; Royal Prince Alfred Hospital, Sydney,

    1998-01-01

    Full text: Cochlear implantation has been an extraordinarily successful method of restoring hearing and the potential for full language development in pre-lingually and post-lingually deaf individuals (Gibson 1996). Post-lingually deaf patients, who develop their hearing loss later in life, respond best to cochlear implantation within the first few years of their deafness, but are less responsive to implantation after several years of deafness (Gibson 1996). In pre-lingually deaf children, cochlear implantation is most effect in allowing the full development language skills when performed within a critical period, in the first 8 years of life. These clinical observations suggest considerable neural plasticity of the human auditory cortex in acquiring and retaining language skills (Gibson 1996, Buchwald 1990). Currently, electrocochleography is used to determine the integrity of the auditory pathways to the auditory cortex. However, the functional integrity of the auditory cortex cannot be determined by this method. We have defined the extent of activation of the auditory cortex and auditory association cortex in 6 normal controls and 6 cochlear implant patients using 15 O PET functional brain imaging methods. Preliminary results have indicated the potential clinical utility of 15 O PET cortical mapping in the pre-surgical assessment and post-surgical follow up of cochlear implant patients. Copyright (1998) Australian Neuroscience Society

  16. Cross-modal processing in auditory and visual working memory.

    Science.gov (United States)

    Suchan, Boris; Linnewerth, Britta; Köster, Odo; Daum, Irene; Schmid, Gebhard

    2006-02-01

    This study aimed to further explore processing of auditory and visual stimuli in working memory. Smith and Jonides (1997) [Smith, E.E., Jonides, J., 1997. Working memory: A view from neuroimaging. Cogn. Psychol. 33, 5-42] described a modified working memory model in which visual input is automatically transformed into a phonological code. To study this process, auditory and the corresponding visual stimuli were presented in a variant of the 2-back task which involved changes from the auditory to the visual modality and vice versa. Brain activation patterns underlying visual and auditory processing as well as transformation mechanisms were analyzed. Results yielded a significant activation in the left primary auditory cortex associated with transformation of visual into auditory information which reflects the matching and recoding of a stored item and its modality. This finding yields empirical evidence for a transformation of visual input into a phonological code, with the auditory cortex as the neural correlate of the recoding process in working memory.

  17. Motor-related signals in the auditory system for listening and learning.

    Science.gov (United States)

    Schneider, David M; Mooney, Richard

    2015-08-01

    In the auditory system, corollary discharge signals are theorized to facilitate normal hearing and the learning of acoustic behaviors, including speech and music. Despite clear evidence of corollary discharge signals in the auditory cortex and their presumed importance for hearing and auditory-guided motor learning, the circuitry and function of corollary discharge signals in the auditory cortex are not well described. In this review, we focus on recent developments in the mouse and songbird that provide insights into the circuitry that transmits corollary discharge signals to the auditory system and the function of these signals in the context of hearing and vocal learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Multivariate sensitivity to voice during auditory categorization.

    Science.gov (United States)

    Lee, Yune Sang; Peelle, Jonathan E; Kraemer, David; Lloyd, Samuel; Granger, Richard

    2015-09-01

    Past neuroimaging studies have documented discrete regions of human temporal cortex that are more strongly activated by conspecific voice sounds than by nonvoice sounds. However, the mechanisms underlying this voice sensitivity remain unclear. In the present functional MRI study, we took a novel approach to examining voice sensitivity, in which we applied a signal detection paradigm to the assessment of multivariate pattern classification among several living and nonliving categories of auditory stimuli. Within this framework, voice sensitivity can be interpreted as a distinct neural representation of brain activity that correctly distinguishes human vocalizations from other auditory object categories. Across a series of auditory categorization tests, we found that bilateral superior and middle temporal cortex consistently exhibited robust sensitivity to human vocal sounds. Although the strongest categorization was in distinguishing human voice from other categories, subsets of these regions were also able to distinguish reliably between nonhuman categories, suggesting a general role in auditory object categorization. Our findings complement the current evidence of cortical sensitivity to human vocal sounds by revealing that the greatest sensitivity during categorization tasks is devoted to distinguishing voice from nonvoice categories within human temporal cortex. Copyright © 2015 the American Physiological Society.

  19. Knockdown of the dyslexia-associated gene Kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex.

    Science.gov (United States)

    Centanni, T M; Booker, A B; Sloan, A M; Chen, F; Maher, B J; Carraway, R S; Khodaparast, N; Rennaker, R; LoTurco, J J; Kilgard, M P

    2014-07-01

    One in 15 school age children have dyslexia, which is characterized by phoneme-processing problems and difficulty learning to read. Dyslexia is associated with mutations in the gene KIAA0319. It is not known whether reduced expression of KIAA0319 can degrade the brain's ability to process phonemes. In the current study, we used RNA interference (RNAi) to reduce expression of Kiaa0319 (the rat homolog of the human gene KIAA0319) and evaluate the effect in a rat model of phoneme discrimination. Speech discrimination thresholds in normal rats are nearly identical to human thresholds. We recorded multiunit neural responses to isolated speech sounds in primary auditory cortex (A1) of rats that received in utero RNAi of Kiaa0319. Reduced expression of Kiaa0319 increased the trial-by-trial variability of speech responses and reduced the neural discrimination ability of speech sounds. Intracellular recordings from affected neurons revealed that reduced expression of Kiaa0319 increased neural excitability and input resistance. These results provide the first evidence that decreased expression of the dyslexia-associated gene Kiaa0319 can alter cortical responses and impair phoneme processing in auditory cortex. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  1. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    Science.gov (United States)

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; 7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.

  2. Interaction of streaming and attention in human auditory cortex.

    Science.gov (United States)

    Gutschalk, Alexander; Rupp, André; Dykstra, Andrew R

    2015-01-01

    Serially presented tones are sometimes segregated into two perceptually distinct streams. An ongoing debate is whether this basic streaming phenomenon reflects automatic processes or requires attention focused to the stimuli. Here, we examined the influence of focused attention on streaming-related activity in human auditory cortex using magnetoencephalography (MEG). Listeners were presented with a dichotic paradigm in which left-ear stimuli consisted of canonical streaming stimuli (ABA_ or ABAA) and right-ear stimuli consisted of a classical oddball paradigm. In phase one, listeners were instructed to attend the right-ear oddball sequence and detect rare deviants. In phase two, they were instructed to attend the left ear streaming stimulus and report whether they heard one or two streams. The frequency difference (ΔF) of the sequences was set such that the smallest and largest ΔF conditions generally induced one- and two-stream percepts, respectively. Two intermediate ΔF conditions were chosen to elicit bistable percepts (i.e., either one or two streams). Attention enhanced the peak-to-peak amplitude of the P1-N1 complex, but only for ambiguous ΔF conditions, consistent with the notion that automatic mechanisms for streaming tightly interact with attention and that the latter is of particular importance for ambiguous sound sequences.

  3. Single Neurons in the Avian Auditory Cortex Encode Individual Identity and Propagation Distance in Naturally Degraded Communication Calls.

    Science.gov (United States)

    Mouterde, Solveig C; Elie, Julie E; Mathevon, Nicolas; Theunissen, Frédéric E

    2017-03-29

    One of the most complex tasks performed by sensory systems is "scene analysis": the interpretation of complex signals as behaviorally relevant objects. The study of this problem, universal to species and sensory modalities, is particularly challenging in audition, where sounds from various sources and localizations, degraded by propagation through the environment, sum to form a single acoustical signal. Here we investigated in a songbird model, the zebra finch, the neural substrate for ranging and identifying a single source. We relied on ecologically and behaviorally relevant stimuli, contact calls, to investigate the neural discrimination of individual vocal signature as well as sound source distance when calls have been degraded through propagation in a natural environment. Performing electrophysiological recordings in anesthetized birds, we found neurons in the auditory forebrain that discriminate individual vocal signatures despite long-range degradation, as well as neurons discriminating propagation distance, with varying degrees of multiplexing between both information types. Moreover, the neural discrimination performance of individual identity was not affected by propagation-induced degradation beyond what was induced by the decreased intensity. For the first time, neurons with distance-invariant identity discrimination properties as well as distance-discriminant neurons are revealed in the avian auditory cortex. Because these neurons were recorded in animals that had prior experience neither with the vocalizers of the stimuli nor with long-range propagation of calls, we suggest that this neural population is part of a general-purpose system for vocalizer discrimination and ranging. SIGNIFICANCE STATEMENT Understanding how the brain makes sense of the multitude of stimuli that it continually receives in natural conditions is a challenge for scientists. Here we provide a new understanding of how the auditory system extracts behaviorally relevant information

  4. LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE.

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T

    2014-12-01

    Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long

  5. Global dynamics of selective attention and its lapses in primary auditory cortex.

    Science.gov (United States)

    Lakatos, Peter; Barczak, Annamaria; Neymotin, Samuel A; McGinnis, Tammy; Ross, Deborah; Javitt, Daniel C; O'Connell, Monica Noelle

    2016-12-01

    Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures, we observed that besides the lack of entrainment by external stimuli, attentional lapses were also characterized by high-amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single-unit operations. Entrainment and alpha-oscillation-dominated periods were strongly anticorrelated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.

  6. Contralateral white noise selectively changes left human auditory cortex activity in a lexical decision task.

    Science.gov (United States)

    Behne, Nicole; Wendt, Beate; Scheich, Henning; Brechmann, André

    2006-04-01

    In a previous study, we hypothesized that the approach of presenting information-bearing stimuli to one ear and noise to the other ear may be a general strategy to determine hemispheric specialization in auditory cortex (AC). In that study, we confirmed the dominant role of the right AC in directional categorization of frequency modulations by showing that fMRI activation of right but not left AC was sharply emphasized when masking noise was presented to the contralateral ear. Here, we tested this hypothesis using a lexical decision task supposed to be mainly processed in the left hemisphere. Subjects had to distinguish between pseudowords and natural words presented monaurally to the left or right ear either with or without white noise to the other ear. According to our hypothesis, we expected a strong effect of contralateral noise on fMRI activity in left AC. For the control conditions without noise, we found that activation in both auditory cortices was stronger on contralateral than on ipsilateral word stimulation consistent with a more influential contralateral than ipsilateral auditory pathway. Additional presentation of contralateral noise did not significantly change activation in right AC, whereas it led to a significant increase of activation in left AC compared with the condition without noise. This is consistent with a left hemispheric specialization for lexical decisions. Thus our results support the hypothesis that activation by ipsilateral information-bearing stimuli is upregulated mainly in the hemisphere specialized for a given task when noise is presented to the more influential contralateral ear.

  7. Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: Evidence from transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk

    2017-02-01

    Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modulation-Frequency-Specific Adaptation in Awake Auditory Cortex

    Science.gov (United States)

    Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A.; Schreiner, Christoph E.

    2015-01-01

    Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical “modulation masking,” in which the presentation of a modulated “masker” signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation. PMID:25878263

  9. Task-specific modulation of human auditory evoked responses in a delayed-match-to-sample task

    Directory of Open Access Journals (Sweden)

    Feng eRong

    2011-05-01

    Full Text Available In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography (MEG data while participants were performing an auditory delayed-match-to-sample (DMS task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12 ~ 20 Hz DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to involve in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal-temporal functional interactions.

  10. Language processing of auditory cortex revealed by functional magnetic resonance imaging in presbycusis patients.

    Science.gov (United States)

    Chen, Xianming; Wang, Maoxin; Deng, Yihong; Liang, Yonghui; Li, Jianzhong; Chen, Shiyan

    2016-01-01

    Contralateral temporal lobe activation decreases with aging, regardless of hearing status, with elderly individuals showing reduced right ear advantage. Aging and hearing loss possibly lead to presbycusis speech discrimination decline. To evaluate presbycusis patients' auditory cortex activation under verbal stimulation. Thirty-six patients were enrolled: 10 presbycusis patients (mean age = 64 years, range = 60-70), 10 in the healthy aged group (mean age = 66 years, range = 60-70), and 16 young healthy volunteers (mean age = 25 years, range = 23-28). These three groups underwent simultaneous 1 kHz and 90 dB single-syllable word stimuli and (blood-oxygen-level-dependent functional magnetic resonance imaging) BOLD fMRI examinations. The main activation regions were superior temporal and middle temporal gyrus. For all aged subjects, the right region of interest (ROI) activation volume was decreased compared with the young group. With left ear stimulation, bilateral ROI activation intensity held. With right ear stimulation, the aged group's activation intensity was higher. Using monaural stimulation in the young group, contralateral temporal lobe activation volume and intensity were higher vs ipsilateral, while they were lower in the aged and presbycusis groups. On left and right ear auditory tasks, the young group showed right ear advantage, while the aged and presbycusis groups showed reduced right ear advantage.

  11. Manipulation of Auditory Inputs as Rehabilitation Therapy for Maladaptive Auditory Cortical Reorganization

    Directory of Open Access Journals (Sweden)

    Hidehiko Okamoto

    2018-01-01

    Full Text Available Neurophysiological and neuroimaging data suggest that the brains of not only children but also adults are reorganized based on sensory inputs and behaviors. Plastic changes in the brain are generally beneficial; however, maladaptive cortical reorganization in the auditory cortex may lead to hearing disorders such as tinnitus and hyperacusis. Recent studies attempted to noninvasively visualize pathological neural activity in the living human brain and reverse maladaptive cortical reorganization by the suitable manipulation of auditory inputs in order to alleviate detrimental auditory symptoms. The effects of the manipulation of auditory inputs on maladaptively reorganized brain were reviewed herein. The findings obtained indicate that rehabilitation therapy based on the manipulation of auditory inputs is an effective and safe approach for hearing disorders. The appropriate manipulation of sensory inputs guided by the visualization of pathological brain activities using recent neuroimaging techniques may contribute to the establishment of new clinical applications for affected individuals.

  12. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2015-12-01

    Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit. Copyright © 2015 the American Physiological Society.

  13. Relevance of Spectral Cues for Auditory Spatial Processing in the Occipital Cortex of the Blind

    Science.gov (United States)

    Voss, Patrice; Lepore, Franco; Gougoux, Frédéric; Zatorre, Robert J.

    2011-01-01

    We have previously shown that some blind individuals can localize sounds more accurately than their sighted counterparts when one ear is obstructed, and that this ability is strongly associated with occipital cortex activity. Given that spectral cues are important for monaurally localizing sounds when one ear is obstructed, and that blind individuals are more sensitive to small spectral differences, we hypothesized that enhanced use of spectral cues via occipital cortex mechanisms could explain the better performance of blind individuals in monaural localization. Using positron-emission tomography (PET), we scanned blind and sighted persons as they discriminated between sounds originating from a single spatial position, but with different spectral profiles that simulated different spatial positions based on head-related transfer functions. We show here that a sub-group of early blind individuals showing superior monaural sound localization abilities performed significantly better than any other group on this spectral discrimination task. For all groups, performance was best for stimuli simulating peripheral positions, consistent with the notion that spectral cues are more helpful for discriminating peripheral sources. PET results showed that all blind groups showed cerebral blood flow increases in the occipital cortex; but this was also the case in the sighted group. A voxel-wise covariation analysis showed that more occipital recruitment was associated with better performance across all blind subjects but not the sighted. An inter-regional covariation analysis showed that the occipital activity in the blind covaried with that of several frontal and parietal regions known for their role in auditory spatial processing. Overall, these results support the notion that the superior ability of a sub-group of early-blind individuals to localize sounds is mediated by their superior ability to use spectral cues, and that this ability is subserved by cortical processing in

  14. Ontogeny of serotonin and serotonin2A receptors in rat auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Abbas, Atheir I; O'Donohue, Heather; Lauder, Jean M; Roth, Bryan L; Walker, Paul D; Manis, Paul B

    2008-10-01

    Maturation of the mammalian cerebral cortex is, in part, dependent upon multiple coordinated afferent neurotransmitter systems and receptor-mediated cellular linkages during early postnatal development. Given that serotonin (5-HT) is one such system, the present study was designed to specifically evaluate 5-HT tissue content as well as 5-HT(2A) receptor protein levels within the developing auditory cortex (AC). Using high performance liquid chromatography (HPLC), 5-HT and the metabolite, 5-hydroxyindoleacetic acid (5-HIAA), was measured in isolated AC, which demonstrated a developmental dynamic, reaching young adult levels early during the second week of postnatal development. Radioligand binding of 5-HT(2A) receptors with the 5-HT(2A/2C) receptor agonist, (125)I-DOI ((+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl; in the presence of SB206553, a selective 5-HT(2C) receptor antagonist, also demonstrated a developmental trend, whereby receptor protein levels reached young adult levels at the end of the first postnatal week (P8), significantly increased at P10 and at P17, and decreased back to levels not significantly different from P8 thereafter. Immunocytochemical labeling of 5-HT(2A) receptors and confocal microscopy revealed that 5-HT(2A) receptors are largely localized on layer II/III pyramidal cell bodies and apical dendrites within AC. When considered together, the results of the present study suggest that 5-HT, likely through 5-HT(2A) receptors, may play an important role in early postnatal AC development.

  15. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  16. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.

    Science.gov (United States)

    Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P

    2013-06-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.

  17. Visual cortex entrains to sign language.

    Science.gov (United States)

    Brookshire, Geoffrey; Lu, Jenny; Nusbaum, Howard C; Goldin-Meadow, Susan; Casasanto, Daniel

    2017-06-13

    Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.

  18. Visual face-movement sensitive cortex is relevant for auditory-only speech recognition.

    Science.gov (United States)

    Riedel, Philipp; Ragert, Patrick; Schelinski, Stefanie; Kiebel, Stefan J; von Kriegstein, Katharina

    2015-07-01

    It is commonly assumed that the recruitment of visual areas during audition is not relevant for performing auditory tasks ('auditory-only view'). According to an alternative view, however, the recruitment of visual cortices is thought to optimize auditory-only task performance ('auditory-visual view'). This alternative view is based on functional magnetic resonance imaging (fMRI) studies. These studies have shown, for example, that even if there is only auditory input available, face-movement sensitive areas within the posterior superior temporal sulcus (pSTS) are involved in understanding what is said (auditory-only speech recognition). This is particularly the case when speakers are known audio-visually, that is, after brief voice-face learning. Here we tested whether the left pSTS involvement is causally related to performance in auditory-only speech recognition when speakers are known by face. To test this hypothesis, we applied cathodal transcranial direct current stimulation (tDCS) to the pSTS during (i) visual-only speech recognition of a speaker known only visually to participants and (ii) auditory-only speech recognition of speakers they learned by voice and face. We defined the cathode as active electrode to down-regulate cortical excitability by hyperpolarization of neurons. tDCS to the pSTS interfered with visual-only speech recognition performance compared to a control group without pSTS stimulation (tDCS to BA6/44 or sham). Critically, compared to controls, pSTS stimulation additionally decreased auditory-only speech recognition performance selectively for voice-face learned speakers. These results are important in two ways. First, they provide direct evidence that the pSTS is causally involved in visual-only speech recognition; this confirms a long-standing prediction of current face-processing models. Secondly, they show that visual face-sensitive pSTS is causally involved in optimizing auditory-only speech recognition. These results are in line

  19. Auditory intensity processing: Effect of MRI background noise.

    Science.gov (United States)

    Angenstein, Nicole; Stadler, Jörg; Brechmann, André

    2016-03-01

    Studies on active auditory intensity discrimination in humans showed equivocal results regarding the lateralization of processing. Whereas experiments with a moderate background found evidence for right lateralized processing of intensity, functional magnetic resonance imaging (fMRI) studies with background scanner noise suggest more left lateralized processing. With the present fMRI study, we compared the task dependent lateralization of intensity processing between a conventional continuous echo planar imaging (EPI) sequence with a loud background scanner noise and a fast low-angle shot (FLASH) sequence with a soft background scanner noise. To determine the lateralization of the processing, we employed the contralateral noise procedure. Linearly frequency modulated (FM) tones were presented monaurally with and without contralateral noise. During both the EPI and the FLASH measurement, the left auditory cortex was more strongly involved than the right auditory cortex while participants categorized the intensity of FM tones. This was shown by a strong effect of the additional contralateral noise on the activity in the left auditory cortex. This means a massive reduction in background scanner noise still leads to a significant left lateralized effect. This suggests that the reversed lateralization in fMRI studies with loud background noise in contrast to studies with softer background cannot be fully explained by the MRI background noise. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Associative representational plasticity in the auditory cortex: A synthesis of two disciplines

    Science.gov (United States)

    Weinberger, Norman M.

    2013-01-01

    Historically, sensory systems have been largely ignored as potential loci of information storage in the neurobiology of learning and memory. They continued to be relegated to the role of “sensory analyzers” despite consistent findings of associatively induced enhancement of responses in primary sensory cortices to behaviorally important signal stimuli, such as conditioned stimuli (CS), during classical conditioning. This disregard may have been promoted by the fact that the brain was interrogated using only one or two stimuli, e.g., a CS+ sometimes with a CS−, providing little insight into the specificity of neural plasticity. This review describes a novel approach that synthesizes the basic experimental designs of the experimental psychology of learning with that of sensory neurophysiology. By probing the brain with a large stimulus set before and after learning, this unified method has revealed that associative processes produce highly specific changes in the receptive fields of cells in the primary auditory cortex (A1). This associative representational plasticity (ARP) selectively facilitates responses to tonal CSs at the expense of other frequencies, producing tuning shifts toward and to the CS and expanded representation of CS frequencies in the tonotopic map of A1. ARPs have the major characteristics of associative memory: They are highly specific, discriminative, rapidly acquired, exhibit consolidation over hours and days, and can be retained indefinitely. Evidence to date suggests that ARPs encode the level of acquired behavioral importance of stimuli. The nucleus basalis cholinergic system is sufficient both for the induction of ARPs and the induction of specific auditory memory. Investigation of ARPs has attracted workers with diverse backgrounds, often resulting in behavioral approaches that yield data that are difficult to interpret. The advantages of studying associative representational plasticity are emphasized, as is the need for greater

  1. Cell-Specific Cholinergic Modulation of Excitability of Layer 5B Principal Neurons in Mouse Auditory Cortex

    Science.gov (United States)

    Joshi, Ankur; Kalappa, Bopanna I.; Anderson, Charles T.

    2016-01-01

    The neuromodulator acetylcholine (ACh) is crucial for several cognitive functions, such as perception, attention, and learning and memory. Whereas, in most cases, the cellular circuits or the specific neurons via which ACh exerts its cognitive effects remain unknown, it is known that auditory cortex (AC) neurons projecting from layer 5B (L5B) to the inferior colliculus, corticocollicular neurons, are required for cholinergic-mediated relearning of sound localization after occlusion of one ear. Therefore, elucidation of the effects of ACh on the excitability of corticocollicular neurons will bridge the cell-specific and cognitive properties of ACh. Because AC L5B contains another class of neurons that project to the contralateral cortex, corticocallosal neurons, to identify the cell-specific mechanisms that enable corticocollicular neurons to participate in sound localization relearning, we investigated the effects of ACh release on both L5B corticocallosal and corticocollicular neurons. Using in vitro electrophysiology and optogenetics in mouse brain slices, we found that ACh generated nicotinic ACh receptor (nAChR)-mediated depolarizing potentials and muscarinic ACh receptor (mAChR)-mediated hyperpolarizing potentials in AC L5B corticocallosal neurons. In corticocollicular neurons, ACh release also generated nAChR-mediated depolarizing potentials. However, in contrast to the mAChR-mediated hyperpolarizing potentials in corticocallosal neurons, ACh generated prolonged mAChR-mediated depolarizing potentials in corticocollicular neurons. These prolonged depolarizing potentials generated persistent firing in corticocollicular neurons, whereas corticocallosal neurons lacking mAChR-mediated depolarizing potentials did not show persistent firing. We propose that ACh-mediated persistent firing in corticocollicular neurons may represent a critical mechanism required for learning-induced plasticity in AC. SIGNIFICANCE STATEMENT Acetylcholine (ACh) is crucial for cognitive

  2. Nonverbal auditory agnosia with lesion to Wernicke's area.

    Science.gov (United States)

    Saygin, Ayse Pinar; Leech, Robert; Dick, Frederic

    2010-01-01

    We report the case of patient M, who suffered unilateral left posterior temporal and parietal damage, brain regions typically associated with language processing. Language function largely recovered since the infarct, with no measurable speech comprehension impairments. However, the patient exhibited a severe impairment in nonverbal auditory comprehension. We carried out extensive audiological and behavioral testing in order to characterize M's unusual neuropsychological profile. We also examined the patient's and controls' neural responses to verbal and nonverbal auditory stimuli using functional magnetic resonance imaging (fMRI). We verified that the patient exhibited persistent and severe auditory agnosia for nonverbal sounds in the absence of verbal comprehension deficits or peripheral hearing problems. Acoustical analyses suggested that his residual processing of a minority of environmental sounds might rely on his speech processing abilities. In the patient's brain, contralateral (right) temporal cortex as well as perilesional (left) anterior temporal cortex were strongly responsive to verbal, but not to nonverbal sounds, a pattern that stands in marked contrast to the controls' data. This substantial reorganization of auditory processing likely supported the recovery of M's speech processing.

  3. Reversible Inactivation of the Higher Order Auditory Cortex during Fear Memory Consolidation Prevents Memory-Related Activity in the Basolateral Amygdala during Remote Memory Retrieval.

    Science.gov (United States)

    Cambiaghi, Marco; Renna, Annamaria; Milano, Luisella; Sacchetti, Benedetto

    2017-01-01

    Recent findings have shown that the auditory cortex, and specifically the higher order Te2 area, is necessary for the consolidation of long-term fearful memories and that it interacts with the amygdala during the retrieval of long-term fearful memories. Here, we tested whether the reversible blockade of Te2 during memory consolidation may affect the activity changes occurring in the amygdala during the retrieval of fearful memories. To address this issue, we blocked Te2 in a reversible manner during memory consolidation processes. After 4 weeks, we assessed the activity of Te2 and individual nuclei of the amygdala during the retrieval of long-term memories. Rats in which Te2 was inactivated upon memory encoding showed a decreased freezing and failed to show Te2-to-basolateral amygdala (BLA) synchrony during memory retrieval. In addition, the expression of the immediate early gene zif268 in the lateral, basal and central amygdala nuclei did not show memory-related enhancement. As all sites were intact upon memory retrieval, we propose that the auditory cortex represents a key node in the consolidation of fear memories and it is essential for amygdala nuclei to support memory retrieval process.

  4. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  5. Tinnitus alters resting state functional connectivity (RSFC in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS.

    Directory of Open Access Journals (Sweden)

    Juan San Juan

    Full Text Available Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex and non-region of interest (adjacent non-auditory cortices and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz, broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to

  6. Intracerebral evidence of rhythm transform in the human auditory cortex.

    Science.gov (United States)

    Nozaradan, Sylvie; Mouraux, André; Jonas, Jacques; Colnat-Coulbois, Sophie; Rossion, Bruno; Maillard, Louis

    2017-07-01

    Musical entrainment is shared by all human cultures and the perception of a periodic beat is a cornerstone of this entrainment behavior. Here, we investigated whether beat perception might have its roots in the earliest stages of auditory cortical processing. Local field potentials were recorded from 8 patients implanted with depth-electrodes in Heschl's gyrus and the planum temporale (55 recording sites in total), usually considered as human primary and secondary auditory cortices. Using a frequency-tagging approach, we show that both low-frequency (30 Hz) neural activities in these structures faithfully track auditory rhythms through frequency-locking to the rhythm envelope. A selective gain in amplitude of the response frequency-locked to the beat frequency was observed for the low-frequency activities but not for the high-frequency activities, and was sharper in the planum temporale, especially for the more challenging syncopated rhythm. Hence, this gain process is not systematic in all activities produced in these areas and depends on the complexity of the rhythmic input. Moreover, this gain was disrupted when the rhythm was presented at fast speed, revealing low-pass response properties which could account for the propensity to perceive a beat only within the musical tempo range. Together, these observations show that, even though part of these neural transforms of rhythms could already take place in subcortical auditory processes, the earliest auditory cortical processes shape the neural representation of rhythmic inputs in favor of the emergence of a periodic beat.

  7. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.

    Science.gov (United States)

    Gutschalk, Alexander; Uppenkamp, Stefan; Riedel, Bernhard; Bartsch, Andreas; Brandt, Tobias; Vogt-Schaden, Marlies

    2015-12-01

    Based on results from functional imaging, cortex along the superior temporal sulcus (STS) has been suggested to subserve phoneme and pre-lexical speech perception. For vowel classification, both superior temporal plane (STP) and STS areas have been suggested relevant. Lesion of bilateral STS may conversely be expected to cause pure word deafness and possibly also impaired vowel classification. Here we studied a patient with bilateral STS lesions caused by ischemic strokes and relatively intact medial STPs to characterize the behavioral consequences of STS loss. The patient showed severe deficits in auditory speech perception, whereas his speech production was fluent and communication by written speech was grossly intact. Auditory-evoked fields in the STP were within normal limits on both sides, suggesting that major parts of the auditory cortex were functionally intact. Further studies showed that the patient had normal hearing thresholds and only mild disability in tests for telencephalic hearing disorder. Prominent deficits were discovered in an auditory-object classification task, where the patient performed four standard deviations below the control group. In marked contrast, performance in a vowel-classification task was intact. Auditory evoked fields showed enhanced responses for vowels compared to matched non-vowels within normal limits. Our results are consistent with the notion that cortex along STS is important for auditory speech perception, although it does not appear to be entirely speech specific. Formant analysis and single vowel classification, however, appear to be already implemented in auditory cortex on the STP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Time course of cell death due to acoustic overstimulation in the mouse medial geniculate body and primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Felix Frohlich

    2017-01-01

    Full Text Available It has previously been shown that acoustic overstimulation induces cell death and extensive cell loss in key structures of the central auditory pathway. A correlation between noise-induced apoptosis and cell loss was hypothesized for the cochlear nucleus and colliculus inferior. To determine the role of cell death in noise-induced cell loss in thalamic and cortical structures, the present mouse study (NMRI strain describes the time course following noise exposure of cell death mechanisms for the ventral medial geniculate body (vMGB, medial MGB (mMGB, and dorsal MGB (dMGB and the six histological layers of the primary auditory cortex (AI 1–6. Therefore, a terminal deoxynucleotidyl transferase dioxyuridine triphosphate nick-end labeling assay (TUNEL was performed in these structures 24 h, 7 days, and 14 days after noise exposure (3 h, 115 dB sound pressure level, 5–20 kHz, as well as in unexposed controls. In the dMGB, TUNEL was statistically significant elevated 24 h postexposure. AI-1 showed a decrease in TUNEL after 14 days. There was no statistically significant difference between groups for the other brain areas investigated. dMGB’s widespread connection within the central auditory pathway and its nontonotopical organization might explain its prominent increase in TUNEL compared to the other MGB subdivisions and the AI. It is assumed that the onset and peak of noise-induced cell death is delayed in higher areas of the central auditory pathway and takes place between 24 h and 7 days postexposure in thalamic and cortical structures.

  10. Effect of chronic restraint stress on inhibitory gating in the auditory cortex of rats.

    Science.gov (United States)

    Ma, Lanlan; Li, Wai; Li, Sibin; Wang, Xuejiao; Qin, Ling

    2017-05-01

    A fundamental adaptive mechanism of auditory function is inhibitory gating (IG), which refers to the attenuation of neural responses to repeated sound stimuli. IG is drastically impaired in individuals with emotional and cognitive impairments (i.e. posttraumatic stress disorder). The objective of this study was to test whether chronic stress impairs the IG of the auditory cortex (AC). We used the standard two-tone stimulus paradigm and examined the parametric qualities of IG in the AC of rats by recording the electrophysiological signals of a single-unit and local field potential (LFP) simultaneously. The main results of this study were that most of the AC neurons showed a weaker response to the second tone than to the first tone, reflecting an IG of the repeated input. A fast negative wave of LFP showed consistent IG across the sampled AC sites, whereas a slow positive wave of LFP had less IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level, due to the increase in response to the second tone. This study provided new evidence that chronic stress disrupts the physiological function of the AC. Lay Summary The effects of chronic stress on IG were investigated by recording both, single-unit spike and LFP activities, in the AC of rats. In normal rats, most of the single-unit and N25 LFP activities in the AC showed an IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level.

  11. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Directory of Open Access Journals (Sweden)

    Georg Berding

    Full Text Available Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation. The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  12. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Science.gov (United States)

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  13. In search of an auditory engram

    OpenAIRE

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C.

    2005-01-01

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that mo...

  14. Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat.

    Science.gov (United States)

    Hu, S S; Mei, L; Chen, J Y; Huang, Z W; Wu, H

    2014-03-12

    Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl d-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus.

  15. Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity.

    Science.gov (United States)

    Miller, Lee M; Recanzone, Gregg H

    2009-04-07

    The auditory cortex is critical for perceiving a sound's location. However, there is no topographic representation of acoustic space, and individual auditory cortical neurons are often broadly tuned to stimulus location. It thus remains unclear how acoustic space is represented in the mammalian cerebral cortex and how it could contribute to sound localization. This report tests whether the firing rates of populations of neurons in different auditory cortical fields in the macaque monkey carry sufficient information to account for horizontal sound localization ability. We applied an optimal neural decoding technique, based on maximum likelihood estimation, to populations of neurons from 6 different cortical fields encompassing core and belt areas. We found that the firing rate of neurons in the caudolateral area contain enough information to account for sound localization ability, but neurons in other tested core and belt cortical areas do not. These results provide a detailed and plausible population model of how acoustic space could be represented in the primate cerebral cortex and support a dual stream processing model of auditory cortical processing.

  16. Auditory cortical volumes and musical ability in Williams syndrome.

    Science.gov (United States)

    Martens, Marilee A; Reutens, David C; Wilson, Sarah J

    2010-07-01

    Individuals with Williams syndrome (WS) have been shown to have atypical morphology in the auditory cortex, an area associated with aspects of musicality. Some individuals with WS have demonstrated specific musical abilities, despite intellectual delays. Primary auditory cortex and planum temporale volumes were manually segmented in 25 individuals with WS and 25 control participants, and the participants also underwent testing of musical abilities. Left and right planum temporale volumes were significantly larger in the participants with WS than in controls, with no significant difference noted between groups in planum temporale asymmetry or primary auditory cortical volumes. Left planum temporale volume was significantly increased in a subgroup of the participants with WS who demonstrated specific musical strengths, as compared to the remaining WS participants, and was highly correlated with scores on a musical task. These findings suggest that differences in musical ability within WS may be in part associated with variability in the left auditory cortical region, providing further evidence of cognitive and neuroanatomical heterogeneity within this syndrome. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Neural correlates of auditory temporal predictions during sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Nadine ePecenka

    2013-08-01

    Full Text Available Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons. Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1 a distributed network in cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex and (2 medial cortical areas (medial prefrontal cortex, posterior cingulate cortex. While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  18. Laminar differences in response to simple and spectro-temporally complex sounds in the primary auditory cortex of ketamine-anesthetized gerbils.

    Directory of Open Access Journals (Sweden)

    Markus K Schaefer

    Full Text Available In mammals, acoustic communication plays an important role during social behaviors. Despite their ethological relevance, the mechanisms by which the auditory cortex represents different communication call properties remain elusive. Recent studies have pointed out that communication-sound encoding could be based on discharge patterns of neuronal populations. Following this idea, we investigated whether the activity of local neuronal networks, such as those occurring within individual cortical columns, is sufficient for distinguishing between sounds that differed in their spectro-temporal properties. To accomplish this aim, we analyzed simple pure-tone and complex communication call elicited multi-unit activity (MUA as well as local field potentials (LFP, and current source density (CSD waveforms at the single-layer and columnar level from the primary auditory cortex of anesthetized Mongolian gerbils. Multi-dimensional scaling analysis was used to evaluate the degree of "call-specificity" in the evoked activity. The results showed that whole laminar profiles segregated 1.8-2.6 times better across calls than single-layer activity. Also, laminar LFP and CSD profiles segregated better than MUA profiles. Significant differences between CSD profiles evoked by different sounds were more pronounced at mid and late latencies in the granular and infragranular layers and these differences were based on the absence and/or presence of current sinks and on sink timing. The stimulus-specific activity patterns observed within cortical columns suggests that the joint activity of local cortical populations (as local as single columns could indeed be important for encoding sounds that differ in their acoustic attributes.

  19. Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex.

    Science.gov (United States)

    Sussman, Elyse; Steinschneider, Mitchell

    2006-02-23

    Attention biases the way in which sound information is stored in auditory memory. Little is known, however, about the contribution of stimulus-driven processes in forming and storing coherent sound events. An electrophysiological index of cortical auditory change detection (mismatch negativity [MMN]) was used to assess whether sensory memory representations could be biased toward one organization over another (one or two auditory streams) without attentional control. Results revealed that sound representations held in sensory memory biased the organization of subsequent auditory input. The results demonstrate that context-dependent sound representations modulate stimulus-dependent neural encoding at early stages of auditory cortical processing.

  20. Neural correlates of auditory scale illusion.

    Science.gov (United States)

    Kuriki, Shinya; Numao, Ryousuke; Nemoto, Iku

    2016-09-01

    The auditory illusory perception "scale illusion" occurs when ascending and descending musical scale tones are delivered in a dichotic manner, such that the higher or lower tone at each instant is presented alternately to the right and left ears. Resulting tone sequences have a zigzag pitch in one ear and the reversed (zagzig) pitch in the other ear. Most listeners hear illusory smooth pitch sequences of up-down and down-up streams in the two ears separated in higher and lower halves of the scale. Although many behavioral studies have been conducted, how and where in the brain the illusory percept is formed have not been elucidated. In this study, we conducted functional magnetic resonance imaging using sequential tones that induced scale illusion (ILL) and those that mimicked the percept of scale illusion (PCP), and we compared the activation responses evoked by those stimuli by region-of-interest analysis. We examined the effects of adaptation, i.e., the attenuation of response that occurs when close-frequency sounds are repeated, which might interfere with the changes in activation by the illusion process. Results of the activation difference of the two stimuli, measured at varied tempi of tone presentation, in the superior temporal auditory cortex were not explained by adaptation. Instead, excess activation of the ILL stimulus from the PCP stimulus at moderate tempi (83 and 126 bpm) was significant in the posterior auditory cortex with rightward superiority, while significant prefrontal activation was dominant at the highest tempo (245 bpm). We suggest that the area of the planum temporale posterior to the primary auditory cortex is mainly involved in the illusion formation, and that the illusion-related process is strongly dependent on the rate of tone presentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  2. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    Science.gov (United States)

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it.

  3. Early Seizures Prematurely Unsilence Auditory Synapses to Disrupt Thalamocortical Critical Period Plasticity

    Directory of Open Access Journals (Sweden)

    Hongyu Sun

    2018-05-01

    Full Text Available Heightened neural excitability in infancy and childhood results in increased susceptibility to seizures. Such early-life seizures are associated with language deficits and autism that can result from aberrant development of the auditory cortex. Here, we show that early-life seizures disrupt a critical period (CP for tonotopic map plasticity in primary auditory cortex (A1. We show that this CP is characterized by a prevalence of “silent,” NMDA-receptor (NMDAR-only, glutamate receptor synapses in auditory cortex that become “unsilenced” due to activity-dependent AMPA receptor (AMPAR insertion. Induction of seizures prior to this CP occludes tonotopic map plasticity by prematurely unsilencing NMDAR-only synapses. Further, brief treatment with the AMPAR antagonist NBQX following seizures, prior to the CP, prevents synapse unsilencing and permits subsequent A1 plasticity. These findings reveal that early-life seizures modify CP regulators and suggest that therapeutic targets for early post-seizure treatment can rescue CP plasticity.

  4. Modality-specific involvement of occipital cortex in Early Blind?

    NARCIS (Netherlands)

    van der Lubbe, Robert Henricus Johannes; van Mierlo, C.M.; Postma, A.

    2008-01-01

    What happens in occipital cortex when neuronal activity is no longer evoked by regular visual stimulation? Studying brain activity induced by tactile and auditory stimuli in the blind may provide an answer. Several studies indicate that occipital cortex in the blind is recruited in simple tasks,

  5. Reality of auditory verbal hallucinations.

    Science.gov (United States)

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  6. Developmental programming of auditory learning

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2012-10-01

    Full Text Available The basic structures involved in the development of auditory function and consequently in language acquisition are directed by genetic code, but the expression of individual genes may be altered by exposure to environmental factors, which if favorable, orient it in the proper direction, leading its development towards normality, if unfavorable, they deviate it from its physiological course. Early sensorial experience during the foetal period (i.e. intrauterine noise floor, sounds coming from the outside and attenuated by the uterine filter, particularly mother’s voice and modifications induced by it at the cochlear level represent the first example of programming in one of the earliest critical periods in development of the auditory system. This review will examine the factors that influence the developmental programming of auditory learning from the womb to the infancy. In particular it focuses on the following points: the prenatal auditory experience and the plastic phenomena presumably induced by it in the auditory system from the basilar membrane to the cortex;the involvement of these phenomena on language acquisition and on the perception of language communicative intention after birth;the consequences of auditory deprivation in critical periods of auditory development (i.e. premature interruption of foetal life.

  7. Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex.

    Directory of Open Access Journals (Sweden)

    Craig A Atencio

    Full Text Available Spectral integration properties show topographical order in cat primary auditory cortex (AI. Along the iso-frequency domain, regions with predominantly narrowly tuned (NT neurons are segregated from regions with more broadly tuned (BT neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences--and thus distinct physiological functions--for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed.

  8. Differential coding of conspecific vocalizations in the ventral auditory cortical stream.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2014-03-26

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway.

  9. Manipulation of BDNF signaling modifies the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex.

    Science.gov (United States)

    Anomal, Renata; de Villers-Sidani, Etienne; Merzenich, Michael M; Panizzutti, Rogerio

    2013-01-01

    Sensory experience powerfully shapes cortical sensory representations during an early developmental "critical period" of plasticity. In the rat primary auditory cortex (A1), the experience-dependent plasticity is exemplified by significant, long-lasting distortions in frequency representation after mere exposure to repetitive frequencies during the second week of life. In the visual system, the normal unfolding of critical period plasticity is strongly dependent on the elaboration of brain-derived neurotrophic factor (BDNF), which promotes the establishment of inhibition. Here, we tested the hypothesis that BDNF signaling plays a role in the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. Elvax resin implants filled with either a blocking antibody against BDNF or the BDNF protein were placed on the A1 of rat pups throughout the critical period window. These pups were then exposed to 7 kHz pure tone for 7 consecutive days and their frequency representations were mapped. BDNF blockade completely prevented the shaping of cortical tuning by experience and resulted in poor overall frequency tuning in A1. By contrast, BDNF infusion on the developing A1 amplified the effect of 7 kHz tone exposure compared to control. These results indicate that BDNF signaling participates in the experience-dependent plasticity induced by pure tone exposure during the critical period in A1.

  10. Manipulation of BDNF signaling modifies the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex.

    Directory of Open Access Journals (Sweden)

    Renata Anomal

    Full Text Available Sensory experience powerfully shapes cortical sensory representations during an early developmental "critical period" of plasticity. In the rat primary auditory cortex (A1, the experience-dependent plasticity is exemplified by significant, long-lasting distortions in frequency representation after mere exposure to repetitive frequencies during the second week of life. In the visual system, the normal unfolding of critical period plasticity is strongly dependent on the elaboration of brain-derived neurotrophic factor (BDNF, which promotes the establishment of inhibition. Here, we tested the hypothesis that BDNF signaling plays a role in the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. Elvax resin implants filled with either a blocking antibody against BDNF or the BDNF protein were placed on the A1 of rat pups throughout the critical period window. These pups were then exposed to 7 kHz pure tone for 7 consecutive days and their frequency representations were mapped. BDNF blockade completely prevented the shaping of cortical tuning by experience and resulted in poor overall frequency tuning in A1. By contrast, BDNF infusion on the developing A1 amplified the effect of 7 kHz tone exposure compared to control. These results indicate that BDNF signaling participates in the experience-dependent plasticity induced by pure tone exposure during the critical period in A1.

  11. Spatial localization deficits and auditory cortical dysfunction in schizophrenia

    Science.gov (United States)

    Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.

    2014-01-01

    Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608

  12. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    Science.gov (United States)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids

  14. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  15. Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.

    Science.gov (United States)

    Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C

    2015-11-04

    Deficits in auditory emotion recognition (AER) are a core feature of schizophrenia and a key component of social cognitive impairment. AER deficits are tied behaviorally to impaired ability to interpret tonal ("prosodic") features of speech that normally convey emotion, such as modulations in base pitch (F0M) and pitch variability (F0SD). These modulations can be recreated using synthetic frequency modulated (FM) tones that mimic the prosodic contours of specific emotional stimuli. The present study investigates neural mechanisms underlying impaired AER using a combined event-related potential/resting-state functional connectivity (rsfMRI) approach in 84 schizophrenia/schizoaffective disorder patients and 66 healthy comparison subjects. Mismatch negativity (MMN) to FM tones was assessed in 43 patients/36 controls. rsfMRI between auditory cortex and medial temporal (insula) regions was assessed in 55 patients/51 controls. The relationship between AER, MMN to FM tones, and rsfMRI was assessed in the subset who performed all assessments (14 patients, 21 controls). As predicted, patients showed robust reductions in MMN across FM stimulus type (p = 0.005), particularly to modulations in F0M, along with impairments in AER and FM tone discrimination. MMN source analysis indicated dipoles in both auditory cortex and anterior insula, whereas rsfMRI analyses showed reduced auditory-insula connectivity. MMN to FM tones and functional connectivity together accounted for ∼50% of the variance in AER performance across individuals. These findings demonstrate that impaired preattentive processing of tonal information and reduced auditory-insula connectivity are critical determinants of social cognitive dysfunction in schizophrenia, and thus represent key targets for future research and clinical intervention. Schizophrenia patients show deficits in the ability to infer emotion based upon tone of voice [auditory emotion recognition (AER)] that drive impairments in social cognition

  16. Hearing after congenital deafness: central auditory plasticity and sensory deprivation.

    Science.gov (United States)

    Kral, A; Hartmann, R; Tillein, J; Heid, S; Klinke, R

    2002-08-01

    The congenitally deaf cat suffers from a degeneration of the inner ear. The organ of Corti bears no hair cells, yet the auditory afferents are preserved. Since these animals have no auditory experience, they were used as a model for congenital deafness. Kittens were equipped with a cochlear implant at different ages and electro-stimulated over a period of 2.0-5.5 months using a monopolar single-channel compressed analogue stimulation strategy (VIENNA-type signal processor). Following a period of auditory experience, we investigated cortical field potentials in response to electrical biphasic pulses applied by means of the cochlear implant. In comparison to naive unstimulated deaf cats and normal hearing cats, the chronically stimulated animals showed larger cortical regions producing middle-latency responses at or above 300 microV amplitude at the contralateral as well as the ipsilateral auditory cortex. The cortex ipsilateral to the chronically stimulated ear did not show any signs of reduced responsiveness when stimulating the 'untrained' ear through a second cochlear implant inserted in the final experiment. With comparable duration of auditory training, the activated cortical area was substantially smaller if implantation had been performed at an older age of 5-6 months. The data emphasize that young sensory systems in cats have a higher capacity for plasticity than older ones and that there is a sensitive period for the cat's auditory system.

  17. Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat

    Directory of Open Access Journals (Sweden)

    S.S. Hu

    2014-03-01

    Full Text Available Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc and the early growth response gene-1 (Egr-1, appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC and auditory cortex (AC, in contradiction of our hypothesis. Expression of N-methyl d-aspartate receptor subunit 2B (NR2B was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus.

  18. Stimulus-specific suppression preserves information in auditory short-term memory.

    Science.gov (United States)

    Linke, Annika C; Vicente-Grabovetsky, Alejandro; Cusack, Rhodri

    2011-08-02

    Philosophers and scientists have puzzled for millennia over how perceptual information is stored in short-term memory. Some have suggested that early sensory representations are involved, but their precise role has remained unclear. The current study asks whether auditory cortex shows sustained frequency-specific activation while sounds are maintained in short-term memory using high-resolution functional MRI (fMRI). Investigating short-term memory representations within regions of human auditory cortex with fMRI has been difficult because of their small size and high anatomical variability between subjects. However, we overcame these constraints by using multivoxel pattern analysis. It clearly revealed frequency-specific activity during the encoding phase of a change detection task, and the degree of this frequency-specific activation was positively related to performance in the task. Although the sounds had to be maintained in memory, activity in auditory cortex was significantly suppressed. Strikingly, patterns of activity in this maintenance period correlated negatively with the patterns evoked by the same frequencies during encoding. Furthermore, individuals who used a rehearsal strategy to remember the sounds showed reduced frequency-specific suppression during the maintenance period. Although negative activations are often disregarded in fMRI research, our findings imply that decreases in blood oxygenation level-dependent response carry important stimulus-specific information and can be related to cognitive processes. We hypothesize that, during auditory change detection, frequency-specific suppression protects short-term memory representations from being overwritten by inhibiting the encoding of interfering sounds.

  19. Crossmodal plasticity in auditory, visual and multisensory cortical areas following noise-induced hearing loss in adulthood.

    Science.gov (United States)

    Schormans, Ashley L; Typlt, Marei; Allman, Brian L

    2017-01-01

    Complete or partial hearing loss results in an increased responsiveness of neurons in the core auditory cortex of numerous species to visual and/or tactile stimuli (i.e., crossmodal plasticity). At present, however, it remains uncertain how adult-onset partial hearing loss affects higher-order cortical areas that normally integrate audiovisual information. To that end, extracellular electrophysiological recordings were performed under anesthesia in noise-exposed rats two weeks post-exposure (0.8-20 kHz at 120 dB SPL for 2 h) and age-matched controls to characterize the nature and extent of crossmodal plasticity in the dorsal auditory cortex (AuD), an area outside of the auditory core, as well as in the neighboring lateral extrastriate visual cortex (V2L), an area known to contribute to audiovisual processing. Computer-generated auditory (noise burst), visual (light flash) and combined audiovisual stimuli were delivered, and the associated spiking activity was used to determine the response profile of each neuron sampled (i.e., unisensory, subthreshold multisensory or bimodal). In both the AuD cortex and the multisensory zone of the V2L cortex, the maximum firing rates were unchanged following noise exposure, and there was a relative increase in the proportion of neurons responsive to visual stimuli, with a concomitant decrease in the number of neurons that were solely responsive to auditory stimuli despite adjusting the sound intensity to account for each rat's hearing threshold. These neighboring cortical areas differed, however, in how noise-induced hearing loss affected audiovisual processing; the total proportion of multisensory neurons significantly decreased in the V2L cortex (control 38.8 ± 3.3% vs. noise-exposed 27.1 ± 3.4%), and dramatically increased in the AuD cortex (control 23.9 ± 3.3% vs. noise-exposed 49.8 ± 6.1%). Thus, following noise exposure, the cortical area showing the greatest relative degree of multisensory convergence

  20. Early auditory processing in area V5/MT+ of the congenitally blind brain.

    Science.gov (United States)

    Watkins, Kate E; Shakespeare, Timothy J; O'Donoghue, M Clare; Alexander, Iona; Ragge, Nicola; Cowey, Alan; Bridge, Holly

    2013-11-13

    Previous imaging studies of congenital blindness have studied individuals with heterogeneous causes of blindness, which may influence the nature and extent of cross-modal plasticity. Here, we scanned a homogeneous group of blind people with bilateral congenital anophthalmia, a condition in which both eyes fail to develop, and, as a result, the visual pathway is not stimulated by either light or retinal waves. This model of congenital blindness presents an opportunity to investigate the effects of very early visual deafferentation on the functional organization of the brain. In anophthalmic animals, the occipital cortex receives direct subcortical auditory input. We hypothesized that this pattern of subcortical reorganization ought to result in a topographic mapping of auditory frequency information in the occipital cortex of anophthalmic people. Using functional MRI, we examined auditory-evoked activity to pure tones of high, medium, and low frequencies. Activity in the superior temporal cortex was significantly reduced in anophthalmic compared with sighted participants. In the occipital cortex, a region corresponding to the cytoarchitectural area V5/MT+ was activated in the anophthalmic participants but not in sighted controls. Whereas previous studies in the blind indicate that this cortical area is activated to auditory motion, our data show it is also active for trains of pure tone stimuli and in some anophthalmic participants shows a topographic mapping (tonotopy). Therefore, this region appears to be performing early sensory processing, possibly served by direct subcortical input from the pulvinar to V5/MT+.

  1. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Zhang, Jiping; Cai, Rui; Sun, Xinde

    2010-02-15

    Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate-level noise delayed the emergence of adult-like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical-period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABA(A) receptor subunit beta3 in the auditory cortex after noise rearing. Our results show that continuous moderate-level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABA(A)beta3. Furthermore, noise rearing also induced a significant decrease in the level of GABA(A) receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABA(A)beta3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. Copyright 2009 Wiley-Liss, Inc.

  2. The Effect of Early Visual Deprivation on the Neural Bases of Auditory Processing.

    Science.gov (United States)

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2016-02-03

    Transient congenital visual deprivation affects visual and multisensory processing. In contrast, the extent to which it affects auditory processing has not been investigated systematically. Research in permanently blind individuals has revealed brain reorganization during auditory processing, involving both intramodal and crossmodal plasticity. The present study investigated the effect of transient congenital visual deprivation on the neural bases of auditory processing in humans. Cataract-reversal individuals and normally sighted controls performed a speech-in-noise task while undergoing functional magnetic resonance imaging. Although there were no behavioral group differences, groups differed in auditory cortical responses: in the normally sighted group, auditory cortex activation increased with increasing noise level, whereas in the cataract-reversal group, no activation difference was observed across noise levels. An auditory activation of visual cortex was not observed at the group level in cataract-reversal individuals. The present data suggest prevailing auditory processing advantages after transient congenital visual deprivation, even many years after sight restoration. The present study demonstrates that people whose sight was restored after a transient period of congenital blindness show more efficient cortical processing of auditory stimuli (here speech), similarly to what has been observed in congenitally permanently blind individuals. These results underscore the importance of early sensory experience in permanently shaping brain function. Copyright © 2016 the authors 0270-6474/16/361620-11$15.00/0.

  3. Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease.

    Science.gov (United States)

    Dhanjal, Novraj S; Warren, Jane E; Patel, Maneesh C; Wise, Richard J S

    2013-02-01

    Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing. Copyright © 2012 American Neurological Association.

  4. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey.

    Science.gov (United States)

    Scott, Brian H; Leccese, Paul A; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Mullarkey, Matthew P; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-01-01

    In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Neural circuits in auditory and audiovisual memory.

    Science.gov (United States)

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  7. Sensory modality specificity of neural activity related to memory in visual cortex.

    Science.gov (United States)

    Gibson, J R; Maunsell, J H

    1997-09-01

    Previous studies have shown that when monkeys perform a delayed match-to-sample (DMS) task, some neurons in inferotemporal visual cortex are activated selectively during the delay period when the animal must remember particular visual stimuli. This selective delay activity may be involved in short-term memory. It does not depend on visual stimulation: both auditory and tactile stimuli can trigger selective delay activity in inferotemporal cortex when animals expect to respond to visual stimuli in a DMS task. We have examined the overall modality specificity of delay period activity using a variety of auditory/visual cross-modal and unimodal DMS tasks. The cross-modal DMS tasks involved making specific long-term memory associations between visual and auditory stimuli, whereas the unimodal DMS tasks were standard identity matching tasks. Delay activity existed in auditory/visual cross-modal DMS tasks whether the animal anticipated responding to visual or auditory stimuli. No evidence of selective delay period activation was seen in a purely auditory DMS task. Delay-selective cells were relatively common in one animal where they constituted up to 53% neurons tested with a given task. This was only the case for up to 9% of cells in a second animal. In the first animal, a specific long-term memory representation for learned cross-modal associations was observed in delay activity, indicating that this type of representation need not be purely visual. Furthermore, in this same animal, delay activity in one cross-modal task, an auditory-to-visual task, predicted correct and incorrect responses. These results suggest that neurons in inferotemporal cortex contribute to abstract memory representations that can be activated by input from other sensory modalities, but these representations are specific to visual behaviors.

  8. Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex.

    Science.gov (United States)

    Watkins, Kate E; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M; Smith, Stephen M; Ragge, Nicola; Bridge, Holly

    2012-05-01

    Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an auditory covert naming task in five bilaterally anophthalmic subjects, who have never received visual input. When listening to auditory definitions and covertly retrieving words, these subjects activated lateral occipital cortex bilaterally in addition to the language areas activated in sighted controls. This activity was significantly greater than that present in a control condition of listening to reversed speech. The lateral occipital cortex was also recruited into a left-lateralized resting-state network that usually comprises anterior and posterior language areas. Levels of activation to the auditory naming and reversed speech conditions did not differ in the calcarine (striate) cortex. This primary 'visual' cortex was not recruited to the left-lateralized resting-state network and showed high interhemispheric correlation of activity at rest, as is typically seen in unimodal cortical areas. In contrast, the interhemispheric correlation of resting activity in extrastriate areas was reduced in anophthalmia to the level of cortical areas that are heteromodal, such as the inferior frontal gyrus. Previous imaging studies in the congenitally blind show that primary visual cortex is activated in higher-order tasks, such as language and memory to a greater extent than during more basic sensory processing, resulting in a reversal of the normal hierarchy of functional organization across 'visual' areas. Our data do not support such a pattern of organization in anophthalmia. Instead, the patterns of activity during task and the functional connectivity at rest are consistent with the known hierarchy of processing in these areas

  9. The fusion of mental imagery and sensation in the temporal association cortex.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2014-10-08

    It is well understood that the brain integrates information that is provided to our different senses to generate a coherent multisensory percept of the world around us (Stein and Stanford, 2008), but how does the brain handle concurrent sensory information from our mind and the external world? Recent behavioral experiments have found that mental imagery--the internal representation of sensory stimuli in one's mind--can also lead to integrated multisensory perception (Berger and Ehrsson, 2013); however, the neural mechanisms of this process have not yet been explored. Here, using functional magnetic resonance imaging and an adapted version of a well known multisensory illusion (i.e., the ventriloquist illusion; Howard and Templeton, 1966), we investigated the neural basis of mental imagery-induced multisensory perception in humans. We found that simultaneous visual mental imagery and auditory stimulation led to an illusory translocation of auditory stimuli and was associated with increased activity in the left superior temporal sulcus (L. STS), a key site for the integration of real audiovisual stimuli (Beauchamp et al., 2004a, 2010; Driver and Noesselt, 2008; Ghazanfar et al., 2008; Dahl et al., 2009). This imagery-induced ventriloquist illusion was also associated with increased effective connectivity between the L. STS and the auditory cortex. These findings suggest an important role of the temporal association cortex in integrating imagined visual stimuli with real auditory stimuli, and further suggest that connectivity between the STS and auditory cortex plays a modulatory role in spatially localizing auditory stimuli in the presence of imagined visual stimuli. Copyright © 2014 the authors 0270-6474/14/3313684-09$15.00/0.

  10. A Neural Circuit for Auditory Dominance over Visual Perception.

    Science.gov (United States)

    Song, You-Hyang; Kim, Jae-Hyun; Jeong, Hye-Won; Choi, Ilsong; Jeong, Daun; Kim, Kwansoo; Lee, Seung-Hee

    2017-02-22

    When conflicts occur during integration of visual and auditory information, one modality often dominates the other, but the underlying neural circuit mechanism remains unclear. Using auditory-visual discrimination tasks for head-fixed mice, we found that audition dominates vision in a process mediated by interaction between inputs from the primary visual (VC) and auditory (AC) cortices in the posterior parietal cortex (PTLp). Co-activation of the VC and AC suppresses VC-induced PTLp responses, leaving AC-induced responses. Furthermore, parvalbumin-positive (PV+) interneurons in the PTLp mainly receive AC inputs, and muscimol inactivation of the PTLp or optogenetic inhibition of its PV+ neurons abolishes auditory dominance in the resolution of cross-modal sensory conflicts without affecting either sensory perception. Conversely, optogenetic activation of PV+ neurons in the PTLp enhances the auditory dominance. Thus, our results demonstrate that AC input-specific feedforward inhibition of VC inputs in the PTLp is responsible for the auditory dominance during cross-modal integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  12. Deep transcranial magnetic stimulation for the treatment of auditory hallucinations: a preliminary open-label study.

    Science.gov (United States)

    Rosenberg, Oded; Roth, Yiftach; Kotler, Moshe; Zangen, Abraham; Dannon, Pinhas

    2011-02-09

    Schizophrenia is a chronic and disabling disease that presents with delusions and hallucinations. Auditory hallucinations are usually expressed as voices speaking to or about the patient. Previous studies have examined the effect of repetitive transcranial magnetic stimulation (TMS) over the temporoparietal cortex on auditory hallucinations in schizophrenic patients. Our aim was to explore the potential effect of deep TMS, using the H coil over the same brain region on auditory hallucinations. Eight schizophrenic patients with refractory auditory hallucinations were recruited, mainly from Beer Ya'akov Mental Health Institution (Tel Aviv university, Israel) ambulatory clinics, as well as from other hospitals outpatient populations. Low-frequency deep TMS was applied for 10 min (600 pulses per session) to the left temporoparietal cortex for either 10 or 20 sessions. Deep TMS was applied using Brainsway's H1 coil apparatus. Patients were evaluated using the Auditory Hallucinations Rating Scale (AHRS) as well as the Scale for the Assessment of Positive Symptoms scores (SAPS), Clinical Global Impressions (CGI) scale, and the Scale for Assessment of Negative Symptoms (SANS). This preliminary study demonstrated a significant improvement in AHRS score (an average reduction of 31.7% ± 32.2%) and to a lesser extent improvement in SAPS results (an average reduction of 16.5% ± 20.3%). In this study, we have demonstrated the potential of deep TMS treatment over the temporoparietal cortex as an add-on treatment for chronic auditory hallucinations in schizophrenic patients. Larger samples in a double-blind sham-controlled design are now being preformed to evaluate the effectiveness of deep TMS treatment for auditory hallucinations. This trial is registered with clinicaltrials.gov (identifier: NCT00564096).

  13. Changes in regional cerebral blood flow during auditory cognitive tasks

    International Nuclear Information System (INIS)

    Ohyama, Masashi; Kitamura, Shin; Terashi, Akiro; Senda, Michio.

    1993-01-01

    In order to investigate the relation between auditory cognitive function and regional brain activation, we measured the changes in the regional cerebral blood flow (CBF) using positron emission tomography (PET) during the 'odd-ball' paradigm in ten normal healthy volunteers. The subjects underwent 3 tasks, twice for each, while the evoked potential was recorded. In these tasks, the auditory stimulus was a series of pure tones delivered every 1.5 sec binaurally at 75 dB from the earphones. Task A: the stimulus was a series of tones with 1000 Hz only, and the subject was instructed to only hear. Task B: the stimulus was a series of tones with 1000 Hz only, and the subject was instructed to push the button on detecting a tone. Task C: the stimulus was a series of pure tones delivered every 1.5 sec binaurally at 75 dB with a frequency of 1000 Hz (non-target) in 80% and 2000 Hz (target) in 20% at random, and the subject was instructed to push the button on detecting a target tone. The event related potential (P300) was observed in task C (Pz: 334.3±19.6 msec). At each task, the CBF was measured using PET with i.v. injection of 1.5 GBq of O-15 water. The changes in CBF associated with auditory cognition was evaluated by the difference between the CBF images in task C and B. Localized increase was observed in the anterior cingulate cortex (in all subjects), the bilateral associate auditory cortex, the prefrontal cortex and the parietal cortex. The latter three areas had a large individual variation in the location of foci. These results suggested the role of those cortical areas in auditory cognition. The anterior cingulate was most activated (15.0±2.24% of global CBF). This region was not activated in the condition of task B minus task A. The anterior cingulate is a part of Papez's circuit that is related to memory and other higher cortical function. These results suggested that this area may play an important role in cognition as well as in attention. (author)

  14. Enhanced audio-visual interactions in the auditory cortex of elderly cochlear-implant users.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Schulte, Svenja; Hauthal, Nadine; Kantzke, Christoph; Rach, Stefan; Büchner, Andreas; Dengler, Reinhard; Sandmann, Pascale

    2015-10-01

    Auditory deprivation and the restoration of hearing via a cochlear implant (CI) can induce functional plasticity in auditory cortical areas. How these plastic changes affect the ability to integrate combined auditory (A) and visual (V) information is not yet well understood. In the present study, we used electroencephalography (EEG) to examine whether age, temporary deafness and altered sensory experience with a CI can affect audio-visual (AV) interactions in post-lingually deafened CI users. Young and elderly CI users and age-matched NH listeners performed a speeded response task on basic auditory, visual and audio-visual stimuli. Regarding the behavioral results, a redundant signals effect, that is, faster response times to cross-modal (AV) than to both of the two modality-specific stimuli (A, V), was revealed for all groups of participants. Moreover, in all four groups, we found evidence for audio-visual integration. Regarding event-related responses (ERPs), we observed a more pronounced visual modulation of the cortical auditory response at N1 latency (approximately 100 ms after stimulus onset) in the elderly CI users when compared with young CI users and elderly NH listeners. Thus, elderly CI users showed enhanced audio-visual binding which may be a consequence of compensatory strategies developed due to temporary deafness and/or degraded sensory input after implantation. These results indicate that the combination of aging, sensory deprivation and CI facilitates the coupling between the auditory and the visual modality. We suggest that this enhancement in multisensory interactions could be used to optimize auditory rehabilitation, especially in elderly CI users, by the application of strong audio-visually based rehabilitation strategies after implant switch-on. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    Science.gov (United States)

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  16. Mutism and auditory agnosia due to bilateral insular damage--role of the insula in human communication.

    Science.gov (United States)

    Habib, M; Daquin, G; Milandre, L; Royere, M L; Rey, M; Lanteri, A; Salamon, G; Khalil, R

    1995-03-01

    We report a case of transient mutism and persistent auditory agnosia due to two successive ischemic infarcts mainly involving the insular cortex on both hemispheres. During the 'mutic' period, which lasted about 1 month, the patient did not respond to any auditory stimuli and made no effort to communicate. On follow-up examinations, language competences had re-appeared almost intact, but a massive auditory agnosia for non-verbal sounds was observed. From close inspection of lesion site, as determined with brain resonance imaging, and from a study of auditory evoked potentials, it is concluded that bilateral insular damage was crucial to both expressive and receptive components of the syndrome. The role of the insula in verbal and non-verbal communication is discussed in the light of anatomical descriptions of the pattern of connectivity of the insular cortex.

  17. Measuring Auditory Selective Attention using Frequency Tagging

    Directory of Open Access Journals (Sweden)

    Hari M Bharadwaj

    2014-02-01

    Full Text Available Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in the contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right precentral sulcus (lPCS, a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream suggesting that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity help partly explain why past ASSR studies of auditory spatial attention yield seemingly contradictory

  18. Deep transcranial magnetic stimulation add-on for the treatment of auditory hallucinations: a double-blind study.

    Science.gov (United States)

    Rosenberg, Oded; Gersner, Roman; Klein, Limor Dinur; Kotler, Moshe; Zangen, Abraham; Dannon, Pinhas

    2012-05-06

    About 25% of schizophrenia patients with auditory hallucinations are refractory to pharmacotherapy and electroconvulsive therapy. We conducted a deep transcranial magnetic stimulation (TMS) pilot study in order to evaluate the potential clinical benefit of repeated left temporoparietal cortex stimulation in these patients. The results were encouraging, but a sham-controlled study was needed to rule out a placebo effect. A total of 18 schizophrenic patients with refractory auditory hallucinations were recruited, from Beer Yaakov MHC and other hospitals outpatient populations. Patients received 10 daily treatment sessions with low-frequency (1 Hz for 10 min) deep TMS applied over the left temporoparietal cortex, using the H1 coil at the intensity of 110% of the motor threshold. Procedure was either real or sham according to patient randomization. Patients were evaluated via the Auditory Hallucinations Rating Scale, Scale for the Assessment of Positive Symptoms-Negative Symptoms, Clinical Global Impressions, and Quality of Life Questionnaire. In all, 10 patients completed the treatment (10 TMS sessions). Auditory hallucination scores of both groups improved; however, there was no statistical difference in any of the scales between the active and the sham treated groups. Low-frequency deep TMS to the left temporoparietal cortex using the protocol mentioned above has no statistically significant effect on auditory hallucinations or the other clinical scales measured in schizophrenic patients. Clinicaltrials.gov identifier: NCT00564096.

  19. Atypical brain lateralisation in the auditory cortex and language performance in 3- to 7-year-old children with high-functioning autism spectrum disorder: a child-customised magnetoencephalography (MEG) study.

    Science.gov (United States)

    Yoshimura, Yuko; Kikuchi, Mitsuru; Shitamichi, Kiyomi; Ueno, Sanae; Munesue, Toshio; Ono, Yasuki; Tsubokawa, Tsunehisa; Haruta, Yasuhiro; Oi, Manabu; Niida, Yo; Remijn, Gerard B; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Minabe, Yoshio

    2013-10-08

    significant predictor of shorter P50m latency in the right hemisphere. Using a child-customised MEG device, we studied the P50m component that was evoked through binaural human voice stimuli in young ASD and TD children to examine differences in auditory cortex function that are associated with language development. Our results suggest that there is atypical brain function in the auditory cortex in young children with ASD, regardless of language development.

  20. Prefrontal cortex based sex differences in tinnitus perception: same tinnitus intensity, same tinnitus distress, different mood.

    Directory of Open Access Journals (Sweden)

    Sven Vanneste

    Full Text Available BACKGROUND: Tinnitus refers to auditory phantom sensation. It is estimated that for 2% of the population this auditory phantom percept severely affects the quality of life, due to tinnitus related distress. Although the overall distress levels do not differ between sexes in tinnitus, females are more influenced by distress than males. Typically, pain, sleep, and depression are perceived as significantly more severe by female tinnitus patients. Studies on gender differences in emotional regulation indicate that females with high depressive symptoms show greater attention to emotion, and use less anti-rumination emotional repair strategies than males. METHODOLOGY: The objective of this study was to verify whether the activity and connectivity of the resting brain is different for male and female tinnitus patients using resting-state EEG. CONCLUSIONS: Females had a higher mean score than male tinnitus patients on the BDI-II. Female tinnitus patients differ from male tinnitus patients in the orbitofrontal cortex (OFC extending to the frontopolar cortex in beta1 and beta2. The OFC is important for emotional processing of sounds. Increased functional alpha connectivity is found between the OFC, insula, subgenual anterior cingulate (sgACC, parahippocampal (PHC areas and the auditory cortex in females. Our data suggest increased functional connectivity that binds tinnitus-related auditory cortex activity to auditory emotion-related areas via the PHC-sgACC connections resulting in a more depressive state even though the tinnitus intensity and tinnitus-related distress are not different from men. Comparing male tinnitus patients to a control group of males significant differences could be found for beta3 in the posterior cingulate cortex (PCC. The PCC might be related to cognitive and memory-related aspects of the tinnitus percept. Our results propose that sex influences in tinnitus research cannot be ignored and should be taken into account in functional

  1. Is there a role of visual cortex in spatial hearing?

    Science.gov (United States)

    Zimmer, Ulrike; Lewald, Jörg; Erb, Michael; Grodd, Wolfgang; Karnath, Hans-Otto

    2004-12-01

    The integration of auditory and visual spatial information is an important prerequisite for accurate orientation in the environment. However, while visual spatial information is based on retinal coordinates, the auditory system receives information on sound location in relation to the head. Thus, any deviation of the eyes from a central position results in a divergence between the retinal visual and the head-centred auditory coordinates. It has been suggested that this divergence is compensated for by a neural coordinate transformation, using a signal of eye-in-head position. Using functional magnetic resonance imaging, we investigated which cortical areas of the human brain participate in such auditory-visual coordinate transformations. Sounds were produced with different interaural level differences, leading to left, right or central intracranial percepts, while subjects directed their gaze to visual targets presented to the left, to the right or straight ahead. When gaze was to the left or right, we found the primary visual cortex (V1/V2) activated in both hemispheres. The occipital activation did not occur with sound lateralization per se, but was found exclusively in combination with eccentric eye positions. This result suggests a relation of neural processing in the visual cortex and the transformation of auditory spatial coordinates responsible for maintaining the perceptual alignment of audition and vision with changes in gaze direction.

  2. Temporal integration of sequential auditory events: silent period in sound pattern activates human planum temporale.

    Science.gov (United States)

    Mustovic, Henrietta; Scheffler, Klaus; Di Salle, Francesco; Esposito, Fabrizio; Neuhoff, John G; Hennig, Jürgen; Seifritz, Erich

    2003-09-01

    Temporal integration is a fundamental process that the brain carries out to construct coherent percepts from serial sensory events. This process critically depends on the formation of memory traces reconciling past with present events and is particularly important in the auditory domain where sensory information is received both serially and in parallel. It has been suggested that buffers for transient auditory memory traces reside in the auditory cortex. However, previous studies investigating "echoic memory" did not distinguish between brain response to novel auditory stimulus characteristics on the level of basic sound processing and a higher level involving matching of present with stored information. Here we used functional magnetic resonance imaging in combination with a regular pattern of sounds repeated every 100 ms and deviant interspersed stimuli of 100-ms duration, which were either brief presentations of louder sounds or brief periods of silence, to probe the formation of auditory memory traces. To avoid interaction with scanner noise, the auditory stimulation sequence was implemented into the image acquisition scheme. Compared to increased loudness events, silent periods produced specific neural activation in the right planum temporale and temporoparietal junction. Our findings suggest that this area posterior to the auditory cortex plays a critical role in integrating sequential auditory events and is involved in the formation of short-term auditory memory traces. This function of the planum temporale appears to be fundamental in the segregation of simultaneous sound sources.

  3. Deep transcranial magnetic stimulation for the treatment of auditory hallucinations: a preliminary open-label study

    Directory of Open Access Journals (Sweden)

    Zangen Abraham

    2011-02-01

    Full Text Available Abstract Background Schizophrenia is a chronic and disabling disease that presents with delusions and hallucinations. Auditory hallucinations are usually expressed as voices speaking to or about the patient. Previous studies have examined the effect of repetitive transcranial magnetic stimulation (TMS over the temporoparietal cortex on auditory hallucinations in schizophrenic patients. Our aim was to explore the potential effect of deep TMS, using the H coil over the same brain region on auditory hallucinations. Patients and methods Eight schizophrenic patients with refractory auditory hallucinations were recruited, mainly from Beer Ya'akov Mental Health Institution (Tel Aviv university, Israel ambulatory clinics, as well as from other hospitals outpatient populations. Low-frequency deep TMS was applied for 10 min (600 pulses per session to the left temporoparietal cortex for either 10 or 20 sessions. Deep TMS was applied using Brainsway's H1 coil apparatus. Patients were evaluated using the Auditory Hallucinations Rating Scale (AHRS as well as the Scale for the Assessment of Positive Symptoms scores (SAPS, Clinical Global Impressions (CGI scale, and the Scale for Assessment of Negative Symptoms (SANS. Results This preliminary study demonstrated a significant improvement in AHRS score (an average reduction of 31.7% ± 32.2% and to a lesser extent improvement in SAPS results (an average reduction of 16.5% ± 20.3%. Conclusions In this study, we have demonstrated the potential of deep TMS treatment over the temporoparietal cortex as an add-on treatment for chronic auditory hallucinations in schizophrenic patients. Larger samples in a double-blind sham-controlled design are now being preformed to evaluate the effectiveness of deep TMS treatment for auditory hallucinations. Trial registration This trial is registered with clinicaltrials.gov (identifier: NCT00564096.

  4. Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations

    Directory of Open Access Journals (Sweden)

    Gabriella Musacchia

    2017-08-01

    Full Text Available Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx, over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx or maturation alone (Naïve Control, NC. Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD elicited greater Theta-band (4–6 Hz activity in Right Auditory Cortex (RAC, as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV elicited larger responses in Left Auditory Cortex (LAC. PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33–37 Hz activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping.

  5. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise.

    Science.gov (United States)

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P; Ahlfors, Seppo P; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E; Belliveau, John W

    2011-03-08

    How can we concentrate on relevant sounds in noisy environments? A "gain model" suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A "tuning model" suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMRI) while subjects attended to tones delivered to one ear and ignored opposite-ear inputs. The attended ear was switched every 30 s to quantify how quickly the effects evolve. To produce overlapping inputs, the tones were presented alone vs. during white-noise masking notch-filtered ±1/6 octaves around the tone center frequencies. Amplitude modulation (39 vs. 41 Hz in opposite ears) was applied for "frequency tagging" of attention effects on maskers. Noise masking reduced early (50-150 ms; N1) auditory responses to unattended tones. In support of the tuning model, selective attention canceled out this attenuating effect but did not modulate the gain of 50-150 ms activity to nonmasked tones or steady-state responses to the maskers themselves. These tuning effects originated at nonprimary auditory cortices, purportedly occupied by neurons that, without attention, have wider frequency tuning than ±1/6 octaves. The attentional tuning evolved rapidly, during the first few seconds after attention switching, and correlated with behavioral discrimination performance. In conclusion, a simple gain model alone cannot explain auditory selective attention. In nonprimary auditory cortices, attention-driven short-term plasticity retunes neurons to segregate relevant sounds from noise.

  6. Left hemispheric dominance during auditory processing in a noisy environment

    Directory of Open Access Journals (Sweden)

    Ross Bernhard

    2007-11-01

    Full Text Available Abstract Background In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG. Results We observed significant decrements of auditory evoked responses and a significant inter-hemispheric difference for the N1m response during both ipsi- and contra-lateral masking. Conclusion The decrements of auditory evoked neural activities during simultaneous masking can be explained by neural interactions evoked by masker and test stimulus in peripheral and central auditory systems. The inter-hemispheric differences of N1m decrements during ipsi- and contra-lateral masking reflect a basic hemispheric specialization contributing to the processing of complex auditory stimuli such as speech signals in noisy environments.

  7. A Novel Functional Magnetic Resonance Imaging Paradigm for the Preoperative Assessment of Auditory Perception in a Musician Undergoing Temporal Lobe Surgery.

    Science.gov (United States)

    Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J

    2018-03-01

    Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Activations of human auditory cortex to phonemic and nonphonemic vowels during discrimination and memory tasks.

    Science.gov (United States)

    Harinen, Kirsi; Rinne, Teemu

    2013-08-15

    We used fMRI to investigate activations within human auditory cortex (AC) to vowels during vowel discrimination, vowel (categorical n-back) memory, and visual tasks. Based on our previous studies, we hypothesized that the vowel discrimination task would be associated with increased activations in the anterior superior temporal gyrus (STG), while the vowel memory task would enhance activations in the posterior STG and inferior parietal lobule (IPL). In particular, we tested the hypothesis that activations in the IPL during vowel memory tasks are associated with categorical processing. Namely, activations due to categorical processing should be higher during tasks performed on nonphonemic (hard to categorize) than on phonemic (easy to categorize) vowels. As expected, we found distinct activation patterns during vowel discrimination and vowel memory tasks. Further, these task-dependent activations were different during tasks performed on phonemic or nonphonemic vowels. However, activations in the IPL associated with the vowel memory task were not stronger during nonphonemic than phonemic vowel blocks. Together these results demonstrate that activations in human AC to vowels depend on both the requirements of the behavioral task and the phonemic status of the vowels. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

    Directory of Open Access Journals (Sweden)

    Guang-Di Chen

    2014-01-01

    Full Text Available Previous studies have shown that sodium salicylate (SS activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus. The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.

  10. Deep transcranial magnetic stimulation add-on for the treatment of auditory hallucinations: a double-blind study

    Directory of Open Access Journals (Sweden)

    Rosenberg Oded

    2012-05-01

    Full Text Available Abstract Background About 25% of schizophrenia patients with auditory hallucinations are refractory to pharmacotherapy and electroconvulsive therapy. We conducted a deep transcranial magnetic stimulation (TMS pilot study in order to evaluate the potential clinical benefit of repeated left temporoparietal cortex stimulation in these patients. The results were encouraging, but a sham-controlled study was needed to rule out a placebo effect. Methods A total of 18 schizophrenic patients with refractory auditory hallucinations were recruited, from Beer Yaakov MHC and other hospitals outpatient populations. Patients received 10 daily treatment sessions with low-frequency (1 Hz for 10 min deep TMS applied over the left temporoparietal cortex, using the H1 coil at the intensity of 110% of the motor threshold. Procedure was either real or sham according to patient randomization. Patients were evaluated via the Auditory Hallucinations Rating Scale, Scale for the Assessment of Positive Symptoms-Negative Symptoms, Clinical Global Impressions, and Quality of Life Questionnaire. Results In all, 10 patients completed the treatment (10 TMS sessions. Auditory hallucination scores of both groups improved; however, there was no statistical difference in any of the scales between the active and the sham treated groups. Conclusions Low-frequency deep TMS to the left temporoparietal cortex using the protocol mentioned above has no statistically significant effect on auditory hallucinations or the other clinical scales measured in schizophrenic patients. Trial Registration Clinicaltrials.gov identifier: NCT00564096.

  11. Neurogenesis in the brain auditory pathway of a marsupial, the northern native cat (Dasyurus hallucatus)

    International Nuclear Information System (INIS)

    Aitkin, L.; Nelson, J.; Farrington, M.; Swann, S.

    1991-01-01

    Neurogenesis in the auditory pathway of the marsupial Dasyurus hallucatus was studied. Intraperitoneal injections of tritiated thymidine (20-40 microCi) were made into pouch-young varying from 1 to 56 days pouch-life. Animals were killed as adults and brain sections were prepared for autoradiography and counterstained with a Nissl stain. Neurons in the ventral cochlear nucleus were generated prior to 3 days pouch-life, in the superior olive at 5-7 days, and in the dorsal cochlear nucleus over a prolonged period. Inferior collicular neurogenesis lagged behind that in the medial geniculate, the latter taking place between days 3 and 9 and the former between days 7 and 22. Neurogenesis began in the auditory cortex on day 9 and was completed by about day 42. Thus neurogenesis was complete in the medullary auditory nuclei before that in the midbrain commenced, and in the medial geniculate before that in the auditory cortex commenced. The time course of neurogenesis in the auditory pathway of the native cat was very similar to that in another marsupial, the brushtail possum. For both, neurogenesis occurred earlier than in eutherian mammals of a similar size but was more protracted

  12. Hearing in action; auditory properties of neurones in the red nucleus of alert primates

    Directory of Open Access Journals (Sweden)

    Jonathan Murray Lovell

    2014-05-01

    Full Text Available The response of neurones in the Red Nucleus pars magnocellularis (RNm to both tone bursts and electrical stimulation were observed in three cynomolgus monkeys (Macaca fascicularis, in a series of studies primarily designed to characterise the influence of the dopaminergic ventral midbrain on auditory processing. Compared to its role in motor behaviour, little is known about the sensory response properties of neurons in the red nucleus; particularly those concerning the auditory modality. Sites in the RN were recognised by observing electrically evoked body movements characteristic for this deep brain structure. In this study we applied brief monopolar electrical stimulation to 118 deep brain sites at a maximum intensity of 200 µA, thus evoking minimal body movements. Auditory sensitivity of RN neurons was analysed more thoroughly at 15 sites, with the majority exhibiting broad tuning curves and phase locking up to 1.03 kHz. Since the RN appears to receive inputs from a very early stage of the ascending auditory system, our results suggest that sounds can modify the motor control exerted by this brain nucleus. At selected locations, we also tested for the presence of functional connections between the RN and the auditory cortex by inserting additional microelectrodes into the auditory cortex and investigating how action potentials and local field potentials were affected by electrical stimulation of the RN.

  13. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J

    2011-01-01

    The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography...... the tonotopic axis in the slice produced an orderly shift of voltage-sensitive dye (VSD) signals along the AI tonotopic axis, demonstrating topography in the mouse thalamocortical circuit that is preserved in the slice. However, compared with BF maps of neuronal spiking activity, the topographic order...... of subthreshold VSD maps was reduced in layer IV and even further degraded in layer II/III. Therefore, the precision of AI topography varies according to the source and layer of the mapping signal. Our findings further bridge the gap between in vivo and in vitro approaches for the detailed cellular study...

  14. The spectrotemporal filter mechanism of auditory selective attention

    Science.gov (United States)

    Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.

    2013-01-01

    SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126

  15. Fundamental deficits of auditory perception in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus.

    Science.gov (United States)

    Roberts, Larry E; Bosnyak, Daniel J; Bruce, Ian C; Gander, Phillip E; Paul, Brandon T

    2015-09-01

    It has been proposed that tinnitus is generated by aberrant neural activity that develops among neurons in tonotopic of regions of primary auditory cortex (A1) affected by hearing loss, which is also the frequency region where tinnitus percepts localize (Eggermont and Roberts 2004; Roberts et al., 2010, 2013). These models suggest (1) that differences between tinnitus and control groups of similar age and audiometric function should depend on whether A1 is probed in tinnitus frequency region (TFR) or below it, and (2) that brain responses evoked from A1 should track changes in the tinnitus percept when residual inhibition (RI) is induced by forward masking. We tested these predictions by measuring (128-channel EEG) the sound-evoked 40-Hz auditory steady-state response (ASSR) known to localize tonotopically to neural sources in A1. For comparison the N1 transient response localizing to distributed neural sources in nonprimary cortex (A2) was also studied. When tested under baseline conditions where tinnitus subjects would have heard their tinnitus, ASSR responses were larger in a tinnitus group than in controls when evoked by 500 Hz probes while the reverse was true for tinnitus and control groups tested with 5 kHz probes, confirming frequency-dependent group differences in this measure. On subsequent trials where RI was induced by masking (narrow band noise centered at 5 kHz), ASSR amplitude increased in the tinnitus group probed at 5 kHz but not in the tinnitus group probed at 500 Hz. When collapsed into a single sample tinnitus subjects reporting comparatively greater RI depth and duration showed comparatively larger ASSR increases after masking regardless of probe frequency. Effects of masking on ASSR amplitude in the control groups were completely reversed from those in the tinnitus groups, with no change seen to 5 kHz probes but ASSR increases to 500 Hz probes even though the masking sound contained no energy at 500 Hz (an "off-frequency" masking

  17. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice

    Directory of Open Access Journals (Sweden)

    Minoru Namikawa

    2017-12-01

    Full Text Available The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the peripheral and central auditory systems, the precise effect of salicylate on neural networks in the auditory cortex (AC is unknown. Here, we examined salicylate-induced changes in stimulus-driven laminar responses of AC slices with salicylate superfusion in young and aged senescence-accelerated-prone (SAMP and -resistant (SAMR mice. Of the two strains, SAMP1 is known to be a more suitable model of presbycusis. We recorded stimulus-driven laminar local field potential (LFP responses at multi sites in AC slice preparations. We found that for all AC slices in the two strains, salicylate always reduced stimulus-driven LFP responses in all layers. However, for the amplitudes of the LFP responses, the two senescence-accelerated mice (SAM strains showed different laminar properties between the pre- and post-salicylate conditions, reflecting strain-related differences in local circuits. As for the relationships between auditory brainstem response (ABR thresholds and the LFP amplitude ratios in the pre- vs. post-salicylate condition, we found negative correlations in layers 2/3 and 4 for both older strains, and in layer 5 (L5 in older SAMR1. In contrast, the GABAergic agonist muscimol (MSC led to positive correlations between ABR thresholds and LFP amplitude ratios in the pre- vs. post-MSC condition in younger SAM mice from both strains. Further, in younger mice, salicylate decreased the firing rate in AC L4 pyramidal neurons. Thus, salicylate can directly reduce neural excitability of L4 pyramidal neurons and thereby influence AC neural circuit activity. That we

  18. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    Directory of Open Access Journals (Sweden)

    Meytal Wilf

    Full Text Available Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  19. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    Science.gov (United States)

    Wilf, Meytal; Ramot, Michal; Furman-Haran, Edna; Arzi, Anat; Levkovitz, Yechiel; Malach, Rafael

    2016-01-01

    Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI) during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM) sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG) cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  20. Reduced neuronal activity in language-related regions after transcranial magnetic stimulation therapy for auditory verbal hallucinations.

    Science.gov (United States)

    Kindler, Jochen; Homan, Philipp; Jann, Kay; Federspiel, Andrea; Flury, Richard; Hauf, Martinus; Strik, Werner; Dierks, Thomas; Hubl, Daniela

    2013-03-15

    Transcranial magnetic stimulation (TMS) is a novel therapeutic approach, used in patients with pharmacoresistant auditory verbal hallucinations (AVH). To investigate the neurobiological effects of TMS on AVH, we measured cerebral blood flow with pseudo-continuous magnetic resonance-arterial spin labeling 20 ± 6 hours before and after TMS treatment. Thirty patients with schizophrenia or schizoaffective disorder were investigated. Fifteen patients received a 10-day TMS treatment to the left temporoparietal cortex, and 15 received the standard treatment. The stimulation location was chosen according to an individually determined language region determined by a functional magnetic resonance imaging language paradigm, which identified the sensorimotor language area, area Spt (sylvian parietotemporal), as the target region. TMS-treated patients showed positive clinical effects, which were indicated by a reduction in AVH scores (p ≤ .001). Cerebral blood flow was significantly decreased in the primary auditory cortex (p ≤ .001), left Broca's area (p ≤ .001), and cingulate gyrus (p ≤ .001). In control subjects, neither positive clinical effects nor cerebral blood flow decreases were detected. The decrease in cerebral blood flow in the primary auditory cortex correlated with the decrease in AVH scores (p ≤ .001). TMS reverses hyperactivity of language regions involved in the emergence of AVH. Area Spt acts as a gateway to the hallucination-generating cerebral network. Successful therapy corresponded to decreased cerebral blood flow in the primary auditory cortex, supporting its crucial role in triggering AVH and contributing to the physical quality of the false perceptions. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Lydia eOuellet

    2014-06-01

    Full Text Available In both humans and rodents, decline in cognitive function is a hallmark of the aging process, the basis for this decrease has yet to be fully characterized. However, using aged rodent models, deficits in auditory processing have been associated with significant decreases in inhibitory signaling attributed to a loss of GABAergic interneurons. Not only are these interneurons crucial for pattern detection and other large-scale population dynamics, but they have also been linked to mechanisms mediating plasticity and learning, making them a prime candidate for study and modelling of modifications to cortical communication pathways in neurodegenerative diseases. Using the rat primary auditory cortex (A1 as a model, we probed the known markers of GABAergic interneurons with immunohistological methods, using antibodies against gamma aminobutyric acid (GABA, parvalbumin (PV, somatostatin (SOM, calretinin (CR, vasoactive intestinal peptide (VIP, choline acetyltransferase (ChAT, neuropeptide Y (NPY and cholecystokinin (CCK to document the changes observed in interneuron populations across the rat’s lifespan. This analysis provided strong evidence that several but not all GABAergic neurons were affected by the aging process, showing most dramatic changes in expression of parvalbumin (PV and somatostatin (SOM expression. With this evidence, we show how understanding these trajectories of cell counts may be factored into a simple model to quantify changes in inhibitory signalling across the course of life, which may be applied as a framework for creating more advanced simulations of interneuronal implication in normal cerebral processing, normal aging, or pathological processes.

  2. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    OpenAIRE

    Bettina Serrallach; Christine Gross; Valdis Bernhofs; Dorte Engelmann; Jan Benner; Jan Benner; Nadine Gündert; Maria Blatow; Martina Wengenroth; Angelika Seitz; Monika Brunner; Stefan Seither; Stefan Seither; Richard Parncutt; Peter Schneider

    2016-01-01

    Dyslexia, attention deficit hyperactivity disorder (ADHD), and attention deficit disorder (ADD) show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147) using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an ...

  3. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex.

    Science.gov (United States)

    Raz, Aeyal; Grady, Sean M; Krause, Bryan M; Uhlrich, Daniel J; Manning, Karen A; Banks, Matthew I

    2014-01-01

    The mechanism of loss of consciousness (LOC) under anesthesia is unknown. Because consciousness depends on activity in the cortico-thalamic network, anesthetic actions on this network are likely critical for LOC. Competing theories stress the importance of anesthetic actions on bottom-up "core" thalamo-cortical (TC) vs. top-down cortico-cortical (CC) and matrix TC connections. We tested these models using laminar recordings in rat auditory cortex in vivo and murine brain slices. We selectively activated bottom-up vs. top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain slices, and compared effects of isoflurane on responses evoked via the two pathways. Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency current sinks in middle layers, consistent with activation of core TC afferents. By contrast, visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked responses mainly in superficial and deep layers, consistent with projection patterns of top-down afferents that carry visual information to auditory cortex. Responses to auditory stimuli in vivo and core TC afferents in brain slices were significantly less affected by isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced by isoflurane, whereas visual responses were dramatically reduced. At a comparable concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses, but the effect on the latter responses was far greater than on core TC responses, indicating that at least part of the differential effects observed in vivo were due to local actions of isoflurane in auditory cortex. These data support a model in which disruption of top-down connectivity contributes to anesthesia-induced LOC, and have implications for understanding the neural basis of consciousness.

  4. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    Science.gov (United States)

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.

  5. Music training relates to the development of neural mechanisms of selective auditory attention.

    Science.gov (United States)

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Listening to another sense: somatosensory integration in the auditory system.

    Science.gov (United States)

    Wu, Calvin; Stefanescu, Roxana A; Martel, David T; Shore, Susan E

    2015-07-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.

  7. Subcortical pathways: Towards a better understanding of auditory disorders.

    Science.gov (United States)

    Felix, Richard A; Gourévitch, Boris; Portfors, Christine V

    2018-05-01

    Hearing loss is a significant problem that affects at least 15% of the population. This percentage, however, is likely significantly higher because of a variety of auditory disorders that are not identifiable through traditional tests of peripheral hearing ability. In these disorders, individuals have difficulty understanding speech, particularly in noisy environments, even though the sounds are loud enough to hear. The underlying mechanisms leading to such deficits are not well understood. To enable the development of suitable treatments to alleviate or prevent such disorders, the affected processing pathways must be identified. Historically, mechanisms underlying speech processing have been thought to be a property of the auditory cortex and thus the study of auditory disorders has largely focused on cortical impairments and/or cognitive processes. As we review here, however, there is strong evidence to suggest that, in fact, deficits in subcortical pathways play a significant role in auditory disorders. In this review, we highlight the role of the auditory brainstem and midbrain in processing complex sounds and discuss how deficits in these regions may contribute to auditory dysfunction. We discuss current research with animal models of human hearing and then consider human studies that implicate impairments in subcortical processing that may contribute to auditory disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Ablation of the auditory cortex results in changes in the expression of neurotransmission-related mRNAs in the cochlea.

    Science.gov (United States)

    Lamas, Verónica; Juiz, José M; Merchán, Miguel A

    2017-03-01

    The auditory cortex (AC) dynamically regulates responses of the Organ of Corti to sound through descending connections to both the medial (MOC) and lateral (LOC) olivocochlear efferent systems. We have recently provided evidence that AC has a reinforcement role in the responses to sound of the auditory brainstem nuclei. In a molecular level, we have shown that descending inputs from AC are needed to regulate the expression of molecules involved in outer hair cell (OHC) electromotility control, such as prestin and the α10 nicotinic acetylcholine receptor (nAchR). In this report, we show that descending connections from AC to olivocochlear neurons are necessary to regulate the expression of molecules involved in cochlear afferent signaling. RT-qPCR was performed in rats at 1, 7 and 15 days after unilateral ablation of the AC, and analyzed the time course changes in gene transcripts involved in neurotransmission at the first auditory synapse. This included the glutamate metabolism enzyme glutamate decarboxylase 1 (glud1) and AMPA glutamate receptor subunits GluA2-4. In addition, gene transcripts involved in efferent regulation of type I spiral ganglion neuron (SGN) excitability mediated by LOC, such as the α7 nAchR, the D2 dopamine receptor, and the α1, and γ2 GABAA receptor subunits, were also investigated. Unilateral AC ablation induced up-regulation of GluA3 receptor subunit transcripts, whereas both GluA2 and GluA4 mRNA receptors were down-regulated already at 1 day after the ablation. Unilateral removal of the AC also resulted in up-regulation of the transcripts for α7 nAchR subunit, D2 dopamine receptor, and α1 GABAA receptor subunit at 1 day after the ablation. Fifteen days after the injury, AC ablations induced an up-regulation of glud1 transcripts. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise

    OpenAIRE

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P.; Ahlfors, Seppo P.; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E.; Belliveau, John W.

    2011-01-01

    How can we concentrate on relevant sounds in noisy environments? A “gain model” suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A “tuning model” suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMR...

  10. The role of auditory cortices in the retrieval of single-trial auditory-visual object memories.

    Science.gov (United States)

    Matusz, Pawel J; Thelen, Antonia; Amrein, Sarah; Geiser, Eveline; Anken, Jacques; Murray, Micah M

    2015-03-01

    Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Automatic phoneme category selectivity in the dorsal auditory stream.

    Science.gov (United States)

    Chevillet, Mark A; Jiang, Xiong; Rauschecker, Josef P; Riesenhuber, Maximilian

    2013-03-20

    Debates about motor theories of speech perception have recently been reignited by a burst of reports implicating premotor cortex (PMC) in speech perception. Often, however, these debates conflate perceptual and decision processes. Evidence that PMC activity correlates with task difficulty and subject performance suggests that PMC might be recruited, in certain cases, to facilitate category judgments about speech sounds (rather than speech perception, which involves decoding of sounds). However, it remains unclear whether PMC does, indeed, exhibit neural selectivity that is relevant for speech decisions. Further, it is unknown whether PMC activity in such cases reflects input via the dorsal or ventral auditory pathway, and whether PMC processing of speech is automatic or task-dependent. In a novel modified categorization paradigm, we presented human subjects with paired speech sounds from a phonetic continuum but diverted their attention from phoneme category using a challenging dichotic listening task. Using fMRI rapid adaptation to probe neural selectivity, we observed acoustic-phonetic selectivity in left anterior and left posterior auditory cortical regions. Conversely, we observed phoneme-category selectivity in left PMC that correlated with explicit phoneme-categorization performance measured after scanning, suggesting that PMC recruitment can account for performance on phoneme-categorization tasks. Structural equation modeling revealed connectivity from posterior, but not anterior, auditory cortex to PMC, suggesting a dorsal route for auditory input to PMC. Our results provide evidence for an account of speech processing in which the dorsal stream mediates automatic sensorimotor integration of speech and may be recruited to support speech decision tasks.

  12. Dissociable influences of auditory object vs. spatial attention on visual system oscillatory activity.

    Directory of Open Access Journals (Sweden)

    Jyrki Ahveninen

    Full Text Available Given that both auditory and visual systems have anatomically separate object identification ("what" and spatial ("where" pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory "what" vs. "where" attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic ("what" vs. spatial ("where" aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7-13 Hz power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex, as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400-600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity ("what" vs. sound location ("where". The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during "what" vs. "where" auditory attention.

  13. Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human.

    Science.gov (United States)

    Garell, P C; Bakken, H; Greenlee, J D W; Volkov, I; Reale, R A; Oya, H; Kawasaki, H; Howard, M A; Brugge, J F

    2013-10-01

    The connection between auditory fields of the temporal lobe and prefrontal cortex has been well characterized in nonhuman primates. Little is known of temporofrontal connectivity in humans, however, due largely to the fact that invasive experimental approaches used so successfully to trace anatomical pathways in laboratory animals cannot be used in humans. Instead, we used a functional tract-tracing method in 12 neurosurgical patients with multicontact electrode arrays chronically implanted over the left (n = 7) or right (n = 5) perisylvian temporal auditory cortex (area PLST) and the ventrolateral prefrontal cortex (VLPFC) of the inferior frontal gyrus (IFG) for diagnosis and treatment of medically intractable epilepsy. Area PLST was identified by the distribution of average auditory-evoked potentials obtained in response to simple and complex sounds. The same sounds evoked little if there is any activity in VLPFC. A single bipolar electrical pulse (0.2 ms, charge-balanced) applied between contacts within physiologically identified PLST resulted in polyphasic evoked potentials clustered in VLPFC, with greatest activation being in pars triangularis of the IFG. The average peak latency of the earliest negative deflection of the evoked potential on VLPFC was 13.48 ms (range: 9.0-18.5 ms), providing evidence for a rapidly conducting pathway between area PLST and VLPFC.

  14. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation.

    Science.gov (United States)

    Klinke, R; Kral, A; Heid, S; Tillein, J; Hartmann, R

    1999-09-10

    In congenitally deaf cats, the central auditory system is deprived of acoustic input because of degeneration of the organ of Corti before the onset of hearing. Primary auditory afferents survive and can be stimulated electrically. By means of an intracochlear implant and an accompanying sound processor, congenitally deaf kittens were exposed to sounds and conditioned to respond to tones. After months of exposure to meaningful stimuli, the cortical activity in chronically implanted cats produced field potentials of higher amplitudes, expanded in area, developed long latency responses indicative of intracortical information processing, and showed more synaptic efficacy than in naïve, unstimulated deaf cats. The activity established by auditory experience resembles activity in hearing animals.

  15. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  16. Neurofeedback-Based Enhancement of Single Trial Auditory Evoked Potentials: Feasibility in Healthy Subjects.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Moor, Nicolas; Diaz Hernandez, Laura; Baenninger, Anja; Razavi, Nadja; Dierks, Thomas; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Previous studies showed a global reduction of the event-related potential component N100 in patients with schizophrenia, a phenomenon that is even more pronounced during auditory verbal hallucinations. This reduction assumingly results from dysfunctional activation of the primary auditory cortex by inner speech, which reduces its responsiveness to external stimuli. With this study, we tested the feasibility of enhancing the responsiveness of the primary auditory cortex to external stimuli with an upregulation of the event-related potential component N100 in healthy control subjects. A total of 15 healthy subjects performed 8 double-sessions of EEG-neurofeedback training over 2 weeks. The results of the used linear mixed effect model showed a significant active learning effect within sessions ( t = 5.99, P < .001) against an unspecific habituation effect that lowered the N100 amplitude over time. Across sessions, a significant increase in the passive condition ( t = 2.42, P = .03), named as carry-over effect, was observed. Given that the carry-over effect is one of the ultimate aims of neurofeedback, it seems reasonable to apply this neurofeedback training protocol to influence the N100 amplitude in patients with schizophrenia. This intervention could provide an alternative treatment option for auditory verbal hallucinations in these patients.

  17. Neural effects of cognitive control load on auditory selective attention.

    Science.gov (United States)

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R; Mangalathu, Jain; Desai, Anjali

    2014-08-01

    Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210ms, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Exploratory study of once-daily transcranial direct current stimulation (tDCS) as a treatment for auditory hallucinations in schizophrenia.

    Science.gov (United States)

    Fröhlich, F; Burrello, T N; Mellin, J M; Cordle, A L; Lustenberger, C M; Gilmore, J H; Jarskog, L F

    2016-03-01

    Auditory hallucinations are resistant to pharmacotherapy in about 25% of adults with schizophrenia. Treatment with noninvasive brain stimulation would provide a welcomed additional tool for the clinical management of auditory hallucinations. A recent study found a significant reduction in auditory hallucinations in people with schizophrenia after five days of twice-daily transcranial direct current stimulation (tDCS) that simultaneously targeted left dorsolateral prefrontal cortex and left temporo-parietal cortex. We hypothesized that once-daily tDCS with stimulation electrodes over left frontal and temporo-parietal areas reduces auditory hallucinations in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled study that evaluated five days of daily tDCS of the same cortical targets in 26 outpatients with schizophrenia and schizoaffective disorder with auditory hallucinations. We found a significant reduction in auditory hallucinations measured by the Auditory Hallucination Rating Scale (F2,50=12.22, PtDCS for treatment of auditory hallucinations and the pronounced response in the sham-treated group in this study contrasts with the previous finding and demonstrates the need for further optimization and evaluation of noninvasive brain stimulation strategies. In particular, higher cumulative doses and higher treatment frequencies of tDCS together with strategies to reduce placebo responses should be investigated. Additionally, consideration of more targeted stimulation to engage specific deficits in temporal organization of brain activity in patients with auditory hallucinations may be warranted. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Reorganization in processing of spectral and temporal input in the rat posterior auditory field induced by environmental enrichment

    Science.gov (United States)

    Jakkamsetti, Vikram; Chang, Kevin Q.

    2012-01-01

    Environmental enrichment induces powerful changes in the adult cerebral cortex. Studies in primary sensory cortex have observed that environmental enrichment modulates neuronal response strength, selectivity, speed of response, and synchronization to rapid sensory input. Other reports suggest that nonprimary sensory fields are more plastic than primary sensory cortex. The consequences of environmental enrichment on information processing in nonprimary sensory cortex have yet to be studied. Here we examine physiological effects of enrichment in the posterior auditory field (PAF), a field distinguished from primary auditory cortex (A1) by wider receptive fields, slower response times, and a greater preference for slowly modulated sounds. Environmental enrichment induced a significant increase in spectral and temporal selectivity in PAF. PAF neurons exhibited narrower receptive fields and responded significantly faster and for a briefer period to sounds after enrichment. Enrichment increased time-locking to rapidly successive sensory input in PAF neurons. Compared with previous enrichment studies in A1, we observe a greater magnitude of reorganization in PAF after environmental enrichment. Along with other reports observing greater reorganization in nonprimary sensory cortex, our results in PAF suggest that nonprimary fields might have a greater capacity for reorganization compared with primary fields. PMID:22131375

  20. Auditory motion in the sighted and blind: Early visual deprivation triggers a large-scale imbalance between auditory and "visual" brain regions.

    Science.gov (United States)

    Dormal, Giulia; Rezk, Mohamed; Yakobov, Esther; Lepore, Franco; Collignon, Olivier

    2016-07-01

    How early blindness reorganizes the brain circuitry that supports auditory motion processing remains controversial. We used fMRI to characterize brain responses to in-depth, laterally moving, and static sounds in early blind and sighted individuals. Whole-brain univariate analyses revealed that the right posterior middle temporal gyrus and superior occipital gyrus selectively responded to both in-depth and laterally moving sounds only in the blind. These regions overlapped with regions selective for visual motion (hMT+/V5 and V3A) that were independently localized in the sighted. In the early blind, the right planum temporale showed enhanced functional connectivity with right occipito-temporal regions during auditory motion processing and a concomitant reduced functional connectivity with parietal and frontal regions. Whole-brain searchlight multivariate analyses demonstrated higher auditory motion decoding in the right posterior middle temporal gyrus in the blind compared to the sighted, while decoding accuracy was enhanced in the auditory cortex bilaterally in the sighted compared to the blind. Analyses targeting individually defined visual area hMT+/V5 however indicated that auditory motion information could be reliably decoded within this area even in the sighted group. Taken together, the present findings demonstrate that early visual deprivation triggers a large-scale imbalance between auditory and "visual" brain regions that typically support the processing of motion information. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Early visual cortex reflects initiation and maintenance of task set

    Science.gov (United States)

    Elkhetali, Abdurahman S.; Vaden, Ryan J.; Pool, Sean M.

    2014-01-01

    The human brain is able to process information flexibly, depending on a person's task. The mechanisms underlying this ability to initiate and maintain a task set are not well understood, but they are important for understanding the flexibility of human behavior and developing therapies for disorders involving attention. Here we investigate the differential roles of early visual cortical areas in initiating and maintaining a task set. Using functional Magnetic Resonance Imaging (fMRI), we characterized three different components of task set-related, but trial-independent activity in retinotopically mapped areas of early visual cortex, while human participants performed attention demanding visual or auditory tasks. These trial-independent effects reflected: (1) maintenance of attention over a long duration, (2) orienting to a cue, and (3) initiation of a task set. Participants performed tasks that differed in the modality of stimulus to be attended (auditory or visual) and in whether there was a simultaneous distractor (auditory only, visual only, or simultaneous auditory and visual). We found that patterns of trial-independent activity in early visual areas (V1, V2, V3, hV4) depend on attended modality, but not on stimuli. Further, different early visual areas play distinct roles in the initiation of a task set. In addition, activity associated with maintaining a task set tracks with a participant's behavior. These results show that trial-independent activity in early visual cortex reflects initiation and maintenance of a person's task set. PMID:25485712

  2. Defining Auditory-Visual Objects: Behavioral Tests and Physiological Mechanisms.

    Science.gov (United States)

    Bizley, Jennifer K; Maddox, Ross K; Lee, Adrian K C

    2016-02-01

    Crossmodal integration is a term applicable to many phenomena in which one sensory modality influences task performance or perception in another sensory modality. We distinguish the term binding as one that should be reserved specifically for the process that underpins perceptual object formation. To unambiguously differentiate binding form other types of integration, behavioral and neural studies must investigate perception of a feature orthogonal to the features that link the auditory and visual stimuli. We argue that supporting true perceptual binding (as opposed to other processes such as decision-making) is one role for cross-sensory influences in early sensory cortex. These early multisensory interactions may therefore form a physiological substrate for the bottom-up grouping of auditory and visual stimuli into auditory-visual (AV) objects. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Behavioral lifetime of human auditory sensory memory predicted by physiological measures.

    Science.gov (United States)

    Lu, Z L; Williamson, S J; Kaufman, L

    1992-12-04

    Noninvasive magnetoencephalography makes it possible to identify the cortical area in the human brain whose activity reflects the decay of passive sensory storage of information about auditory stimuli (echoic memory). The lifetime for decay of the neuronal activation trace in primary auditory cortex was found to predict the psychophysically determined duration of memory for the loudness of a tone. Although memory for the loudness of a specific tone is lost, the remembered loudness decays toward the global mean of all of the loudnesses to which a subject is exposed in a series of trials.

  4. Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory.

    Science.gov (United States)

    Buchsbaum, Bradley R; Olsen, Rosanna K; Koch, Paul; Berman, Karen Faith

    2005-11-23

    To hear a sequence of words and repeat them requires sensory-motor processing and something more-temporary storage. We investigated neural mechanisms of verbal memory by using fMRI and a task designed to tease apart perceptually based ("echoic") memory from phonological-articulatory memory. Sets of two- or three-word pairs were presented bimodally, followed by a cue indicating from which modality (auditory or visual) items were to be retrieved and rehearsed over a delay. Although delay-period activation in the planum temporale (PT) was insensible to the source modality and showed sustained delay-period activity, the superior temporal gyrus (STG) activated more vigorously when the retrieved items had arrived to the auditory modality and showed transient delay-period activity. Functional connectivity analysis revealed two topographically distinct fronto-temporal circuits, with STG co-activating more strongly with ventrolateral prefrontal cortex and PT co-activating more strongly with dorsolateral prefrontal cortex. These argue for separate contributions of ventral and dorsal auditory streams in verbal working memory.

  5. The neural correlates of coloured music: a functional MRI investigation of auditory-visual synaesthesia.

    Science.gov (United States)

    Neufeld, J; Sinke, C; Dillo, W; Emrich, H M; Szycik, G R; Dima, D; Bleich, S; Zedler, M

    2012-01-01

    In auditory-visual synaesthesia, all kinds of sound can induce additional visual experiences. To identify the brain regions mainly involved in this form of synaesthesia, functional magnetic resonance imaging (fMRI) has been used during non-linguistic sound perception (chords and pure tones) in synaesthetes and non-synaesthetes. Synaesthetes showed increased activation in the left inferior parietal cortex (IPC), an area involved in multimodal integration, feature binding and attention guidance. No significant group-differences could be detected in area V4, which is known to be related to colour vision and form processing. The results support the idea of the parietal cortex acting as sensory nexus area in auditory-visual synaesthesia, and as a common neural correlate for different types of synaesthesia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Infralimbic dopamine D2 receptors mediate glucocorticoid-induced facilitation of auditory fear memory extinction in rats.

    Science.gov (United States)

    Dadkhah, Masoumeh; Abdullahi, Payman Raise; Rashidy-Pour, Ali; Sameni, Hamid Reza; Vafaei, Abbas Ali

    2018-03-01

    The infralimbic (IL) cortex of the medial prefrontal cortex plays an important role in the extinction of fear memory. Also, it has been showed that both brain glucocorticoid and dopamine receptors are involved in many processes such as fear extinction that drive learning and memory; however, the interaction of these receptors in the IL cortex remains unclear. We examined a putative interaction between the effects of glucocorticoid and dopamine receptors stimulation in the IL cortex on fear memory extinction in an auditory fear conditioning paradigm in male rats. Corticosterone (the endogenous glucocorticoid receptor ligand), or RU38486 (the synthetic glucocorticoid receptor antagonist) microinfusion into the IL cortex 10 min before test 1 attenuated auditory fear expression at tests 1-3, suggesting as an enhancement of fear extinction. The effect of corticosterone, but not RU38486 was counteracted by the dopamine D2 receptor antagonist sulpiride pre-treatment administered into the IL (at a dose that failed to alter freezing behavior on its own). In contrast, intra-IL infusion of the dopamine D1 receptor antagonist SCH23390 pre-treatment failed to alter freezing behavior. These findings provide evidence for the involvement of the IL cortex D2 receptors in CORT-induced facilitation of fear memory extinction. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex.

    Science.gov (United States)

    Stecker, G Christopher; McLaughlin, Susan A; Higgins, Nathan C

    2015-10-15

    Whole-brain functional magnetic resonance imaging was used to measure blood-oxygenation-level-dependent (BOLD) responses in human auditory cortex (AC) to sounds with intensity varying independently in the left and right ears. Echoplanar images were acquired at 3 Tesla with sparse image acquisition once per 12-second block of sound stimulation. Combinations of binaural intensity and stimulus presentation rate were varied between blocks, and selected to allow measurement of response-intensity functions in three configurations: monaural 55-85 dB SPL, binaural 55-85 dB SPL with intensity equal in both ears, and binaural with average binaural level of 70 dB SPL and interaural level differences (ILD) ranging ±30 dB (i.e., favoring the left or right ear). Comparison of response functions equated for contralateral intensity revealed that BOLD-response magnitudes (1) generally increased with contralateral intensity, consistent with positive drive of the BOLD response by the contralateral ear, (2) were larger for contralateral monaural stimulation than for binaural stimulation, consistent with negative effects (e.g., inhibition) of ipsilateral input, which were strongest in the left hemisphere, and (3) also increased with ipsilateral intensity when contralateral input was weak, consistent with additional, positive, effects of ipsilateral stimulation. Hemispheric asymmetries in the spatial extent and overall magnitude of BOLD responses were generally consistent with previous studies demonstrating greater bilaterality of responses in the right hemisphere and stricter contralaterality in the left hemisphere. Finally, comparison of responses to fast (40/s) and slow (5/s) stimulus presentation rates revealed significant rate-dependent adaptation of the BOLD response that varied across ILD values. Copyright © 2015. Published by Elsevier Inc.

  8. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    Science.gov (United States)

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding FMRI.

    Directory of Open Access Journals (Sweden)

    Ella Striem-Amit

    Full Text Available The primary sensory cortices are characterized by a topographical mapping of basic sensory features which is considered to deteriorate in higher-order areas in favor of complex sensory features. Recently, however, retinotopic maps were also discovered in the higher-order visual, parietal and prefrontal cortices. The discovery of these maps enabled the distinction between visual regions, clarified their function and hierarchical processing. Could such extension of topographical mapping to high-order processing regions apply to the auditory modality as well? This question has been studied previously in animal models but only sporadically in humans, whose anatomical and functional organization may differ from that of animals (e.g. unique verbal functions and Heschl's gyrus curvature. Here we applied fMRI spectral analysis to investigate the cochleotopic organization of the human cerebral cortex. We found multiple mirror-symmetric novel cochleotopic maps covering most of the core and high-order human auditory cortex, including regions considered non-cochleotopic, stretching all the way to the superior temporal sulcus. These maps suggest that topographical mapping persists well beyond the auditory core and belt, and that the mirror-symmetry of topographical preferences may be a fundamental principle across sensory modalities.

  10. Acquisition, Analyses and Interpretation of fMRI Data: A Study on the Effective Connectivity in Human Primary Auditory Cortices

    International Nuclear Information System (INIS)

    Ahmad Nazlim Yusoff; Mazlyfarina Mohamad; Khairiah Abdul Hamid

    2011-01-01

    A study on the effective connectivity characteristics in auditory cortices was conducted on five healthy Malay male subjects with the age of 20 to 40 years old using functional magnetic resonance imaging (fMRI), statistical parametric mapping (SPM5) and dynamic causal modelling (DCM). A silent imaging paradigm was used to reduce the scanner sound artefacts on functional images. The subjects were instructed to pay attention to the white noise stimulus binaurally given at intensity level of 70 dB higher than the hearing level for normal people. Functional specialisation was studied using Matlab-based SPM5 software by means of fixed effects (FFX), random effects (RFX) and conjunction analyses. Individual analyses on all subjects indicate asymmetrical bilateral activation between the left and right auditory cortices in Brodmann areas (BA)22, 41 and 42 involving the primary and secondary auditory cortices. The three auditory areas in the right and left auditory cortices are selected for the determination of the effective connectivity by constructing 9 network models. The effective connectivity is determined on four out of five subjects with the exception of one subject who has the BA22 coordinates located too far from BA22 coordinates obtained from group analysis. DCM results showed the existence of effective connectivity between the three selected auditory areas in both auditory cortices. In the right auditory cortex, BA42 is identified as input centre with unidirectional parallel effective connectivities of BA42→BA41and BA42→BA22. However, for the left auditory cortex, the input is BA41 with unidirectional parallel effective connectivities of BA41→BA42 and BA41→BA22. The connectivity between the activated auditory areas suggests the existence of signal pathway in the auditory cortices even when the subject is listening to noise. (author)

  11. Musical Expectations Enhance Auditory Cortical Processing in Musicians: A Magnetoencephalography Study.

    Science.gov (United States)

    Park, Jeong Mi; Chung, Chun Kee; Kim, June Sic; Lee, Kyung Myun; Seol, Jaeho; Yi, Suk Won

    2018-01-15

    The present study investigated the influence of musical expectations on auditory representations in musicians and non-musicians using magnetoencephalography (MEG). Neuroscientific studies have demonstrated that musical syntax is processed in the inferior frontal gyri, eliciting an early right anterior negativity (ERAN), and anatomical evidence has shown that interconnections occur between the frontal cortex and the belt and parabelt regions in the auditory cortex (AC). Therefore, we anticipated that musical expectations would mediate neural activities in the AC via an efferent pathway. To test this hypothesis, we measured the auditory-evoked fields (AEFs) of seven musicians and seven non-musicians while they were listening to a five-chord progression in which the expectancy of the third chord was manipulated (highly expected, less expected, and unexpected). The results revealed that highly expected chords elicited shorter N1m (negative AEF at approximately 100 ms) and P2m (positive AEF at approximately 200 ms) latencies and larger P2m amplitudes in the AC than less-expected and unexpected chords. The relations between P2m amplitudes/latencies and harmonic expectations were similar between the groups; however, musicians' results were more remarkable than those of non-musicians. These findings suggest that auditory cortical processing is enhanced by musical knowledge and long-term training in a top-down manner, which is reflected in shortened N1m and P2m latencies and enhanced P2m amplitudes in the AC. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Effects of parietal TMS on visual and auditory processing at the primary cortical level -- a concurrent TMS-fMRI study

    DEFF Research Database (Denmark)

    Leitão, Joana; Thielscher, Axel; Werner, Sebastian

    2013-01-01

    cortices under 3 sensory contexts: visual, auditory, and no stimulation. IPS-TMS increased activations in auditory cortices irrespective of sensory context as a result of direct and nonspecific auditory TMS side effects. In contrast, IPS-TMS modulated activations in the visual cortex in a state...... deactivations induced by auditory activity to TMS sounds. TMS to IPS may increase the responses in visual (or auditory) cortices to visual (or auditory) stimulation via a gain control mechanism or crossmodal interactions. Collectively, our results demonstrate that understanding TMS effects on (uni......Accumulating evidence suggests that multisensory interactions emerge already at the primary cortical level. Specifically, auditory inputs were shown to suppress activations in visual cortices when presented alone but amplify the blood oxygen level-dependent (BOLD) responses to concurrent visual...

  13. Tinnitus. I: Auditory mechanisms: a model for tinnitus and hearing impairment.

    Science.gov (United States)

    Hazell, J W; Jastreboff, P J

    1990-02-01

    A model is proposed for tinnitus and sensorineural hearing loss involving cochlear pathology. As tinnitus is defined as a cortical perception of sound in the absence of an appropriate external stimulus it must result from a generator in the auditory system which undergoes extensive auditory processing before it is perceived. The concept of spatial nonlinearity in the cochlea is presented as a cause of tinnitus generation controlled by the efferents. Various clinical presentations of tinnitus and the way in which they respond to changes in the environment are discussed with respect to this control mechanism. The concept of auditory retraining as part of the habituation process, and interaction with the prefrontal cortex and limbic system is presented as a central model which emphasizes the importance of the emotional significance and meaning of tinnitus.

  14. The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex

    OpenAIRE

    Chavez, Candice M.; McGaugh, James L.; Weinberger, Norman M.

    2008-01-01

    Stress hormones released by an experience can modulate memory strength via the basolateral amygdala, which in turn acts on sites of memory storage such as the cerebral cortex [McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28]. Stimuli that acquire behavioral importance gain increased representation in the cortex. For example, learning shifts the tuning of neurons in the primary auditory cor...

  15. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  16. The Neurophysiology of Auditory Hallucinations – A Historic and Contemporary Review

    Directory of Open Access Journals (Sweden)

    Remko evan Lutterveld

    2011-05-01

    Full Text Available Electroencephalography (EEG and magnetoencephalography (MEG are two techniques that distinguish themselves from other neuroimaging methodologies through their ability to directly measure brain-related activity and their high temporal resolution. A large body of research has applied these techniques to study auditory hallucinations. Across a variety of approaches, the left superior temporal cortex is consistently reported to be involved in this symptom. Moreover, there is increasing evidence that a failure in corollary discharge, i.e. a neural signal originating in frontal speech areas that indicates to sensory areas that forthcoming thought is self-generated, may underlie the experience of auditory hallucinations

  17. Modulation of Illusory Auditory Perception by Transcranial Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Giulia Prete

    2017-06-01

    Full Text Available The aim of the present study was to test whether transcranial electrical stimulation can modulate illusory perception in the auditory domain. In two separate experiments we applied transcranial Direct Current Stimulation (anodal/cathodal tDCS, 2 mA; N = 60 and high-frequency transcranial Random Noise Stimulation (hf-tRNS, 1.5 mA, offset 0; N = 45 on the temporal cortex during the presentation of the stimuli eliciting the Deutsch's illusion. The illusion arises when two sine tones spaced one octave apart (400 and 800 Hz are presented dichotically in alternation, one in the left and the other in the right ear, so that when the right ear receives the high tone, the left ear receives the low tone, and vice versa. The majority of the population perceives one high-pitched tone in one ear alternating with one low-pitched tone in the other ear. The results revealed that neither anodal nor cathodal tDCS applied over the left/right temporal cortex modulated the perception of the illusion, whereas hf-tRNS applied bilaterally on the temporal cortex reduced the number of times the sequence of sounds is perceived as the Deutsch's illusion with respect to the sham control condition. The stimulation time before the beginning of the task (5 or 15 min did not influence the perceptual outcome. In accordance with previous findings, we conclude that hf-tRNS can modulate auditory perception more efficiently than tDCS.

  18. The role of inferior parietal and inferior frontal cortex in working memory.

    Science.gov (United States)

    Baldo, Juliana V; Dronkers, Nina F

    2006-09-01

    Verbal working memory involves two major components: a phonological store that holds auditory-verbal information very briefly and an articulatory rehearsal process that allows that information to be refreshed and thus held longer in short-term memory (A. Baddeley, 1996, 2000; A. Baddeley & G. Hitch, 1974). In the current study, the authors tested two groups of patients who were chosen on the basis of their relatively focal lesions in the inferior parietal (IP) cortex or inferior frontal (IF) cortex. Patients were tested on a series of tasks that have been previously shown to tap phonological storage (span, auditory rhyming, and repetition) and articulatory rehearsal (visual rhyming and a 2-back task). As predicted, IP patients were disproportionately impaired on the span, rhyming, and repetition tasks and thus demonstrated a phonological storage deficit. IF patients, however, did not show impairment on these storage tasks but did exhibit impairment on the visual rhyming task, which requires articulatory rehearsal. These findings lend further support to the working memory model and provide evidence of the roles of IP and IF cortex in separable working memory processes. ((c) 2006 APA, all rights reserved).

  19. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys.

    Science.gov (United States)

    Poremba, Amy; Mishkin, Mortimer

    2007-07-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left-hemisphere "dominance" during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole "dominance" appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys.

  20. Motion processing after sight restoration: No competition between visual recovery and auditory compensation.

    Science.gov (United States)

    Bottari, Davide; Kekunnaya, Ramesh; Hense, Marlene; Troje, Nikolaus F; Sourav, Suddha; Röder, Brigitte

    2018-02-15

    The present study tested whether or not functional adaptations following congenital blindness are maintained in humans after sight-restoration and whether they interfere with visual recovery. In permanently congenital blind individuals both intramodal plasticity (e.g. changes in auditory cortex) as well as crossmodal plasticity (e.g. an activation of visual cortex by auditory stimuli) have been observed. Both phenomena were hypothesized to contribute to improved auditory functions. For example, it has been shown that early permanently blind individuals outperform sighted controls in auditory motion processing and that auditory motion stimuli elicit activity in typical visual motion areas. Yet it is unknown what happens to these behavioral adaptations and cortical reorganizations when sight is restored, that is, whether compensatory auditory changes are lost and to which degree visual motion processing is reinstalled. Here we employed a combined behavioral-electrophysiological approach in a group of sight-recovery individuals with a history of a transient phase of congenital blindness lasting for several months to several years. They, as well as two control groups, one with visual impairments, one normally sighted, were tested in a visual and an auditory motion discrimination experiment. Task difficulty was manipulated by varying the visual motion coherence and the signal to noise ratio, respectively. The congenital cataract-reversal individuals showed lower performance in the visual global motion task than both control groups. At the same time, they outperformed both control groups in auditory motion processing suggesting that at least some compensatory behavioral adaptation as a consequence of a complete blindness from birth was maintained. Alpha oscillatory activity during the visual task was significantly lower in congenital cataract reversal individuals and they did not show ERPs modulated by visual motion coherence as observed in both control groups. In

  1. A neural network model of normal and abnormal auditory information processing.

    Science.gov (United States)

    Du, X; Jansen, B H

    2011-08-01

    The ability of the brain to attenuate the response to irrelevant sensory stimulation is referred to as sensory gating. A gating deficiency has been reported in schizophrenia. To study the neural mechanisms underlying sensory gating, a neuroanatomically inspired model of auditory information processing has been developed. The mathematical model consists of lumped parameter modules representing the thalamus (TH), the thalamic reticular nucleus (TRN), auditory cortex (AC), and prefrontal cortex (PC). It was found that the membrane potential of the pyramidal cells in the PC module replicated auditory evoked potentials, recorded from the scalp of healthy individuals, in response to pure tones. Also, the model produced substantial attenuation of the response to the second of a pair of identical stimuli, just as seen in actual human experiments. We also tested the viewpoint that schizophrenia is associated with a deficit in prefrontal dopamine (DA) activity, which would lower the excitatory and inhibitory feedback gains in the AC and PC modules. Lowering these gains by less than 10% resulted in model behavior resembling the brain activity seen in schizophrenia patients, and replicated the reported gating deficits. The model suggests that the TRN plays a critical role in sensory gating, with the smaller response to a second tone arising from a reduction in inhibition of TH by the TRN. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene.

    Science.gov (United States)

    Vander Ghinst, Marc; Bourguignon, Mathieu; Op de Beeck, Marc; Wens, Vincent; Marty, Brice; Hassid, Sergio; Choufani, Georges; Jousmäki, Veikko; Hari, Riitta; Van Bogaert, Patrick; Goldman, Serge; De Tiège, Xavier

    2016-02-03

    Using a continuous listening task, we evaluated the coupling between the listener's cortical activity and the temporal envelopes of different sounds in a multitalker auditory scene using magnetoencephalography and corticovocal coherence analysis. Neuromagnetic signals were recorded from 20 right-handed healthy adult humans who listened to five different recorded stories (attended speech streams), one without any multitalker background (No noise) and four mixed with a "cocktail party" multitalker background noise at four signal-to-noise ratios (5, 0, -5, and -10 dB) to produce speech-in-noise mixtures, here referred to as Global scene. Coherence analysis revealed that the modulations of the attended speech stream, presented without multitalker background, were coupled at ∼0.5 Hz to the activity of both superior temporal gyri, whereas the modulations at 4-8 Hz were coupled to the activity of the right supratemporal auditory cortex. In cocktail party conditions, with the multitalker background noise, the coupling was at both frequencies stronger for the attended speech stream than for the unattended Multitalker background. The coupling strengths decreased as the Multitalker background increased. During the cocktail party conditions, the ∼0.5 Hz coupling became left-hemisphere dominant, compared with bilateral coupling without the multitalker background, whereas the 4-8 Hz coupling remained right-hemisphere lateralized in both conditions. The brain activity was not coupled to the multitalker background or to its individual talkers. The results highlight the key role of listener's left superior temporal gyri in extracting the slow ∼0.5 Hz modulations, likely reflecting the attended speech stream within a multitalker auditory scene. When people listen to one person in a "cocktail party," their auditory cortex mainly follows the attended speech stream rather than the entire auditory scene. However, how the brain extracts the attended speech stream from the whole

  3. Auditory analysis for speech recognition based on physiological models

    Science.gov (United States)

    Jeon, Woojay; Juang, Biing-Hwang

    2004-05-01

    To address the limitations of traditional cepstrum or LPC based front-end processing methods for automatic speech recognition, more elaborate methods based on physiological models of the human auditory system may be used to achieve more robust speech recognition in adverse environments. For this purpose, a modified version of a model of the primary auditory cortex featuring a three dimensional mapping of auditory spectra [Wang and Shamma, IEEE Trans. Speech Audio Process. 3, 382-395 (1995)] is adopted and investigated for its use as an improved front-end processing method. The study is conducted in two ways: first, by relating the model's redundant representation to traditional spectral representations and showing that the former not only encompasses information provided by the latter, but also reveals more relevant information that makes it superior in describing the identifying features of speech signals; and second, by observing the statistical features of the representation for various classes of sound to show how different identifying features manifest themselves as specific patterns on the cortical map, thereby becoming a place-coded data set on which detection theory could be applied to simulate auditory perception and cognition.

  4. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Josue G. Yague

    2017-09-01

    Full Text Available The basal forebrain (BF has long been implicated in attention, learning and memory, and recent studies have established a causal relationship between artificial BF activation and arousal. However, neural ensemble dynamics in the BF still remains unclear. Here, recording neural population activity in the BF and comparing it with simultaneously recorded cortical population under both anesthetized and unanesthetized conditions, we investigate the difference in the structure of spontaneous population activity between the BF and the auditory cortex (AC in mice. The AC neuronal population show a skewed spike rate distribution, a higher proportion of short (≤80 ms inter-spike intervals (ISIs and a rich repertoire of rhythmic firing across frequencies. Although the distribution of spontaneous firing rate in the BF is also skewed, a proportion of short ISIs can be explained by a Poisson model at short time scales (≤20 ms and spike count correlations are lower compared to AC cells, with optogenetically identified cholinergic cell pairs showing exceptionally higher correlations. Furthermore, a smaller fraction of BF neurons shows spike-field entrainment across frequencies: a subset of BF neurons fire rhythmically at slow (≤6 Hz frequencies, with varied phase preferences to ongoing field potentials, in contrast to a consistent phase preference of AC populations. Firing of these slow rhythmic BF cells is correlated to a greater degree than other rhythmic BF cell pairs. Overall, the fundamental difference in the structure of population activity between the AC and BF is their temporal coordination, in particular their operational timescales. These results suggest that BF neurons slowly modulate downstream populations whereas cortical circuits transmit signals on multiple timescales. Thus, the characterization of the neural ensemble dynamics in the BF provides further insight into the neural mechanisms, by which brain states are regulated.

  5. The orbitofrontal cortex and beyond: from affect to decision-making.

    Science.gov (United States)

    Rolls, Edmund T; Grabenhorst, Fabian

    2008-11-01

    The orbitofrontal cortex represents the reward or affective value of primary reinforcers including taste, touch, texture, and face expression. It learns to associate other stimuli with these to produce representations of the expected reward value for visual, auditory, and abstract stimuli including monetary reward value. The orbitofrontal cortex thus plays a key role in emotion, by representing the goals for action. The learning process is stimulus-reinforcer association learning. Negative reward prediction error neurons are related to this affective learning. Activations in the orbitofrontal cortex correlate with the subjective emotional experience of affective stimuli, and damage to the orbitofrontal cortex impairs emotion-related learning, emotional behaviour, and subjective affective state. With an origin from beyond the orbitofrontal cortex, top-down attention to affect modulates orbitofrontal cortex representations, and attention to intensity modulates representations in earlier cortical areas of the physical properties of stimuli. Top-down word-level cognitive inputs can bias affective representations in the orbitofrontal cortex, providing a mechanism for cognition to influence emotion. Whereas the orbitofrontal cortex provides a representation of reward or affective value on a continuous scale, areas beyond the orbitofrontal cortex such as the medial prefrontal cortex area 10 are involved in binary decision-making when a choice must be made. For this decision-making, the orbitofrontal cortex provides a representation of each specific reward in a common currency.

  6. Brain networks of social action-outcome contingency: The role of the ventral striatum in integrating signals from the sensory cortex and medial prefrontal cortex.

    Science.gov (United States)

    Sumiya, Motofumi; Koike, Takahiko; Okazaki, Shuntaro; Kitada, Ryo; Sadato, Norihiro

    2017-10-01

    Social interactions can be facilitated by action-outcome contingency, in which self-actions result in relevant responses from others. Research has indicated that the striatal reward system plays a role in generating action-outcome contingency signals. However, the neural mechanisms wherein signals regarding self-action and others' responses are integrated to generate the contingency signal remain poorly understood. We conducted a functional MRI study to test the hypothesis that brain activity representing the self modulates connectivity between the striatal reward system and sensory regions involved in the processing of others' responses. We employed a contingency task in which participants made the listener laugh by telling jokes. Participants reported more pleasure when greater laughter followed their own jokes than those of another. Self-relevant listener's responses produced stronger activation in the medial prefrontal cortex (mPFC). Laughter was associated with activity in the auditory cortex. The ventral striatum exhibited stronger activation when participants made listeners laugh than when another did. In physio-physiological interaction analyses, the ventral striatum showed interaction effects for signals extracted from the mPFC and auditory cortex. These results support the hypothesis that the mPFC, which is implicated in self-related processing, gates sensory input associated with others' responses during value processing in the ventral striatum. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Hearing illusory sounds in noise: sensory-perceptual transformations in primary auditory cortex.

    NARCIS (Netherlands)

    Riecke, L.; Opstal, A.J. van; Goebel, R.; Formisano, E.

    2007-01-01

    A sound that is interrupted by silence is perceived as discontinuous. However, when the silence is replaced by noise, the target sound may be heard as uninterrupted. Understanding the neural basis of this continuity illusion may elucidate the ability to track sounds of interest in noisy auditory

  8. Laterality of basic auditory perception.

    Science.gov (United States)

    Sininger, Yvonne S; Bhatara, Anjali

    2012-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.

  9. [Correlation of diffusion tensor imaging between the cerebral cortex and speech discrimination in presbycusis].

    Science.gov (United States)

    Peng, Lu; Yu, Shuilian; Chen, Ruichun; Jing, Yan; Liang, Jianping

    2015-09-01

    To investigate the relationship between pure-tone average (PTA), the fractional anisotropy (FA) of the auditory pathway, cognitive cortex and auditory cortex in presbycusis. Twenty-five elderly subjects with presbycusis were participated in the study. PTA, speech discrimination abilities were evaluated in each subject. Diffusion tensor imaging (DTI) was applied to access the FA of the IC, the superior frontal gyrus and the Heschl's gyrus. Compare the difference between two sides of the values of FA in the three areas. Bivariate correlation analysis was performed to evaluate the effects of PTA and FA of the inferior colliculus (IC), the superior frontal gyrus and the Heschl's gyrus on speech discrimination abilities. There were no significant differences between the left and right side of the inferior colliculus (P > 0.05). Higher FA values were recorded at the left side of the Heschl's gyrus and the superior frontal gyrus (P < 0.05). Both PTA and the FA of the superior frontal gyrus have a negative association with speech discrimination abilities (P < 0.01, P < 0.05), while the FA of the Heschl's gyrus has a positive association with speech discrimination abilities (P < 0.05). Our findings indicated that the speech discrimination abilities of the elderly is not only related to the peripheral auditory function, but also to the central auditory and cognitive function.

  10. Brain bases for auditory stimulus-driven figure-ground segregation.

    Science.gov (United States)

    Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D

    2011-01-05

    Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.

  11. Hierarchical processing of auditory objects in humans.

    Directory of Open Access Journals (Sweden)

    Sukhbinder Kumar

    2007-06-01

    Full Text Available This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG, containing the primary auditory cortex, planum temporale (PT, and superior temporal sulcus (STS, and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal "templates" in the PT before further analysis of the abstracted form in anterior temporal lobe areas.

  12. Effects of Arousal on Mouse Sensory Cortex Depend on Modality

    Directory of Open Access Journals (Sweden)

    Daisuke Shimaoka

    2018-03-01

    Full Text Available Summary: Changes in arousal modulate the activity of mouse sensory cortex, but studies in different mice and different sensory areas disagree on whether this modulation enhances or suppresses activity. We measured this modulation simultaneously in multiple cortical areas by imaging mice expressing voltage-sensitive fluorescent proteins (VSFP. VSFP imaging estimates local membrane potential across large portions of cortex. We used temporal filters to predict local potential from running speed or from pupil dilation, two measures of arousal. The filters provided good fits and revealed that the effects of arousal depend on modality. In the primary visual cortex (V1 and auditory cortex (Au, arousal caused depolarization followed by hyperpolarization. In the barrel cortex (S1b and a secondary visual area (LM, it caused only hyperpolarization. In all areas, nonetheless, arousal reduced the phasic responses to trains of sensory stimuli. These results demonstrate diverse effects of arousal across sensory cortex but similar effects on sensory responses. : Shimaoka et al. use voltage-sensitive imaging to show that the effects of arousal on the mouse cortex are markedly different across areas and over time. In all the sensory areas studied, nonetheless, arousal reduced the phasic voltage responses to trains of sensory stimuli. Keywords: cerebral cortex, cortical state, locomotion, sensory processing, widefield imaging

  13. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    Science.gov (United States)

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.

  14. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  15. Subthalamic deep brain stimulation improves auditory sensory gating deficit in Parkinson's disease.

    Science.gov (United States)

    Gulberti, A; Hamel, W; Buhmann, C; Boelmans, K; Zittel, S; Gerloff, C; Westphal, M; Engel, A K; Schneider, T R; Moll, C K E

    2015-03-01

    While motor effects of dopaminergic medication and subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) patients are well explored, their effects on sensory processing are less well understood. Here, we studied the impact of levodopa and STN-DBS on auditory processing. Rhythmic auditory stimulation (RAS) was presented at frequencies between 1 and 6Hz in a passive listening paradigm. High-density EEG-recordings were obtained before (levodopa ON/OFF) and 5months following STN-surgery (ON/OFF STN-DBS). We compared auditory evoked potentials (AEPs) elicited by RAS in 12 PD patients to those in age-matched controls. Tempo-dependent amplitude suppression of the auditory P1/N1-complex was used as an indicator of auditory gating. Parkinsonian patients showed significantly larger AEP-amplitudes (P1, N1) and longer AEP-latencies (N1) compared to controls. Neither interruption of dopaminergic medication nor of STN-DBS had an immediate effect on these AEPs. However, chronic STN-DBS had a significant effect on abnormal auditory gating characteristics of parkinsonian patients and restored a physiological P1/N1-amplitude attenuation profile in response to RAS with increasing stimulus rates. This differential treatment effect suggests a divergent mode of action of levodopa and STN-DBS on auditory processing. STN-DBS may improve early attentive filtering processes of redundant auditory stimuli, possibly at the level of the frontal cortex. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. The importance of individual frequencies of endogenous brain oscillations for auditory cognition - A short review.

    Science.gov (United States)

    Baltus, Alina; Herrmann, Christoph Siegfried

    2016-06-01

    Oscillatory EEG activity in the human brain with frequencies in the gamma range (approx. 30-80Hz) is known to be relevant for a large number of cognitive processes. Interestingly, each subject reveals an individual frequency of the auditory gamma-band response (GBR) that coincides with the peak in the auditory steady state response (ASSR). A common resonance frequency of auditory cortex seems to underlie both the individual frequency of the GBR and the peak of the ASSR. This review sheds light on the functional role of oscillatory gamma activity for auditory processing. For successful processing, the auditory system has to track changes in auditory input over time and store information about past events in memory which allows the construction of auditory objects. Recent findings support the idea of gamma oscillations being involved in the partitioning of auditory input into discrete samples to facilitate higher order processing. We review experiments that seem to suggest that inter-individual differences in the resonance frequency are behaviorally relevant for gap detection and speech processing. A possible application of these resonance frequencies for brain computer interfaces is illustrated with regard to optimized individual presentation rates for auditory input to correspond with endogenous oscillatory activity. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Altered auditory processing and effective connectivity in 22q11.2 deletion syndrome

    DEFF Research Database (Denmark)

    Larsen, Kit Melissa; Mørup, Morten; Birknow, Michelle Rosgaard

    2018-01-01

    . Mismatch negativity (MMN), a brain marker of change detection, is reduced in people with schizophrenia compared to healthy controls. Using dynamic causal modelling (DCM), previous studies showed that top-down effective connectivity linking the frontal and temporal cortex is reduced in schizophrenia......11.2 deletion carriers. DCM showed reduced intrinsic connection within right primary auditory cortex as well as in the top-down, connection from the right inferior frontal gyrus to right superior temporal gyrus for 22q11.2 deletion carriers although not surviving correction for multiple comparison...

  18. The musical centers of the brain: Vladimir E. Larionov (1857-1929) and the functional neuroanatomy of auditory perception.

    Science.gov (United States)

    Triarhou, Lazaros C; Verina, Tatyana

    2016-11-01

    In 1899 a landmark paper entitled "On the musical centers of the brain" was published in Pflügers Archiv, based on work carried out in the Anatomo-Physiological Laboratory of the Neuropsychiatric Clinic of Vladimir M. Bekhterev (1857-1927) in St. Petersburg, Imperial Russia. The author of that paper was Vladimir E. Larionov (1857-1929), a military doctor and devoted brain scientist, who pursued the problem of the localization of function in the canine and human auditory cortex. His data detailed the existence of tonotopy in the temporal lobe and further demonstrated centrifugal auditory pathways emanating from the auditory cortex and directed to the opposite hemisphere and lower brain centers. Larionov's discoveries have been largely considered as findings of the Bekhterev school. Perhaps this is why there are limited resources on Larionov, especially keeping in mind his military medical career and the fact that after 1917 he just seems to have practiced otorhinolaryngology in Odessa. Larionov died two years after Bekhterev's mysterious death of 1927. The present study highlights the pioneering contributions of Larionov to auditory neuroscience, trusting that the life and work of Vladimir Efimovich will finally, and deservedly, emerge from the shadow of his celebrated master, Vladimir Mikhailovich. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns

    Directory of Open Access Journals (Sweden)

    Meyer Martin

    2009-07-01

    Full Text Available Abstract Background Little is known about the contribution of transcranial direct current stimulation (tDCS to the exploration of memory functions. The aim of the present study was to examine the behavioural effects of right or left-hemisphere frontal direct current delivery while committing to memory auditory presented nouns on short-term learning and subsequent long-term retrieval. Methods Twenty subjects, divided into two groups, performed an episodic verbal memory task during anodal, cathodal and sham current application on the right or left dorsolateral prefrontal cortex (DLPFC. Results Our results imply that only cathodal tDCS elicits behavioural effects on verbal memory performance. In particular, left-sided application of cathodal tDCS impaired short-term verbal learning when compared to the baseline. We did not observe tDCS effects on long-term retrieval. Conclusion Our results imply that the left DLPFC is a crucial area involved in short-term verbal learning mechanisms. However, we found further support that direct current delivery with an intensity of 1.5 mA to the DLPFC during short-term learning does not disrupt longer lasting consolidation processes that are mainly known to be related to mesial temporal lobe areas. In the present study, we have shown that the tDCS technique has the potential to modulate short-term verbal learning mechanism.

  20. Thresholding of auditory cortical representation by background noise

    Science.gov (United States)

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  1. Thresholding of auditory cortical representation by background noise.

    Science.gov (United States)

    Liang, Feixue; Bai, Lin; Tao, Huizhong W; Zhang, Li I; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity.

  2. Impact of uncertain head tissue conductivity in the optimization of transcranial direct current stimulation for an auditory target

    Science.gov (United States)

    Schmidt, Christian; Wagner, Sven; Burger, Martin; van Rienen, Ursula; Wolters, Carsten H.

    2015-08-01

    Objective. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique to modify neural excitability. Using multi-array tDCS, we investigate the influence of inter-individually varying head tissue conductivity profiles on optimal electrode configurations for an auditory cortex stimulation. Approach. In order to quantify the uncertainty of the optimal electrode configurations, multi-variate generalized polynomial chaos expansions of the model solutions are used based on uncertain conductivity profiles of the compartments skin, skull, gray matter, and white matter. Stochastic measures, probability density functions, and sensitivity of the quantities of interest are investigated for each electrode and the current density at the target with the resulting stimulation protocols visualized on the head surface. Main results. We demonstrate that the optimized stimulation protocols are only comprised of a few active electrodes, with tolerable deviations in the stimulation amplitude of the anode. However, large deviations in the order of the uncertainty in the conductivity profiles could be noted in the stimulation protocol of the compensating cathodes. Regarding these main stimulation electrodes, the stimulation protocol was most sensitive to uncertainty in skull conductivity. Finally, the probability that the current density amplitude in the auditory cortex target region is supra-threshold was below 50%. Significance. The results suggest that an uncertain conductivity profile in computational models of tDCS can have a substantial influence on the prediction of optimal stimulation protocols for stimulation of the auditory cortex. The investigations carried out in this study present a possibility to predict the probability of providing a therapeutic effect with an optimized electrode system for future auditory clinical and experimental procedures of tDCS applications.

  3. The effect of synesthetic associations between the visual and auditory modalities on the Colavita effect.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Keetels, Mirjam

    2016-05-01

    The Colavita effect refers to the phenomenon that when confronted with an audiovisual stimulus, observers report more often to have perceived the visual than the auditory component. The Colavita effect depends on low-level stimulus factors such as spatial and temporal proximity between the unimodal signals. Here, we examined whether the Colavita effect is modulated by synesthetic congruency between visual size and auditory pitch. If the Colavita effect depends on synesthetic congruency, we expect a larger Colavita effect for synesthetically congruent size/pitch (large visual stimulus/low-pitched tone; small visual stimulus/high-pitched tone) than synesthetically incongruent (large visual stimulus/high-pitched tone; small visual stimulus/low-pitched tone) combinations. Participants had to identify stimulus type (visual, auditory or audiovisual). The study replicated the Colavita effect because participants reported more often the visual than auditory component of the audiovisual stimuli. Synesthetic congruency had, however, no effect on the magnitude of the Colavita effect. EEG recordings to congruent and incongruent audiovisual pairings showed a late frontal congruency effect at 400-550 ms and an occipitoparietal effect at 690-800 ms with neural sources in the anterior cingulate and premotor cortex for the 400- to 550-ms window and premotor cortex, inferior parietal lobule and the posterior middle temporal gyrus for the 690- to 800-ms window. The electrophysiological data show that synesthetic congruency was probably detected in a processing stage subsequent to the Colavita effect. We conclude that-in a modality detection task-the Colavita effect can be modulated by low-level structural factors but not by higher-order associations between auditory and visual inputs.

  4. Insult-induced adaptive plasticity of the auditory system

    Directory of Open Access Journals (Sweden)

    Joshua R Gold

    2014-05-01

    Full Text Available The brain displays a remarkable capacity for both widespread and region-specific modifications in response to environmental challenges, with adaptive processes bringing about the reweighting of connections in neural networks putatively required for optimising performance and behaviour. As an avenue for investigation, studies centred around changes in the mammalian auditory system, extending from the brainstem to the cortex, have revealed a plethora of mechanisms that operate in the context of sensory disruption after insult, be it lesion-, noise trauma, drug-, or age-related. Of particular interest in recent work are those aspects of auditory processing which, after sensory disruption, change at multiple – if not all – levels of the auditory hierarchy. These include changes in excitatory, inhibitory and neuromodulatory networks, consistent with theories of homeostatic plasticity; functional alterations in gene expression and in protein levels; as well as broader network processing effects with cognitive and behavioural implications. Nevertheless, there abounds substantial debate regarding which of these processes may only be sequelae of the original insult, and which may, in fact, be maladaptively compelling further degradation of the organism’s competence to cope with its disrupted sensory context. In this review, we aim to examine how the mammalian auditory system responds in the wake of particular insults, and to disambiguate how the changes that develop might underlie a correlated class of phantom disorders, including tinnitus and hyperacusis, which putatively are brought about through maladaptive neuroplastic disruptions to auditory networks governing the spatial and temporal processing of acoustic sensory information.

  5. Great Expectations: Is there Evidence for Predictive Coding in Auditory Cortex?

    Science.gov (United States)

    Heilbron, Micha; Chait, Maria

    2017-08-04

    Predictive coding is possibly one of the most influential, comprehensive, and controversial theories of neural function. While proponents praise its explanatory potential, critics object that key tenets of the theory are untested or even untestable. The present article critically examines existing evidence for predictive coding in the auditory modality. Specifically, we identify five key assumptions of the theory and evaluate each in the light of animal, human and modeling studies of auditory pattern processing. For the first two assumptions - that neural responses are shaped by expectations and that these expectations are hierarchically organized - animal and human studies provide compelling evidence. The anticipatory, predictive nature of these expectations also enjoys empirical support, especially from studies on unexpected stimulus omission. However, for the existence of separate error and prediction neurons, a key assumption of the theory, evidence is lacking. More work exists on the proposed oscillatory signatures of predictive coding, and on the relation between attention and precision. However, results on these latter two assumptions are mixed or contradictory. Looking to the future, more collaboration between human and animal studies, aided by model-based analyses will be needed to test specific assumptions and implementations of predictive coding - and, as such, help determine whether this popular grand theory can fulfill its expectations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence

    Science.gov (United States)

    Shiga, Tetsuya; Althen, Heike; Cornella, Miriam; Zarnowiec, Katarzyna; Yabe, Hirooki; Escera, Carles

    2015-01-01

    The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective. PMID:26348628

  7. The Effect of Visual and Auditory Enhancements on Excitability of the Primary Motor Cortex during Motor Imagery: A Pilot Study

    Science.gov (United States)

    Ikeda, Kohei; Higashi, Toshio; Sugawara, Kenichi; Tomori, Kounosuke; Kinoshita, Hiroshi; Kasai, Tatsuya

    2012-01-01

    The effect of visual and auditory enhancements of finger movement on corticospinal excitability during motor imagery (MI) was investigated using the transcranial magnetic stimulation technique. Motor-evoked potentials were elicited from the abductor digit minimi muscle during MI with auditory, visual and, auditory and visual information, and no…

  8. For Better or Worse: The Effect of Prismatic Adaptation on Auditory Neglect

    Directory of Open Access Journals (Sweden)

    Isabel Tissieres

    2017-01-01

    Full Text Available Patients with auditory neglect attend less to auditory stimuli on their left and/or make systematic directional errors when indicating sound positions. Rightward prismatic adaptation (R-PA was repeatedly shown to alleviate symptoms of visuospatial neglect and once to restore partially spatial bias in dichotic listening. It is currently unknown whether R-PA affects only this ear-related symptom or also other aspects of auditory neglect. We have investigated the effect of R-PA on left ear extinction in dichotic listening, space-related inattention assessed by diotic listening, and directional errors in auditory localization in patients with auditory neglect. The most striking effect of R-PA was the alleviation of left ear extinction in dichotic listening, which occurred in half of the patients with initial deficit. In contrast to nonresponders, their lesions spared the right dorsal attentional system and posterior temporal cortex. The beneficial effect of R-PA on an ear-related performance contrasted with detrimental effects on diotic listening and auditory localization. The former can be parsimoniously explained by the SHD-VAS model (shift in hemispheric dominance within the ventral attentional system; Clarke and Crottaz-Herbette 2016, which is based on the R-PA-induced shift of the right-dominant ventral attentional system to the left hemisphere. The negative effects in space-related tasks may be due to the complex nature of auditory space encoding at a cortical level.

  9. Aberrant connectivity of areas for decoding degraded speech in patients with auditory verbal hallucinations.

    Science.gov (United States)

    Clos, Mareike; Diederen, Kelly M J; Meijering, Anne Lotte; Sommer, Iris E; Eickhoff, Simon B

    2014-03-01

    Auditory verbal hallucinations (AVH) are a hallmark of psychotic experience. Various mechanisms including misattribution of inner speech and imbalance between bottom-up and top-down factors in auditory perception potentially due to aberrant connectivity between frontal and temporo-parietal areas have been suggested to underlie AVH. Experimental evidence for disturbed connectivity of networks sustaining auditory-verbal processing is, however, sparse. We compared functional resting-state connectivity in 49 psychotic patients with frequent AVH and 49 matched controls. The analysis was seeded from the left middle temporal gyrus (MTG), thalamus, angular gyrus (AG) and inferior frontal gyrus (IFG) as these regions are implicated in extracting meaning from impoverished speech-like sounds. Aberrant connectivity was found for all seeds. Decreased connectivity was observed between the left MTG and its right homotope, between the left AG and the surrounding inferior parietal cortex (IPC) and the left inferior temporal gyrus, between the left thalamus and the right cerebellum, as well as between the left IFG and left IPC, and dorsolateral and ventrolateral prefrontal cortex (DLPFC/VLPFC). Increased connectivity was observed between the left IFG and the supplementary motor area (SMA) and the left insula and between the left thalamus and the left fusiform gyrus/hippocampus. The predisposition to experience AVH might result from decoupling between the speech production system (IFG, insula and SMA) and the self-monitoring system (DLPFC, VLPFC, IPC) leading to misattribution of inner speech. Furthermore, decreased connectivity between nodes involved in speech processing (AG, MTG) and other regions implicated in auditory processing might reflect aberrant top-down influences in AVH.

  10. The auditory scene: an fMRI study on melody and accompaniment in professional pianists.

    Science.gov (United States)

    Spada, Danilo; Verga, Laura; Iadanza, Antonella; Tettamanti, Marco; Perani, Daniela

    2014-11-15

    The auditory scene is a mental representation of individual sounds extracted from the summed sound waveform reaching the ears of the listeners. Musical contexts represent particularly complex cases of auditory scenes. In such a scenario, melody may be seen as the main object moving on a background represented by the accompaniment. Both melody and accompaniment vary in time according to harmonic rules, forming a typical texture with melody in the most prominent, salient voice. In the present sparse acquisition functional magnetic resonance imaging study, we investigated the interplay between melody and accompaniment in trained pianists, by observing the activation responses elicited by processing: (1) melody placed in the upper and lower texture voices, leading to, respectively, a higher and lower auditory salience; (2) harmonic violations occurring in either the melody, the accompaniment, or both. The results indicated that the neural activation elicited by the processing of polyphonic compositions in expert musicians depends upon the upper versus lower position of the melodic line in the texture, and showed an overall greater activation for the harmonic processing of melody over accompaniment. Both these two predominant effects were characterized by the involvement of the posterior cingulate cortex and precuneus, among other associative brain regions. We discuss the prominent role of the posterior medial cortex in the processing of melodic and harmonic information in the auditory stream, and propose to frame this processing in relation to the cognitive construction of complex multimodal sensory imagery scenes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study.

    Science.gov (United States)

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Sugata, Hisato; Hanaie, Ryuzo; Nagatani, Fumiyo; Yamamoto, Tomoka; Tachibana, Masaya; Tominaga, Koji; Hirata, Masayuki; Mohri, Ikuko; Taniike, Masako

    2017-01-01

    Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD), the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG) to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz) in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years) and 13 typically developing boys (mean age, 9.45 ± 1.51 years). We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  12. Membrane potential dynamics of populations of cortical neurons during auditory streaming

    Science.gov (United States)

    Farley, Brandon J.

    2015-01-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts. PMID:26269558

  13. Auditory Attraction: Activation of Visual Cortex by Music and Sound in Williams Syndrome

    Science.gov (United States)

    Thornton-Wells, Tricia A.; Cannistraci, Christopher J.; Anderson, Adam W.; Kim, Chai-Youn; Eapen, Mariam; Gore, John C.; Blake, Randolph; Dykens, Elisabeth M.

    2010-01-01

    Williams syndrome is a genetic neurodevelopmental disorder with a distinctive phenotype, including cognitive-linguistic features, nonsocial anxiety, and a strong attraction to music. We performed functional MRI studies examining brain responses to musical and other types of auditory stimuli in young adults with Williams syndrome and typically…

  14. Network and external perturbation induce burst synchronisation in cat cerebral cortex

    Science.gov (United States)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.

    2016-05-01

    The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.

  15. c-Fos and Arc/Arg3.1 expression in auditory and visual cortices after hearing loss: Evidence of sensory crossmodal reorganization in adult rats.

    Science.gov (United States)

    Pernia, M; Estevez, S; Poveda, C; Plaza, I; Carro, J; Juiz, J M; Merchan, M A

    2017-08-15

    Cross-modal reorganization in the auditory and visual cortices has been reported after hearing and visual deficits mostly during the developmental period, possibly underlying sensory compensation mechanisms. However, there are very few data on the existence or nature and timeline of such reorganization events during sensory deficits in adulthood. In this study, we assessed long-term changes in activity-dependent immediate early genes c-Fos and Arc/Arg3.1 in auditory and neighboring visual cortical areas after bilateral deafness in young adult rats. Specifically, we analyzed qualitatively and quantitatively c-Fos and Arc/Arg3.1 immunoreactivity at 15 and 90 days after cochlea removal. We report extensive, global loss of c-Fos and Arc/Arg3.1 immunoreactive neurons in the auditory cortex 15 days after permanent auditory deprivation in adult rats, which is partly reversed 90 days after deafness. Simultaneously, the number and labeling intensity of c-Fos- and Arc/Arg3.1-immunoreactive neurons progressively increase in neighboring visual cortical areas from 2 weeks after deafness and these changes stabilize three months after inducing the cochlear lesion. These findings support plastic, compensatory, long-term changes in activity in the auditory and visual cortices after auditory deprivation in the adult rats. Further studies may clarify whether those changes result in perceptual potentiation of visual drives on auditory regions of the adult cortex. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  16. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice.

    Science.gov (United States)

    Terreros, Gonzalo; Jorratt, Pascal; Aedo, Cristian; Elgoyhen, Ana Belén; Delano, Paul H

    2016-07-06

    During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear

  17. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    Science.gov (United States)

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  18. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.

    Science.gov (United States)

    Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T

    2016-01-01

    Cortical theta band oscillations (4-8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention.

  19. Limbic-Auditory Interactions of Tinnitus: An Evaluation Using Diffusion Tensor Imaging.

    Science.gov (United States)

    Gunbey, H P; Gunbey, E; Aslan, K; Bulut, T; Unal, A; Incesu, L

    2017-06-01

    Tinnitus is defined as an imaginary subjective perception in the absence of an external sound. Convergent evidence proposes that tinnitus perception includes auditory, attentional and emotional components. The aim of this study was to investigate the thalamic, auditory and limbic interactions associated with tinnitus-related distress by Diffusion Tensor Imaging (DTI). A total of 36 tinnitus patients, 20 healthy controls underwent an audiological examination, as well as a magnetic resonance imaging protocol including structural and DTI sequences. All participants completed the Tinnitus Handicap Inventory (THI) and Visual Analog Scales (VAS) related with tinnitus. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were obtained for the auditory cortex (AC), inferior colliculus (IC), lateral lemniscus (LL), medial geniculate body (MGB), thalamic reticular nucleus (TRN), amygdala (AMG), hippocampus (HIP), parahippocampus (PHIP) and prefrontal cortex (PFC). In tinnitus patients the FA values of IC, MGB, TRN, AMG, HIP decreased and the ADC values of IC, MGB, TRN, AMG, PHIP increased significantly. The contralateral IC-LL and bilateral MGB FA values correlated negatively with hearing loss. A negative relation was found between the AMG-HIP FA values and THI and VAS scores. Bilateral ADC values of PHIP and PFC significantly correlated with the attention deficiency-VAS scores. In conclusion, this is the first DTI study to investigate the grey matter structures related to tinnitus perception and the significant correlation of FA and ADC with clinical parameters suggests that DTI can provide helpful information for tinnitus. Magnifying the microstructures in DTI can help evaluate the three faces of tinnitus nature: hearing, emotion and attention.

  20. Using fNIRS to Examine Occipital and Temporal Responses to Stimulus Repetition in Young Infants: Evidence of Selective Frontal Cortex Involvement

    Science.gov (United States)

    Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.

    2016-01-01

    How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401

  1. EEG signatures accompanying auditory figure-ground segregation.

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P; Szerafin, Ágnes; Shinn-Cunningham, Barbara G; Winkler, István

    2016-11-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased - i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. Copyright © 2016. Published by Elsevier Inc.

  2. EEG signatures accompanying auditory figure-ground segregation

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P.; Szerafin, Ágnes; Shinn-Cunningham, Barbara; Winkler, István

    2017-01-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased – i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. PMID:27421185

  3. Auditory mismatch negativity in schizophrenia: topographic evaluation with a high-density recording montage.

    Science.gov (United States)

    Hirayasu, Y; Potts, G F; O'Donnell, B F; Kwon, J S; Arakaki, H; Akdag, S J; Levitt, J J; Shenton, M E; McCarley, R W

    1998-09-01

    The mismatch negativity, a negative component in the auditory event-related potential, is thought to index automatic processes involved in sensory or echoic memory. The authors' goal in this study was to examine the topography of auditory mismatch negativity in schizophrenia with a high-density, 64-channel recording montage. Mismatch negativity topography was evaluated in 23 right-handed male patients with schizophrenia who were receiving medication and in 23 nonschizophrenic comparison subjects who were matched in age, handedness, and parental socioeconomic status. The Positive and Negative Syndrome Scale was used to measure psychiatric symptoms. Mismatch negativity amplitude was reduced in the patients with schizophrenia. They showed a greater left-less-than-right asymmetry than comparison subjects at homotopic electrode pairs near the parietotemporal junction. There were correlations between mismatch negativity amplitude and hallucinations at left frontal electrodes and between mismatch negativity amplitude and passive-apathetic social withdrawal at left and right frontal electrodes. Mismatch negativity was reduced in schizophrenia, especially in the left hemisphere. This finding is consistent with abnormalities of primary or adjacent auditory cortex involved in auditory sensory or echoic memory.

  4. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  5. Specialization of the auditory system for the processing of bio-sonar information in the frequency domain: Mustached bats.

    Science.gov (United States)

    Suga, Nobuo

    2018-04-01

    For echolocation, mustached bats emit velocity-sensitive orientation sounds (pulses) containing a constant-frequency component consisting of four harmonics (CF 1-4 ). They show unique behavior called Doppler-shift compensation for Doppler-shifted echoes and hunting behavior for frequency and amplitude modulated echoes from fluttering insects. Their peripheral auditory system is highly specialized for fine frequency analysis of CF 2 (∼61.0 kHz) and detecting echo CF 2 from fluttering insects. In their central auditory system, lateral inhibition occurring at multiple levels sharpens V-shaped frequency-tuning curves at the periphery and creates sharp spindle-shaped tuning curves and amplitude tuning. The large CF 2 -tuned area of the auditory cortex systematically represents the frequency and amplitude of CF 2 in a frequency-versus-amplitude map. "CF/CF" neurons are tuned to a specific combination of pulse CF 1 and Doppler-shifted echo CF 2 or 3 . They are tuned to specific velocities. CF/CF neurons cluster in the CC ("C" stands for CF) and DIF (dorsal intrafossa) areas of the auditory cortex. The CC area has the velocity map for Doppler imaging. The DIF area is particularly for Dopper imaging of other bats approaching in cruising flight. To optimize the processing of behaviorally relevant sounds, cortico-cortical interactions and corticofugal feedback modulate the frequency tuning of cortical and sub-cortical auditory neurons and cochlear hair cells through a neural net consisting of positive feedback associated with lateral inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study

    Directory of Open Access Journals (Sweden)

    Junko Matsuzaki

    2017-09-01

    Full Text Available Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD, the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years and 13 typically developing boys (mean age, 9.45 ± 1.51 years. We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  7. Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices

    Science.gov (United States)

    Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.

    2016-01-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975

  8. Maturation of auditory neural processes in autism spectrum disorder — A longitudinal MEG study

    Directory of Open Access Journals (Sweden)

    Russell G. Port

    2016-01-01

    Conclusions: Children with ASD showed perturbed auditory cortex neural activity, as evidenced by M100 latency delays as well as reduced transient gamma-band activity. Despite evidence for maturation of these responses in ASD, the neural abnormalities in ASD persisted across time. Of note, data from the five children whom demonstrated “optimal outcome” qualitatively suggest that such clinical improvements may be associated with auditory brain responses intermediate between TD and ASD. These “optimal outcome” related results are not statistically significant though, likely due to the low sample size of this cohort, and to be expected as a result of the relatively low proportion of “optimal outcome” in the ASD population. Thus, further investigations with larger cohorts are needed to determine if the above auditory response phenotypes have prognostic utility, predictive of clinical outcome.

  9. Amino acid and acetylcholine chemistry in the central auditory system of young, middle-aged and old rats.

    Science.gov (United States)

    Godfrey, Donald A; Chen, Kejian; O'Toole, Thomas R; Mustapha, Abdurrahman I A A

    2017-07-01

    Older adults generally experience difficulties with hearing. Age-related changes in the chemistry of central auditory regions, especially the chemistry underlying synaptic transmission between neurons, may be of particular relevance for hearing changes. In this study, we used quantitative microchemical methods to map concentrations of amino acids, including the major neurotransmitters of the brain, in all the major central auditory structures of young (6 months), middle-aged (22 months), and old (33 months old) Fischer 344 x Brown Norway rats. In addition, some amino acid measurements were made for vestibular nuclei, and activities of choline acetyltransferase, the enzyme for acetylcholine synthesis, were mapped in the superior olive and auditory cortex. In old, as compared to young, rats, glutamate concentrations were lower throughout central auditory regions. Aspartate and glycine concentrations were significantly lower in many and GABA and taurine concentrations in some cochlear nucleus and superior olive regions. Glutamine concentrations and choline acetyltransferase activities were higher in most auditory cortex layers of old rats as compared to young. Where there were differences between young and old rats, amino acid concentrations in middle-aged rats often lay between those in young and old rats, suggesting gradual changes during adult life. The results suggest that hearing deficits in older adults may relate to decreases in excitatory (glutamate) as well as inhibitory (glycine and GABA) neurotransmitter amino acid functions. Chemical changes measured in aged rats often differed from changes measured after manipulations that directly damage the cochlea, suggesting that chemical changes during aging may not all be secondary to cochlear damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The impact of auditory working memory training on the fronto-parietal working memory network.

    Science.gov (United States)

    Schneiders, Julia A; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously.

  11. The impact of auditory working memory training on the fronto-parietal working memory network

    Science.gov (United States)

    Schneiders, Julia A.; Opitz, Bertram; Tang, Huijun; Deng, Yuan; Xie, Chaoxiang; Li, Hong; Mecklinger, Axel

    2012-01-01

    Working memory training has been widely used to investigate working memory processes. We have shown previously that visual working memory benefits only from intra-modal visual but not from across-modal auditory working memory training. In the present functional magnetic resonance imaging study we examined whether auditory working memory processes can also be trained specifically and which training-induced activation changes accompany theses effects. It was investigated whether working memory training with strongly distinct auditory materials transfers exclusively to an auditory (intra-modal) working memory task or whether it generalizes to a (across-modal) visual working memory task. We used adaptive n-back training with tonal sequences and a passive control condition. The memory training led to a reliable training gain. Transfer effects were found for the (intra-modal) auditory but not for the (across-modal) visual transfer task. Training-induced activation decreases in the auditory transfer task were found in two regions in the right inferior frontal gyrus. These effects confirm our previous findings in the visual modality and extents intra-modal effects in the prefrontal cortex to the auditory modality. As the right inferior frontal gyrus is frequently found in maintaining modality-specific auditory information, these results might reflect increased neural efficiency in auditory working memory processes. Furthermore, task-unspecific (amodal) activation decreases in the visual and auditory transfer task were found in the right inferior parietal lobule and the superior portion of the right middle frontal gyrus reflecting less demand on general attentional control processes. These data are in good agreement with amodal activation decreases within the same brain regions on a visual transfer task reported previously. PMID:22701418

  12. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    Science.gov (United States)

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the

  13. Age-related changes in GAD levels in the central auditory system of the rat

    Czech Academy of Sciences Publication Activity Database

    Burianová, Jana; Ouda, Ladislav; Profant, Oliver; Syka, Josef

    2009-01-01

    Roč. 44, č. 3 (2009), s. 161-169 ISSN 0531-5565 R&D Projects: GA ČR GA309/07/1336; GA MZd NR8113; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : Inferior colliculus * Auditory cortex * Rat Subject RIV: FH - Neurology Impact factor: 3.342, year: 2009

  14. Audiovisual Association Learning in the Absence of Primary Visual Cortex.

    Science.gov (United States)

    Seirafi, Mehrdad; De Weerd, Peter; Pegna, Alan J; de Gelder, Beatrice

    2015-01-01

    Learning audiovisual associations is mediated by the primary cortical areas; however, recent animal studies suggest that such learning can take place even in the absence of the primary visual cortex. Other studies have demonstrated the involvement of extra-geniculate pathways and especially the superior colliculus (SC) in audiovisual association learning. Here, we investigated such learning in a rare human patient with complete loss of the bilateral striate cortex. We carried out an implicit audiovisual association learning task with two different colors of red and purple (the latter color known to minimally activate the extra-genicular pathway). Interestingly, the patient learned the association between an auditory cue and a visual stimulus only when the unseen visual stimulus was red, but not when it was purple. The current study presents the first evidence showing the possibility of audiovisual association learning in humans with lesioned striate cortex. Furthermore, in line with animal studies, it supports an important role for the SC in audiovisual associative learning.

  15. Associative learning changes cross-modal representations in the gustatory cortex.

    Science.gov (United States)

    Vincis, Roberto; Fontanini, Alfredo

    2016-08-30

    A growing body of literature has demonstrated that primary sensory cortices are not exclusively unimodal, but can respond to stimuli of different sensory modalities. However, several questions concerning the neural representation of cross-modal stimuli remain open. Indeed, it is poorly understood if cross-modal stimuli evoke unique or overlapping representations in a primary sensory cortex and whether learning can modulate these representations. Here we recorded single unit responses to auditory, visual, somatosensory, and olfactory stimuli in the gustatory cortex (GC) of alert rats before and after associative learning. We found that, in untrained rats, the majority of GC neurons were modulated by a single modality. Upon learning, both prevalence of cross-modal responsive neurons and their breadth of tuning increased, leading to a greater overlap of representations. Altogether, our results show that the gustatory cortex represents cross-modal stimuli according to their sensory identity, and that learning changes the overlap of cross-modal representations.

  16. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons.

    Directory of Open Access Journals (Sweden)

    François Windels

    Full Text Available In quiescent states such as anesthesia and slow wave sleep, cortical networks show slow rhythmic synchronized activity. In sensory cortices this rhythmic activity shows a stereotypical pattern that is recapitulated by stimulation of the appropriate sensory modality. The amygdala receives sensory input from a variety of sources, and in anesthetized animals, neurons in the basolateral amygdala (BLA show slow rhythmic synchronized activity. Extracellular field potential recordings show that these oscillations are synchronized with sensory cortex and the thalamus, with both the thalamus and cortex leading the BLA. Using whole-cell recording in vivo we show that the membrane potential of principal neurons spontaneously oscillates between up- and down-states. Footshock and auditory stimulation delivered during down-states evokes an up-state that fully recapitulates those occurring spontaneously. These results suggest that neurons in the BLA receive convergent input from networks of cortical neurons with slow oscillatory activity and that somatosensory and auditory stimulation can trigger activity in these same networks.

  17. The Effects of Acoustic White Noise on the Rat Central Auditory System During the Fetal and Critical Neonatal Periods: A Stereological Study.

    Science.gov (United States)

    Salehi, Mohammad Saied; Namavar, Mohammad Reza; Tamadon, Amin; Bahmani, Raziyeh; Jafarzadeh Shirazi, Mohammad Reza; Khazali, Homayoun; Dargahi, Leila; Pandamooz, Sareh; Mohammad-Rezazadeh, Farzad; Rashidi, Fatemeh Sadat

    2017-01-01

    To evaluate the effects of long-term, moderate level noise exposure during crucial periods of rat infants on stereological parameters of medial geniculate body (MGB) and auditory cortex. Twenty-four male offspring of 12 pregnant rats were divided into four groups: fetal-to-critical period group, which were exposed to noise from the last 10 days of fetal life till postnatal day (PND) 29; fetal period group that exposed to noise during the last 10 days of fetal life; critical period group, exposed to noise from PND 15 till PND 29, and control group. White noise at 90 dB for 2 h per day was used. Variance for variables was performed using Proc GLM followed by mean comparison by Duncan's multiple range test. Numerical density of neurons in MGB of fetal-to-critical period group was lower than control group. Similar results were seen in numerical density of neurons in layers IV and VI of auditory cortex. Furthermore, no significant difference was observed in the volume of auditory cortex among groups, and only MGB volume in fetal-to-critical period group was higher than other groups. Estimated total number of neurons in MGB was not significantly different among groups. It seems necessary to prevent long-term moderate level noise exposure during fetal-to-critical neonatal period.

  18. Seeing the sound after visual loss: functional MRI in acquired auditory-visual synesthesia.

    Science.gov (United States)

    Yong, Zixin; Hsieh, Po-Jang; Milea, Dan

    2017-02-01

    Acquired auditory-visual synesthesia (AVS) is a rare neurological sign, in which specific auditory stimulation triggers visual experience. In this study, we used event-related fMRI to explore the brain regions correlated with acquired monocular sound-induced phosphenes, which occurred 2 months after unilateral visual loss due to an ischemic optic neuropathy. During the fMRI session, 1-s pure tones at various pitches were presented to the patient, who was asked to report occurrence of sound-induced phosphenes by pressing one of the two buttons (yes/no). The brain activation during phosphene-experienced trials was contrasted with non-phosphene trials and compared to results obtained in one healthy control subject who underwent the same fMRI protocol. Our results suggest, for the first time, that acquired AVS occurring after visual impairment is associated with bilateral activation of primary and secondary visual cortex, possibly due to cross-wiring between auditory and visual sensory modalities.

  19. Persistent Angiogenesis in the Autism Brain: An Immunocytochemical Study of Postmortem Cortex, Brainstem and Cerebellum

    Science.gov (United States)

    Azmitia, E. C.; Saccomano, Z. T.; Alzoobaee, M. F.; Boldrini, M.; Whitaker-Azmitia, P. M.

    2016-01-01

    In the current work, we conducted an immunocytochemical search for markers of ongoing neurogenesis (e.g. nestin) in auditory cortex from postmortem sections of autism spectrum disorder (ASD) and age-matched control donors. We found nestin labeling in cells of the vascular system, indicating blood vessels plasticity. Evidence of angiogenesis was…

  20. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator.

    Science.gov (United States)

    Wang, Runchun M; Thakur, Chetan S; van Schaik, André

    2018-01-01

    This paper presents a massively parallel and scalable neuromorphic cortex simulator designed for simulating large and structurally connected spiking neural networks, such as complex models of various areas of the cortex. The main novelty of this work is the abstraction of a neuromorphic architecture into clusters represented by minicolumns and hypercolumns, analogously to the fundamental structural units observed in neurobiology. Without this approach, simulating large-scale fully connected networks needs prohibitively large memory to store look-up tables for point-to-point connections. Instead, we use a novel architecture, based on the structural connectivity in the neocortex, such that all the required parameters and connections can be stored in on-chip memory. The cortex simulator can be easily reconfigured for simulating different neural networks without any change in hardware structure by programming the memory. A hierarchical communication scheme allows one neuron to have a fan-out of up to 200 k neurons. As a proof-of-concept, an implementation on one Altera Stratix V FPGA was able to simulate 20 million to 2.6 billion leaky-integrate-and-fire (LIF) neurons in real time. We verified the system by emulating a simplified auditory cortex (with 100 million neurons). This cortex simulator achieved a low power dissipation of 1.62 μW per neuron. With the advent of commercially available FPGA boards, our system offers an accessible and scalable tool for the design, real-time simulation, and analysis of large-scale spiking neural networks.

  1. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator

    Directory of Open Access Journals (Sweden)

    Runchun M. Wang

    2018-04-01

    Full Text Available This paper presents a massively parallel and scalable neuromorphic cortex simulator designed for simulating large and structurally connected spiking neural networks, such as complex models of various areas of the cortex. The main novelty of this work is the abstraction of a neuromorphic architecture into clusters represented by minicolumns and hypercolumns, analogously to the fundamental structural units observed in neurobiology. Without this approach, simulating large-scale fully connected networks needs prohibitively large memory to store look-up tables for point-to-point connections. Instead, we use a novel architecture, based on the structural connectivity in the neocortex, such that all the required parameters and connections can be stored in on-chip memory. The cortex simulator can be easily reconfigured for simulating different neural networks without any change in hardware structure by programming the memory. A hierarchical communication scheme allows one neuron to have a fan-out of up to 200 k neurons. As a proof-of-concept, an implementation on one Altera Stratix V FPGA was able to simulate 20 million to 2.6 billion leaky-integrate-and-fire (LIF neurons in real time. We verified the system by emulating a simplified auditory cortex (with 100 million neurons. This cortex simulator achieved a low power dissipation of 1.62 μW per neuron. With the advent of commercially available FPGA boards, our system offers an accessible and scalable tool for the design, real-time simulation, and analysis of large-scale spiking neural networks.

  2. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  3. Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity.

    Science.gov (United States)

    Froemke, Robert C; Martins, Ana Raquel O

    2011-09-01

    The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  5. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps.

    Science.gov (United States)

    Sood, Mariam R; Sereno, Martin I

    2016-08-01

    Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  6. Self vs. other: neural correlates underlying agent identification based on unimodal auditory information as revealed by electrotomography (sLORETA).

    Science.gov (United States)

    Justen, C; Herbert, C; Werner, K; Raab, M

    2014-02-14

    Recent neuroscientific studies have identified activity changes in an extensive cerebral network consisting of medial prefrontal cortex, precuneus, temporo-parietal junction, and temporal pole during the perception and identification of self- and other-generated stimuli. Because this network is supposed to be engaged in tasks which require agent identification, it has been labeled the evaluation network (e-network). The present study used self- versus other-generated movement sounds (long jumps) and electroencephalography (EEG) in order to unravel the neural dynamics of agent identification for complex auditory information. Participants (N=14) performed an auditory self-other identification task with EEG. Data was then subjected to a subsequent standardized low-resolution brain electromagnetic tomography (sLORETA) analysis (source localization analysis). Differences between conditions were assessed using t-statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. Three-dimensional sLORETA source localization analysis revealed cortical activations in brain regions mostly associated with the e-network, especially in the medial prefrontal cortex (bilaterally in the alpha-1-band and right-lateralized in the gamma-band) and the temporo-parietal junction (right hemisphere in the alpha-1-band). Taken together, the findings are partly consistent with previous functional neuroimaging studies investigating unimodal visual or multimodal agent identification tasks (cf. e-network) and extent them to the auditory domain. Cortical activations in brain regions of the e-network seem to have functional relevance, especially the significantly higher cortical activation in the right medial prefrontal cortex. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Auditory sensory ("echoic") memory dysfunction in schizophrenia.

    Science.gov (United States)

    Strous, R D; Cowan, N; Ritter, W; Javitt, D C

    1995-10-01

    Studies of working memory dysfunction in schizophrenia have focused largely on prefrontal components. This study investigated the integrity of auditory sensory ("echoic") memory, a component that shows little dependence on prefrontal functioning. Echoic memory was investigated in 20 schizophrenic subjects and 20 age- and IQ-matched normal comparison subjects with the use of nondelayed and delayed tone matching. Schizophrenic subjects were markedly impaired in their ability to match two tones after an extremely brief delay between them (300 msec) but were unimpaired when there was no delay between tones. Working memory dysfunction in schizophrenia affects brain regions outside the prefrontal cortex as well as within.

  8. Estimation of the synaptic input firing rates and characterization of the stimulation effects in an auditory neuron

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, R.; He, J.; Lánský, Petr

    2015-01-01

    Roč. 9, May 18 (2015), s. 59 ISSN 1662-5188 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : synaptic inputs * statistical inference * state-space models * intracellular recordings * auditory cortex Subject RIV: BD - Theory of Information Impact factor: 2.653, year: 2015

  9. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field.

    Science.gov (United States)

    Moerel, Michelle; De Martino, Federico; Kemper, Valentin G; Schmitter, Sebastian; Vu, An T; Uğurbil, Kâmil; Formisano, Elia; Yacoub, Essa

    2018-01-01

    Following rapid technological advances, ultra-high field functional MRI (fMRI) enables exploring correlates of neuronal population activity at an increasing spatial resolution. However, as the fMRI blood-oxygenation-level-dependent (BOLD) contrast is a vascular signal, the spatial specificity of fMRI data is ultimately determined by the characteristics of the underlying vasculature. At 7T, fMRI measurement parameters determine the relative contribution of the macro- and microvasculature to the acquired signal. Here we investigate how these parameters affect relevant high-end fMRI analyses such as encoding, decoding, and submillimeter mapping of voxel preferences in the human auditory cortex. Specifically, we compare a T 2 * weighted fMRI dataset, obtained with 2D gradient echo (GE) EPI, to a predominantly T 2 weighted dataset obtained with 3D GRASE. We first investigated the decoding accuracy based on two encoding models that represented different hypotheses about auditory cortical processing. This encoding/decoding analysis profited from the large spatial coverage and sensitivity of the T 2 * weighted acquisitions, as evidenced by a significantly higher prediction accuracy in the GE-EPI dataset compared to the 3D GRASE dataset for both encoding models. The main disadvantage of the T 2 * weighted GE-EPI dataset for encoding/decoding analyses was that the prediction accuracy exhibited cortical depth dependent vascular biases. However, we propose that the comparison of prediction accuracy across the different encoding models may be used as a post processing technique to salvage the spatial interpretability of the GE-EPI cortical depth-dependent prediction accuracy. Second, we explored the mapping of voxel preferences. Large-scale maps of frequency preference (i.e., tonotopy) were similar across datasets, yet the GE-EPI dataset was preferable due to its larger spatial coverage and sensitivity. However, submillimeter tonotopy maps revealed biases in assigned frequency

  10. Maturation of auditory neural processes in autism spectrum disorder - A longitudinal MEG study.

    Science.gov (United States)

    Port, Russell G; Edgar, J Christopher; Ku, Matthew; Bloy, Luke; Murray, Rebecca; Blaskey, Lisa; Levy, Susan E; Roberts, Timothy P L

    2016-01-01

    Individuals with autism spectrum disorder (ASD) show atypical brain activity, perhaps due to delayed maturation. Previous studies examining the maturation of auditory electrophysiological activity have been limited due to their use of cross-sectional designs. The present study took a first step in examining magnetoencephalography (MEG) evidence of abnormal auditory response maturation in ASD via the use of a longitudinal design. Initially recruited for a previous study, 27 children with ASD and nine typically developing (TD) children, aged 6- to 11-years-old, were re-recruited two to five years later. At both timepoints, MEG data were obtained while participants passively listened to sinusoidal pure-tones. Bilateral primary/secondary auditory cortex time domain (100 ms evoked response latency (M100)) and spectrotemporal measures (gamma-band power and inter-trial coherence (ITC)) were examined. MEG measures were also qualitatively examined for five children who exhibited "optimal outcome", participants who were initially on spectrum, but no longer met diagnostic criteria at follow-up. M100 latencies were delayed in ASD versus TD at the initial exam (~ 19 ms) and at follow-up (~ 18 ms). At both exams, M100 latencies were associated with clinical ASD severity. In addition, gamma-band evoked power and ITC were reduced in ASD versus TD. M100 latency and gamma-band maturation rates did not differ between ASD and TD. Of note, the cohort of five children that demonstrated "optimal outcome" additionally exhibited M100 latency and gamma-band activity mean values in-between TD and ASD at both timepoints. Though justifying only qualitative interpretation, these "optimal outcome" related data are presented here to motivate future studies. Children with ASD showed perturbed auditory cortex neural activity, as evidenced by M100 latency delays as well as reduced transient gamma-band activity. Despite evidence for maturation of these responses in ASD, the neural abnormalities

  11. The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.

    Science.gov (United States)

    Hoth, Sebastian; Dziemba, Oliver Christian

    2017-12-01

    : Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.

  12. Attentional modulation of auditory steady-state responses.

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  13. The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention.

    Science.gov (United States)

    Forte, Antonio Elia; Etard, Octave; Reichenbach, Tobias

    2017-10-10

    Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.

  14. Top-down modulation of human early visual cortex after stimulus offset supports successful postcued report.

    Science.gov (United States)

    Sergent, Claire; Ruff, Christian C; Barbot, Antoine; Driver, Jon; Rees, Geraint

    2011-08-01

    Modulations of sensory processing in early visual areas are thought to play an important role in conscious perception. To date, most empirical studies focused on effects occurring before or during visual presentation. By contrast, several emerging theories postulate that sensory processing and conscious visual perception may also crucially depend on late top-down influences, potentially arising after a visual display. To provide a direct test of this, we performed an fMRI study using a postcued report procedure. The ability to report a target at a specific spatial location in a visual display can be enhanced behaviorally by symbolic auditory postcues presented shortly after that display. Here we showed that such auditory postcues can enhance target-specific signals in early human visual cortex (V1 and V2). For postcues presented 200 msec after stimulus termination, this target-specific enhancement in visual cortex was specifically associated with correct conscious report. The strength of this modulation predicted individual levels of performance in behavior. By contrast, although later postcues presented 1000 msec after stimulus termination had some impact on activity in early visual cortex, this modulation no longer related to conscious report. These results demonstrate that within a critical time window of a few hundred milliseconds after a visual stimulus has disappeared, successful conscious report of that stimulus still relates to the strength of top-down modulation in early visual cortex. We suggest that, within this critical time window, sensory representation of a visual stimulus is still under construction and so can still be flexibly influenced by top-down modulatory processes.

  15. Phencyclidine Disrupts the Auditory Steady State Response in Rats.

    Directory of Open Access Journals (Sweden)

    Emma Leishman

    Full Text Available The Auditory Steady-State Response (ASSR in the electroencephalogram (EEG is usually reduced in schizophrenia (SZ, particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP, produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP and Phase Locking Factor (PLF. In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg, following two weeks of subchronic, continuous administration (5 mg/kg/day, and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule.

  16. Apoptotic mechanisms after repeated noise trauma in the mouse medial geniculate body and primary auditory cortex.

    Science.gov (United States)

    Fröhlich, Felix; Ernst, Arne; Strübing, Ira; Basta, Dietmar; Gröschel, Moritz

    2017-12-01

    A correlation between noise-induced apoptosis and cell loss has previously been shown after a single noise exposure in the cochlear nucleus, inferior colliculus, medial geniculate body (MGB) and primary auditory cortex (AI). However, repeated noise exposure is the most common situation in humans and a major risk factor for the induction of noise-induced hearing loss (NIHL). The present investigation measured cell death pathways using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) in the dorsal, medial and ventral MGB (dMGB, mMGB and vMGB) and six layers of the AI (AI-1 to AI-6) in mice (NMRI strain) after a second noise exposure (double-exposure group). Therefore, a single noise exposure group has been investigated 7 (7-day-group-single) or 14 days (14-day-group-single) after noise exposure (3 h, 5-20 kHz, 115 dB SPL peak-to-peak). The double-exposure group received the same noise trauma for a second time 7 days after the initial exposure and was either TUNEL-stained immediately (7-day-group-double) or 1 week later (14-day-group-double) and data were compared to the corresponding single-trauma group as well as to an unexposed control group. It was shown that TUNEL increased immediately after the second noise exposure in AI-3 and stayed upregulated in the 14-day-group-double. A significant increase in TUNEL was also seen in the 14-day-group-double in vMGB, mMGB and AI-1. The present results show for the first time the influence of a repeated noise trauma on cell death mechanisms in thalamic and cortical structures and might contribute to the understanding of pathophysiological findings and psychoacoustic phenomena accompanying NIHL.

  17. Right hemispheric contributions to fine auditory temporal discriminations: high-density electrical mapping of the duration mismatch negativity (MMN

    Directory of Open Access Journals (Sweden)

    Pierfilippo De Sanctis

    2009-04-01

    Full Text Available That language processing is primarily a function of the left hemisphere has led to the supposition that auditory temporal discrimination is particularly well-tuned in the left hemisphere, since speech discrimination is thought to rely heavily on the registration of temporal transitions. However, physiological data have not consistently supported this view. Rather, functional imaging studies often show equally strong, if not stronger, contributions from the right hemisphere during temporal processing tasks, suggesting a more complex underlying neural substrate. The mismatch negativity (MMN component of the human auditory evoked-potential (AEP provides a sensitive metric of duration processing in human auditory cortex and lateralization of MMN can be readily assayed when sufficiently dense electrode arrays are employed. Here, the sensitivity of the left and right auditory cortex for temporal processing was measured by recording the MMN to small duration deviants presented to either the left or right ear. We found that duration deviants differing by just 15% (i.e. rare 115 ms tones presented in a stream of 100 ms tones elicited a significant MMN for tones presented to the left ear (biasing the right hemisphere. However, deviants presented to the right ear elicited no detectable MMN for this separation. Further, participants detected significantly more duration deviants and committed fewer false alarms for tones presented to the left ear during a subsequent psychophysical testing session. In contrast to the prevalent model, these results point to equivalent if not greater right hemisphere contributions to temporal processing of small duration changes.

  18. Age-Associated Reduction of Asymmetry in Human Central Auditory Function: A 1H-Magnetic Resonance Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Xianming Chen

    2013-01-01

    Full Text Available The aim of this study was to investigate the effects of age on hemispheric asymmetry in the auditory cortex after pure tone stimulation. Ten young and 8 older healthy volunteers took part in this study. Two-dimensional multivoxel 1H-magnetic resonance spectroscopy scans were performed before and after stimulation. The ratios of N-acetylaspartate (NAA, glutamate/glutamine (Glx, and γ-amino butyric acid (GABA to creatine (Cr were determined and compared between the two groups. The distribution of metabolites between the left and right auditory cortex was also determined. Before stimulation, left and right side NAA/Cr and right side GABA/Cr were significantly lower, whereas right side Glx/Cr was significantly higher in the older group compared with the young group. After stimulation, left and right side NAA/Cr and GABA/Cr were significantly lower, whereas left side Glx/Cr was significantly higher in the older group compared with the young group. There was obvious asymmetry in right side Glx/Cr and left side GABA/Cr after stimulation in young group, but not in older group. In summary, there is marked hemispheric asymmetry in auditory cortical metabolites following pure tone stimulation in young, but not older adults. This reduced asymmetry in older adults may at least in part underlie the speech perception difficulties/presbycusis experienced by aging adults.

  19. Auditory Reserve and the Legacy of Auditory Experience

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2014-11-01

    Full Text Available Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.

  20. Auditory evoked fields to vocalization during passive listening and active generation in adults who stutter.

    Science.gov (United States)

    Beal, Deryk S; Cheyne, Douglas O; Gracco, Vincent L; Quraan, Maher A; Taylor, Margot J; De Nil, Luc F

    2010-10-01

    We used magnetoencephalography to investigate auditory evoked responses to speech vocalizations and non-speech tones in adults who do and do not stutter. Neuromagnetic field patterns were recorded as participants listened to a 1 kHz tone, playback of their own productions of the vowel /i/ and vowel-initial words, and actively generated the vowel /i/ and vowel-initial words. Activation of the auditory cortex at approximately 50 and 100 ms was observed during all tasks. A reduction in the peak amplitudes of the M50 and M100 components was observed during the active generation versus passive listening tasks dependent on the stimuli. Adults who stutter did not differ in the amount of speech-induced auditory suppression relative to fluent speakers. Adults who stutter had shorter M100 latencies for the actively generated speaking tasks in the right hemisphere relative to the left hemisphere but the fluent speakers showed similar latencies across hemispheres. During passive listening tasks, adults who stutter had longer M50 and M100 latencies than fluent speakers. The results suggest that there are timing, rather than amplitude, differences in auditory processing during speech in adults who stutter and are discussed in relation to hypotheses of auditory-motor integration breakdown in stuttering. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia.

    Science.gov (United States)

    Coullon, Gaelle S L; Emir, Uzay E; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-09-01

    Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, (1)H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. Copyright © 2015 the American Physiological Society.

  2. Frontal and superior temporal auditory processing abnormalities in schizophrenia.

    Science.gov (United States)

    Chen, Yu-Han; Edgar, J Christopher; Huang, Mingxiong; Hunter, Michael A; Epstein, Emerson; Howell, Breannan; Lu, Brett Y; Bustillo, Juan; Miller, Gregory A; Cañive, José M

    2013-01-01

    Although magnetoencephalography (MEG) studies show superior temporal gyrus (STG) auditory processing abnormalities in schizophrenia at 50 and 100 ms, EEG and corticography studies suggest involvement of additional brain areas (e.g., frontal areas) during this interval. Study goals were to identify 30 to 130 ms auditory encoding processes in schizophrenia (SZ) and healthy controls (HC) and group differences throughout the cortex. The standard paired-click task was administered to 19 SZ and 21 HC subjects during MEG recording. Vector-based Spatial-temporal Analysis using L1-minimum-norm (VESTAL) provided 4D maps of activity from 30 to 130 ms. Within-group t-tests compared post-stimulus 50 ms and 100 ms activity to baseline. Between-group t-tests examined 50 and 100 ms group differences. Bilateral 50 and 100 ms STG activity was observed in both groups. HC had stronger bilateral 50 and 100 ms STG activity than SZ. In addition to the STG group difference, non-STG activity was also observed in both groups. For example, whereas HC had stronger left and right inferior frontal gyrus activity than SZ, SZ had stronger right superior frontal gyrus and left supramarginal gyrus activity than HC. Less STG activity was observed in SZ than HC, indicating encoding problems in SZ. Yet auditory encoding abnormalities are not specific to STG, as group differences were observed in frontal and SMG areas. Thus, present findings indicate that individuals with SZ show abnormalities in multiple nodes of a concurrently activated auditory network.

  3. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    Science.gov (United States)

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  4. Auditory enhancement of visual memory encoding is driven by emotional content of the auditory material and mediated by superior frontal cortex.

    Science.gov (United States)

    Proverbio, A M; De Benedetto, F

    2018-02-01

    The aim of the present study was to investigate how auditory background interacts with learning and memory. Both facilitatory (e.g., "Mozart effect") and interfering effects of background have been reported, depending on the type of auditory stimulation and of concurrent cognitive tasks. Here we recorded event related potentials (ERPs) during face encoding followed by an old/new memory test to investigate the effect of listening to classical music (Čajkovskij, dramatic), environmental sounds (rain) or silence on learning. Participants were 15 healthy non-musician university students. Almost 400 (previously unknown) faces of women and men of various age were presented. Listening to music during study led to a better encoding of faces as indexed by an increased Anterior Negativity. The FN400 response recorded during the memory test showed a gradient in its amplitude reflecting face familiarity. FN400 was larger to new than old faces, and to faces studied during rain sound listening and silence than music listening. The results indicate that listening to music enhances memory recollection of faces by merging with visual information. A swLORETA analysis showed the main involvement of Superior Temporal Gyrus (STG) and medial frontal gyrus in the integration of audio-visual information. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation

    Science.gov (United States)

    Hames, Elizabeth’ C.; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C.; Baker, Mary; Zupancic, Stephen; O’Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20–28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  6. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism:An EEG Power and BOLD fMRI Investigation

    Directory of Open Access Journals (Sweden)

    Elizabeth C Hames

    2016-04-01

    Full Text Available Electroencephalography (EEG and Blood Oxygen Level Dependent Functional Magnetic Resonance Imagining (BOLD fMRI assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD and 10 neurotypical (NT controls between the ages of 20-28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block versus the second presentation of a visual stimulus in an all visual block (AA2­VV2. We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs.

  7. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  8. Neural correlates of auditory recognition memory in the primate dorsal temporal pole.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2014-02-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects.

  9. Can you hear me yet? An intracranial investigation of speech and non-speech audiovisual interactions in human cortex.

    Science.gov (United States)

    Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A; McMurray, Bob

    In everyday conversation, viewing a talker's face can provide information about the timing and content of an upcoming speech signal, resulting in improved intelligibility. Using electrocorticography, we tested whether human auditory cortex in Heschl's gyrus (HG) and on superior temporal gyrus (STG) and motor cortex on precentral gyrus (PreC) were responsive to visual/gestural information prior to the onset of sound and whether early stages of auditory processing were sensitive to the visual content (speech syllable versus non-speech motion). Event-related band power (ERBP) in the high gamma band was content-specific prior to acoustic onset on STG and PreC, and ERBP in the beta band differed in all three areas. Following sound onset, we found with no evidence for content-specificity in HG, evidence for visual specificity in PreC, and specificity for both modalities in STG. These results support models of audio-visual processing in which sensory information is integrated in non-primary cortical areas.

  10. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Directory of Open Access Journals (Sweden)

    Jiagui Qu

    Full Text Available Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  11. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Science.gov (United States)

    Qu, Jiagui; Rizak, Joshua D; Zhao, Lun; Li, Minghong; Ma, Yuanye

    2014-01-01

    Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM) has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP) following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC) may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  12. Localized brain activation related to the strength of auditory learning in a parrot.

    Directory of Open Access Journals (Sweden)

    Hiroko Eda-Fujiwara

    Full Text Available Parrots and songbirds learn their vocalizations from a conspecific tutor, much like human infants acquire spoken language. Parrots can learn human words and it has been suggested that they can use them to communicate with humans. The caudomedial pallium in the parrot brain is homologous with that of songbirds, and analogous to the human auditory association cortex, involved in speech processing. Here we investigated neuronal activation, measured as expression of the protein product of the immediate early gene ZENK, in relation to auditory learning in the budgerigar (Melopsittacus undulatus, a parrot. Budgerigar males successfully learned to discriminate two Japanese words spoken by another male conspecific. Re-exposure to the two discriminanda led to increased neuronal activation in the caudomedial pallium, but not in the hippocampus, compared to untrained birds that were exposed to the same words, or were not exposed to words. Neuronal activation in the caudomedial pallium of the experimental birds was correlated significantly and positively with the percentage of correct responses in the discrimination task. These results suggest that in a parrot, the caudomedial pallium is involved in auditory learning. Thus, in parrots, songbirds and humans, analogous brain regions may contain the neural substrate for auditory learning and memory.

  13. Acute Noise Exposure Is Associated With Intrinsic Apoptosis in Murine Central Auditory Pathway

    Directory of Open Access Journals (Sweden)

    Moritz Gröschel

    2018-05-01

    Full Text Available Noise that is capable of inducing the hearing loss (NIHL has a strong impact on the inner ear structures and causes early and most obvious pathophysiological changes in the auditory periphery. Several studies indicated that intrinsic apoptotic cell death mechanisms are the key factors inducing cellular degeneration immediately after noise exposure and are maintained for days or even weeks. In addition, studies demonstrated several changes in the central auditory system following noise exposure, consistent with early apoptosis-related pathologies. To clarify the underlying mechanisms, the present study focused on the noise-induced gene and protein expression of the pro-apoptotic protease activating factor-1 (APAF1 and the anti-apoptotic B-cell lymphoma 2 related protein a1a (BCL2A1A in the cochlear nucleus (CN, inferior colliculus (IC and auditory cortex (AC of the murine central auditory pathway. The expression of Bcl2a1a mRNA was upregulated immediately after trauma in all tissues investigated, whereas the protein levels were significantly reduced at least in the auditory brainstem. Conversely, acute noise has decreased the expression of Apaf1 gene along the auditory pathway. The changes in APAF1 protein level were not statistically significant. It is tempting to speculate that the acoustic overstimulation leads to mitochondrial dysfunction and induction of apoptosis by regulation of proapoptotic and antiapoptotic proteins. The inverse expression pattern on the mRNA level of both genes might reflect a protective response to decrease cellular damage. Our results indicate the immediate presence of intrinsic apoptosis following noise trauma. This, in turn, may significantly contribute to the development of central structural deficits. Auditory pathway-specific inhibition of intrinsic apoptosis could be a therapeutic approach for the treatment of acute (noise-induced hearing loss to prevent irreversible neuronal injury in auditory brain structures

  14. Differential microstructural alterations in rat cerebral cortex in a model of chronic mild stress depression

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Kroenke, Christopher D; Wiborg, Ove

    2018-01-01

    , hypothalamus, prefrontal cortex, and amygdala, which form an interconnected system known as the stress circuit. Most studies have focused only on this circuit, however, some studies indicate that manipulation of sensory and motor systems may impact genesis and therapy of mood disorders and therefore...... anisotropy in the resilient group. Neurite density was not found to be significantly higher in any cortical ROIs in the stress group compared to control, although axonal density is higher in the stress groups. We also report significant thinning of motor cortex (MC) in both stress groups......-MRI) to assess cortical microstructure in stressed (anhedonic and resilient) and control animals. MRI is followed by immunohistochemistry to substantiate the d-MRI findings. We find significantly lower extracellular diffusivity in auditory cortex (AC) of stress groups and a significantly higher fractional...

  15. Functional dissociation of transient and sustained fMRI BOLD components in human auditory cortex revealed with a streaming paradigm based on interaural time differences.

    Science.gov (United States)

    Schadwinkel, Stefan; Gutschalk, Alexander

    2010-12-01

    A number of physiological studies suggest that feature-selective adaptation is relevant to the pre-processing for auditory streaming, the perceptual separation of overlapping sound sources. Most of these studies are focused on spectral differences between streams, which are considered most important for streaming. However, spatial cues also support streaming, alone or in combination with spectral cues, but physiological studies of spatial cues for streaming remain scarce. Here, we investigate whether the tuning of selective adaptation for interaural time differences (ITD) coincides with the range where streaming perception is observed. FMRI activation that has been shown to adapt depending on the repetition rate was studied with a streaming paradigm where two tones were differently lateralized by ITD. Listeners were presented with five different ΔITD conditions (62.5, 125, 187.5, 343.75, or 687.5 μs) out of an active baseline with no ΔITD during fMRI. The results showed reduced adaptation for conditions with ΔITD ≥ 125 μs, reflected by enhanced sustained BOLD activity. The percentage of streaming perception for these stimuli increased from approximately 20% for ΔITD = 62.5 μs to > 60% for ΔITD = 125 μs. No further sustained BOLD enhancement was observed when the ΔITD was increased beyond ΔITD = 125 μs, whereas the streaming probability continued to increase up to 90% for ΔITD = 687.5 μs. Conversely, the transient BOLD response, at the transition from baseline to ΔITD blocks, increased most prominently as ΔITD was increased from 187.5 to 343.75 μs. These results demonstrate a clear dissociation of transient and sustained components of the BOLD activity in auditory cortex. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Auditory thalamic circuits and GABAA receptor function: Putative mechanisms in tinnitus pathology.

    Science.gov (United States)

    Caspary, Donald M; Llano, Daniel A

    2017-06-01

    Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABA A receptors (GABA A Rs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABA A Rs and slow synaptic inhibition via GABA B Rs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex

  17. Repeatedly pairing vagus nerve stimulation with a movement reorganizes primary motor cortex.

    Science.gov (United States)

    Porter, Benjamin A; Khodaparast, Navid; Fayyaz, Tabbassum; Cheung, Ryan J; Ahmed, Syed S; Vrana, William A; Rennaker, Robert L; Kilgard, Michael P

    2012-10-01

    Although sensory and motor systems support different functions, both systems exhibit experience-dependent cortical plasticity under similar conditions. If mechanisms regulating cortical plasticity are common to sensory and motor cortices, then methods generating plasticity in sensory cortex should be effective in motor cortex. Repeatedly pairing a tone with a brief period of vagus nerve stimulation (VNS) increases the proportion of primary auditory cortex responding to the paired tone (Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake J, Sudanagunta SP, Borland MS, Kilgard MP. 2011. Reversing pathological neural activity using targeted plasticity. Nature. 470:101-104). In this study, we predicted that repeatedly pairing VNS with a specific movement would result in an increased representation of that movement in primary motor cortex. To test this hypothesis, we paired VNS with movements of the distal or proximal forelimb in 2 groups of rats. After 5 days of VNS movement pairing, intracranial microstimulation was used to quantify the organization of primary motor cortex. Larger cortical areas were associated with movements paired with VNS. Rats receiving identical motor training without VNS pairing did not exhibit motor cortex map plasticity. These results suggest that pairing VNS with specific events may act as a general method for increasing cortical representations of those events. VNS movement pairing could provide a new approach for treating disorders associated with abnormal movement representations.

  18. Functional anatomic studies of memory retrieval for auditory words and visual pictures.

    Science.gov (United States)

    Buckner, R L; Raichle, M E; Miezin, F M; Petersen, S E

    1996-10-01

    Functional neuroimaging with positron emission tomography was used to study brain areas activated during memory retrieval. Subjects (n = 15) recalled items from a recent study episode (episodic memory) during two paired-associate recall tasks. The tasks differed in that PICTURE RECALL required pictorial retrieval, whereas AUDITORY WORD RECALL required word retrieval. Word REPETITION and REST served as two reference tasks. Comparing recall with repetition revealed the following observations. (1) Right anterior prefrontal activation (similar to that seen in several previous experiments), in addition to bilateral frontal-opercular and anterior cingulate activations. (2) An anterior subdivision of medial frontal cortex [pre-supplementary motor area (SMA)] was activated, which could be dissociated from a more posterior area (SMA proper). (3) Parietal areas were activated, including a posterior medial area near precuneus, that could be dissociated from an anterior parietal area that was deactivated. (4) Multiple medial and lateral cerebellar areas were activated. Comparing recall with rest revealed similar activations, except right prefrontal activation was minimal and activations related to motor and auditory demands became apparent (e.g., bilateral motor and temporal cortex). Directly comparing picture recall with auditory word recall revealed few notable activations. Taken together, these findings suggest a pathway that is commonly used during the episodic retrieval of picture and word stimuli under these conditions. Many areas in this pathway overlap with areas previously activated by a different set of retrieval tasks using stem-cued recall, demonstrating their generality. Examination of activations within individual subjects in relation to structural magnetic resonance images provided an-atomic information about the location of these activations. Such data, when combined with the dissociations between functional areas, provide an increasingly detailed picture of

  19. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  20. Attentional Modulation of Auditory Steady-State Responses

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021

  1. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  2. The multi-level impact of chronic intermittent hypoxia on central auditory processing.

    Science.gov (United States)

    Wong, Eddie; Yang, Bin; Du, Lida; Ho, Wai Hong; Lau, Condon; Ke, Ya; Chan, Ying Shing; Yung, Wing Ho; Wu, Ed X

    2017-08-01

    During hypoxia, the tissues do not obtain adequate oxygen. Chronic hypoxia can lead to many health problems. A relatively common cause of chronic hypoxia is sleep apnea. Sleep apnea is a sleep breathing disorder that affects 3-7% of the population. During sleep, the patient's breathing starts and stops. This can lead to hypertension, attention deficits, and hearing disorders. In this study, we apply an established chronic intermittent hypoxemia (CIH) model of sleep apnea to study its impact on auditory processing. Adult rats were reared for seven days during sleeping hours in a gas chamber with oxygen level cycled between 10% and 21% (normal atmosphere) every 90s. During awake hours, the subjects were housed in standard conditions with normal atmosphere. CIH treatment significantly reduces arterial oxygen partial pressure and oxygen saturation during sleeping hours (relative to controls). After treatment, subjects underwent functional magnetic resonance imaging (fMRI) with broadband sound stimulation. Responses are observed in major auditory centers in all subjects, including the auditory cortex (AC) and auditory midbrain. fMRI signals from the AC are statistically significantly increased after CIH by 0.13% in the contralateral hemisphere and 0.10% in the ipsilateral hemisphere. In contrast, signals from the lateral lemniscus of the midbrain are significantly reduced by 0.39%. Signals from the neighboring inferior colliculus of the midbrain are relatively unaffected. Chronic hypoxia affects multiple levels of the auditory system and these changes are likely related to hearing disorders associated with sleep apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  4. A Model of Representational Spaces in Human Cortex.

    Science.gov (United States)

    Guntupalli, J Swaroop; Hanke, Michael; Halchenko, Yaroslav O; Connolly, Andrew C; Ramadge, Peter J; Haxby, James V

    2016-06-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. © The Author 2016. Published by Oxford University Press.

  5. Mapping a lateralisation gradient within the ventral stream for auditory speech perception

    OpenAIRE

    Karsten eSpecht

    2013-01-01

    Recent models on speech perception propose a dual stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend towards the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus...

  6. Mapping a lateralization gradient within the ventral stream for auditory speech perception

    OpenAIRE

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus....

  7. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy.

    Science.gov (United States)

    Gao, Fei; Wang, Guangbin; Ma, Wen; Ren, Fuxin; Li, Muwei; Dong, Yuling; Liu, Cheng; Liu, Bo; Bai, Xue; Zhao, Bin; Edden, Richard A E

    2015-02-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central auditory system. Altered GABAergic neurotransmission has been found in both the inferior colliculus and the auditory cortex in animal models of presbycusis. Edited magnetic resonance spectroscopy (MRS), using the MEGA-PRESS sequence, is the most widely used technique for detecting GABA in the human brain. However, to date there has been a paucity of studies exploring changes to the GABA concentrations in the auditory region of patients with presbycusis. In this study, sixteen patients with presbycusis (5 males/11 females, mean age 63.1 ± 2.6 years) and twenty healthy controls (6 males/14 females, mean age 62.5 ± 2.3 years) underwent audiological and MRS examinations. Pure tone audiometry from 0.125 to 8 kHz and tympanometry were used to assess the hearing abilities of all subjects. The pure tone average (PTA; the average of hearing thresholds at 0.5, 1, 2 and 4 kHz) was calculated. The MEGA-PRESS sequence was used to measure GABA+ concentrations in 4 × 3 × 3 cm(3) volumes centered on the left and right Heschl's gyri. GABA+ concentrations were significantly lower in the presbycusis group compared to the control group (left auditory regions: p = 0.002, right auditory regions: p = 0.008). Significant negative correlations were observed between PTA and GABA+ concentrations in the presbycusis group (r = -0.57, p = 0.02), while a similar trend was found in the control group (r = -0.40, p = 0.08). These results are consistent with a hypothesis of dysfunctional GABAergic neurotransmission in the central auditory system in presbycusis and suggest a potential treatment target for presbycusis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Social interaction with a tutor modulates responsiveness of specific auditory neurons in juvenile zebra finches.

    Science.gov (United States)

    Yanagihara, Shin; Yazaki-Sugiyama, Yoko

    2018-04-12

    Behavioral states of animals, such as observing the behavior of a conspecific, modify signal perception and/or sensations that influence state-dependent higher cognitive behavior, such as learning. Recent studies have shown that neuronal responsiveness to sensory signals is modified when animals are engaged in social interactions with others or in locomotor activities. However, how these changes produce state-dependent differences in higher cognitive function is still largely unknown. Zebra finches, which have served as the premier songbird model, learn to sing from early auditory experiences with tutors. They also learn from playback of recorded songs however, learning can be greatly improved when song models are provided through social communication with tutors (Eales, 1989; Chen et al., 2016). Recently we found a subset of neurons in the higher-level auditory cortex of juvenile zebra finches that exhibit highly selective auditory responses to the tutor song after song learning, suggesting an auditory memory trace of the tutor song (Yanagihara and Yazaki-Sugiyama, 2016). Here we show that auditory responses of these selective neurons became greater when juveniles were paired with their tutors, while responses of non-selective neurons did not change. These results suggest that social interaction modulates cortical activity and might function in state-dependent song learning. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Auditory evoked functions in ground crew working in high noise environment of Mumbai airport.

    Science.gov (United States)

    Thakur, L; Anand, J P; Banerjee, P K

    2004-10-01

    The continuous exposure to the relatively high level of noise in the surroundings of an airport is likely to affect the central pathway of the auditory system as well as the cognitive functions of the people working in that environment. The Brainstem Auditory Evoked Responses (BAER), Mid Latency Response (MLR) and P300 response of the ground crew employees working in Mumbai airport were studied to evaluate the effects of continuous exposure to high level of noise of the surroundings of the airport on these responses. BAER, P300 and MLR were recorded by using a Nicolet Compact-4 (USA) instrument. Audiometry was also monitored with the help of GSI-16 Audiometer. There was a significant increase in the peak III latency of the BAER in the subjects exposed to noise compared to controls with no change in their P300 values. The exposed group showed hearing loss at different frequencies. The exposure to the high level of noise caused a considerable decline in the auditory conduction upto the level of the brainstem with no significant change in conduction in the midbrain, subcortical areas, auditory cortex and associated areas. There was also no significant change in cognitive function as measured by P300 response.

  10. The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex.

    Science.gov (United States)

    Chavez, Candice M; McGaugh, James L; Weinberger, Norman M

    2009-05-01

    Stress hormones released by an experience can modulate memory strength via the basolateral amygdala, which in turn acts on sites of memory storage such as the cerebral cortex [McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1-28]. Stimuli that acquire behavioral importance gain increased representation in the cortex. For example, learning shifts the tuning of neurons in the primary auditory cortex (A1) to the frequency of a conditioned stimulus (CS), and the greater the level of CS importance, the larger the area of representational gain [Weinberger, N. M. (2007). Associative representational plasticity in the auditory cortex: A synthesis of two disciplines. Learning & Memory, 14(1-2), 1-16]. The two lines of research suggest that BLA strengthening of memory might be accomplished in part by increasing the representation of an environmental stimulus. The present study investigated whether stimulation of the BLA can affect cortical memory representations. In male Sprague-Dawley rats studied under urethane general anesthesia, frequency receptive fields were obtained from A1 before and up to 75min after the pairing of a tone with BLA stimulation (BLAstm: 100 trials, 400ms, 100Hz, 400microA [+/-16.54]). Tone started before and continued after BLAstm. Group BLA/1.0 (n=16) had a 1s CS-BLAstm interval while Group BLA/1.6 (n=5) has a 1.6s interval. The BLA/1.0 group did develop specific tuning shifts toward and to the CS, which could change frequency tuning by as much as two octaves. Moreover, its shifts increased over time and were enduring, lasting 75min. However, group BLA/1.6 did not develop tuning shifts, indicating that precise CS-BLAstm timing is important in the anesthetized animal. Further, training in the BLA/1.0 paradigm but stimulating outside of the BLA did not produce tuning shifts. These findings demonstrate that the BLA is capable of exerting highly specific

  11. Working memory training in congenitally blind individuals results in an integration of occipital cortex in functional networks.

    Science.gov (United States)

    Gudi-Mindermann, Helene; Rimmele, Johanna M; Nolte, Guido; Bruns, Patrick; Engel, Andreas K; Röder, Brigitte

    2018-08-01

    The functional relevance of crossmodal activation (e.g. auditory activation of occipital brain regions) in congenitally blind individuals is still not fully understood. The present study tested whether the occipital cortex of blind individuals is integrated into a challenged functional network. A working memory (WM) training over four sessions was implemented. Congenitally blind and matched sighted participants were adaptively trained with an n-back task employing either voices (auditory training) or tactile stimuli (tactile training). In addition, a minimally demanding 1-back task served as an active control condition. Power and functional connectivity of EEG activity evolving during the maintenance period of an auditory 2-back task were analyzed, run prior to and after the WM training. Modality-specific (following auditory training) and modality-independent WM training effects (following both auditory and tactile training) were assessed. Improvements in auditory WM were observed in all groups, and blind and sighted individuals did not differ in training gains. Auditory and tactile training of sighted participants led, relative to the active control group, to an increase in fronto-parietal theta-band power, suggesting a training-induced strengthening of the existing modality-independent WM network. No power effects were observed in the blind. Rather, after auditory training the blind showed a decrease in theta-band connectivity between central, parietal, and occipital electrodes compared to the blind tactile training and active control groups. Furthermore, in the blind auditory training increased beta-band connectivity between fronto-parietal, central and occipital electrodes. In the congenitally blind, these findings suggest a stronger integration of occipital areas into the auditory WM network. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Directory of Open Access Journals (Sweden)

    Carly Demopoulos

    2017-05-01

    Full Text Available This study compared magnetoencephalographic (MEG imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18, those with sensory processing dysfunction (SPD; N = 13 who do not meet ASD criteria, and typically developing control (TDC; N = 19 participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  13. The posterior medial cortex is involved in visual but not in verbal memory encoding processing: an intracerebral recording study.

    Science.gov (United States)

    Stillová, K; Jurák, P; Chládek, J; Halámek, J; Telecká, S; Rektor, I

    2013-03-01

    The objective is to study the involvement of the posterior medial cortex (PMC) in encoding and retrieval by visual and auditory memory processing. Intracerebral recordings were studied in two epilepsy-surgery candidates with depth electrodes implanted in the retrosplenial cingulate, precuneus, cuneus, lingual gyrus and hippocampus. We recorded the event-related potentials (ERP) evoked by visual and auditory memory encoding-retrieval tasks. In the hippocampus, ERP were elicited in the encoding and retrieval phases in the two modalities. In the PMC, ERP were recorded in both the encoding and the retrieval visual tasks; in the auditory modality, they were recorded in the retrieval task, but not in the encoding task. In conclusion, the PMC is modality dependent in memory processing. ERP is elicited by memory retrieval, but it is not elicited by auditory encoding memory processing in the PMC. The PMC appears to be involved not only in higher-order top-down cognitive activities but also in more basic, rather than bottom-up activities.

  14. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Probing the lifetimes of auditory novelty detection processes.

    Science.gov (United States)

    Pegado, Felipe; Bekinschtein, Tristan; Chausson, Nicolas; Dehaene, Stanislas; Cohen, Laurent; Naccache, Lionel

    2010-08-01

    Auditory novelty detection can be fractionated into multiple cognitive processes associated with their respective neurophysiological signatures. In the present study we used high-density scalp event-related potentials (ERPs) during an active version of the auditory oddball paradigm to explore the lifetimes of these processes by varying the stimulus onset asynchrony (SOA). We observed that early MMN (90-160 ms) decreased when the SOA increased, confirming the evanescence of this echoic memory system. Subsequent neural events including late MMN (160-220 ms) and P3a/P3b components of the P3 complex (240-500 ms) did not decay with SOA, but showed a systematic delay effect supporting a two-stage model of accumulation of evidence. On the basis of these observations, we propose a distinction within the MMN complex of two distinct events: (1) an early, pre-attentive and fast-decaying MMN associated with generators located within superior temporal gyri (STG) and frontal cortex, and (2) a late MMN more resistant to SOA, corresponding to the activation of a distributed cortical network including fronto-parietal regions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Structural reorganization of the early visual cortex following Braille training in sighted adults.

    Science.gov (United States)

    Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Zimmermann, Maria; Jednoróg, Katarzyna; Marchewka, Artur; Szwed, Marcin

    2017-12-12

    Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas.

  17. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome.

    Science.gov (United States)

    Lovelace, Jonathan W; Wen, Teresa H; Reinhard, Sarah; Hsu, Mike S; Sidhu, Harpreet; Ethell, Iryna M; Binder, Devin K; Razak, Khaleel A

    2016-05-01

    Sensory processing deficits are common in autism spectrum disorders, but the underlying mechanisms are unclear. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism. Electrophysiological responses in humans with FXS show reduced habituation with sound repetition and this deficit may underlie auditory hypersensitivity in FXS. Our previous study in Fmr1 knockout (KO) mice revealed an unusually long state of increased sound-driven excitability in auditory cortical neurons suggesting that cortical responses to repeated sounds may exhibit abnormal habituation as in humans with FXS. Here, we tested this prediction by comparing cortical event related potentials (ERP) recorded from wildtype (WT) and Fmr1 KO mice. We report a repetition-rate dependent reduction in habituation of N1 amplitude in Fmr1 KO mice and show that matrix metalloproteinase-9 (MMP-9), one of the known FMRP targets, contributes to the reduced ERP habituation. Our studies demonstrate a significant up-regulation of MMP-9 levels in the auditory cortex of adult Fmr1 KO mice, whereas a genetic deletion of Mmp-9 reverses ERP habituation deficits in Fmr1 KO mice. Although the N1 amplitude of Mmp-9/Fmr1 DKO recordings was larger than WT and KO recordings, the habituation of ERPs in Mmp-9/Fmr1 DKO mice is similar to WT mice implicating MMP-9 as a potential target for reversing sensory processing deficits in FXS. Together these data establish ERP habituation as a translation relevant, physiological pre-clinical marker of auditory processing deficits in FXS and suggest that abnormal MMP-9 regulation is a mechanism underlying auditory hypersensitivity in FXS. Fragile X Syndrome (FXS) is the leading known genetic cause of autism spectrum disorders. Individuals with FXS show symptoms of auditory hypersensitivity. These symptoms may arise due to sustained neural responses to repeated sounds, but the underlying mechanisms remain unclear. For the first time, this study shows deficits

  18. Neural responses to complex auditory rhythms: the role of attending

    Directory of Open Access Journals (Sweden)

    Heather L Chapin

    2010-12-01

    Full Text Available The aim of this study was to explore the role of attention in pulse and meter perception using complex rhythms. We used a selective attention paradigm in which participants attended to either a complex auditory rhythm or a visually presented word list. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. We hypothesized that attention to complex rhythms – which contain no energy at the pulse frequency – would lead to activations in motor areas involved in pulse perception. Moreover, because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in pulse related areas would be seen only after sufficient time had elapsed for pulse perception to develop. Selective attention was also expected to modulate activity in sensory areas specific to the modality. We found that selective attention to rhythms led to increased BOLD responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations suggest that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus.

  19. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  20. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS).

    Science.gov (United States)

    Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory J

    2016-01-01

    Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  1. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    Science.gov (United States)

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  2. Visual Temporal Acuity Is Related to Auditory Speech Perception Abilities in Cochlear Implant Users.

    Science.gov (United States)

    Jahn, Kelly N; Stevenson, Ryan A; Wallace, Mark T

    Despite significant improvements in speech perception abilities following cochlear implantation, many prelingually deafened cochlear implant (CI) recipients continue to rely heavily on visual information to develop speech and language. Increased reliance on visual cues for understanding spoken language could lead to the development of unique audiovisual integration and visual-only processing abilities in these individuals. Brain imaging studies have demonstrated that good CI performers, as indexed by auditory-only speech perception abilities, have different patterns of visual cortex activation in response to visual and auditory stimuli as compared with poor CI performers. However, no studies have examined whether speech perception performance is related to any type of visual processing abilities following cochlear implantation. The purpose of the present study was to provide a preliminary examination of the relationship between clinical, auditory-only speech perception tests, and visual temporal acuity in prelingually deafened adult CI users. It was hypothesized that prelingually deafened CI users, who exhibit better (i.e., more acute) visual temporal processing abilities would demonstrate better auditory-only speech perception performance than those with poorer visual temporal acuity. Ten prelingually deafened adult CI users were recruited for this study. Participants completed a visual temporal order judgment task to quantify visual temporal acuity. To assess auditory-only speech perception abilities, participants completed the consonant-nucleus-consonant word recognition test and the AzBio sentence recognition test. Results were analyzed using two-tailed partial Pearson correlations, Spearman's rho correlations, and independent samples t tests. Visual temporal acuity was significantly correlated with auditory-only word and sentence recognition abilities. In addition, proficient CI users, as assessed via auditory-only speech perception performance, demonstrated

  3. Right Occipital Cortex Activation Correlates with Superior Odor Processing Performance in the Early Blind

    Science.gov (United States)

    Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.

    2013-01-01

    Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263

  4. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt.

    Science.gov (United States)

    Hickok, Gregory; Buchsbaum, Bradley; Humphries, Colin; Muftuler, Tugan

    2003-07-01

    The concept of auditory-motor interaction pervades speech science research, yet the cortical systems supporting this interface have not been elucidated. Drawing on experimental designs used in recent work in sensory-motor integration in the cortical visual system, we used fMRI in an effort to identify human auditory regions with both sensory and motor response properties, analogous to single-unit responses in known visuomotor integration areas. The sensory phase of the task involved listening to speech (nonsense sentences) or music (novel piano melodies); the "motor" phase of the task involved covert rehearsal/humming of the auditory stimuli. A small set of areas in the superior temporal and temporal-parietal cortex responded both during the listening phase and the rehearsal/humming phase. A left lateralized region in the posterior Sylvian fissure at the parietal-temporal boundary, area Spt, showed particularly robust responses to both phases of the task. Frontal areas also showed combined auditory + rehearsal responsivity consistent with the claim that the posterior activations are part of a larger auditory-motor integration circuit. We hypothesize that this circuit plays an important role in speech development as part of the network that enables acoustic-phonetic input to guide the acquisition of language-specific articulatory-phonetic gestures; this circuit may play a role in analogous musical abilities. In the adult, this system continues to support aspects of speech production, and, we suggest, supports verbal working memory.

  5. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex.

    Science.gov (United States)

    Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-05-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch

  6. Dissecting auditory verbal hallucinations into two components: audibility (Gedankenlautwerden) and alienation (thought insertion).

    Science.gov (United States)

    Sommer, Iris E; Selten, Jean-Paul; Diederen, Kelly M; Blom, Jan Dirk

    2010-01-01

    This study proposes a theoretical framework which dissects auditory verbal hallucinations (AVH) into 2 essential components: audibility and alienation. Audibility, the perceptual aspect of AVH, may result from a disinhibition of the auditory cortex in response to self-generated speech. In isolation, this aspect leads to audible thoughts: Gedankenlautwerden. The second component is alienation, which is the failure to recognize the content of AVH as self-generated. This failure may be related to the fact that cerebral activity associated with AVH is predominantly present in the speech production area of the right hemisphere. Since normal inner speech is derived from the left speech area, an aberrant source may lead to confusion about the origin of the language fragments. When alienation is not accompanied by audibility, it will result in the experience of thought insertion. The 2 hypothesized components are illustrated using case vignettes. Copyright 2010 S. Karger AG, Basel.

  7. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  8. Neural responses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains.

    Science.gov (United States)

    Dong, Chao; Qin, Ling; Liu, Yongchun; Zhang, Xinan; Sato, Yu

    2011-01-01

    Repeated acoustic events are ubiquitous temporal features of natural sounds. To reveal the neural representation of the sound repetition rate, a number of electrophysiological studies have been conducted on various mammals and it has been proposed that both the spike-time and firing rate of primary auditory cortex (A1) neurons encode the repetition rate. However, previous studies rarely examined how the experimental animals perceive the difference in the sound repetition rate, and a caveat to these experiments is that they compared physiological data obtained from animals with psychophysical data obtained from humans. In this study, for the first time, we directly investigated acoustic perception and the underlying neural mechanisms in the same experimental animal by examining spike activities in the A1 of free-moving cats while performing a Go/No-go task to discriminate the click-trains at different repetition rates (12.5-200 Hz). As reported by previous studies on passively listening animals, A1 neurons showed both synchronized and non-synchronized responses to the click-trains. We further found that the neural performance estimated from the precise temporal information of synchronized units was good enough to distinguish all 16.7-200 Hz from the 12.5 Hz repetition rate; however, the cats showed declining behavioral performance with the decrease of the target repetition rate, indicating an increase of difficulty in discriminating two slower click-trains. Such behavioral performance was well explained by the firing rate of some synchronized and non-synchronized units. Trial-by-trial analysis indicated that A1 activity was not affected by the cat's judgment of behavioral response. Our results suggest that the main function of A1 is to effectively represent temporal signals using both spike timing and firing rate, while the cats may read out the rate-coding information to perform the task in this experiment.

  9. Neural responses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains.

    Directory of Open Access Journals (Sweden)

    Chao Dong

    Full Text Available Repeated acoustic events are ubiquitous temporal features of natural sounds. To reveal the neural representation of the sound repetition rate, a number of electrophysiological studies have been conducted on various mammals and it has been proposed that both the spike-time and firing rate of primary auditory cortex (A1 neurons encode the repetition rate. However, previous studies rarely examined how the experimental animals perceive the difference in the sound repetition rate, and a caveat to these experiments is that they compared physiological data obtained from animals with psychophysical data obtained from humans. In this study, for the first time, we directly investigated acoustic perception and the underlying neural mechanisms in the same experimental animal by examining spike activities in the A1 of free-moving cats while performing a Go/No-go task to discriminate the click-trains at different repetition rates (12.5-200 Hz. As reported by previous studies on passively listening animals, A1 neurons showed both synchronized and non-synchronized responses to the click-trains. We further found that the neural performance estimated from the precise temporal information of synchronized units was good enough to distinguish all 16.7-200 Hz from the 12.5 Hz repetition rate; however, the cats showed declining behavioral performance with the decrease of the target repetition rate, indicating an increase of difficulty in discriminating two slower click-trains. Such behavioral performance was well explained by the firing rate of some synchronized and non-synchronized units. Trial-by-trial analysis indicated that A1 activity was not affected by the cat's judgment of behavioral response. Our results suggest that the main function of A1 is to effectively represent temporal signals using both spike timing and firing rate, while the cats may read out the rate-coding information to perform the task in this experiment.

  10. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  11. Transcriptional maturation of the mouse auditory forebrain.

    Science.gov (United States)

    Hackett, Troy A; Guo, Yan; Clause, Amanda; Hackett, Nicholas J; Garbett, Krassimira; Zhang, Pan; Polley, Daniel B; Mirnics, Karoly

    2015-08-14

    The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. The main findings were: (1) Global gene expression

  12. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    Science.gov (United States)

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  13. Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys.

    Science.gov (United States)

    Ito, T; Inoue, K; Takada, M

    2015-12-03

    Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Language-dependent changes in pitch-relevant neural activity in the auditory cortex reflect differential weighting of temporal attributes of pitch contours

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Xu, Yi; Suresh, Chandan H.

    2016-01-01

    There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na–Pb and Pb–Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners’ amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na–Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb–Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point. PMID:28713201

  15. Right prefrontal rTMS treatment for refractory auditory command hallucinations - a neuroSPECT assisted case study.

    Science.gov (United States)

    Schreiber, Shaul; Dannon, Pinhas N; Goshen, Elinor; Amiaz, Revital; Zwas, Tzila S; Grunhaus, Leon

    2002-11-30

    Auditory command hallucinations probably arise from the patient's failure to monitor his/her own 'inner speech', which is connected to activation of speech perception areas of the left cerebral cortex and to various degrees of dysfunction of cortical circuits involved in schizophrenia as supported by functional brain imaging. We hypothesized that rapid transcranial magnetic stimulation (rTMS), by increasing cortical activation of the right prefrontal brain region, would bring about a reduction of the hallucinations. We report our first schizophrenic patient affected with refractory command hallucinations treated with 10 Hz rTMS. Treatment was performed over the right dorsolateral prefrontal cortex, with 1200 magnetic stimulations administered daily for 20 days at 90% motor threshold. Regional cerebral blood flow changes were monitored with neuroSPECT. Clinical evaluation and scores on the Positive and Negative Symptoms Scale and the Brief Psychiatric Rating Scale demonstrated a global improvement in the patient's condition, with no change in the intensity and frequency of the hallucinations. NeuroSPECT performed at intervals during and after treatment indicated a general improvement in cerebral perfusion. We conclude that right prefrontal rTMS may induce a general clinical improvement of schizophrenic brain function, without directly influencing the mechanism involved in auditory command hallucinations.

  16. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Computational spectrotemporal auditory model with applications to acoustical information processing

    Science.gov (United States)

    Chi, Tai-Shih

    A computational spectrotemporal auditory model based on neurophysiological findings in early auditory and cortical stages is described. The model provides a unified multiresolution representation of the spectral and temporal features of sound likely critical in the perception of timbre. Several types of complex stimuli are used to demonstrate the spectrotemporal information preserved by the model. Shown by these examples, this two stage model reflects the apparent progressive loss of temporal dynamics along the auditory pathway from the rapid phase-locking (several kHz in auditory nerve), to moderate rates of synchrony (several hundred Hz in midbrain), to much lower rates of modulations in the cortex (around 30 Hz). To complete this model, several projection-based reconstruction algorithms are implemented to resynthesize the sound from the representations with reduced dynamics. One particular application of this model is to assess speech intelligibility. The spectro-temporal Modulation Transfer Functions (MTF) of this model is investigated and shown to be consistent with the salient trends in the human MTFs (derived from human detection thresholds) which exhibit a lowpass function with respect to both spectral and temporal dimensions, with 50% bandwidths of about 16 Hz and 2 cycles/octave. Therefore, the model is used to demonstrate the potential relevance of these MTFs to the assessment of speech intelligibility in noise and reverberant conditions. Another useful feature is the phase singularity emerged in the scale space generated by this multiscale auditory model. The singularity is shown to have certain robust properties and carry the crucial information about the spectral profile. Such claim is justified by perceptually tolerable resynthesized sounds from the nonconvex singularity set. In addition, the singularity set is demonstrated to encode the pitch and formants at different scales. These properties make the singularity set very suitable for traditional

  18. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses.

    Science.gov (United States)

    Molloy, Katharine; Griffiths, Timothy D; Chait, Maria; Lavie, Nilli

    2015-12-09

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying "inattentional deafness"--the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼ 100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 "awareness" response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory

  19. Bottom-up driven involuntary auditory evoked field change: constant sound sequencing amplifies but does not sharpen neural activity.

    Science.gov (United States)

    Okamoto, Hidehiko; Stracke, Henning; Lagemann, Lothar; Pantev, Christo

    2010-01-01

    The capability of involuntarily tracking certain sound signals during the simultaneous presence of noise is essential in human daily life. Previous studies have demonstrated that top-down auditory focused attention can enhance excitatory and inhibitory neural activity, resulting in sharpening of frequency tuning of auditory neurons. In the present study, we investigated bottom-up driven involuntary neural processing of sound signals in noisy environments by means of magnetoencephalography. We contrasted two sound signal sequencing conditions: "constant sequencing" versus "random sequencing." Based on a pool of 16 different frequencies, either identical (constant sequencing) or pseudorandomly chosen (random sequencing) test frequencies were presented blockwise together with band-eliminated noises to nonattending subjects. The results demonstrated that the auditory evoked fields elicited in the constant sequencing condition were significantly enhanced compared with the random sequencing condition. However, the enhancement was not significantly different between different band-eliminated noise conditions. Thus the present study confirms that by constant sound signal sequencing under nonattentive listening the neural activity in human auditory cortex can be enhanced, but not sharpened. Our results indicate that bottom-up driven involuntary neural processing may mainly amplify excitatory neural networks, but may not effectively enhance inhibitory neural circuits.

  20. Neurons responsive to face-view in the primate ventrolateral prefrontal cortex.

    Science.gov (United States)

    Romanski, L M; Diehl, M M

    2011-08-25

    Studies have indicated that temporal and prefrontal brain regions process face and vocal information. Face-selective and vocalization-responsive neurons have been demonstrated in the ventrolateral prefrontal cortex (VLPFC) and some prefrontal cells preferentially respond to combinations of face and corresponding vocalizations. These studies suggest VLPFC in nonhuman primates may play a role in communication that is similar to the role of inferior frontal regions in human language processing. If VLPFC is involved in communication, information about a speaker's face including identity, face-view, gaze, and emotional expression might be encoded by prefrontal neurons. In the following study, we examined the effect of face-view in ventrolateral prefrontal neurons by testing cells with auditory, visual, and a set of human and monkey faces rotated through 0°, 30°, 60°, 90°, and -30°. Prefrontal neurons responded selectively to either the identity of the face presented (human or monkey) or to the specific view of the face/head, or to both identity and face-view. Neurons which were affected by the identity of the face most often showed an increase in firing in the second part of the stimulus period. Neurons that were selective for face-view typically preferred forward face-view stimuli (0° and 30° rotation). The neurons which were selective for forward face-view were also auditory responsive compared to other neurons which responded to other views or were unselective which were not auditory responsive. Our analysis showed that the human forward face (0°) was decoded better and also contained the most information relative to other face-views. Our findings confirm a role for VLPFC in the processing and integration of face and vocalization information and add to the growing body of evidence that the primate ventrolateral prefrontal cortex plays a prominent role in social communication and is an important model in understanding the cellular mechanisms of communication