Sample records for atom transfer reactions

  1. Hydrogen-Atom Transfer Reactions.

    Wang, Liang; Xiao, Jian


    The cascade [1,n]-hydrogen transfer/cyclization, recognized as the tert-amino effect one century ago, has received considerable interest in recent decades, and great achievements have been made. With the aid of this strategy, the inert C(sp(3))-H bonds can be directly functionalized into C-C, C-N, C-O bonds under catalysis of Lewis acids, Brønsted acids, as well as organocatalysts, and even merely under thermal conditions. Hydrogen can be transferred intramolecularly from hydrogen donor to acceptor in the form of hydride, or proton, followed by cyclization to furnish the cyclic products in processes featuring high atom economy. Methylene/methine adjacent to heteroatoms, e.g., nitrogen, oxygen, sulfur, can be exploited as hydride donor as well as methylene/methine without heteroatom assistance. Miscellaneous electrophilic subunits or intermediates, e.g., alkylidene malonate, carbophilic metal activated alkyne or allene, α,β-unsaturated aldehydes/ketone, saturated aldehydes/iminium, ketenimine/carbodiimide, metal carbenoid, electron-withdrawing groups activated allene/alkyne, in situ generated carbocation, can serve as hydride acceptors. This methodology has shown preeminent power to construct 5-, 6-, or 7-membered heterocyclic as well as carbon rings. In this chapter, various hydrogen donors and acceptors are adequately discussed. PMID:27573142

  2. Two-nucleon transfer reactions uphold supersymmetry in atomic nuclei

    Barea, J.; Bijker, R.; Frank, A.


    The spectroscopic strengths of two-nucleon transfer reactions constitute a stringent test for two-nucleon correlations in the nuclear wave functions. A comparison between the recently measured 198Hg(d,alpha)196Au reaction and the predictions from the nuclear quartet supersymmetry lends further support to the validity of supersymmetry in nuclear physics.

  3. Single-collision studies of hot atom energy transfer and chemical reaction

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H2 R reactions where RH is CH4, C2H6, or C3H8, (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  4. Electron transfer and multi-atom abstraction reactions between atomic metal anions and NO, NO2 and SO2

    Butson, J. M.; Curtis, S.; Mayer, P. M.


    The atomic metal anions Fe-, Cs-, Cu- and Ag- were reacted with NO, NO2 and SO2 to form intact NO-, NO2- and SO2- with no fragmentation. Yields for the molecular anions ranged from 4 to 97% and were found to correlate to the exothermicity of the electron transfer process. Sequential oxygen atom extraction was found to take place between the metal anions and NO and NO2. Reactions between NO2 and Fe- resulted in FeO-, FeO2- and FeO3- while reactions of Cu- with NO2 resulted in CuO- and CuO2-. Reactions of Cu- and Ag- with NO resulted in CuO- and AgO- respectively.

  5. Electron transfer reactions

    Cannon, R D


    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  6. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.


    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2’-bi-1,4,5,6-tetrahydro¬pyrimidine, H2bim = 2,2’-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2’-pyridyl)¬imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO• (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reactions of Co and Fe complexes with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer: ΔSºHAT = -30 ± 2 cal mol-1 K-1 for the two iron complexes and -41 ± 2 cal mol-1 K-1 for [CoII(H2bim)3]2+. The ΔSºHAT for TEMPO + RuII(acac)2(py-imH) is much closer to zero, 4.9 ± 1.1 cal mol-1 K-1. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ΔSºHAT. Calorimetry on TEMPOH + tBu3PhO• gives ΔHºHAT = 11.2 ± 0.5 kcal mol-1 which matches the enthalpy predicted from the difference in literature solution BDEs. An evaluation of the literature BDEs of both TEMPOH and tBu3PhOH is briefly presented and new estimates are included on the relative enthalpy of solvation for tBu3PhO• vs. tBu3PhOH. The primary contributor to the large magnitude of the ground-state entropy |ΔSºHAT| for the metal complexes is vibrational entropy, ΔSºvib. The common assumption that ΔSºHAT ≈ 0 for HAT reactions, developed for organic and small gas phase molecules, does not hold for transition metal based HAT reactions. The trend in magnitude of |ΔSºHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ΔSºET, in aprotic solvents. ΔSºET and

  7. Excited state intramolecular charge transfer reaction of 4-(morpholenyl) benzonitrile in solution: Effects of hetero atom in the donor moiety

    Tuhin Pradhan; Harun Al Rasid Gazi; Ranjit Biswas


    An intramolecular charge transfer (ICT) molecule with an extra hetero atom in its donor moiety has been synthesized in order to investigate how ICT reaction is affected by hetero atom replacement. Photo-physical and photo-dynamical properties of this molecule, 4-(morpholenyl)benzonitrile (M6C), have been studied in 20 different solvents. The correlation between the reaction driving force (- ) and activation barrier ( #) has been explored in order to understand the solvent effects (static and dynamic) on the photo-excited ICT reaction in this molecule. A Kramer’s model analysis of the experimentally observed reaction rate constants indicates a solvent-averaged activation barrier of ∼ 4 in the absence of solvent dynamical control. The reaction in M6C is therefore not a barrier-less reaction but close to the limit where conventional kinetics might break down.

  8. Novel ionic liquids as reaction medium for atom transfer radical polymerization of methyl methacrylate

    Guo Qiao Lai; Fu Min Ma; Zi Qiang Hu; Hua Yu Qiu; Jian Xiong Jiang; Ji Rong Wu; Li Min Chen; Lian Bin Wu


    Atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) employing ethyl 2-bromoisobutyrate (EBiB)/CuBr as the initiating system was investigated at 50 ℃ in the absence of any additional ligand in the three room temperature ionic liquids (RTILs), 1-methyl-imidazolium acetate ([mim][CH3COO]), 1-methylimidazolium propionate ([mim][CH3CH2COO]) and 1-methylimidazolium butyrate ([mim] [CH3CH2CH2COO]), respectively. All the polymerization in the three RTILs proceeded in a well-controlled manner. The sequence of the apparent polymerization rate constants was kapp([mim][CH3COO]) > kapp([mim][CH3CH2COO]) > kapp ([mim][CH3CH2CH2COO]).

  9. Cyclic Hypervalent Iodine Reagents for Atom-Transfer Reactions: Beyond Trifluoromethylation.

    Li, Yifan; Hari, Durga Prasad; Vita, Maria Victoria; Waser, Jerome


    Hypervalent iodine compounds are privileged reagents in organic synthesis because of their exceptional reactivity. Among these compounds, cyclic derivatives stand apart because of their enhanced stability. They have been widely used as oxidants, but their potential for functional-group transfer has only begun to be investigated recently. The use of benziodoxol(on)es for trifluoromethylation (Togni's reagents) is already widely recognized, but other transformations have also attracted strong interest recently. In this Review, the development in the area since 2011 will be presented. After a short summary of synthetic methods to prepare benziodoxol(on)e reagents, their use to construct carbon-heteroatom and carbon-carbon bonds will be presented. In particular, the introduction of alkynes by using ethynylbenziodoxol(on)e (EBX) reagents has been highly successful. Breakthroughs in the introduction of alkoxy, azido, difluoromethyl, and cyano groups will also be described. PMID:26880486

  10. Multinucleon transfer reactions

    Nuclear reactions induced by complex nuclei are studied. The description of the single neutron transfer is used to show some aspect of the theoretical treatment of transfer reactions and rules concerning the dependence of cross sections on quantum numbers of the initial and final channels are deduced. Strongly excited states of 20Ne, 19F, sup(16,17)0, 15N were studied experimentally by using different projectile-target combinations in the four-particle, eight-particle and ten-particle transfer reactions, leading to the some final nuclei. Obtained results are discussed. In addition, studies of the projectile break-up phenomenon were performed. The dissociation of 6Li and 7Li projectiles was investigated in reactions on Pb, Sn and Ni nuclei. These nuclei were chosen to allow measurements at one incident energy below, above and at the Coulomb barrier. The observed spectra indicate that the process proceeds primarily via the resonance level but the shape deviates from the shape which was calculated assuming isotropic decay of the excited 6Li in its center of mass system. The investigations of the elastic scattering turned out to be more fruitful and allowed to define better the Coulomb barrier for the 6Li-target system. (S.B.)

  11. Proceedings of the workshop on 'spin-charge transfer reaction in atomic collision process' for planning of next period of cascade project

    This workshop was held on February 29, 1992, and was planned to investigate from the theoretical side the spin-charge transfer reaction which is used for a polarized heavy ion source, the development of which has been advanced in the Research Center for Nuclear Physics. In fiscal year 1992, the plan of installing an ECR ion source, Neomafios-10 GHz, as the AVF cyclotron external incident ion source is in progress. This external incidence system can be used also for the research on various atomic physics, in addition to the research on atomic nucleus physics. In this workshop, heated discussion was carried out on what research on atomic physics can be advanced in the Research Center for Nuclear Physics hereafter, through the investigation of the various problems that the atomic physics from low to high energy holds and new technical development. Particularly, the atomic physics using polarized ions seems to become a very unique study in the world. It seems proper to name this polarized heavy ion incidence system Spin factory. This report was edited based on the copies of the transparencies. (K.I.)

  12. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke


    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase. PMID:27054466

  13. Transfer reactions in nuclear astrophysics

    Bardayan, D. W.


    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  14. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants

    Highlights: ► Both 1,1-diphenyl-2-picrylhydrazyl radical and its product measurement by HPLC. ► Lowest limit of detection by monitoring 1,1-diphenyl-2-picryl-hydrazine. ► Adsorption problem of the radical on HPLC parts have been pointed out. - Abstract: 1,1-Diphenyl-2-picrylhydrazyl (DPPH·) is a stable nitrogen centred radical widely used to evaluate direct radical scavenging properties of various synthetic or natural antioxidants (AOs). The bleaching rate of DPPH· absorbance at 515 nm is usually monitored for this purpose. In order to avoid the interference of complex coloured natural products used as antioxidant supplements or cosmetics, HPLC systems have been reported as alternative techniques to spectrophotometry. They also rely upon measurement of DPPH· quenching rate and none of them permits to identify and measure 1,1-diphenyl-2-picryl-hydrazine (DPPH-H), the reduced product of DPPH· resulting from hydrogen atom transfer (HAT), which is the main mechanism of the reaction between DPPH· and AOs. We presently report an HPLC method devoted to the simultaneous measurement of DPPH· and DPPH-H. Both were fully separated on a C18 column eluted with acetonitrile–10 mM ammonium citrate buffer pH 6.8 (70:30, v/v) and detected at 330 nm. Adsorption process of DPPH· onto materials of the HPLC system was pointed out. Consequently, the linearity range observed for DPPH· was restricted, thus a much lower limit of detection was obtained for DPPH-H than for DPPH· using standards (0.02 and 14 μM, respectively). The method was applied to three commonly used AOs, i.e. Trolox®, ascorbic acid and GSH, and compared with spectrophotometry. Further application to complex matrices (cell culture media, vegetal extracts) and nanomaterials demonstrated (i) its usefulness because of higher selectivity than colorimetry, and (ii) its help to investigate the mechanisms occurring with the free radical.

  15. Kinetics and mechanism of oxygen atom transfer reaction in the formation of Ruv = O(EDTA)-1 complex: a reactivity scale for the oxidants

    The oxidation of RuIII (EDTA) (H2O) 1 with single oxygen atom donors (viz. H2O2, PhIO, KHSO5, NaOCl, Py-N-oxide) has been studied spectrophotometrically by following the development of characteristic peak of the Ruv = O(EDTA) oxo-complex 2. The activation parameters have been calculated in terms of a mechanism involving an intramolecular oxygen atom transfer from oxidant to complex 1. A reactivity scale has been set for the oxidants ClO-, PyO, H2O2, KHSO5 and C6H5IO on the basis of ΔG values. (author)

  16. Kinetics of elementary atom and radical reactions

    During the past three years we have been working on four problems in the general area of gas phase kinetics and energy transfer of small molecules. These are: (1) measurements of the fine structure populations of ground state oxygen atoms produced in photodissociation reactions; (2) quenching of the Rydberg B (1Σ+) state of CO; (3) vibrational relaxation of highly excited molecules; and (4) kinetics of hydrogen molecules. The first two topics, which involve transitions between different electronic states of the parent molecule, are a departure from our previous research interests. In the accompanying renewal proposal we discuss plans to pursue these new topics vigorously during the coming year. The third topic is a continuation of our long interest in the energy dependence of the rates laws governing vibrational-to-translational energy transfer of molecules having large initial amounts of vibrational excitation. The final topic is a continuation of our studies of the reaction of O(3P) + H2. In this work we measured the rate constant for the reaction O(3P) with deuterium and also analyzed spectroscopically different sources of vibrationally excited hydrogen for possible future work. We discuss each of these four studies in the following sections

  17. Transfer Reactions in Phenyl Carbamate Ethyl Acrylate Polymerizations

    Bennet, Francesca; Roelle, Thomas; Faecke, Thomas; Weiser, Marc-Stephan; Bruder, Friedrich-Karl; Barner-Kowollik, Christopher; Junkers, Thomas


    The transfer reactions occurring during polymerization of 2-(phenylcarbamoyloxy)ethyl acrylate (PhCEA) were studied by a detailed product mapping with electrospray ionization mass spectrometry (ESI-MS). Unlike postulated before, PhCEA exhibits the same characteristic transfer reactions as other acrylic monomers at elevated temperatures, resulting in vinyl-terminated and saturated products. Transfer to monomer via abstraction of a hydrogen atom from the ester side chain as suggested before is ...

  18. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants

    Boudier, Ariane; Tournebize, Juliana [CITHEFOR - EA 3452, Faculte de Pharmacie, Nancy-Universite, 5 Rue Albert Lebrun, BP 80403, 54001 Nancy Cedex (France); Bartosz, Grzegorz [Department of Molecular Biophysics, University of Lodz, Lodz (Poland); El Hani, Safae; Bengueddour, Rachid [Laboratoire de Nutrition et Sante, Biology Department, Faculty of Sciences, Ibn Tofail University, Kenitra (Morocco); Sapin-Minet, Anne [CITHEFOR - EA 3452, Faculte de Pharmacie, Nancy-Universite, 5 Rue Albert Lebrun, BP 80403, 54001 Nancy Cedex (France); Leroy, Pierre, E-mail: [CITHEFOR - EA 3452, Faculte de Pharmacie, Nancy-Universite, 5 Rue Albert Lebrun, BP 80403, 54001 Nancy Cedex (France)


    Highlights: Black-Right-Pointing-Pointer Both 1,1-diphenyl-2-picrylhydrazyl radical and its product measurement by HPLC. Black-Right-Pointing-Pointer Lowest limit of detection by monitoring 1,1-diphenyl-2-picryl-hydrazine. Black-Right-Pointing-Pointer Adsorption problem of the radical on HPLC parts have been pointed out. - Abstract: 1,1-Diphenyl-2-picrylhydrazyl (DPPH{center_dot}) is a stable nitrogen centred radical widely used to evaluate direct radical scavenging properties of various synthetic or natural antioxidants (AOs). The bleaching rate of DPPH{center_dot} absorbance at 515 nm is usually monitored for this purpose. In order to avoid the interference of complex coloured natural products used as antioxidant supplements or cosmetics, HPLC systems have been reported as alternative techniques to spectrophotometry. They also rely upon measurement of DPPH{center_dot} quenching rate and none of them permits to identify and measure 1,1-diphenyl-2-picryl-hydrazine (DPPH-H), the reduced product of DPPH{center_dot} resulting from hydrogen atom transfer (HAT), which is the main mechanism of the reaction between DPPH{center_dot} and AOs. We presently report an HPLC method devoted to the simultaneous measurement of DPPH{center_dot} and DPPH-H. Both were fully separated on a C18 column eluted with acetonitrile-10 mM ammonium citrate buffer pH 6.8 (70:30, v/v) and detected at 330 nm. Adsorption process of DPPH{center_dot} onto materials of the HPLC system was pointed out. Consequently, the linearity range observed for DPPH{center_dot} was restricted, thus a much lower limit of detection was obtained for DPPH-H than for DPPH{center_dot} using standards (0.02 and 14 {mu}M, respectively). The method was applied to three commonly used AOs, i.e. Trolox{sup Registered-Sign }, ascorbic acid and GSH, and compared with spectrophotometry. Further application to complex matrices (cell culture media, vegetal extracts) and nanomaterials demonstrated (i) its usefulness because of

  19. Spectroscopic Investigation of H Atom Transfer in a Gas-phase Dissociation Reaction: McLafferty Rearrangement of Model Gas-phase Peptide Ions

    Michael J. Van Stipdonk; Dale R. Kersetter; Christopher M. Leavitt; Gary S. Groenewold; Jeffrey Steill; Jos Oomens


    Wavelength-selective infrared multiple-photon photodissociation (WS-IRMPD) was used to study isotopically-labeled ions generated by McLafferty rearrangement of nicotinyl-glycine-tert-butyl ester and betaine-glycine-tert-butyl ester. The tert-butyl esters were incubated in a mixture of D2O and CH3OD to induce solution-phase hydrogen-deuterium exchange and then converted to gas-phase ions using electrospray ionization. McLafferty rearrangement was used to generate the free-acid forms of the respective model peptides through transfer of an H atom and elimination of butene. The specific aim was to use vibrational spectra generated by WS-IRMPD technique to determine whether the H atom remains at the acid group, or migrates to one or more of the other exchangeable sites. Comparison of the IRMPD results in the region from 1200-1900 cm-1 to theoretical spectra for different isotopically-labeled isomers clearly shows that the H atom is situated at the C-terminal acid group and migration to amide positions is negligible on the time scale of the experiment. The results of this study suggest that use of the McLafferty rearrangement for peptide esters could be an effective approach for generation of H-atom isotope tracers, in-situ, for subsequent investigation of intra-molecular proton migration during peptide fragmentation studies.

  20. Spectroscopic Investigation of H Atom Transfer in a Gas-phase Dissociation Reaction: McLafferty Rearrangement of Model Gas-phase Peptide Ions

    Wavelength-selective infrared multiple-photon photodissociation (WS-IRMPD) was used to study isotopically-labeled ions generated by McLafferty rearrangement of nicotinyl-glycine-tert-butyl ester and betaine-glycine-tert-butyl ester. The tert-butyl esters were incubated in a mixture of D2O and CH3OD to induce solution-phase hydrogen-deuterium exchange and then converted to gas-phase ions using electrospray ionization. McLafferty rearrangement was used to generate the free-acid forms of the respective model peptides through transfer of an H atom and elimination of butene. The specific aim was to use vibrational spectra generated by WS-IRMPD technique to determine whether the H atom remains at the acid group, or migrates to one or more of the other exchangeable sites. Comparison of the IRMPD results in the region from 1200-1900 cm-1 to theoretical spectra for different isotopically-labeled isomers clearly shows that the H atom is situated at the C-terminal acid group and migration to amide positions is negligible on the time scale of the experiment. The results of this study suggest that use of the McLafferty rearrangement for peptide esters could be an effective approach for generation of H-atom isotope tracers, in-situ, for subsequent investigation of intra-molecular proton migration during peptide fragmentation studies

  1. Reactions between NO/+/ and metal atoms using magnetically confined afterglows

    Lo, H. H.; Clendenning, L. M.; Fite, W. L.


    A new method of studying thermal energy ion-neutral collision processes involving nongaseous neutral atoms is described. A long magnetic field produced by a solenoid in a vacuum chamber confines a thermal-energy plasma generated by photoionization of gas at very low pressure. As the plasma moves toward the end of the field, it is crossed by a metal atom beam. Ionic products of ion-atom reactions are trapped by the field and both the reactant and product ions move to the end of the magnetic field where they are detected by a quadrupole mass filter. The cross sections for charge transfer between NO(+) and Na, Mg, Ca, and Sr and that for rearrangement between NO(+) and Ca have been obtained. The charge-transfer reaction is found strongly dominant over the rearrangement reaction that forms metallic oxide ions.

  2. A New Global Potential Energy Surface for the Hydroperoxyl Radical, HO2: Reaction Coefficients for H + O2 and Vibrational Splittings for H Atom Transfer

    Dateo, Christopher E.; Arnold, James O. (Technical Monitor)


    A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  3. Proton transfer reaction - mass spectrometry

    Proton transfer reaction mass spectrometry (PTR-MS) provides on-line monitoring of volatile organic compounds (VOCs) with a low detection threshold and a fast response time. Commercially available set-ups are usually based on quadrupole analysers but recently new instruments based on time-of-flight (PTR-ToF-MS) analysers have been proposed and commercialized. PTR-MS has been successfully applied to a variety of fields including environmental science, food science and technology, plant physiology and medical science. Many new challenges arise from the newly available PTR-ToF-MS instruments, ranging from mass calibration and absolute VOC concentration determination to data mining and sample classification. This thesis addresses some of these problems in a coherent framework. Moreover, relevant applications in food science and technology are presented. It includes twelve papers published in peer reviewed journals. Some of them address methodological issues regarding PTR-ToF-MS; the others contain applicative studies of PTR-ToF-MS to food science and technology. Among them, there are the first two published applications of PTR-ToF-MS in this field. (author)

  4. Computational Approach to Electron Charge Transfer Reactions

    Jónsson, Elvar Örn

    The step from ab initio atomic and molecular properties to thermodynamic - or macroscopic - properties requires the combination of several theoretical tools. This dissertation presents constant temperature molecular dynamics with bond length constraints, a hybrid quantum mechanics...... show general (or expected) properties. Properties such as in the physical and (semi-)chemical interface between classical and quantum systems and the effects of molecular bond length constraints on the temperature during simulations. As a second step the methodology is applied to the symmetric and...... asymmetric charge transfer reactions between several first-row transition metals in water. The results are compared to experiments and rationalised with classical analytic expressions. Shortcomings of the methods are accounted for with clear steps towards improved accuracy. Later the analysis is extended to...

  5. Dephasing effects on the atomic population transfer

    For the past ten years, there have been a lots researches on the coherent atomic population transfer for efficient photo-ionization spectroscopy. For efficient population transfer, the optimal detuning method and the adiabatic passage method were proposed. Coherent population trasfer was usually analyzed theoretically without considering the dephasing effects of atomic coherences, even though dephasing effects can change the optimal condition for maximal population trasfer. This paper demonstrates that atomic coherence dephasing affects the population trasfer condition such that the optimal condition for maximal atomic trasfer depend on the strength of dephasing of atomic coherence. We have studied ladder type system and lambda type system and found that optimal detuning decreases with the increse of dephasing rate.

  6. Knockout reactions in atomic and nuclear physics

    In a knockout experiment the momenta of a projectile before and after the collision and of a knocked-out particle are all measured, so that the recoil momentum of the residual system is known by subtraction. The atomic (e,2e) experiments are very much more accurate and detailed than present nuclear experiments. The (e,2e) reaction on argon is used to illustrate the principles involved. Other experiments involve the (p,2p) and (e,e'p) reactions

  7. Action of Mercaptan and Disulfide in Hydrogen Atom Exchange Reactions

    Free- radical, photochemical, and high-energy radiation-induced reactions may be catalysed or inhibited by rapid hydrogen atom exchange reactions of mercaptans and disulfides. The radical-induced, light-initiated, and benzophenone-sensitized decarbonylations of aldehydes are catalysed by mercaptans. The chain-propagating hydrogen transfer reaction, R' + RCH = O -> RH + RC = O , is made more rapid by a similar sequence of hydrogen atom transfers involving the sulfur compound: R' + C6H5CH2SH -> RH + C6H5CH2S'; C6H5CH2S + RCH = 0 -> C6H5CH2SH + RC = 0. The photoreduction of benzophenone in 2-propanol leads to benzpinacol by a non-chain reaction via the radicals (C6H5)2C-OH and (CH3)2COH. The reaction is retarded and inhibited by mercaptan and disulfide, which reconvert the radicals to the starting materials by rapid hydrogen transfer reactions and are themselves regenerated in their alternate valence states, each molecule of sulfur compound negating the chemical consequences of many quanta: (C6H5)2C-OH + AS' -> (C6H5)2C = O + ASH; (CH3)2C-OH + ASH -> (CH3)2C = 0 + AS'. Proof of the mechanism is found in: equilibration of initially present mercaptan or disulfide during inhibition; in racemization of optically active alcohol during inhibition; in deuterium exchange during inhibition. Similar inhibition is seen when only one intermediate radical is formed, as in the benzophenone- benzhydrol and acetophenone-α-methyl-benzyl alcohol systems. Inhibition by sulfur compounds, by the same mechanism, is found in the 60Co γ-ray induced conversion of benzophenone to benzpinacol; naphthalene has no protecting effect on benzophenone in the 60Co system, while quenching the photochemical reaction. The protection by sulfur compounds of solutes against radiation damage thus results from hydrogen atom transfer reactions. The photoreduction of benzophenone in an ether is also inhibited by the sulfur compounds, by hydrogen atom transfer reactions. A mechanism exists in this system

  8. The atomic and molecular reaction statics

    ZHU; ZhengHe


    This work presents a new science called atomic and molecular reaction statics (AMRS). There are four parts for AMRS, i.e. the group theoretical derivation of molecular electronic states, the principle of microscopic reversibility, the principle of microscopic transitivity and the optimum energy process rule. AMRS has been developed for about twenty years.

  9. Primary reactions of recoiling germanium atoms

    75Ge recoils are made using the (n,2n) reaction. By analogy with Si recoils, two divalent species are suggested as intermediates in the recoil-germane reaction, one formed by H abstraction and the other formed by insertion only. A series of moderator and competition experiments were conducted. Of the noble gases, Kr is the most efficient moderator at removing kinetic energy from the recoils. Xe has a special effect due to its low ionization potential. A reaction scheme is proposed with two routes to digermane, one from a hot neutral atom and the other from a positive ion. 8 figures

  10. Variation of kinetic isotope effect in multiple proton transfer reactions

    B Saritha; M Durga Prasad


    Recently, we had suggested that the motion along the promoter mode in the first part of the IRC of proton transfer reaction enhances the delocalization of electrons on the acceptor atom into the * orbital of the donor-hydrogen covalent bond, and as a consequence weakens it. This leads to a reduction of the barrier to the proton transfer as well as the stretching frequency of donor-hydrogen bond. An extension of this to the concerted multiple proton transfer reactions implies that the kinetic isotope effect in such reaction depends exponentially on the number of protons that are being transferred. Computational evidence on three systems, (HF)3, formic acid dimer, and (H2O) clusters is provided to support this assertion.

  11. Atom addition reactions in interstellar ice analogues

    Linnartz, Harold; Fedoseev, Gleb


    This review paper summarizes the state-of-the-art in laboratory based interstellar ice chemistry. The focus is on atom addition reactions, illustrating how water, carbon dioxide and methanol can form in the solid state at astronomically relevant temperatures, and also the formation of more complex species such as hydroxylamine, an important prebiotic molecule, and glycolaldehyde, the smallest sugar, is discussed. These reactions are particularly relevant during the dark ages of star and planet formation, i.e., when the role of UV light is restricted. A quantitative characterization of such processes is only possible through dedicated laboratory studies, i.e., under full control of a large set of parameters such as temperature, atom-flux, and ice morphology. The resulting numbers, physical and chemical constants, e.g., barrier heights, reaction rates and branching ratios, provide information on the molecular processes at work and are needed as input for astrochemical models, in order to bridge the timescales t...

  12. Intermolecula transfer and elimination of molecular hydrogen in thermal reactions of unsaturated organic compounds

    Suria, S.


    Two reactions which are important to coal liquefaction include intermolecular transfer and the elimination of two hydrogen atoms. We have designed several model reactions to probe the viability of several hydrogen transfer and elimination pathways. This report described studies on these reactions using organic model compounds.

  13. Chain reaction. History of the atomic bomb

    Henri becquerel tracked down in 1896 a strange radiation, which was called radioactivity by Marie Curie. In the following centuries German scientists Max Planck, Albert Einstein and Werner Heisenberg presented fundamental contributions to understand processes in the atomic nucleus. At Goettingen, center of the international nuclear physics community, the American student J. Robert Oppenheimer admit to this physical research. In the beginning of 1939 the message of Otto Hahns' nuclear fission electrified researchers. The first step, unleashing atomic energy, was done. A half year later the Second World War begun. And suddenly being friend with and busily communicating physicians were devided into hostile power blocs as bearers of official secrets. The author tells in this exciting book the story of the first atomic bomb as a chain reaction of ideas, discoveries and visions, of friendships, jealousy and intrigues of scientists, adventurers and genius. (orig./GL)

  14. Classical Helium Atom with Radiation Reaction

    Camelio, G; Galgani, L


    We study a classical model of Helium atom in which, in addition to the Coulomb forces, the radiation reaction forces are taken into account. This modification brings in the model a new qualitative feature of a global character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that in all such models most initial data lead to a spontaneous breakdown of the atom. A further modification is that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant manifold of special physical interest, the zero--dipole manifold, that corresponds to motions in which no energy is radiated away (in the dipole appro...

  15. Thermally-generated reactive intermediates: Trapping of the parent ferrocene-based o-quinodimethane and reactions of diradicals generated by hydrogen-atom transfers

    Ferrocenocyclobutene is prepared by flash vacuum pyrolysis (FVP) of the N-amino-2-phenylaziridine hydrazone of 2-methylferrocenealdehyde. In the second section of this dissertation, a series of hydrocarbon rearrangements were observed. FVP of o-allyltoluene at 0.1 Torr (700--900 C) gives 2-methylindan and indene, accompanied by o-propenyltoluene. FVP of 2-methyl-2'-vinylbiphenyl gives 9-methyl-9,10-dihydrophenanthrene, which fits the proposed mechanism. However, FVP of 2-(o-methylbenzyl)styrene gives mainly anthracene and 1-methylanthracene. This cyclization reaction was also successful with o-allylphenol and o-(2-methylallyl)phenol

  16. Thermally-generated reactive intermediates: Trapping of the parent ferrocene-based o-quinodimethane and reactions of diradicals generated by hydrogen-atom transfers

    Ferguson, J.M.


    Ferrocenocyclobutene is prepared by flash vacuum pyrolysis (FVP) of the N-amino-2-phenylaziridine hydrazone of 2-methylferrocenealdehyde. In the second section of this dissertation, a series of hydrocarbon rearrangements were observed. FVP of o-allyltoluene at 0.1 Torr (700--900 C) gives 2-methylindan and indene, accompanied by o-propenyltoluene. FVP of 2-methyl-2`-vinylbiphenyl gives 9-methyl-9,10-dihydrophenanthrene, which fits the proposed mechanism. However, FVP of 2-(o-methylbenzyl)styrene gives mainly anthracene and 1-methylanthracene. This cyclization reaction was also successful with o-allylphenol and o-(2-methylallyl)phenol.

  17. Quantum mechanical tunneling reaction in solid hydrogen and solid alkane at low temperature, tunneling of hydrogen atom and hydrogen molecule

    Tunneling reactions of hydrogen-atom-transfer and hydrogen-molecule-transfer were studied by use of γ-irradiation and ESR in solid hydrogen at 4 K and solid 2,3-dimethylbutane at 77 K, respectively. (author)

  18. Pairing interaction and two-nucleon transfer reactions

    Potel, Gregory; Barranco, Francisco; Vigezzi, Enrico; Broglia, Ricardo A


    Making use of the fact that the collective modes associated with the spontaneous (static and dynamic) violation of gauge invariance in atomic nuclei (pairing rotations and pairing vibrations) are amenable to a simple, quite accurate nuclear structure description (BCS and QRPA respectively), it is possible to quantitatively test the reaction mechanism which is at the basis of two-nucleon transfer reactions, specific probe of pairing in nuclei. With the help of the static and dynamic mean field spectroscopic amplitudes, taking into account successive and simultaneous transfer channels properly corrected because of non-orthogonality effects, as well as describing the associated elastic channels in terms of experimentally determined optical potentials, one obtains absolute, two-particle transfer differential cross sections which provide an overall account of the data within experimental errors. One of the first results connected with such quantitative studies of pairing correlations in nuclei is the observation o...

  19. Resonance effects in fusion and transfer reactions

    Recent results from fusion and transfer reactions are reviewed together with information they provide for understanding resonance phenomena present in other channels. From present understanding of elastic scattering to a consideration of fusion and the direct reaction channels the discussion covers light nucleus--nucleus systems with targets of A = 10 to 18, reactions of 12C and 16O ions on target nuclei A = 20 to 58, an attempt to characterize the relevant features which have emerged thus far, and parallels with the behaviors observed in the light systems. 69 references

  20. Molecular polarizabilities in aqueous proton transfer reactions

    Dipole polarizabilities of individual ions and molecules are computed from first principles in three condensed-phase systems: pure water, pure hydrofluoric acid, and an equimolar mixture of water and hydrofluoric acid in which HF is mostly ionized. We find that the polarizability of fluorine and oxygen centers varies linearly with the value of the bond order, which measures the local degree of advancement of the ionization reaction F-H+H2O[Fδ-·H·δ+OH2]F-+H3O+. This observation explains the validity of the Lorentz-Lorenz formula for mixtures of acids and water and could have important practical consequences concerning the construction of empirical polarizable reactive force fields. Our results are consistent with the Mulliken charge-transfer picture of proton transfer reactions. The present results also suggest that the average isotropic polarizability of a chemical entity changes substantially only when that entity is involved in charge-transfer processes.

  1. Transfer reaction code with nonlocal interactions

    Titus, L J; Nunes, F M


    We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, $(d,N)$ or $(N,d)$, including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of $A(d,N)B$ or $B(N,d)A$. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of $E_d=10-70$ MeV, and provides cross sections with $4\\%$ accuracy.

  2. A new state of nuclear matter observed in transfer reactions

    The cross section curves for the formation, at the barrier, of trans-target isotopes of a heavy element by bombardment of a heavy target with various heavy ions, and those for the formation of isotopes of a superheavy element by complete fusion projectile and target, both are similar to the distribution of the neutron number N of a fission fragment around its most probable value. This situation suggests that nucleons are transferred according to one and the same law in the fission reaction and in the transfer reactions: This law results from the creation of a new state of nuclear matter, having a lifetime of only 0.17 yoctosecond, and causing uncertainties in the neutron number N of the product amounting to 2.54 atomic mass unit, as measured by J. Terrell in his study of the prompt neutron emission.

  3. Chemical reaction between single hydrogen atom and graphene

    We study chemical reaction between a single hydrogen atom and a graphene, which is the elemental reaction between hydrogen and graphitic carbon materials. In the present work, classical molecular dynamics simulation is used with modified Brenner's empirical bond order potential. The three reactions, that is, absorption reaction, reflection reaction and penetration reaction, are observed in our simulation. Reaction rates depend on the incident energy of the hydrogen atom and the graphene temperature. The dependence can be explained by the following mechanisms: (1) The hydrogen atom receives repulsive force by π-electrons in addition to nuclear repulsion. (2) Absorbing the hydrogen atom, the graphene transforms its structure to the 'overhand' configuration such as sp3 state. (3) The hexagonal hole of the graphene is expanded during the penetration of the hydrogen atom. (author)

  4. Conformational Dependence of a Protein Kinase Phosphate Transfer Reaction

    Henkelman, Graeme; Tung, Chang-Shung; Fenimore,, P W; McMahon, Benjamin H


    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase (PKA) are calculated by plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In the TC, we calculate that the reactants and products are nearly isoenergetic with a 0.2 eV barrier; while phosphate transfer is unfavorable by over 1.2 eV in the RC, with an even higher barrier. With the protein in the TC, the motions involved in reaction are small, with only P$_\\gamma$ and the catalytic proton moving more than 0.5 \\AA. Examination of the structures reveals that in the RC the active site cleft is not completely closed and there is insufficient space for the phosphorylated serine residue in the product state. Together, these observations imply that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by...

  5. Soliton Atom Laser with Quantum State Transfer Property

    LIU Xiong-Jun; JING Hui; GE Mo-Lin


    @@ We study the nonlinear effects in the quantum states transfer technique from photons to matter waves in the three-level case, which may provide the formation of a soliton atom laser with nonclassical atoms. The validity of quantum transfer mechanism is confirmed in the presence of the intrinsic nonlinear atomic interactions. The accompanied frequency chirp effect is shown to have no influence on the grey solitons formed by the output atom laser and the possible quantum depletion effect is also briefly discussed.

  6. What happens actually in multinucleon transfer reactions?

    In the 90Zr+208Pb reaction at 560 MeV identical Gaussian isotopic distributions having a width of 2.5 u are observed for products of Z comprised between 40 and 32: Are they really due to a multineutron pick-up process accompanying any proton stripping, as believed today? In fact they are distributions of the neutron number N of the product around its most probable value: This uncertainty in N results from the lifetime of only 0.17 yoctosecond of a new state of nuclear matter, which has been also found in the fission reaction. Interestingly, the new state is characterized by the disappearance of any proton charge and might be triggered, in fission, by a combined shifting of the proton phase against the neutron phase of ordinary matter: It may be asked whether this state is triggered, in transfer reactions, by the crossing of the Coulomb barrier, at which any proton charge should logically disappear.

  7. Reactions of Hot Tritiúm Atoms with Amino Acids

    In the existing literature there is a lack of systematic data on the interaction of tritium recoil atoms with amino acids, yet such data, in conjunction with results already obtained for organic acids and amines, could help in determining the mechanism of hot reactions in relation to the structure of compounds (chain length, functional substitutes). A study was made of the yields from the reaction of hot tritium atoms: (1) with amino acids having lengthened chains, and (2) with amino acids having a carbon chain of constant length, but with various functional substitutes. For this purpose mixtures of lithium carbonate and the acids under study were irradiated for 15 min with a slow neutron flux of 0.87 x 1013 cm2/s. Analysis was carried out on a gas chromatography unit with interchangeable columns (molecular sieves, and liquid petrolatum on kieselguhr) and with paper chromatography. Although the data obtained for the radiation survival capacity of amino acids as a function of carbon chain length were at variance with a basic tenet of radiation chemistry according to which the conservation of molecules increases in proportion to the length of their chains, the data can be explained in terms of an intramolecular transfer of energy along the carbon chain from the collision site of the hot atom to the hydroxyl group, and subsequent ''de-excitation''; on the other hand, although the energy, of tritium recoil atoms is greater than that of the chemical bond, the latter nevertheless exerts an influence on the radiation conservation of molecules with a carbon chain of constant length but with various substitutes. (author)

  8. Activation entropy of electron transfer reactions

    Milischuk, A A; Newton, M D; Milischuk, Anatoli A.; Matyushov, Dmitry V.; Newton, Marshall D.


    We report microscopic calculations of free energies and entropies for intramolecular electron transfer reactions. The calculation algorithm combines the atomistic geometry and charge distribution of a molecular solute obtained from quantum calculations with the microscopic polarization response of a polar solvent expressed in terms of its polarization structure factors. The procedure is tested on a donor-acceptor complex in which ruthenium donor and cobalt acceptor sites are linked by a four-proline polypeptide. The reorganization energies and reaction energy gaps are calculated as a function of temperature by using structure factors obtained from our analytical procedure and from computer simulations. Good agreement between two procedures and with direct computer simulations of the reorganization energy is achieved. The microscopic algorithm is compared to the dielectric continuum calculations. We found that the strong dependence of the reorganization energy on the solvent refractive index predicted by conti...

  9. Effects of Nonlocality on Transfer Reactions

    Titus, Luke J


    We solved the nonlocal scattering and bound state equations using the Perey-Buck type interaction, and compared to local equivalent calculations. Using the distorted wave Born approximation we construct the T-matrix for (p,d) transfer on 17O, 41Ca, 49Ca, 127Sn, 133Sn, and 209Pb at 20 and 50 MeV. Additionally we studied (p,d) reactions on 40Ca using the the nonlocal dispersive optical model. We have also included nonlocality consistently into the adiabatic distorted wave approximation and have investigated the effects of nonlocality on on (d,p) transfer reactions for deuterons impinged on 16O, 40Ca, 48Ca, 126Sn, 132Sn, 208Pb at 10, 20, and 50 MeV. We found that for bound states the Perry corrected wave functions resulting from the local equation agreed well with that from the nonlocal equation in the interior region, but discrepancies were found in the surface and peripheral regions. Overall, the Perey correction factor was adequate for scattering states, with the exception for a few partial waves. Nonlocality...

  10. Study of the reaction of carbon with atomic oxygen

    This research thesis reports the study of reactions of carbon when in contact with atomic oxygen in order to have a better understanding of the combustion mechanism. It appears that, at room temperature, oxygen atoms impacting the carbon surface do not all react with this surface (the reaction shock efficiency is very low). At temperatures higher than 200 C, all atoms which reach the surface react with it and the efficiency is much higher. The study of the reaction rate with respect to temperature allows three domains of reaction conditions to be distinguished according to the stability of formed surface oxides. The initial degassing of carbon results in a temporary excitation of the reaction rate, even with atomic oxygen. Whatever is the temperature, reaction is localised at the vicinity of the sample outer surface (this means that the regime is constantly diffusion). The BET surface of carbons does not vary with the reaction. As texture, the structure of the different carbons does not seem to have an influence on the reaction with atomic oxygen. Even though results are obtained in very different temperature ranges (600 C with O2, less than 200 C with atomic oxygen), there is an analogy between some phenomena noticed with atomic oxygen and molecular oxygen: surface oxides play a prevailing role

  11. Atomic transfers between implanted bioceramics and tissues in orthopaedics surgery

    Irigaray, J L; Guibert, G; Jallot, E; democrite-00023281, ccsd


    We study transfers of ions and debris from bioceramics implanted in bone sites. A contamination of surrounding tissues may play a major role in aseptic loosening of the implant. For these reasons, bioceramics require studies of biocompatibility and biofunctionality . So, in addition to in vitro studies of bioceramics, it is essential to implant them in vivo to know body reactions. We measured the concentration of mineral elements at different time intervals after implantation over a whole cross-section. We found a discontinuity of the mineral elements (Ca, P, Sr, Zn, Fe) at the interface between the implant and the receiver. The osseous attack is not global but, on the contrary, centripetal. Moreover, the fit of the concentration time course indicates that the kinetics of ossification is different for each atomic element and characterizes a distinct biological phenomenon

  12. A crystalline singlet phosphinonitrene: a nitrogen atom-transfer agent.

    Dielmann, Fabian; Back, Olivier; Henry-Ellinger, Martin; Jerabek, Paul; Frenking, Gernot; Bertrand, Guy


    A variety of transition metal-nitrido complexes (metallonitrenes) have been isolated and studied in the context of modeling intermediates in biological nitrogen fixation by the nitrogenase enzymes and the industrial Haber-Bosch hydrogenation of nitrogen gas into ammonia. In contrast, nonmetallic nitrenes have so far only been spectroscopically observed at low temperatures, despite their intermediacy in a range of organic reactions. Here, we report the synthesis of a bis(imidazolidin-2-iminato)phosphinonitrene, which is stable at room temperature in solution and can even be isolated in the solid state. The bonding between phosphorus and nitrogen is analogous to that observed for metallonitrenes. We also show that this nitrido phosphorus derivative can be used to transfer a nitrogen atom to organic fragments, a difficult task for transition metal-nitrido complexes. PMID:22997335

  13. Large-momentum-transfer Bragg interferometer with strontium atoms

    Mazzoni, T; Del Aguila, R; Salvi, L; Poli, N; Tino, G M


    We report on the first atom interferometer based on Bragg diffraction in a fountain of alkaline-earth atoms, namely $^{88}$Sr. We demonstrate large momentum transfer to the atoms up to eight photon recoils and the use of the interferometer as a gravimeter with a sensitivity $\\delta g/g=4\\times 10^{-8}$. Thanks to the special characteristics of strontium atoms for precision measurements, this result opens a new way for experiments in fundamental and applied physics.

  14. Charge transfer reaction laser with preionization means

    Lauderslager, J. B.; Pacala, T. J. (Inventor)


    A helium-nitrogen laser is described in which energy in the visible range is emitted as a result of charge transfer reaction between helium ions and nitrogen molecules. The helium and nitrogen are present in a gas mixture at several atmospheres pressure, with a nitrogen partial pressure on the order of a pair of main discharge electrodes, the gas mixture is preionized to prevent arcing when the discharge pulse is applied. The preionization is achieved by the application of a high voltage across a pair of secondary electrodes which are spaced apart in a direction perpendicular to the spacing direction of the main discharge electrodes and the longitudinal axis of the space in which the gas mixture is contained. Feedback, by means of a pair of appropriately spaced mirrors, is provided, to produce coherent energy pulses at a selected wavelength.

  15. Reactions the private life of atoms

    Atkins, Peter


    Through an innovative, closely integrated design of images and text, and his characteristically clear, precise, and economical exposition, Peter Atkins explains the processes involved in chemical reactions. He begins by introducing a 'tool kit' of basic reactions, such as precipitation, corrosion, and catalysis, and concludes by showing how these building blocks are brought together in more complex processes such as photosynthesis.

  16. Activation entropy of electron transfer reactions

    We report microscopic calculations of free energies and entropies for intramolecular electron transfer reactions. The calculation algorithm combines the atomistic geometry and charge distribution of a molecular solute obtained from quantum calculations with the microscopic polarization response of a polar solvent expressed in terms of its polarization structure factors. The procedure is tested on a donor-acceptor complex in which ruthenium donor and cobalt acceptor sites are linked by a four-proline polypeptide. The reorganization energies and reaction energy gaps are calculated as a function of temperature by using structure factors obtained from our analytical procedure and from computer simulations. Good agreement between two procedures and with direct computer simulations of the reorganization energy is achieved. The microscopic algorithm is compared to the dielectric continuum calculations. We found that the strong dependence of the reorganization energy on the solvent refractive index predicted by continuum models is not supported by the microscopic theory. Also, the reorganization and overall solvation entropies are substantially larger in the microscopic theory compared to continuum models

  17. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.


    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  18. Do Spin State and Spin Density Affect Hydrogen Atom Transfer Reactivity?

    Saouma, Caroline T.; Mayer, James M.


    The prevalence of hydrogen atom transfer (HAT) reactions in chemical and biological systems has prompted much interest in establishing and understanding the underlying factors that enable this reactivity. Arguments have been advanced that the electronic spin state of the abstractor and/or the spin-density at the abstracting atom are critical for HAT reactivity. This is consistent with the intuition derived from introductory organic chemistry courses. Herein we present an alternative view on t...

  19. Proton transfers in the Strecker reaction revealed by DFT calculations

    Shinichi Yamabe


    Full Text Available The Strecker reaction of acetaldehyde, NH3, and HCN to afford alanine was studied by DFT calculations for the first time, which involves two reaction stages. In the first reaction stage, the aminonitrile was formed. The rate-determining step is the deprotonation of the NH3+ group in MeCH(OH-NH3+ to form 1-aminoethanol, which occurs with an activation energy barrier (ΔE≠ of 9.6 kcal/mol. The stereochemistry (R or S of the aminonitrile product is determined at the NH3 addition step to the carbonyl carbon of the aldehyde. While the addition of CN− to the carbon atom of the protonated imine 7 appears to scramble the stereochemistry, the water cluster above the imine plane reinforces the CN− to attack the imine group below the plane. The enforcement hinders the scrambling. In the second stage, the aminonitrile transforms to alanine, where an amide Me-CH(NH2-C(=O-NH2 is the key intermediate. The rate-determining step is the hydrolysis of the cyano group of N(amino-protonated aminonitrile which occurs with an ΔE≠ value of 34.7 kcal/mol. In the Strecker reaction, the proton transfer along the hydrogen bonds plays a crucial role.

  20. Electron transfer, ionization, and excitation in atomic collisions: Progress report

    The fundamental processes of electron transfer, ionization, and excitation in ion-atom collisions are being studied at Penn State by Winter. (The related work of Alston, who recently came to Penn State, is not described here since he is not at present funded by DOE.) These collision processes are treated in the context of simple one- or two-electron systems in order to provide unambiguous results and reveal more clearly the collisional mechanisms. Three coupled-state calculations are being carried out over the present three-year period and are discussed here: a Sturmian-pseudostate study of electron transfer in collisions between protons and the hydrogenic ions He+, Li2+, Be3+, ...; a triple-center, atomic-state study of ionization in collisions between α particles and H(ls) atoms and between protons and He+(ls) ions; and a coupled-state study of electron transfer and excitation in collisions between protons and neutral He atoms

  1. Two-nucleon transfer reactions with form factor models

    The theory of two-nucleon transfer reactions is considered. Nuclear reactions are considered with triton or 3He particles which are used as projectiles in stripping reactions and as detected particles in pick-up reactions. In each channel we have a four-particle problem, three of them are nucleons and the fourth is a heavy particle. These transfer reactions are studied on the basis of the generaled R-matrix method. Different channel functions of the sub-clusters in the triton and 3He particles are included. Model form factors are obtained and are used in two-nucleon transfer reactions. Differential cross-sections of different two-nucleon transfer reactions are calculated and are found in good agreement with the experimental data. The correct normalization and spectroscopic factors are obtained. (author)

  2. [Electron transfer, ionization, and excitation in atomic collisions]: Progress report

    The fundamental processes of electron transfer, ionization, and excitation in ion-atom collisions are being studied. These collision processes are treated in the context of simple one- or two-electron systems in order to provide unambiguous results and reveal more clearly the collisional mechanisms. As outlined in the original proposal, three coupled-state calculations are being carried out over the present three-year period: a Sturmian-pseudostate study of ionization in collisions between protons and the hydrogenic ions He+, Li2+, Be3+, ...; a triple-center, atomic-state study of ionization in collisions between α particles and H(ls) atoms and between protons and He+(ls) ions; and an atomic-state study of electron transfer and excitation in collisions between protons and neutral He atoms. 12 refs

  3. The mechanism of chemisorption of hydrogen atom on graphene: Insights from the reaction force and reaction electronic flux

    At the PBE-D3/cc-pVDZ level of theory, the hydrogen chemisorption on graphene was analyzed using the reaction force and reaction electronic flux (REF) theories in combination with electron population analysis. It was found that chemisorption energy barrier is mainly dominated by structural work (∼73%) associated to the substrate reconstruction whereas the electronic work is the greatest contribution of the reverse energy barrier (∼67%) in the desorption process. Moreover, REF shows that hydrogen chemisorption is driven by charge transfer processes through four electronic events taking place as H approaches the adsorbent surface: (a) intramolecular charge transfer in the adsorbent surface; (b) surface reconstruction; (c) substrate magnetization and adsorbent carbon atom develops a sp3 hybridization to form the σC-H bond; and (d) spontaneous intermolecular charge transfer to reach the final chemisorbed state

  4. Single-collision studies of energy transfer and chemical reaction

    Valentini, J.J. [Columbia Univ., New York, NY (United States)


    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  5. Reactions of carbon atoms in pulsed molecular beams

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)


    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  6. Reaction of tungsten anion clusters with molecular and atomic nitrogen

    Kim, Young Dok; Stolcic, Davor; Fischer, Matthias; Ganteför, Gerd


    Ultraviolet photoelectron spectra for WnN-2 (n=1 8) clusters produced by addition of atomic and molecular nitrogen on W anion clusters are presented. Evidence is provided that molecular chemisorption of N2 is more stable than the dissociative one on tungsten anion clusters consisting of eight atoms or less, which is completely different from the results on tungsten bulk surfaces. A general tendency toward molecular chemisorption for small clusters can be explained by reduced charge transfer f...

  7. Electron transfer, ionization, and excitation atomic collisions

    Basic atomic-collision processes at intermediate and high energies are being studied theoretically at Penn State by Alston and Winter. In the high velocity regime, single-electron capture is treated using a high order multiple-scattering approach; extensive comparison with experiment and analysis of mechanisms have been made. Fitting the calculated amplitude with a simple analytic form, the asymptotic velocity dependence of the cross section is obtained. The effect on the capture amplitude of altering the inner part of the internuclear potential has also been explored. In the intermediate velocity regime, earlier work on collisions between protons and hydrogenic-ion targets using a coupled-state approach is being extended to the two-electron helium target. 29 refs

  8. Study of Cold Potassium Atom - Calcium Ion Reactions

    Egodapitiya, Kisra; Gang, Shu; Clark, Robert; Brown, Kenneth


    We report on our progress towards constructing a hybrid system for studying reactions between cold Potassium (K) atoms and cold Calcium (Ca+) ions. Ca+ ions will be trapped and Doppler-cooled inside a linear quadrupole ion trap. Cold K atoms will be created inside a magneto optical trap, such that the ion and the atoms are in an overlapping volume. Trapping and re-pumping beams for the Potassium MOT are derived from the same laser with wavelength 766 nm using two acousto optic modulators. The reaction products will be detected using a time-of- flight mass spectrometer that is designed to detect radially ejected ions. The main objective of this experiment is to study the rate coefficients, and identification of reaction channels between cold K atoms and Ca+ ions. Subsequently this setup will be used to study reactions between cold K atoms and sympathetically cooled molecular ions such as CaO+, and to study internal state quenching of molecular ions.

  9. Muon transfer from hot muonic hydrogen atoms to neon

    A negative muon beam has been directed on adjacent solid layers of hydrogen and neon. Three targets differing by their deuterium concentration were investigated. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. The time structure of the muonic neon X-rays follows the exponential law with a disappearance rate corresponding to the one of μ-p atoms in each target. The rates λppμ and λpd can be extracted

  10. [Electron transfer, ionization and excitation in atomic collisions

    The research being carried out at Penn State by Winter and Alston addresses the fundamental atomic-collision processes of electron transfer, ionization, and excitation. Winter has focussed attention on intermediate and, more recently, higher collision energies -- proton energies of at least about 50 keV -- for which coupled-state approaches are appropriate. Alston has concentrated on perturbative approaches to symmetric ion-ion/atom collisions at high energies and to asymmetric collisions at intermediate to high energies

  11. Hydrated electron production by reaction of hydrogen atoms with hydroxide ions: A first-principles molecular dynamics study

    The solvated electron production by reaction between the H atom and the hydroxide anion was studied using Density Functional Theory based first-principles molecular dynamics. The simulation reveals a complex mechanism, controlled by proton transfers in the coordination sphere of the hydroxide and by the diffusion of the H atom in its solvent cavity. We formulate the hypothesis, based on a coupling between classical and first-principles molecular dynamics, that these two processes give rise to a lag time for the reaction that would explain the H atom extremely small reactivity compared to other radical species. Furthermore, the reaction observed gives an original insight in excess electron solvation. (authors)

  12. H atom transfer of collinear OH…O system

    WU, Tao(吴韬); CHEN, Xian-Yang(陈先阳); PENG, Jian-Bo(彭建波); JU, Guan-Zhi(居冠之); JU, Guan-Zhi(居冠之)


    A quantum mechanical calculation was performed to study the hydrogen atom transfer of collinear OH…O/OD…O system,for which Delves ' coordinates and R-matrix propagation method were applied in a Melius-Blint potential energy surface. The calculation result showed that the state-state H atom transfer probability comported strong oscillation phenomena and collision delay time of the title system was in the fs-ps time scale. The kinetic isotope effect was calculated in this work too.

  13. Modulation transfer spectroscopy of ytterbium atoms in hollow cathode lamp

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (authors)

  14. Liquid drop effects in subbarrier transfer reactions

    Reaction products from a multitude of binary channels are observed to emerge at large c.m. angles at subbarrier energies for the 50Ti + 93Nb system. The energy spectra of these products and the distance where they first emerge indicate that these reaction products result from the neck which is formed outside the Coulomb barrier. 9 refs., 5 figs

  15. Heavy ion transfer reactions: Status and perspectives

    L Corradi


    With the large solid angle magnetic spectrometer (PRISMA) coupled to the -array (CLARA), extensive investigations of nuclear structure and reaction dynamics have been carried out. In the present paper aspects of these studies will be presented, focussing more closely on the reaction mechanism, in particular on the properties of quasielastic and deep inelastic processes and on measurements at energies far below the Coulomb barrier.

  16. Quantifying electron transfer reactions in biological systems

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A


    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling...... quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to...

  17. Photochemical and hot H atom reactions of acetaldehyde

    Photolysis and hot hydrogen atom reactions of acetaldehyde have been studied simultaneously not only with a cadmium but also with a zinc resonance lamp as the light source. Contrary to previous results, new products (acetone, ethanol, 2-propanol, ethyl acetoacetate, and diacetone alcohol) are identified in the photolysis of acetaldehyde. On the other hand, the principal products in decreasing order from the hot atom reaction with acetaldehyde have been established to be hydrogen, biacetyl, methane, carbon monoxide, and ethanol, whereas acetone and ethylene existed as minor products. A study of product quantum yields at 214 nm vs. various [CH3CHO]/[CH2S] ratios are reported. The formation of several unexpected products in these studies strongly suggested that the aldehyde functional group of acetaldehyde has an unsaturated character relative to the addition of both hydrogen atoms and methyl radicals. This latter new observation and accompanying mechanisms are discussed. 2 figures, 6 tables

  18. Photoredox Reaction of Triazidomercurate(II). Generation of Stable Mercury Atoms under Ambient Conditions

    Kunkely, Horst; Vogler, Arnd


    Upon ligand-to-metal charge-transfer excitation the complex [Hg(N3)3]− in ethanol underwent a photoredox reaction (λirr = 254 nm; Ø = 0.02): [HgII(N3)3]− → Hg0+ 3N2 + N3−. Elemental mercury was released in the form of metal atoms which are stable under ambient conditions.

  19. Kinematical coincidence method in transfer reactions

    Acosta, L.; Amorini, F. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Auditore, L. [INFN Gruppo Collegato di Messina and Dipartimento di Fisica, Università di Messina (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cardella, G., E-mail: [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Chatterjiee, M.B. [Saha Institute for Nuclear Physics, Kolkata (India); De Filippo, E. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Francalanza, L.; Gianì, R. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Grassi, L. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Rudjer Boskovic Institute, Zagreb (Croatia); Grzeszczuk, A. [Institut of Physics, University of Silesia, Katowice (Poland); La Guidara, E. [INFN—Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Lanzalone, G. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Facoltà di Ingegneria e Architettura, Università Kore, Enna (Italy); Lombardo, I. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Loria, D.; Minniti, T. [INFN Gruppo Collegato di Messina and Dipartimento di Fisica, Università di Messina (Italy); Pagano, E.V. [INFN—Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); and others


    A new method to extract high resolution angular distributions from kinematical coincidence measurements in binary reactions is presented. Kinematics is used to extract the center of mass angular distribution from the measured energy spectrum of light particles. Results obtained in the case of {sup 10}Be+p→{sup 9}Be+d reaction measured with the CHIMERA detector are shown. An angular resolution of few degrees in the center of mass is obtained. The range of applicability of the method is discussed.

  20. Kinematical coincidence method in transfer reactions

    Acosta, L; Auditore, L; Berceanu, I; Cardella, G; Chatterjiee, M B; De Filippo, E; FrancalanzA, L; Gianì, R; Grassi, L; Grzeszczuk, A; La Guidara, E; Lanzalone, G; Lombardo, I; Loria, D; Minniti, T; Pagano, E V; Papa, M; Pirrone, S; Politi, G; Pop, A; Porto, F; Rizzo, F; Rosato, E; Russotto, P; Santoro, S; Trifirò, A; Trimarchi, M; Verde, G; Vigilante, M


    A new method to extract high resolution angular distributions from kinematical coincidence measurements in binary reactions is presented. Kinematic is used to extract the center of mass angular distribution from the measured energy spectrum of light particles. Results obtained in the case of 10Be+p-->9Be+d reaction measured with the CHIMERA detector are shown. An angular resolution of few degrees in the center of mass is obtained.

  1. Probing transitional regions with nuclear transfer reactions

    Experimental probes which may provide ways to assess differences between presently competing theories for transitional nuclei are of great current interest. In this paper one-neutron transfer data for 52Te nuclei and one-proton transfer data for a long chain of 61Pm nuclei are discussed, with special emphasis on what may be learned from cross sections for weakly excited high- spin states with the parity of the intruding h(sub 11/2) orbitals in these regions. The data for the Pm nuclei covers the full range from the closed N=82 shell to the good rotors (N=92) and exhibits how the proton spectrum responds to increasing the neutron number of the system. The population of the states is discussed within the framework of the coupled-channels-Born-approximation (CCBA), including a critical evaluation of current recipes for calculation of transfer and scattering form factors. (Auth.)

  2. Nucleon transfer reactions in D.W.B.A

    The DWBA for one nucleon transfer reaction is described as simply and completely as possible to show the possibilities and limits of this method. The extraction of spectroscopic factors is described in the appendix. (authors)

  3. Coherent and semi-coherent neutron transfer reactions

    Neutron transfer reactions are proposed to account for anomalies reported in Pons-Fleischmann experiments. The prototypical reaction involves the transfer of a neutron (mediated by low frequency electric or magnetic fields) from a donor nucleus to virtual continuum states, followed by the capture of the virtual neutron by an acceptor nucleus. In this work we summarize basic principles, recent results and the ultimate goals of the theoretical effort


    Gales, S.


    Transfer reactions, investigated a high incident energy (from 100 to 300 MeV), have considerably increased our knowledge of the nuclear response function to a particular simple mode of excitation of the nucleus. These reactions are particularly well suited to the study of high spin inner and outer subshells. The advantages of such approach are illustrated using few characteristic examples. a) Strong selectivity in angular momentum transfer, determination of the spin J of the inner hole state ...

  5. Probing nucleon-nucleon correlations via heavy ion transfer reactions

    Szilner S.


    Full Text Available The revival of transfer reaction studies benefited from the construction of the new generation large solid angle spectrometers, coupled to large γ arrays. The recent results of γ-particle coincident measurements demonstrate a strong interplay between single-particle and collective degrees of freedom that is pertinent to the reaction dynamics. By studies of transfer of pairs, valuable information on the component responsible for particle correlations has been derived.

  6. Radical zinc-atom-transfer-based carbozincation of haloalkynes with dialkylzincs

    Fabrice Chemla


    Full Text Available The formation of alkylidenezinc carbenoids by 1,4-addition/carbozincation of dialkylzincs or alkyl iodides based on zinc atom radical transfer, in the presence of dimethylzinc with β-(propargyloxyenoates having pendant iodo- and bromoalkynes, is disclosed. Formation of the carbenoid intermediate is fully stereoselective at −30 °C and arises from a formal anti-selective carbozincation reaction. Upon warming, the zinc carbenoid is stereochemically labile and isomerizes to its more stable form.

  7. Transfer reactions at the neutron dripline with triton target

    Two-neutron transfer to $^{9}$Li will populate the ground state of $^{11}$Li as well as low-lying resonances in a way that is complementary to studies of these states performed at higher beam energies. We aim at detecting the charged particles from the transfer reactions as well as neutrons coming from the decay of possible $^{11}$Li resonances.

  8. Coherent Transfer of Electronic Wavepacket Motion Between Atoms

    Zhou, Tao; Richards, B. G.; Jones, R. R.


    We have shown that electron correlations, induced by controlled dipole-dipole (DD) interactions, can enable the coherent transfer of electronic wavepacket motion from atoms to their neighbors. In the experiment, a 5 ns tunable dye laser excites Rb atoms in a MOT to the 25s state in a weak static electric field for which the tunable 25s 33 s 24p34p DD interaction is resonant. A picosecond THz pulse then further excites each Rydberg atom into a coherent superposition, of 25s and 24p states. The evolution of this mixed-parity wavepacket is characterized by time-dependent oscillations in the electric dipole moment, with a period of 2.9 ps. Approximately 5 ns after the wavepacket creation, a second 5 ns dye-laser promotes a second set of atoms from the 5p level into the 33s state. Because of the DD interaction, the second dye laser actually creates atom pairs whose electronic states are correlated via the resonant DD coupling. A 33 s + 34p wavepacket, oscillating with the same 2.9 ps period as the 25 s + 24p wavepacket, develops on the second set of atoms as a result of the correlation. A second, time-delayed ps THz pulse enables the detection of the coherent wavepacket motion on the two sets of atoms. This research has been supported by the NSF.

  9. Correlated energy transfer between two ultracold atomic species

    Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter


    We study a single atom as an open quantum system, which is initially prepared in a coherent state of low energy and oscillates in a one-dimensional harmonic trap through an interacting ensemble of NA bosons, held in a displaced trap [arXiv:1410.8676]. The non-equilibrium quantum dynamics of the total system is simulated by means of an ab-initio method, giving us access to all properties of the open system and its finite environment. In this talk, we focus on unraveling the interplay of energy exchange and correlations between the subsystems, which are coupled in such a spatio-temporally localized manner. We show that an inter-species interaction-induced level splitting accelerates the energy transfer between the atomic species for larger NA, which becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom. By analyzing correlations between intra-subsystem excitations, certain energy transfer channels are shown to be (dis-)favored depending on the instantaneous direction of transfer.

  10. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    Hou, H [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry


    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  11. Transfer of electricity quotas under the Atomic Energy Act

    On April 27, 2002, the 'Act of the Planned Termination of the Use of Nuclear Power for Industrial Electricity Generation - Atomic Energy Act' entered into force. It was preceded, among other things, by the 'Agreement between the Federal Government and the Power Utilities of June 14, 2000' in which the Red-Gree federal government and the operators of nuclear power plants had agreed on a timetable of termination and on the conditions of nuclear power plant operation for the residual plant operating life. One major part of that Agreement, which later was incorporated also in the Atomic Energy Act, are provisions about flexibiling the residual periods of operation of existing nuclear power plants. The arguments underlying the act on opting out of the use of nuclear power cite, as a key reason for the possibility to transfer electricity quotas, the constitutional principle of protection of bona fide acts. The transfer possibility opened up in the law is to 'allow the best possible residual periods of operation in the light of both plant operation and the national economy' to be agreed upon for each individual nuclear power plant. In principle, the Atomic Energy Act provides for any transfer of electricity quotas from one German nuclear power plant to another. An approval procedure is required for transfer from younger to older plants. Transfers from older to younger plants can be arranged without any approval. The article covers the basic legal principles and consequences, the details of the approval procedure, and the transfer of the electricity quotas attributed to the Muelheim-Kaerlich nuclear power plant. (orig.)

  12. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    Basilevsky, M. V.; Mitina, E. A. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); Odinokov, A. V. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); National Research Nuclear University “MEPhI,” 31, Kashirskoye shosse, Moscow (Russian Federation); Titov, S. V. [Karpov Institute of Physical Chemistry, 3-1/12, Building 6, Obuha pereulok, Moscow (Russian Federation)


    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ{sub 0}=ℏω{sub 0}/k{sub B}T where ω{sub 0} is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ{sub 0} < 1 − 3) and for low (ξ{sub 0}≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the

  13. The pentafluorostyrene endeavours with atom transfer radical polymerization - quo vadis?

    Hvilsted, Søren


    The versatility of the atom transfer radical polymerization (ATRP) of pentafluorostyrene (FS) is comprehensively evaluated. The ATRP of a wide range of monomers derived from FS is likewise discussed with emphasis on the potential polymer applications. A large number of block and star copolymers c...... exploited for Li+ ion electrolytes. The convenient grafting of PFS through ‘click’ chemistry to a polysulfone and subsequent phosphonation of the PFS grafts seem very beneficial for the fabrication of proton conducting materials with high conductivity...

  14. Dynamical Theory of Charge Transfer Between Complex Atoms and Surfaces

    Chaudhuri, Basudev; Marston, Brad


    An existing dynamical quantum many-body theory of charge transfer(A. V. Onufriev and J. B. Marston, Phys. Rev. B 53), 13340 (1996); J. Merino and J. B. Marston, Phys. Rev. B 58, 6982 (1998). describes atoms with simple s-orbitals, such as alkalis and alkaline-earths, interacting with metal surfaces. The many-body equations of motion (EOM) are developed systematically as an expansion in the number of surface particle-hole excitations. Here we generalize this theory to describe atoms with richer orbital structures, such as atomic oxygen. In the simplest version of the model, only the single-particle p_z-orbitals of the atom, the ones oriented perpendicular to the surface, participate directly in resonant charge transfer as they have the largest overlap with the metallic wavefunctions. However, as the several-electron Russell-Saunders eigenstates, labeled by total angular momenta quantum numbers J, L, and S, are built out of products of single-particle orbitals, non-trivial matrix elements must be incorporated into the many-body EOM's. Comparison to recent experimental results(A. C. Lavery, C. E. Sosolik, and B. H. Cooper, Nucl. Instrum. Meth. B 157), 42 (1999); A. C. Lavery et al. to appear in Phys. Rev. B. on the scattering of low-energy oxygen ions off Cu(001) surfaces is made.

  15. Nitrogen Atom Transfer From High Valent Iron Nitrides

    Johnson, Michael D. [New Mexico State Univ., Las Cruces, NM (United States); Smith, Jeremy M. [Indiana Univ., Bloomington, IN (United States)


    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  16. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst

    Choi, Chang Hyuck; Kim, Minho; Kwon, Han Chang; Cho, Sung June; Yun, Seongho; Kim, Hee-Tak; Mayrhofer, Karl J. J.; Kim, Hyungjun; Choi, Minkee


    Maximum atom efficiency as well as distinct chemoselectivity is expected for electrocatalysis on atomically dispersed (or single site) metal centres, but its realization remains challenging so far, because carbon, as the most widely used electrocatalyst support, cannot effectively stabilize them. Here we report that a sulfur-doped zeolite-templated carbon, simultaneously exhibiting large sulfur content (17 wt% S), as well as a unique carbon structure (that is, highly curved three-dimensional networks of graphene nanoribbons), can stabilize a relatively high loading of platinum (5 wt%) in the form of highly dispersed species including site isolated atoms. In the oxygen reduction reaction, this catalyst does not follow a conventional four-electron pathway producing H2O, but selectively produces H2O2 even over extended times without significant degradation of the activity. Thus, this approach constitutes a potentially promising route for producing important fine chemical H2O2, and also offers opportunities for tuning the selectivity of other electrochemical reactions on various metal catalysts. PMID:26952517

  17. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst

    Choi, Chang Hyuck; Kim, Minho; Kwon, Han Chang; Cho, Sung June; Yun, Seongho; Kim, Hee-Tak; Mayrhofer, Karl J. J.; Kim, Hyungjun; Choi, Minkee


    Maximum atom efficiency as well as distinct chemoselectivity is expected for electrocatalysis on atomically dispersed (or single site) metal centres, but its realization remains challenging so far, because carbon, as the most widely used electrocatalyst support, cannot effectively stabilize them. Here we report that a sulfur-doped zeolite-templated carbon, simultaneously exhibiting large sulfur content (17 wt% S), as well as a unique carbon structure (that is, highly curved three-dimensional networks of graphene nanoribbons), can stabilize a relatively high loading of platinum (5 wt%) in the form of highly dispersed species including site isolated atoms. In the oxygen reduction reaction, this catalyst does not follow a conventional four-electron pathway producing H2O, but selectively produces H2O2 even over extended times without significant degradation of the activity. Thus, this approach constitutes a potentially promising route for producing important fine chemical H2O2, and also offers opportunities for tuning the selectivity of other electrochemical reactions on various metal catalysts.

  18. Theoretical studies on proton transfer reaction of 3(5)-substituted pyrazoles

    Alireza Najafi Chermahini; Abbas Teimouri


    The inter and intra molecular proton transfer reactions of a series of pyrazole derivatives have been studied by using density functional theory (DFT) andMP2 methods implementing 6-311++G(d,p) atomic basis set. The substituents have been selected to cover a wide range of electronic effects. Proton transfer process was studied for mechanisms including single proton transfer, double proton transfer and proton transfer assisted by a water or ammonia molecule. The results showed single proton transfer reactions for interconversion pyrazole derivatives need highest activation energies in the range of 45.7−51.59 and 49.4−53.96 kcal/mol at B3LYP and MP2 levels, respectively. It was found that for the 3-substituted pyrazoles, electron withdrawing groups form stronger dimers but in the 5-substituted tautomers electron donating groups form stronger hydrogen bond. The double proton transfer reactions between dimers were studied and transition states calculated. The ranges of activation energies were found to be 17.51−19.36 and 17.02−17.80 kcal/mol for the C → E and D → D reactions respectively. In addition, the activation energies for the proton transfer reaction assisted by water or ammonia molecules were found to be in the range of 26.62−31.78 and 17.25−22.46 kcal/mol, respectively, calculated at MP2/6-311++G(d,p) level of theory.

  19. Atom Transfer Radical Polymerization of Functionalized Vinyl Monomers Using Perylene as a Visible Light Photocatalyst.

    Theriot, Jordan C; Ryan, Matthew D; French, Tracy A; Pearson, Ryan M; Miyake, Garret M


    A standardized technique for atom transfer radical polymerization of vinyl monomers using perylene as a visible-light photocatalyst is presented. The procedure is performed under an inert atmosphere using air- and water-exclusion techniques. The outcome of the polymerization is affected by the ratios of monomer, initiator, and catalyst used as well as the reaction concentration, solvent, and nature of the light source. Temporal control over the polymerization can be exercised by turning the visible light source off and on. Low dispersities of the resultant polymers as well as the ability to chain-extend to form block copolymers suggest control over the polymerization, while chain end-group analysis provides evidence supporting an atom-transfer radical polymerization mechanism. PMID:27166728

  20. Construction of the isocopalane skeleton: application of a desulfinylative 1,7-hydrogen atom transfer strategy.

    Xiao, Xiong; Xu, ZhongYu; Zeng, Qian-Ding; Chen, Xi-Bo; Ji, Wen-Hao; Han, Ying; Wu, PeiYing; Ren, Jiangmeng; Zeng, Bu-Bing


    Two attractive chirons, aldehyde 6 and chloride 7, exhibiting functionalized ent-spongiane-type tricyclic skeletons (ABC ring system), have been constructed and their absolute configurations have been studied by NMR spectroscopy and confirmed by single-crystal X-ray diffraction. Both of these chirons are derived from commercially available andrographolide in good yield. Aldehyde 6 is obtained through a novel K2 S2 O8 -catalyzed aquatic ring-closing reaction of allylic sodium sulfonate and intramolecular 1,7-hydrogen atom transfer process. Further mechanistic investigations demonstrate that the 1,7-hydrogen atom transfer is a free-radical process, whereby hydrogen migrates from C18 to C17, as evidenced by double-18- deuterium-labeled isotope experiments. Prospective applications of these two chiral sources are also discussed. PMID:25907201

  1. The Coulomb integrals and the diffraction model of transfer reactions

    New asymptotic expressions for the Coulomb integrals are derived and compared with numerical results, the Watson asymptotics and the WKB approximations. The analytical expressions for the Coulomb integrals are used in cross section calculations for single-nucleon transfer reactions in the framework of the diffraction model. The case of the zero orbital angular momentum transfer is considered. The interference of the Fresnel and Fraunhofer parts of the reaction amplitude are discused in detail. The undertaken treatment can be useful for the interpretation of the associated experimental data and the results of DWBA calculations. (orig.)

  2. Muonium as a probe of hydrogen-atom reactions

    Muonium is a light isotope of hydrogen and can be used as a tracer substitute for hydrogen to investigate liquid-phase hydrogen-atom reactions not amenable to study by more conventional means. The residual polarization method of muon spin rotation is illustrated by an investigation of the reaction of muonium with sodium thiosulphate in aqueous solution. The rate constant has been determined directly from measurements of muonium decay rates in very dilute solutions, ksub(M) =(1.5 +-0.4) x 1010 dm3 mol-1 s-1. Possible reaction mechanisms have been explored by analysis of the field and concentration dependence of the diamagnetic signal amplitude in concentrated solutions. The conclusion is that hydrogen atoms react with thiosulphate, probably first forming a radical adduct HSSO32- which decomposes in 1 ns or less to give HS- + SO3-, or possibly H+ + .S- + SO32-. The consequences of time-dependent rate constants on the residual-polarization analysis are discussed in an appendix. (author)

  3. Mass transfer with complex reversible chemical reactions. II: Parallel reversible chemical reactions

    Versteeg, G.F.; Kuipers, J.A.M.; Beckum, van F.P.H.; Swaaij, van W.P.M.


    An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and co

  4. Single proton transfer reactions on odd-even nuclei

    This thesis is devoted to the study of one proton transfer reactions, performed with the use of the magnetic spectrograph QMG/2 of the KVI, in two regions of the mass table. Stripping and pickup reactions on the odd-A target nuclei 193Ir and 197Au are described in the first part. The experimental spectroscopic factors obtained are used to test several collective models that are based on coupling between bosons (phonons) and fermions. In the second part, the proton stripping reactions on 113In and 115In are studied. Shell model calculations are performed and applied to the experimental results. (Auth.)

  5. Heating-Assisted Atom Transfer in the Scanning Tunneling Microscope

    Grigorescu, M


    The effects of a voltage pulse on the localization probability for a Xe atom prepared in a pure state localized on the STM surface at 0 temperature is investigated by numerically integrating the time-dependent Schroedinger equation. In these calculations the environmental interactions are neglected, and voltage pulses of 20 and 7 ns with symmetric triangular and trapezoidal shapes are considered. The atom dynamics at an environmental temperature of 4 K is studied in the frame of a stochastic, non-linear Liouville equation for the density operator. It is shown that the irreversible transfer from surface to tip may be explained by thermal decoherence rather than by the driving force acting during the application of the voltage pulse.

  6. Electron transfer reactions involving porphyrins and chlorophyll a

    Electron transfer reactions involving porphyrins (P) and quinones (Q) have been studied by pulse radiolysis. The porphyrins used were tetraphenylporphyrin (H2TPP), its tetracarboxy derivative (H2TCPP), the sodium and zinc compounds (Na2TPP and ZnTPP), and chlorophyll a (Chl a). These compounds were found to be rapidly reduced by electron transfer from (CH3)2CO-. Reduction by (CH3)2COH was rapid in aqueous solutions but relatively slow in i-PrOH solutions. Transient spectra of the anion radicals were determined and, in the case of H2TCPP-., a pK = 9.7 was derived for its protonation. Electron-transfer reactions from the anion radical of H2TCPP to benzoquinone, duroquinone, 9,10-anthraquinone 2-sulfonate, and methylviologen occur in aqueous solutions with rate constants approx. 107-109 M-1 s-1 which depend on the pH and the quinone reduction potential. Reactions of Na2TPP-., ZnTPP-., and Chl a-. with anthraquinone in basic i-PrOH solutions occur with rate constants approx. 109 M-1 s-1. The spectral changes associated with these electron-transfer reactions as observed over a period of approx. 1 ms indicated, in some cases, the formation of an intermediate complex [P...Q-.]. 8 figures, 2 tables

  7. Modelling of mass transfer in combination with radical reactions

    Hoorn, J. A. A.; Versteeg, G. F.


    The diffusion-reaction equations for different model versions have been solved using a finite-differencing technique. In all models a reactant A is transferred from the gas to the liquid phase and reacts in the liquid with B to form P. The calculations comprised a simple stoichiometric model, a syst

  8. Towards neutron drip line via transfer-type reactions

    Possibilities of production of light neutron-rich isotopes 24,26O, 32Ne, 36,38Mg, 42Si and 56,58,60Ca in transfer-type reactions are analyzed. The optimal conditions for their production are suggested. The measurement of the excitation function can allow us to estimate the binding energy of exotic nuclei

  9. Living atom transfer radical polymerization of 4-acetoxystyrene

    Gao, Bo; Chen, Xianyi; Ivan, Bela;


    Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene (1), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with a,a'-dibromoxylene(2)/CuBr/2,2-bipyridine(bpy) as...... initiating system. A linear (M) over bar(n), versus monomer conversion plot was found in good accordance with the theoretical line, indicating 100% initiating efficiency. The polymerization is first order in respect to monomer up to about 70% monomer conversion. Deviations from linearity at higher conversion...

  10. Organocatalyzed atom transfer radical polymerization driven by visible light.

    Theriot, Jordan C; Lim, Chern-Hooi; Yang, Haishen; Ryan, Matthew D; Musgrave, Charles B; Miyake, Garret M


    Atom transfer radical polymerization (ATRP) has become one of the most implemented methods for polymer synthesis, owing to impressive control over polymer composition and associated properties. However, contamination of the polymer by the metal catalyst remains a major limitation. Organic ATRP photoredox catalysts have been sought to address this difficult challenge but have not achieved the precision performance of metal catalysts. Here, we introduce diaryl dihydrophenazines, identified through computationally directed discovery, as a class of strongly reducing photoredox catalysts. These catalysts achieve high initiator efficiencies through activation by visible light to synthesize polymers with tunable molecular weights and low dispersities. PMID:27033549

  11. Cross sections for ion-molecular reactions in hydrogen systems and for charge transfer reactions of slow multiply charged ions

    Cross sections of ion-molecular reactions in hydrogen systems of H+-H2, H2+-H2 and H3+-H2 and charge transfer cross sections of multiply charged ions in atomic and molecular targets are presented in graphs and tables of the part A, B and C. All data presented for 99 collision systems have been measured systematically using an octo-pole ion beam guide (OPIG) technique till now since 1985. The part A is for ion-molecular reactions in hydrogen systems. In the lower energy region below few eV in center-of-mass systems, it is seen obviously at a glance that the ion-molecular reaction in hydrogen systems is dominated by H3+ formation process. In the energy region from few eV to few hundred eV in center-of-mass systems, many reaction channels of decay processes from intermediate molecular states seem to be opened resonantly. Some of cross section data in the part B for charge transfer reactions of low-charged ions produced by a conventional electron impact type (Nier type) ion source should be noted to strongly depend on the electron impact energy due to contamination of low lying metastable states in projectile ions. The part C is for charge transfer reactions of multiply charged ions extracted from a small type of electron beam ion source (Mini-EBIS). In measurements using the mini-EBIS, no evidence of metastable ions existing in the primary ion beam has been found except for doubly charged ion beam. The higher energy end of the present cross sections are connected with previous data in fairly good

  12. Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

    Brett Kimball Simpson


    Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO{sub 2} films] revealed that MnO{sub 2} film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO{sub 2} films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO{sub 2} films showed that the Fe(III)-doped RuO{sub 2}-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO{sub 2} films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H{sub 2}O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb{sub 10}Sn{sub 20}Ti{sub 70}, Cu{sub 63}Ni{sub 37} and Cu{sub 25}Ni{sub 75} alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu{sub 63}Ni{sub 37} alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO{sub 3}{sup -} at the Cu-Ni alloy electrode is superior to the response at the pure Cu and Ni electrodes. This is explained on the basis of the

  13. Neutron transfer reactions in the fp-shell region

    Neutron transfer reactions were used to study the stability of the magic number N=28 near 56Ni. On one hand the one-neutron pickup (d,p) reaction was used for precision spectroscopy of single-particle levels in 55Fe. On the other hand we investigated the two-neutron transfer mechanism into 56Ni using the pickup reaction 58Ni(vectorp,t)56Ni. In addition the reliability of inverse kinematics reactions at low energy to study exotic nuclei was tested by the neutron transfer reactions t(40Ar,p)42Ar and d(54Fe,p)55Fe using tritium and deuterium targets, respectively, and by comparing the results with those of the normal kinematics reactions. The experimental data, differential cross-section and analyzing powers, are compared to DWBA and coupled channel calculations utilizing the code CHUCK3. By performing the single-neutron stripping reaction (vectord,p) on 54Fe the 1f7/2 shell in the ground state configuration was found to be partly broken. The instability of the 1f7/2 shell and the magic number N=28 was confirmed once by observing a number of levels with Jπ = 7/2- at low excitation energies, which should not be populated if 54Fe has a closed 1f7/2 shell, and also by comparing our high precision experimental data with a large scale shell model calculation using the ANTOINE code [5]. Calculations including a partly broken 1f7/2 shell show better agreement with the experiment. The instability of the 1f7/2 shell was confirmed also by performing the two-neutron pick-up reaction (vectorp,t) on 58Ni to study 56Ni, where a considerable improvement in the DWBA calculation was observed after considering 1f7/2 as a broken shell. To prove the reliability of inverse kinematics transfer reactions at low energies (∝ 2 AMeV), the aforementioned single-neutron transfer reaction (d,p) was repeated using a beam of 54Fe ions and a deuteron target. From this inverse kinematics experiment we were able to reproduce the absolute cross-section and angular distributions for a number of 55Fe

  14. Functionalization of Rhenium Aryl Bonds by O-Atom Transfer

    Bischof, Steven M. [Scripps Research Inst., Jupiter, FL (United States); Cheng, Mu-Jeng [California Inst. of Technology (CalTech), Pasadena, CA (United States); Nielsen, Robert J. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Gunnoe, T. Brent [Univ. of Virginia, Charlottesville, VA (United States); Goddard, William A. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Periana, Roy A. [Scripps Research Inst., Jupiter, FL (United States)


    Aryltrioxorhenium (ArReO3) has been demonstrated to show rapid oxy-functionalization upon reaction with O-atom donors, YO, to selectively generate the corresponding phenols in near quantitative yields. 18O-Labeling experiments show that the oxygen in the products is exclusively from YO. DFT studies reveal a 10.7 kcal/mol barrier (Ar = Ph) for oxy-functionalization with H2O2 via a Baeyer-Villiger type mechanism involving nucleophilic attack of the aryl group on an electrophilic oxygen of YO coordinated to rhenium.

  15. Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species.

    Serrano-Plana, Joan; Aguinaco, Almudena; Belda, Raquel; García-España, Enrique; Basallote, Manuel G; Company, Anna; Costas, Miquel


    The reaction of [Fe(CF3 SO3 )2 (PyNMe3 )] with excess peracetic acid at -40 °C leads to the accumulation of a metastable compound that exists as a pair of electromeric species, [Fe(III) (OOAc)(PyNMe3 )](2+) and [Fe(V) (O)(OAc)(PyNMe3 )](2+) , in fast equilibrium. Stopped-flow UV/Vis analysis confirmed that oxygen atom transfer (OAT) from these electromeric species to olefinic substrates is exceedingly fast, forming epoxides with stereoretention. The impact of the electronic and steric properties of the substrate on the reaction rate could be elucidated, and the relative reactivities determined for the catalytic oxidations could be reproduced by kinetic studies. The observed fast reaction rates and high selectivities demonstrate that this metastable compound is a truly competent OAT intermediate of relevance for nonheme iron catalyzed epoxidations. PMID:27071372

  16. Proton-Coupled Electron Transfer Reactions with Photometric Bases Reveal Free Energy Relationships for Proton Transfer.

    Eisenhart, Thomas T; Howland, William C; Dempsey, Jillian L


    The proton-coupled electron transfer (PCET) oxidation of p-aminophenol in acetonitrile was initiated via stopped-flow rapid-mixing and spectroscopically monitored. For oxidation by ferrocenium in the presence of 7-(dimethylamino)quinoline proton acceptors, both the electron transfer and proton transfer components could be optically monitored in the visible region; the decay of the ferrocenium absorbance is readily monitored (λmax = 620 nm), and the absorbance of the 2,4-substituted 7-(dimethylamino)quinoline derivatives (λmax = 370-392 nm) red-shifts substantially (ca. 70 nm) upon protonation. Spectral analysis revealed the reaction proceeds via a stepwise electron transfer-proton transfer process, and modeling of the kinetics traces monitoring the ferrocenium and quinolinium signals provided rate constants for elementary proton and electron transfer steps. As the pKa values of the conjugate acids of the 2,4-R-7-(dimethylamino)quinoline derivatives employed were readily tuned by varying the substituents at the 2- and 4-positions of the quinoline backbone, the driving force for proton transfer was systematically varied. Proton transfer rate constants (kPT,2 = (1.5-7.5) × 10(8) M(-1) s(-1), kPT,4 = (0.55-3.0) × 10(7) M(-1) s(-1)) were found to correlate with the pKa of the conjugate acid of the proton acceptor, in agreement with anticipated free energy relationships for proton transfer processes in PCET reactions. PMID:27500804

  17. Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom.

    Feng, J; Liu, K; Graf, M; Lihter, M; Bulushev, R D; Dumcenco, D; Alexander, D T L; Krasnozhon, D; Vuletic, T; Kis, A; Radenovic, A


    Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulfide (MoS2) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beams in transmission electron microscope (TEM). This nanopore fabrication process is time-consuming, expensive, not scalable, and hard to control below 1 nm. Here, we exploited the electrochemical activity of MoS2 and developed a convenient and scalable method to controllably make nanopores in single-layer MoS2 with subnanometer precision using electrochemical reaction (ECR). The electrochemical reaction on the surface of single-layer MoS2 is initiated at the location of defects or single atom vacancy, followed by the successive removals of individual atoms or unit cells from single-layer MoS2 lattice and finally formation of a nanopore. Step-like features in the ionic current through the growing nanopore provide direct feedback on the nanopore size inferred from a widely used conductance vs pore size model. Furthermore, DNA translocations can be detected in situ when as-fabricated MoS2 nanopores are used. The atomic resolution and accessibility of this approach paves the way for mass production of nanopores in 2D membranes for potential solid-state nanopore sequencing. PMID:25928894

  18. Ionisation of atomic hydrogen at intermediate momentum transfer

    Relative differential cross sections for the asymmetric coplanar (e,2e) reaction have been measured in three energy-sharing regions, for two of which the ionisation peak is about 1 a.u. off the Bethe ridge. Momentum transfer is intermediate between large (binary) and small (dipole) values, where the distorted-wave impulse and second Born approximations respectively give a good account of the experimental data. In addition to these approximations the distorted-wave Born approximation is calculated. It is somewhat superior to the distorted-wave impulse approximation and very much better than the second Born approximation

  19. Mass transfer model for two-layer TBP oxidation reactions

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development

  20. Electron-Wavepacket Reaction Dynamics in Proton Transfer of Formamide

    Nagashima, Kengo; Takatsuka, Kazuo


    We apply the semiclassical Ehrenfest theory, which provides electron wavepacket dynamics coupled to nuclear motion, to a study of water-assisted proton relay in formamide compared with a forced proton transfer in gas phase, both of which are associated with the tautomerization. We start with the enol (imidic acid) form HO-CH═NH and track its proton transfer process to the keto (amide) form O═CH-NH2. Identifying the fact that this is indeed a "proton transfer process" rather than hydrogen-atom migration in terms of radical character on the proton, we show a collective quantum flux of electrons, which flows backward against the proton motion. This backward flux compensates the electrons tightly covering the proton, as represented in the Mulliken charge. The enol form formamide is one of the simplest species in the group O═CR1-NHR2, which is a unit of polypeptide. In the gas phase, the nitrogen atom may have a pyramidal structure as in the ammonium molecule; therefore, the C-N bond may allow low barrier rotation along it. This rotation is strongly prohibited by the formation of the double bond C═N induced by the proton transfer. Not only the dynamical process of proton transfer itself but also the electronic structures left behind are greatly affected by the presence of water molecule(s) and polar solvents. In discussing the relative stability of the formamide after the proton transfer, the following resonance structures are frequently mentioned, O--CH═N+H2 ↔ O═CH-NH2. Here we address the dynamical manifestation of the resonance structures in terms of our dynamical electron theory.

  1. Atom-efficient metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles.

    Pérez, I; Sestelo, J P; Sarandeses, L A


    The novel metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles is described. Triorganoindium compounds (R(3)In) containing alkyl, vinyl, aryl, and alkynyl groups are efficiently prepared from the corresponding lithium or magnesium organometallics by reaction with indium trichloride. The cross-coupling reaction of R(3)In with aryl halides and pseudohalides (iodide 2, bromide 5, and triflate 4), vinyl triflates, benzyl bromides, and acid chlorides proceeds under palladium catalysis in excellent yields and with high chemoselectivity. Indium organometallics also react with aryl chlorides as under nickel catalysis. In the cross-coupling reaction the triorganoindium compounds transfer, in a clear example of atom economy, all three of the organic groups attached to the metal, as shown by the necessity of using only 34 mol % of indium. The feasibility of using R(3)In in reactions with different electrophiles, along with the high yields and chemoselectivities obtained, reveals indium organometallics to be useful alternatives to other organometallics in cross-coupling reactions. PMID:11457178

  2. Light induced electron transfer reactions of metal complexes

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed

  3. Understanding quark flow in high momentum transfer exclusive reactions

    This paper reports on a 5.9 GeV/c secondary beam of pions, kaons, and protons directed into a liquid hydrogen target that has been used to study high momentum transfer exclusive reactions of the form A + B → C + D. The high sensitivity of this experiment has allowed the differential cross section for 19 two body exclusive reactions to be measured around 90 degrees in the center of mass frame. These high statistic measurements confirm the conclusion of an earlier 10 GeV/c experiment which found that the relative magnitudes of the cross sections are consistent with the dominance of the quark interchange diagram

  4. Understanding quark flow in high momentum transfer exclusive reactions

    A 5.9 GeV/c secondary beam of pions, kaons, and protons directed into a liquid hydrogen target has been used to study high momentum transfer exclusive reactions of the form A + B → C + D. The high sensitivity of this experiment has allowed the differential cross section for 19 two body exclusive reactions to be measured around 90 degrees in the center of mass frame. These high statistic measurements confirm the conclusion of an earlier 10 GeV/c experiment which found that the relative magnitudes of the cross sections are consistent with the dominance of the quark interchange diagram. 6 refs., 4 fig., 1 tab

  5. Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies.

    Pan, Xiangcheng; Fang, Cheng; Fantin, Marco; Malhotra, Nikhil; So, Woong Young; Peteanu, Linda A; Isse, Abdirisak A; Gennaro, Armando; Liu, Peng; Matyjaszewski, Krzysztof


    Photoinduced metal-free atom transfer radical polymerization (ATRP) of methyl methacrylate was investigated using several phenothiazine derivatives and other related compounds as photoredox catalysts. The experiments show that all selected catalysts can be involved in the activation step, but not all of them participated efficiently in the deactivation step. The redox properties and the stability of radical cations derived from the catalysts were evaluated by cyclic voltammetry. Laser flash photolysis (LFP) was used to determine the lifetime and activity of photoexcited catalysts. Kinetic analysis of the activation reaction according to dissociative electron-transfer (DET) theory suggests that the activation occurs only with an excited state of catalyst. Density functional theory (DFT) calculations revealed the structures and stabilities of the radical cation intermediates as well as the reaction energy profiles of deactivation pathways with different photoredox catalysts. Both experiments and calculations suggest that the activation process undergoes a DET mechanism, while an associative electron transfer involving a termolecular encounter (the exact reverse of DET pathway) is favored in the deactivation process. This detailed study provides a deeper understanding of the chemical processes of metal-free ATRP that can aid the design of better catalytic systems. Additionally, this work elucidates several important common pathways involved in synthetically useful organic reactions catalyzed by photoredox catalysts. PMID:26820243

  6. Some Reactions of Recoil Atoms in Solid Inorganic Phosphorus Compounds

    In connection with our interest in the recoil chemistry of radiophosphorus it was considered worthwhile to investigate systems in which tritium recoils can be produced and subsequently react with inorganic anions of phosphorus. One purpose of this investigation was to evaluate the possibility for tritium recoils to replace (''displace'') either an oxygen or a hydrogen atom bound to phosphorus. For instance, oxygen replacement in an orthophosphate ion (PO4)-3 could lead to a (TPO3)-2 ion (phosphite), hydrogen replacement in hypophosphite could lead to (HTPO2). A number of lithium salts of orthophosphoric, phosphorous and hypophosphorous acid were irradiated with neutrons, the nuclear reaction Li6 (n, α)H3 serving as the source for the energetic tritium atoms. Through a step-wise oxidation procedure tritium bound to phosphorus was converted into HTO and radio-assayed by means of liquid scintillation counting. The results indicate that replacement of oxygen by tritium in orthophosphates is highly unlikely. When phosphites and hypophosphites are the target material, an appreciable percentage of the tritium recoils end up bound to phosphorus. The second purpose of this investigation was to determine to what extent the labelling of the tripolyphosphate - P32 anion, formed by recoiling P32 particles in a number of crystalline phosphates, deviates from a uniform distribution. A number of phosphates were irradiated with neutrons. The tripolyphosphate - P32 formed was separated by precipitation as the tris (ethylenediamine) cobalt (III) salt. By means of a step-wise degradation into orthophosphate the distribution of the P32 among the two possible positions in the anion was measured. One result of this study is that when anhydrous orthophosphates are the target material, there is as predicted, a strong preference for the tripolyphosphate - P32 formed to be labelled at the centre. These and other results are discussed in the light of current concepts of ''hot

  7. Isotopic resolution of fission fragments from 238U + 12C transfer and fusion reactions

    Recent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238U beam and a 12C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments. (authors)

  8. Electron transfer reactions in chemistry. Theory and experiment

    Marcus, Rudolph A.


    Since the late 1940s, the field of electron transfer processes has grown enormously, both in chemistry and biology. The development of the field, experimentally and theoretically, as well as its relation to the study of other kinds of chemical reactions, represents to us an intriguing history, one in which many threads have been brought together. In this lecture, some history, recent trends, and my own involvement in this research are described.

  9. [Electron transfer, ionization, and excitation in atomic collisions

    Fundamental processes of electron transfer, ionization, and excitation in ion-atom and ion-ion collisions are studied. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-ion core can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. At intermediate collision energies (e.g., proton energies for p-He+ collisions on the order of 100 kilo-electron volts), many electronic states are strongly coupled during the collision, a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. At higher collision energies (million electron-volt energies) the coupling is weaker with, however, many more states being coupled together, so that high-order perturbation theory is essential

  10. Electron transfer, ionization, and excitation in atomic collisions

    The research being carried out at Penn State by Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom (and ion-ion) collisions. The focus is on intermediate- and higher-energy collisions, corresponding to proton energies of about 25 kilo-electron-volts (keV) or larger. At intermediate energies, where the transition probabilities are not small, many states must be coupled in a large calculation, while at higher energies, perturbative approaches may be used. Several studies have been carried out in the current three-year period; most of these treat systems with only one or two electrons, so that fewer approximations need be made and the basic collisional mechanisms can be more clearly described

  11. Temperature dependence of the Cl atom reaction with deuterated methanes.

    Sauer, Frank; Portmann, Robert W; Ravishankara, A R; Burkholder, James B


    Kinetic isotope effect (KIE) and reaction rate coefficients, k1-k4, for the gas-phase reaction of Cl atoms with (12)CH3D (k1), (12)CH2D2 (k2), (12)CHD3 (k3), and (12)CD4 (k4) over the temperature range 223-343 K in 630 Torr of synthetic air are reported. Rate coefficients were measured using a relative rate technique with (12)CH4 as the primary reference compound. Fourier transform infrared spectroscopy was used to monitor the methane isotopologue loss. The obtained KIE values were (12)CH3D: KIE1(T) = (1.227 ± 0.004) exp((43 ± 5)/T); (12)CH2D2: KIE2(T) = (1.14 ± 0.20) exp((191 ± 60)/T); (12)CHD3: KIE3(T) = (1.73 ± 0.34) exp((229 ± 60)/T); and (12)CD4: KIE4(T) = (1.01 ± 0.3) exp((724 ± 19)/T), where KIEx(T) = kCl+(12)CH4(T)/kx(T). The quoted uncertainties are at the 2σ (95% confidence) level and represent the precision of our data. The following Arrhenius expressions and 295 K rate coefficient values (in units of cm(3) molecule(-1) s(-1)) were derived from the above KIE using a rate coefficient of 7.3 × 10(-12) exp(-1280/T) cm(3) molecule(-1) s(-1) for the reaction of Cl with (12)CH4: k1(T) = (5.95 ± 0.70) × 10(-12) exp(-(1323 ± 50)/T), k1(295 K) = (6.7 ± 0.8) × 10(-14); k2(T) = (6.4 ± 1.3) × 10(-12) exp(-(1471 ± 60)/T), k2(295 K) = (4.4 ± 0.9) × 10(-14); k3(T) = (4.2 ± 1.0) × 10(-12) exp(-(1509 ± 60)/T), k3(295 K) = (2.53 ± 0.6) × 10(-14); and k4(T) = (7.13 ± 2.3) × 10(-12) exp(-(2000 ± 120)/T), k4(295 K) = (0.81 ± 0.26) × 10(-14). The reported uncertainties in the pre-exponential factors are 2σ and include estimated systematic errors in our measurements and the uncertainty in the reference reaction rate coefficient. The results from this study are compared with previously reported room-temperature rate coefficients for each of the deuterated methanes as well as the available temperature dependent data for the Cl atom reactions with CH3D and CD4. A two-dimensional atmospheric chemistry model was used to examine the implications of the

  12. Photo- and radiation chemical studies of intermediates involved in excited-state electron-transfer reactions

    Excited-state inter- and intramolecular electron-transfer reactions lie at the heart of the most photochemical solar energy conversion schemes. The authors research, which has utilized the techniques of continuous and pulsed photolysis and radiolysis, has focused on three general aspects of these reactions involving transition metal coordination complexes and electron donor-acceptor complexes: i) the effect of solution medium on the properties and quenching of the excited states; ii) the control of the quantum yields of formation of redox products; iii) the mechanism by which reduced species interact with water to yield H2 homogeneously and heterogeneously. EDTA is among the most popular sacrificial electron donors used in model systems. Its role is to scavenge the oxidized form of the photosensitizer in order to prevent its rapid reaction with the reduced form of the electron relay species that results from the electron-transfer quenching of the excited photosensitizer. In systems involving MV2+, the radicals resulting from the oxidation of EDTA can eventually lead to the generation of a second equivalent of MV+; the reducing agent is believed to be a radical localized on the carbon atom alpha to the carboxylate group. The reaction of radiolytically-generated OH/H with EDTA produces this radical directly via H-abstraction or indirectly via deprotonation of the carbon atom adjacent to the nitrogen radical site in the oxidized amine moiety; it reduces MV2+ with rate constants of 2.8 x 109, 7.6 x 109, and 8.5 x 106M-1s-1 at pH 12.5, 8.3, and 4.7, respectively. Degradative decarboxylation of EDTA-radicals and their back electron-transfer reactions are enhanced in acidic solution causing the yield of MV+ to be severely diminished

  13. Analysis of transfer reactions: determination of spectroscopic factors

    An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C12(d,p)C13 reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors

  14. Single nucleon heavy ion transfer reactions on argon isotopes

    Single nucleon transfer reactions, both pickup and stripping, on all three stable isotopes of argon - 36Ar, 38Ar and 40Ar - have been studied using a 11B projectile at a laboratory energy of 116 MeV. Using a gas target, the forward angle reaction cross-sections were measured with a telescope of silicon surface barrier detectors. The shape of the differential cross-section is discussed in terms of a semiclassical reaction analysis. An exact finite range DWBA code has been used to extract the spectroscopic factors of the strongly populated states and the spectroscopic factors are compared with those obtained using light ion transfer reactions. The excitation energies and spectroscopic factors of levels in nuclei in the mass range A=35-41 are modelled using various effective shell model interactions. Both a complete sd shell space and a space incorporating parts of the sd and fp shells have been used. The results of a phenomenological modified surface delta interaction are compared with those of interactions based on the realistic interaction matrix elements of Kuo. (author)

  15. Electron Transfer Reactions: Generalized Spin-Boson Approach

    Merkli, Marco


    We introduce a mathematically rigorous analysis of a generalized spin-boson system for the treatment of a donor-acceptor (reactant-product) quantum system coupled to a thermal quantum noise. The donor/acceptor probability dynamics describes transport reactions in chemical processes in presence of a noisy environment -- such as the electron transfer in a photosynthetic reaction center. Besides being rigorous, our analysis has the advantages over previous ones that (1) we include a general, non energy-conserving system-environment interaction, and that (2) we allow for the donor or acceptor to consist of multiple energy levels lying closely together. We establish explicit expressions for the rates and the efficiency (final donor-acceptor population difference) of the reaction. In particular, we show that the rate increases for a multi-level acceptor, but the efficiency does not.

  16. Adiabatic principles in atom-diatom collisional energy transfer

    This work describes the application of numerical methods to the solution of the time dependent Schroedinger equation for non-reactive atom-diatom collisions in which only one of the degrees of freedom has been removed. The basic method involves expanding the wave function in a basis set in two of the diatomic coordinates in a body-fixed frame (with respect to the triatomic complex) and defining the coefficients in that expansion as functions on a grid in the collision coordinate. The wave function is then propagated in time using a split operator method. The bulk of this work is devoted to the application of this formalism to the study of internal rotational predissociation in NeHF, in which quasibound states of the triatom predissociate through the transfer of energy from rotation of the diatom into translational energy in the atom-diatom separation coordinate. The author analyzes the computed time dependent wave functions to calculate the lifetimes for several quasibound states; these are in agreement with time independent quantum calculations using the same potential. Moreover, the time dependent behavior of the wave functions themselves sheds light on the dynamics of the predissociation processes. Finally, the partial cross sections of the products in those processes is determined with multiple exit channels. These show strong selectivity in the orbital angular momentum of the outgoing fragments, which the author explains with an adiabatic channel interpretation of the wave function's dynamics. The author also suggests that the same formalism might profitably be used to investigate the quantum dynamics of open-quotes quasiresonant vibration-rotation transferclose quotes, in which remarkably strong propensity rules in certain inelastic atom-diatom collision arise from classical adiabatic invariance theory

  17. Multinucleon transfer reactions studied with the new generation spectrometers

    With the advent of large solid angle magnetic spectrometers new possibilities are opened for different kind of studies in low energy heavy ion reactions. In the field of transfer reactions, in particular, one of the most interesting item is how single particle and more complex degrees of freedom, namely pair or cluster ones, or deep inelastic components, act in the transfer process. This, in inclusive studies, can be probed by looking at the behaviour of the differential and total cross sections and total kinetic energy loss distributions of multi-neutron and multi-proton transfer channels. Even more detailed studies can be performed via gamma-particle coincidences. With the new magnetic spectrometer PRISMA coupled to the gamma array CLARA, it is now experimentally possible to measure the transfer strength to specific final states with high efficiency. Valuable information about the structure of those states can be derived from the study of their decay modes. With this kind of set-up the lowest excited levels of neutron rich nuclei moderately far from stability can be investigated, addressing key topics in nuclear spectroscopy, namely shell quenching, nuclear symmetries, clustering aspects in light and heavy nuclei. Similar combination of magnetic spectrometers and gamma arrays installed at radioactive ion beam facilities allow to push these reaction mechanism and spectroscopy studies further away from the stability, both in the neutron rich and proton rich regions. In this talk a selection of recent results in the field will be presented and hints will be given on interesting new experiments to be done next

  18. O atom transfer from nitric oxide catalyzed by Fe(TPP).

    Lin, R; Farmer, P J


    The reaction of NO-Fe(TPP) with low pressures of NO gas proceeds through three distinct transformations, the first of which we suggest is the formation of an N--N-coupled, (NO)(2) adduct intermediate. The subsequent formation of NO(NO(2))Fe(TPP), which under these conditions readily loses NO, suggests that it is formed by addition of free NO(2) to the starting nitrosyl. A mechanism is proposed which implies that the addition of a competitive O atom acceptor would lead to catalytic production of N(2)O. In agreement with the proposed mechanism, the formation of N(2)O is decoupled from the formation of the nitrite by using PPh(3) as the competitive acceptor. The mechanism of O atom transfer was examined by cross-labeling experiments, which show that both O atoms in the intermediate are equivalent, even under catalytic conditions. The formation of an intermediate was confirmed by IR spectroscopy of the heterogeneous reaction of an NO-Fe(TPP) film with gaseous NO, in which transient, isotope-sensitive nu(NO) bands are seen prior to NO(NO(2))Fe(TPP) formation. Mixed (14)N/(15)N label experiments demonstrate coupling between the two bound nitrosyls in the transient species. PMID:11456667

  19. Explicit inclusion of nonlocality in (d,p) transfer reactions

    Titus, L J; Potel, G


    Background: Traditionally, nucleon-nucleus optical potentials are made local for convenience. In recent work we studied the effects of including nonlocal interactions explicitly in the final state for (d,p) reactions, within the distorted wave Born approximation. Purpose: Our goal in this work is to develop an improved formalism for nonlocal interactions that includes deuteron breakup and to use it to study the effects of including nonlocal interactions in transfer (d,p) reactions, in both the deuteron and the proton channel. Method: We extend the finite-range adiabatic distorted wave approximation to include nonlocal nucleon optical potentials. We apply our method to (d,p) reactions on 16O, 40Ca, 48Ca, 126Sn, 132Sn, and 208Pb at 10, 20 and 50 MeV. Results: We find that nonlocality in the deuteron scattering state reduces the amplitude of the wave function in the nuclear interior, and shifts the wave function outward. In many cases, this has the effect of increasing the transfer cross section at the first pea...

  20. Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang


    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

  1. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer.

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang


    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times. PMID:25673261

  2. Electrical double layer effects on ion transfer reactions.

    Lin, Chuhong; Laborda, Eduardo; Batchelor-McAuley, Christopher; Compton, Richard G


    The potential dependence of the thermodynamics and kinetics of ion transfer reactions as influenced by the electrical double layer are studied via two-dimensional free energy surfaces calculated with an extension of the Anderson-Newns Hamiltonian. The Gibbs energy difference between the reduced and oxidized states, the activation barrier and the resulting current-potential curves are investigated as a function of the potential of zero charge and the Debye length, which are applied to characterize the external electric field. It is found that the current-potential curves of different redox systems are distinctly affected by the electrical double layer depending on the charges of the solution-phase and adsorbed species. For the redox couples sensitive to double layer effects, it is shown that the external electric field can cause a decrease in the driving force for the ion transfer process, which leads to the reversible peak current deviating significantly from the ideal, Nernstian predictions and the effective transfer coefficient being less than 1 even though the ion transfer is kinetically fully reversible. PMID:27001630

  3. Sputtered metal source for rate coefficient measurements of asymmetric charge transfer reactions

    Complete text of publication follows. Asymmetric charge transfer (ACT) reactions between noble gas ions and metal atoms play an important role in numerous glow discharge applications. Due to the sputtering effect of ions impinging on the cathode surface significant metal density can be created in the cathode area of dc noble gas discharges. These metal atoms are then ionized and excited in the negative glow region, which is utilized in glow discharge spectroscopy (GDS) applications. ACT represents an important source of excited metal ions in the negative glow. Numerical modeling of the cathode region of a sputtering discharge requires rate coefficient values of ACT reactions as input data [Bogaerts et al. J. Anal. Atom. Spectrom. 11 (1996) 841]. There are rate coefficient values available in the literature only for volatile metals - in combination with different noble gas ions - that can be evaporated at relatively low temperatures (e.g. Hg, Zn, Cd etc.). However, data for other metals (Cu, Fe, Ag, etc.) have not been measured yet. The aim of this work is to build a metal source that can be applied for rate coefficient measurements of ACT reactions. The new sputtered metal source operates at room temperature creating homogeneous spatial distribution of metal atoms in a 9 cm3 region. Four hollow-cathode discharges - placed symmetrically around the central region - provide the needed metal density in the order of 5 x 1011 cm-3 as determined by atomic absorption spectroscopy. The future work focuses on the ACT rate coefficient measurements. The authors kindly acknowledge the support by the MRTN-CT-035459.

  4. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    Ma, Ting


    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  5. Electron transfer pathway analysis in bacterial photosynthetic reaction center

    Kitoh-Nishioka, Hirotaka


    A new computational scheme to analyze electron transfer (ET) pathways in large biomolecules is presented with applications to ETs in bacterial photosynthetic reaction center. It consists of a linear combination of fragment molecular orbitals and an electron tunneling current analysis, which enables an efficient first-principles analysis of ET pathways in large biomolecules. The scheme has been applied to the ET from menaquinone to ubiquinone via nonheme iron complex in bacterial photosynthetic reaction center. It has revealed that not only the central Fe$^{2+}$ ion but also particular histidine ligands are involved in the ET pathways in such a way to mitigate perturbations that can be caused by metal ion substitution and depletion, which elucidates the experimentally observed insensitivity of the ET rate to these perturbations.

  6. Deuteron-proton charge exchange reaction at small transfer momentum

    Ladygina, N B


    The charge-exchange reaction pd -> npp at 1 GeV projectile proton energy is studied. This reaction is considered in a special kinematics, when the transfer momentum from the beam proton to fast outgoing neutron is close to zero. Our approach is based on the Alt-Grassberger-Sandhas formulation of the multiple-scattering theory for the three-nucleon system. The matrix inversion method has been applied to take account of the final state interaction (FSI) contributions. The differential cross section, tensor analyzing power $C_{0,yy}$, vector-vector $C_{y,y}$ and vector-tensor $C_{y,xz}$ spin correlation parameters of the initial particles are presented. It is shown, that the FSI effects play a very important role under such kinematical conditions. The high sensitivity of the considered observables to the elementary nucleon-nucleon amplitudes has been obtained.

  7. Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs

    Hanson, R. W.


    A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction. The reduction of aryl carbonyl compounds to the corresponding methylene derivatives by ammonium formate in the presence of 10% Pd/C at 110°C is compared to their reductive ammonation which occurs at higher temperatures in the absence of the catalyst (the Leuckart reaction). It is suggested that the low cost and simplicity of CTH reactions using ammonium formate as the hydrogen donor, together with the high yields obtained in many cases, make them excellent candidates for inclusion in undergraduate practical programmes. Laboratory instructions are given for the reduction of nitrobenzene to aniline (isolated as benzanilide), benzophenone to diphenylmethanol and fluorenone to fluorene, in all cases using ammonium formate as the hydrogen donor and 10% Pd/C as the catalyst. Thin layer chromatography shows that in each case the product is homogeneous; the yields are essentially quantitative.

  8. Decoupling interfacial reactions between plasmas and liquids: charge transfer vs plasma neutral reactions.

    Rumbach, Paul; Witzke, Megan; Sankaran, R Mohan; Go, David B


    Plasmas (gas discharges) formed at the surface of liquids can promote a complex mixture of reactions in solution. Here, we decouple two classes of reactions, those initiated by electrons (electrolysis) and those initiated by gaseous neutral species, by examining an atmospheric-pressure microplasma formed in different ambients at the surface of aqueous saline (NaCl) solutions. Electrolytic reactions between plasma electrons and aqueous ions yield an excess of hydroxide ions (OH(-)), making the solution more basic, while reactions between reactive neutral species formed in the plasma phase and the solution lead to nitrous acid (HNO2), nitric acid (HNO3), and hydrogen peroxide (H2O2), making the solution more acidic. The relative importance of either reaction path is quantified by pH measurements, and we find that it depends directly on the composition of the ambient background gas. With a background gas of oxygen or argon, electron transfer reactions yielding excess OH(-) dominate, while HNO2 and HNO3 formed in the plasma and by the dissolution of nitrogen oxide (NOx) species dominate in the case of air and nitrogen. For pure nitrogen (N2) gas, we observe a unique coupling between both reactions, where oxygen (O2) gas formed via water electrolysis reacts in the bulk of the plasma to form NOx, HNO2, and HNO3. PMID:24144120

  9. Halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1975--February 14, 1976

    High energy reactions of halogen atoms or ions, activated by nuclear transformations, are being studied in gaseous, high pressure, and condensed phase saturated and unsaturated hydrocarbons, halomethanes, and other organic systems. Experimental and theoretical data are presented in the following areas: systematics of iodine hot atom reactions in halomethanes, reactions and systematics of iodine reactions with pentene and butene isomers, radiative neutron capture activated reactions of iodine with acetylene, gas to liquid to solid transition in hot atom chemistry, kinetic theory applications of hot atom reactions and the mathematical development of caging reactions, solvent dependence of the stereochemistry of the 38Cl for Cl substitution following 37Cl(n,γ)38Cl in liquid meso and dl-(CHFCl)2. A technique was also developed for the radioassay of Al in urine specimens

  10. Energy transfer between eigenmodes in multimodal atomic force microscopy

    We present experimental and computational investigations of tetramodal and pentamodal atomic force microscopy (AFM), respectively, whereby the first four or five flexural eigenmodes of the cantilever are simultaneously excited externally. This leads to six to eight additional observables in the form of amplitude and phase signals, with respect to the monomodal amplitude modulation method. We convert these additional observables into three or four dissipation and virial expressions, and show that these quantities can provide enhanced contrast that would otherwise remain hidden in the original observables. We also show that the complexity of the multimodal impact leads to significant energy transfer between the active eigenmodes, such that the dissipated power for individual eigenmodes may be positive or negative, while the total dissipated power remains positive. These results suggest that the contrast of individual eigenmodes in multifrequency AFM should be not be considered in isolation and that it may be possible to use different eigenfrequencies to probe sample properties that respond to different relaxation times. (paper)

  11. Comparison of implantation reactions with hot atom reactions in geometrical and optical isomers of metal β-diketonates

    A systematic comparison of implantation reactions without atom reactions was performed using geometrical (mer- and fac-) and optical (Δ and Λ) isomers of tris(β-diketonato)metal(III). A regularity was found in irradiated geometrical isomers. The complex yield involved the parent and its isomer form; the parent form could be divided into two parts, one of which (P1) was structure-dependent and the other (P0) nearly independent for both implantation and hot atom reactions. The ratio of isomer to parent I/P was found to be dependent on the nuclear reactions in optical isomers; it was small (< 0.15) in low recoil energy (n, γ) reaction and attained saturation (nearly one half) in higher recoil energy reactions. On the basis of the experimental data probable mechanisms of isomerization and retention were discussed. They involved (1) a directed bond rupture mechanism, (2) a caged twist mechanism and (3) simple recombination for low-energy hot atom reaction and the corresponding mechanisms for high-energy hot atom reaction and implantation reaction. (orig.)

  12. A reaction microscope for studies positron-atom collisions

    Complete text of publication follows. Differential investigations, especially in positron physics, are very time consuming. The data collection takes weeks if not months. In order to reduce the data collection time or increase the accuracy of the measured data, new methods are necessary. A recently developed system combines the advantages of the above mentioned methods i.e. simultaneous energy and angular detection, by measuring the energy and angular distribution of the recoil ion. A further benefit is the 4? collection of the recoil ions comparing with the traditional methods where only a small part of the collision events can be detected. This method, called Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS), has been successfully applied for investigating ion, electron and photon collisions (see [1] and reference therein). When the residual ions are recorded in coincidence with the outgoing fragments, a kinematically complete picture can be determined about the correlated motion of the fragments of atomic and molecular breakup processes. Up till now the COLTRIMS have not been used in positron collision physics due to the serious requirement for the quality of the projectile and the target beam. For good time and position resolution timed projectile beam of about 1mm or less diameter is necessary. For the target beam the requirements are similar: the diameter must be small (around 1 mm) and very dense (1011 - 1013atom/cm3) due to the low projectile beam intensity. A further requirement is the small initial momentum distribution of the target atoms due to the small momentum transfer (0.3-4 a.u.) during collision. (The momentum distribution of He is 5.8 a.u. at room temperature.) The solution is using a supersonic gas target which has small diameter, high density and small momentum distribution. It is about 0.05 - 0.2 a.u. in the jet direction. Application of the COLTRIMS method in positron physics has several advantages in spite of the technical difficulties

  13. 179Ta and 180Ta structure by transfer reactions

    Transfer reactions (α,t); (3He,d); (p,t) and (p,d) have been used to study the nuclear spectroscopy of 179Ta and 180Ta. In 179Ta, 5/2- and 9/2- states of the 1/2(541) configuration have been identified. The core-quasiproton interaction has to be taken into account in order to explain the two-nucleon transfer intensities in the 181Ta(p,t)179Ta reaction. A level scheme has been proposed for 180Ta for the first time. Especially the ground state is identified with the (1+,1) level of the [7/2+(404)sub(p), 9/2+(624)sub(n)] configuration and spin (9-,9) of the configuration [9/2-(514)sub(p), 9/2+(624)sub(n)] has been assigned to the long-lived isomer. From the observed configurations in 180Ta, the matrix elements of the effective residual interaction vsub(np) have been deduced and compared to theoretical predictions

  14. Single-nucleon transfer reactions on 18F

    Simultaneous measurement of the proton-transfer 18F(d, n)19Ne and neutron-transfer 18F(d, p)19F reactions were performed with a 18F radioactive beam at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The experiments clarify the nuclear structure of 19Ne near the proton threshold, which is relevant for understanding the rates of proton-induced reactions on 18F in novae. Analogs for several states in the mirror nucleus 19F have not yet been identified in 19Ne, indicating that the level structure of 19Ne in this region is incomplete. We observed 15 levels in 19Ne from the 18F(d, n)19Ne measurement and 18 levels in 19F from the 18F(d, p)19F measurement. Angular distributions were extracted for all strongly populated states and compared to distorted-wave Born approximation calculations. The angular distributions for all the known states in the two nuclei determined in this work are consistent with their previously assigned spins and parities. The spectroscopic factors determined for these levels in the two nuclei are reported.

  15. The temperature dependence of the three-body reaction rate coefficient for some rare-gas atomic ion-atom reactions in the range 100-300K

    The temperature dependence of some three-body association reaction rate coefficients for some rare-gas atomic ion-rare-gas atom reactions of the type A+ + 2B → AB+ + B have been investigated in the temperature range 100-300 K using a selected ion flow tube technique. The experimental method consists of injecting the ion A+ into the flowing carrier gas B and monitoring the ratio of the concentrations of AB+ to A+ as a function of carrier gas pressure. The three-body association rate coefficients are obtained from an analysis which allows for differential diffusive losses and reaction with impurities in a limited manner. (author)

  16. Probing the pairing interaction through two-neutron transfer reactions

    Margueron J.


    Full Text Available The treatment of the pairing interaction in mean-field-based models is addressed. In particular, the possibility to use pair transfers as A tool to better constrain this interaction is discussed. First, pairing inter-actions with various density dependencies (surface/volume mixing are used in the microscopic Hartree-Fock-Bogoliubov + quasiparticle random-phase approximation model to generate the form factors to be used in reaction calculations. Cross sections for (p,t two-neutron transfer reactions are calculated in the one-step zero-range distorted-wave Born approximation for some Tin isotopes and for incident proton energies from 15 to 35 MeV. Three different surface/volume mixings of A zero-range density-dependent pairing interaction are employed in the microscopic calculations and the sensitivity of the cross sections to the different mixings is analyzed. Differences among the three different theoretical predictions are found espacially for the nucleus 136Sn and they are more important at the incident proton energy of 15 MeV. We thus indicate (p,t two-neutron transfer reactions with very neutron-rich Sn isotopes and at proton energies around 15 MeV as good experimental cases where the surface/volume mixing of the pairing interaction may be probed. In the second part of the manuscript, ground-state to ground-state transitions are investigated. Approximations made to estimate two-nucleon transfer probabilities in ground-state to ground-state transitions and the physical interpretation of these probabilities are discussed. Probabilities are often calculated by approximating both ground states of the initial nucleus A and of the final nucleus A±2 by the same quasiparticle vacuum. We analyze two improvements of this approach. First, the effect of using two different ground states with average numbers of particles A and A±2 is quantified. Second, by using projection techniques, the role of particle number restoration is analyzed. Our analysis

  17. Transference of cold 85Rb atoms from a mirror MOT to U-MOT on an external atom chip

    We have designed an atom chip for manipulating cold atoms with magnetic fields generated by electric currents. Electric wires with a U shape for a quadrupole trap and a Z shape for the Ioffe-Pritchard trap were printed on the 26 mm x 26 mm chip. This chip was bonded on a 16 x 16 x 70 mm3 glass cell. The glass cell was for a mirror MOT. 85Rb atoms are magneto optically trapped near the chip's surface (mirror-MOT); then, the trapped atoms are transferred from the mirror-MOT to the U-MOT by gradually decreasing the magnetic field for the mirror-MOT while increasing the current for the U-MOT. A transfer efficiency of 27.1% was measured by comparing the fluorescence from the atoms of U-MOT and the mirror-MOT.

  18. Kinetics and Mechanism of the Gas-Phase Reaction of Selected Carbonyls with Cl Atoms between 250 and 340 K

    Hasson, A. S.; Algrim, L.; Abdelhamid, A.; Tyndall, G. S.; Orlando, J. J.


    Carbonyls are important products from the gas phase degradation of most volatile organic compounds. Their atmospheric reactions therefore have a significant impact on atmospheric composition, particularly in aged air masses. While the reactions of short-chain linear carbonyls are well understood, the chemistry of larger (> C6) and branched carbonyl is more uncertain. To provide insight into these reactions, the reactions of three carbonyls (methyl isopropyl ketone, MIK; di-isopropyl ketone, DIK; and diethyl ketone, DEK) with chlorine atoms were investigated between 250 and 340 K and 1 atm in the presence and absence of NOx and an HO2 source (methanol). Experiments were performed in a photochemical reactor using a combination of long-path Fourier transform infra-red spectroscopy, proton transfer reaction mass spectrometry and gas chromatography with flame ionization detection. The kinetics were studied using the relative rate technique with butanone and isopropanol as the reference compounds. The Arrhenius expression for the three rate coefficients was determined to be k(DEK+Cl) = 3.87 x 10-11e(2 × 7 kJ/mol)/RT cm3 molecules-1 s-1 , k(MIPK+Cl) = 7.20 x 10-11e(0.2× 8 kJ/mol)/RT cm3 molecules-1 s-1 , and k(DIPK+Cl) = 3.33 x 10-10e(-3× 8 kJ/mol)/RT cm3 molecules-1 s-1 . Measured reaction products accounted for 38-72 % of the reacted carbon and were consistent with strong deactivation of the carbon atom adjacent to the carbonyl group with respect to H-atom abstraction by Cl atoms. The product distributions also provide insight into radical recycling from the organic peroxy + HO2 reaction, and the relative rates of isomerization, fragmentation and reaction with O2 for carbonyl-containing alkoxy radicals. Implications of these results will be discussed.

  19. The reaction efficiency of thermal energy oxygen atoms with polymeric materials

    Koontz, S. L.; Nordine, Paul


    The reaction efficiency of several polymeric materials with thermal-energy (0.04 eV translational energy), ground-state (O3P) oxygen atoms was determined by exposing the materials to a room temperature gas containing a known concentration of atomic oxygen. The reaction efficiency measurements were conducted in two flowing afterglow systems of different configuration. Atomic oxygen concentration measurements, flow, transport and surface dose analysis is presented in this paper. The measured reaction efficiencies of Kapton, Mylar, polyethylene, D4-polyethylene and Tedlar are .001 to .0001 those determined with high-energy ground-state oxygen atoms in low earth orbit or in a high-velocity atom beam. D4-polyethylene exhibits a large kinetic isotope effect with atomic oxygen at thermal but not hyperthermal atom energies.

  20. Skeletal Isomerization and Inter-molecular Hydrogen Transfer Reactions in Catalytic Cracking

    Gao Yongcan; Zhang Jiushun; Xie Chaogang; Long Jun


    Bimolecular hydrogen transfer and skeletal isomerization are the important secondary reac tions among catalytic cracking reactions, which affect product yield distribution and product quality.Catalyst properties and operating parameters have great impact on bimolecular hydrogen transfer and skeletal isomerization reactions. Bimolecular hydrogen transfer activity and skeletal isomerization activity of USY-containing catalysts are higher than that of ZSM-5-containing catalyst. Coke deposition on the active sites of catalyst may suppress bimolecular hydrogen transfer activity and skeletal isomerization activity of catalyst in different degrees. Short reaction time causes a decrease of hydrogen trans fer reaction, but an increase of skeletal isomerization reaction compared to cracking reaction in catalytic cracking process.

  1. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.


    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  2. Chemical reactions of excited nitrogen atoms for short wavelength chemical lasers. Final technical report


    Accomplishments of this program include the following: (1) Scalable, chemical generation of oxygen atoms by reaction of fluorine atoms and water vapor. (2) Production of nitrogen atom densities of 1 {times} 10{sup 1}5 cm{sup {minus}3} with 5% electrical efficiency by injecting trace amounts of fluorine into microwave discharged nitrogen. (3) Production of cyanide radicals by reaction of high densities of N atoms with cyanogen. (4) Production of carbon atoms by reaction of nitrogen atoms with cyanogen or with fluorine atoms and hydrogen cyanide. (5) Confirmation that the reaction of carbon atoms and carbonyl sulfide produces CS(a{sup 3} {Pi}{sub r}), as predicted by conservation of electron spin and orbital angular momenta and as proposed by others under another SWCL program. (6) Production of cyanide radicals by injection of cyanogen halides into active nitrogen and use as spectroscopic calibration source. (7) Demonstration that sodium atoms react with cyanogen chloride, bromide and iodide and with cyanuric trifluoride to produce cyanide radicals. (8) Demonstration of the potential utility of the fluorine atom plus ammonia reaction system in the production of NF(b{sup l}{Sigma}{sup +}) via N({sup 2}D) + F{sub 2}.

  3. Study of the Ne(^3P_2) + CH_3F Electron Transfer Reaction below 1 Kelvin

    Jankunas, Justin; Osterwalder, Andreas


    Relatively little is known about the dynamics of electron transfer reactions at low collision energy. We present a study of Penning ionization of ground state methyl fluoride molecules by electronically excited neon atoms in the 13 $\\mu$eV--4.8 meV (150 mK--56 K) collision energy range, using a neutral-neutral merged beam setup. Relative cross sections have been measured for three Ne($^3P_2$)+ CH$_3$F reaction channels by counting the number of CH$_3$F$^+$, CH$_2$F$^+$, and CH$_3^+$ product ions, as a function of relative velocity between the neon and methyl fluoride molecular beams. Experimental cross sections markedly deviate from the Langevin capture model at collision energies above 20 K. The branching ratios are constant. In other words, the chemical shape of the CH$_3$F molecule, as seen by Ne($^3P_2$) atom, appears not to change as the collision energy is varied, in contrast to related Ne($^3P_J$) + CH$_3$X (X=Cl and Br) reactions at higher collision energies.

  4. Synthesis of Dumbbell-shaped Hyperbranched Amphiphilic Block Copolymer by Controlled Atom Transfer Radical Polymerization

    Kim, In Kyoung; An, Sung Guk; Cho, Chang Gi [Center for Advanced Functional Polymers, Department of Fiber and Polymer Science, Hanyang University, Seoul (Korea); Noh, Si Tae [Department of Chemical Engineering, Hanyang University, Ansan (Korea)


    Amphiphilic block copolymers containing hydrophilic ethylene glycol core and hyperbranched polystyrene (PS) arm were synthesized by atom transfer radical polymerization using hydrophilic macroinitiator and p-chloromethyl styrene (CMS) as AB type monomer. Hydrophilic poly(ethylene glycol)(PEG) macroinitiators with difuntional groups were synthesized by reacting PEG and 2-bromopropionyl bromide. The chemical structure, molecular weight, and polydispersity index of the amphiphilic block copolymer were characterized by {sup 1}H-NMR spectroscopy and GPC analysis. The molecular weight increased as the reaction time increased. Polydispersity index of the obtained polymer was relatively narrow (below 1.39). To control chain density of the hyperbranched PS, styrene and CMS were copolymerized. It was found that amphiphilic block copolymer molecule underwent conformational change in different solvents based on the result for {sup 1}H-NMR spectroscopic analysis. 29 refs., 8 figs., 2 tabs.

  5. Hydrolysis of 4-Acetoxystyrene Polymers Prepared by Atom Transfer Radical Polymerization

    Chen, Xianyi; Jankova, Katja; Kops, Jørgen;


    Hydrolysis of 4-acetoxystyrene polymers prepared by atom transfer radical polymerization was carried out under various reaction conditions. It was found that hydrazinolysis of 4-acetoxystyrene homopolymers, random and block copolymers with styrene in 1,4-dioxane, afforded the corresponding narrow...... dispersed materials with phenolic groups which were substantially free from crosslinkages. Gel permeation chromatographic (GPC) analysis of these polymers revealed different extents of molecular weight distribution (MWD) broadening for the hydrolysis products for the different structures. On the other hand......, by NaOH catalyzed deprotection, the 4-acetoxystyrene polymers including triblock copolymer poly(4-acetoxystyrene-b-isobutylene-b-4-toxystyrene) suffered from some degrees of coupling or even gelation, except for poly(styrene-b-4-acetoxystyrene-b-styrene) which also by this method could be...

  6. Surface modification of nanoporous 1,2-polybutadiene by atom transfer radical polymerization or click chemistry.

    Guo, Fengxiao; Jankova, Katja; Schulte, Lars; Vigild, Martin E; Ndoni, Sokol


    Surface-initiated atom transfer radical polymerization (ATRP) and click chemistry were used to obtain functional nanoporous polymers based on nanoporous 1,2-polybutadiene (PB) with gyroid morphology. The ATRP monolith initiator was prepared by immobilizing bromoester initiators onto the pore walls through two different methodologies: (1) three-step chemical conversion of double bonds of PB into bromoisobutyrate, and (2) photochemical functionalization of PB with bromoisobutyrate groups. Azide functional groups were attached onto the pore walls before click reaction with alkynated MPEG. Following ATRP-grafting of hydrophilic polyacrylates and click of MPEG, the originally hydrophobic samples transformed into hydrophilic nanoporous materials. The successful modification was confirmed by infrared spectroscopy, contact angle measurements and measurements of spontaneous water uptake, while the morphology was investigated by small-angle X-ray scattering and transmission electron microscopy. PMID:20099923

  7. Charge transfer reaction of multi-charged oxygen ions with O2

    Holzscheiter, H. M.; Church, D. A.


    The reaction rates for charge transfer from O2 to doubly and triply charged oxygen atoms are measured in a demonstration of the measurement capabilities of a system at ultrahigh vacuum with low-energy magnetically confined ions. Ions were produced by electron impact ionization of gas within a Penning-type ion trap, with selective removal of unwanted ionization states by radio-frequency resonant excitation. Ion number mass-to-charge ratio spectra obtained at partial pressures of O2 from 9.9 x 10 to the -9th to 1.5 x 10 to the -7th torr yield rate constants of 1.0 x 10 to the -9th cu cm/sec and 2.5 x 10 to the -9th cu cm/sec for the O(2+) and O(3+) reactions, respectively. Measurements made at a 30% increase of the effective axial well depth of the trap demonstrate that the rate constant is essentially energy independent in the energy range studies, implying that the O(2+) cross section for charge transfer has an inverse velocity dependence of the Langevin type, despite a reaction rate lower than the Langevin valve.

  8. Mass transfer in porous media with heterogeneous chemical reaction

    Souza S.M.A.G.Ulson de


    Full Text Available In this paper, the modeling of the mass transfer process in packed-bed reactors is presented and takes into account dispersion in the main fluid phase, internal diffusion of the reactant in the pores of the catalyst, and surface reaction inside the catalyst. The method of volume averaging is applied to obtain the governing equation for use on a small scale. The local mass equilibrium is assumed for obtaining the one-equation model for use on a large scale. The closure problems are developed subject to the length-scale constraints and the model of a spatially periodic porous medium. The expressions for effective diffusivity, hydrodynamic dispersion, total dispersion and the Darcy's law permeability tensors are presented. Solution of the set of final equations permits the variations of velocity and concentration of the chemical species along the packed-bed reactors to be obtained.

  9. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    Zhang, Jiaxu; Xie, Jing; Hase, William L


    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  10. Nonadiabatic effects on population transfer of two Bose-Einstein condensates induced by atomic interaction

    胡正峰; 杜春光; 李师群


    We investigate the stimulated Raman adiabatic passage for Bose-Einstein condensate (BEG) states which are trapped in different potential wells or two ground states of BEG in the same trap. We consider that lasers are nearly resonant with the atomic transitions. The difference of population transfer processes between BEG atoms and usual atoms is that the atomic interaction of the BEG atoms can cause some nonadiabatic effects, which may degrade the process. But with suitable detunings of laser pulses, the effects can be remedied to some extent according to different atomic interactions.

  11. The TIARA Array for the Study of Nucleon Transfer Reactions

    The TIARA array is designed for the study of nucleon transfer reactions in inverse kinematics, using radioactive beams. Crucially, the energies of coincident gamma-rays will be used to give better energy resolution for final excited states than can be achieved by measuring the energies of particles alone. Thus, an extremely compact array of position sensitive silicon strips will fit inside an array of four segmented clover EXOGAM Ge detectors which can each be mounted as close as 50mm from the target. Approximately 90% of 4π is covered by 400μm silicon detectors manufactured using 6-inch technology. Particle ID is by the kinematical correlation between the angle and the deposited energy, measured in coincidence with the beam-like particle recorded near zero degrees. Construction will be complete early in 2003 and the array will be deployed initially at GANIL, in front of the VAMOS spectrometer. An early application will be the reaction d(56Ni,55Ni)t

  12. Multinucleon transfer in the 136Xe+208Pb reaction

    Li, Cheng; Zhang, Fan; Li, Jingjing; Zhu, Long; Tian, Junlong; Wang, Ning; Zhang, Feng-Shou


    The dynamic mechanics in the multinucleon transfer reaction 136Xe+208Pb at an incident energy of Ec .m .=450 MeV is investigated by using the improved quantum molecular dynamics model (ImQMD). The lifetime of the neck directly influences the nucleon exchange and energy dissipation between the projectile and the target. The total-kinetic-energy-mass distributions and excitation energy division of primary binary fragments and the mass distributions of primary fragments at different impact parameters are calculated. The thermal equilibrium between two reaction partners has been observed at the lifetime of a neck larger than 480 fm /c . By using the statistical decay code gemini to describe the de-excitation process of the primary fragments, the isotope production cross sections from Pt to At are compared with the prediction by the dinuclear system and GRAZING model. The calculations indicate that the GRAZING model is suitable for estimating the isotope production cross sections only for Δ Z =-1 to +2; the DNS + gemini calculations underestimate the cross sections in the neutron-rich and neutron-deficient regions; and the ImQMD + gemini calculations give reasonable predictions of the isotope production cross sections for Δ Z =-3 to 0.

  13. A scheme for transferring an unknown atomic entangled state via cavity quantum electrodynamics

    Wu Tao; Ye Liu; Ni Zhi-Xiang


    In this paper, we propose a scheme for transferring an unknown atomic entangled state via cavity quantum electrodynamics (QED). This scheme, which has a successful probability of 100 percent, does not require Bell-state measurement and performing any operations to reconstruct an initial state. Meanwhile, the scheme only involves atomfield interaction with a large detuning and does not require the transfer of quantum information between the atoms and cavity. Thus the scheme is insensitive to the cavity field states and cavity decay. This scheme can also be extended to transfer ring an entangled state of n-atom.

  14. A comparison of pulsed and continuous atom transfer between two magneto-optical traps

    We present the experimental results for a comparison between pulsed and continuous transfer of cold 87Rb atoms between a vapor chamber magneto-optical trap (VC-MOT) and an ultra-high vacuum magneto-optical trap (UHV-MOT) when using a resonant push beam. We find that employing repetitive cycles of a pulsed and unfocused push beam on an unsaturated VC-MOT cloud results in a significantly higher number of atoms transferred to the UHV-MOT than the number obtained with a continuous push beam focused on a continuous VC-MOT. In pulsed transfer, we find that both the VC-MOT loading duration and the push beam duration play important roles in the transfer process and govern the number of atoms transferred to the UHV-MOT. The parameters and processes affecting the transfer have been investigated and are discussed.

  15. On charge transfer in ion-atom collisions at intermediate collision velocities

    The authors study charge transfer at intermediate energies for multielectron ion-atom collisions within the coupled-state impact-parameter method. They point out the importance of assumptions about electronic relaxation by comparing various calculations of cross sections for KK charge transfer in F9+ + Si as a test case. In these calculations, either the unrelaxed Hamiltonian of the atomic model or a relaxed molecular Hamiltonian has been employed, and two-state atomic or molecular basis sets have been used. To correct for the inadequacy of atomic orbitals for close collisions at intermediate energies, the authors propose to add orbitals of the united atom at the two collision centers. With such an atomic basis set, quasimolecular behavior of the system is represented sufficiently well. The authors report on results for the collision system H+ + He+ for which calculations with large molecular and atomic basis sets exist

  16. Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and radical polymerization

    Dhruba Jyoti Haloi; Bishnu Prasad Koiry; Prithwiraj Mandal; Nikhil Kumar Singha


    This investigation reports a comparative study of poly(2-ethylhexyl acrylate) (PEHA) prepared via atom transfer radical polymerization (ATRP), reverse atom transfer radical polymerization (RATRP) and conventional free radical polymerization (FRP). The molecular weights and the molecular weight distributions of the polymers were measured by gel permeation chromatography (GPC) analysis. Structural characterization of the polymers was carried out by 1H NMR and MALDI-TOF-MS analyses. Thermal properties of the polymers were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polymerization results and the thermal properties of PEHAs prepared via ATRP, RATRP and FRP were compared.

  17. Large momentum transfer atom interferometry with Coriolis force compensation

    Kuan, Pei-Chen; Lan, Shau-Yu; Estey, Brian; Haslinger, Philipp; Mueller, Holger


    Light-pulse atom interferometers use atom-photon interactions to coherently split, guide, and recombine freely falling matter-waves. Because of Earth's rotation, however, the matter-waves do not recombine precisely, which causes severe loss of contrast in large space-time atom interferometers. I will present our recent progress in using a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation. Therefore, we improve the contrast and suppress systematic effects, also reach what is to our knowledge the largest spacetime area.

  18. Ab initio Mechanism Study on the Reaction of Chlorine Atom with Formic Acid

    于海涛; 付宏刚; 等


    The potential energy surface(PES) for the reaction of Cl atom with HCOOH is predicted using ab initio molecular orbital calculation methods at UQCIDS(T,full)6-311++G(3df,2p)//UMP2(full)/6-311+G(d,P) level of theory with zero-point vibrational energy (ZPVE) correction.The calculated results show that the reaction mechanism of Cl atom with formic acid is a C-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom with a 3.73kJ/mol reaction barrier height,leading to the formation of cis-HOCO radical which will reacts with Cl atom or other molecules in such a reaction system.Because the reaction barrier height of O-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom which leads to the formation of HCO2 radical is 67.95kJ/mol,it is a secondary reaction channel in experiment,This is in good agreement with the prediction based on the previous experiments.

  19. Schwinger variational calculation of ionization of hydrogen atoms for large momentum transfers

    K Chakrabarti


    Schwinger variational principle is used here to study large momentum transfer cases of electron and positron impact ionization of atomic hydrogen from the ground state at intermediate and moderately high energies. The results appear somewhat better compared to other theories.

  20. The population transfer of high excited states of Rydberg lithium atoms in a microwave field

    Using the time-dependent multilevel approach (TDMA), the properties of high excited Rydberg lithium atom have been obtained in the microwave field. The population transfer of lithium atom are studied on numerical calculation, quantum states are controlled and manipulated by microwave field. It shows that the population can be completely transferred to the target state by changing the chirped rate and field amplitude. (authors)

  1. Pulse radiolysis studies of the reactions of bromine atoms and dimethyl sulfoxide-bromine atom complexes with alcohols

    Dimethylsulfoxide (DMSO)-Br complexes were generated by pulse radiolysis of DMSO/bromomethane mixtures and the formation mechanism and spectral characteristics of the formed complexes were investigated in detail. The rate constant for the reaction of bromine atoms with DMSO and the extinction coefficient of the complex were obtained to be 4.6x109 M-1 s-1 and 6300 M-1 cm-1 at the absorption maximum of 430 nm. Rate constants for the reaction of bromine atoms with a series of alcohols were determined in CBrCl3 solutions applying a competitive kinetic method using the DMSO-Br complex as the reference system. The obtained rate constants were ∼108 M-1 s-1, one or two orders larger than those reported for highly polar solvents. Rate constants of DMSO-Br complexes with alcohols were determined to be ∼ 107 M-1 s-1. A comparison of the reactivities of Br atoms and DMSO-Br complexes with those of chlorine atoms and chlorine atom complexes which are ascribed to hydrogen abstracting reactants strongly indicates that hydrogen abstraction from alcohols is not the rate determining step in the case of Br atoms and DMSO-Br complexes

  2. Hot reactions between tritium atoms and inorganic compounds (H2O,H2S,NH3)

    Hot atom chemical reactions of tritium from nuclear reactions 3He(n,p)T and 6Li(n,α)T or from an accelerator with H2O,D2O,H2S,NH3,ND3 are studied in gaseous and liquid phases. Hot reactive collisions produce mainly HT or DT and the synthesis of the initial tritiated compound HTO, DTO, HTS, NH2T or ND2T. In ND3 the analysis of the conjugated action of scavengers and moderators allows the determination of integral reactivity corresponding to the different hot reactions. Influence of gas pressure or gas-liquid transition is interpreted by the competition between monomolecular decomposition of tritiated compounds and their stabilization by intermolecular energy transfer. Slight isotopic effects measured show a compensation between chemical reactivity and moderating power of H2O and D2O or NH3 and ND3 molecules. 99 refs

  3. Universal four-boson system: dimer-atom-atom Efimov effect and recombination reactions

    Deltuva, A.


    Recent theoretical developments in the four-boson system with resonant interactions are described. Momentum-space scattering equations for the four-particle transition operators are used. The properties of unstable tetramers with approximate dimer-atom-atom structure are determined. In addition, the three- and four-cluster recombination processes in the four-boson system are studied.

  4. Controlled Reactions between Ultracold Alkali and Metastable Helium Atoms

    Flores, Adonis Silva; Knoop, Steven


    In an ultracold, optically trapped mixture of $^{87}$Rb and metastable triplet $^4$He atoms we have studied trap loss for different spin-state combinations, for which interspecies Penning ionization is the main two-body loss process. We observe long trapping lifetimes for the purely quartet spin-state combination, indicating strong suppression of Penning ionization loss by at least two orders of magnitude. For the other spin-mixtures we observe short lifetimes that depend linearly on the doublet character of the entrance channel. We compare the extracted loss rate coefficient with recent predictions of multichannel quantum-defect theory for reactive collisions involving a strong exothermic loss channel and find near-universal loss for doublet scattering. Our work demonstrates control of reactive collisions by internal atomic state preparation, which also implies magnetic field tunability.

  5. A general theoretical model for electron transfer reactions in complex systems.

    Amadei, Andrea; Daidone, Isabella; Aschi, Massimiliano


    In this paper we present a general theoretical-computational model for treating electron transfer reactions in complex atomic-molecular systems. The underlying idea of the approach, based on unbiased first-principles calculations at the atomistic level, utilizes the definition and the construction of the Diabatic Perturbed states of the involved reactive partners (i.e. the quantum centres in our perturbation approach) as provided by the interaction with their environment, including their mutual interaction. In this way we reconstruct the true Adiabatic states of the reactive partners characterizing the electron transfer process as the fluctuation of the electronic density due to the fluctuating perturbation. Results obtained by using a combination of Molecular Dynamics simulation and the Perturbed Matrix Method on a prototypical intramolecular electron transfer (from 2-(9,9'-dimethyl)fluorene to the 2-naphthalene group separated by a steroidal 5-α-androstane skeleton) well illustrate the accuracy of the method in reproducing both the thermodynamics and the kinetics of the process. PMID:22158942

  6. High energy halogen atom reactions activated by nuclear transformations

    This program, which has been supported for twenty-four years by the Us Atomic Energy Commission and its successor agencies, has produced significant advances in the understanding of the mechanisms of chemical activation by nuclear processes; the stereochemistry of radioactivity for solution of specific problems. This program was contributed to the training of approximately seventy scientists at various levels. This final report includes a review of the areas of research and chronological tabulation of the publications

  7. Chemical reaction of sputtered Cu film with PI modified by low energy reactive atomic beam

    Polyimide (PMDA-ODA) surface was irradiated by low energy reactive atomic beam with energy 160-180 eV to enhance the adhesion with metal Cu film. O2+ and N2+ ions were irradiated at the fluence from 5 x 1015 to 1 x 1018 cm-2. Wetting angle 78o of distilled deionized (DI) water for bare PI was greatly reduced down to 2-4o after critical ion flounce, and the surface energy was increased from 37 to 81.2 erg/cm. From the analysis of O 1s core-level XPS spectra, such improvement seemed to result from the increment of hydrophilic carbonyl oxygen content on modified PI surface. To see more carefully correlation of the peel strength with interfacial reaction between Cu and PI, flexible copper clad laminate with Cu (9 μm)/Cu (200 nm) on modified PI substrate (25 μm) was fabricated by successive sputtering and electroplating. Firstly, peel strength was measured by using t-test and it was largely increased from 0.2 to 0.5 kgf/cm for Ar+ only irradiated PI to 0.72-0.8 kgf/cm for O2+ or N2O+ irradiated PI. Chemical reaction at the interface was reasoned by analyzing C 1s, O 1s, N 1s, and Cu 2p core-level X-ray photoelectron spectroscopy over the as-cleaved Cu-side and PI side surface through depth profiling. From the C 1s spectra of cleaved Cu-side, by the electron transfer from Cu to carbonyl oxygen, carbonyl carbon atom became less positive and as a result shifted to lower binding energy not reaching the binding energy of C2 and C3. The binding energy shift of the peak C4 as small as 1.7 eV indicates that carbonyl oxygen atoms were not completely broken. From the analysis of the O 1s spectra, it was found that new peak at 530.5 eV (O3) was occurred and the increased area of the peak O3 was almost the same with reduced area of the peak carbonyl oxygen peak O1. Since there was no change in the relative intensity of ether oxygen (O2) to carbonyl oxygen (O1), and thus O3 was believed to result from Cu oxide formation via a local bonding of Cu with carbonyl oxygen atoms

  8. Photon exchange and correlation transfer in atom-atom entanglement dynamics

    León García, Juan José; Sabín, Carlos


    We analyze the entanglement dynamics of a system composed by a pair of neutral two-level atoms that are initially entangled, and the electromagnetic field, initially in the vacuum state, within the formalism of perturbative quantum field theory up to the second order. We show that entanglement sudden death and revival can occur while the atoms remain spacelike-separated and therefore cannot be related with photon exchange between the atoms. We interpret these phenomena as the consequence of a...

  9. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.

    Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan


    Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom

  10. A comparison of the hot atom reaction with the implantation reaction in metallocene and its cyclodextrin inclusion compounds

    By comparing implantation reactions with hot atom reactions in ruthenocene derivatives and their β-cyclodextrin inclusion compounds, collision cascade enhancement of the parent yield was confirmed. From the product distribution among MCp2, MCpCpprime, MCpprime2 and others, geminate recombination, substitution and random recombination processes were estimated. The former two processes were sensitive to recoil energy, while no definite energy dependence was found in the last process. A prominent decrease of the yield by inclusion was detected for all the ruthenocene derivatives, indicating that normal reactions in these compounds were evidently restricted in the cavity of cyclodextrin. ((orig.))

  11. Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (atomic and molecular physics)

  12. Theoretical aspects of electron transfer reactions of complex molecules

    Kuznetsov, A. M.; Ulstrup, Jens


    Features of electron transfer involving complex molecules are discussed. This notion presently refers to molecular reactants where charge transfer is accompanied by large molecular reorganization, and commonly used displaced harmonic oscillator models do not apply. It is shown that comprehensive ...

  13. A Fluorogenic Reaction Based on Heavy-Atom Removal for Ultrasensitive DNA Detection

    Prusty, Deepak K.; Herrmann, Andreas


    Fluorogenic reactions have recently emerged as a powerful tool for detection, diagnostics, and biosensing applications in a chemical and biological context. However, conventional fluorogenic systems reported to date rely on energy- or photoinduced electron transfer within the probes. Our communicati

  14. Chemisorption and reactions on clusters of nickel atoms

    Waber, J. T.; Adachi, H.; Yu, T.


    The nucleation and growth of metallic clusters on a substantially amorphous substrate are discussed with emphasis on the geometrical and electronic structure of the clusters. Several clusters of different symmetry containing five to nine nickel atoms were studied. It was found that the energy range of primary d-like states is not significantly different from the width of the d-band states in nickel metal, as long as the interatomic distance is comparable to that in the bulk metal. The approach of one or more molecules to the cluster is examined using at the hydrogenation of acetylene and the dehydrogenation of ethylene as examples.

  15. Assessing the importance of proton transfer reactions in DNA.

    Jacquemin, Denis; Zúñiga, José; Requena, Alberto; Céron-Carrasco, José Pedro


    Although engineered by millions of years of evolution, the cellular machinery is not flawless, and errors regularly appear during DNA replication. The subsequent alteration of the stored genetic message results in a mutation and might be the starting point of important health disorders. The question therefore is what causes DNA mutations? All living organisms are constantly exposed to a number of external agents such as free radicals and to radiation, which may lead to induced mutations. There are also mutations happening without invoking the action of any exogenous element, the so-called spontaneous mutations. The former can be partially controlled by avoiding exposure to high-risk environments, while the latter are more intriguing because their origin is unclear and difficult to determine. As noted by Watson and Crick when they first discovered the DNA structure, the correct replication of DNA rests on the assumption that the base pairs remain in their most stable, canonical form. However, protons along the interbase hydrogen-bond network are not static entities. They can in fact interchange their positions in DNA bases through proton transfer (PT) reactions before strands unwind, giving rise to noncanonical structures defined as rare tautomers. The importance of these rare tautomers was also cleverly anticipated by Watson and Crick and some years later claimed by Löwdin to be a source of spontaneous mutations. In Watson and Crick's words: "It would be of interest to know the precise difference in free energy between the various tautomeric forms under physiological conditions." Unfortunately, rare tautomeric forms are very difficult to detect, so no direct and accurate free energy measure has been discerned. In contrast, theoretical chemistry is making good progress toward the quantification of PT reactions in DNA and their biological consequences. This Account touches upon the theoretical studies devoted to appraising the importance of rare tautomers as

  16. Contribution of decay products of transfer reactions to heavy ion inelastic and transfer spectra

    A study of decay product contributions to inclusive ejectile kinetic energy spectra is presented. Analytical formulae for the positions and widths of these contributions are derived from kinematical considerations. A formal integral expression for the double differential cross section dsub(σ)sup(2)/dΩdE is given in the case of one particle emission from an excited state of the ejectile. The effects of anisotropic angular distributions are studied. The differential cross sections are then computed by a Monte Carlo method and compared to experimental spectra over a large range of measured systems. The transfer-evaporation mechanism is shown to contribute strongly to the background of the spectra but not to be responsible for the narrow structure observed in some reactions

  17. Coherent population transfer in Rydberg potassium atom by a single frequency-chirped laser pulse

    Zhang Xian-Zhou; Ma Qiao-Zhi; Li Xiao-Hong


    By using the time-dependent multilevel approach, we have calculated the coherent population transfer among the quantum states of potassium atom by a single frequency-chirped laser pulse. The results show that the population can be efficiently transferred to a target state and be trapped there by using an ‘intuitive’ or a ‘counter-intuitive’ frequency sweep laser pulse in the case of ‘narrowband’ frequency-chirped laser pulse. It is also found that a pair of sequential ‘broadband’ frequency-chirped laser pulses can efficiently transfer population from one ground state of the A atom to the other one.

  18. What's new in the proton transfer reaction from pyranine to water? A femtosecond study of the proton transfer dynamics

    The proton transfer from excited pyranine to water is studied by the femtosecond fluorescence upconversion technique. It is shown for the first time that the proton transfer reaction in water proceeds by three successive steps: the solvent cage relaxation, the specific solute-solvent hydrogen-bond formation and finally the ion pair dissociation/diffusion

  19. Characterization of hot hydrogen-atom reactions by kinetic spectrography.

    Tomalesky, R. E.; Sturm, J. E.


    The flash photolysis of hydrogen iodide in the presence of nitrous oxide, carbon dioxide, and water has been investigated by kinetic spectroscopy. Although the fraction of hydrogen iodide dissociated was very large, the only observable intermediate was imidogen. It was demonstrated that the rapid removal of imidogen and the apparent absence of hydroxyl radicals in each case is a result of the following two reactions, respectively: (1) NH + HI yields NH2 + I; and (2) OH + HI yields H2O + I.

  20. Dynamics of the molecular and atomic mechanisms for the hydrogen-iodine exchange reaction.

    Raff, L. M.; Thompson, D. L.; Sims, L. B.; Porter, R. N.


    The molecular and atomic mechanisms for the hydrogen-iodine exchange reaction are treated theoretically by means of extensive classical trajectories calculated on a reasonable potential energy surface on which the single adjustable parameter is the iodine-core effective charge. The analysis shows the molecular mechanism to be dynamically forbidden, but gives an over-all rate constant for the atomic mechanism that is in agreement with the experimental values. It is indicated that the formation of a weak H2I complex plays an important dynamical role if the atomic mechanism is limited to reactions with collision complexes involving no more than two hydrogen atoms and two iodine atoms. Excellent agreement with experiment is obtained for the rate constant for the recombination I+I+H2 yields I2+H2 and its negative temperature coefficient.

  1. Time Dependent Radiative Transfer for Multi-Level Atoms using Accelerated Lambda Iteration

    van Adelsberg, Matthew


    We present a general formalism for computing self-consistent, numerical solutions to the time-dependent radiative transfer equation in low velocity, multi-level ions undergoing radiative interactions. Recent studies of time-dependent radiative transfer have focused on radiation hydrodynamic and magnetohydrodynamic effects without lines, or have solved time-independent equations for the radiation field simultaneously with time-dependent equations for the state of the medium. In this paper, we provide a fully time-dependent numerical solution to the radiative transfer and atomic rate equations for a medium irradiated by an external source of photons. We use Accelerated Lambda Iteration to achieve convergence of the radiation field and atomic states. We perform calculations for a three-level atomic model that illustrates important time-dependent effects. We demonstrate that our method provides an efficient, accurate solution to the time-dependent radiative transfer problem. Finally, we characterize astrophysical...

  2. Ultra-Low-Temperature Reactions of Carbon Atoms with Hydrogen Molecules

    Krasnokutski, S A; Renzler, M; Jäger, C; Henning, Th; Scheier, P


    The reactions of carbon atoms with dihydrogen have been investigated in liquid helium droplets at $T$ = 0.37 K. A calorimetric technique was applied to monitor the energy released in the reaction. The barrierless reaction between a single carbon atom and a single dihydrogen molecule was detected. Reactions between dihydrogen clusters and carbon atoms have been studied by high-resolution mass spectrometry. The formation of hydrocarbon cations of the type C$_m$H$_n^+$, with $m$ = 1-4 and $n$ = 1-15 was observed. With enhanced concentration of dihydrogen, the mass spectra demonstrated the main "magic" peak assigned to the CH$_5^+$ cation. A simple formation pathway and the high stability of this cation suggest its high abundance in the interstellar medium.

  3. Reactions of thermal 18F atoms with ethylene and ethylene-d4

    Radiolabeled fluorine atoms were generated in situ via the 19F(n,2n)(/sup 18F/ nuclear reaction. A large excess of the chemically inert moderator SF6 added to the samples serves to thermalize the translationally excited nascent nucleogenic 189F atoms. This moderated nuclear recoil technique has been used to investigate the mechanism and kinetics of the unimolecular reactions of radiolabeled, chemically activated fluorinated ethyl radicals produced by the addition of thermalized 18F atoms to C2H4, C2D4, and C2H2F2. These reaction studies were carried out at ambient temperature and sample pressures ranging from 0.2 to 9.0 Ktorr. Accurate quantitative measurements of the yields of all the radiolabeled products were performed using radio-gas-chromatography. Simple high-pressure unimolecular fall off behavior was observed for the atomic hydrogen elimination reactions from both activated C2H418F and C2D418F radicals, suggesting that efficient intramolecular energy randomization occurs on a time scale shorter than that associated with these decomposition reactions. In contrast, the hydrogen fluoride elimination reactions exhibit the expected behavior only in the high-pressured limit. In the case studied here, therefore, it appears that these decomposition reactions occur on a time scale comparable to that associated with intramolecular energy randomization

  4. Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities

    Zheng, Bin; Shen, Li-Tuo; Chen, Ming-Feng


    We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X-Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.

  5. High spin levels populated in multinucleon transfer reaction with 480 MeV 12C

    Two- and three-nucleon stripping reactions induced by 480 MeV 12C have been studied on 12C, 16O, 28Si, 40Ca and 54Fe target nuclei. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one order and two orders of magnitude less for 2p- and 3He-transfer reactions, respectively. These reactions preferentially populate high spin states with stretched configurations. Several spin assignments were known from transfer reactions induced by lighter projectiles at incident energies well above the Coulomb barrier. In the case of two-nucleon transfer reactions, the energy of these states is well reproduced by crude shell model calculations. Such estimates are of use in proposing spins of newly observed states especially as the shapes of the measured angular distributions are independent of the final spin of the residual nucleus

  6. Role of transfer reactions in heavy-ion collisions at the Coulomb barrier

    Pollarolo Giovanni


    Full Text Available One and two neutron transfer reactions are discussed in the semiclassical formalism. The twoneutrons transfer cross sections are calculated in the successive approximation. Comparisons with new experimental data below the Coulomb barrier are discussed in term of transfer probabilities as a function of the distance of closest approach for Coulomb scattering.

  7. Studies of high-spin cluster states induced by multiparticle transfer reactions

    The characteristic selectivity due to the reaction dynamics and clustering structure among transferred nucleons is first described. Using such an advantageous selectivity, high-spin cluster states can be sorted out. Examples involving either one-, two-, three- or four-nucleon transfer reactions are mentioned with emphazing spectroscopic problems. It is clear that a lack in reaction mechanism theory hinders quantitative arguments at present time

  8. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral atoms: Theory, comparisons, and application to Ca

    Barklem, Paul S


    A theoretical method for the estimation of cross sections and rates for excitation and charge transfer processes in low-energy hydrogen atom collisions with neutral atoms, based on an asymptotic two-electron model of ionic-covalent interactions in the neutral atom-hydrogen atom system, is presented. The calculation of potentials and non-adiabatic radial couplings using the method is demonstrated. The potentials are used together with the multi-channel Landau-Zener model to calculate cross sections and rate coefficients. The main feature of the method is that it employs asymptotically exact atomic wavefunctions, which can be determined from known atomic parameters. The method is applied to Li+H, Na+H, and Mg+H collisions, and the results compare well with existing detailed full-quantum calculations. The method is applied to the astrophysically important problem of Ca+H collisions, and rate coefficients are calculated for temperatures in the range 1000-20000 K.

  9. Revisiting Zeno's paradox: Flying arrows for atom-diatom reactions

    Sanz-Sanz, C; Gonzalez-Lezana, T; Roncero, O; Miret-Artes, S


    The possibility to observe quantum Zeno and anti-Zeno scenarios for atom-diatom reactive collisions is investigated for two diferent processes (F+HD and H+O_2) by means of time-dependent wave packet propagations. A novel approach is proposed in which the survival probabilities investigated are those obtained when the initial state is redefined after time intervals tau at which measurements are performed on the system. The comparison with the actual probability for the unperturbed system reveals the existence of a regime in which the decay from the initial state appears to be inhibited (the quantum Zeno effect) or accelerated (the anti-Zeno effect). In contrast with preceding interpretations, given that the time-evolving wave packet is not affected at any time ("flying arrow"), the present procedure does not require to invoke to counterintuitive hindered evolutions ("stopping arrow") to explain the results. On the contrary the consecutive update of the reference state of the system solves the apparent modern v...

  10. Enzymatic Catalysis of Proton Transfer and Decarboxylation Reactions

    Richard, John P.


    Deprotonation of carbon and decarboxylation at enzyme active sites proceed through the same carbanion intermediates as for the uncatalyzed reactions in water. The mechanism for the enzymatic reactions can be studied at the same level of detail as for nonenzymatic reactions, using the mechanistic tools developed by physical organic chemists. Triosephosphate isomerase (TIM) catalyzed interconversion of D-glyceraldehyde 3-phosphate and dihydroxyacetone phosphate is being studied as a prototype f...

  11. Three dimensional method for atom--diatomic molecule reactions, with applications

    Three dimensions are used in a close coupling scheme employing natural collision coordinates to obtain reaction probabilities for the two path reaction H + H2 → H + H2 and for a model one reaction path system in which hydrogen is used as a test case. In both cases, vibrational non-adiabaticity is included and the non-conservation of probability is seen not to occur. The calculation of reaction probabilities at total angular momentum J = 0 is reported for the one and two path hydrogen exchange reactions. The energy range covered is 0.50 to 0.90 eV total system energy, and transition probabilities are computed from all asymptotically open input channels to all open output channels (states of the H2 molecule in the separated atom-molecule limit). These reaction probabilities are discussed and the dynamics of the reaction as it proceeds through the transition state is considered

  12. Observation of the one- to six-neutron transfer reactions at sub-barrier energies

    Jiang, C.L.; Rehm, K.E.; Gehring, J. [and others


    It was suggested many years ago that when two heavy nuclei are in contact during a grazing collision, the transfer of several correlated neutron-pairs could occur. Despite considerable experimental effort, however, so far only cross sections for up to four-neutron transfers have been uniquely identified. The main difficulties in the study of multi-neutron transfer reactions are the small cross sections encountered at incident energies close to the barrier, and various experimental uncertainties which can complicate the analysis of these reactions. We have for the first time found evidence for multi-neutron transfer reactions covering the full sequence from one- to six-neutron transfer reactions at sub-barrier energies in the system {sup 58}Ni + {sup 100}Mo.

  13. Laser-induced reaction of Yb atoms with hydrogen chloride in the gas phase

    The results are presented of an investigation of the reaction of ytterbium atoms with hydrogen chloride initiated by laser radiation resonant with the 1S/sub O/-3P1 intercombination transition. The rate constant of extinction of the excited state of the ytterbium atom by a molecular reagent was measured: k/sub d/ = (6.4 +- 1.5) x 10-10 cm3sec

  14. Correlation Between Energy Transfer Rate and Atomization Energy of Some Trinitro Aromatic Explosive Molecules

    Su-hong Ge; Xin-lu Cheng; Zheng-lai Liu; Xiang-dong Yang; Fang-fang Dong


    An assumptive theoretical relationship is suggested to describe the property of molecular atomization energy and energy transfer rate in the initiation of explosions. To investigate the relationship between atomization energy and energy transfer rate, the number of doorway modes of explosives is estimated by the theory of Dlott and Fayer in which the rate is proportional to the number of normal mode vibrations. It was evaluated frequencies of normal mode vibrations of eight molecules by means of density functional theory (DFT) at the b3p86/6-31G(d,p) level. It is found that the number of doorway modes shows a linear correlation to the atomization energies of the molecules, which were also calculated by means of the same method. A mechanism of this correlation is discussed. It is also noted that in those explosives with similar molecular structure and molecular weight, the correlation between the atomization energy and the number of doorway modes is higher.

  15. Angular momentum transfer and equilibrium in heavy-ion reactions

    By concentrating on the microscopic degrees of freedom for two colliding ions, we have derived a probability density for angular momentum transfer assuming that, for equilibrium, this probability is proportional to the density of states taken from a fermi gas model. This density has been used to predict angular momentum transfer, assuming first, initial angular momentum fixed, and then, final energy fixed. The results are quite different. The density (final energy fixed) has been used to predict the results of angular momentum transfer experiments. The excellent agreement supports the validity of an assumption of equilibrium. (author)

  16. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  17. Excited atomic bromine energy transfer and quenching mechanisms

    Johnson, Ray O.


    Pulsed and steady-state photolysis experiments have been conducted to determine the rate coefficients for collisional deactivation of the spin-orbit excited state of atomic bromine, Br((sup 2)P(sub 1/2)). Pulsed lifetime studies for quenching by Br2 and CO2 established absolute rate coefficients at room temperature of k(sub Br2) = 1.2 +/- 0.1 x 10(exp-12) and k(sub CO2) = 1.5 +/0.2 x 10(exp-11) cu cm/molecule-s. Steady-state photolysis methods were used to determine the quenching rates for the rare gases, N2, 02, H2, D2, NO, NO2, N2O, SF6, CF4, CH4, CO, CO2, COS, SO2, H2S, HBr, HC1, and HI relative to that for Br2. Quenching rate temperature dependence was examined for Br2, CO2, N2O, HCl, COS, NO, and NO2 for temperatures from 300 to 420 K. Diffusion and three body effects were examined in order to determine the slowest relative quenching rate measurable by this experimental technique.

  18. Study of intermediates from transition metal excited-state electron-transfer reactions

    Hoffman, M. Z.


    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  19. A silver bullet: elemental silver as an efficient reducing agent for atom transfer radical polymerization of acrylates.

    Williams, Valerie A; Ribelli, Thomas G; Chmielarz, Pawel; Park, Sangwoo; Matyjaszewski, Krzysztof


    Elemental silver was used as a reducing agent in the atom transfer radical polymerization (ATRP) of acrylates. Silver wire, in conjunction with a CuBr(2)/TPMA catalyst, enabled the controlled, rapid preparation of polyacrylates with dispersity values down to Đ = 1.03. The silver wire in these reactions was reused several times in sequential reactions without a decline in performance, and the amount of copper catalyst used was reduced to 10 ppm without a large decrease in control. A poly(n-butyl acrylate)-block-poly(tert-butyl acrylate) diblock copolymer was synthesized with a molecular weight of 91 400 and Đ = 1.04, demonstrating good retention of chain-end functionality and a high degree of livingness in this ATRP system. PMID:25599253

  20. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfer process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps−1, which is about 2.5 times faster than that in vacuum, 0.27 ps−1. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction

  1. Solidification study of aluminum alloys using impulse atomization. Part I: heat transfer analysis of an atomized droplet

    Heat transfer models of molten metal droplets moving in a gas stream are used extensively to understand and improve gas atomization systems. In particular, the solidification microstructure of the metal droplets produced during atomization is closely linked with heat flow conditions. The cornerstone of these models is the calculation of the heat exchange between the droplet and gas in an environment with a high temperature gradient. To achieve this, the value of the effective heat transfer coefficient (between the gas and droplet) used in these models is obtained from semi-empirical correlations such as the Ranz-Marshall or Whitaker equations. Unfortunately, most metal atomizing conditions lie outside the experimental envelope in which these correlations were derived. Hence, the object of this paper is two fold: firstly, to develop a reliable and controlled experimental technique by which the transfer of heat from a high temperature droplet to a significantly cooler gas can be assessed and secondly, to determine the validity of both the Ranz-Marshall and Whitaker correlations under these conditions. An experimental technique was developed to conduct a series of quench tests using AA6061 aluminum and AZ91D magnesium droplets falling in a cool nitrogen and argon atmosphere, respectively. A heat transfer model was formulated to account for large droplet gas temperature gradients typically found in metallurgical processing operations. It was determined that a modified Whitaker correlation provided the best agreement with the experimental data given that the Reynolds and Prandtl numbers were evaluated at the free stream gas temperature and the gas conductivity in the Nusselt number at the droplet surface temperature. (author)

  2. Ultracold chemical reactions of a single Rydberg atom in a dense gas

    Schlagmüller, Michael; Engel, Felix; Kleinbach, Kathrin S; Böttcher, Fabian; Westphal, Karl M; Gaj, Anita; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H


    Within a dense environment ($\\rho \\approx 10^{14}\\,$atoms/cm$^3$) at ultracold temperatures ($T 140$ compared to $1\\,\\mu\\text{s}$ at $n=90$. In addition, a second observed reaction mechanism, namely Rb$_2^+$ molecule formation, was studied. Both reaction products are equally probable for $n=40$ but the fraction of Rb$_2^+$ created drops to below 10$\\,$% for $n\\ge90$.

  3. Position and lifetime of atomic states close to a metal: application to resonant charge transfer

    The energy position and lifetime of atomic levels brought in front of a metal surface are the important quantities for the description of the resonant charge transfer process in atom-metal surface scattering. Recent results obtained in the non-perturbative CAM method on multielectron systems (H-, He-, C-) are discussed. They stress the importance of a proper description of the atomic system. In particular, the interaction with a metal surface is seen to reveal the differences between the different orbitals in a multielectronic system. (author)

  4. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    Chanu, Sapam Ranjita; Natarajan, Vasant


    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  5. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant


    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  6. Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage

    Zhang, Chun-Ling; Chen, Mei-Feng


    We propose a new approach for quantum state transfer (QST) between atomic ensembles separately trapped in two distant cavities connected by an optical fiber via adiabatic passage. The three-level Λ-type atoms in each ensemble dispersively interact with the nonresonant classical field and cavity mode. By choosing appropriate parameters of the system, the effective Hamiltonian describes two atomic ensembles interacting with “the same cavity mode” and has a dark state. Consequently, the QST between atomic ensembles can be implemented via adiabatic passage. Numerical calculations show that the scheme is robust against moderate fluctuations of the experimental parameters. In addition, the effect of decoherence can be suppressed effectively. The idea provides a scalable way to an atomic-ensemble-based quantum network, which may be reachable with currently available technology. Project supported by the Funding (type B) from the Fujian Education Department, China (Grant No. JB13261).

  7. Cross sections for deeply inelastic transfer reactions induced by heavy ions in rare-earth targets

    Rivet, M. F.; Bimbot, R.; Gardès, D.; Fleury, A.; Hubert, F.; Llabador, Y.


    Cross sections have been measured for deeply inelastic transfer reactions leading to the production of several radio-nuclides. Rare-earth targets were used and the projectiles were Ar, Cr, Fe and Cu ions. The reactions studied corresponded to transfers of two to nine protons and variable numbers of neutrons. The results obtained were used to study the evolution of some characteristics of these reactions, such as integrated cross sections and widths of the isotopic distributions, versus incident mass and transferred mass. These results confirm that mass transfer is driven by the potential energy of the composite system. The decrease of cross sections for increasing charge transfer may be quantitatively explained by assuming thermodynamical equilibrium of the mass asymmetry degree of freedom.

  8. Crossed molecular beam study of H and D atom reactions with NO2

    The experimental details and results of molecular beam studies of the reactions of H and D atoms with NO2 (with an observed isotope effect of the differential cross section) with much improved sensitivity and resolution, in good agreement with earlier results of the authors, are briefly summerized. (HK)

  9. Learning about Regiochemistry from a Hydrogen-Atom Abstraction Reaction in Water

    Sears-Dundes, Christopher; Huon, Yoeup; Hotz, Richard P.; Pinhas, Allan R.


    An experiment has been developed in which the hydrogen-atom abstraction and the coupling of propionitrile, using Fenton's reagent, are investigated. Students learn about the regiochemistry of radical formation, the stereochemistry of product formation, and the interpretation of GC-MS data, in a safe reaction that can be easily completed in one…

  10. Selected specific rates of reactions of transients from water in aqueous solution. II. Hydrogen atom

    Rates of reactions of hydrogen atoms (from radiolysis of water and other sources) with organic and inorganic molecules, ions, and transients in aqueous solution were tabulated. Directly measured rates obtained by kinetic spectroscopy or conductimetric methods, and relative rates determined by competition kinetics are included. (U.S.)

  11. Reactions of atomic tritium with glucosamine and amino acids: a comparative study

    Reactions of amino acids (glycine and serine) and amino sugar (glucosamine) with atomic tritium generated by thermal dissociation of molecular tritium on a tungsten filament was studied. A frozen aqueous solutions and a freeze-dried mixture of these compounds was bombarded with tritium atoms in a special vacuum unit. The relative yield of the labeled compounds was determined as influenced by the reaction conditions (residual pressure in the system and bombardment time) and target type (frozen solution and freeze-dried mixture). Formation of labeled products is almost independent of the tritium pressure. The ratio of the formation rates of labeled serine and glycine in the frozen solution and freeze-dried mixture bombarded with atomic tritium for 45-270 s was 1.66 ± 0.15 and 1.44 ± 0.13, respectively. At shorter reaction time (15 s), the ratio increases to 3.5 ± 0.2 and 2.0 ± 0.4, respectively. The formation rate of [3H]glucosamine in the mixture is higher at a shorter bombardment time. The radioactivity ratio of labeled glucosamine and glycine formed in frozen solutions and freeze-dried mixture in 15 s was 26.0 ± 2.3 and 6.8 ± 0.6, respectively. At longer reaction time, the relative yield of [3H]glucosamine sharply decreases owing to stronger radiolysis of labeled glucosamine on exposure to atomic tritium

  12. Mechanism of prooxidant reaction of vitamin E. Kinetic, spectroscopic, and ab initio study of proton-transfer reaction

    Nagoaka, Shin-ichi; Sawada, Kouhei; Fukumoto, Youji [Ehime Univ., Matsuyama (Japan)] [and others


    This paper discusses using kinetic, spectroscopic, and ab initio studies of the prooxidant reaction of vitamin E derivatives to determine second-order rate constants for the reaction of six tocopheroxyl radicals with five alkyl hydroperoxides in benzene along with the first adiabatic ionization potentials of the alkyl hydroperoxides. These results suggest that charge transfer and proton tunneling play important roles in this prooxidant reaction, with proton tunneling taking place below the transition state and allowing the proton to cut a corner on the potential energy surface. 31 refs., 10 figs., 2 tabs.

  13. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale

    Chamberlain, Thomas W.; Meyer, Jannik C.; Biskupek, Johannes; Leschner, Jens; Santana, Adriano; Besley, Nicholas A.; Bichoutskaia, Elena; Kaiser, Ute; Khlobystov, Andrei N.


    Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion.

  14. Surface Modification of Nanoporous 1,2-Polybutadiene by Atom Transfer Radical Polymerization or Click Chemistry

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars;


    Surface-initiated atom transfer radical polymerization (ATRP) and click chemistry were used to obtain functional nanoporous polymers based oil nanoporous 1,2-polybutadiene (PB) with gyroid morphology. The ATRP monolith initiator was prepared by immobilizing bromoester initiators onto the pore walls...

  15. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions (updated 1993)

    Following our previous compilations [IPPJ-AM-45 (1986), NIFS-DATA-7 (1990)], bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1980-1992 are included. For easy finding references for particular combination of collision partners, a simple list is also provided. (author) 1542 refs

  16. Novel Polymers Based on Atom Transfer Radical Polymerization of 2-Methoxyethyl Acrylate

    Bednarek, Melania; Jankova Atanasova, Katja; Hvilsted, Søren


    Atom transfer radical polymerization (ATRP) has been employed in the polymerization of 2-methoxyethyl acrylate (MEA) initiated by ethyl 2-bromoisobutyrate in bulk or in toluene solution at 90– 95 C with the catalytic systems Cu(I)Br/PMDETA or HMTETA. Kinetics investigations revealed that ATRP of...

  17. Protein repellent hydrophilic grafts prepared by surface-initiated atom transfer radical polymerization from polypropylene

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Eskimergen, Rüya;


    Grafting of poly(ethylene glycol)methacrylate (PEGMA) and N,N-dimethylacrylamide (DMAAm) from UV-initiator modified polypropylene (PP) was performed by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). The modification and hydrophilization of the PP substrates were confirmed with ...

  18. The effect of atomic transfer on the decay of a Bose-Einstein condensate

    We present a model describing the decay of a Bose-Einstein condensate, which assumes the system to remain in thermal equilibrium during the decay. We show that under this assumption transfer of atoms occurs from the condensate to the thermal cloud enhancing the condensate decay rate. (letter to the editor)

  19. Effect of atomic transfer on the decay of a Bose-Einstein condensate

    Zin, Pawel; Dragan, Andrzej; Charzynski, Szymon; Herschbach, Norbert; Tol, Paul; Hogervorst, Wim; Vassen, Wim


    We present a model describing the decay of a Bose-Einstein condensate, which assumes the system to remain in thermal equilibrium during the decay. We show that under this assumption transfer of atoms occurs from the condensate to the thermal cloud enhancing the condensate decay rate.

  20. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization


    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP or...

  1. Novel fluorinated block copolymer architectures fuelled by atom transfer radical polymerization

    Jankova, Katja; Hvilsted, Søren


    Block copolymers based on poly(pentafluorostyrene), PFS, in various numbers and of different lengths, and polystyrene are prepared by atom transfer radical polymerization (ATRP). Di- and triblock copolymers with varying amounts of PFS were synthesized employing either I phenylethylbromide or 1,4-...

  2. On Surface-Initiated Atom Transfer Radical Polymerization Using Diazonium Chemistry To Introduce the Initiator Layer

    Chernyy, Sergey; Lillethorup, Mie; Ceccato, Marcel;


    This work features the controllability of surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate, initiated by a multilayered 2-bromoisobutyryl moiety formed via diazonium chemistry. The thickness as a function of polymerization time has been studied by varying di...

  3. Muon transfer from muonic hydrogen to heavier atoms; Transfert de charge muonique

    Dupays, A


    This work concerns muon transfer from muonic hydrogen to heavier atoms. Recently, a method of measurement of the hyperfine structure of ground-state muonic hydrogen based on the collision energy dependence of the muon transfer rate to oxygen has been proposed. This proposal is based on measurements which where performed at the Paul Scherrer Institute in the early nineties which indicate that the muon transfer from muonic hydrogen to oxygen increases by a factor of 4 going from thermal to 0.12 eV energies. The motivation of our calculations was to confirm this behaviour. To study the collision energy dependence of the muon transfer rate, we have used a time-independent close-coupling method. We have set up an hyperspherical elliptic formalism valid for nonzero total angular momentum which allows accurate computations of state-to-state reactive and charge exchange processes. We have applied this formalism to muon-transfer process to oxygen and neon. The comparison with experimental results is in both cases excellent. Finally, the neon transfer rate dependence with energy suggests to use neon instead of oxygen to perform a measurement of the hyperfine structure of muonic hydrogen. The results of accurate calculations of the muon transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen and neon are also reported. Very good agreement with measured rates is obtained and for the three systems, the isotopic effect is perfectly reproduced. (author)

  4. Synthesis and Reactions of Five-Membered Heterocycles Using Phase Transfer Catalyst (PTC Techniques

    Ahmed M. El-Sayed


    Full Text Available Phase transfer catalysts (PTCs have been widely used for the synthesis of organic compounds particularly in both liquid-liquid and solid-liquid heterogeneous reaction mixtures. They are known to accelerate reaction rates by facilitating formation of interphase transfer of species and making reactions between reagents in two immiscible phases possible. Application of PTC instead of traditional technologies for industrial processes of organic synthesis provides substantial benefits for the environment. On the basis of numerous reports it is evident that phase-transfer catalysis is the most efficient way for generation and reactions of many active intermediates. In this review we report various uses of PTC in syntheses and reactions of five-membered heterocycles compounds and their multifused rings.

  5. Studies on electron transfer reactions of Keggin-type mixed addenda heteropolytungstovanadophosphates with NADH

    Ponnusamy Sami; Kasi Rajasekaran


    The coenzyme nicotinamide adenine dinucleotide (NADH) undergoes facile electron transfer reaction with vanadium (V) substituted Keggin-type heteropolyanions (HPA) [PVVW11O40]4- (PV1) and [PV$^{V}_{2}$W10O40]5- (PV2) in aqueous phosphate buffer of pH 6 at ambient temperature. Electrochemical and optical studies show that the stoichiometry of the reaction is 1 : 2 (NADH : HPA). EPR and optical studies show that HPA act as one electron acceptor and the products of electron transfer reactions are one electron reduced heteropoly blues (HPB), viz. [PVIVW11O40]5- and [PVIVVVW10O40]6-. Oxygraph measurements show that there is no uptake of molecular oxygen during the course of reaction. The reaction proceeds through multi-step electron-proton-electron transfer mechanism, with rate limiting initial one electron transfer from NADH to HPA by outer sphere electron transfer process. Bimolecular rate constant for electron transfer reaction between NADH and PV2 in phosphate buffer of pH = 6 has been determined spectrophotometrically.

  6. Anticoagulant surface of 316 L stainless steel modified by surface-initiated atom transfer radical polymerization.

    Guo, Weihua; Zhu, Jian; Cheng, Zhenping; Zhang, Zhengbiao; Zhu, Xiulin


    Polished 316 L stainless steel (SS) was first treated with air plasma to enhance surface hydrophilicity and was subsequently allowed to react with 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane to introduce an atom transfer radical polymerization (ATRP) initiator. Accordingly, the surface-initiated atom transfer radical polymerization of polyethylene glycol methacrylate (PEGMA) was carried out on the surface of the modified SS. The grafting progress was monitored by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy. The polymer thickness as a function different polymerization times was characterized using a step profiler. The anticoagulative properties of the PEGMA modified SS surface were investigated. The results showed enhanced anticoagulative to acid-citrate-dextrose (ACD) blood after grafting PEGMA on the SS surface. PMID:21528878

  7. Hydrogen bonding tunes the early stage of hydrogen-atom abstracting reaction.

    Yang, Yang; Liu, Lei; Chen, Junsheng; Han, Keli


    The spontaneous and collision-assisted hydrogen-atom abstracting reaction (HA) dynamics of triplet benzil are investigated through the combination of transient absorption spectroscopy with TD-DFT calculations. HA dynamics exhibit a remarkable dependence on the hydrogen donor properties. The effects of the triplet-state hydrogen bonding on the reaction dynamics are illustrated. In particular, it is experimentally observed that strengthened triplet-state hydrogen bonding could accelerate the HA, whereas weakened triplet-state hydrogen bonding would postpone the HA. The triplet-state hydrogen bonding has great influences on the early stage of the HA reaction, while the bond dissociation energy of the hydrogen donors determines the subsequent reaction pathways. Protic solvents could sustain longer lifetimes of the excited-state intermediate formed after HA than non-protic solvents by 10 μs. This investigation provides insights into the HA dynamics and guidance to improve the product efficiency of photochemical reactions. PMID:25036436

  8. Reactions between cold methyl halide molecules and alkali-metal atoms

    Lutz, Jesse J


    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH$_{3}X$ ($X$ = F, Cl, Br, I) and alkali-metal atoms $A$ ($A$ = Li, Na, K, Rb) using high-level {\\it ab initio} calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, ${\\rm CH}_{3}X+A\\rightarrow{\\rm CH}_{3}+AX$. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  9. Matrix reactions of copper atoms and ozone molecules. Infrared spectrum of CuO

    Tevault, D. E.; Mowery, R. L.; De Marco, R. A.; Smardzewski, R. R.


    The matrix reactions of copper atoms with ozone have been studied by infrared spectroscopy. Two products were found in the initial deposit: CuO3, which has a strong absorption at 802.3 cm-1, and CuO, which has its main feature, corresponding to the 63Cu16O isotopic species, at 628.0 cm-1 in solid argon. Copper atom reactions with oxygen-18-enriched ozone samples were used to obtain species identifications. The CuO3 absorption was very similar in frequency and isotopic splitting behavior to alkali and alkaline earth metal ozonide species previously studied in matrices. The CuO frequency is in good agreement with gas phase measurements which put the ground state CuO vibrational fundamental at 631.3 cm-1. Temperature cycling of the Cu-O3 matrices leads to CuO4 formation by the secondary reaction of CuO with unreacted ozone.

  10. Reactions between cold methyl halide molecules and alkali-metal atoms

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow