High-temperature atomic superfluidity in lattice Bose-Fermi mixtures
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions
High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.
Illuminati, Fabrizio; Albus, Alexander
2004-08-27
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions. PMID:15447082
Işkın, Menderes; Subaşı, Ahmet Levent
2012-01-01
PHYSICAL REVIEW A 87, 063627 (2013) Topological superfluid phases of an atomic Fermi gas with in- and out-of-plane Zeeman fields and equal Rashba-Dresselhaus spin-orbit coupling M. Iskin1 and A. L. Subas¸ı2 1Department of Physics, Koc¸ University, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey 2Department of Physics, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey (Received 16 November 2012; revised manuscript received 14 May...
Study of superfluid Bose-Fermi mixture
Laurent, Sebastien; Delehaye, Marion; Jin, Shuwei; Pierce, Matthieu; Yefsah, Tarik; Chevy, Frederic; Salomon, Christophe
2016-05-01
Using fermionic and bosonic isotopes of lithium we produce and study ultracold Bose-Fermi mixtures. First in a low temperature counterflow experiment, we measure the critical velocity of the system in the BEC-BCS crossover. Around unitarity, we observe a remarkably high superfluid critical velocity which reaches the sound velocity of the strongly interacting Fermi gas. Second, when we increase the temperature of the system slightly above the superfluid transitions we observe an unexpected phase locking of the oscillations of the clouds induced by dissipation. Finally, as suggested in, we explore the nature of the superfluid phase when we impose a spin polarization in the situation where the mean field potential created by the bosons on the fermions tends to cancel out the trapping potential of the latter.
Phase Separation in Bose-Fermi-Fermi Mixtures as a Probe of Fermi Superfluidity
Bhongale, S. G.; Pu, Han
2008-01-01
We study the phase diagram of a mixture of Bose-Einstein condensate and a two-component Fermi gas. In particular, we identify the regime where the homogeneous system becomes unstable against phase separation. We show that, under proper conditions, the phase separation phenomenon can be exploited as a robust probe of Fermi superfluid.
Towards Quantum Turbulence in Cold Atomic Fermionic Superfluids
Bulgac, Aurel; Wlazłowski, Gabriel
2016-01-01
Fermionic superfluids provide a new realization of quantum turbulence, accessible to both experiment and theory, yet relevant to both cold atoms and nuclear astrophysics. In particular, the strongly interacting Fermi gas realized in cold-atom experiments is closely related to dilute neutron matter in the neutron star crust. Unlike the liquid superfluids 4He (bosons) and 3He (fermions), where quantum turbulence has been studied in laboratory for decades, quantum gases, and in particular superfluid Fermi gases stand apart for a number of reasons. Fermi gases admit a rather reliable microscopic description based on density functional theory which describes both static and dynamical phenomena. Cold atom experiments demonstrate exquisite control over particle number, spin polarization, density, temperature, and interacting strength. Topological defects such as domain walls and quantized vortices, which lie at the heart of quantum turbulence, can be created and manipulated with time-dependent external potentials, a...
Theory of ultracold atomic Fermi gases
The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of interactions that play a crucial role, bringing the gas into a superfluid phase at low temperature. In these dilute systems, interactions are characterized by a single parameter, the s-wave scattering length, whose value can be tuned using an external magnetic field near a broad Feshbach resonance. The BCS limit of ordinary Fermi superfluidity, the Bose-Einstein condensation (BEC) of dimers, and the unitary limit of large scattering length are important regimes exhibited by interacting Fermi gases. In particular, the BEC and the unitary regimes are characterized by a high value of the superfluid critical temperature, on the order of the Fermi temperature. Different physical properties are discussed, including the density profiles and the energy of the ground-state configurations, the momentum distribution, the fraction of condensed pairs, collective oscillations and pair-breaking effects, the expansion of the gas, the main thermodynamic properties, the behavior in the presence of optical lattices, and the signatures of superfluidity, such as the existence of quantized vortices, the quenching of the moment of inertia, and the consequences of spin polarization. Various theoretical approaches are considered, ranging from the mean-field description of the BCS-BEC crossover to nonperturbative methods based on quantum Monte Carlo techniques. A major goal of the review is to compare theoretical predictions with available experimental results.
Exciting Quantized Vortex Rings in a Superfluid Unitary Fermi Gas
Bulgac, Aurel
2014-03-01
In a recent article, Yefsah et al., Nature 499, 426 (2013) report the observation of an unusual quantum excitation mode in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe collective oscillations of the superfluid atomic cloud with a period almost an order of magnitude larger than that predicted by any theory of domain walls, which they interpret as a possible new quantum phenomenon dubbed ``a heavy soliton'' with an inertial mass some 50 times larger than one expected for a domain wall. We present compelling evidence that this ``heavy soliton'' is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within an extension of the time-dependent density functional theory (TDDFT) to superfluid systems. The numerical simulations required the solution of some 260,000 nonlinear coupled time-dependent 3-dimensional partial differential equations and was implemented on 2048 GPUs on the Cray XK7 supercomputer Titan of the Oak Ridge Leadership Computing Facility.
Superfluidity of heated Fermi systems in the static fluctuation approximation
Khamzin, A. A., E-mail: airat.khamzin@rambler.ru [Kazan (Volga Region) Federal University, Institute of Physics (Russian Federation); Nikitin, A. S.; Sitdikov, A. S. [Kazan State Power Engineering University (KSPEU) (Russian Federation)
2015-10-15
Superfluidity properties of heated finite Fermi systems are studied in the static fluctuation approximation, which is an original method. This method relies on a single and controlled approximation, which permits taking correctly into account quasiparticle correlations and thereby going beyond the independent-quasiparticle model. A closed self-consistent set of equations for calculating correlation functions at finite temperature is obtained for a finite Fermi system described by the Bardeen–Cooper–Schrieffer Hamiltonian. An equation for the energy gap is found with allowance for fluctuation effects. It is shown that the phase transition to the supefluid state is smeared upon the inclusion of fluctuations.
Vortex line in spin-orbit coupled atomic Fermi gases
Işkın, Menderes
2011-01-01
PHYSICAL REVIEW A 85, 013622 (2012) Vortex line in spin-orbit coupled atomic Fermi gases M. Iskin Department of Physics, Koc¸ University, Rumelifeneri Yolu, TR-34450 Sariyer, Istanbul, Turkey (Received 1 December 2011; published 17 January 2012) It has recently been shown that the spin-orbit coupling gives rise to topologically nontrivial and thermodynamically stable gapless superfluid phases when the pseudospin populations of an atomic Fermi gas are imbalanced, with the ...
Sound Modes of a Bose-Fermi Mixture Superfluid at Finite Temperatures
Ono, Yosuke; Sakamoto, Ryohei; Mori, Hiroyuki; Arahata, Emiko
2016-06-01
We study the sound modes of a Bose-Fermi mixture superfluid at finite temperatures in the collisional hydrodynamic regime. We extend Landau's hydrodynamic theory to deal with a Bose-Fermi mixture superfluid and show the existence of three sound modes. We calculate the hydrodynamic sound velocities numerically using the Nozières and Schmitt-Rink theory at unitarity. The three-sound-modes hybrid in Bose-Fermi mixture superfluids contrasts with the two sound modes exhibited by 3He and 4He superfluids.
Collective modes and superflow instabilities of strongly correlated Fermi superfluids
We study the superfluid phase of the one-band attractive Hubbard model of fermions as a prototype of a strongly correlated s-wave fermion superfluid on a lattice. We show that the collective mode spectrum of this superfluid exhibits, in addition to the long wavelength sound mode, a sharp roton mode over a wide range of densities and interaction strengths. We compute the sound velocity and the roton gap within a generalized random phase approximation (GRPA) and show that the GRPA results are in good agreement, at strong coupling, with a spin-wave analysis of the appropriate strong-coupling pseudospin model. We also investigate, using this two-pronged approach, the breakdown of superfluidity in the presence of a supercurrent. We find that the superflow can break down at a critical flow momentum via several distinct mechanisms--depairing, Landau instabilities or dynamical instabilities--depending on the dimension, the interaction strength and the fermion density. The most interesting of these instabilities is a charge modulation dynamical instability which is distinct from previously studied dynamical instabilities of Bose superfluids. The charge order associated with this instability can be of two types: (i) a commensurate checkerboard modulation driven by softening of the roton mode at the Brillouin zone corner, or, (ii) an incommensurate density modulation arising from superflow-induced finite momentum pairing of Bogoliubov quasiparticles. We elucidate the dynamical phase diagram showing the critical flow momentum of the leading instability over a wide range of fermion densities and interaction strengths and point out implications of our results for experiments on cold atom fermion superfluids in an optical lattice.
A new superfluid phase in atomic nuclei
The influence of pairing and the dynamical α-type correlations on the structure of nuclear states is studied within the enlarged superfluid model (ESM). A comparison between ESM and different modern nuclear structure models such as: the quasiparticle-phonon nuclear model, interaction boson model, Hartree-Fock-Bogoliubov, temperature dependent Hartree-Fock-Bogoliubov and Migdal's finite Fermi system model, is done for particular cases. New gap equations are obtained. The phase structure is enriched by a new superfluid phase - the so-called α-like superfluid phase-dominated by α-type correlations. New first and second order phase transitions are predicted. A first order phase transition between the α-like superfluid phase and the pairing superfluid phase seems to be observed in Sm region. New types of isomers, the so-called ''superfluid isomers'', with their bands of elementary excitations are predicted. One of them is observed in 152Sm. These isomers correspond to a second (local) minimum of the correlation energy versus pairing deformations, analogous to the fission or superdeformed (shape) isomers, which correspond to the second (local) minimum of the potential energy along the elongation degree of shape deformation. The superfluidities of neutron and proton systems in heavy nuclei region may be generated by one another. This fact leads to the explanation of the origin of the odd-even staggering of the charge radii of chains of isotopes of different nuclei. The fact that the magnitude of the α-decay reduced widths (γ2) of the neutron-defficient Pb isotopes is almost equal to the γ2 of the actinide α-decaying nuclei is due to the above mentioned induction of the neutron superfluidity into the proton system also. Such exotic data ESM can explain especially in the region of single magic nuclei. Within ESM we could find a natural microscopic description of the scissors mode that dominates the structure of the Kπ=1+ magnetic states. (author). 89 refs, 27 figs
Transport and magnetic resonance in normal and superfluid Fermi liquids
This thesis provides a framework for a series of 19 papers published by the author in a study of transport and magnetic resonance in normal and superfluid Fermi liquids. The Boltzmann equation and methods for its solution are discussed. Electron-electron scattering in metals, with particular emphasis on alkali metals, is considered. Transport in a normal uncharged Fermi liquid such as pure 3He at temperatures well below its degeneracy temperature of approximately 1 K or mixtures of 3He in 4He with degeneracy temperatures ranging typically from 100 to 200 mk is discussed with emphasis on comparison with experiments with the aim of testing models of the particle-particle scattering amplitude. Transport and magnetic resonance in superfluid 3He is considered. The phenomenological treatment of relaxation is reviewed and the magnitude of the phenomenlogical relaxation time close to Tsub(c) is derived for the case of longitudinal resonance. Comments are made on non-linear magnetic resonance and textures and spin waves. (B.R.H.)
Ku, Mark J H; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin W
2016-01-29
We follow the time evolution of a superfluid Fermi gas of resonantly interacting ^{6}Li atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium. PMID:26871342
Ku, Mark J. H.; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin W.
2016-01-01
We follow the time evolution of a superfluid Fermi gas of resonantly interacting 6 atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium.
Faraday instability and Faraday patterns in a superfluid Fermi gas
Tang, Rong-An; Li, Hao-Cai; Xue, Ju-Kui
2011-06-01
With the consideration of the coupling between the transverse width and the longitudinal density, the parametric excitations related to Faraday waves in a cigar-shaped superfluid Fermi gas are studied. A Mathieu equation is obtained, and it is demonstrated firstly that the excited actual 3D Faraday pattern is the combination of the longitudinal Faraday density wave and the corresponding transverse width fluctuation in the longitudinal direction. The Faraday instability growth index and the kinematic equations of the Faraday density wave and the width fluctuation along the Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS) crossover are also given for the first time. It is found that the 3D Faraday pattern presents quite different behaviours (such as the excitations and the motions) when the system crosses from the BEC side to the BCS side. The coupling not only plays an important role in the parametric excitation, but also determines the dominant wavelength of the spatial structure. Along the crossover, the coupling effects are more significant in the BCS side. The final numerical investigation verifies these results and gives a detailed study of the parametric excitations (i.e. Faraday instability) and the 3D pattern formation.
Faraday instability and Faraday patterns in a superfluid Fermi gas
Tang Rongan; Xue Jukui [Key Laboratory of Atomic Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070 (China); Li Haocai, E-mail: tangra79@163.com, E-mail: xuejk@nwnu.edu.cn [High School Attached to Northwest Normal University, Lanzhou 730070 (China)
2011-06-14
With the consideration of the coupling between the transverse width and the longitudinal density, the parametric excitations related to Faraday waves in a cigar-shaped superfluid Fermi gas are studied. A Mathieu equation is obtained, and it is demonstrated firstly that the excited actual 3D Faraday pattern is the combination of the longitudinal Faraday density wave and the corresponding transverse width fluctuation in the longitudinal direction. The Faraday instability growth index and the kinematic equations of the Faraday density wave and the width fluctuation along the Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS) crossover are also given for the first time. It is found that the 3D Faraday pattern presents quite different behaviours (such as the excitations and the motions) when the system crosses from the BEC side to the BCS side. The coupling not only plays an important role in the parametric excitation, but also determines the dominant wavelength of the spatial structure. Along the crossover, the coupling effects are more significant in the BCS side. The final numerical investigation verifies these results and gives a detailed study of the parametric excitations (i.e. Faraday instability) and the 3D pattern formation.
Dynamics of shock waves in a superfluid unitary Fermi gas
Wen, Wen; Shui, Tiankun; Shan, Yafei; Zhu, Changping
2015-09-01
We study the formation and dynamics of shock waves initiated by a repulsive potential in a superfluid unitary Fermi gas by using the order-parameter equation. In the theoretical framework, the regularization process of shock waves mediated by the quantum pressure term is purely dispersive. Our results show good agreement with the experiment of Joseph et al (2011 Phys. Rev. Lett. 106 150401). We reveal that the boxlike-shaped density peak observed in the experiment consists of many vortex rings due to the transverse instability of the dispersive shock wave. In addition, we study the transition from a sound wave to subsonic shock waves as the strength of the repulsive potential increases and show a strong qualitative change in the propagation speed of the wavefronts. For a relatively small strength of the repulsive potential, the propagation speed decreases below the sound speed with the increase of the strength as a scaling behavior. For a large strength where the shock waves are formed by colliding two spatially separated clouds, the speed is still smaller than the sound speed, but remains almost unchanged as the strength increases, which can be interpreted as the same expansion speed of the proliferation of the vortex rings originated from the transverse instability.
Transport equations and linear response of superfluid Fermi mixtures in neutron stars
Gusakov, M E
2010-01-01
We study transport properties of a strongly interacting superfluid mixture of two Fermi-liquids. A typical example of such matter is the neutron-proton liquid in the cores of neutron stars. To describe the mixture, we employ the Landau theory of Fermi-liquids, generalized to allow for the effects of superfluidity. We formulate the kinetic equation and analyze linear response of the system to vector (e.g., electromagnetic) perturbation. In particular, we calculate the transverse and longitudinal polarization functions for both liquid components. We demonstrate, that they can be expressed through the Landau parameters of the mixture and polarization functions of noninteracting matter (when the Landau quasiparticle interaction is neglected). Our results can be used, e.g., for studies of the kinetic coefficients and low-frequency long-wavelength collective modes in superfluid Fermi-mixtures.
Two-Element Mixture of Bose and Fermi Superfluids
Roy, Richard; Bowler, Ryan; Gupta, Subhadeep
2016-01-01
We report on the production of a mixture of bosonic and fermionic superfluids composed of the elements $^{174}$Yb and $^6$Li which feature strong mismatch in mass and distinct electronic properties. Simultaneous superfluidity and prolonged co-existence are confirmed through observation of the condensed fraction of bosonic and fermionic components. We demonstrate elastic coupling between the superfluids by observing the shift in dipole oscillation frequency of the bosonic component due to the presence of the fermions. The measured magnitude of the shift is consistent with a mean-field model and its direction determines the previously unknown sign of the interspecies scattering length to be positive. We also observe the exchange of angular momentum between the superfluids from the excitation of a scissors mode in the bosonic component through interspecies interactions.
Nonzero orbital angular momentum superfluidity in ultracold Fermi gases
Iskin, M.; de Melo, C. A. R. Sá
2006-01-01
We analyze the evolution of superfluidity for nonzero orbital angular momentum channels from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein condensation (BEC) limit in three dimensions. First, we analyze the low energy scattering properties of finite range interactions for all possible angular momentum channels. Second, we discuss ground state ($T = 0$) superfluid properties including the order parameter, chemical potential, quasiparticle excitation spectrum, momentum distribution, ...
Coordinate-Space Hartree-Fock-Bogoliubov Solvers for Superfluid Fermi Systems in Large Boxes
Pei, J C; Harrison, R J; Nazarewicz, W; Hill, J; Galindo, D; Jia, J
2012-01-01
The self-consistent Hartree-Fock-Bogoliubov problem in large boxes can be solved accurately in the coordinate space with the recently developed solvers HFB-AX (2D) and MADNESS-HFB (3D). This is essential for the description of superfluid Fermi systems with complicated topologies and significant spatial extend, such as fissioning nuclei, weakly-bound nuclei, nuclear matter in the neutron star rust, and ultracold Fermi atoms in elongated traps. The HFB-AX solver based on B-spline techniques uses a hybrid MPI and OpenMP programming model for parallel computation for distributed parallel computation, within a node multi-threaded LAPACK and BLAS libraries are used to further enable parallel calculations of large eigensystems. The MADNESS-HFB solver uses a novel multi-resolution analysis based adaptive pseudo-spectral techniques to enable fully parallel 3D calculations of very large systems. In this work we present benchmark results for HFB-AX and MADNESS-HFB on ultracold trapped fermions.
Faraday waves in quasi-one-dimensional superfluid Fermi-Bose mixtures
Abdullaev, F. Kh.; Ögren, Magnus; Sørensen, Mads Peter
2013-01-01
The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering...
High-Temperature Atomic Superfluidity in Lattice Boson-Fermion Mixtures
Illuminati, F.; Albus, A
2003-01-01
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always {\\it attractive} if the boson-boson on site interaction is repulsive, and predict the existence of an enhanced BEC--BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion {\\it repulsion}, the induced attraction...
Critical temperature of the superfluid transition in Fermi-system at an arbitrary pair potential
Poluektov, Yu. M.; Soroka, A. A.
2014-01-01
A method for calculation of the critical temperature of transition of a many-particle Fermi system into a superfluid or a superconducting state at an arbitrary pair potential of the interparticle interaction is proposed. An original homogeneous integral equation, that determines the critical temperature, is transformed into a homogeneous integral equation with a symmetric kernel that enables application of a general theory of integral equations for calculation. Examples are given of calculati...
Vortex line of spin-orbit coupled Fermi superfluid through BCS to BEC Crossover
Yao, Juan; Zhang, Shizhong
Superfluid Fermi gases with spin-orbit interaction provides a unique opportunity to investigate possible effects of strong interaction in a topological superfluid. It has been suggested that with addition of Rashba-type spin-orbit coupling, a two-component Fermi gas with strong s-wave interaction can become a topological superfluid with zero-energy bound state at the core of the vortex. In this talk, I discuss the evolution of vortex structure in a spin-orbit coupled Fermi gas through the BCS-BEC crossover within Bogoliubov-de Genne formalism. We find that the largest critical current occurs in the BEC side of the resonance, in contradiction to the usual crossover without spin-orbit coupling where it occurs at unitarity. Furthermore, we discuss the core structure of the vortex by calculating the spin and density distribution around the vortex. Department of Physics and Centre of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China.
The paper reviews the understanding of superfluid helium with regard to its use as coolant for superconducting devices. The topics to be addressed include heat transfer properties of the stagnant fluid, cooling by forced flow superfluid helium, design principles for superfluid helium cryogenic systems and, finally, an illustration of these principles by a few practical examples. 18 refs
Metastable Superfluidity of Repulsive Fermionic Atoms in Optical Lattices
In the fermionic Hubbard model, doubly occupied states have an exponentially large lifetime for strong repulsive interactions U. We show that this property can be used to prepare a metastable s-wave superfluid state for fermionic atoms in optical lattices described by a large-U Hubbard model. When an initial band-insulating state is expanded, the doubly occupied sites Bose condense. A mapping to the ferromagnetic Heisenberg model in an external field allows for a reliable solution of the problem. Nearest-neighbor repulsion and pair hopping are important in stabilizing superfluidity
Propagation of sound and supersonic bright solitons in superfluid Fermi gases in BCS-BEC crossover
Wen, Wen; Shen, Shun-Qing; Huang, Guoxiang
2010-01-01
We investigate the linear and nonlinear sound propagations in a cigar-shaped superfluid Fermi gas with a large particle number. We first solve analytically the eigenvalue problem of linear collective excitations and provide explicit expressions of all eigenvalues and eigenfunctions, which are valid for all superfluid regimes in the Bardeen-Cooper-Schrieffer-Bose-Einstein condensation (BCS-BEC) crossover. The linear sound speed obtained agrees well with that of a recent experimental measurement. We then consider a weak nonlinear excitation and show that the time evolution of the excitation obeys a Korteweg de Vries equation. Different from the result obtained in quasi-one-dimensional case studied previously, where subsonic dark solitons are obtained via the balance between quantum pressure and nonlinear effect, we demonstrate that bright solitons with supersonic propagating velocity can be generated in the present three-dimensional system through the balance between a waveguidelike dispersion and the interparticle interaction. The supersonic bright solitons obtained display different physical properties in different superfluid regimes and hence can be used to characterize superfluid features of the BCS-BEC crossover.
Finite-temperature quantum fluctuations in two-dimensional Fermi superfluids
Bighin, G.; Salasnich, L.
2016-01-01
In two-dimensional systems with a continuous symmetry, the Mermin-Wagner-Hohenberg theorem precludes spontaneous symmetry breaking and condensation at finite temperature. The Berezinskii-Kosterlitz-Thouless critical temperature marks the transition from a superfluid phase characterized by quasicondensation and algebraic long-range order, to a normal phase in which vortex proliferation completely destroys superfluidity. As opposed to conventional off-diagonal long-range order typical of three-dimensional superfluid systems, algebraic long-range order is driven by quantum and thermal fluctuations strongly enhanced in reduced dimensionality. Motivated by this unique scenario and by the very recent experimental realization of trapped quasi-two-dimensional fermionic clouds, we include one-loop Gaussian fluctuations in the theoretical description of resonant Fermi superfluids in two dimensions demonstrating that first sound, second sound, and also critical temperature are strongly renormalized, away from their mean-field values. In particular, we prove that in the intermediate- and strong-coupling regimes, these quantities are radically different when Gaussian fluctuations are taken into account. Our one-loop theory shows good agreement with very recent experimental data on the Berezinskii-Kosterlitz-Thouless critical temperature [Phys. Rev. Lett. 115, 010401 (2015)], 10.1103/PhysRevLett.115.010401 and on the first sound velocity, giving predictions for the second sound as a function of interaction strength and temperature that are open for experimental verification.
Induced p-wave Superfluidity in Imbalanced Fermi Gases in a Synthetic Gauge Field
Caldas, Heron; Continentino, Mucio
2015-03-01
We study pairing formation and the appearance of induced spin-triplet p-wave superfluidity in dilute three-dimensional imbalanced Fermi gases in the presence of a uniform non-Abelian gauge field. This gauge field generates a synthetic Rashba-type spin-orbit interaction which has remarkable consequences in the induced p-wave pairing gaps. Without the synthetic gauge field, the p-wave pairing occurs in one of the components due to the induced (second-order) interaction via an exchange of density fluctuations in the other component. We show that this p-wave superfluid gap induced by density fluctuations is greatly enhanced due to the Rashba-type spin-orbit coupling. This work was partially supported by CAPES, CNPq, FAPERJ, and FAPEMIG (Brazilian Agencies).
Action for anomaly in Fermi superfluids: Quantized vortices and gap nodes
A general expression for the topological Novikov-Wess-Zumino (NWZ) term in the hydrodynamic action of Fermi superfluids is derived. It can be applied both to systems with gap nodes in momentum space, such as superfluid 3He-A, and to conventional superconductors with quantized vortices. The action is expressed in terms of the volume of the 6-dimensional phase space bar k, bar r enclosed by the multidimensional vortex sheet swept by Green's function singularities. While in superfluid 3He-A this action describes the chiral anomaly in 3+1 dimensions, which results from the gap nodes, in the case of vortices the NWZ term results from the spectral flow along the anomalous branches of the fermions, localized in the vortex core. At low temperatures the flow of states through E=0 determines the parameter D' characterizing the reactive force between the vortex and the system of normal fermions (heat bath). This reversible momentum exchange between the coherent condensate motion in three dimensions and the 1-dimensional motion of localized fermions is equivalent to the Callan-Harvey process of anomaly cancellation. The number of the anomalous branches of fermionic zero modes on vortices is related to the vortex winding number. 30 refs
S Nasirimoghadam
2011-09-01
Full Text Available The ultracold atoms fermion gas such as 6Li undergo superfluidity state. The transport quantities of these fluids have a direct dependence on the transition probabilities. Here, by obtaining possible processes in p-wave superfluid, we have shown that only binary processes are dominate at low temperatures.
Bogoliubov approach to superfluidity of atoms in an optical lattice
We use the Bogoliubov theory of atoms in an optical lattice to study the approach to the Mott-insulator transition. We derive an explicit expression for the superfluid density based on the rigidity of the system under phase variations. This enables us to explore the connection between the quantum depletion of the condensate and the quasi-momentum distribution on the one hand and the superfluid fraction on the other. The approach to the insulator phase may be characterized through the filling of the band by quantum depletion, which should be directly observable via the matter-wave interference patterns. We complement these findings by self-consistent Hartree-Fock-Bogoliubov-Popov calculations for one-dimensional lattices, including the effects of a parabolic trapping potential
Inelastic scattering of xenon atoms by quantized vortices in superfluids
Pshenichnyuk, I A
2016-01-01
We study inelastic interactions of particles with quantized vortices in superfluids by using a semi-classical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.
Dynamics of atom-atom correlations in the Fermi problem
Borrelli, Massimo; Sabín, Carlos; Adesso, Gerardo; Plastina, Francesco; Maniscalco, Sabrina
2012-01-01
We present a detailed perturbative study of the dynamics of several types of atom-atom correlations in the famous Fermi problem. This is an archetypal model to study micro-causality in the quantum domain, where two atoms, one initially excited and the other prepared in its ground state, interact with the vacuum electromagnetic field. The excitation can be transferred to the second atom via a flying photon, and various kinds of quantum correlations between the two are generated during this pro...
Tajima, Hiroyuki; Hanai, Ryo; Ohashi, Yoji
2016-01-01
We theoretically investigate the uniform spin susceptibility χ in the superfluid phase of an ultracold Fermi gas in the region of the Bardeen-Cooper-Schrieffer-Bose-Einstein-condensate (BCS-BEC) crossover. In our previous paper [H. Tajima et al., Phys. Rev. A 89, 033617 (2014), 10.1103/PhysRevA.89.033617], including pairing fluctuations within an extended T -matrix approximation (ETMA), we showed that strong pairing fluctuations cause the so-called spin-gap phenomenon, where χ is anomalously suppressed even in the normal state near the superfluid phase transition temperature Tc. In this paper, we extend this work to the superfluid phase below Tc, to clarify how this many-body phenomenon is affected by the superfluid order. From the comparison of the ETMA χ with the Yosida function describing the spin susceptibility in a weak-coupling BCS superfluid, we identify the region where pairing fluctuations crucially affect this magnetic quantity below Tc in the phase diagram with respect to the strength of a pairing interaction and the temperature. This spin-gap regime is found to be consistent with the previous pseudogap regime determined from the pseudogapped density of states. We also compare our results with a recent experiment on a 6Li Fermi gas. Since the spin susceptibility is sensitive to the formation of spin-singlet preformed pairs, our results would be useful for the study of pseudogap physics in an ultracold Fermi gas on the viewpoint of the spin degrees of freedom.
Adhikari, S. K.; Lu, Hong; Pu, Han
2009-12-01
We derive a generalized Gross-Pitaevskii density-functional equation appropriate to study the Bose-Einstein condensate (BEC) of dimers formed of singlet spin-half Fermi pairs in the BEC-unitarity crossover while the dimer-dimer scattering length a changes from 0 to ∞ . Using an effective one-dimensional form of this equation, we study the phenomenon of dynamical self-trapping of a cigar-shaped Fermi superfluid in the entire BEC-unitarity crossover in a double-well potential. A simple two-mode model is constructed to provide analytical insights. We also discuss the consequence of our study on the self-trapping of an atomic BEC in a double-well potential.
Quantized vortices in superfluid helium and atomic Bose-Einstein condensates
Tsubota, Makoto; Kasamatsu, Kenichi; Kobayashi, Michikazu
2010-01-01
This article reviews recent developments in the physics of quantized vortices in superfluid helium and atomic Bose-Einstein condensates. Quantized vortices appear in low-temperature quantum condensed systems as the direct product of Bose-Einstein condensation. Quantized vortices were first discovered in superfluid 4He in the 1950s, and have since been studied with a primary focus on the quantum hydrodynamics of this system. Since the discovery of superfluid 3He in 1972, quantized vortices cha...
Dong Hang; Ma Yong-Li
2009-01-01
Using quantum hydrodynamic approaches, we study the quantum pressure correction to the collective excitation spectrum of the interacting trapped superfluid Fermi gases in the BEC-BCS crossover. Based on a phenomenological equation of state, we derive hydrodynamic equations of the system in the whole BEC-BCS crossover regime. Beyond the Thomas-Fermi approximation, expressions of the frequency corrections of collective modes for both spherical and axial symmetric traps excited in the BEC-BCS crossover are given explicitly. The corrections of the eigenfrequencies due to the quantum pressure and their dependence on the inverse interaction strength. Anisotropic parameter and particle numbers of the condensate are discussed in detail.
Probing superfluid properties in strongly correlated Fermi gases with high spatial resolution
Weimer, Wolf
2014-07-01
In this thesis an apparatus to study ultracold fermionic {sup 6}Li with tunable interaction strength and dimensionality is presented. The apparatus is applied to investigate the speed of sound v{sub s} and the superfluid critical velocity v{sub c} across the transition from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluidity. The results set benchmarks for theories describing strongly correlated systems. To measure v{sub c}, an obstacle, that is formed by a tightly focused laser beam, is moved through a superfluid sample with a constant velocity along a line of constant density. For velocities larger than v{sub c} heating of the gas is observed. The critical velocity is mapped out for various different interaction strengths covering the BEC-BCS crossover. According to the Landau criterion and Bogolyubov theory, v{sub c} should be closely related to v{sub s} in a Bose-Einstein condensate. The measurement of v{sub s} is conducted by creating a density modulation in the centre of the cloud and tracking the excited modulation. The velocities v{sub s} and v{sub c} are measured in a similar range of interaction strengths and in similar samples to ensure comparability. The apparatus which provides the ultracold samples is a two chamber design with a magneto-optical trap that is loaded via a Zeeman slower. The subsequent cooling steps are all-optical and finally create an ultracold oblate atom cloud inside a flat vacuum cell. This cell provides optimal optical access and is placed between two high numerical aperture microscope objectives. These objectives are used to probe the samples in-situ on length scales which are comparable to the intrinsic length scales of the gases. Similarly, optical dipole potentials are employed to manipulate the clouds on the same small length scales. The oblate samples are sufficiently flat such that there spatial extent along the microscope axes is smaller than the depth of field of the objectives. With an
Expansion dynamics of Fermi atoms in optical lattice
We study the non-equilibrium quantum dynamics of attractive Fermi gases in one- and two-dimensional optical lattice. We use the dynamic Bogoliubov–de Gennes (DBdG) method and time-evolving block decimation (TEBD) to investigate the expansion dynamics, which can be implemented by suddenly removing the harmonic trap. The evolutions of density and superfluid order parameters have been calculated. We find that for the noninteracting case, the expansion rate is linear with hopping amplitude, which is a ballistic expansion result. And the interaction damps the expansion rate exponentially both in one and two dimensions and makes it deviate from the ballistic expansion. - Highlights: • We use DBdG method and TEBD to investigate the expansion dynamics in optical lattice. • We calculate the evolution of density and superfluid order parameters. • We find a ballistic expansion result for non-interacting case. • We find interaction damps the expansion rate exponentially
Atom scattering off superfluid 4He clusters and films
In this work, the HNC-Euler-Lagrange theory is applied to the many-body scattering problem. We use time-dependent variational correlated wave functions in excitation calculations in order to describe atom scattering off nanoclusters and microscopically thin films of superfluid helium-4. Apart from elastic processes, the level of implementation of the method includes dissipation, i.e. processes in which the atom imparts energy to the cluster/film, such as direct inelastic scattering and sticking. From the cross sections/probabilities for elastic and dissipative processes, information about the energetic structure (excitation energies, dispersion relations) of the helium-4 system can be gleaned, and, for scattering off a helium-4 film, about the strength of Van der Waal forces between atom and the substrate, on which the film is adsorbed. For the determination of inelastic scattering cross sections, we develop a method based on the expansion of the expectation value of the probability current to second order in correlation fluctuations which leads to a formulation which allows to identify the decay probability into open scattering channels. Various differential cross sections are calculated such as the probability for energy- and momentum-transfer to the helium cluster which is the analogon to the dynamic structure function measured by inelastic neutron scattering and which allows the determination of the surface wave (ripplons) dispersion relation. The effect of particle statistics on identical particle scattering is studied by comparing helium-4 scattering to impurity (helium-3) scattering off helium-4 clusters; e.g. we show how the elastic conversion process from helium-4 atom to roton and back can be understood as a resonance phenomenon at the excitation energy of the roton in helium clusters. The connection between resonances in the elastic scattering channel to their counterpart in inelastic channels is highlighted in the example of our results for quantum
Atom scattering off superfluid4He clusters and films
In this work, the HNC-Euler-Lagrange theory is applied to the many-body scattering problem. We use time-dependent variational correlated wave functions in excitation calculations in order to describe atom scattering off nanoclusters and microscopically thin films of superfluid helium-4. Apart from elastic processes, the level of implementation of the method includes dissipation, i.e. processes in which the atom imparts energy to the cluster/film, such as direct inelastic scattering and sticking. From the cross sections/probabilities for elastic and dissipative processes, information about the energetic structure (excitation energies, dispersion relations) of the helium-4 system can be gleaned, and, for scattering off a helium-4 film, about the strength of Van der Waal forces between atom and the substrate, on which the film is adsorbed. For the determination of inelastic scattering cross sections, we develop a method based on the expansion of the expectation value of the probability current to second order in correlation fluctuations which leads to a formulation which allows to identify the decay probability into open scattering channels. Various differential cross sections are calculated such as the probability for energy- and momentum-transfer to the helium cluster which is the analogon to the dynamic structure function measured by inelastic neutron scattering and which allows the determination of the surface wave (ripplons) dispersion relation. The effect of particle statistics on identical particle scattering is studied by comparing helium-4 scattering to impurity (helium-3) scattering off helium-4 clusters; e.g. we show how the elastic conversion process from helium-4 atom to roton and back can be understood as a resonance phenomenon at the excitation energy of the roton in helium clusters. The connection between resonances in the elastic scattering channel to their counterpart in inelastic channels is highlighted in the example of our results for quantum
Pal, Arijeet; Huse, David
2012-02-01
Phase separation between paired superfluid and partially polarized normal phases has been observed by various experimental groups around the world using resonantly-interacting spin-imbalanced, hyperfine states of fermionic atoms. In this work we phenomenologically study the effect of the evaporation of atoms and explore the possibility of realizing a non-equilibrium steady state with chemical potential and temperature gradients in some of these experiments.
Mean field dynamics of superfluid-insulator phase transition in a gas of ultra cold atoms
Zakrzewski, Jakub
2004-01-01
A large scale dynamical simulation of the superfluid to Mott insulator transition in the gas of ultra cold atoms placed in an optical lattice is performed using the time dependent Gutzwiller mean field approach. This approximate treatment allows us to take into account most of the details of the recent experiment [Nature 415, 39 (2002)] where by changing the depth of the lattice potential an adiabatic transition from a superfluid to a Mott insulator state has been reported. Our simulations re...
Lattice simulation of ultracold atomic Bose-Fermi mixtures
Yamamoto, Arata
2012-01-01
Bose-Fermi mixtures have been recently realized and invesitigated in ultracold atomic experiments. We formulate quantum Monte Carlo simulation of Bose-Fermi mixtures on the (3+1)-dimensional lattice. As its first application, we analyze the boson-fermion pair correlation and the phase diagram of the Bose-Einstein condensation.
Degenerate atom-molecule mixture in a cold Fermi gas
We show that the atom-molecule mixture formed in a degenerate atomic Fermi gas with interspecies repulsion near a Feshbach resonance constitutes a peculiar system where the atomic component is almost nondegenerate but quantum degeneracy of molecules is important. We develop a thermodynamic approach for studying this mixture, explain experimental observations, and predict optimal conditions for achieving molecular Bose-Einstein condensation
Degenerate Atom-Molecule Mixture in a Cold Fermi Gas
Kokkelmans, S.J.J.M.F.; Shlyapnikov, G. V.; Salomon, R.
2004-01-01
We show that the atom-molecule mixture formed in a degenerate atomic Fermi gas with interspecies repulsion near a Feshbach resonance, constitutes a peculiar system where the atomic component is almost non-degenerate but quantum degeneracy of molecules is important. We develop a thermodynamic approach for studying this mixture, explain experimental observations and predict optimal conditions for achieving molecular BEC.
Theory of dark matter superfluidity
Berezhiani, Lasha; Khoury, Justin
2015-11-01
We propose a novel theory of dark matter (DM) superfluidity that matches the successes of the Λ cold dark matter (Λ CDM ) model on cosmological scales while simultaneously reproducing the modified Newtonian dynamics (MOND) phenomenology on galactic scales. The DM and MOND components have a common origin, representing different phases of a single underlying substance. DM consists of axionlike particles with mass of order eV and strong self-interactions. The condensate has a polytropic equation of state P ˜ρ3 giving rise to a superfluid core within galaxies. Instead of behaving as individual collisionless particles, the DM superfluid is more aptly described as collective excitations. Superfluid phonons, in particular, are assumed to be governed by a MOND-like effective action and mediate a MONDian acceleration between baryonic matter particles. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not); due to the higher velocity dispersion in clusters, and correspondingly higher temperature, the DM in clusters is either in a mixture of superfluid and the normal phase or fully in the normal phase. The rich and well-studied physics of superfluidity leads to a number of observational signatures: an array of low-density vortices in galaxies; merger dynamics that depend on the infall velocity vs phonon sound speed; distinct mass peaks in bulletlike cluster mergers, corresponding to superfluid and normal components; and interference patters in supercritical mergers. Remarkably, the superfluid phonon effective theory is strikingly similar to that of the unitary Fermi gas, which has attracted much excitement in the cold atom community in recent years. The critical temperature for DM superfluidity is of order mK, comparable to known cold atom Bose-Einstein condensates. Identifying a precise cold atom analog would give important insights on the microphysical interactions underlying DM superfluidity
Maria Goeppert Mayer Prize Talk: Superfluid Atom Circuits
Campbell, Gretchen
2016-05-01
We have performed a series of experiments with ring-shaped Bose-Einstein Condensates, with and without the addition of a ``weak link'' barrier. Weak connections between superconductors or superfluids can differ from classical links due to quantum coherence, which allows for flow without resistance. The properties of a weak link are characterized by a single function, the current-phase relationship. In recent experiments, we have developed a technique to directly measure the current-phase relationship of the weak link. The weak link is created using a laser beam that acts as a barrier across one side of the ring condensate. By rotating the barrier, we can control the current around the ring. When the weak link is rotated at at low rotation rates, we observe phase slips between well-defined, quantized current states, and have demonstrated that the system exhibits hysteresis. At higher rotation rates we have directly measured the onset of resistive flow across the weak link. Such measurements may open new avenues of research in quantum transport. More recently, we have studied the behavior of the ring BEC when the radius is expanded at supersonic rates. Because information can propagate only at the speed of sound, the supersonic expansion creates causally disconnected regions, whose phases evolve at different rates. Such experiments may allow us to study cosmic inflation at laboratory scales.
Pseudospin pairing and transport in atomic Fermi gases and bilayer systems
Mink, M.P.
2012-01-01
In this Thesis we consider the behavior of the drag conductivity close to exciton condensation in bilayer systems and close to the superfluid transition in cold Fermi gases. In chapter 2 we calculate the transition temperature for exciton condensation in double-layer graphene, showing that the remot
Sanpera, A.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.; Lewenstein, M.
2004-07-01
We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices.
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-01
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices. PMID:15600816
Measurement of the hyperfine splitting of {sup 133}Cs atoms in superfluid helium
Imamura, K., E-mail: kimamura@riken.jp [RIKEN Nishina Center (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Yang, X. F. [Peking University, School of Physics (China); Mitsuya, Y. [Meiji University, Department of Physics (Japan); Fujita, T. [Osaka University, Department of Physics (Japan); Hayasaka, M. [Tokyo Gakugei University, Department of Physics (Japan); Kobayashi, T. [RIKEN Center for Advanced Photonics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Odashima, H. [Meiji University, Department of Physics (Japan); Matsuo, Y. [Hosei University, Department of Advanced Sciences (Japan)
2015-04-15
We have been developing a new nuclear laser spectroscopy method named “OROCHI” (Optical RI-atom Observation in Condensed Helium as Ion-catcher). OROCHI utilizes superfluid helium (He II) not only as an efficient stopping medium of highly energetic ions but also as a host matrix of in-situ atomic laser spectroscopy. Using these characteristic of He II, we produce atomic spin polarization and measure Zeeman and hyperfine structure (HFS) splitting using laser-RF (radio frequency) / MW (microwave) double resonance method. From the measured energy splittings, we can deduce nuclear spins and moments. So far, we have conducted a series of experiments using both stable ({sup 85,87}Rb, {sup 133}Cs, {sup 197}Au, {sup 107,109}Ag) and unstable isotopes ({sup 84,86}Rb) to confirm the feasibility of OROCHI method, especially observing Zeeman resonance and determining nuclear spins. The measurement of HFS splitting of atoms introduced into He II is indispensable to clarify the nuclear properties by deducing nuclear moments as well as the study of nuclear spins. For this purpose, we perform a precision measurement of HFS of {sup 133}Cs atoms immersed in He II using laser ablation technique. In this paper, we describe the result of the experiment.
Measurement of the hyperfine splitting of 133Cs atoms in superfluid helium
We have been developing a new nuclear laser spectroscopy method named “OROCHI” (Optical RI-atom Observation in Condensed Helium as Ion-catcher). OROCHI utilizes superfluid helium (He II) not only as an efficient stopping medium of highly energetic ions but also as a host matrix of in-situ atomic laser spectroscopy. Using these characteristic of He II, we produce atomic spin polarization and measure Zeeman and hyperfine structure (HFS) splitting using laser-RF (radio frequency) / MW (microwave) double resonance method. From the measured energy splittings, we can deduce nuclear spins and moments. So far, we have conducted a series of experiments using both stable (85,87Rb, 133Cs, 197Au, 107,109Ag) and unstable isotopes (84,86Rb) to confirm the feasibility of OROCHI method, especially observing Zeeman resonance and determining nuclear spins. The measurement of HFS splitting of atoms introduced into He II is indispensable to clarify the nuclear properties by deducing nuclear moments as well as the study of nuclear spins. For this purpose, we perform a precision measurement of HFS of 133Cs atoms immersed in He II using laser ablation technique. In this paper, we describe the result of the experiment
Effective mass of 4He atom in superfluid and normal phases
The formula for the temperature dependence of the effective mass of a 4He atom in the superfluid and normal phases is obtained. This expression for the effective mass allows one to eliminate infra-red divergences, being applicable at all temperatures, except for a narrow fluctuation region 0.97<< approx T/Tc<=1. In the high and low temperature limits, as well as in the interactionless limit, the obtained expression reproduces the well known results. The temperature dependence of the heat capacity and the phase transition temperature Tc∼2.18 K are calculated, by using the formula obtained for the effective mass. In the framework of the approach proposed in this work, the small critical index η is determined in the random phase approximation. The obtained value corresponds to the well known result
Atom loss maximum in ultra-cold Fermi gases
Recent experiments on atom loss in ultra-cold Fermi gases all show a maximum at a magnetic field below Feshbach resonance, where the s-wave scattering length is large (comparable to inter-particle distance) and positive. These experiments have been performed over a wide range of conditions, with temperatures and trap depths spanning three decades. Different groups have come up with different explanations, including the emergence of Stoner ferromagnetism. Here, we show that this maximum is a consequence of two major steps. The first is the establishment of a population of shallow dimers, which is the combined effect of dimer formation through three-body recombination, and the dissociation of shallow dimers back to atoms through collisions. The dissociation process will be temperature dependent and is affected by Pauli blocking at low temperatures. The second is the relaxation of shallow dimers into tightly bound dimers through atom-dimer and dimer-dimer collisions. In these collisions, a significant amount of energy is released. The reaction products leave the trap, leading to trap loss. We have constructed a simple set of rate equations describing these processes. Remarkably, even with only a few parameters, these equations reproduce the loss rate observed in all recent experiments, despite their widely different experimental conditions. Our studies show that the location of the maximum loss rate depends crucially on experimental parameters such as trap depth and temperature. These extrinsic characters show that this maximum is not a reliable probe of the nature of the underlying quantum states. The physics of our equations also explains some general trends found in current experiments.
Chen, Qijin
2016-01-01
BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories. PMID:27183875
Chen, Qijin
2016-05-01
BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.
Capponi, S.; Lecheminant, P.; Totsuka, K.
2016-04-01
Alkaline-earth and ytterbium cold atomic gases make it possible to simulate SU(N)-symmetric fermionic systems in a very controlled fashion. Such a high symmetry is expected to give rise to a variety of novel phenomena ranging from molecular Luttinger liquids to (symmetry-protected) topological phases. We review some of the phases that can be stabilized in a one dimensional lattice. The physics of this multi-component Fermi gas turns out to be much richer and more exotic than in the standard SU(2) case. For N > 2, the phase diagram is quite rich already in the case of the single-band model, including a molecular Luttinger liquid (with dominant superfluid instability in the N-particle channel) for incommensurate fillings, as well as various Mott-insulating phases occurring at commensurate fillings. Particular attention will be paid to the cases with additional orbital degree of freedom (which is accessible experimentally either by taking into account two atomic states or by putting atoms in the p-band levels). We introduce two microscopic models which are relevant for these cases and discuss their symmetries and strong coupling limits. More intriguing phase diagrams are then presented including, for instance, symmetry protected topological phases characterized by non-trivial edge states.
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters
National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...
Ferromagnetism in a repulsive atomic Fermi gas with correlated disorder
Pilati, S.; Fratini, E.
2016-05-01
We investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas in the presence of a correlated random field that represents an optical speckle pattern. The density is tuned so that the (noninteracting) Fermi energy is close to the mobility edge of the Anderson localization transition. We employ quantum Monte Carlo simulations to determine various ground-state properties, including the equation of state, the magnetic susceptibility, and the energy of an impurity immersed in a polarized Fermi gas (repulsive polaron). In the weakly interacting limit, the magnetic susceptibility is found to be suppressed by disorder. However, it rapidly increases with the interaction strength, and it diverges at a much weaker interaction strength compared to the clean gas. Both the transition from the paramagnetic phase to the partially ferromagnetic phase, and the one from the partially to the fully ferromagnetic phase, are strongly favored by disorder, indicating a case of order induced by disorder.
Probing ultracold Fermi gases with light-induced gauge potentials
We theoretically investigate the response of a two-component Fermi gas to vector potentials that couple separately to the two spin components. Such vector potentials may be implemented in ultracold atomic gases using optically dressed states. Our study indicates that light-induced gauge potentials may be used to probe the properties of the interacting ultracold Fermi gas, providing, among other things, ways to measure the superfluid density and the strength of pairing.
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices
Cramer, M.; Eisert, J.; Illuminati, F.
2003-01-01
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices by studying the Bose-Fermi Hubbard model including parabolic confining potentials. We present the exact solution in the limit of vanishing hopping (ultradeep lattices) and study the resulting domain structure of composite particles. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimensionality...
Velocity-dependent quantum phase slips in 1D atomic superfluids
Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D’Errico, Chiara
2016-01-01
Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips. PMID:27188334
Theory of open Fermi systems for atomic nuclei
Formulae for amplitudes of direct elastic and inelastic nuclear reactions with participation of nucleons and compound particles are constructed on the basis of the quantum theory of open Fermi systems by means of the projection operators method and the delay time technique. It is shown that real parts of nucleon-nuclear and nucleus-nuclear optical potentials and transfer operators for inelastic channels are determined by vacuum nucleon-nucleon potentials for the case of the global averaging scheme. It is found that real parts of global optical potentials are deep and attracting
Bose-Einstein condensation and superfluidity
Pitaevskii, Lev
2016-01-01
This volume introduces the basic concepts of Bose–Einstein condensation and superfluidity. It makes special reference to the physics of ultracold atomic gases; an area in which enormous experimental and theoretical progress has been achieved in the last twenty years. Various theoretical approaches to describing the physics of interacting bosons and of interacting Fermi gases, giving rise to bosonic pairs and hence to condensation, are discussed in detail, both in uniform and harmonically trapped configurations. Special focus is given to the comparison between theory and experiment, concerning various equilibrium, dynamic, thermodynamic, and superfluid properties of these novel systems. The volume also includes discussions of ultracold gases in dimensions, quantum mixtures, and long-range dipolar interactions.
Iskin, M.
2016-07-01
We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth 173Yb Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s -wave superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called π -phase) solutions in the entire BCS-BEC evolution at zero temperature.
Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity
Abuki, H.; Brauner, Tomáš
2008-01-01
Roč. 78, č. 12 (2008), 125010/1-125010/13. ISSN 1550-7998 R&D Projects: GA ČR GA202/06/0734 Institutional research plan: CEZ:AV0Z10480505 Keywords : BCS-BEC crossover * Unitary Fermi gas * Quark matter Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.050, year: 2008
Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature.
Mukaiyama, Takashi; Katori, Hidetoshi; Ido, Tetsuya; Li, Ying; Kuwata-Gonokami, Makoto
2003-03-21
A dynamic magneto-optical trap, which relies on the rapid randomization of population in Zeeman substates, has been demonstrated for fermionic strontium atoms on the 1S0-3P1 intercombination transition. The obtained sample, 1x10(6) atoms at a temperature of 2 microK in the trap, was further Doppler cooled and polarized in a far-off resonant optical lattice to achieve 2 times the Fermi temperature. PMID:12688925
A unified microscopic theory of superfluidity and superconductivity
A consistent and unified microscopic theory of a novel two-stage Fermi-Bose liquid (FBL) scenarios of superfluidity and superconductivity is developed as a combined theory of Fermi- and superfluid (SF) Bose-liquid. Modified and generalized BCS like pairing theory of fermions is presented. In analogy to that a detail boson pairing theory is developed. The single particle (SPC) and pair condensation (PC) features of an attracting 3d- and 2d-Bose gas as a function of the interboson coupling constant in the complete range 0 ≤ T ≤ Tc is studied in detail. It is shown that such SPC and PC of an attracting composite bosons (Cooper pairs, bipolarons, holons, 4He atoms, deuterons, alpha particles) lies on the basis of superfluidity both in Fermi and Bose systems. It is argued that the coexistence of the order parameters of attracting fermions ΔF and bosons ΔB leads to the superfluidity and superconductivity by two FBL scenarios. One of these scenarios is realized in so-called fermion superconductors (FSC) and other -in boson one (BSC) in which the gapless superconductivity is caused by absence of the gap ΔSF in the excitation spectrum of bosons and not by presence of point or line nodes of the BCS-like gap ΔF. The new adequate determination for basic superconducting parameters of FSC and BSC are given. The necessary and sufficient microscopic criterions for a superfluidity is formulated. The theory proposed is consistent with the different experimental data available in 4He, 3He, superconductors, nucleis, neutron stars and others. (author). 133 refs, 14 figs
Fermi-Dirac gas of atoms in a box with low adiabatic invariant
Quantum degenerate Fermi-Dirac gas of atoms, confined in a cubic box, shows an energy spectrum, which is discrete and strongly dependent on the atomic mass number, Aat, box geometry and temperature, for low product of Aat and the adiabatic invariant, TV1/3, i.e. on γ = AatTV1/3. The present study compares the total number of particles and the total energy obtained by summing up the contributions of a finite number of states, defined by the values of γ, to the widespread approximations of the corresponding integrals. The sums show simple calculation algorithms and more precise results for a large interval of values of γ. A new accurate analytic formula for the chemical potential of the Fermi-Dirac quantum gas is also given. (author)
Vortex properties of a resonant superfluid
The properties of a vortex in a rotating superfluid Fermi gas are studied in the unitary limit. A phenomenological approach based on Ginzburg-Landau theory is developed for this purpose. The density profiles, including those of the normal fluid and superfluid, are obtained at various temperatures and rotation frequencies. The superfluid and normal fluid densities can be identified from the angular momentum density. The total free energy and angular momentum of the vortex are also obtained
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
Özen, C.; Zinner, Nikolaj Thomas
2014-01-01
the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of...... a two-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an...
Roberts, David C [Los Alamos National Laboratory
2008-01-01
The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.
Decay of a superfluid current of ultracold atoms in a toroidal trap
Mathey, Amy C.; Clark, Charles W.; Mathey, L.
2014-08-01
Using a numerical implementation of the truncated Wigner approximation, we simulate the experiment reported by Ramanathan et al. in Phys. Rev. Lett. 106, 130401 (2011), 10.1103/PhysRevLett.106.130401, in which a Bose-Einstein condensate is created in a toroidal trap and set into rotation via a phase imprinting technique. A potential barrier is then placed in the trap to study the decay of the superflow. We find that the current decays via thermally activated phase slips, which can also be visualized as vortices crossing the barrier region in the radial direction. Adopting the notion of critical velocity used in the experiment, we determine it to be lower than the local speed of sound at the barrier, in contradiction to the predictions of the zero-temperature Gross-Pitaevskii equation. We map out the superfluid decay rate and critical velocity as a function of temperature and observe a strong dependence. Thermal fluctuations offer a partial explanation of the experimentally observed reduction of the critical velocity from the phonon velocity.
XIONG De-Zhi; CHEN Hai-Xia; WANG Peng-Jun; YU Xu-Dong; GAO Feng; ZHANG Jing
2008-01-01
@@ We report on the attainment of quantum degeneracy of 40K by means of efficient thermal collisions with the evaporatively cooled 87Rb atoms.In a quadrupole-Ioffe configuration trap,potassium atoms are cooled to 0.5 times the Fermi temperature.We obtain up to 7.59 × 105 degenerate fermions 40K.
Fujita, T., E-mail: tomomi.fujita@riken.jp [Osaka University, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Imamura, K.; Yang, X. F. [RIKEN Nishina Center (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Kobayashi, T. [RIKEN Center for Advanced Photonics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Shimoda, T. [Osaka University, Department of Physics (Japan); Matsuo, Y. [Hosei University, Department of Advanced Sciences (Japan); Collaboration: OROCHI Collaboration
2015-11-15
A new laser spectroscopic method named “OROCHI (Optical RI-atom Observation in Condensed Helium as Ion catcher)” has been developed for deriving the nuclear spins and electromagnetic moments of low-yield exotic nuclei. In this method, we observe atomic Zeeman and hyperfine structures using laser-radio-frequency/microwave double-resonance spectroscopy. In our previous works, double-resonance spectroscopy was performed successfully with laser-sputtered stable atoms including non-alkali Au atoms as well as alkali Rb and Cs atoms. Following these works, measurements with {sup 84−87}Rb energetic ion beams were carried out in the RIKEN projectile fragment separator (RIPS). In this paper, we report the present status of OROCHI and discuss its feasibility, especially for low-yield nuclei such as unstable Au isotopes.
A new laser spectroscopic method named “OROCHI (Optical RI-atom Observation in Condensed Helium as Ion catcher)” has been developed for deriving the nuclear spins and electromagnetic moments of low-yield exotic nuclei. In this method, we observe atomic Zeeman and hyperfine structures using laser-radio-frequency/microwave double-resonance spectroscopy. In our previous works, double-resonance spectroscopy was performed successfully with laser-sputtered stable atoms including non-alkali Au atoms as well as alkali Rb and Cs atoms. Following these works, measurements with 84−87Rb energetic ion beams were carried out in the RIKEN projectile fragment separator (RIPS). In this paper, we report the present status of OROCHI and discuss its feasibility, especially for low-yield nuclei such as unstable Au isotopes
Phase transitions and pairing signature in strongly attractive Fermi atomic gases
We investigate pairing and quantum phase transitions in the one-dimensional two-component Fermi atomic gas in an external field. The phase diagram, critical fields, magnetization, and local pairing correlation are obtained analytically via the exact thermodynamic Bethe ansatz solution. At zero temperature, bound pairs of fermions with opposite spin states form a singlet ground state when the external field Hc1. A completely ferromagnetic phase without pairing occurs when the external field H>Hc2. In the region Hc1c2, we observe a mixed phase of matter in which paired and unpaired atoms coexist. The phase diagram is reminiscent of that of type II superconductors. For temperatures below the degenerate temperature and in the absence of an external field, the bound pairs of fermions form hard-core bosons obeying generalized exclusion statistics
Pederson, Mark R
2015-02-14
A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeit slightly too low. PMID:25681892
Pederson, Mark R
2014-01-01
A recent modification of the Perdew-Zunger self-interaction-correction (SIC) to the density-functional formalism (Pederson, Ruzsinszky, Perdew) has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Lowdin orthonormalized Fermi-orbitals (Luken et al) which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested here on atoms. Total energies and ionization energies in closed-shell atoms, where correlation is less important, using the PW92 LDA functional are in very good to excellent agreement with experiment and non-relativistic Quantum-Monte-Carlo (QMC) results.
Fermi-Bose mixtures of 40K and 87Rb atoms
After the recent realization of the BCS-BEC crossover in dilute atomic Fermi gases, quantum degenerate mixtures of bosonic and fermionic atoms are expected to provide a complementary approach to fermionic super fluidity where the attractive interaction between Fermions is mediated by the inter species interaction, a situation which is in many ways analogous to phonon-mediated Cooper pairing in superconductors. Moreover, these mixtures are expected to show a rich phase diagram when loaded into an optical lattice, with various pairing phases involving one or several fermionic and bosonic atoms. Already in a harmonic trap, these mixtures show a rich class of phenomena. The behaviour of the mixture is influenced by a lot of properties: mean ld interaction both between Fermions and Bosons as well as the mean field interaction in the condensate. Depending on the sign of the Fermi-Bose interaction, phase separation or mean ld trapping and collapse of the mixture are expected. The mass ratio between Fermions and Bosons will also influence the ratio of trapping frequencies between the two species. Three-body loss processes can have a dramatic impact on lifetime and dynamical behaviour of the mixture. The condensate overlapping only with a small part of the Fermi sea will introduce localized trapping and loss processes. We report on the production of a quantum degenerate Fermi-Bose mixture of 40K and 87Rb in a regime of large particle numbers. In the experiment, we can span a wide range of phenomena starting at small particle numbers, where the expansion of the bosonic and the fermionic component are well described by the respective single-component Thomas-Fermi profiles. As particle numbers and densities in the mixture increase, the mean field attraction will create a strong localized mean field trapping potential in the centre of the trap where the BEC is localized. We observe this in-trap effect as a bimodal distribution of the fermionic component in the axial direction
Spin-orbit coupled two-electron Fermi gases of ytterbium atoms
Song, Bo; Zhang, Shanchao; Zou, Yueyang; Haciyev, Elnur; Huang, Wei; Liu, Xiong-Jun; Jo, Gyu-Boong
2016-01-01
We demonstrate the spin-orbit coupling (SOC) in a two-electron Fermi gas of $^{173}$Yb atoms by coupling two hyperfine ground states via the two-photon Raman transition. Due to the SU($N$) symmetry of the $^1$S$_0$ ground-state manifold which is insensitive to external magnetic field, an optical AC Stark effect is applied to split the ground spin states and separate an effective spin-1/2 subspace out from other hyperfine levels for the realization of SOC. With a momentum-dependent spin-orbit gap being suddenly opened by switching on the Raman transition, the dephasing of spin dynamics is observed, as a consequence of the momentum-dependent Rabi oscillations. Moreover, the momentum asymmetry of the spin-orbit coupled Fermi gas is also examined after projection onto the bare spin state and the corresponding momentum distribution is measured for different two-photon detuning. The realization of SOC for Yb fermions may open a new avenue to the study of novel spin-orbit physics with alkaline-earth-like atoms.
Evidence for ferromagnetic instability in a repulsive Fermi gas of ultracold atoms
Valtolina, G; Amico, A; Burchianti, A; Recati, A; Enss, T; Inguscio, M; Zaccanti, M; Roati, G
2016-01-01
Ferromagnetism is among the most spectacular manifestations of interactions within many-body fermion systems. In contrast to weak-coupling phenomena, it requires strong repulsion to develop, making a quantitative description of ferromagnetic materials notoriously difficult. This is especially true for itinerant ferromagnets, where magnetic moments are not localized into a crystal lattice. In particular, it is still debated whether the simplest case envisioned by Stoner of a homogeneous Fermi gas with short-range repulsive interactions can exhibit ferromagnetism at all. In this work, we positively answer this question by studying a clean model system consisting of a binary spin-mixture of ultracold 6Li atoms, whose repulsive interaction is tuned via a Feshbach resonance. We drastically limit detrimental pairing effects that affected previous studies by preparing the gas in a magnetic domain-wall configuration. We reveal the ferromagnetic instability by observing the softening of the spin-dipole collective mode...
Goodisman's correction of the Thomas-Fermi-von Weizsaecker theory of atoms
Following a suggestion of J. Goodisman, we substitute the therm 3/5 γ0ρ5/3 by 3/5 γ0fzρ5/3 in the Thomas-Fermi-von Weizsaecker energy functional for atoms. fz: R3 → [0, 1] is a function depending on the nuclear charge z. We establish conditions for the functions fz such that the ratio of this modified TFW-energy EkzTFWG(z) (kz is the total number of electrons) and the exact quantum mechanical energy converges to 1 as z → ∞. Moreover, we prove that EkzTFWG(z) = EkzTFW(z) + Dz2 + o(z2) (z → ∞) and determine D. Here, EkzTFW(z) is the unmodified TFW energy. (orig.)
Page, Dany; Prakash, Madappa; Seiner, Andrew W
2013-01-01
Neutron stars provide a fertile environment for exploring superfluidity under extreme conditions. It is not surprising that Cooper pairing occurs in dense matter since nucleon pairing is observed in nuclei as energy differences between even-even and odd-even nuclei. Since superfluids and superconductors in neutron stars profoundly affect neutrino emissivities and specific heats, their presence can be observed in the thermal evolution of neutron stars. An ever-growing number of cooling neutron stars, now amounting to 13 thermal sources, and several additional objects from which upper limits to temperatures can be ascertained, can now be used to discriminate among theoretical scenarios and even to dramatically restrict properties of nucleon pairing at high densities. In addition, observations of pulsars, including their spin-downs and glitch histories, additionally support the conjecture that superfluidity and superconductivity are ubiquitous within, and important to our understanding of, neutron stars.
75 FR 20867 - DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1
2010-04-21
..., Deputy Director, Decommissioning and Uranium Recovery Licensing Directorate, Division of Waste Management... Action DTE is in the process of decommissioning Fermi-1. During the decommissioning process,...
Fermi and Coulomb correlation effects upon the interacting quantum atoms energy partition
Ruiz, Isela; Holguín-Gallego, Fernando José; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás
2016-01-01
The Interacting Quantum Atoms (IQA) electronic energy partition is an important method in the field of quantum chemical topology which has given important insights of different systems and processes in physical chemistry. There have been several attempts to include Electron Correlation (EC) in the IQA approach, for example, through DFT and Hartree-Fock/Coupled-Cluster (HF/CC) transition densities. This work addresses the separation of EC in Fermi and Coulomb correlation and its effect upon the IQA analysis by taking into account spin-dependent one- and two-electron matrices $D^{\\mathrm{HF/CC}}_{p\\sigma q \\sigma}$ and $d^{\\mathrm{HF/CC}}_{p\\sigma q\\sigma r\\tau s\\tau}$ wherein $\\sigma$ and $\\tau$ represent either of the $\\alpha$ and $\\beta$ spin projections. We illustrate this approach by considering BeH$_2$,BH, CN$^-$, HF, LiF, NO$^+$, LiH, H$_2$O$\\cdots$H$_2$O and C$_2$H$_2$, which comprise non-polar covalent, polar covalent, ionic and hydrogen bonded systems. The same and different spin contributions to ($i$...
Thermodynamics of interacting cold atomic Fermi gases with spin-orbit coupling
Jensen, Scott; Alhassid, Yoram; Gilbreth, Christopher
New physics is suggested with the prediction of novel phases in cold atom systems when a synthetic spin-orbit coupling is introduced. In particular, recent studies show that a new type of Bose-Einstein condensate, termed Rashbon-BEC, is formed when a generalized Rashba spin-orbit term is present. The Rashbon-BEC phase can be obtained by tuning the spin-orbit coupling strength even in the case of finite negative scattering length. This stands in contrast to the BCS-BEC crossover in the absence of spin-orbit coupling where a negative scattering length is associated with BCS physics, and its divergence signals the crossover. In our work we apply finite-temperature quantum Monte Carlo methods to a spherical Rashba spin-orbit coupled two-species Fermi gas with contact s-wave interaction in three dimensions. We will discuss the phase diagram for this system, and its crossover behavior from BCS to Rashbon-BEC. This work was supported in part by the Department of Energy Grant No. DE-FG-0291-ER-40608.
Structure of a quantized vortex near the BCS-BEC crossover in an atomic Fermi gas
In order to clarify the structure of a singly quantized vortex in a superfluid fermion gas near the Feshbach resonance, we numerically solve the generalized Bogoliubov-de Gennes equation in the boson-fermion model. The superfluid gap, which contains contributions from both condensed fermion pairs and condensed bosons, is self-consistently determined, and the quasiparticle excitation levels bound in the vortex core are explicitly shown. We find that the boson condensate contributes to enhance the matter density depletion and the discreteness of localized quasiparticle spectrum inside the core. It is predicted that the matter density depletion and the discrete core levels are detectable in the vicinity of the BCS-Bose-Einstein condensation crossover point
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
Albus, A P [Institut fuer Physik, Universitaet Potsdam, D-14469 Potsdam (Germany); Giorgini, S [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy); Illuminati, F [Dipartimento di Fisica, Universita di Salerno, and Istituto Nazionale per la Fisica della Materia, I-84081 Baronissi (Italy); Viverit, L [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy)
2002-12-14
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)
Ultracold Fermi-Fermi Mixtures of Lithium and Potassium
Ultracold atomic Fermi gases are a unique experimental tool for simulating and studying many-body systems. Since they are very well controllable and clean systems with tunable interactions, they can serve as quantum simulators for effects that occur in solid states and usually arise from the quantum nature of the Fermi gas of electrons. Different phenomena such as high-temperature superconductivity, Josephson junctions and ferromagnetism can be explored using degenerate Fermi gases. Even in the context of particle physics, Fermi gases can be used to simulate the behavior of quarks inside a nucleus. In the past decade, experiments with a single fermionic (either 6Li or 40K) species have led to ground breaking results. In the past five years, several experiments have been set up that combine the two fermionic alkali species. Additionally to the capabilities offered by a single-species experiment (such as tuning of interaction strength, spin polarization, trap parameters), the two-species mixtures open up control of new parameters - the most obvious being the mass ratio. Due to the mass-imbalance, the Fermi-spheres would no longer overlap, and thus exotic quantum phases emerge. So far experimentally unobserved effects include superfluidity, phase separation, crystalline phases, exotic pairing mechanisms and long-lived trimers. More practically, a mixture would allow to species-selectively apply optical trapping potentials. This thesis presents the experimental efforts from creating an ultracold Fermi- Fermi mixture of 6Li and 40K to the creation of heteronuclear molecules. Three published articles are contained in this thesis. In the first article we report on the observation of Feshbach resonances in an ultracold mixture of two fermionic species, 6Li and 40K. The experimental data are interpreted using a simple asymptotic bound state model and full coupled channels calculations. This unambiguously assigns the observed resonances in terms of various s- and p
Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population
Darsheshdar, E.; Yavari, H.; Zangeneh, Z.
2016-07-01
By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.
This report describes simulation study results on the research for superconducting (superfluid) neutron detector device and related fundamental issues on nano-structured superconductors in the fiscal year 2008. At first, in order to examine a performance of a neutron detector using superfluid He3, we make large-scale numerical simulations on non-equilibrium superfluid dynamics after a neutron capture below the superfluid transition temperature by solving the Gross-Pitaevskii equation. The simulations whose largest grid size is 2O483 on the Earth Simulator successfully reproduce the vortex nucleation and reveal the non-equilibrium dynamics of decay superfluid turbulence. On the other hand, as a fundamental research issue of this project, we numerically investigate the ground state of a two-band Hubbard model by using the exact-diagonalization method developed with this project to examine a superconducting mechanism for iron-based high-Tc superconductors discovered by Hosono's group in February 2008. By employing the exact-diagonalization as a large-scale numerical tool, we reveal that a robust and novel type of superconductivity widely emerges when the inter-band repulsion becomes stronger than the intra-band one. Although such a situation is un-usual in solid state matters, the atomic Fermi gases may easily create the situation. (author)
Dynamics of quantised vortices in superfluids
Sonin, Edouard B
2016-01-01
A comprehensive overview of the basic principles of vortex dynamics in superfluids, this book addresses the problems of vortex dynamics in all three superfluids available in laboratories (4He, 3He, and BEC of cold atoms) alongside discussions of the elasticity of vortices, forces on vortices, and vortex mass. Beginning with a summary of classical hydrodynamics, the book guides the reader through examinations of vortex dynamics from large scales to the microscopic scale. Topics such as vortex arrays in rotating superfluids, bound states in vortex cores and interaction of vortices with quasiparticles are discussed. The final chapter of the book considers implications of vortex dynamics to superfluid turbulence using simple scaling and symmetry arguments. Written from a unified point of view that avoids complicated mathematical approaches, this text is ideal for students and researchers working with vortex dynamics in superfluids, superconductors, magnetically ordered materials, neutron stars and cosmological mo...
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
Albus, Alexander P.; Giorgini, Stefano; Illuminati, Fabrizio; Viverit, Luciano
2002-01-01
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trappe...
Quantum-Shell Corrections to the Finite-Temperature Thomas-Fermi-Dirac Statistical Model of the Atom
Ritchie, A B
2003-07-22
Quantum-shell corrections are made directly to the finite-temperature Thomas-Fermi-Dirac statistical model of the atom by a partition of the electronic density into bound and free components. The bound component is calculated using analytic basis functions whose parameters are chosen to minimize the energy. Poisson's equation is solved for the modified density, thereby avoiding the need to solve Schroedinger's equation for a self-consistent field. The shock Hugoniot is calculated for aluminum: shell effects characteristic of quantum self-consistent field models are fully captures by the present model.
On the role of the uncertainty principle in superconductivity and superfluidity
Roberto Onofrio
2012-01-01
We discuss the general interplay between the uncertainty principle and the onset of dissipationless transport phenomena such as superconductivity and superfluidity.We argue that these phenomena are possible because of the robustness of many-body quantum states with respect to the external environment,which is directly related to the uncertainty principle as applied to coordinates and momenta of the carriers.In the case of superconductors,this implies relationships between macroscopic quantities such as critical temperature and critical magnetic field,and microscopic quantities such as the amount of spatial squeezing of a Cooper pair and its correlation time.In the case of ultracold atomic Fermi gases,this should be paralleled by a connection between the critical temperature for the onset of superfluidity and the corresponding critical velocity.Tests of this conjecture are finally sketched with particular regard to the understanding of the behaviour of superconductors under external pressures or mesoscopic superconductors,and the possibility to mimic these effects in ultracold atomic Fermi gases using Feshbach resonances and atomic squeezed states.
Strongly interacting Fermi gases
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
The Thomas-Fermi (TF) and Thomas-Fermi-von Weizsacker (TFW) theories of atoms and molecules with electron-electron repulsion are reviewed briefly. The main difference between the energies, E/sup TFW/ - E/sup TF/ (for large z), is a term D/sup TFW/z2. (It is also believed that E/sup Q/ - E/sup TF/ approx. D/sup Q/z2, where E/sup Q/ is the true quantum ground state energy). To calculate D/sup TFW/, it is necessary to find the positive solution to the differential equation: ]- Δ + vertical bar psi(x) vertical bar/sup 4/3/ - vertical bar x vertical bar-1] psi(x) = 0 in three dimensions. While this equation arises from TFW theory with electron-electron repulsion, it also has a second interpretation - namely as the TFW equation for an atom without electron-electron repulsion. The main content of this report is the numerical solution of this equation and the evaluation of D/sup TFW/
Pair Correlations in Superfluid Helium 3
Vollhardt, D.
1997-01-01
In 1996 Lee, Osheroff and Richardson received the Nobel Prize for their 1971 discovery of superfluid helium 3 -- a discovery which opened the door to the most fascinating system known in condensed matter physics. The superfluid phases of helium 3, originating from pair condensation of helium 3 atoms, turned out to be the ideal test-system for many fundamental concepts of modern physics, such as macroscopic quantum phenomena, (gauge-)symmetries and their spontaneous breakdown, topological defe...
Faraday waves in elongated superfluid fermionic clouds
Capuzzi, P.; Vignolo, P.
2008-01-01
We use hydrodynamic equations to study the formation of Faraday waves in a superfluid Fermi gas at zero temperature confined in a strongly elongated cigar-shaped trap. First, we treat the role of the radial density profile in the limit of an infinite cylindrical geometry and analytically evaluate the wavelength of the Faraday pattern. The effect of the axial confinement is fully taken into account in the numerical solution of hydrodynamic equations and shows that the infinite cylinder geometr...
Theory of open Fermi systems for description of atomic nuclei and nuclear reactions
The Leman expansion for exact single-particle Green function, taking into account the continuous spectrum states of an open Fermi system, is built. The analytical properties of the elastic scattering S-matrix and Green function are investigated, taking into account ground state correlations. On the base of the projection operator method the Leman expansion of mass operators and equations of the unified theory of nuclear reactions are found. The conclusion is drawn on the coincidence of the mean field, real part of optical potential for global average scheme and generalized Hartree-Fock potential is done. The character of fluctuations of the optical potential parameters for the transition from the global set to individual sets and their connection with the dispersion relation are described
Mixtures of Bosonic and Fermionic Atoms in Optical Lattices
Albus, Alexander; Illuminati, Fabrizio; Eisert, Jens
2003-01-01
We discuss the theory of mixtures of Bosonic and Fermionic atoms in periodic potentials at zero temperature. We derive a general Bose--Fermi Hubbard Hamiltonian in a one--dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean field criterion for the onset of a Bosonic superfluid transition. We investigate the ground state properties of the mixture in the Gutzwiller formulation of mean field the...
Supplement No. 4 to the Safety Evaluation Report related to the operation of the Enrico Fermi Atomic Power Plant, Unit 2, provides the staff's evaluation of additional information submitted by the applicant regarding outstanding review issues identified in Supplement No. 3 to the Safety Evaluation Report, dated January 1983
Supplement No. 3 to the Safety Evaluation Report related to the operation of the Enrico Fermi Atomic Power Plant, Unit 2, provides the staff's evaluation of additional information submitted by the applicant regarding outstanding review issues identified in Supplement No. 2 to the Safety Evaluation Report, dated January 1982
Strong Coupling Effects on the Specific Heat of an Ultracold Fermi Gas in the Unitarity Limit
van Wyk, P.; Tajima, H.; Hanai, R.; Ohashi, Y.
2016-05-01
We investigate strong-coupling corrections to the specific heat C_V in the normal state of an ultracold Fermi gas in the BCS-BEC crossover region. A recent experiment on a ^6Li unitary Fermi gas (Ku et. al. in Science 335:563 2012) shows that C_V is remarkably amplified near the superfluid phase transition temperature T_c, being similar to the well-known λ -structure observed in liquid ^4He. Including pairing fluctuations within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that strong pairing fluctuations are sufficient to explain the anomalous behavior of C_V observed in a ^6Li unitary Fermi gas near T_c. We also show that there is no contribution from stable preformed Cooper pairs to C_V at the unitarity. This indicates that the origin of the observed anomaly is fundamentally different from the case of liquid 4He, where stable ^4He Bose atoms induce the λ -structure in C_V near the superfluid instability. Instead, the origin is the suppression of the entropy S, near T_c, due to the increase of metastable preformed Cooper pairs. Our results indicate that the specific heat is a useful quantity to study the effects of pairing fluctuations on the thermodynamic properties of an ultracold Fermi gas in the BCS-BEC crossover region.
Chiral Magnetic "Superfluidity"
Sadofyev, Andrey V
2015-01-01
We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will {\\it not} contribute to the drag experienced by an impurity. We argue on very general basis that those systems with a strong magnetic field would exhibit the behavior of 'superfluidity" -- the motion of the heavy impurity is frictionless, in analog to the case of a superfluid. However, this "superfluidity" exists even for chiral media at finite temperature and only in the directional longitudinal with the magnetic field, in contrast to the ordinary superfluid. We will call this novel phenomenon as the Chiral Magnetic "Superfluidity". We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion ...
Khoury, Justin
2016-01-01
In this talk I summarize a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the $\\Lambda$CDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter...
A molecular Bose-Einstein condensate emerges from a Fermi sea
Greiner, Markus; Regal, Cindy A.; Jin, Deborah S.
2003-01-01
The realization of fermionic superfluidity in a dilute gas of atoms, analogous to superconductivity in metals, is a long-standing goal of ultracold gas research. Beyond being a new example of this fascinating quantum phenomenon, fermionic superfluidity in an atomic gas holds the promise of adjustable interactions and the ability to tune continuously from BCS-type superfluidity to Bose-Einstein condensation (BEC). This crossover between BCS superfluidity of correlated atom pairs in momentum sp...
Josephson gyroscope using superfluids
The Sagnac effect using matter (de Broglie) waves is considered for gyroscopic applications. Superfluid helium in a torus with a Josephson junction interrupting it would be an embodiment of this idea. An optical analog of the Josephson junction is discussed. An experimental search for the Sagnac effect in superfluid helium (isotope 4) is presented. 5 references
Langlois, David
2001-01-01
Neutron stars are believed to contain (neutron and proton) superfluids. I will give a summary of a macroscopic description of the interior of neutron stars, in a formulation which is general relativistic. I will also present recent results on the oscillations of neutron stars, with superfluidity explicitly taken into account, which leads in particular to the existence of a new class of modes.
2010-10-18
.... Nuclear Regulatory Commission (NRC or the Commission) now or hereafter in effect. Fermi 1 was a fast breeder reactor power plant cooled by sodium and operated at essentially atmospheric pressure. In November... in Monroe County, Michigan. Fermi 1 is a permanently shutdown nuclear reactor facility. The...
The Moliere approximation to the Thomas-Fermi screening function was used in a screened Coulomb potential to calculate tables of differential scattering cross sections for laboratory scattering angles of 90 and 1380. Data are provided for incident ions of 3He+ and 20Ne+ as a function of energy (0.05 to 5.0 keV) and target atom. 3 references
The Fermi-Segre normalization expression is rederived for arbitrary orbital angular momentum l within the context of a generalized WKB method. Results from the approximation are compared with calculations employing Hartree-Slater atomic potentials
Strong Correlations in Ultracold Fermi Gases
Schneider, William
Ultracold atomic gases provide an ideal system with which to study fundamental manybody physics. Exhibiting universal interactions in clean and controllable environments, long-used simple models as well as more exotic models can now be realized. The interplay between theory and experiment is therefore very active, and, in this thesis, I will detail several works, both exact analytic results and numerical calculations, which have impacts on current experiments. I begin with an introduction to the field including a brief discussion of experiments, the microscopic model of two species of interacting fermions, the BCS-BEC crossover and an overview of the various phases of atomic Fermi gases. I then describe the various results of my theoretical investigations, which are divided into five chapters. First, I describe radio frequency (RF) spectroscopy experiments and how they probe the single-particle spectral function. This leads to my results on an exact feature of the spectral lineshape, a universal large-momentum structure which exists for all states of interacting Fermi systems and has been verified in recent angle-resolved RF experiments. Second, I focus on gases which have a normal Fermi liquid ground state and show that their lineshape exhibits a characteristic jump discontinuity. I illustrate this Fermi surface singularity and the previously mentioned universal large momentum tail with explicit calculations. Third, I turn to the low energy structure of the single-particle spectral function in the superfluid state. I argue that sharp low energy quasiparticle excitations exist across the BCS-BEC crossover using a general argument that includes the interaction of fermions with the low-energy collective mode. This is illustrated with an explicit calculation within an approximation scheme. Fourth, I address the trap-induced inhomogeneity and use a Bogoliubov-deGennes analysis to test if a simple local density approximation (LDA) can provide an adequate description of
$^3P_2$ Superfluids Are Topological
Mizushima, Takeshi
2016-01-01
We clarify the topology of the $^3P_2$ superfluidity which is expected to be realized in the cores of neutron stars and cubic odd-parity superconductors. The phase diagram includes the unitary uniaxial/biaxial nematic phases and nonunitary ferromagnetic and cyclic phases. We here show that the low-energy structures of all the phases are governed by different types of topologically protected gapless fermionic excitations: Surface Majorana fermions in nematic phases, single itinerant Majorana fermion in the ferromagnetic phase, and a quartet of itinerant Majorana fermions in the cyclic phase. Using the superfluid Fermi liquid theory, we also demonstrate that dihedral-two and -four biaxial nematic phases are thermodynamically favored in the weak coupling limit under a magnetic field. The mass acquisition of surface Majorana fermions in nematic phases is subject to symmetry.
Erika Bailey
2011-07-07
The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.
Superfluid Brillouin Optomechanics
Kashkanova, A D; Brown, C D; Flowers-Jacobs, N E; Childress, L; Hoch, S W; Hohmann, L; Ott, K; Reichel, J; Harris, J G E
2016-01-01
Optomechanical systems couple an electromagnetic cavity to a mechanical resonator which is typically formed from a solid object. The range of phenomena accessible to these systems depends on the properties of the mechanical resonator and on the manner in which it couples to the cavity fields. In both respects, a mechanical resonator formed from superfluid liquid helium offers several appealing features: low electromagnetic absorption, high thermal conductivity, vanishing viscosity, well-understood mechanical loss, and in situ alignment with cryogenic cavities. In addition, it offers degrees of freedom that differ qualitatively from those of a solid. Here, we describe an optomechanical system consisting of a miniature optical cavity filled with superfluid helium. The cavity mirrors define optical and mechanical modes with near-perfect overlap, resulting in an optomechanical coupling rate ~3 kHz. This coupling is used to drive the superfluid; it is also used to observe the superfluid's thermal motion, resolving...
Faraday waves in elongated superfluid fermionic clouds
Capuzzi, P.; Vignolo, P.
2008-10-01
We use hydrodynamic equations to study the formation of Faraday waves in a superfluid Fermi gas at zero temperature confined in a strongly elongated cigar-shaped trap. First, we treat the role of the radial density profile in the limit of an infinite cylindrical geometry and analytically evaluate the wavelength of the Faraday pattern. The effect of the axial confinement is fully taken into account in the numerical solution of hydrodynamic equations, and shows that the infinite cylinder geometry provides a very good description of the phenomena.
Neutrino emissivity of anisotropic neutron superfluids
Leinson, L. B.
2013-01-01
We examine the influence of the anisotropy of the superfluid energy gap and residual Fermi-liquid interactions in the triplet-correlated neutron liquid onto neutrino energy losses through neutral weak currents. The neutrino-pair emission caused by the pair breaking and formation processes and by the spin-wave decays is considered for the case of the $^{3}P_{2}$ pairing in the state with $m_{j}=0$. The simple analytical formulae are obtained. A comparison with the previous results of the avera...
Flowing holographic anyonic superfluid
Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew
2014-01-01
We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7' probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier.
Anomalous Chiral Superfluidity
Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail
2009-01-01
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...
Khoury, Justin
2016-01-01
In this talk I summarize a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the $\\Lambda$CDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. This framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known co...
Khoury, Justin
2015-01-01
In this talk we present a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known cold at...
Spontaneous quantum Hall effect in an atomic spinor Bose-Fer mi mixture
Xu, Zhi-Fang; Li, Xiaopeng; Zoller, Peter; Liu, W. Vincent
2015-03-01
We study a mixture of spin-1 bosonic and spin-1/2 fermionic cold atoms, e.g., Rb-87 and Li-6,confined in a triangular optical lattice. With fermions at 3/4 filling, Fermi surface nesting leads to spontaneous formation of various spin textures of bosons in the ground state, such as collinear, coplanar and even non-coplanar spin orders. The phase diagram is mapped out with varying boson tunneling and Bose-Fermi interactions. Most significantly, in one non-coplanar state the mixture is found to exhibit spontaneous quantum Hall effect in fermions and crystalline superfluidity in bosons, both driven by interaction.
Okazaki, K; Ito, Y.; Ota, Y; Kotani, Y.; Shimojima, T.; Kiss, T.; Watanabe, S; C.-T. Chen; S. Niitaka; Hanaguri, T; Takagi, H.; Chainani, A.; Shin, S.
2014-01-01
Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe$_{0.6}$Se$_{0.4}$($T_c$ = 14.5 K $\\sim$ 1.2 meV) in an accessible range below and above the Fermi level($E_F$) using ultra-high reso...
Mott states under the influence of fermion-boson conversion: invasion of superfluidity
Zhou, Fei
2005-01-01
I study the influence of fermion-boson conversion near Feshbach resonances on Mott states of Cooper pairs and demonstrate possible invasion of superfluidity. The quantum dynamics of Fermi-Bose gases is studied using both an effective coupled $U(1)\\otimes U(1)$ quantum rotor Hamiltonian and a coupled XXZ $\\otimes$ XXZ spin Hamiltonian. I also point out two distinct branches of collective modes in superfluid states, one of which involves anti-symmetric phase oscillations in fermionic and bosoni...
Byers, N
2002-01-01
This talk is about Enrico Fermi and Leo Szilard, their collaboration and involvement in nuclear energy development and decisions to construct and use the atomic bomb in World War II. Fermi and Szilard worked closely together at Columbia in 1939-40 to explore feasibility of a nuclear chain reaction, and then on the physics for construction of the first pile (nuclear reactor). "On matters scientific or technical there was rarely any disagreement between Fermi and myself" Szilard said. But there were sharp differences on other matters.
Cruz, Salvador A.
An assessment of the use of statistical atomic models for the study of many-electron atom confinement is presented. The Thomas-Fermi-Dirac-[lambda]-Weizsäcker TFD[lambda]W functional formalism based on known properties of the orbital electron density is shown to be an appropriate tool for the description of the ground-state energy evolution of many-electron atoms spatially limited by closed and open boundaries. A brief review of the strategy followed in the TFD[lambda]W method for the study of atoms enclosed in hard and soft spherical cavities is presented along with more refined quantitative calculations as compared with previous results. Also, detailed quantitative results are shown-for the first time-in the case of confinement by a hard prolate spheroidal box for nuclear positions located at one of the foci and for an atom located at a distance D from a hard plane. A discussion is presented on the physical consequences of different confinement geometries and the adequacy of the TFD[lambda]W formalism to explore many-electron atom confinement by open and closed boundaries.
Exploring the thermodynamics of a universal Fermi gas
Nascimbène, S.; Navon, N.; Jiang, K. J.; Chevy, F.; Salomon, C.
2010-02-01
One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2 per cent accuracy and extends work on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons.
Superfluid Helium 3: Link between Condensed Matter Physics and Particle Physics
Vollhardt, D.; Woelfle, P.
2000-01-01
The discovery of the superfluid phases of Helium 3 in 1971 opened the door to one of the most fascinating systems known in condensed matter physics. Superfluidity of Helium 3, originating from pair condensation of Helium 3 atoms, turned out to be the ideal testground for many fundamental concepts of modern physics, such as macroscopic quantum phenomena, (gauge-)symmetries and their spontaneous breakdown, topological defects, etc. Thereby the superfluid phases of Helium 3 enriched condensed ma...
Kalaydzhyan, Tigran
2014-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.
Tőkési K.
2014-01-01
Full Text Available The ionization of Ar by 15 keV N+ ion is studied theoretically. The energy distributions of the ejected electrons as a function of the scattering angle were calculated using the classical trajectory Monte Carlo method. We identify the signature of the Fermi-shuttle type ionization in the double differential cross sections which should be a possible source of the high energy electrons in the plasma. Our classical calculation also describes the previously measured data with high accuracy.
Frustration and time-reversal symmetry breaking for Fermi and Bose-Fermi systems
Sacha, Krzysztof; Targońska, Katarzyna; Zakrzewski, Jakub
2012-05-01
The modulation of an optical lattice potential that breaks time-reversal symmetry enables the realization of complex tunneling amplitudes in the corresponding tight-binding model. For a superfluid Fermi gas in a triangular lattice potential with complex tunnelings, the pairing function acquires a complex phase, so the frustrated magnetism of fermions can be realized. Bose-Fermi mixtures of bosonic molecules and unbound fermions in the lattice also show interesting behavior. Due to boson-fermion coupling, the fermions become enslaved by the bosons and the corresponding pairing function takes the complex phase determined by the bosons. In the presence of bosons the Fermi system can reveal both gapped and gapless superfluidity.
Chang, Soon Yong
2008-04-01
In the recent years, dilute Fermi gases have played the center stage role in the many-body physics. The gas of neutral alkali atoms such as Lithium-6 and Potassium-40 can be trapped at temperatures below the Fermi degeneracy. The most relevant feature of these gases is that the interaction is tunable and strongly interacting superfluid can be artificially created. I will discuss the recent progress in understanding the ground state properties of the dilute Fermi gases at different interaction regimes. First, I will present the case of the spin symmetric systems where the Fermi gas can smoothly crossover from the BCS regime to the BEC regime. Then, I will discuss the case of the spin polarized systems, where different quantum phases can occur as a function of the polarization. In the laboratory, the trapped Fermi gas shows spatial dependence of the different quantum phases. This can be understood in the context of the local variation of the chemical potential. I will present the most accurate quantum ab initio results and the relevant experiments.
Sound modes in holographic superfluids
Herzog, Christopher P.; Yarom, Amos
2009-01-01
Superfluids support many different types of sound waves. We investigate the relation between the sound waves in a relativistic and a non-relativistic superfluid by using hydrodynamics to calculate the various sound speeds. Then, using a particular holographic scalar gravity realization of a strongly interacting superfluid, we compute first, second and fourth sound speeds as a function of the temperature. The relativistic low temperature results for second sound differ from Landau's well known...
Superfluid thermodynamic cycle refrigerator
Swift, Gregory W.; Kotsubo, Vincent Y.
1992-01-01
A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.
Superfluid thermodynamic cycle refrigerator
A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of 3He in a single phase 3He-4He solution. The 3He in superfluid 4He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid 3He at an initial concentration in superfluid 4He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of 4He while restricting passage of 3He. The 3He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs
Topological Superconductivity and Superfluidity
Qi, Xiao-Liang; Hughes, Taylor L.; Raghu, Srinivas; Zhang, Shou-Cheng
2008-01-01
We construct time reversal invariant topological superconductors and superfluids in two and three dimensions which are analogous to the recently discovered quantum spin Hall and three-d $Z_2$ topological insulators respectively. These states have a full pairing gap in the bulk, gapless counter-propagating Majorana states at the boundary, and a pair of Majorana zero modes associated with each vortex. We show that the time reversal symmetry naturally emerges as a supersymmetry, which changes th...
Holographic anyonic superfluidity
Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew
2013-01-01
Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.
Cooling with Superfluid Helium
Lebrun, P
2014-01-01
The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics
Thermodynamics of ultracold Fermi gases
Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally studied using ultracold gases. This thesis describes a new method for determining the equation of state of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the measurement of the local pressure inside a trapped gas from the analysis of its in situ image. We first apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting 7Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary gas accounts for the equation of state deduced from our study over its full range. The virial expansion extracted from the high-temperature data agrees with the resolution of the three-body problem. At low temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi liquid. Finally we obtain the critical temperature for superfluidity from a clear signature on the equation of state. We also measure the pressure of the ground state as a function of spin imbalance and interaction strength - measure directly relevant to describe the crust of neutron stars. Our data validate Monte-Carlo simulations and quantify the Lee-Huang-Yang corrections to mean-field interactions in low-density fermionic or bosonic superfluids. We show that, in most cases, the partially polarized normal phase can be described as a Fermi liquid of polarons. The polaron effective mass extracted from the equation of state is in agreement with a study of collective modes. (author)
Low-lying excitations in a strongly interacting Fermi gas
Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus
2016-05-01
We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.
Peng, Q. H.; Luo, Z. Q.
2005-01-01
Starting from a neutron star heating mechanism by the magnetic dipole radiation from the 3^P_2 neutron superfluid vortices in neutron stars, we propose a neutron phase oscillation model which describes the phase transition between the normal neutron Fermi fluid and the 3^P_2 neutron superfluid vortices at the transition temperature of T_{trans}=(5-6)\\times 10^8 K. With this model, we can give qualitative explanation to most of the pulsar glitches observed up to date.
Qiu-He Peng; Zhi-Quan Luo; Chih-Kang Chou
2006-01-01
Considering neutron star heating by magnetic dipole radiation from 3pF2 superfluid neutron vortices inside the star, we propose a neutron phase oscillation model between the normal neutron Fermi fluid and the 3pF2 superfluid neutron vortices at the transition temperature of Ttrans=(2-3)×108 K. With this model we can qualitatively explain most of the observations on pulsar glitches up to date.
Luttinger's theorem, superfluid vortices, and holography
Iqbal, Nabil
2011-01-01
Strongly coupled field theories with gravity duals can be placed at finite density in two ways: electric field flux emanating from behind a horizon, or bulk charged fields outside of the horizon that explicitly source the density. We discuss field-theoretical observables that are sensitive to this distinction. If the charged fields are fermionic, we discuss a modified Luttinger's theorem that holds for holographic systems, in which the sum of boundary theory Fermi surfaces counts only the charge outside of the horizon. If the charged fields are bosonic, we show that the the resulting superfluid phase may be characterized by the coefficient of the transverse Magnus force on a moving superfluid vortex, which again is sensitive only to the charge outside of the horizon. For holographic systems these observables provide a field-theoretical way to distinguish how much charge is held by a dual horizon, but they may be useful in more general contexts as measures of deconfined (i.e. "fractionalized") charge degrees o...
Symmetry-Protected Topological Superfluids and Superconductors —From the Basics to 3He—
Mizushima, Takeshi; Tsutsumi, Yasumasa; Kawakami, Takuto; Sato, Masatoshi; Ichioka, Masanori; Machida, Kazushige
2016-02-01
In this article, we give a comprehensive review of recent progress in research on symmetry-protected topological superfluids and topological crystalline superconductors, and their physical consequences such as helical and chiral Majorana fermions. We start this review article with the minimal model that captures the essence of such topological materials. The central part of this article is devoted to the superfluid 3He, which serves as a rich repository of novel topological quantum phenomena originating from the intertwining of symmetries and topologies. In particular, it is emphasized that the quantum fluid confined to nanofabricated geometries possesses multiple superfluid phases composed of the symmetry-protected topological superfluid B-phase, the A-phase as a Weyl superfluid, the nodal planar and polar phases, and the crystalline ordered stripe phase. All these phases generate noteworthy topological phenomena, including topological phase transitions concomitant with spontaneous symmetry breaking, Majorana fermions, Weyl superfluidity, emergent supersymmetry, spontaneous edge mass and spin currents, topological Fermi arcs, and exotic quasiparticles bound to topological defects. In relation to the mass current carried by gapless edge states, we also briefly review a longstanding issue on the intrinsic angular momentum paradox in 3He-A. Moreover, we share the current status of our knowledge on the topological aspects of unconventional superconductors, such as the heavy-fermion superconductor UPt3 and superconducting doped topological insulators, in connection with the superfluid 3He.
Metastability in spin polarised Fermi gases and quasiparticle decays
Sadeghzadeh, Kayvan; Bruun, Georg; Lobo, Carlos;
2011-01-01
We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each pr...
Superfluidity within a small helium-4 cluster: the microscopic andronikashvili experiment
Grebenev; Toennies; Vilesov
1998-03-27
The infrared spectrum of single oxygen carbon sulfide (OCS) molecules was measured inside large superfluid pure helium-4 droplets and nonsuperfluid pure helium-3 droplets, both consisting of about 10(4) atoms. In the helium-4 droplets, sharp rotational lines were observed, whereas in helium-3 only a broad peak was found. This difference is interpreted as evidence that the narrow rotational lines, which imply free rotations, are a microscopic manifestation of superfluidity. Upon addition of 60 helium-4 atoms to the pure helium-3 droplets, the same sharp rotational lines were found; it appears that 60 is the minimum number needed for superfluidity. PMID:9516103
Hennigar, Robie A; Tjoa, Erickson
2016-01-01
We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
An analysis of previous theories of superfluidity of quantum solids is presented in relation to the nonclassical rotational moment of inertia (NCRM) found first in Kim and Chan experiments. A theory of supersolidity is proposed based on the presence of an additional conservation law. It is shown that the additional entropy or mass fluxes depend on the quasiparticle dispersion relation and vanish in the effective mass approximation. This implies that at low temperatures when the parabolic part of the dispersion relation predominates the supersolid properties should be less expressed. (author)
Ultracold Fermi gases: from Bose-Einstein condensation of molecules to Cooper pairs
Full text: We will describe recent experiments aiming at studying superfluidity in ultra-cold Fermi gases. Because of the Pauli exclusion principle, cooling methods and analysis techniques developed for bosons must be modified for fermions. Thanks to a resonance phenomenon in ultra-cold collisions, it is possible to adjust the sign and magnitude of the effective interaction between trapped fermions and to enter into the strongly correlated regime. Taking advantage of this tunability of interactions, it has been possible to produce Bose-Einstein condensates (BEC) of molecules and to study some of their properties. We will then present data recorded in the crossover region between BEC of molecules and the BCS regime of fermions with weak attractive interaction. Finally a few perspectives for this work at the interface between atomic physics and condensed matter physics will be given. (author)
Merritt, J M; Miller, R E; K\\"upper, Jochen; Merritt, Jeremy M.; Miller, Roger E.
2006-01-01
Rotationally resolved infrared spectra are reported for the X-HCN (X = Cl, Br, I) binary complexes solvated in helium nanodroplets. These results are directly compared with that obtained previously for the corresponding X-HF complexes [J. M. Merritt, J. K\\"upper, and R. E. Miller, PCCP, 7, 67 (2005)]. For bromine and iodine atoms complexed with HCN, two linear structures are observed and assigned to the $^{2}\\Sigma_{1/2}$ and $^{2}\\Pi_{3/2}$ ground electronic states of the nitrogen and hydrogen bound geometries, respectively. Experiments for HCN + chlorine atoms give rise to only a single band which is attributed to the nitrogen bound isomer. That the hydrogen bound isomer is not stabilized is rationalized in terms of a lowering of the isomerization barrier by spin-orbit coupling. Theoretical calculations with and without spin-orbit coupling have also been performed and are compared with our experimental results. The possibility of stabilizing high-energy structures containing multiple radicals is discussed, ...
Nambu-Goldstone Fermion Mode in Quark-Gluon Plasma and Bose-Fermi Cold Atom System
It was suggested that supersymmetry (SUSY) is broken at finite temperature, and as a result of the symmetry breaking, a Nambu-Goldstone fermion (goldstino) related to SUSY breaking appears. Since dispersion relations of quarks and gluons are almost degenerate at extremely high temperature, quasi-zero energy quark excitation was suggested to exist in quark-gluon plasma (QGP), though QCD does not have exact SUSY. On the other hand, in condensed matter system, a setup of cold atom system in which the Hamiltonian has SUSY was proposed, the goldstino was suggested to exist, and the dispersion relation of that mode at zero temperature was obtained recently. In this presentation, we obtain the expressions for the dispersion relation of the goldstino in cold atom system at finite temperature, and compare it with the dispersion of the quasi zero-mode in QGP. Furthermore, we show that the form of the dispersion relation of the goldstino can be understood by using an analogy with a magnon in ferromagnet. We also discuss on how the dispersion relation of the goldstino is reflected in observable quantities in experiment. (author)
We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of γ-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little (∼30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.
Aharonian, F.; /Heidelberg, Max Planck Inst. /Dublin Inst.; Akhperjanian, A.G.; /Yerevan Phys. Inst.; Anton, G.; /Erlangen - Nuremberg U.; Barres de Almeida, U.; /Durham U.; Bazer-Bachi, A.R.; /Toulouse, CESR; Becherini, Y.; /APC, Paris; Behera, B.; /Heidelberg Observ.; Bernlohr, K.; /Heidelberg, Max Planck Inst. /Humboldt U., Berlin; Boisson, C.; /LUTH, Meudon; Bochow, A.; /Heidelberg, Max Planck Inst.; Borrel, V.; /Toulouse, CESR; Brion, E.; /DAPNIA, Saclay; Brucker, J.; /Erlangen - Nuremberg U.; Brun, P.; /DAPNIA, Saclay; Buhler, R.; /Heidelberg, Max Planck Inst.; Bulik, T.; /Warsaw, Copernicus Astron. Ctr.; Busching, I.; /Western Ontario U.; Boutelier, T.; /Grenoble Observ.; Chadwick, P.M.; /Durham U.; Charbonnier, A.; /Paris U., VI-VII; Chaves, R.C.G.; /Heidelberg, Max Planck Inst. /Durham U. /Ecole Polytechnique /Heidelberg, Max Planck Inst. /Annecy, LAPP /Humboldt U., Berlin /Durham U. /Namibia U. /Western Ontario U. /Ecole Polytechnique /Heidelberg, Max Planck Inst. /Durham U. /APC, Paris /Heidelberg, Max Planck Inst. /Dublin Inst. /Annecy, LAPP /Grenoble Observ. /Warsaw, Copernicus Astron. Ctr. /Cracow, INP /Heidelberg, Max Planck Inst. /Heidelberg Observ. /APC, Paris /Montpellier U. /Montpellier U. /Montpellier U. /Heidelberg, Max Planck Inst. /Ecole Polytechnique /Humboldt U., Berlin /Dublin Inst. /Montpellier U. /APC, Paris /SLAC; /more authors..
2009-05-07
We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of {gamma}-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little ({approx}30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.
Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid
2016-01-01
In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance. PMID:27610319
Phase Diagram of Two-dimensional Polarized Fermi Gas With Spin-Orbit Coupling
Yang, Xiaosen; Wan, Shaolong
2011-01-01
We investigate the ground state of the two-dimensional polarized Fermi gas with spin-orbit coupling and construct the phase diagram at zero temperature. We find there exist phase separation when the binding energy is low. As the binding energy increasing, the topological nontrivial superfluid phase coexist with topologically trivial superfluid phase which is topological phase separation. The spin-orbit coupling interaction enhance the triplet pairing and destabilize the phase separation again...
Crossover from BCS superconductivity to superfluidity of local pairs
We review some recent results concerning crossover from cooperative Cooper pairing to independent bound states formation and their superfluidity, and a possible relevance of the crossover behavior to the anomalous properties of short-coherence length superconductors. Using the extended Hubbard model with on-site attraction (EHM), we analyze the behavior of collective modes, thermodynamic and electromagnetic properties versus the coupling strength and electron concentration. The normal state properties of the 2D attractive Hubbard model obtained with the conserving, self-consistent T-matrix approach, are presented. These studies also indicate possible deviations from conventional Fermi-liquid behavior, above Tc, in 2D short coherence length superconductors. (orig.)
Lifshitz Superfluid Hydrodynamics
Chapman, Shira; Oz, Yaron
2014-01-01
We construct the first order hydrodynamics of quantum critical points with Lifshitz scaling and a spontaneously broken symmetry. The fluid is described by a combination of two flows, a normal component that carries entropy and a super-flow which has zero viscosity and carries no entropy. We analyze the new transport effects allowed by the lack of boost invariance and constrain them by the local second law of thermodynamics. Imposing time-reversal invariance, we find eight new parity even transport coefficients. The formulation is applicable, in general, to any superfluid/superconductor with an explicit breaking of boost symmetry, in particular to high $T_c$ superconductors. We discuss possible experimental signatures.
Superfluid Fermi Gases in a Rotating Anharmonic Trap
MA Juan; XUE Ju-Kui
2011-01-01
The quadrupole mode frequency, the monopole mode frequency, and the critical rotational frequency for stirring a single vortex nucleation along the BEC-BCS crossover are obtained. The results show that, in a rotating anisotropic anharmonic trap, the quadrupole mode frequency and the critical rotational frequency for stirring a single vortex nucleation are modified significantly when the system crosses from the BEC side to the BCS side: the anisotropy of the trap induces a downshift of the quadrupole mode frequency and the critical rotational frequency and helps the vortex formation in the system, while an anharmonic trap induces an upshift of the quadrupole mode frequency and the critical rotational frequency and suppresses the vortex formation in the system.
Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation
Xiong, Chi; Guo, Yulong; Liu, Xiaopei; Huang, Kerson
2014-01-01
We investigate superfluidity, and the mechanism for creation of quantized vortices, in the relativistic regime. The general framework is a nonlinear Klein-Gordon equation in curved spacetime for a complex scalar field, whose phase dynamics gives rise to superfluidity. The mechanisms discussed are local inertial forces (Coriolis and centrifugal), and current-current interaction with an external source. The primary application is to cosmology, but we also discuss the reduction to the non-relativistic nonlinear Schr\\"{o}dinger equation, which is widely used in describing superfluidity and vorticity in liquid helium and cold-trapped atomic gases.
Thermohydraulics of a horizontal diphasic flow of superfluid helium
This study aims at characterizing helium two phase flows, and to identify the dependence of their characteristics on various thermo-hydraulic parameters: vapour velocity, liquid height, vapour density, specificities of superfluidity. Both the engineer and the physicist's points of view are taken into consideration: the first one in terms of optimization of a particular cooling scheme based on a two-phase flow, and these second one in terms of more fundamental atomization-related questions. It has been shown that for velocities around 3 to 4 m/s, the liquid phase that was initially stratified undergoes an atomization through the presence of a drop haze carried by the vapor phase.This happens for superfluid helium as well as for normal helium without main differences on atomization
Superfluidity and phase separation in 3He-4He mixtures immersed in aerogel are studied by renormalization-group theory. The quenched disorder imposed by aerogel, both at the atomic level and at the geometric level, is included. The calculation is conducted via the coupled renormalization-group mappings, near and away from aerogel, of the quenched probability distributions of random interactions. Random-bond effects on the onset of superfluidity and random-field effects on superfluid-superfluid phase separation are seen. The quenched randomness causes the λ line of second-order phase transitions of superfluidity onset to reach zero temperature, in agreement with general predictions and experiments. The effects of the atomic and geometric randomness of aerogel are investigated separately and jointly. copyright 1997 The American Physical Society
Erika Bailey
2011-10-27
The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education
Bouffard, Karen
1999-05-01
This column contains problems and solutions for the general category of questions known as "Fermi" questions. Forcing the students to use their ability to estimate, giving answers in terms of order-of-magnitude, is not only a challenge for a competition, but a teaching strategy to use in the classroom to develop self-confidence and the ability to analyze answers as to whether or not they make sense, as opposed to relying on the "precision" of a calculator value.
Hierarchic Models of Turbulence, Superfluidity and Superconductivity
Kaivarainen, Alex
2000-01-01
New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cy...
Microscopic theory of sound propagation in the superfluid 3He-aerogel system
We present a theory of sound propagation in superfluid 3He confined in aerogel, taking dragged aerogel motion into account. The superfluid dynamics coupled with the aerogel motion is formulated by use of the Keldysh Green's function for weak-coupling superfluid Fermi liquid. We apply the theory to the hydrodynamic regime and calculate the attenuation of a hydrodynamic longitudinal sound mode, the so-called fast mode. The result is compared to the acoustic experiment reported by the Northwestern University group [R. Nomura, G. Gervais, T. M. Haard, Y. Lee, N. Mulders, and W. P. Halperin, Phys. Rev. Lett. 85, 4325 (2000); G. Gervais, R. Nomura, T. M. Haard, Y. Lee, N. Mulders, and W. P. Halperin, J. Low Temp. Phys. 122, 1 (2001)]. We find reasonable agreement between the theory and the experiment
Enrico Fermi the obedient genius
Bruzzaniti, Giuseppe
2016-01-01
This biography explores the life and career of the Italian physicist Enrico Fermi, which is also the story of thirty years that transformed physics and forever changed our understanding of matter and the universe: nuclear physics and elementary particle physics were born, nuclear fission was discovered, the Manhattan Project was developed, the atomic bombs were dropped, and the era of “big science” began. It would be impossible to capture the full essence of this revolutionary period without first understanding Fermi, without whom it would not have been possible. Enrico Fermi: The Obedient Genius attempts to shed light on all aspects of Fermi’s life - his work, motivation, influences, achievements, and personal thoughts - beginning with the publication of his first paper in 1921 through his death in 1954. During this time, Fermi demonstrated that he was indeed following in the footsteps of Galileo, excelling in his work both theoretically and experimentally by deepening our understanding of the Pauli e...
Rotating a Rashba-coupled Fermi gas in two dimensions
Doko, E.; Subaşı, A. L.; Iskin, M.
2016-03-01
We analyze the interplay of adiabatic rotation and Rashba spin-orbit coupling on the BCS-BEC evolution of a harmonically trapped Fermi gas in two dimensions under the assumption that vortices are not excited. First, by taking the trapping potential into account via both the semiclassical and exact quantum-mechanical approaches, we firmly establish the parameter regime where the noninteracting gas forms a ring-shaped annulus. Then, by taking the interactions into account via the BCS mean-field approximation, we study the pair-breaking mechanism that is induced by rotation, i.e., the Coriolis effects. In particular, we show that the interplay allows for the possibility of creating either an isolated annulus of rigidly rotating normal particles that is disconnected from the central core of nonrotating superfluid pairs or an intermediate mediator phase where the superfluid pairs and normal particles coexist as a partially rotating gapless superfluid.
In order to explore a possibility of superfluidity in confined strongly-correlated fermion systems, e.g., nano-scale cuprate High-Tc superconductors and atomic Fermi gases loaded on optical lattice, we implement an exact diagonalization code for their mathematical model, i.e., a trapped Hubbard model on the Earth Simulator. We compare two diagonalization algorithms, the traditional Lanczos method and a new algorithm, the preconditioned conjugate gradient (PCG) method, and find that when using the PCG the total CPU time can be reduced to 1/3 - 1/5 compared to the former one since the convergence can be dramatically improved by choosing a good preconditioner and the communication overhead is much more efficiently concealed in the PCG method. Consequently, such a performance improvement enables us to do systematic studies for several parameters. Numerical simulation results reveal that an unconventional type of pairing specific to the confined system, which may cause superfluidity, develops under a strong repulsive interaction. (author)
Dynamics of vortex assisted metal condensation in superfluid helium.
Popov, Evgeny; Mammetkuliyev, Muhammet; Eloranta, Jussi
2013-05-28
Laser ablation of copper and silver targets immersed in bulk normal and superfluid (4)He was studied through time-resolved shadowgraph photography. In normal fluid, only a sub-millimeter cavitation bubble is created and immediate formation of metal clusters is observed within a few hundred microseconds. The metal clusters remain spatially tightly focused up to 15 ms, and it is proposed that this observation may find applications in particle image velocimetry. In superfluid helium, the cavitation bubble formation process is distinctly different from the normal fluid. Due to the high thermal conductivity and an apparent lag in the breakdown of superfluidity, about 20% of the laser pulse energy was transferred directly into the liquid and a large gas bubble, up to several millimeters depending on laser pulse energy, is created. The internal temperature of the gas bubble is estimated to exceed 9 K and the following bubble cool down period therefore includes two separate phase transitions: gas-normal liquid and normal liquid-superfluid. The last stage of the cool down process was assigned to the superfluid lambda transition where a sudden formation of large metal clusters is observed. This is attributed to high vorticity created in the volume where the gas bubble previously resided. As shown by theoretical bosonic density functional theory calculations, quantized vortices can trap atoms and dimers efficiently, exhibiting static binding energies up to 22 K. This, combined with hydrodynamic Bernoulli attraction, yields total binding energies as high as 35 K. For larger clusters, the static binding energy increases as a function of the volume occupied in the liquid to minimize the surface tension energy. For heliophobic species an energy barrier develops as a function of the cluster size, whereas heliophilics show barrierless entry into vortices. The present theoretical and experimental observations are used to rationalize the previously reported metal nanowire assembly in
Dynamics of vortex assisted metal condensation in superfluid helium
Popov, Evgeny; Mammetkuliyev, Muhammet; Eloranta, Jussi
2013-05-01
Laser ablation of copper and silver targets immersed in bulk normal and superfluid 4He was studied through time-resolved shadowgraph photography. In normal fluid, only a sub-millimeter cavitation bubble is created and immediate formation of metal clusters is observed within a few hundred microseconds. The metal clusters remain spatially tightly focused up to 15 ms, and it is proposed that this observation may find applications in particle image velocimetry. In superfluid helium, the cavitation bubble formation process is distinctly different from the normal fluid. Due to the high thermal conductivity and an apparent lag in the breakdown of superfluidity, about 20% of the laser pulse energy was transferred directly into the liquid and a large gas bubble, up to several millimeters depending on laser pulse energy, is created. The internal temperature of the gas bubble is estimated to exceed 9 K and the following bubble cool down period therefore includes two separate phase transitions: gas-normal liquid and normal liquid-superfluid. The last stage of the cool down process was assigned to the superfluid lambda transition where a sudden formation of large metal clusters is observed. This is attributed to high vorticity created in the volume where the gas bubble previously resided. As shown by theoretical bosonic density functional theory calculations, quantized vortices can trap atoms and dimers efficiently, exhibiting static binding energies up to 22 K. This, combined with hydrodynamic Bernoulli attraction, yields total binding energies as high as 35 K. For larger clusters, the static binding energy increases as a function of the volume occupied in the liquid to minimize the surface tension energy. For heliophobic species an energy barrier develops as a function of the cluster size, whereas heliophilics show barrierless entry into vortices. The present theoretical and experimental observations are used to rationalize the previously reported metal nanowire assembly in
Role of nucleonic Fermi surface depletion in neutron star cooling
Dong, J M; Zhang, H F; Zuo, W
2015-01-01
The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties which determine the neutron star thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions, are calculated within the Brueckner-Hartree-Fock approach employing the AV18 two-body force supplemented by a microscopic three body force. Neutrino emissivity, heat capacity and, in particular, neutron 3PF2 superfluidity turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young neutron stars are significantly slowed
Two definitions of superfluid density
We point out that two different definitions of the superfluid density - through statistical response to static gauge phase and through dynamic response to altering gauge phase - yield, generally speaking, different quantities in d<3. The physics leading to this difference is associated with the equilibrium statistics of supercurrent states. Some experimentally observable consequences of this fact are discussed
Scale invariance and superfluid turbulence
Sen, Siddhartha, E-mail: siddhartha.sen@tcd.ie [CRANN, Trinity College Dublin, Dublin 2 (Ireland); R.K. Mission Vivekananda University, Belur 711 202, West Bengal (India); Ray, Koushik, E-mail: koushik@iacs.res.in [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Calcutta 700 032 (India)
2013-11-11
We construct a Schroedinger field theory invariant under local spatial scaling. It is shown to provide an effective theory of superfluid turbulence by deriving, analytically, the observed Kolmogorov 5/3 law and to lead to a Biot–Savart interaction between the observed filament excitations of the system as well.
Experimental studies of spin-imbalanced Fermi gases in 2D geometries
Thomas, John
We study the thermodynamics of a quasi-two-dimensional Fermi gas, which is not quite two-dimensional (2D), but far from three dimensional (3D). This system offers opportunities to test predictions that cross interdisciplinary boundaries, such as enhanced superfluid transition temperatures in spin-imbalanced quasi-2D superconductors, and provides important benchmarks for calculations of the phase diagrams. In the experiments, an ultra-cold Fermi gas is confined in an infrared CO2 laser standing-wave, which produces periodic pancake-shaped potential wells, separated by 5.3 μm. To study the thermodynamics, we load an ultra-cold mixture of N1 = 800 spin 1/2 -up and N2 measured properties are in disagreement with 2D-BCS theory, but can be fit by a 2D-polaron gas model, where each atom is surrounded by a cloud of particle-hole pairs of the opposite spin. However, this model fails to predict a transition to a spin-balanced central region as N2/N1is increased. Supported by the physics divisions of ARO, AFOSR, and NSF and by the Division of Materials Science and Engineering, the Office of Basic Energy Sciences, DOE.
Coordinate-Space Hartree-Fock-Bogoliubov Solvers for Super fluid Fermi Systems in Large Boxes
Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Hill, J.; Galindo, D.; Jia, J.
2012-12-01
The self-consistent Hartree-Fock-Bogoliubov problem in large boxes can be solved accurately in the coordinate space with the recently developed solvers HFB-AX (2D) and MADNESS-HFB (3D). This is essential for the description of superfluid Fermi systems with complicated topologies and significant spatial extend, such as fissioning nuclei, weakly-bound nuclei, nuclear matter in the neutron star rust, and ultracold Fermi atoms in elongated traps. The HFB-AX solver based on B-spline techniques uses a hybrid MPI and OpenMP programming model for parallel computation for distributed parallel computation, within a node multi-threaded LAPACK and BLAS libraries are used to further enable parallel calculations of large eigensystems. The MADNESS-HFB solver uses a novel multi-resolution analysis based adaptive pseudo-spectral techniques to enable fully parallel 3D calculations of very large systems. In this work we present benchmark results for HFB-AX and MADNESS-HFB on ultracold trapped fermions.
Coordinate-Space Hartree-Fock-Bogoliubov Solvers for Super fluid Fermi Systems in Large Boxes
The self-consistent Hartree-Fock-Bogoliubov problem in large boxes can be solved accurately in the coordinate space with the recently developed solvers HFB-AX (2D) and MADNESS-HFB (3D). This is essential for the description of superfluid Fermi systems with complicated topologies and significant spatial extend, such as fissioning nuclei, weakly-bound nuclei, nuclear matter in the neutron star rust, and ultracold Fermi atoms in elongated traps. The HFB-AX solver based on B-spline techniques uses a hybrid MPI and OpenMP programming model for parallel computation for distributed parallel computation, within a node multi-threaded LAPACK and BLAS libraries are used to further enable parallel calculations of large eigensystems. The MADNESS-HFB solver uses a novel multi-resolution analysis based adaptive pseudo-spectral techniques to enable fully parallel 3D calculations of very large systems. In this work we present benchmark results for HFB-AX and MADNESS-HFB on ultracold trapped fermions.
A human factors audit of the Fermi-2 control room was conducted April 27 through May 1, 1981. This report contains the audit team findings, organized according to the draft NUREG-0700 guidelines sections. The discrepancies identified during the audit are categorized according to their severity and the required schedule for their resolution
The visualization of chiral p-wave superfluidity in Fermi gases near p-wave Feshbach resonances is theoretically examined. It is proposed that the superfluidity becomes detectable in the entire BCS-BEC regimes through (i) vortex visualization by the density depletion inside the vortex core and (ii) intrinsic angular momentum in vortex-free states. It is revealed that both (i) and (ii) are closely connected with the Majorana zero energy mode of the vortex core and the edge mode, which survive until the strong coupling BCS regime is approached from the weak coupling limit and vanish in the Bose-Einstein condensation regime
Novel sound phenomena in superfluid helium in aerogel and other impure superfluids
During the last decade new techniques for producing impure superfluids with unique properties have been developed. This new class of systems includes superfluid helium confined to aerogel, HeII with different impurities (D2, N2, Ne, Kr), superfluids in Vycor glasses, and watergel. These systems exhibit very unusual properties including unexpected acoustic features. We discuss the sound properties of these systems and show that sound phenomena in impure superfluids are modified from those in pure superfluids. We calculate the coupling between temperature and pressure oscillations for impure superfluids and for superfluid He in aerogel. We show that the coupling between these two sound modes is governed either by c∂ρ/∂c or σρaρs (for aerogel) rather than thermal expansion coefficient ∂ρ/∂T, which is enormously small in pure superfluids. This replacement plays a fundamental role in all sound phenomena in impure superfluids. It enhances the coupling between the two sound modes that leads to the existence of such phenomena as the slow mode and heat pulse propagation with the velocity of first sound observed in superfluids in aerogel. This means that it is possible to observe in impure superfluids such unusual sound phenomena as slow pressure (density) waves and fast temperature (entropy) waves. The enhancement of the coupling between the two sound modes decreases the threshold values for nonlinear processes as compared to pure superfluids. Sound conversion, which has been observed in pure superfluids only by shock waves should be observed at moderate sound amplitude in impure superfluids. Cerenkov emission of second sound by first sound (which never been observed in pure superfluids) could be observed in impure superfluids
When Do Superfluidity and Long Range Order Imply Entanglement?
Vedral, V
2007-01-01
We investigate tacitly assumed relationships between the concepts of super-fluidity (-conductivity), long range order and entanglement. We prove that the three are by no means equivalent, but that notwithstanding, some rigorous implication can be established between them. This leads to three different, albeit frequently related, notions of "criticality", all of which are exemplified within the Hubbard model in the low density regime. We use Peierls' method of twisted Hamiltonians to link the existence of entanglement to superfluidity and (quasi)-long range order. As an application of our formalism, we show that recent experiments with cold atoms already prove the existence of the field theoretic, spatial entanglement in two dimensions. More interestingly, the appearance of entanglement in these experiments seems to be intimately related to the phase transition of the Kosterlitz Thouless type.
Relativistic superfluid hydrodynamics from field theory
Alford, Mark G; Schmitt, Andreas; Stetina, Stephan
2012-01-01
It is well known that the hydrodynamics of a zero-temperature superfluid can be formulated in field-theoretic terms, relating for example the superfluid four-velocity to the gradient of the phase of a Bose-condensed scalar field. At nonzero temperatures, where the phenomenology of a superfluid is usually described within a two-fluid picture, this relationship is less obvious. For the case of a uniform, dissipationless superfluid at small temperatures and weak coupling we discuss this relationship within a phi^4 model. For instance, we compute the entrainment coefficient, which describes the interaction between the superfluid and the normal-fluid components, and the velocities of first and second sound in the presence of a superflow. Our study is very general, but can also be seen as a step towards understanding the superfluid properties of various phases of dense nuclear and quark matter in the interior of compact stars.
Hierarchic Models of Turbulence, Superfluidity and Superconductivity
Kaivarainen, A
2000-01-01
New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.
Microphotonic Forces From Superfluid Flow
McAuslan, D. L.; Harris, G. I.; Baker, C; Sachkou, Y.; He, X; Sheridan, E.; Bowen, W. P.
2015-01-01
In cavity optomechanics, radiation pressure and photothermal forces are widely utilized to cool and control micromechanical motion, with applications ranging from precision sensing and quantum information to fundamental science. Here, we realize an alternative approach to optical forcing based on superfluid flow and evaporation in response to optical heating. We demonstrate optical forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46 nN, roughly one order of magnitu...
Rotons, Superfluidity, and Helium Crystals
Fritz London understood that quantum mechanics could show up at the macroscopic level, and, in 1938, he proposed that superfluidity was a consequence of Bose-Einstein condensation. However, Lev Landau never believed in London's ideas; instead, he introduced quasiparticles to explain the thermodynamics of superfluid 4He and a possible mechanism for its critical velocity. One of these quasiparticles, a crucial one, was his famous ''roton'' which he considered as an elementary vortex. At the LT0 conference (Cambridge, 1946), London criticized Landau and his ''theory based on the shaky grounds of imaginary rotons''. Despite their rather strong disagreement, Landau was awarded the London prize in 1960, six years after London's death. Today, we know that London and Landau had both found part of the truth: BEC takes place in 4He, and rotons exist.In my early experiments on quantum evaporation, I found direct evidence for the existence of rotons and for evaporation processes in which they play the role of photons in the photoelectric effect. But rotons are now considered as particular phonons which are nearly soft, due to some local order in superfluid 4He. Later we studied helium crystals which are model systems for the general study of crystal surfaces, but also exceptional systems with unique quantum properties. In our recent studies of nucleation, rotons show their importance again: by using acoustic techniques, we have extended the study of liquid 4He up to very high pressures where the liquid state is metastable, and we wish to demonstrate that the vanishing of the roton gap may destroy superfluidity and trigger an instability towards the crystalline state
Acoustic streaming in superfluid helium
Quantitative measurements of acoustic streaming velocity in liquid helium as a function of sound intensity (up to the cavitation threshold), frequency (1, 3, and 10 MHz), and temperature (1.43 K< or =T< or =2.19 K) are reported. A transition to superfluid turbulence, several flow regions and flow fluctuations are observed. Comparison with the predictions of the second-order Khalatnikov two- fluid hydrodynamic equations indicates good functional and quantitative agreement
Renormalization group analysis of order parameter fluctuations in fermionic superfluids
In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.
On the semiclassical description of nuclear Fermi liquid drops
In this series of lectures we aimed at presenting a self-contained semiclassical theory entirely based on the extended Thomas-Fermi or Wigner-Kirkwood h expansion in phase space. We saw that not only the Wigner transform of the single particle density matrix can be understood and very accurately represented in this way but that also generalisations to correlation functions are straightforward. First, we demonstrated a generalisation to superfluid nuclei and to superfluid nuclei in slow rotation. The latter involves already the (static) particle-hole correlation function and we saw how e.g. the reduction of the moment of inertia by roughly a factor of two could be explained very easily in an analytic way. We very clearly pointed out the necessity to treat particles (holes) individually in Thomas Fermi approximation. A further very promising result is that the linear response function for transferred momenta q>0.6 fm-1 can be very accurately represented in our p-h-Thomas Fermi approach. In the last paragraph we give somewhat speculative arguments that say the 2+ states of quasi macroscopic Fermi Liquid Drops could be well calculated in expanding the time dependent density matrix on a set of coherent states and a simple example for nearly harmonic potentials is given
刘洪毓
2007-01-01
Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what
Anomalous Weyl superfluid in three-dimensional ultracold fermionic gases
Huang, Beibing
2016-08-01
In this paper we use layer construction method to construct an experimentally feasible model to realize one type of anomalous Weyl superfluids (WS) in the context of cold fermionic gases. This exotic phase still characterizes the Weyl points in the bulk but completely different Majorana Fermi arc surface state (MFASS) on the boundaries. In contrast to conventional WS, where MFASS only connects the projection of Weyl points, new MFASS continuously stretches to the border of surface Brillouin zone. We self-consistently determine the phase diagram of model at the mean-field level to claim the achievement of anomalous WS. In addition, inversion symmetry and band inversion in this model are analyzed in detail to provide unique feature of identifying anomalous WS experimentally by momentum-resolved radio-frequency spectroscopy.
Phase correlations and quasicondensate in a two-dimensional ultracold Fermi gas
The interplay between dimensionality, coherence and interaction in superfluid Fermi gases is analyzed by the phase correlation function of the field of fermionic pairs. We calculate this phase correlation function for a two-dimensional superfluid Fermi gas with s-wave interactions within the Gaussian pair fluctuation formalism. The spatial behavior of the correlation function is shown to exhibit a rapid (exponential) decay at short distances and a characteristic algebraic decay at large distances, with an exponent matching that expected from the Berezinskii–Kosterlitz–Thouless theory of 2D Bose superfluids. We conclude that the Gaussian pair fluctuation approximation is able to capture the physics of quasi-long-range order in two-dimensional Fermi gases. - Highlights: • The phase correlation functions for an ultracold Fermi gas in 2D are calculated. • The decay of the correlation functions is algebraic at long distances. • The Gaussian pair fluctuation approach is shown to capture the quasicondensate physics in 2D Fermi gases
Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)
Dark matter superfluidity and galactic dynamics
Lasha Berezhiani
2016-02-01
Full Text Available We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the ΛCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ∼mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful and galaxy clusters (where MOND is not: dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.
Dark matter superfluidity and galactic dynamics
Berezhiani, Lasha; Khoury, Justin
2016-02-01
We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the ΛCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ∼mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.
Dark Matter Superfluidity and Galactic Dynamics
Berezhiani, Lasha
2015-01-01
We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ~mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.
Mixtures of bosonic and fermionic atoms in optical lattices
We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice
The scissors mode and superfluidity of a Bose-Einstein condensed gas
This thesis deals with the fundamental relation between Bose-Einstein condensation and superfluidity. In particular an extensive study of the scissors mode of excitation in a Bose-Einstein condensed gas of 87Rb atoms is presented. The complex apparatus constructed for the condensate production and the pathway that leads to the quantum degeneracy through laser cooling, magnetic trapping and evaporative cooling of the atomic sample are described. Temperatures as low as 300 nK are achieved. At these temperatures about 2x104 atoms condense in the ground state of the magnetic trap, realizing the phenomenon predicted by A. Einstein in 1925. The scissors mode is excited in our experiment by a sudden rotation of the trap through a small angle. Its observation shows that a condensate is irrotational and as such a superfluid. Above the transition temperature the scissors oscillation occurs at two frequencies. The high-lying frequency corresponds to an irrotational velocity flow that is the classical counterpart of the superfluid oscillation. The low-lying one is instead related to rotational flow. Its absence and the occurrence of the single frequency oscillation for the condensate are the key features that indicate superfluidity. A systematic experimental study of the temperature dependent damping and frequency shifts of the mode is presented and compared with available theoretical predictions, finding a good agreement. This enabled the investigation of the relative motion of the superfluid through the normal fluid. The frequency shift of the mode as a function of temperature is consistent with a quenching of the moment of inertia as the temperature is reduced because of superfluidity. The fundamental relation between the scissors mode and the moment of inertia is also pointed out for partially condensed clouds in the context of linear response theory. In a semiclassical approximation the moment of inertia is directly derived from our scissors mode data. (author)
Two dimensional superfluidity and melting
The author reviews the equilibrium theory of superfluidity and XY magnetism, due in large part to the seminal work of Kosterlitz and Thouless. A dynamic generalization of this theory, with application to third sound in helium films is discussed. The statistical mechanics of two-dimensional melting on both smooth and periodic substrates, is discussed. The dynamic version of the theory is sketched. A theory of melting dynamics is particularly important in interpreting of the experiments on melting and crystallization described earlier. Finally the theory as it applies to anisotropic media including layered materials like smectics, cholesterics, and Rayleigh-Benard convection cells, is discussed. (Auth.)
Superfluid properties of BPS monopoles
Lantsman, L
2006-01-01
This paper is devoted to demonstrating manifest superfluid properties of the Minkowskian Higgs model with vacuum BPS monopole solutions at assuming the "continuous" $\\sim S^2$ vacuum geometry in that model. It will be also argued that point hedgehog topological defects are present in the Minkowskian Higgs model with BPS monopoles. It turns out, and we show this, that the enumerated phenomena are compatible with the Faddeev-Popov "heuristic" quantization of the Minkowskian Higgs model with vacuum BPS monopoles, coming to fixing the Weyl (temporal) gauge $A_0=0$ for gauge fields $A$ in the Faddeev-Popov path integral.
Perraud, S
2007-12-15
This study aims at characterizing helium two phase flows, and to identify the dependence of their characteristics on various thermo-hydraulic parameters: vapour velocity, liquid height, vapour density, specificities of superfluidity. Both the engineer and the physicist's points of view are taken into consideration: the first one in terms of optimization of a particular cooling scheme based on a two-phase flow, and these second one in terms of more fundamental atomization-related questions. It has been shown that for velocities around 3 to 4 m/s, the liquid phase that was initially stratified undergoes an atomization through the presence of a drop haze carried by the vapor phase.This happens for superfluid helium as well as for normal helium without main differences on atomization.
Superfluid helium testing of a stainless steel to titanium piping transition joint
Soyars, W.; /Fermilab; Basti, A.; Bedeschi, F.; /INFN, Pisa; Budagov, J.; /Dubna, JINR; Foley, M.; Harms, E.; Klebaner, A.; Nagaitsev, S.; /Fermilab; Sabirov, B.; Dubna, JINR
2009-11-01
Stainless steel-to-titanium bimetallic transitions have been fabricated with an explosively bonded joint. This novel joining technique was conducted by the Russian Federal Nuclear Center, working under contract for the Joint Institute for Nuclear Research. These bimetallic transitions are being considered for use in future superconducting radio-frequency cavity cryomodule assemblies. This application requires cryogenic testing to demonstrate that this transition joint remains leak-tight when sealing superfluid helium. To simulate a titanium cavity vessel connection to a stainless steel service pipe, bimetallic transition joints were paired together to fabricate piping assemblies. These piping assemblies were then tested in superfluid helium conditions at Fermi National Accelerator Laboratory test facilities. The transition joint test program will be described. Fabrication experience and test results will be presented.
Sourie, Aurélien; Novak, Jérôme
2016-01-01
We present a numerical model for uniformly rotating superfluid neutron stars, for the first time with realistic microphysics including entrainment, in a fully general relativistic framework. We compute stationary and axisymmetric configurations of neutron stars composed of two fluids, namely superfluid neutrons and charged particles (protons and electrons), rotating with different rates around a common axis. Both fluids are coupled by entrainment, a non-dissipative interaction which in case of a non-vanishing relative velocity between the fluids, causes the fluid momenta being not aligned with the respective fluid velocities. We extend the formalism by Comer and Joynt (2003) in order to calculate the equation of state (EoS) and entrainment parameters for an arbitrary relative velocity. The resulting entrainment matrix fulfills all necessary sum rules and in the limit of small relative velocity our results agree with Fermi liquid theory ones, derived to lowest order in the velocity. This formalism is applied t...
Superfluid helium testing of a stainless steel to titanium piping transition joint
Soyars, W; Bedeschi, F; Budagov, J; Foley, M; Harms, E; Klebaner, A; Nagaitsev, S; Sabirov, B; 10.1063/1.3422408
2012-01-01
Stainless steel-to-titanium bimetallic transitions have been fabricated with an explosively bonded joint. This novel joining technique was conducted by the Russian Federal Nuclear Center, working under contract for the Joint Institute for Nuclear Research. These bimetallic transitions are being considered for use in future superconducting radio-frequency cavity cryomodule assemblies. This application requires cryogenic testing to demonstrate that this transition joint remains leak-tight when sealing superfluid helium. To simulate a titanium cavity vessel connection to a stainless steel service pipe, bimetallic transition joints were paired together to fabricate piping assemblies. These piping assemblies were then tested in superfluid helium conditions at Fermi National Accelerator Laboratory test facilities. The transition joint test program will be described. Fabrication experience and test results will be presented.
Xiong, Hongwei
2015-08-01
We consider the gravitational effect of quantum wave packets when quantum mechanics, gravity, and thermodynamics are simultaneously considered. Under the assumption of a thermodynamic origin of gravity, we propose a general equation to describe the gravitational effect of quantum wave packets. In the classical limit, this equation agrees with Newton's law of gravitation. For quantum wave packets, however, it predicts a repulsive gravitational effect. We propose an experimental scheme using superfluid helium to test this repulsive gravitational effect. Our studies show that, with present technology such as superconducting gravimetry and cold atom interferometry, tests of the repulsive gravitational effect for superfluid helium are within experimental reach.
Dicke superradiance as nondestructive probe for the state of atoms in optical lattices
Brinke, Nicolai ten; Schützhold, Ralf
2016-05-01
We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.
Direct spectroscopic observation of elementary excitations in superfluid He droplets
The absorption spectra of the electronic S1 left-arrow S0 transition of glyoxal molecules (C2H2O2) embedded in He droplets (≅5500 atoms) show well-resolved vibronic bands with a width -1. The phonon wings at higher frequencies have distinct gaps amounting to ΔE=8.1 K followed by a small maximum at 14.8K.The phonon wing shape agrees with a theoretical simulation based on the dispersion curve of elementary excitations in bulk He II, providing the first evidence for superfluidity in the finite-sized He droplets. copyright 1996 The American Physical Society
Color superfluidity and trion formation in ultracold fermionic systems
We investigate the low temperature properties of the three component Hubbard model. This system might be realized by trapping 3 different hyperfine states of ultracold Li-6 atoms in optical lattices. Studies concerning the SU(3) symmetric attractive case based on a Gutzwiller variational method in d=∞ suggest that there is a continuous phase transition happening between a weak coupling color superfluid and a strong coupling trionic ground state. We construct and investigate the properties of the quantum field theory describing this quantum phase transition.
Efstathios E. Theotokoglou
2015-01-01
Full Text Available Two kinds of second-order nonlinear, ordinary differential equations (ODEs appearing in mathematical physics are analyzed in this paper. The first one concerns the Thomas-Fermi (TF equation, while the second concerns the Langmuir-Blodgett (LB equation in current flow. According to a mathematical methodology recently developed, the exact analytic solutions of both TF and LB ODEs are proposed. Both of these are nonlinear of the second order and by a series of admissible functional transformations are reduced to Abel’s equations of the second kind of the normal form. The closed form solutions of the TF and LB equations in the phase and physical plane are given. Finally a new interesting result has been obtained related to the derivative of the TF function at the limit.
Breathers on Quantized Superfluid Vortices
Salman, Hayder
2013-10-01
We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.
Breathers on quantized superfluid vortices.
Salman, Hayder
2013-10-18
We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings. PMID:24182275
Superfluid Helium 3: Link Between Condensed Matter Physics and Particle Physics
The discovery of the superfluid phases of Helium 3 in 1971 opened the door to one of the most fascinating systems known in condensed matter physics. Superfluidity of Helium 3, originating from pair condensation of Helium 3 atoms, turned out to be the ideal test ground for many fundamental concepts of modern physics, such as macroscopic quantum phenomena, (gauge-)symmetries and their spontaneous breakdown, topological defects, etc. Thereby the superfluid phases of Helium 3 enriched condensed matter physics enormously. In particular, they contributed significantly - and continue to do so - to our understanding of various other physical systems, from heavy fermion and high-Tc superconductors all the way to neutron stars, particle physics, gravity and the early universe. A simple introduction into the basic concepts and questions is presented. (author)
Variational wavefunction for multi-species spinful fermionic superfluids and superconductors
We introduce a new fermionic variational wavefunction, generalizing the Bardeen–Cooper–Schrieffer (BCS) wavefunction, which is suitable for interacting multi-species spinful systems and sustaining superfluidity. Applications range from quark matter to the high temperature superconductors. A wide class of Hamiltonians, comprising interactions and hybridization of arbitrary momentum dependence between different fermion species, can be treated in a comprehensive manner. This is the case, as both the intra-species and the inter-species interactions are treated on equally rigorous footing, which is accomplished via the introduction of a new quantum index attached to the fermions. The index is consistent with known fermionic physics, and allows for heretofore unaccounted fermion–fermion correlations. We have derived the finite temperature version of the theory, thus obtaining the renormalized quasiparticle dispersion relations, and we discuss the appearance of charge and spin density wave order. We present numerical solutions for two electron species in 2 dimensions. Based on these solutions, we show that, for equivalent spin up and down fermions, the Fermi occupation factor (per spin) equals 1/2 deep in the Fermi sea. This constitutes a unique experimental prediction of the theory, both for the normal and superfluid states. Interestingly, this result, obtained in the thermodynamic limit, is consistent with Fermi occupation factor (in-)equalities for finite systems of electrons, derived (in a different context) by Borland and Dennis (1972) and by Altunbulak and Klyachko (2008)
Holographic superconductors and superfluids - effect of backreaction
Recently, the gravity-gauge theory correspondence has been used to describe so-called holographic superconductors and superfluids with the help of black holes in Anti-de Sitter space-time. In this talk, I discuss holographic superconductors and superfluids away from the probe limit, i.e. taking backreaction of the space-time into account. In the first part of the talk I present our results for Gauss-Bonnet holographic superconductors in (3+1) dimensions, while the second part deals with holographic superfluids in (2+1) dimensions where one of the spatial dimensions is compactified.
Superfluid Optomechanics: Coupling of a Superfluid to a Superconducting Condensate
DeLorenzo, L A
2013-01-01
We investigate the low loss acoustic motion of superfluid $^4$He parametrically coupled to a very low loss, superconducting Nb, TE$_{011}$ microwave resonator, forming a gram-scale, sideband resolved, optomechanical system. We demonstrate the detection of a series of acoustic modes with quality factors as high as $7\\cdot 10^6$. At higher temperatures, the lowest dissipation modes are limited by an intrinsic three phonon process. Acoustic quality factors approaching $10^{11}$ may be possible in isotopically purified samples at temperatures below 10 mK. A system of this type may be utilized to study macroscopic quantized motion and as an ultra-sensitive sensor of extremely weak displacements and forces, such as continuous gravity wave sources.
Superfluid optomechanics: coupling of a superfluid to a superconducting condensate
We investigate the low loss acoustic motion of superfluid 4He parametrically coupled to a very low loss, superconducting Nb TE011 microwave resonator, forming a gram-scale, sideband resolved, optomechanical system. We demonstrate the detection of a series of acoustic modes with quality factors as high as 1.4×107. At higher temperatures, the lowest dissipation modes are limited by an intrinsic three phonon process. Acoustic quality factors approaching 1011 may be possible in isotopically purified samples at temperatures below 10 mK. A system of this type may be utilized to study macroscopic quantized motion and as a freqency tunable, ultra-sensitive sensor of extremely weak displacements and forces, such as continuous gravity wave sources. (paper)
Superfluid (quantum) turbulence and distributed chaos
Bershadskii, A
2016-01-01
Properties of distributed chaos in superfluid (quantum) turbulence have been studied using the data of recent direct numerical simulations (HVBK two-fluid model for He II, and a moving grid in the frames of Gross-Pitaevskii model of the Bose-Einstein condensates at low temperatures). It is found that for the viscous (normal) component of the velocity field in He II the viscosity dominates the distributed chaos with the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ and $\\beta = 2/3$. For the superfluid component the distributed chaos is dominated by the vorticity correlation integral with $\\beta =1/2$ (the soft spontaneous breaking of the space translational symmetry - homogeneity). For very low temperature the distributed chaos is tuned to the large-scale coherent motions: the viscous (normal) component is tuned to the fundamental mode, whereas the superfluid component is subharmonically tuned. For the Gross-Pitaevskii superfluid turbulence incompressible part of the energy spectrum (containing ...
Transition probabilities in superfluid He4
The transition probabilities between various states of superfluid helium-4 are found by using the approximation method of Bogolyubov and making use of his canonical transformations for different states of transitions. (author)
Broken superfluid in dense quark matter
Quark matter at high densities is a superfluid. Properties of the superfluid become highly non-trivial if the effects of strange-quark mass and the weak interactions are considered. These properties are relevant for a microscopic description of compact stars. We discuss the effect of a (small) explicitly symmetry-breaking term on the properties of a zero-temperature superfluid in a relativistic φ4 theory. If the U(1) symmetry is exact, chemical potential and superflow can be equivalently introduced either via (1) a background gauge field or (2) a topologically nontrivial mode. However, in the case of the explicitly broken symmetry, we demonstrate that the scenarios (1) and (2) lead to quantitatively different results for the mass of the pseudo-Goldstone mode and the critical velocity for superfluidity.
Spin-down Rate of Pinned Superfluid
Jahan-Miri, M
2006-01-01
The spinning down (up) of a superfluid is associated with a radial motion of its quantized vortices. In the presence of pinning barriers against the motion of the vortices, a spin-down may be still realized through ``random unpinning'' and ``vortex motion,'' as two physically separate processes, as suggested recently. The spin-down rate of a pinned superfluid is calculated, in this framework, by directly solving the equation of motion applicable to only the unpinned moving vortices, at any given time. The results indicate that the pinned superfluid in the crust of a neutron star may as well spin down at the same steady-state rate as the rest of the star, through random unpinning events, while pinning conditions prevail and the superfluid rotational lag is smaller than the critical lag value.
Didactic demonstrations of superfluidity and superconductivity phenomena
In order to demonstrate to students phenomena of superfluidity and superconductivity a special helium cryostat has been constructed. The demonstrated effects, construction of the cryostat and the method of demonstration are described. (author)
A Theory of Dark Matter Superfluidity
Berezhiani, Lasha
2015-01-01
We propose a novel theory of dark matter (DM) superfluidity that matches the successes of the LambdaCDM model on cosmological scales while simultaneously reproducing the MOdified Newtonian Dynamics (MOND) phenomenology on galactic scales. The DM and MOND components have a common origin, representing different phases of a single underlying substance. DM consists of axion-like particles with mass of order eV and strong self-interactions. The condensate has a polytropic equation of state P~rho^3 giving rise to a superfluid core within galaxies. Instead of behaving as individual collisionless particles, the DM superfluid is more aptly described as collective excitations. Superfluid phonons, in particular, are assumed to be governed by a MOND-like effective action and mediate a MONDian acceleration between baryonic matter particles. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): due to the higher velocity dispersion in clusters, and corres...
梯状光晶格中自旋轨道耦合的排斥费米气体%Spin-orbit coupled Fermi atoms loaded in an optical ladder lattice
郭飞翔; 周晓凡; 赵华
2015-01-01
采用密度矩阵重整化群 ( density-matrix-renormalization-group, DMRG) 方法, 研究梯状光晶格中排斥相互作用费米气体的基态属性. 研究表明, Zeeman场能够激发系统的相分离 (完全极化相和部分极化相), 而自旋轨道耦合效应能抑制相分离, 使整个晶格处于部分极化相, 在不同的强弱排斥相互作用系统中, 极化率会随自旋轨道耦合改变表现出不同的变化规律.%The density-matrix-renormalization-group ( DMRG ) method is used to numerically calculate the ground state of repulsively interacting Fermi atoms loaded in optical ladder lattices. It is found that the system exhibits the spatial separation of a fully spin-polarized phase from the partially polarized phase for the suitable intensity of Zeeman field without the effect of spin-orbit coupled atoms. The spin-orbit coupling drives the fully spin-polarized phase to the partially spin-polarized phase in the whole system. The spin polarizations of weak and strong repulsively interac-ting systems vary differently with spin-orbit interaction strength.
Fermi: a physicist in the upheaval
This book summarizes the life, works and complex personality of the Italian physicist Enrico Fermi (1901-1954) whose myth is linked with the political upheaval of the 2. world war: the youth of an autodidact, the theorician and the quantum mechanics, his invention of a quantum statistics, the weak interaction theory, his works on artificial radioactivity, the end of the Fermi team and his exile in the USA, the secrete researches at the university of Columbia and the birth of the first atomic 'pile' (December 2, 1942), the building of Los Alamos center and the Alamogordo explosion test, the disagreements among the physicists of the Manhattan project and the position of Fermi, Fermi's contribution in the H-bomb construction, the creation of the physics school of Chicago, the Oppenheimer spying affair. (J.S.)
Microphotonic Forces From Superfluid Flow
McAuslan, D L; Baker, C; Sachkou, Y; He, X; Sheridan, E; Bowen, W P
2015-01-01
In cavity optomechanics, radiation pressure and photothermal forces are widely utilized to cool and control micromechanical motion, with applications ranging from precision sensing and quantum information to fundamental science. Here, we realize an alternative approach to optical forcing based on superfluid flow and evaporation in response to optical heating. We demonstrate optical forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46 nN, roughly one order of magnitude larger than the radiation pressure force. We use this force to feedback cool the motion of a microtoroid mechanical mode to 137 mK. The photoconvective forces demonstrated here provide a new tool for high bandwidth control of mechanical motion in cryogenic conditions, and have the potential to allow efficient transfer of electromagnetic energy to motional kinetic energy.
Breathers on Quantized Superfluid Vortices
Salman, Hayder
2013-01-01
We consider the propagation of breathers along a quantised superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schr\\"odinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localised in both space and time. The emergent structures on the vortex filament are analogous to loop solitons. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the cross-over range of scales in superfl...
Electric response in superfluid helium
Chagovets, Tymofiy V.
2016-05-01
We report an experimental investigation of the electric response of superfluid helium that arises in the presence of a second sound standing wave. It was found that the signal of the electric response is observed in a narrow range of second sound excitation power. The linear dependence of the signal amplitude has been derived at low excitation power, however, above some critical power, the amplitude of the signal is considerably decreased. It was established that the rapid change of the electric response is not associated with a turbulent regime generated by the second sound wave. A model of the appearance of the electric response as a result of the oscillation of electron bubbles in the normal fluid velocity field in the second sound wave is presented. Possible explanation for the decrease of the electric response are presented.
Two-dimensional superfluid transition in Hdown
The surface density as function of temperature for Hdown adsorbed on superfluid helium film is studied for several gas densities. The theory used is exact in the low density limit and predict Kosterlitz-thouless transition temperatures lower than previous calculation and also lower saturation density. The results confirm the possibility of a 2D superfluid transition under conditions close to those achieved experimentally. (Author)
Spin-down Rate of Pinned Superfluid
Jahan-Miri, M.
2006-01-01
The spinning down (up) of a superfluid is associated with a radial motion of its quantized vortices. In the presence of pinning barriers against the motion of the vortices, a spin-down may be still realized through ``random unpinning'' and ``vortex motion,'' as two physically separate processes, as suggested recently. The spin-down rate of a pinned superfluid is calculated, in this framework, by directly solving the equation of motion applicable to only the unpinned moving vortices, at any gi...
Strongly-correlated ultracold atoms in optical lattices
This thesis is concerned with the theoretical study of strongly correlated quantum states of ultra-cold fermionic atoms trapped in optical lattices. This field has grown considerably in recent years, following the experimental progress made in cooling and controlling atomic gases, which has led to the observation of the first Bose-Einstein condensation (in 1995). The trapping of these gases in optical lattices has opened a new field of research at the interface between atomic physics and condensed matter physics. The observation of the transition from a superfluid to a Mott insulator for bosonic atoms paved the way for the study of strongly correlated phases and quantum phase transitions in these systems. Very recently, the investigation of the Mott insulator state of fermionic atoms provides additional motivation to conduct such theoretical studies. This thesis can be divided broadly into two types of work: - On the one hand, we have proposed a new type of spectroscopy to measure single-particle correlators and associated physical observables in these strongly correlated states. - On the other hand, we have studied the ground state of the fermionic Hubbard model under different conditions (mass imbalance, population imbalance) by using analytical techniques and numerical simulations. In a collaboration with J. Dalibard and C. Salomon (LKB at the ENS Paris) and I. Carusotto (Trento, Italy), we have proposed and studied a novel spectroscopic method for the measurement and characterization of single particle excitations (in particular, the low energy excitations, namely the quasiparticles) in systems of cold fermionic atoms, with energy and momentum resolution. This type of spectroscopy is an analogue of angular-resolved photoemission in solid state physics (ARPES). We have shown, via simple models, that this method of measurement can characterize quasiparticles not only in the 'conventional' phases such as the weakly interacting gas in the lattice or in Fermi
Resonant superfluidity in an optical lattice
We study a system of ultracold fermionic Potassium (40K) atoms in a three-dimensional optical lattice in the neighborhood of an s-wave Feshbach resonance. Close to resonance, the system is described by a multi-band Bose-Fermi Hubbard Hamiltonian. We derive an effective lowest-band Hamiltonian in which the effect of the higher band is incorporated by a self-consistent mean-field approximation. The resulting model is solved by means of Generalized Dynamical Mean-Field Theory. In addition to the BEC/BCS crossover we find on the BCS side of the resonance a phase transition to a fermionic Mott insulator at half filling, induced by the repulsive fermionic background scattering length. We also calculate the critical temperature of the BEC/BCS-state across the resonance and find it to be minimal at resonance.
Condensate and final-state effects in superfluid {sup 4}He
Azuah, R.T.; Stirling, W.G. [Department of Physics, University of Keele, Keele ST5 5BG (United Kingdom); Glyde, H.R.; Boninsegni, M. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sokol, P.E. [Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Bennington, S.M. [ISIS Division, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)
1997-12-01
We present high-precision measurements of the dynamics of single atoms in superfluid {sup 4}He at T=1.6 K and saturated vapor pressure. The measurements were taken on the MARI instrument at the ISIS neutron-scattering facility, Rutherford-Appleton Laboratory. From the measurements we obtain a condensate fraction n{sub 0}=6.0{plus_minus}2.0{percent} at T=1.6 K. The final-state effects (FSE{close_quote}s) in the atomic response are also determined from the data in the form of a final-state broadening function, R(Q,y). We find that this FS function is the same in the superfluid at T=1.6 K as that determined previously in normal {sup 4}He at T=2.3 K. If we reanalyze the data assuming that the superfluid has no condensate, i.e., n{sub 0}=0, then the data requires that the normal n({bold k}) change dramatically between T=2.3 K and T=1.6 K. Since such a change in n({bold k}) is physically unexpected, given that kT is much less than the zero-point energy, the data requires that a new contribution, such as a condensate, enter n({bold k}) in the superfluid. {copyright} {ital 1997} {ital The American Physical Society}
Wu, Shuyuan; Xu, Jun; Lee, Chaohong
2016-01-01
According to the famous Kibble-Zurek mechanism (KZM), the universality of spontaneous defect generation in continuous phase transitions (CPTs) can be understood by the critical slowing down. In most CPTs of atomic Bose-Einstein condensates (BECs), the universality of spontaneous defect generations has been explained by the divergent relaxation time associated with the nontrivial gapless Bogoliubov excitations. However, for atomic BECs in synthetic gauge fields, their spontaneous superfluidity breakdown is resulted from the divergent correlation length associated with the zero Landau critical velocity. Here, by considering an atomic BEC ladder subjected to a synthetic magnetic field, we reveal that the spontaneous superfluidity breakdown obeys the KZM. The Kibble-Zurek scalings are derived from the Landau critical velocity which determines the correlation length. In further, the critical exponents are numerically extracted from the critical spatial-temporal dynamics of the bifurcation delay and the spontaneous...
Paoletti, Matthew
2010-11-01
Long-range quantum order underlies a number of related physical phenomena including superfluidity, superconductivity and Bose-Einstein condensation. While superfluidity in helium-4 was one of the earliest discovered, it is not the best understood, owing to the strong interactions present (making theoretical progress difficult) and the lack of local experimental probes. Quantum fluids, such as superfluid helium-4, are typically described as a mixture of two interpenetrating fluids with distinct velocity fields: a viscous normal fluid akin to water and an inviscid superfluid exhibiting long-range quantum order. In this "two-fluid model," there is no conventional viscous dissipation in the superfluid component and vorticity is confined to atomically-thin vortices with quantized circulation. Turbulence may occur in either fluid component with turbulence in the superfluid exhibiting a complex tangle of quantized vortices, as first envisioned by Feynman. Approximately five years ago, our group discovered that micron-sized hydrogen particles may be used for flow visualization in superfluid helium-4. The particles can trace the motions of the normal fluid or be trapped by the quantized vortices, which enables one to characterize the dynamics of both the normal fluid and superfluid components for the first time. By directly observing and tracking these particles, we have directly confirmed the two-fluid model, observed vortex rings and quantized vortex reconnection, characterized thermal counterflows, and observed the very peculiar nature of quantum turbulence. One of many surprising observations is the existence of power-law tails in the probability distribution of velocities in quantum turbulence, which are in stark contrast to the Gaussian distributions typical of classical fluid turbulence.
Molecular regimes in ultracold Fermi gases
D.S. Petrov; C. Salomon; G.V. Shlyapnikov
2009-01-01
The use of Feshbach resonances for tuning the interparticle interaction in ultracold Fermi gases has led to remarkable developments, in particular to the creation and Bose-Einstein condensation of weakly bound diatomic molecules of fermionic atoms. These are the largest diatomic molecules obtained s
Enrico Fermi and the Old Quantum Physics
De Gregorio, Alberto; Sebastiani, Fabio
2009-01-01
We outline Fermi's early attitude towards old quantum physics. We sketch out the context from which his interest for quantum physics arose, and we deal with his work on quantum statistics. We also go through the first two courses on theoretical physics he held in Rome, and his 1928 book on atomic physics.
Fermi Liquid Instabilities in the Spin Channel
Wu, Congjun; /Santa Barbara, KITP; Sun, Kai; Fradkin, Eduardo; /Illinois U., Urbana; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-16
We study the Fermi surface instabilities of the Pomeranchuk type in the spin triplet channel with high orbital partial waves (F{sub l}{sup a} (l > 0)). The ordered phases are classified into two classes, dubbed the {alpha} and {beta}-phases by analogy to the superfluid {sup 3}He-A and B-phases. The Fermi surfaces in the {alpha}-phases exhibit spontaneous anisotropic distortions, while those in the {beta}-phases remain circular or spherical with topologically non-trivial spin configurations in momentum space. In the {alpha}-phase, the Goldstone modes in the density channel exhibit anisotropic overdamping. The Goldstone modes in the spin channel have nearly isotropic underdamped dispersion relation at small propagating wavevectors. Due to the coupling to the Goldstone modes, the spin wave spectrum develops resonance peaks in both the {alpha} and {beta}-phases, which can be detected in inelastic neutron scattering experiments. In the p-wave channel {beta}-phase, a chiral ground state inhomogeneity is spontaneously generated due to a Lifshitz-like instability in the originally nonchiral systems. Possible experiments to detect these phases are discussed.
Coexistence of superfluid and metallic-like state in two-component fermionic systems
Continentino, M.A., E-mail: mucio@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Padilha, Igor T. [Universidade Federal do Amazonas, Departamento de Física, Av. Gal. Rodrigo Octávio Jordão Ramos, 3000 Setor Sul e Norte, Coroado I, Manaus (Brazil)
2012-01-09
We study the possibility of coexistence in a two component fermionic system of a superfluid state with a metallic-like state with gapless excitations at a Fermi surface. We consider a two-component system with mixing (hybridization) between them and attractive interactions between only one type of quasi-particles. Besides a conventional BCS regime, we find for sufficiently strong interactions a superfluid state of Bose condensed pairs at zero temperature. We investigate whether these pairs can coexist with a metallic-like state characterized by gapless electronic excitations. The zero temperature phase diagram as a function of the strength of the attractive interaction and the mixing is obtained. For simplicity and to clarify the nature of the quantum phase diagram we consider the case of s-wave pairing. -- Highlights: ► We study superconductivity in a multi-component system along the BCS–BEC crossover. ► The T=0 phase diagram exhibits different regimes for the superfluid phases. ► We find a new metallic phase with fermions coexisting with preformed pairs. ► Superconductivity is destroyed from the BEC-like regime.
Sourie, Aurélien; Oertel, Micaela; Novak, Jérôme
2016-04-01
We present a numerical model for uniformly rotating superfluid neutron stars in a fully general relativistic framework with, for the first time, realistic microphysics including entrainment. We compute stationary and axisymmetric configurations of neutron stars composed of two fluids, namely superfluid neutrons and charged particles (protons and electrons), rotating with different rates around a common axis. Both fluids are coupled by entrainment, a nondissipative interaction which in the case of a nonvanishing relative velocity between the fluids causes the fluid momenta to be not aligned with the respective fluid velocities. We extend the formalism put forth by Comer and Joynt in order to calculate the equation of state (EOS) and entrainment parameters for an arbitrary relative velocity as far as superfluidity is maintained. The resulting entrainment matrix fulfills all necessary sum rules, and in the limit of small relative velocity our results agree with Fermi liquid theory ones derived to lowest order in the velocity. This formalism is applied to two new nuclear equations of state which are implemented in the numerical model, which enables us to obtain precise equilibrium configurations. The resulting density profiles and moments of inertia are discussed employing both EOSs, showing the impact of entrainment and the dependence on the EOS.
Topological States in a One-Dimensional Fermi Gas with Attractive Interactions
Ruhman, Jonathan; Berg, Erez; Altman, Ehud
2014-01-01
We describe a novel topological superfluid state, which forms in a one-dimensional Fermi gas with Rashba-like spin-orbit coupling, a Zeeman field and intrinsic attractive interactions. In spite of total number conservation and the presence of gapless excitations, Majorana-like zero modes appear in this system and can be linked with interfaces between two distinct phases that naturally form at different regions of the harmonic trap. As a result, the low lying collective excitations of the syst...
Neutron Fermi Liquids under the presence of a strong magnetic field with effective nuclear forces
Perez-Garcia, M Angeles; Polls, A
2009-01-01
Landau's Fermi Liquid parameters are calculated for non-superfluid pure neutron matter in the presence of a strong magnetic field at zero temperature. The particle-hole interactions in the system, where a net magnetization may be present, are characterized by these parameters in the framework of a multipolar formalism. We use either zero- or finite-range effective nuclear forces to describe the nuclear interaction. Using the obtained Fermi Liquid parameters, the effect of a strong magnetic field on some bulk magnitudes such as isothermal compressibility and spin susceptibility is also investigated.
Generalized Seniority Description of Cold Fermi Gases
G. E. Brown; Gelman, B. A.; Kuo, T. T. S.
2004-01-01
We suggest that the extension of the Racah seniority description of strongly interacting fermions in the nuclear shell model is directly generalizable to describe pairing of atoms in cold Fermi systems. We illustrate this by the fermionic pairing in the much studied cold two-component gas of Li atoms. Our pairing interaction is two orders of magnitude stronger than that used in the usual BCS approach. We also explain why the Racah scheme is less applicable to nuclei, and discuss the similarit...