WorldWideScience

Sample records for atmospheric particulate matter

  1. Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments

    Science.gov (United States)

    Hagler, Gayle S. W.

    Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.

  2. The investigation of atmospheric particulate matter pollution in Suzhou

    International Nuclear Information System (INIS)

    Chen Yi'ou; Zhang Yuliang; Wang Ya; Wang Pei; Tian Hailin

    2012-01-01

    Objective: To investigate the pollution status, vertical distribution and concentration variation within 24 hours of total suspended particles (TSPs), particulate matter ≤10 μm (PM10), particulate matter ≤5 (PM5) and particulate matter ≤2.5 μm (PM2.5) in major functional areas of Suzhou and the protective effect of different type masks on particulate matter. Methods: (1) The concentration of atmospheric TSPs, PM10, PM5 and PM2.5 in seven functional areas in Suzhou was monitored for three consecutive days. (2) A residential building of 25 stories was chosen and the concentration of TSPs, PM10, PM5, PM2.5 was detected at the 1st, 5th, 10th, 15th, 20 th and the 25th floor respectively. (3) The concentrations of the four particulate matter were detected every two-hours for three consecutive days to investigate how concentration of particulate matter varies within 24 hours. (4) The concentration of the four kinds of particulate matter was analyzed with the sampling head of monitor wrapped with disposable non-woven medical mask, fashion-type mask, gauze mask or activated carbon anti-dust mask respectively, and the protective effect of the four masks on particulate matter was compared. Results: (1) The concentration of PM2.5 was higher than the national health limit in all seven functional areas in Suzhou. (2) No significant difference in vertical distribution of particulate matter was found among different floors in residential buildings (P>0.05). (3) Two small peaks of particulate matter appeared in the morning and evening respectively while the top appeared at dawn (P< 0.05). (4) Disposable non-woven medical mask showed the best protective effect on particulate matter among the four tested masks. Conclusion: PM2.5 is the main particulate matter in Suzhou area. In addition the 4 kinds of particulate matter: TSP, PM10, PM5 and PM2.5 are of higher concentration in the early morning. No significant difference was detected from an altitude of less than 75 meters

  3. Analysis of atmospheric particulate matter; application of optical and selected geochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mastalerz, M.; Glikson, M.; Simpson, R.W. [Indiana University, Bloomington, IN (United States). Indiana Geological Survey

    1998-09-01

    An increase in particulate matter in the atmosphere has been shown to be linked to increased mortality but this relationship is poorly understood. Light microscopy, electron microscopy, electron microprobe, and micro-FTIR techniques have been applied to study atmospheric particulates in Brisbane, Australia as a part of a study on asthma. The particulate matter samples were collected daily from April to August 1992, and the sampling covered the autumn period which is typically a time of high asthma incidence in Brisbane. Volumetrically, most atmospheric particulate matter is less than 2{mu}m in size. The microscopic analysis reveals that this material is composed mainly of combusted and incompletely burned hydrocarbons from motor vehicle exhaust emissions, quiescent spores of Mucorales, soil bacteria, and inorganic matter in the form of quartz and other silicates. Elemental and functional group analyses confirm microscope identification, documenting carbon-rich, aromatic exhaust material, more aliphatic pollen and spore material and inorganic matter. Fungal spores dominate bioaerosol and are very abundant from the end of April through May to mid-June. The cytoplasmic content of pollens or fungaonly regarded as allergenic. Particulates from the exhaust emissions and crustal material in a sub-micrometer size range may act as carriers or dispersive mechanisms for cytoplasmic material from fungal spores and pollens, perhaps causing periods of the highest exhaust emission to be the most allergenic. 25 refs., 4 figs., 1 tab.

  4. Mass spectroscopic analysis of atmospheric particulate matter

    International Nuclear Information System (INIS)

    Wippel, R.

    1997-02-01

    Particulate matter (PM) in the atmosphere vary greatly in origin, in their physical and chemical properties and their effects on climate, atmospheric chemistry and health. Aerosol particles with an aerodynamic diameter less than two μm can enter the respiratory tract of humans when inhaled. Bulk analysis of ambient dust particles was performed using an inductively coupled plasma mass spectrometer (ICP-MS). The size-fractionated collected samples were analyzed after a leaching procedure that simulates the solution reactions occurring in the lungs. A disadvantage of bulk analysis is that it gives no information about the distribution of a certain element within the particles under investigation. A Laser-Microprobe-Mass-Analyzer (LAMMA-500) was used to obtain this information. At sampling sites in Austria and in Zimbabwe, Africa, single particles were sampled using a self-made impactor. One of the final aims in environmental analysis is to successfully apply receptor models that relate the chemical and physical properties of a receptor site to a source. The knowledge of the sources of atmospheric particulate matter is essential for environmental policy makers as well as for epidemiological studies. Artificial neural networks (ANN) have a remarkable ability to handle LAMMA-data. Three ANNs were used as a pattern recognition tool for LAMMA mass spectral data: a back-propagation net, a Kohonen network,and a counter-propagation net. Standard source profiles from the United States Environmental Protection Agency were used as training and test data of the different nets. The elemental patterns of the sum of 100 mass spectra of fine dust particles were presented to the trained nets and satisfactory recognition (> 80 %) was obtained. (author)

  5. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  6. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  7. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy)

    Science.gov (United States)

    Caricchia, Anna Maria; Chiavarini, Salvatore; Pezza, Massimo

    An investigation on PAH in the atmospheric particulate matter of the city of Naples has been carried out. Urban atmospheric particulate matter was sampled in three sampling sites (West, East and central areas of the city), whose characteristics were representative of the prevailing conditions. In each site, 24 h samplings for 7 consecutive days were performed during three sampling campaigns, in 1996-1997. The results were comparable with those reported in literature for similar investigations. Total PAH were in the range 2-130 ng m -3, with a seasonal variation (autumn/winter vs. summer) in the range 1.5-4.5. The relative contribution of diesel engines vs. gasoline fuelled engines was evidenced.

  8. Global Particulate Matter Source Apportionment

    Science.gov (United States)

    Lamancusa, C.; Wagstrom, K.

    2017-12-01

    As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.

  9. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    Science.gov (United States)

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources.

  10. Comparative cardiopulmonary effects of particulate matter- and ozone-enhanced smog atmospheres in mice

    Science.gov (United States)

    This study was conducted to compare the cardiac effects of particulate matter (PM)-enhanced and ozone(O3)-enhanced smog atmospheres in mice. We hypothesized that O3-enhanced smog would cause greater cardiac dysfunction than PM-enhanced smog due to the higher concentrations of irr...

  11. Organic speciation of size-segregated atmospheric particulate matter

    Science.gov (United States)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  12. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion

    International Nuclear Information System (INIS)

    Mastral, A.M.; Callen, M.S.; Garcia, T.

    1999-01-01

    The polycyclic aromatic hydrocarbons (PAH) and the organic matter (OM) content associated with particulate matter (PM) emissions from atmospheric fluidized bed coal combustion have been studied. The two main aims of the work have been (a) to study OM and PAH emissions as a function of the coal fluidized bed combustion (FBC) variables in solid phase and (b) to check if there is any correlation between OM and PAH contained in the PM. The combustion was carried out in a laboratory scale plant at different combustion conditions: temperature, percentage of oxygen excess, and total air flow. PAH associated on the particulate matter have been analyzed by fluorescence spectroscopy in the synchronous mode (FS) after PM extraction by sonication with dimethylformamide (DMF). It can be concluded that there is not a direct relationship between the OM content and the PAH supported in the PM emitted. In addition, neither PM or OM show dependence between themselves

  13. Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter.

    Science.gov (United States)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Bateman, Adam P; Zhang, Yue; Gong, Zhaoheng; Bertram, Allan K; Martin, Scot T

    2018-02-28

    Initially transparent organic particulate matter (PM) can become shades of light-absorbing brown via atmospheric particle-phase chemical reactions. The production of nitrogen-containing compounds is one important pathway for browning. Semisolid or solid physical states of organic PM might, however, have sufficiently slow diffusion of reactant molecules to inhibit browning reactions. Herein, organic PM of secondary organic material (SOM) derived from toluene, a common SOM precursor in anthropogenically affected environments, was exposed to ammonia at different values of relative humidity (RH). The production of light-absorbing organonitrogen imines from ammonia exposure, detected by mass spectrometry and ultraviolet-visible spectrophotometry, was kinetically inhibited for RH atmospheric brown carbon production and associated influences on energy balance.

  14. Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy

    Directory of Open Access Journals (Sweden)

    Canepari S.

    2013-04-01

    Full Text Available Atmospheric particulate matter is characterized by a variety of chemical components, generally produced by different sources. Chemical fractionation of elements, namely the determination of their extractable and residual fractions, may reliably increase the selectivity of some elements as tracers of specific PM sources. Seasonal variations of atmospheric particulate matter concentration in PM10 and PM2.5, of elemental concentration in PM10 and PM2.5, of the extractable and residual fraction of elements in different size fractions in the range 0.18 – 18 μm are reported in this paper. The effect of the ageing of the air masses is discussed.

  15. The particulate matter dispersion studies from a local palm oil mill

    International Nuclear Information System (INIS)

    Abdullah, L.C.; Wong, L. L.; Amnorzahira, A.; Sa'ari, M.; Abdul Rashid, M. S.; Salmiaton Ali

    2006-01-01

    The appearance of industrial emissions and the degradation of scenic vistas are two characteristics of air pollution that humans object. Reduction in visibility suggests worsening pollution levels. The emissions from mobile source and stationary source are the major source of air pollutions contribution in Malaysia. Suspended particulate matter (SPM). The consequence of increasing the particulate concentrations, the particulate matter dissolves with vapour and grows into droplets when the humidity exceeds approximately 70% and causing opaque situation know as haze. This work focuses on the dispersion particulate matter from palm oil mill. The data obtained serves the purpose of modeling the transport of particulate matter for obtaining permits and prevention of significant deterioration (PSD) to the environment. Gaussian Plume Model from a point source, subject to various atmospheric conditions is used to calculate particulate matter concentration then display the distribution of plume dispersion using geographic information system (GIS). The calculated particulate matter concentration is evaluated using Transilient Matrice function. Atmospheric Stability, mixing height, wind direction, wind speed, natural and artificial features play an important role in dispersion process. High concentration area exhibits immediately under prevailing wind direction. (Author)

  16. [Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example].

    Science.gov (United States)

    Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming

    2014-08-01

    Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.

  17. Particulate carbon in the atmosphere

    International Nuclear Information System (INIS)

    Surakka, J.

    1992-01-01

    Carbonaceous aerosols are emitted to the atmosphere in combustion processes. Carbon particles are very small and have a long residence time in the air. Black Carbon, a type of carbon aerosol, is a good label when transport of combustion emissions in the atmosphere is studied. It is also useful tool in air quality studies. Carbon particles absorb light 6.5 to 8 times stronger than any other particulate matter in the air. Their effect on decreasing visibility is about 50 %. Weather disturbances are also caused by carbon emissions e.g. in Kuwait. Carbon particles have big absorption surface and capacity to catalyze different heterogenous reactions in air. Due to their special chemical and physical properties particulate carbon is a significant air pollution specie, especially in urban air. Average particulate carbon concentration of 5.7 μg/m 2 have been measured in winter months in Helsinki

  18. Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland, Australia

    Science.gov (United States)

    Glikson, M.; Rutherford, S.; Simpson, R. W.; Mitchell, C. A.; Yago, A.

    The study identifies the various components contributing to atmospheric particulate matter in Brisbane, Queensland, Australia, during the period from the end of April and the months of July-August in 1992, covering the autumn period which is typically the period of high asthma incidence in Brisbane. Most particulate matter is Mucorales, and soil bacteria. The contribution from pollen and fungal spores has been evaluated and quantified. Fungal spores counts dominate the bioaerosol counts in the 2-10 μm range and are very high in Brisbane from the end of April through May to mid-June. However even at peak periods the total bioaerosol count only contributes of the order of 5-10% of the total particulate mass. The results show that Pm 10 (particulate matter less than 10 μm in diameter) and nephelometer readings do not indicate peak periods of allergenic bioaerosol readings (in fact there is a negative correlation) due to the low contribution of the bioaerosol count to the total and the different influences of wind speed. However the electron microscopy results show that this does not mean there are no synergies between aerosols from anthropogenic sources and bioaerosols. The cytoplasmic content of spores and pollen was often found to be adhered to motor vehicle emission material and crustal matter. The latter may therefore act as carriers for dispersed cytoplasmic allergenic material released from pollen and fungal spores.

  19. Development of 2-channel (532 nm and 355 nm) mobile LIDAR for mapping particulate matter in the atmosphere

    CSIR Research Space (South Africa)

    Sivakumar, V

    2010-09-01

    Full Text Available In this paper, the authors describe the developmentof 2-Channel (532 nm and 355 nm) mobile LIDAR system for studying atmospheric particulate matter. The system is currently tested in house at the Council for Scientific and Industrial Research...

  20. An assessment of common atmospheric particulate matter sampling ...

    African Journals Online (AJOL)

    The method detection limit was also low (0.2 to 1 μg/L) for most metals, and 50% and less standard deviation to mean ratios were obtained for Ni and Pb. Key words: Toxic metals, inductively coupled plasma mass spectroscopy, scanning electron microscopy coupled with energy dispersive spectrometry, particulate matter, ...

  1. Quantification of trace elements and speciation of iron in atmospheric particulate matter

    Science.gov (United States)

    Upadhyay, Nabin

    Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to

  2. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry

    International Nuclear Information System (INIS)

    Osan, Janos; Meirer, Florian; Groma, Veronika; Toeroek, Szabina; Ingerle, Dieter; Streli, Christina; Pepponi, Giancarlo

    2010-01-01

    The health effects of aerosol depend on the size distribution and the chemical composition of the particles. Heavy metals of anthropogenic origin are bound to the fine aerosol fraction (PM 2.5 ). The composition and speciation of aerosol particles can be variable in time, due to the time-dependence of anthropogenic sources as well as meteorological conditions. Synchrotron-radiation total reflection X-ray fluorescence (SR-TXRF) provides very high sensitivity for characterization of atmospheric particulate matter. X-ray absorption near-edge structure (XANES) spectrometry in conjunction with TXRF detection can deliver speciation information on heavy metals in aerosol particles collected directly on the reflector surface. The suitability of TXRF-XANES for copper and zinc speciation in size-fractionated atmospheric particulate matter from a short sampling period is presented. For high size resolution analysis, atmospheric aerosol particles were collected at different urban and rural locations using a 7-stage May cascade impactor having adapted for sampling on Si wafers. The thin stripe geometry formed by the particulate matter deposited on the May-impactor plates is ideally suited to SR-TXRF. Capabilities of the combination of the May-impactor sampling and TXRF-XANES measurements at HASYLAB Beamline L to Cu and Zn speciation in size-fractionated atmospheric particulate matter are demonstrated. Information on Cu and Zn speciation could be performed for elemental concentrations as low as 140 pg/m 3 . The Cu and Zn speciation in the different size fraction was found to be very distinctive for samples of different origin. Zn and Cu chemical state typical for soils was detected only in the largest particles studied (2-4 μm fraction). The fine particles, however, contained the metals of interest in the sulfate and nitrate forms.

  3. Hydride generation atomic fluorescence spectrometric determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter using multivariate optimization

    International Nuclear Information System (INIS)

    Moscoso-Perez, Carmen; Moreda-Pineiro, Jorge; Lopez-Mahia, Purificacion; Muniategui-Lorenzo, Soledad; Fernandez-Fernandez, Esther; Prada-Rodriguez, Dario

    2004-01-01

    A highly sensitive and simple method, based on hydride generation and atomic fluorescence detection, has been developed for the determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter samples. Atmospheric particulates matter was collected on glass fiber filters using a medium volume sampler (PM1 particulate matter). Two-level factorial designs have been used to optimise the hydride generation atomic fluorescence spectrometry (HG-AFS) procedure. The effects of several parameters affecting the hydride generation efficiency (hydrochloric acid, sodium tetrahydroborate and potassium iodide concentrations and flow rates) have been evaluated using a Plackett-Burman experimental design. In addition, parameters affecting the hydride measurement (delay, analysis and memory times) have been also investigated. The significant parameters obtained (sodium tetrahydroborate concentration, sodium tetrahydroborate flow rate and analysis time for As; hydrochloric acid concentration and sodium tetrahydroborate flow rate for Se(IV); and sodium tetrahydroborate concentration and sodium tetrahydroborate flow rate for Te(IV)) have been optimized by using 2 n + star central composite design. Hydrochloric acid concentration and sodium tetrahydroborate flow rate were the significant parameters obtained for Sb and Bi determination, respectively. Using a univariate approach these parameters were optimized. The accuracy of methods have been verified by using several certified reference materials: SRM 1648 (urban particulate matter) and SRM 1649a (urban dust). Detection limits in the range of 6 x 10 -3 to 0.2 ng m -3 have been achieved. The developed methods were applied to several atmospheric particulate matter samples corresponding to A Coruna city (NW Spain)

  4. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    Bravo Alvarez, H.; Sosa Echeverria, R.; Sanchez Alvarez, P.; Krupa, S.

    2013-01-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  5. Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic

    International Nuclear Information System (INIS)

    Buat-Menard, Patrick; Morelli, Jacques; Chesselet, Roger

    1974-01-01

    Samples of water-soluble atmospheric particulate matter collected from R/V ''Jean Charcot'' (May to October 1971) and R/V ''James Gilliss'' (October 1972) over Tropical and Equatorial Atlantic were analyzed for Na, Mg, K and Ca by atomic absorption and for Cl and S as SO 4 by colorimetry. Data shows a strong geographical dependence of K and Ca enrichment relative to their elemental ratio to Na in sea-water. Ca enrichment is related to presence of identified soluble calcium minerals in continental dust originating from African deserts (Sahara-Kalahari). This dust does not influence amounts of K in the water-soluble phase. When observed, strong K enrichment appears tightly associated with high concentrations of surface-active organic material in the microlayer derived from high biological activity (Gulf of Guinea). Observed in same samples, SO 4 enrichment could also be controlled by the same source. This SO 4 enrichment balances the observed Cl loss in aerosols accordingly with gaseous HCl formation processes in marine atmosphere [fr

  6. Green Ocean Amazon 2014/15 High-Volume Filter Sampling: Atmospheric Particulate Matter of an Amazon Tropical City and its Relationship to Population Health Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C. M. [Federal Univ. of Amazonas (Brazil); Santos, Erickson O. [Federal Univ. of Amazonas (Brazil); Fernandes, Karenn S. [Federal Univ. of Amazonas (Brazil); Neto, J. L. [Federal Univ. of Amazonas (Brazil); Souza, Rodrigo A. [Univ. of the State of Amazonas (Brazil)

    2016-08-01

    Manaus, the capital of the Brazilian state of Amazonas, is developing very rapidly. Its pollution plume contains aerosols from fossil fuel combustion mainly due to vehicular emission, industrial activity, and a thermal power plant. Soil resuspension is probably a secondary source of atmospheric particles. The plume transports from Manaus to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARM site at Manacapuru urban pollutants as well as pollutants from pottery factories along the route of the plume. Considering the effects of particulate matter on health, atmospheric particulate matter was evaluated at this site as part of the ARM Facility’s Green Ocean Amazon 2014/15 (GoAmazon 2014/15) field campaign. Aerosol or particulate matter (PM) is typically defined by size, with the smaller particles having more health impact. Total suspended particulate (TSP) are particles smaller than 100 μm; particles smaller than 2.5 μm are called PM2.5. In this work, the PM2.5 levels were obtained from March to December of 2015, totaling 34 samples and TSP levels from October to December of 2015, totaling 17 samples. Sampling was conducted with PM2.5 and TSP high-volume samplers using quartz filters (Figure 1). Filters were stored during 24 hours in a room with temperature (21,1ºC) and humidity (44,3 %) control, in order to do gravimetric analyses by weighing before and after sampling. This procedure followed the recommendations of the Brazilian Association for Technical Standards local norm (NBR 9547:1997). Mass concentrations of particulate matter were obtained from the ratio between the weighted sample and the volume of air collected. Defining a relationship between particulate matter (PM2.5 and TSP) and respiratory diseases of the local population is an important goal of this project, since no information exists on that topic.

  7. Analysis of Phytosterols and N-Alkanols in Atmospheric Organic Particulate Matter Collected in Vancouver During the Pacific 2001 Air Quality Study

    Science.gov (United States)

    Leithead, A.; Li, S.

    2002-12-01

    As part of Pacific 2001, HiVol samples were collected from 5 sites in the Vancouver area. The samples were extracted by accelerated solvent extraction (ACE), concentrated with nitrogen blow down, and separated into fractions by silica gel chromatography. For this portion of the study, an aliquot of one of the polar fraction was derivatized with BSTFA and analyzed by GC-FID and GC-MS. The results for n-alkanols and phytosterols will be reported and discussed. Previous studies have shown that the biogenic components of particulate matter are major constituents of the total organic material in atmospheric samples. Phytosterols are present in wood smoke, epicuticular waxes of many plants and microbial sources. In addition, cholesterol has been proposed as a potential tracer for emissions from cooking. The most abundant phytosterols are cholesterol, campesterol, stigmasterol and beta-sitosterol. It has been hypothesized that the phytosterol signature may be useful in identifying particulate matter from different source areas. The phytosterol signature for these samples will be reported and compared. The n-alkanol CPI and Cmax will also be reported. N-alkanols in atmospheric samples generally show a strong even to odd predominance indicating that their main source in particulate matter is biogenic. The n-alkanol signature for each sampling site will be compared.

  8. Arsenic species in atmospheric particulate matter as tracer of the air quality of Doñana Natural Park (SW Spain).

    Science.gov (United States)

    González-Castanedo, Y; Sanchez-Rodas, D; Sánchez de la Campa, A M; Pandolfi, M; Alastuey, A; Cachorro, V E; Querol, X; de la Rosa, J D

    2015-01-01

    Sampling and chemical analyses, including major compounds and trace elements, of atmospheric particulate matter (PM10 and PM2.5) have been performed during 2006-2007 in a regional background monitoring station located within the Doñana Natural Park (SW of Spain). This region is strategic for air quality and climate change studies, representing a meeting place of the European and African continents, and the Atlantic Ocean and Mediterranean Sea. The present study based on meteorological parameters demonstrated long-range transport and impact of industrial plumes on the Doñana Natural. Inorganic arsenic species (arsenate and arsenite) have been analyzed in particulate matter (PM) to characterize the impact of near Cu-smelter plumes and demonstrated the long-range transport of industrial pollutants. As(V) is the main specie of As and varies between 95% and 98% of total As in PM10 and 96-97% in PM2.5. The As(V)/As(III) ratio measured in emission plumes of a Cu-smelter are similar to the ratio found in the Doñana Natural Park. The application of Positive Matrix Factorization (PMF) to atmospheric particulate matter estimated the contributions and chemical profiles of natural and anthropogenic sources impacting the Natural Park, demonstrating the industrial origin of the As and other toxic elements in the air. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  10. Activation analysis of air particulate matter

    International Nuclear Information System (INIS)

    Alian, A.; Sansoni, B.

    1988-11-01

    This review on activation analysis of air particulate matter is an extended and updated version of a review given by the same authors in 1985. The main part is aimed at the analytical scheme and refers to rules and techniques for sampling, sample and standard preparation, irradiation and counting procedures, as well as data processing, - evaluation, and - presentation. Additional chapters deal with relative and monostandard methods, the use of activation analysis for atmosphere samples in various localities, and level of toxic and other elements in the atmosphere. The review contains 190 references. (RB)

  11. Bioaccessibility and Speciation of Potential Toxicants in Some Geogenic Sources of Atmospheric Particulate Matter

    Science.gov (United States)

    Morman, S. A.; Wolf, R. E.; Plumlee, G.; Reynolds, R. L.

    2008-12-01

    The correlation of exposure to particulate matter (PM) and increased morbidity and mortality was established in the 1970's. Research focused on elucidating mechanisms of action (i.e. particle size, composition, and biodurability), has generally examined anthropogenic sources such as solid or liquid combustion byproducts of fossil fuels, byproducts from the smelting of metal ores, and commercial/industrial mineral dusts (asbestos, crystalline silica. metal dusts). While many studies exist on agricultural exposures to inorganic dust, far fewer have examined health issues related to particulate matter contributions from rural, non-agricultural dusts or other geogenic sources. Geogenic PM (produced by natural processes such as volcanic ash, volcanic fog (vog), dusts from dry lakes or glacial deposits, smoke and windborne ash from wildfires, and dusts containing various soil pathogens) and geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities such as dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices etc.) are increasingly recognized as potential agents of toxicity and disease, via both environmental and occupational exposures. Surface sediment on some dry lake beds may contribute significant amounts of mineral dusts to the atmospheric load. For example, Owens Lake (a dry lake in southern California) has been a major source of PM10 (particulate matter less than 10 micrometers) dust in the United States. Dusts from dry and drying saline lakes may contain high concentrations of metals, such as arsenic, with known human health toxicity. Wildfires, consuming over nine million acres in 2007, also contribute significant amounts of particulate matter in addition to their other hazards. Designed to estimate the bioaccessibility of metals in soils, dusts and other environmental materials by measuring the reactivity of the

  12. PARTICULATE MATTER IN ATMOSPHERIC AIR IN URBAN AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Halina Marczak

    2017-05-01

    Full Text Available The study aimed to determine the mass concentration of PM10 in the air in urban area. The specific objective of the research was to analyze and assess the impact of transport road emissions on the level of concentration of particulate matter in the atmosphere in the Lublin agglomeration. The measuring points were located in places at different distances from the communications emission sources and, at the same time, possibly varying degrees of air pollution dust. Measuring the concentration of dust at the measuring points was performed using an indirect method using a laser photometer. In the research point which was not under direct influence of a heavy traffic road dust levels lower by 10.5% to 65.4% than in the vicinity of the transport route were reported. Small particle air pollution at all the points covered by the study increased significantly during the heating season. Based on the comparison of the obtained values of PM10 concentrations with legal standards, it was found that the air pollution exceeded the limits in all measurement points only during a series of measurements in the months of November-December. The recorded increase in air pollution during the heating season should be associated with an increased dust emissions in this period from the "low" emitters - local house boilers and detached houses.

  13. Respiratory dose analysis for components of ambient particulate matter#

    Science.gov (United States)

    Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to cause health hazard, specific attributes of PM that may cause health effects are somewhat ambiguous. The dose of each specific compo...

  14. Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Di; Hua, Xin; Xiu, Guang-Li; Zheng, Yong-Jie; Yu, Xiao-Ying; Long, Yi-Tao

    2017-10-01

    Currently, considerable attention has been paid to atmospheric particulate matter (PM) investigation due to its importance in human health and global climate change. Surface characterization of PM is important since the chemical heterogeneity between the surface and bulk may vary its impact on the environment and human being. Secondary ion mass spectrometry (SIMS) is a surface technique with high surface sensitivity, capable of high spatial chemical imaging and depth profiling. Recent research shows that SIMS holds great potential in analyzing both surface and bulk chemical information of PM. In this review, we presented the working principal of SIMS in PM characterization, summarized recent applications in PM analysis from different sources, discussed its advantages and limitations, and proposed the future development of this technique with a perspective in environmental sciences.

  15. Evaluation of airborne particulate matter pollution in Kenitra City, Morocco

    Directory of Open Access Journals (Sweden)

    Abdelfettah Benchrif

    2013-04-01

    Full Text Available Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF and Atomic Absorption Spectroscopy (AAS. The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were obtained for Ca in coarse particles and Fe for fine particles. However, the lowest concentrations were observed for Cd in both particulate sizes. The principal component analysis (PCA based on multivariate study enabled the identification of soil, road dust and traffic emissions as common sources for coarse and fine particles.

  16. Elemental composition of the particulate matter present in the atmospheric aerosols of Sete Lagoas, MG

    International Nuclear Information System (INIS)

    Queiroz, Paula Guimaraes Moura; Jacomino, Vanusa Maria Feliciano; Menezes, Maria Angela de Barros Correia

    2007-01-01

    The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS). The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 μm (PM 10 ), indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region. (author)

  17. Submicron particulate organic matter in the urban atmosphere: a new method for real-time measurement, molecular-level characterization and source apportionment

    Science.gov (United States)

    Müller, Markus; Eichler, Philipp; D'Anna, Barbara; Tan, Wen; Wisthaler, Armin

    2017-04-01

    We used a novel chemical analytical method for measuring submicron particulate organic matter in the atmosphere of three European cities (Innsbruck, Lyon, Valencia). Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) was used in combination with the "chemical analysis of aerosol online" (CHARON) inlet for detecting particulate organic compounds on-line (i.e. without filter pre-collection), in real-time (1-min time resolution), at ng m-3 concentrations, with molecular-level resolution (i.e. obtaining molecular weight and elemental composition information). The CHARON-PTR-ToF-MS system monitored molecular tracers associated with different particle sources including levoglucosan from biomass combustion, PAHs from vehicular traffic, nicotine from cigarette smoking, and monoterpene oxidation products secondarily formed from biogenic emissions. The tracer information was used for interpreting positive matrix factorization (PMF) data which allowed us to apportion the sources of submicron particulate organic matter in the different urban environments. This work was funded through the PIMMS ITN, which was supported by the European Commission's 7th Framework Programme under grant agreement number 287382.

  18. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  19. Analysis of atmospheric paniculate matter; application of optical and selected geochemical techniques

    Science.gov (United States)

    Mastalerz, Maria; Glikson, M.; Simpson, R.W.

    1999-01-01

    An increase in participate matter in the atmosphere has been shown to be linked to increased mortality but this relationship is poorly understood. Light microscopy, electron microscopy, electron microprobe, and micro-FTIR techniques have been applied to study atmospheric particulates in Brisbane, Australia as a part of a study on asthma. The particulate matter samples were collected daily from April to August 1992, and the sampling covered the autumn period which is typically a time of high asthma incidence in Brisbane. Volumetrically, most atmospheric particulate matter is less than 2 ??m in size. The microscopic analysis reveals that this material is composed mainly of combusted and incompletely burned hydrocarbons from motor vehicle exhaust emissions, quiescent spores of Mucorales, soil bacteria, and inorganic matter in the form of quartz and other silicates. Elemental and functional group analyses confirm microscope identification, documenting carbon-rich, aromatic exhaust material, more aliphatic pollen and spore material and inorganic matter. Fungal spores dominate bioaerosol and are very abundant from the end of April through May to mid-June. The cytoplasmic content of pollens or fungal spores is commonly regarded as allergenic. Particulates from the exhaust emissions and crustal material in a sub-micrometer size range may act as carriers or dispersive mechanisms for cytoplasmic material from fungal spores and pollens, perhaps causing periods of the highest exhaust emission to be the most allergenic. ?? 1998 Elsevier Science B.V. All rights reserved.

  20. Lability of Secondary Organic Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Giles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.; Martin, Scot T.

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM, no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.

  1. Thermal stability of inorganic and organic compounds in atmospheric particulate matter

    Science.gov (United States)

    Perrino, Cinzia; Marconi, Elisabetta; Tofful, Luca; Farao, Carmela; Materazzi, Stefano; Canepari, Silvia

    2012-07-01

    The thermal behaviour of atmospheric particulate matter (PM) has been investigated by using different analytical approaches to explore the added value offered by these technique in environmental studies. The thermogravimetric analysis (TGA), carried out on both certified material and real PM samples, has shown that several mass losses can be detected starting from 80 °C up to above 500 °C, when pyrolysis occur. Thermo-optical analysis of PM and ion chromatographic analysis of the residual have shown that the mass losses in the temperature range 80-180 °C are not justified by the release of either organic or inorganic compounds; it can be thus attributed to the release of weakly and strongly bound water. Release of water has also been evidenced in the temperature range 225-275 °C. The release of ammonium chloride and nitrate has been detected only above 80 °C. This indicates that the release of nitric acid, hydrochloric acid and ammonia, which is observed downstream of the filters during the sampling of atmospheric PM at ambient temperature, cannot be reproduced off-line, after the end of the sampling. We successfully explored one of the possible explanations, that is the desorption of HNO3, HCl and NH3 adsorbed on collected particles. NH4NO3 and NH4Cl, which can be thermally released by the filter, exhibit a different thermal behaviour from NaNO3 and NaCl, which are thermally stable up to 370 °C. This different behaviour can be used to discriminate between natural and secondary sources of atmospheric inorganic salts, as the interconversion that is observed when heating mixtures of pure salts resulted to be not relevant when heating real PM samples.

  2. Microphysical Characteristics of Atmospheric Particulate Matter from NASA’s MODIS, MISR, and AERONET Observations

    International Nuclear Information System (INIS)

    Gad, N; Ibrahim, Alaa; Shokr, M

    2017-01-01

    We present a comparative study of atmospheric particulate matter (also known as aerosols) observed by satellite remote sensing and ground-based observations. We compare satellite measurements obtained by NASA’s Moderate Resolution Imaging Spectro-Radiometer (MODIS) and Multi-angle Imaging Spectro-Radiometer (MISR) instruments against the ground-based aerosol sun-photometer data from the Aerosol Robotic Network (AERONET) station in Cairo, Egypt from 2003 to 2014 to build a long-term database for climatological studies and to improve upon the accuracy and coverage achievable from the satellite data. We deduce microphysical and geometrical properties about the dominant aerosols based on key optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and Ångström exponent (AE). This has allowed us to place important constraints on the type of aerosols (natural, anthropogenic, and biogenic). (paper)

  3. Direct sampling of sub-µm atmospheric particulate organic matter in sub-ng m-3 mass concentrations by proton-transfer-reaction mass spectrometry

    Science.gov (United States)

    Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.

    2017-12-01

    A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).

  4. PREFACE: SPECIAL SECTION OF THE JOURNAL OF AIR & WASTE MANAGEMENT ASSOCIATION FOR PARTICULATE MATTER: ATMOSPHERIC SCIENCES, EXPOSURE AND THE FOURTH COLLOQUIUM ON PM AND HUMAN HEALTH

    Science.gov (United States)

    This dedicated issue of the Journal of the Air & Waste Management Association contains 17 peer-reviewed scientific papers that were presented at the specialty conference, “Particulate Matter: Atmospheric Sciences, Exposure and the Fourth Colloquium on PM and Human Health,” that w...

  5. Ferruginous compounds in the airborne particulate matter of the metropolitan area of Belo Horizonte, Minas Gerais, Brazil.

    Science.gov (United States)

    Tavares, Fernanda Vasconcelos Fonseca; Ardisson, José Domingos; Rodrigues, Paulo César Horta; Fabris, José Domingos; Fernandez-Outon, Luis Eugenio; Feliciano, Vanusa Maria Delage

    2017-08-01

    Samples of soil, iron ore, and airborne particulate matter (size airborne particulate matter in the metropolitan area of Belo Horizonte, Minas Gerais, Brazil, are either from natural origin, as, for instance, re-suspension of particles from soil, or due to anthropogenic activities, meaning that it would be originated from the many iron ore minings surrounding the metropolitan area. Numerical simulations were used to model the atmospheric dispersion of the airborne particulate matter emitted by iron mining located at the Iron Quadrangle geodomain, Minas Gerais. Results from these numerical simulations supported identifying the sites with the highest concentrations of airborne particulate matter in the metropolitan area. Samples of these suspended materials were collected at the selected sites by using high-volume air samplers. The physicochemical features of the solid materials were assessed by X-ray fluorescence, X-ray diffraction, magnetometry, and 57 Fe Mössbauer spectroscopy. The soil materials were found to be rich in quartz, aluminum, organic matter, and low contents of iron, mainly as low crystalline iron oxides. The samples of the iron ores, on the other hand, contain high concentration of iron, dominantly as relatively pure and crystalline hematite (α-Fe 2 O 3 ). The samples of the airborne particulate matter are rich in iron, mainly as hematite, but contained also quartz, aluminum, and calcium. Mössbauer spectroscopy was used to evaluate the hyperfine structure of 57 Fe of the hematite both from the iron ore and the soil samples. The structural characteristics of the hematite of these particulate materials were further explored. The direct influence of the iron ore mining on the composition of the airborne particulate matter was clearly evidenced based on the trace ability of hematite to its source of emission. Even the atmospheric air on regions relatively far away from the mining activities is also significantly influenced.

  6. Urban particulate matter pollution: a tale of five cities.

    Science.gov (United States)

    Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A

    2016-07-18

    Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment.

  7. [Comparison of atmospheric particulate matter and aerosol optical depth in Beijing City].

    Science.gov (United States)

    Lin, Hai-Feng; Xin, Jin-Yuan; Zhang, Wen-Yu; Wang, Yue-Si; Liu, Zi-Rui; Chen, Chuan-Lei

    2013-03-01

    The pollution of particulate matter was serious in Beijing City from the synchronous observation of particulate matter mass concentration and aerosol optical characteristics in 2009. The annual mean concentrations of PM2.5 and PM10 were (65 +/- 14) microg x m(-3) and (117 +/- 31) microg x m(-3), respectively, which exceeded the national ambient air quality annual standards to be implemented in 2016. There were 35% and 26% days of 2009 that the daily standards were exceeded. There was a significant correlation between fine particulate (PM2.5) and inhalable particle (PM10), with a correlation coefficient (R) of approximately 0.90 (P 500 nm) and Angstrom exponent were (0.55 +/- 0.1) and (1.12 +/- 0.08), respectively. There were significant correlations between PM2.5, PM10 and AOD in the four seasons and the whole year, and the correlation coefficients were greater than or equal to 0.50. Furthermore, the correlation functions and coefficients had seasonal variations. The correlations were more significant in summer and autumn than in spring and winter. The annual correlation could cover up the seasonal systematic differences. The correlations between AOD revised by Mixed Layer Height and PM2.5 PM10 revised by Relative Humidity became stronger, and the exponential correlations were superior to the linear correlations.

  8. Spatial and temporal variability in urban fine particulate matter concentrations

    International Nuclear Information System (INIS)

    Levy, Jonathan I.; Hanna, Steven R.

    2011-01-01

    Identification of hot spots for urban fine particulate matter (PM 2.5 ) concentrations is complicated by the significant contributions from regional atmospheric transport and the dependence of spatial and temporal variability on averaging time. We focus on PM 2.5 patterns in New York City, which includes significant local sources, street canyons, and upwind contributions to concentrations. A literature synthesis demonstrates that long-term (e.g., one-year) average PM 2.5 concentrations at a small number of widely-distributed monitoring sites would not show substantial variability, whereas short-term (e.g., 1-h) average measurements with high spatial density would show significant variability. Statistical analyses of ambient monitoring data as a function of wind speed and direction reinforce the significance of regional transport but show evidence of local contributions. We conclude that current monitor siting may not adequately capture PM 2.5 variability in an urban area, especially in a mega-city, reinforcing the necessity of dispersion modeling and methods for analyzing high-resolution monitoring observations. - Highlights: →Fine particulate matter (PM 2.5 ) hot spots are hard to identify in urban areas. → Literature conclusions about PM 2.5 hot spots depend on study design and methods. → Hot spots are more likely for short-term concentrations at high spatial density. → Statistical methods illustrate local source impacts beyond regional transport. → Dispersion models and high-resolution monitors are both needed to find hot spots. - Fine particulate matter can vary spatially within large urban areas, in spite of the significant contribution from regional atmospheric transport.

  9. PIXE analysis of atmospheric particulate matter in glas fibre filters

    International Nuclear Information System (INIS)

    Tabacniks, M.H.; Orsini, C.Q.; Maenhaut, W.

    1993-01-01

    A 3-step extraction procedure was developed to allow particle-induced X-ray emission (PIXE) analysis of particulate matter in normal glass fibre filter samples. The detection limits, expressed in ng/m 3 of air, for the filter extracts were 5 to 30 times lower than those achieved by PIXE analysis or ordinary Nuclepore polycarbonate filter samples. The concentration results were compared with those obtained from routine atomic absorption spectrometry measurements and with the PIXE data from Nuclepore stacked filter unit samples taken in parallel. (orig.)

  10. Ambient particulate matter as a risk factor for suicide.

    Science.gov (United States)

    Kim, Changsoo; Jung, Sang Hyuk; Kang, Dae Ryong; Kim, Hyeon Chang; Moon, Ki Tae; Hur, Nam Wook; Shin, Dong Chun; Suh, Il

    2010-09-01

    The authors assessed the relationship between exposure to ambient particulate matter and suicide in urban settings during a 1-year period. The association between particulate matter and suicide was determined using a time-stratified case-crossover approach in which subjects served as their own controls. All suicide cases (4,341) in 2004 that occurred in seven cities in the Republic of Korea were included. Hourly mean concentrations of particulate matter suicide risk associated with an interquartile range increase in particulate matter was determined by conditional logistic regression analysis after adjusting for national holidays and meteorological factors. Subgroup analysis was performed after stratification by underlying disease (cardiovascular disease, diabetes mellitus, chronic obstructive pulmonary disease, cancer, and psychiatric illness). The largest associations were a 9.0% increase (95% CI=2.4-16.1) and a 10.1% (95% CI=2.0-19.0) increase in suicide risk related to an interquartile range increase in particulate matter suicide) and particulate matter suicide), respectively. Among individuals with cardiovascular disease, a significant association between particulate matter suicide) and suicide was observed (18.9%; 95% CI=3.2-37.0). Conclusions: A transient increase in particulate matter was associated with increased suicide risk, especially for individuals with preexisting cardiovascular disease.

  11. Determination of trace elements by INAA in urban air particulate matter and transplanted lichens

    International Nuclear Information System (INIS)

    Bergamaschi, L.; Rizzio, E.; Profumo, A.; Gallorini, M.

    2005-01-01

    Lichens as biomonitors and neutron activation analysis as analytical technique have been employed to evaluate the trace element atmospheric pollution in the metropolitan area of the city of Pavia (Northern Italy). Transplanted lichens (Parmelia sulcata and Usnea gr. hirta) and air particulate matter have been monthly collected and analyzed during the winter 2001-2002. INAA and ET-AAS have been used for the determination of 28 elements in air particulate matter and 25 elements in lichens. Trace metals concentrations as well as the corresponding enrichment factors were evaluated and compared. (author)

  12. Particulate matter and neutron activation analysis

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko

    2003-01-01

    In these years, economy of East Asian region is rapidly growing, and countries in this region are facing serious environmental problems. Neutron activation analysis is known as one of high-sensitive analytical method for multi elements. And it is a useful tool for environmental research, particularly for the study on atmospheric particulate matter that consists of various constituents. Elemental concentration represents status of air, such as emission of heavy metals from industries and municipal incinerators, transportation of soil derived elements more than thousands of kilometers, and so on. These monitoring data obtained by neutron activation analysis can be a cue to evaluate environment problems. Japanese government launched National Air Surveillance Network (NASN) employing neutron activation analysis in 1974, and the data has been accumulated at about twenty sampling sites. As a result of mitigation measure of air pollution sources, concentrations of elements that have anthropogenic sources decreased particularly at the beginning of the monitoring period. However, even now, concentrations of these anthropogenic elements reflect the characteristics of each sampling site, e.g. industrial/urban, rural, and remote. Soil derived elements have a seasonal variation because of the contribution of continental dust transported by strong westerly winds prevailing in winter and spring season. The health effects associated with trace elements in particulate matter have not been well characterized. However, there is increasing evidence that particulate air pollution, especially fine portion of particles in many different cities is associated with acute mortality. Neutron activation analysis is also expected to provide useful information to this new study field related to human exposures and health risk. (author)

  13. Real-time chemical characterization of atmospheric particulate matter in China: A review

    Science.gov (United States)

    Li, Yong Jie; Sun, Yele; Zhang, Qi; Li, Xue; Li, Mei; Zhou, Zhen; Chan, Chak K.

    2017-06-01

    Atmospheric particulate matter (PM) pollution has become a major health threat accompanying the rapid economic development in China. For decades, filter-based offline chemical analyses have been the most widely adopted means to investigate PM and have provided much information for understanding this type of pollution in China. However, offline analyses have low time resolutions and the chemical information thus obtained fail to reflect the dynamic nature of the sources and the rapid processes leading to the severe PM pollution in China. In recent years, advances in real-time PM chemical characterization have created a new paradigm for PM studies in China. In this review, we summarize those advances, focusing on the most widely used mass spectrometric and ion chromatographic techniques. We describe the findings from those studies in terms of spatiotemporal variabilities, degree of neutralization and oxygenation, source apportionment, secondary formation, as well as collocated measurements of the chemical and physical (hygroscopic and optical) properties of PM. We also highlight the new insights gained from those findings and suggest future directions for further advancing our understanding of PM pollution in China via real-time chemical characterization.

  14. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    International Nuclear Information System (INIS)

    Tavares, Fernanda V.F.; Ardisson, Jose Domingos; Rodrigues, Paulo Cesar H.; Brito, Walter de; Macedo, Waldemar Augusto A.; Jacomino, Vanusa Maria F.

    2013-01-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57 Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57 Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)

  15. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  16. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Agurell, E.; Alsberg, T.; Assefaz-Redda, Y.

    1990-11-01

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  17. Notes on the Particulate Matter Standards in the European Union and the Netherlands

    Directory of Open Access Journals (Sweden)

    Hugo Priemus

    2009-03-01

    Full Text Available The distribution of Particulate Matter in the atmosphere, resulting from emissions produced by cars, trucks, ships, industrial estates and agricultural complexes, is a topical public health problem that has increased in recent decades due to environmental factors in advanced economies in particular. This contribution relates the health impact caused by concentrations of Particulate Matter (PM in ambient air to the PM standards, the size of the particles and spatial planning. Diverging impacts of PM standards in legal regulation are discussed. The authors present a review of the development of legal PM standards in the European Union, with a specific reference to The Netherlands.

  18. Microbial Biomarkers for Native and Agricultural Soil Inputs to Atmospheric Particulate Matter

    Science.gov (United States)

    Fulton, J. M.; Herckes, P.; Fraser, M. P.; Collins, J.; Van Mooy, B. A.

    2017-12-01

    Intense dust storms (haboobs) erode desert soils and cause dramatic short-term increases in particulate matter (PM) concentration in the atmosphere. Background atmospheric PM levels in the southwestern United States also commonly exceed the National Ambient Air Quality Standards, so episodic haboobs and normal weather patterns both contribute to aeolian transport. We analyzed fine (PM2.5) and coarse (PM>2.5) dust fractions sampled in Tempe, Arizona for molecular biomarkers indicative of dust sourced from either native or agricultural soils. We focused on pigments and intact polar lipids (IPLs) that were also in soil crusts collected in the region. The PM samples were taken during two weeks (23 July to 5 August 2014) that included two haboobs during the first week and mostly calm weather with minor rainfall during the second week. We detected scytonemin, a diagnostic pigment biomarker for cyanobacteria, in all PM>2.5 samples, but its concentration was highest in haboob dust. Similarly, scytonemin was only abundant in PM2.5 samples taken during haboobs. Scytonemin is an important component of native biological soil crusts, protecting the crust community from UV radiation, and is ca. two orders of magnitude less abundant in disturbed agricultural soils. In biological soil crusts, scytonemin is associated with extracellular polysaccharides that are produced by cyanobacteria and bind soil into cohesive crusts. The association between scytonemin and haboobs suggests that native soil erosion is facilitated by high energy, episodic events that overcome crust cohesion. IPLs were abundant in agricultural soil crusts and included phosphatidylethanolamine from soil bacteria and a glucosylceramide from fungi. These compounds had similar concentration in haboob and background dust, suggesting agricultural or otherwise disturbed soils contribute more to ambient dust. In this study, we employed a new high resolution mass spectrometric method that produces molecular formulas and

  19. Trimethylsilyl derivatives of organic compounds in source samples and in atmospheric fine particulate matter.

    Science.gov (United States)

    Nolte, Christopher G; Schauer, James J; Cass, Glen R; Simoneit, Bernd R T

    2002-10-15

    Source sample extracts of vegetative detritus, motor vehicle exhaust, tire dust paved road dust, and cigarette smoke have been silylated and analyzed by GC-MS to identify polar organic compounds that may serve as tracers for those specific emission sources of atmospheric fine particulate matter. Candidate molecular tracers were also identified in atmospheric fine particle samples collected in the San Joaquin Valley of California. A series of normal primary alkanols, dominated by even carbon-numbered homologues from C26 to C32, the secondary alcohol 10-nonacosanol, and some phytosterols are prominent polar compounds in the vegetative detritus source sample. No new polar organic compounds are found in the motor vehicle exhaust samples. Several hydrogenated resin acids are present in the tire dust sample, which might serve as useful tracers for those sources in areas that are heavily impacted by motor vehicle traffic. Finally, the alcohol and sterol emission profiles developed for all the source samples examined in this project are scaled according to the ambient fine particle mass concentrations attributed to those sources by a chemical mass balance receptor model that was previously applied to the San Joaquin Valley to compute the predicted atmospheric concentrations of individual alcohols and sterols. The resulting underprediction of alkanol concentrations at the urban sites suggests that alkanols may be more sensitive tracers for natural background from vegetative emissions (i.e., waxes) than the high molecular weight alkanes, which have been the best previously available tracers for that source.

  20. Behavior of secondary particles in particulate matter collected at eastern Kanagawa

    International Nuclear Information System (INIS)

    Nishida, Tomohiro; Kikawada, Yoshikazu; Oi, Takao; Honda, Teruyuki

    2008-01-01

    The suspended particulate matters collected in 100 periods from 2002/10/28 to 2004/10/29 were separated into the water soluble and insoluble components and their main components were analyzed. The characteristics of atmosphere in the east part of Kagawa prefecture and of the secondary particulates were presumed. Therefore, it was considered that in the samples other than Mn the origins of water soluble and insoluble components are different each other from their behavior. The water-soluble part may be mostly ammonium salt (secondary particulate) from the measurement of NH 4 + . Furthermore, it became clear that the evolution of secondary particulate varies largely with season. Then, the variation with season was presumed by the main component analysis using the statistical software, SPSS adding to the correlation coefficient. This method has proved to be effective. (M.H.)

  1. Particulate matter mass concentrations produced from pavement surface abrasion

    Directory of Open Access Journals (Sweden)

    Fullova Dasa

    2017-01-01

    Full Text Available According to the latest findings particulate matter belong to the most significant pollutants in Europe together with ground-level ozone O3 and nitrogen dioxide NO2. Road traffic is one of the main sources of particulate matter. Traffic volume has unpleasant impact on longevity of the pavements and also on the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The paper deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The paper offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  2. PIXE analysis of airborne particulate matter from Xalostoc, Mexico: winter to summer comparison

    International Nuclear Information System (INIS)

    Flores M, J.; Aldape, F.; Diaz, R.V.; Hernandez-Mendez, B.; Garcia G, R.

    1999-01-01

    A study of elemental contents in airborne particulate matter from the industrial city of Xalostoc, Estado de Mexico, was performed using PIXE. The place has a great variety of industries, it is a heavily populated, and it is a part of Mexico City's conurbation, thus contributing significantly to its atmospheric pollution. At present, there is few information available about elemental contents in airborne particulate matter from that region. In this study, two sets of samples of airborne particulate matter were collected daily during periods of four weeks in summer 1996 and winter 1997; two samples a day, 12 h each, night-time and day-time. Results revealed important information about elemental contents in airborne particulate matter from that area, especially in the respirable fraction PM 2.5 . Comparison of night and day figures showed the presence of some elements such as Cu, Zn, and Pb, attributed, as it was expected, to uninterrupted industrial processes. Appearance of some other elements was more consistent only in either day-time or night-time due to diurnal or nocturnal industrial activities, or produced by human activities such as fuel combustion of automotive vehicles. Comparison of winter to summer results showed some other important features such as higher concentrations of pollutants in winter, because of the dry and cold weather, while summer samples exhibited lower concentrations mainly due to the presence of rain showers

  3. Particulate matter, air quality and climate: lessons learned and future needs

    Science.gov (United States)

    Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M. C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E.; Pandis, S.; Riipinen, I.; Rudich, Y.; Schaap, M.; Slowik, J. G.; Spracklen, D. V.; Vignati, E.; Wild, M.; Williams, M.; Gilardoni, S.

    2015-07-01

    The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China

  4. Urban tree effects on fine particulate matter and human health

    Science.gov (United States)

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  5. Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry Analysis of Fosetyl-Aluminum in Airborne Particulate Matter

    Directory of Open Access Journals (Sweden)

    Francesca Buiarelli

    2018-01-01

    Full Text Available Fosetyl-aluminum is a synthetic fungicide administered to plants especially to prevent diseases caused by the members of the Peronosporales and several Phytophthora species. Herein, we present a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS method to analyze residues of fosetyl-A1 in air particulate matter. This study was performed in perspective of an exposure assessment of this substance of health concern in environments where high levels of fosetly-Al, relatively to airborne particulate matter, can be found after spraying it. The cleanup procedure of the analyte, from sampled filters of atmospheric particulate matter, was optimized using a Strata X solid-phase extraction cartridge, after accelerated extraction by using water. The chromatographic separation was achieved using a polymeric column based on hydrophilic interaction in step elution with water/acetonitrile, whereas the mass spectrometric detection was performed in negative electrospray ionization. The proposed method resulted to be a simple, fast, and suitable method for confirmation purposes.

  6. Determination of lead isotopic composition of airborne particulate matter by ICPMS: implications for lead atmospheric emissions in Canada

    International Nuclear Information System (INIS)

    Celo, V.; Dabek-Zlotorzynska, E.

    2009-01-01

    Full text: Quadrupole ICPMS was used for determination of trace metal concentrations and lead isotopic composition in fine particulate matter (PM 2.5 ) collected at selected sites within the Canadian National Air Pollution Surveillance network, from February 2005 to February 2007. High enrichment factors indicated that lead is mostly of anthropogenic origin and consequently, the lead isotopic composition is directly related to that of pollution sources. The 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios were measured and the results were compared to the isotopic signatures of lead from different sources. Various approaches were used to assess the impact of relevant sources and the meteorological conditions in the occurrence and distribution of lead in Canadian atmospheric aerosols. (author)

  7. On the Impact of Particulate Matter Distribution on Pressure Drop of Wall-Flow Particulate Filters

    Directory of Open Access Journals (Sweden)

    Vicente Bermúdez

    2017-03-01

    Full Text Available Wall-flow particulate filters are a required exhaust aftertreatment system to abate particulate matter emissions and meet current and incoming regulations applying worldwide to new generations of diesel and gasoline internal combustion engines. Despite the high filtration efficiency covering the whole range of emitted particle sizes, the porous substrate constitutes a flow restriction especially relevant as particulate matter, both soot and ash, is collected. The dependence of the resulting pressure drop, and hence the fuel consumption penalty, on the particulate matter distribution along the inlet channels is discussed in this paper taking as reference experimental data obtained in water injection tests before the particulate filter. This technique is demonstrated to reduce the particulate filter pressure drop without negative effects on filtration performance. In order to justify these experimental data, the characteristics of the particulate layer are diagnosed applying modeling techniques. Different soot mass distributions along the inlet channels are analyzed combined with porosity change to assess the new properties after water injection. Their influence on the subsequent soot loading process and regeneration is assessed. The results evidence the main mechanisms of the water injection at the filter inlet to reduce pressure drop and boost the interest for control strategies able to force the re-entrainment of most of the particulate matter towards the inlet channels’ end.

  8. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  9. Research on chromium and arsenic speciation in atmospheric particulate matter: short review

    Science.gov (United States)

    Nocoń, Katarzyna; Rogula-Kozłowska, Wioletta; Widziewicz, Kamila

    2018-01-01

    Atmospheric particulate matter (PM) plays an important role in the distribution of elements in the environment. The PM-bound elements penetrates into the other elements of the environment, in two basic forms - those dissolved in the atmospheric precipitation and those permanently bound to PM particles. Those forms differs greatly in their mobility, thus posing a potential threat to living organisms. They can also be an immediate threat, while being inhaled. Chromium (Cr) and arsenic (As) belong to the group of elements whose certain chemical states exhibit toxic properties, that is Cr(VI) and As(III). Thus, recognition of the actual threat posed by Cr and As in the environment, including those present in PM, is possible only through the in depth speciation analysis. Research on the Cr and As speciation in PM, more than the analogous studies of their presence in other compartments of the environment, have been undertaken quite rarely. Hence the knowledge on the speciation of PM-bound As and Cr is still limited. The state of knowledge in the field of PM-bound Cr and As is presented in the paper. The issues related to the characterization and occurrence of Cr and As species in PM, the share of Cr and As species mass in different PM size fractions, and in PM of different origin is also summarized. The analytical techniques used in the speciation analysis of PM-bound Cr and As are also discussed. In the existing literature there is no data on the physical characteristics of Cr and As (bound to a different PM size fractions), and thus it still lack of data needed for a comprehensive assessment of the actual environmental and health threat posed by airborne Cr and As.

  10. [Sample preparation methods for chromatographic analysis of organic components in atmospheric particulate matter].

    Science.gov (United States)

    Hao, Liang; Wu, Dapeng; Guan, Yafeng

    2014-09-01

    The determination of organic composition in atmospheric particulate matter (PM) is of great importance in understanding how PM affects human health, environment, climate, and ecosystem. Organic components are also the scientific basis for emission source tracking, PM regulation and risk management. Therefore, the molecular characterization of the organic fraction of PM has become one of the priority research issues in the field of environmental analysis. Due to the extreme complexity of PM samples, chromatographic methods have been the chief selection. The common procedure for the analysis of organic components in PM includes several steps: sample collection on the fiber filters, sample preparation (transform the sample into a form suitable for chromatographic analysis), analysis by chromatographic methods. Among these steps, the sample preparation methods will largely determine the throughput and the data quality. Solvent extraction methods followed by sample pretreatment (e. g. pre-separation, derivatization, pre-concentration) have long been used for PM sample analysis, and thermal desorption methods have also mainly focused on the non-polar organic component analysis in PM. In this paper, the sample preparation methods prior to chromatographic analysis of organic components in PM are reviewed comprehensively, and the corresponding merits and limitations of each method are also briefly discussed.

  11. Characterisation of particulate matter on airborne pollen grains

    International Nuclear Information System (INIS)

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-01-01

    A characterization of the physical–chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles’ equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical–chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity. - Highlights: • Airborne pollen sorbs other PM found in suspension. • 84% of the particles sorbed belonged to the fine aerosol fraction. • Adsorbed PM presented daily physical–chemical variations. • Particles sorbed dominated by Si-rich, Organic-rich, SO-rich, Fe-rich and Cl-rich. - Airborne pollen is able to transport finer particulate matter, which presents daily physical–chemical variations.

  12. Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas.

    Science.gov (United States)

    Kurth, Laura M; McCawley, Michael; Hendryx, Michael; Lusk, Stephanie

    2014-07-01

    People who live in Appalachian areas where coal mining is prominent have increased health problems compared with people in non-mining areas of Appalachia. Coal mines and related mining activities result in the production of atmospheric particulate matter (PM) that is associated with human health effects. There is a gap in research regarding particle size concentration and distribution to determine respiratory dose around coal mining and non-mining areas. Mass- and number-based size distributions were determined with an Aerodynamic Particle Size and Scanning Mobility Particle Sizer to calculate lung deposition around mining and non-mining areas of West Virginia. Particle number concentrations and deposited lung dose were significantly greater around mining areas compared with non-mining areas, demonstrating elevated risks to humans. The greater dose was correlated with elevated disease rates in the West Virginia mining areas. Number concentrations in the mining areas were comparable to a previously documented urban area where number concentration was associated with respiratory and cardiovascular disease.

  13. Bivariate generalized Pareto distribution for extreme atmospheric particulate matter

    Science.gov (United States)

    Amin, Nor Azrita Mohd; Adam, Mohd Bakri; Ibrahim, Noor Akma; Aris, Ahmad Zaharin

    2015-02-01

    The high particulate matter (PM10) level is the prominent issue causing various impacts to human health and seriously affecting the economics. The asymptotic theory of extreme value is apply for analyzing the relation of extreme PM10 data from two nearby air quality monitoring stations. The series of daily maxima PM10 for Johor Bahru and Pasir Gudang stations are consider for year 2001 to 2010 databases. The 85% and 95% marginal quantile apply to determine the threshold values and hence construct the series of exceedances over the chosen threshold. The logistic, asymmetric logistic, negative logistic and asymmetric negative logistic models areconsidered as the dependence function to the joint distribution of a bivariate observation. Maximum likelihood estimation is employed for parameter estimations. The best fitted model is chosen based on the Akaike Information Criterion and the quantile plots. It is found that the asymmetric logistic model gives the best fitted model for bivariate extreme PM10 data and shows the weak dependence between two stations.

  14. Controlling particulate matter under the Clean Air Act: a menu of options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document was prepared by STAPPA and ALAPCO to help US state and local air pollution control officials understand the effects of particulate matter (PM) on human health and air quality, the relative contribution of various sources to particulate emissions, and the effectiveness and costs of various approaches - including innovative ones - to minimizing these emissions. The document covers particulate matter with a nominal diameter of 10 microns ({mu}m) or less (PM{sub 10}), including `fine` PM of 2.5 microns or less in diameter (PM{sub 2.5}). Sections cover: the effects of particulate matter on human health; regulatory issues; characterization of particulate matter; emission control strategies for mobile sources (diesel engines, small nonroad engines, alternative fuels etc.), particulates from stationary sources (electric utilities, industry and commercial fuel combustion; mineral products industry, metallurgical industry etc.); particulates from area sources; and market-based strategies for controlling particulate matter. 2 apps.

  15. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew [Austin, TX

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  16. Air Quality Criteria for Particulate Matter.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  17. Particulate matter urban air pollution from traffic car

    Science.gov (United States)

    Filip, G. M.; Brezoczki, V. M.

    2017-05-01

    The particulate matters (PM) are very important compounds of urban air pollution. There are a lot of air pollution sources who can generate PM and one of the most important of them it is urban traffic car. Air particulate matters have a major influence on human health so everywhere are looking for PM reducing solutions. It is knows that one of the solution for reduce the PM content from car traffic on ambient urban air is the fluidity of urban traffic car by introduction the roundabout intersections. This paper want to present some particulate matter determinations for PM10 and PM2.5 conducted on the two types of urban intersection respectively traffic light and roundabout intersections in Baia Mare town in the approximate the same work conditions. The determinations were carried out using a portable particulate matter monitor Haz - Dust model EPAM - 5000, who can provide a real time data for PM10, PM 2.5.Determinations put out that there are differences between the two locations regarding the PM content on ambient air. On roundabout intersection the PM content is less than traffic light intersection for both PM10 and PM 2.5 with more than 30%.

  18. Source apportionment of atmospheric carbonaceous particulate matter based on the radiocarbon

    International Nuclear Information System (INIS)

    Guang-hua Wang; You-shi Zeng; Jian Yao; Yuan Qian; Ke Liu; Wei Liu; Yan Li; Yu Huang; University of South China, Hunan

    2013-01-01

    A method was established to quantitatively estimate sources of atmospheric carbonaceous matter, using a combination of radiocarbon technology, linear regression of organic carbon (OC) -K + and elemental carbon (EC) tracer method. Fractional contributions of fossil fuels, biomass burning, biogenic secondary organic carbon (BSOC) and soil dust to the atmospheric size-resolved carbonaceous matters in Shanghai suburb were estimated using this new method. The fossil carbon contributed most of the OC in particles smaller than 0.49 μm, and its fraction decreased with the increase of particle size. Biomass burning contributed 17-28 % to the OC. The BSOC contributed comparable proportions to the OC in particles smaller than 3.0 μm with the biomass burning, but larger in the particles lager than 3.0 μm. The soil dust contributed least fraction to the OC of each size with a proportion of 2-13 %. The biomass burning and fossil sources shared comparable fraction of the EC in all size range. (author)

  19. Status of Suspended Particulate Matters Pollution at Traditional Markets in Makassar City

    Science.gov (United States)

    Suryani, Sri; Fahrunnisa

    2018-03-01

    Research on the status of suspended particulate matters pollution in four traditional markets located in Makassar city has been done. The purpose of this research is to know the air quality in the traditional market areas, especially caused by suspended particulate matters. The background of this research is because traders who trade in traditional markets generally peddle their goods along dusty roads and suspended particulate matters in dust can be inhaled when the vehicle passes. These suspended particulate matters pollutant can cause lung diseases. The results showed that the level of suspended particulate matters pollution fluctuates every year depending on the local wind speed, humidity, and temperature. Research results also showed the values were over the standard value according to the governor of South Sulawesi regulation.

  20. Polarimetric Remote Sensing of Atmospheric Particulate Pollutants

    Science.gov (United States)

    Li, Z.; Zhang, Y.; Hong, J.

    2018-04-01

    Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF), whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  1. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  2. Analysis of atmospheric particulate samples via instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Greenberg, R.R.

    1990-01-01

    Instrumental neutron activation analysis (INAA) is a powerful analytical technique for the elemental characterization of atmospheric particulate samples. It is a true multielement technique with adequate sensitivity to determine 30 to 40 elements in a sample of atmospheric particulate material. Its nondestructive nature allows sample reanalysis by the same or a different analytical technique. In this paper as an example of the applicability of INAA to the study of atmospheric particulate material, a study of the emissions from municipal incinerators is described

  3. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    Directory of Open Access Journals (Sweden)

    Fullová Daša

    2016-12-01

    Full Text Available The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  4. Thorium-particulate matter interaction. Thorium complexing capacity of oceanic particulate matter: Theory

    International Nuclear Information System (INIS)

    Hirose, Katsumi; Tanque, Eiichiro

    1994-01-01

    The interaction between thorium and oceanic particulate matter was examined experimentally by using chemical equilibrium techniques. Thorium reacts quantitatively with the organic binding site of Particulate Matter (PM) in 0.1 mol/L HCl solution by complexation, which is equilibrated within 34 h. According to mass balance analysis, thorium forms a 1:1 complex with the organic binding site in PM, whose conditional stability constant is 10 6.6 L/mol. The Th adsorption ability is present even in 6.9 mol/L HCl solution although the amount of Th adsorption decreases with increasing acidity in the solution. Interferences to Th adsorption by Fe(III) suggests that other metals cannot react with PM in more than 0.1 mol/L HCl solutions when concentrations of other metals are the same level of Th. The competitive reaction between Th and Fe(III) occurs in higher Fe concentrations, which means that the organic binding site is nonspecific for Th. A vertical profile of Th complexing capacity of PM in the western North Pacific is characterized; that is, the Th complexing capacity shows a surface maximum and decreases rapidly with depth

  5. Meteorological controls on atmospheric particulate pollution during hazard reduction burns

    Science.gov (United States)

    Di Virgilio, Giovanni; Hart, Melissa Anne; Jiang, Ningbo

    2018-05-01

    Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRBs) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depend upon prevailing atmospheric conditions, and can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates pollution, the PBLH between 00:00 and 07:00 LT (local time) was 100-200 m higher than days with high pollution. The PBLH was similar during 10:00-17:00 LT for both low and high pollution days, but higher after 18:00 LT for HRB days with low pollution. Cloud cover, temperature and wind speed reflected the above pattern, e.g. mean temperatures and wind speeds were 2 °C cooler and 0.5 m s-1 lower during mornings and evenings of HRB days when air quality was poor. These cooler, more stable morning and evening conditions coincide with nocturnal westerly cold air drainage flows in Sydney, which are associated with reduced mixing height and vertical dispersion, leading to the build-up of PM2.5. These findings indicate that air pollution impacts may be reduced by altering the timing of HRBs by conducting them later in the morning (by a matter of hours). Our findings support location-specific forecasts of the air quality impacts of HRBs in Sydney and similar regions elsewhere.

  6. An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust in Beijing.

    Science.gov (United States)

    Zhao, Hongtao; Shao, Yaping; Yin, Chengqing; Jiang, Yan; Li, Xuyong

    2016-04-15

    The resuspension of road dust from street surfaces could be a big contributor to atmospheric particulate pollution in the rapid urbanization context in the world. However, to date what its potential contribution to the spatial pattern is little known. Here we developed an innovative index model called the road dust index (RIatmospheric suspended particles. The factors were ranked and weighted based on road dust characteristics (the amounts, grain sizes, and mobilities of the road dust, and the concentrations and toxicities of metals in the road dust). We then applied the RIatmospheric suspended particles. The results demonstrated that the road dust in urban areas has higher potential risk of metal to atmospheric particles than that in rural areas. The RIatmospheric suspended particles and for controlling atmospheric particulate pollution caused by road dust emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  8. Atmospheric particulate matter within the Sudbury footprint

    Energy Technology Data Exchange (ETDEWEB)

    Koski, P. [Laurentian Univ., Sudbury, ON (Canada); Spiers, G.A. [Laurentian Univ., Sudbury, ON (Canada). Centre for Environmental Monitoring

    2007-07-01

    In order to assess health and risks to ecosystems, measuring exposure to coarse, fine and ultrafine dust and their association with metals in the air is necessary. This paper presented the results of a study that investigated the concentration, particle size distribution and spatial dispersion of metals in total and fractioned airborne dust. The study involved collection of airborne dust samples at five different sites over a one year period in the Sudbury area, including one control site located downwind of the south-westerly most industrial emission source. The paper discussed the goals and objectives of the project which included analysis of total concentration of particulate matter (PM) within various size fractions; analysis of concentration of selected metals such as arsenic, zinc, copper, nickel, cobalt, iron, manganese, chromium and lead as well as the species of sulphur within those size fractions; delineation between particle chemistry of both short and long range transport origin; determining the effects of the different seasons on PM concentrations, and establish any seasonal/temperature trends that may occur. The paper also discussed the methodology for the study with reference to sampling sites, sampling equipment, sampling schedule, mass determination, and chemical analysis. X-ray Fluorescence (XRF) was used to determine the total metals concentration in airborne dust. The results of the study were also presented. It was concluded that PM analysis within the Sudbury footprint indicated that the finer fractions primarily contained the highest weight and metal concentration. In addition, sulphate seemed to be the only species of sulphur present in the different size fractions at each site. 22 refs., 4 tabs., 5 figs.

  9. Atmospheric particulate matter within the Sudbury footprint

    International Nuclear Information System (INIS)

    Koski, P.; Spiers, G.A.

    2007-01-01

    In order to assess health and risks to ecosystems, measuring exposure to coarse, fine and ultrafine dust and their association with metals in the air is necessary. This paper presented the results of a study that investigated the concentration, particle size distribution and spatial dispersion of metals in total and fractioned airborne dust. The study involved collection of airborne dust samples at five different sites over a one year period in the Sudbury area, including one control site located downwind of the south-westerly most industrial emission source. The paper discussed the goals and objectives of the project which included analysis of total concentration of particulate matter (PM) within various size fractions; analysis of concentration of selected metals such as arsenic, zinc, copper, nickel, cobalt, iron, manganese, chromium and lead as well as the species of sulphur within those size fractions; delineation between particle chemistry of both short and long range transport origin; determining the effects of the different seasons on PM concentrations, and establish any seasonal/temperature trends that may occur. The paper also discussed the methodology for the study with reference to sampling sites, sampling equipment, sampling schedule, mass determination, and chemical analysis. X-ray Fluorescence (XRF) was used to determine the total metals concentration in airborne dust. The results of the study were also presented. It was concluded that PM analysis within the Sudbury footprint indicated that the finer fractions primarily contained the highest weight and metal concentration. In addition, sulphate seemed to be the only species of sulphur present in the different size fractions at each site. 22 refs., 4 tabs., 5 figs

  10. Analysis of trace elements in airborne particulate matters collected in Ankara, Turkey by TXRF

    Directory of Open Access Journals (Sweden)

    Durukan I.

    2013-04-01

    Full Text Available The main focus point of the presented study was the assessment of atmospheric burden of particulate matter and toxic trace metals in the atmosphere of Ankara, Turkey. For this purpose, outdoor samplings were accomplished in the capital city, Ankara. The types of filters, sample collection and sample preparation methods were investigated and optimized. Analyses were provided by the total reflection X-ray fluorescence (TXRF spectroscopic technique in Germany. Spatial and temporal variations of air particulate matter (APM levels in the city were examined. In some stations, APM sampled in according to their size distribution such as PM10 and PM2.5. Elemental characterization of size distributed PM were achieved and evaluated. It was detected that the elements mainly originated from soil in Beytepe station, from soil and solid fuel usage in Kayas station and from traffic and a variety of human activities in Sıhhiye station in air samplings. While the elements of natural origin observed in PM10 fraction, the elements from traffic and human activities were in PM2.5. Eventually, enrichment calculations were performed in order to identify the pollution sources.

  11. Particulate Matter: a closer look

    NARCIS (Netherlands)

    Buijsman E; Beck JP; Bree L van; Cassee FR; Koelemeijer RBA; Matthijsen J; Thomas R; Wieringa K; LED; MGO

    2005-01-01

    The summary in booklet form 'Fijn stof nader bekeken' (Particulate Matter: a closer look) , published in Dutch by the Netherlands Environmental Assessment Agency (MNP) and the Environment and Safety Division of the National Institute for Public Health and the Environment (RIVM), has been designed to

  12. POLARIMETRIC REMOTE SENSING OF ATMOSPHERIC PARTICULATE POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Z. Li

    2018-04-01

    Full Text Available Atmospheric particulate pollutants not only reduce atmospheric visibility, change the energy balance of the troposphere, but also affect human and vegetation health. For monitoring the particulate pollutants, we establish and develop a series of inversion algorithms based on polarimetric remote sensing technology which has unique advantages in dealing with atmospheric particulates. A solution is pointed out to estimate the near surface PM2.5 mass concentrations from full remote sensing measurements including polarimetric, active and infrared remote sensing technologies. It is found that the mean relative error of PM2.5 retrieved by full remote sensing measurements is 35.5 % in the case of October 5th 2013, improved to a certain degree compared to previous studies. A systematic comparison with the ground-based observations further indicates the effectiveness of the inversion algorithm and reliability of results. A new generation of polarized sensors (DPC and PCF, whose observation can support these algorithms, will be onboard GF series satellites and launched by China in the near future.

  13. Double Compressions of Atmospheric Depth by Geopotential Tendency, Vorticity, and Atmospheric Boundary Layer Affected Abrupt High Particulate Matter Concentrations at a Coastal City for a Yellow Dust Period in October

    Directory of Open Access Journals (Sweden)

    Hyo Choi

    2014-01-01

    Full Text Available Using GRIMM-aerosol sampler, NOAA-HYSPLIT model, and 3D-WRF-3.3 model, the transportation of dusts from Gobi Desert toward Gangneung city, Korea was investigated from 09:00 LST October 27 to 04:00 LST October 28, 2003. Maximum PM10 (PM2.5, PM1 concentration was detected with 3.8 (3.4, 14.1 times higher magnitude than one in non-Yellow Dust period. The combination of dusts transported from the desert under westerly wind with particulate matters and gases from vehicles on the road of the city caused high PM concentrations near the ground surface at 09:00 LST and their maxima at 17:00 LST near sunset with further pollutants from heating boilers in the resident area. Positive geopotential tendency at the 500 hPa level of the city (∂Φ/∂t; m day−1 corresponding to negative vorticity of -4×10-5 sec−1 (-2.5×10-5 sec−1 at 0900 LST (21:00 LST; at night was +83 m day−1 (+30 m day−1 and it caused atmospheric depth between 500 hPa level and the ground surface to be vertically expanded. However, its net reduction to −53 m/12 hrs until 21:00 LST indicated synoptic-scale atmospheric layer to be vertical shrunken, resulting in the increase of PM concentrations at 17:00 LST. Simultaneously, much shallower microscale stable nocturnal surface inversion layer (NSIL than daytime thermal internal boundary layer induced particulate matters to be merged inside the NSIL, resulting in maximum PM concentrations at 17:00 LST.

  14. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions

    Science.gov (United States)

    Levia, Delphis F.; Michalzik, Beate; Bischoff, Sebastian; NäThe, Kerstin; Legates, David R.; Gruselle, Marie-Cecile; Richter, Susanne

    2013-04-01

    Particulate matter (PM) plays an important role in biogeosciences, affecting biosphere-atmosphere interactions and ecosystem health. This is the first known study to quantify and model PM diameter distributions of bulk precipitation, throughfall, stemflow, and organic layer (Oa) solution. Solutions were collected from a European beech (Fagus sylvatica L.) forest during leafed and leafless periods. Following scanning electron microscopy and image analysis, PM distributions were quantified and then modeled with the Box-Cox transformation. Based on an analysis of 43,278 individual particulates, median PM diameter of all solutions was around 3.0 µm. All PM diameter frequency distributions were skewed significantly to the right. Optimal power transformations of PM diameter distributions were between -1.00 and -1.56. The utility of this model reconstruction would be that large samples having a similar probability density function can be developed for similar forests. Further work on the shape and chemical composition of particulates is warranted.

  15. Allegheny County Particulate Matter 2.5

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The U.S. Environmental Protection Agency provides information on the particulate matter concentration for Allegheny County that have a diameter greater or equal to...

  16. Particulate Matter (Environmental Health Student Portal)

    Science.gov (United States)

    ... that includes curriculum standards, assessments, and lesson rubrics. Sources of Particulate Matter (U.S. Environmental Protection Agency) - Information and activity on interpreting ... U.S. National Library of Medicine National Institutes of Health U.S. Department ...

  17. Particulate Matter Resuspension in Mississippi Bight Evaluated with CONCORDE's Synthesis Model

    Science.gov (United States)

    O'Brien, S. J.; Quas, L. M.; Miles, T. N.; Pan, C.; Cambazoglu, M. K.; Soto Ramos, I. M.; Greer, A. T.; Church, I.; Wiggert, J. D.

    2017-12-01

    The CONsortium for oil spill exposure pathways in COastal River-Dominated Ecosystems (CONCORDE) was established to investigate the complex fine-scale biological, chemical and physical interactions in a marine system controlled by pulsed-river plume dynamics. During CONCORDE's spring 2016 field campaign, the In Situ Ichthyoplankton Imaging System (ISIIS) on the R/V Point Sur and the Scanfish on the R/V Pelican comprehensively characterized the physical and biological structure in the region. Increased suspended particulate matter was observed by the ISIIS, with concentrations at depth sufficient to completely occlude the in situ images of planktonic organisms. Data was also collected on the continental shelf during the spring cruise by the RU31 glider in the proximity of the Mississippi River Delta, east of the ISIIS / Scanfish transects. Backscatter and salinity observed by the Scanfish and glider showed elevated suspended particulate matter and increased salinity, suggesting a linkage to shoreward advection from the continental shelf of oceanic waters that are sufficiently energetic to drive sediment resuspension. As part of the CONCORDE research effort, a four-dimensional biogeochemical/lower trophic level synthesis model for Mississippi Sound and Bight has been developed, based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. This study utilizes CONCORDE's synthesis model to investigate the physical forcing mechanisms affecting the increased suspended particulate matter concentration observed in the Mississippi Bight during spring 2016, and advection pathways between estuarine and shelf waters in the northern Gulf of Mexico. The results show that episodic, advection-driven resuspension is a critical aspect controlling suspended sediment distributions in Mississippi Bight, which has implications for observed spatio-temporal patterns of planktonic species.

  18. Particulate Matter Emission Factors for Biomass Combustion

    Directory of Open Access Journals (Sweden)

    Simone Simões Amaral

    2016-10-01

    Full Text Available Emission factor is a relative measure and can be used to estimate emissions from multiple sources of air pollution. For this reason, data from literature on particulate matter emission factors from different types of biomass were evaluated in this paper. Initially, the main sources of particles were described, as well as relevant concepts associated with particle measurements. In addition, articles about particle emissions were classified and described in relation to the sampling environment (open or closed and type of burned biomass (agricultural, garden, forest, and dung. Based on this analysis, a set of emission factors was presented and discussed. Important observations were made about the main emission sources of particulate matter. Combustion of compacted biomass resulted in lower particulate emission factors. PM2.5 emissions were predominant in the burning of forest biomass. Emission factors were more elevated in laboratory burning, followed by burns in the field, residences and combustors.

  19. Source apportionment of particulate pollutants in the atmosphere over the Northern Yellow Sea

    Science.gov (United States)

    Wang, L.; Qi, J. H.; Shi, J. H.; Chen, X. J.; Gao, H. W.

    2013-05-01

    Atmospheric aerosol samples were collected over the Northern Yellow Sea of China during the years of 2006 and 2007, in which the Total Carbon (TC), Cu, Pb, Cd, V, Zn, Fe, Al, Na+, Ca2+, Mg2+, NH4+, NO3-, SO42-, Cl-, and K+ were measured. The principle components analysis (PCA) and positive matrix factorization (PMF) receptor models were used to identify the sources of particulate matter. The results indicated that seven factors contributed to the atmospheric particles over the Northern Yellow Sea, i.e., two secondary aerosols (sulfate and nitrate), soil dust, biomass burning, oil combustion, sea salt, and metal smelting. When the whole database was considered, secondary aerosol formation contributed the most to the atmospheric particle content, followed by soil dust. Secondary aerosols and soil dust consisted of 65.65% of the total mass of particulate matter. The results also suggested that the aerosols over the North Yellow Sea were heavily influenced by ship emission over the local sea area and by continental agricultural activities in the northern China, indicating by high loading of V in oil combustion and high loading of K+ in biomass burning. However, the contribution of each factor varied greatly over the different seasons. In spring and autumn, soil dust and biomass burning were the dominant factors. In summer, heavy oil combustion contributed the most among these factors. In winter, secondary aerosols were major sources. Backward trajectories analysis indicated the 66% of air mass in summer was from the ocean, while the air mass is mainly from the continent in other seasons.

  20. Evaluation of total suspended particulate matter in some urban and industrial cities of Pakistan

    International Nuclear Information System (INIS)

    Qadir, M.A.; Iqbal, M.Z.

    1996-01-01

    Environmental studies are very important as the living beings depend greatly on the conditions of the environment. Air is an important component of the environment, which greatly affects the health of humans, animals and plants. Environmental problems in Pakistan are growing with the rise in total sectorial growth in population, economy and industrialization. In connection with atmospheric pollution, measurement of the total suspended particulate matter (TSP) in the urban atmosphere of Lahore, Faisalabad, Rawalpindi, Islamabad, Wah Cantt. and Khanispur (background area) has been carried out and compared to that of U.S. Environmental Protection Agency Standards. (author)

  1. Summertime Spatial Variations in Atmospheric Particulate Matter and Its Chemical Components in Different Functional Areas of Xiamen, China

    Directory of Open Access Journals (Sweden)

    Shuhui Zhao

    2015-02-01

    Full Text Available Due to the highly heterogeneous and dynamic nature of urban areas in Chinese cities, air pollution exhibits well-defined spatial variations. Rapid urbanization in China has heightened the importance of understanding and characterizing atmospheric particulate matter (PM concentrations and their spatiotemporal variations. To investigate the small-scale spatial variations in PM in Xiamen, total suspended particulate (TSP, PM10, PM5 and PM2.5 measurements were collected between August and September in 2012. Their average mass concentrations were 102.50 μg∙m−3, 82.79 μg∙m−3, 55.67 μg∙m−3 and 43.70 μg∙m−3, respectively. Organic carbon (OC and elemental carbon (EC in PM2.5 were measured using thermal optical transmission. Based on the PM concentrations for all size categories, the following order for the different functional areas studied was identified: hospital > park > commercial area > residential area > industrial area. OC contributed approximately 5%–23% to the PM2.5 mass, whereas EC accounted for 0.8%–6.95%. Secondary organic carbon constituted most of the carbonaceous particles found in the park, commercial, industrial and residential areas, with the exception of hospitals. The high PM and EC concentrations in hospitals were primarily caused by vehicle emissions. Thus, the results suggest that long-term plans should be to limit the number of vehicles entering hospital campuses, construct large-capacity underground parking structures, and choose hospital locations far from major roads.

  2. A new technology for the reduction of particulate matter from diesel engines in ships

    NARCIS (Netherlands)

    Van Rens, G.L.M.A.

    2008-01-01

    In this thesis the focus is on the particulate matter reduction of ships, as ships contribute significantly to the particulate matter concentration in ambient air. Because the fuel of sea ships contains a lot of ash, the emitted particulate matter will also contain a lot of ash. In car and truck

  3. The Particulate Nature of Matter in Science Education and in Science.

    Science.gov (United States)

    Vos, Wobbe de; Verdonk, Adri H.

    1996-01-01

    Discusses ideas about the particulate nature of matter and assesses the extent to which these represent a compromise between scientific and educational considerations. Analyzes relations between the particulate nature of matter in science and science education in an attempt to understand children's inclination to attribute all kinds of macroscopic…

  4. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    Science.gov (United States)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  5. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China

    Science.gov (United States)

    Zhang, Gen; Xu, Honghui; Qi, Bing; Du, Rongguang; Gui, Ke; Wang, Hongli; Jiang, Wanting; Liang, Linlin; Xu, Wanyun

    2018-02-01

    The Yangtze River Delta (YRD) is one of the most densely populated regions in China with severe air quality issues that have not been fully understood. Thus, in this study, based on 1-year (2013) continuous measurement at a National Reference Climatological Station (NRCS, 30.22° N, 120.17° E; 41.7 m a.s.l.) in the center of Hangzhou in the YRD, we investigated the seasonal characteristics, interspecies relationships, and the local emissions and the regional potential source contributions of trace gases (including O3, NOx, NOy, SO2, and CO) and particulate matter (PM2.5 and PM10). Results revealed that severe two-tier air pollution (photochemical and haze pollution) occurred in this region, with frequent exceedances in O3 (38 days) and PM2.5 (62 days). O3 and PM2.5 both exhibited distinct seasonal variations with reversed patterns: O3 reaching a maximum in warm seasons (May and July) but PM2.5 reaching a maximum in cold seasons (November to January). The overall results from interspecies correlation indicated a strong local photochemistry favoring the O3 production under a volatile organic compound (VOC)-limited regime, whereas it moved towards an optimum O3 production zone during warm seasons, accompanied by the formation of secondary fine particulates under high O3. The emission maps of PM2.5, CO, NOx, and SO2 demonstrated that local emissions were significant for these species on a seasonal scale. The contributions from the regional transport among inland cities (Zhejiang, Jiangsu, Anhui, and Jiangxi Province) on a seasonal scale were further confirmed to be crucial to air pollution at the NRCS site by using backward trajectory simulations. Air masses transported from the offshore areas of the Yellow Sea, East Sea, and South Sea were also found to be highly relevant to the elevated O3 at the NRCS site through the analysis of potential source contribution function (PSCF). Case studies of photochemical pollution (O3) and haze (PM2.5) episodes both suggested the

  6. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China

    Directory of Open Access Journals (Sweden)

    G. Zhang

    2018-02-01

    Full Text Available The Yangtze River Delta (YRD is one of the most densely populated regions in China with severe air quality issues that have not been fully understood. Thus, in this study, based on 1-year (2013 continuous measurement at a National Reference Climatological Station (NRCS, 30.22° N, 120.17° E; 41.7 m a.s.l. in the center of Hangzhou in the YRD, we investigated the seasonal characteristics, interspecies relationships, and the local emissions and the regional potential source contributions of trace gases (including O3, NOx, NOy, SO2, and CO and particulate matter (PM2.5 and PM10. Results revealed that severe two-tier air pollution (photochemical and haze pollution occurred in this region, with frequent exceedances in O3 (38 days and PM2.5 (62 days. O3 and PM2.5 both exhibited distinct seasonal variations with reversed patterns: O3 reaching a maximum in warm seasons (May and July but PM2.5 reaching a maximum in cold seasons (November to January. The overall results from interspecies correlation indicated a strong local photochemistry favoring the O3 production under a volatile organic compound (VOC-limited regime, whereas it moved towards an optimum O3 production zone during warm seasons, accompanied by the formation of secondary fine particulates under high O3. The emission maps of PM2.5, CO, NOx, and SO2 demonstrated that local emissions were significant for these species on a seasonal scale. The contributions from the regional transport among inland cities (Zhejiang, Jiangsu, Anhui, and Jiangxi Province on a seasonal scale were further confirmed to be crucial to air pollution at the NRCS site by using backward trajectory simulations. Air masses transported from the offshore areas of the Yellow Sea, East Sea, and South Sea were also found to be highly relevant to the elevated O3 at the NRCS site through the analysis of potential source contribution function (PSCF. Case studies of photochemical pollution (O3 and haze (PM2.5 episodes both

  7. Atmospheric particulate mercury at the urban and forest sites in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2016-02-01

    industrial and commercial emissions, whereas the main source of Hg in particulate matter collected at the forest site was connected with regional anthropogenic processes. This paper provides the results of the first long-term measurements of size-fractionated particulate mercury conducted in central Poland, which could be an important insight into atmospheric Hg processes within such a scarcely investigated part of Europe.

  8. Simulated reaction of formaldehyde and ambient atmospheric particulate matter using a chamber

    Institute of Scientific and Technical Information of China (English)

    Yueyue Chen; Jia Liu; Jing Shang; Tong Zhu

    2017-01-01

    The reaction of HCHO with Beijing winter's real ambient particulate matter (PM) inside a 3.3 m3 Teflon Chamber was conducted in this study.NO2,O3 and H2O gases were removed from the ambient aerosol before entering into the chamber.The decays of HCHO were monitored (acetylacetone spectrophotometry method) during the reactions at different PM number concentrations (Na) and relative humidities (RHs),and the formed particulate formate was detected by IC and XPS techniques.The results showed that when RH was 10%-15%,the decay rate of HCHO in the chamber was higher with the existence of PM from relatively clean days (with number concentration (Na) < 200,000 particle/L,0.35-22.5 μm) compared to dirty days (Na > 200,000 particle/L,0.35-22.5 μm).When RH increased to 30%-45%,PM can hardly have significant influences on the decay of HCHO.The formations of formate on the reacted PM were consistent with the HCHO decay rates at different ambient PM Na and RH conditions.This is a first study related to the "real" ambient PM reacted with HCHO and suggested that in the clean and low RH days,PM could be an effective medium for the conversion of HCHO to formate.

  9. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    International Nuclear Information System (INIS)

    Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C.E.

    1981-01-01

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m -3 , in agreement with previous literature data. The major mass of POC was found on the smallest particles (r 13 C/ 12 C of the small particles is close to the one expected (d 13 C = 26 +- 2 0 //sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols ( 13 C = -21 +- 2 0 / 00 ) for POC associated with sea-salt droplets transported to the marine atmosphere

  10. Estimating particulate matter health impact related to the combustion of different fossil fuels

    OpenAIRE

    Kuenen , Jeroen; Gschwind , Benoît; Drebszok , Kamila M.; Stetter , Daniel; Kranenburg , Richard; Hendriks , Carlijn; Lefèvre , Mireille; Blanc , Isabelle; Wyrwa , Artur; Schaap , Martijn

    2013-01-01

    International audience; Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin...

  11. Study of particulate matter in Limeira (Brazil) using SR-TXRF

    International Nuclear Information System (INIS)

    Canteras, Felippe B.; Moreira, Silvana

    2011-01-01

    Air pollution is a growing problem mainly in metropolitan areas in the world. The atmospheric pollutants are responsible for various environmental problems including the human health. Among the pollutants, the particulate matter is important, since it has a heterogeneous composition. The goal of this work was to analyze quantitatively the particulate matter in Limeira city, Sao Paulo State, Brazil. The sampling was made using a sequential filtering system, containing two filters putted in series, to collect fine and coarse fractions. After a removal in an acid medium, with ultrasound bath, the samples were analyzed by Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF). The results obtained for PM10 were in agreement with the standards defined by the Brazilian legislation and also with the standards established by USEPA. In all analyzed samples S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb were quantified. Employing multivariate statistical analysis (principal component and cluster analysis) was possible to identify the emission sources. For coarse fraction the main emission source was soil dusty responsible for 57% of the total in the coarse fraction, followed by vehicular emission with 30% and industrial 13%. In the fine fraction soil dusty was the mainly emission source contributing with 79% of the total, followed by vehicular emission with 13% and finally the industrial emission responsible just for 8%. (author)

  12. Study of particulate matter in Limeira (Brazil) using SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Canteras, Felippe B.; Moreira, Silvana, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil) Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2011-07-01

    Air pollution is a growing problem mainly in metropolitan areas in the world. The atmospheric pollutants are responsible for various environmental problems including the human health. Among the pollutants, the particulate matter is important, since it has a heterogeneous composition. The goal of this work was to analyze quantitatively the particulate matter in Limeira city, Sao Paulo State, Brazil. The sampling was made using a sequential filtering system, containing two filters putted in series, to collect fine and coarse fractions. After a removal in an acid medium, with ultrasound bath, the samples were analyzed by Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF). The results obtained for PM10 were in agreement with the standards defined by the Brazilian legislation and also with the standards established by USEPA. In all analyzed samples S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb were quantified. Employing multivariate statistical analysis (principal component and cluster analysis) was possible to identify the emission sources. For coarse fraction the main emission source was soil dusty responsible for 57% of the total in the coarse fraction, followed by vehicular emission with 30% and industrial 13%. In the fine fraction soil dusty was the mainly emission source contributing with 79% of the total, followed by vehicular emission with 13% and finally the industrial emission responsible just for 8%. (author)

  13. Diesel Particulate Matter Polygons, California, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  14. Diesel Particulate Matter Polygons, Hawaii, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  15. Diesel Particulate Matter Polygons, Arizona, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  16. Diesel Particulate Matter Polygons, Nevada, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  17. Assessment of impact distances for particulate matter dispersion: A stochastic approach

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, S.M.; Mores, P.L.; Santa Cruz, A.S.M. [CAIMI - Centro de Aplicaciones Informaticas y Modelado en Ingenieria, Universidad Tecnologica Nacional-Facultad Regional Rosario, Zeballos 1341-S2000 BQA Rosario, Santa Fe (Argentina); Scenna, N.J. [CAIMI - Centro de Aplicaciones Informaticas y Modelado en Ingenieria, Universidad Tecnologica Nacional-Facultad Regional Rosario, Zeballos 1341-S2000 BQA Rosario, Santa Fe (Argentina); INGAR - Instituto de Desarrollo y Diseno (Fundacion ARCIEN - CONICET), Avellaneda 3657, S3002 GJC Santa Fe (Argentina)], E-mail: nscenna@santafe-conicet.gov.ar

    2009-10-15

    It is known that pollutants can be dispersed from the emission sources by the wind, or settled on the ground. Particle size, stack height, topography and meteorological conditions strongly affect particulate matter (PM) dispersion. In this work, an impact distance calculation methodology considering different particulate sizes is presented. A Gaussian-type dispersion model for PM that handles size particles larger than 0.1 {mu}m is used. The model considers primary particles and continuous emissions. PM concentration distribution at every affected geographical point defined by a grid is computed. Stochastic uncertainty caused by the natural variability of atmospheric parameters is taken into consideration in the dispersion model by applying a Monte Carlo methodology. The prototype package (STRRAP) that takes into account the stochastic behaviour of atmospheric variables, developed for risk assessment and safe distances calculation [Godoy SM, Santa Cruz ASM, Scenna NJ. STRRAP SYSTEM - A software for hazardous materials risk assessment and safe distances calculation. Reliability Engineering and System Safety 2007;92(7):847-57] is enlarged for the analysis of the PM air dispersion. STRRAP computes distances from the source to every affected receptor in each trial and generates the impact distance distribution for each particulate size. In addition, a representative impact distance value to delimit the affected area can be obtained. Fuel oil stack effluents dispersion in Rosario city is simulated as a case study. Mass concentration distributions and impact distances are computed for the range of interest in environmental air quality evaluations (PM{sub 2.5}-PM{sub 10})

  18. Assessment of impact distances for particulate matter dispersion: A stochastic approach

    International Nuclear Information System (INIS)

    Godoy, S.M.; Mores, P.L.; Santa Cruz, A.S.M.; Scenna, N.J.

    2009-01-01

    It is known that pollutants can be dispersed from the emission sources by the wind, or settled on the ground. Particle size, stack height, topography and meteorological conditions strongly affect particulate matter (PM) dispersion. In this work, an impact distance calculation methodology considering different particulate sizes is presented. A Gaussian-type dispersion model for PM that handles size particles larger than 0.1 μm is used. The model considers primary particles and continuous emissions. PM concentration distribution at every affected geographical point defined by a grid is computed. Stochastic uncertainty caused by the natural variability of atmospheric parameters is taken into consideration in the dispersion model by applying a Monte Carlo methodology. The prototype package (STRRAP) that takes into account the stochastic behaviour of atmospheric variables, developed for risk assessment and safe distances calculation [Godoy SM, Santa Cruz ASM, Scenna NJ. STRRAP SYSTEM - A software for hazardous materials risk assessment and safe distances calculation. Reliability Engineering and System Safety 2007;92(7):847-57] is enlarged for the analysis of the PM air dispersion. STRRAP computes distances from the source to every affected receptor in each trial and generates the impact distance distribution for each particulate size. In addition, a representative impact distance value to delimit the affected area can be obtained. Fuel oil stack effluents dispersion in Rosario city is simulated as a case study. Mass concentration distributions and impact distances are computed for the range of interest in environmental air quality evaluations (PM 2.5 -PM 10 ).

  19. Characterisation of the organic composition of size segregated atmospheric particulate matter at traffic exposed and background sites in Madrid

    Science.gov (United States)

    Mirante, F.; Perez, R.; Alves, C.; Revuelta, M.; Pio, C.; Artiñano, B.; Nunes, T.

    2010-05-01

    The growing awareness of the impact of atmospheric particulate matter (PM) on climate, and the incompletely recognised but serious effects of anthropogenic aerosols on air quality and human health, have led to diverse studies involving almost exclusively the coarse or the fine PM fractions. However, these environmental effects, the PM formation processes and the source assignment depend greatly on the particle size distribution. The innovative character of this study consists in obtaining time series with a size-segregated detailed chemical composition of PM for differently polluted sites. In this perspective, a summer sampling campaign was carried out from 1 of June to 1 of July 2009. One of the sampling sites was located at a representative urban monitoring station (Escuelas Aguirre) belonging to the municipal network, located at a heavy traffic street intersection in downtown Madrid. Other sampling point was positioned within the CIEMAT area, located in the NW corner of the city, which can be considered an urban background or suburban site. Particulate matter was sampled with high volume cascade impactors at 4 size stages: 10-2.5, 2.5-0.95, 0.95-0.45 and sources (e.g. vehicular). Carbon preference indices (CPI) close to the unity and the presence of PAHs point out vehicle exhaust as the main emission source of the aliphatic and polycyclic aromatic fractions, especially for the roadside aerosols. Concentration ratios between PAHs were also used to assign emission sources. The abundance and the sources of these carcinogenic pollutants are discussed and compared taking into account the local/regional characteristics. Water-soluble ions in PM were also analysed by ionic chromatography. A portion of the same filters was subjected to metal speciation by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Receptor-oriented modelling for source apportionment was applied to the size-segregated PM chemical composition

  20. Temporal and spatial variations in particulate matter, particulate organic carbon and attenuation coefficient in Cochin Backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, K.S.

    Nine stations over a stretch of 21 km of Periyar river estuary were sampled during January to December 1981. Particulate matter varied from 3-253 mg.1 super(1) at the surface and 24.8-257mg.1 super(1) at the bottom. Particulate organic carbon ranged...

  1. Spatiotemporal variability and meteorological control of particulate matter pollution in a large open-pit coal mining region in Colombia

    Science.gov (United States)

    Morales Rincon, L. A.; Jimenez-Pizarro, R.; Porras-Diaz, H.

    2012-12-01

    Luis Morales-Rincon (1), Hernan Porras-Diaz (1), Rodrigo Jiménez (2,*) (1) Geomatic Research Group, Department of Civil Engineering, Universidad Industrial de Santander, Bucaramanga, Santander 680002, Colombia; (2) Air Quality Research Group, Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, DC 111321, Colombia *Corresponding author: phone +57-1-316-5000 ext. 14099, fax +57-1-316-5334, e-mail rjimenezp@unal.edu.co The semi-desertic area of Central Cesar, Colombia, produced approximately 44 million tons of coal in 2011. This mining activity has been intensively developed since 2005. There are currently 7 large-scale mining projects in that area. The coal industry has strongly impacted not only the ecosystems, but also the neighboring communities around the coal mines. The main goal of the research work was to characterize spatial and temporal variations of particulate matter (total suspended particulates - TSP - and particulate matter below 10 μm - PM10) as measured at various air quality monitoring stations in Cesar's coal industry region as well as to study the relationship between these variability and meteorological factors. The analysis of the meteorological time series of revealed a complex atmospheric circulation in the region. No clear repetitive diurnal circulation patterns were observed, i.e. statistical mean patterns do not physically represent the actual atmospheric circulation. We attribute this complexity to the interdependence between local and synoptic phenomena over a low altitude, relatively flat area. On the other hand, a comparison of air quality in the mining area with a perimeter station indicates that coal industry in central Cesar has a mayor effect on the levels of particulate matter in the region. Particulate matter concentration is highly variable throughout the year. The strong correlation between TSP and PM10 indicates that secondary aerosols are of minor importance. Furthermore, particle

  2. Formation of Particulate Matter from the Oxidation of Evaporated Wastewater from Hydraulic Fracturing Activity

    Science.gov (United States)

    Hildebrandt Ruiz, L.; Bean, J. K.; Bilotto, A.

    2017-12-01

    The use of hydraulic fracturing for production of petroleum and natural gas has increased dramatically in the last decade, but the environmental impacts of this technology remain unclear. Experiments were conducted to quantify airborne emissions from twelve samples of hydraulic fracturing flowback wastewater collected in the Permian Basin, as well as the photochemical processing of these emissions leading to the formation of particulate matter. The concentration of total volatile carbon (TVC, hydrocarbons evaporating at room temperature) averaged 29 milligrams of carbon per liter (mgC/L) and the TVC evaporation rate averaged 1357 mgC/L-m2-min. After photochemical oxidation under high NOx conditions the amount of organic particulate matter formed per milliliter of wastewater evaporated averaged 24 micrograms (µg); the amount of ammonium nitrate formed averaged 262 µg. In the state of Texas, the potential formation of PM from evaporated flowback wastewater is similar to the estimated PM emissions from diesel engines used in oil rigs, emphasizing the need to quantify wastewater evaporation and atmospheric processing of these emissions.

  3. Validation of NAA Method for Urban Particulate Matter

    International Nuclear Information System (INIS)

    Woro Yatu Niken Syahfitri; Muhayatun; Diah Dwiana Lestiani; Natalia Adventini

    2009-01-01

    Nuclear analytical techniques have been applied in many countries for determination of environmental pollutant. Method of NAA (neutron activation analysis) representing one of nuclear analytical technique of that has low detection limits, high specificity, high precision, and accuracy for large majority of naturally occurring elements, and ability of non-destructive and simultaneous determination of multi-elemental, and can handle small sample size (< 1 mg). To ensure quality and reliability of the method, validation are needed to be done. A standard reference material, SRM NIST 1648 Urban Particulate Matter, has been used to validate NAA method. Accuracy and precision test were used as validation parameters. Particulate matter were validated for 18 elements: Ti, I, V, Br, Mn, Na, K, Cl, Cu, Al, As, Fe, Co, Zn, Ag, La, Cr, and Sm,. The result showed that the percent relative standard deviation of the measured elemental concentrations are found to be within ranged from 2 to 14,8% for most of the elements analyzed whereas Hor rat value in range 0,3-1,3. Accuracy test results showed that relative bias ranged from -11,1 to 3,6%. Based on validation results, it can be stated that NAA method is reliable for characterization particulate matter and other similar matrix samples to support air quality monitoring. (author)

  4. Catalytic combustion of particulate matter Catalysts of alkaline nitrates supported on hydrous zirconium

    International Nuclear Information System (INIS)

    Galdeano, N.F.; Carrascull, A.L.; Ponzi, M.I.; Lick, I.D.; Ponzi, E.N.

    2004-01-01

    In order to explore a method to remove particulate matter, catalysts of different alkaline nitrates (Li, K and Cs) supported on hydrous zirconium were prepared by the method of incipient humidity and tested as catalysts for particulate matter combustion. The catalytic activity was determined by using the temperature programmed oxidation technique (TPO), utilizing two equipments, a thermogravimetric reactor and other of fixed bed. In the first case the particulate matter/catalyst mixture was milled carefully in a mortar (tight contact) while in the second case more realistic operative conditions were used, particulate matter/catalyst mixture was made with a spatula (loose contact). All prepared catalysts showed good activity for the particulate matter combustion. The cesium catalyst was the one that presented higher activity, decreasing the combustion temperature between 200 and 250 deg. C with respect to the combustion without catalyst. The catalyst with lithium nitrate became active at higher temperature than its melting point and the same occurred with the potassium catalyst. This did not occur for the catalyst containing cesium nitrate that melts at 407 deg. C and became active from 350 deg. C

  5. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis

    DEFF Research Database (Denmark)

    Møller, Peter; Mikkelsen, Lone; Vesterdal, Lise Kristine

    2011-01-01

    and inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60...... of particulate matter....

  6. Estimating particulate matter health impact related to the combustion of different fossil fuels

    International Nuclear Information System (INIS)

    Kuenen, Jeroen; Kranenburg, Richard; Hendriks, Carlijn; Schaap, Martijn; Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle; Drebszok, Kamila; Wyrwa, Artur; Stetter, Daniel

    2013-01-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  7. Evaluation of diesel particulate matter sampling techniques

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2011-09-01

    Full Text Available The study evaluated diesel particulate matter (DPM) sampling methods used in the South African mining industry. The three-piece cassette respirable, open face and stopper sampling methods were compared with the SKC DPM cassette method to find a...

  8. Nature’s Particulate Matter with and without Charge and Travelling

    NARCIS (Netherlands)

    Ursem, W.N.J.

    2016-01-01

    Natures and anthropogenic particulates can travel long distances on wind flows, but negative electrical charge due to friction can increase dispersion. Models for calculations of distance travelling of biological particulate matter with and without charge are never been calculated in a theoretical

  9. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  10. The impact of airborne particulate matter on pediatric hospital admissions for pneumonia among children in Jinan, China: A case-crossover study.

    Science.gov (United States)

    Lv, Chenguang; Wang, Xianfeng; Pang, Na; Wang, Lanzhong; Wang, Yuping; Xu, Tengfei; Zhang, Yu; Zhou, Tianran; Li, Wei

    2017-06-01

    This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM 2.5 ) and ≤10 µm (PM 10 ) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM 2.5 concentrations the day before hospital admission and elevated PM 10 concentrations 2 days before hospital admission. An increment of 10 μg/m 3 in PM 2.5 and PM 10 was correlated with a 6% (95% CI 1.02--1.10) and 4% (95% CI 1.00-1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM 2.5 and PM 10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.

  11. Canada-United States Transboundary Particulate Matter Science Assessment

    Science.gov (United States)

    This 2004 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.

  12. Biomonitoring of toxic compounds of airborne particulate matter in urban and industriel areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    2010-01-01

    The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter...

  13. High diversity of fungi in air particulate matter.

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Pickersgill, Daniel A; Després, Viviane R; Pöschl, Ulrich

    2009-08-04

    Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.

  14. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  15. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Directory of Open Access Journals (Sweden)

    Richard Toro Araya

    2014-01-01

    Full Text Available Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007, concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August and warm (September to February seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41% than in the warm season (44 ± 18%. On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3 and the United States Environmental Protection Agency standard (15 µg/m3 for fine particulate matter.

  16. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  17. Referential calculation of particulate matter in the air as a factor of environmental pollution in the urban area of the city of Pujilí

    Directory of Open Access Journals (Sweden)

    Paola Vallejo Choez

    2016-06-01

    Full Text Available This is a preliminary investigation on the environmental quality of the city of Pujilí, made from the collection of samples of particulate matter and vehicular traffic counts on six points of the city. The methodology is based on the provisions of the Unified Text of Secondary Environmental Legislation for measuring atmospheric particulate matter, and the use of count tables for vehicle registration. The results reflect the impact of vehicular traffic, the characteristics of the rolling road layer, soil erosion, and climate on air pollution and its impact on the health of the population.

  18. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2013-02-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST Reference Materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the Reference Material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  19. Determination of inorganic beryllium species in the particulate matter of emissions and working areas

    Energy Technology Data Exchange (ETDEWEB)

    Profumo, A.; Spini, G.; Cucca, L.; Pesavento, M. [Dipartimento di Chimica Gen., Pavia (Italy)

    2002-07-01

    A sequential extraction procedure for separating and determining Be(0), soluble Be(II) inorganic compounds, BeO and beryllium silicates in samples, such as particulate matter of emissions and working areas, has been developed. The proposed procedure has been tested on synthetic samples prepared with the inorganic beryllium compounds, in the presence of atmospherical particulate matter sampled in a laboratory, previously checked for the absence of beryllium. The speciation was then repeated on a sample of fly ash deriving from a solid waste incinerator and on a reference material (Coal Fly ash SRM 1633a, by NIST), followed by an evaluation of matrix spiking and recovery analyses. Performing multiple analyses of the spiked samples assessed the repeatability of the procedure. Quantitative determinations have been made by inductively coupled plasma optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ETAAS). The possible interferences of the most common ions have been investigated. The selective sequential extractions allow one to separate and to determine different inorganic beryllium species, to which a different toxicity and therefore, a different risk are related: it is the case for example of metallic beryllium and beryllium oxide.

  20. Quantitative elemental determination of the particulate matter in the atmosphere of Pachuca city and the Real del Monte village, Hidalgo by means of PIXE technique

    International Nuclear Information System (INIS)

    Guasso G, C.L.

    2001-01-01

    All the pollutants that are generated so much of anthropogenic activities as natural cause effects to the health, and of course its increase the atmospheric pollution. Today in day for the great advance of the technology other pollutants are even generated but noxious to the human being's health, such it is the case of the particles, which are also called particulate matter airborne (MPA). This has motivated, to establish control measures leaning in collection strategies and certified analysis techniques, accurate and reliable. In the National Institute of Nuclear Research (ININ) they have been carried out studies on particulate matter airborne. In 1991 it was installed, calibrated and validated the nuclear technique of atomic origin based on proton beams known as PIXE. The characterization of the (MPA) it is carried out applying this technique and the collection by means of Dichotomous collectors (SFU). The thesis work that is presented next, includes the topic of the atmospheric pollution by particulate matter airborne (MPA) in a mining region, inside the Hidalgo State. The study was carried out during the 1998 winter season, only embracing the whole month of March in alternate days giving a total of 112 samples. Two sites that are highly active in the mining were studied, these are: the Real del Monte town and the Hidalgo state capital: Pachuca. Four samples per day were collected beginning to the 7:00 am--7:00 pm (daytime period) and concluding to the 7:00 pm -7:00 am (nocturne period). The characterization of its elementary content is carried out using the X-ray emission induced by particles technique (PIXE) that is a nuclear technique able to analyze 23 chemical elements beginning from the Al to the Pb, it requires of a very small sample quantity, it is very sensitive and it is not destructive. This characterization one carries out so much for fraction PM 2.5 (fine) like as PM 10 (thick) in both sites, also it was analyzed the temporary variation that the

  1. Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA's Particulate Matter Supersites Program and related studies.

    Science.gov (United States)

    Solomon, Paul A; Sioutas, Constantinos

    2008-02-01

    The U.S. Environmental Protection Agency (EPA) established the Particulate Matter (PM) Supersites Program to provide key stakeholders (government and private sector) with significantly improved information needed to develop effective and efficient strategies for reducing PM on urban and regional scales. All Supersites projects developed and evaluated methods and instruments, and significant advances have been made and applied within these programs to yield new insights to our understanding of PM accumulation in air as well as improved source-receptor relationships. The tested methods include a variety of continuous and semicontinuous instruments typically with a time resolution of an hour or less. These methods often overcome many of the limitations associated with measuring atmospheric PM mass concentrations by daily filter-based methods (e.g., potential positive or negative sampling artifacts). Semicontinuous coarse and ultrafine mass measurement methods also were developed and evaluated. Other semicontinuous monitors tested measured the major components of PM such as nitrate, sulfate, ammonium, organic and elemental carbon, trace elements, and water content of the aerosol as well as methods for other physical properties of PM, such as number concentration, size distribution, and particle density. Particle mass spectrometers, although unlikely to be used in national routine monitoring networks in the foreseeable future because of their complex technical requirements and cost, are mentioned here because of the wealth of new information they provide on the size-resolved chemical composition of atmospheric particles on a near continuous basis. Particle mass spectrometers likely represent the greatest advancement in PM measurement technology during the last decade. The improvements in time resolution achieved by the reported semicontinuous methods have proven to be especially useful in characterizing ambient PM, and are becoming essential in allowing scientists to

  2. Identification and Characterization of Particulate Matter Concentrations at Construction Jobsites

    Directory of Open Access Journals (Sweden)

    Ingrid P. S. Araújo

    2014-11-01

    Full Text Available The identification and characterization of particulate matter (PM concentrations from construction site activities pose major challenges due to the diverse characteristics related to different aspects, such as concentration, particle size and particle composition. Moreover, the characterization of particulate matter is influenced by meteorological conditions, including temperature, humidity, rainfall and wind speed. This paper is part of a broader investigation that aims to develop a methodology for assessing the environmental impacts caused by the PM emissions that arise from construction activities. The objective of this paper is to identify and characterize the PM emissions on a construction site with different aerodynamic diameters (PM2.5, PM10, total suspended particulates (TSP, based on an exploratory study. Initially, a protocol was developed to standardize the construction site selection criteria, laboratory procedures, field sample collection and laboratory analysis. This protocol was applied on a multifamily residential building construction site during three different construction phases (earthworks, superstructure and finishings aimed at measuring and monitoring PM concentrations arising from construction activities. The particulate matter was characterized in different particle sizes. Results showed that the higher TSP emissions arising from construction activities provoked environmental impacts. Some limitations to the results were identified, especially with regards the need for a detailed investigation about the influence of different construction phases on PM emissions. The findings provided significant knowledge about various situations, serving as a basis for improving the existing methodology for particulate material collection on construction sites and the development of future studies on the specific construction site phases.

  3. Artificial neural network forecast application for fine particulate matter concentration using meteorological data

    Directory of Open Access Journals (Sweden)

    M. Memarianfard

    2017-09-01

    Full Text Available Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consist of weather-related and air pollution-related data, i.e. wind speed, humidity, temperature, SO2, CO, NO2, and PM2.5 as target values. These factors have been considered in 19 measuring stations (zones over urban area across Tehran City during four years, from March 2011 to March 2015. The results indicate that the network with hidden layer including six neurons at training epoch 113, has the best performance with the lowest error value (MSE=0.049438 on considering PM2.5 concentrations across metropolitan areas in Tehran. Furthermore, the “R” value for regression analysis of training, validation, test, and all data are 0.65898, 0.6419, 0.54027, and 0.62331, respectively. This study also represents the artificial neural networks have satisfactory implemented for resolving complex patterns in the field of air pollution.

  4. Evaluation of a first mine real time diesel particulate matter (DPM) monitor

    Energy Technology Data Exchange (ETDEWEB)

    Stewart Gillies; Hsin Wei Wu [Gillies Wu Mining Technology (Australia)

    2008-04-15

    The objective of the study was to develop, test and prove up under mine conditions a Diesel Particulate Matter (DPM) real time atmospheric monitoring unit. The design for the new instrument, termed the D-PDM, is based on the recently developed real time respirable dust PDM. The project's main activities were to undertake through internationally recognised laboratory testing an evaluation of the new design and to undertake a comprehensive underground series of tests to establish the robustness and reliability of the new approach. The phases of design, the international laboratory testing and the underground mine evaluation in five operating mines proved that the monitor is capable in normal mine atmospheres of accurately measuring DPM levels in real time. The monitor has successfully reported data when used as a static or stationary instrument, when placed within the cab of a moving vehicle and when worn on a person's belt. The outcomes of the project provide the industry access to an enhanced tool for understanding the presence of DPM in the mine atmosphere.

  5. Concentration and movement of neonicotinoids as particulate matter downwind during agricultural practices using air samplers in southwestern Ontario, Canada.

    Science.gov (United States)

    Forero, Luis Gabriel; Limay-Rios, Victor; Xue, Yingen; Schaafsma, Arthur

    2017-12-01

    Atmospheric emissions of neonicotinoid seed treatment insecticides as particulate matter in field crops occur mainly for two reasons: 1) due to abraded dust of treated seed generated during planting using vacuum planters, and 2) as a result of disturbances (tillage or wind events) in the surface of parental soils which release wind erodible soil-bound residues. In the present study, concentration and movement of neonicotinoids as particulate matter were quantified under real conditions using passive and active air samplers. Average neonicotinoid concentrations in Total Suspended Particulate (TSP) using passive samplers were 0.48 ng/cm 2 , trace, trace (LOD 0.80 and 0.04 ng/cm 2 for clothianidin and thiamethoxam, respectively), and using active samplers 16.22, 1.91 and 0.61 ng/m 3 during planting, tillage and wind events, respectively. There was a difference between events on total neonicotinoid concentration collected in particulate matter using either passive or active sampling. Distance of sampling from the source field during planting of treated seed had an effect on total neonicotinoid air concentration. However, during tillage distance did not present an effect on measured concentrations. Using hypothetical scenarios, values of contact exposure for a honey bee were estimated to be in the range from 1.1% to 36.4% of the reference contact LD 50 value of clothianidin of 44 ng/bee. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Canada-United States Transboundary Particulate Matter Science Assessment 2013

    Science.gov (United States)

    This 2013 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.

  7. Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter

    Energy Technology Data Exchange (ETDEWEB)

    Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Sappok, Alex [Filter Sensing Technologies; Ragaller, Paul [Filter Sensing Technologies; Bromberg, L. [Massachusetts Institute of Technology (MIT)

    2016-10-30

    Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on a GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.

  8. Nitrogen and Triple Oxygen Isotopic Analyses of Atmospheric Particulate Nitrate over the Pacific Ocean

    Science.gov (United States)

    Kamezaki, Kazuki; Hattori, Shohei; Iwamoto, Yoko; Ishino, Sakiko; Furutani, Hiroshi; Miki, Yusuke; Miura, Kazuhiko; Uematsu, Mitsuo; Yoshida, Naohiro

    2017-04-01

    Nitrate plays a significant role in the biogeochemical cycle. Atmospheric nitrate (NO3- and HNO3) are produced by reaction precursor as NOx (NO and NO2) emitted by combustion, biomass burning, lightning, and soil emission, with atmospheric oxidants like ozone (O3), hydroxyl radical (OH), peroxy radical and halogen oxides. Recently, industrial activity lead to increases in the concentrations of nitrogen species (NOx and NHy) throughout the environment. Because of the increase of the amount of atmospheric nitrogen deposition, the oceanic biogeochemical cycle are changed (Galloway et al., 2004; Kim et al., 2011). However, the sources and formation pathways of atmospheric nitrate are still uncertain over the Pacific Ocean because the long-term observation is limited. Stable isotope analysis is useful tool to gain information of sources, sinks and formation pathways. The nitrogen stable isotopic composition (δ15N) of atmospheric particulate NO3- can be used to posses information of its nitrogen sources (Elliott et al., 2007). Triple oxygen isotopic compositions (Δ17O = δ17O - 0.52 ×δ18O) of atmospheric particulate NO3- can be used as tracer of the relative importance of mass-independent oxygen bearing species (e.g. O3, BrO; Δ17O ≠ 0 ‰) and mass-dependent oxygen bearing species (e.g. OH radical; Δ17O ≈ 0 ‰) through the formation processes from NOx to NO3- in the atmosphere (Michalski et al., 2003; Thiemens, 2006). Here, we present the isotopic compositions of atmospheric particulate NO3- samples collected over the Pacific Ocean from 40˚ S to 68˚ N. We observed significantly low δ15N values for atmospheric particulate NO3- on equatorial Pacific Ocean during both cruises. Although the data is limited, combination analysis of δ15N and Δ17O values for atmospheric particulate NO3- showed the possibility of the main nitrogen source of atmospheric particulate NO3- on equatorial Pacific Ocean is ammonia oxidation in troposphere. Furthermore, the Δ17O values

  9. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    Science.gov (United States)

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  10. Interim Particulate Matter Test Method for the Determination of Particulate Matter from Gas Turbine Engines, SERDP Project WP-1538 Final Report

    Science.gov (United States)

    Under Project No. WP-1538 of the Strategic Environmental Research and Development Program, the U. S. Air Force's Arnold Engineering Development Center (AEDC) is developing an interim test method for non-volatile particulate matter (PM) specifically for the Joint Strike Fighter (J...

  11. GENETIC INFLUENCES ON IN VTIRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE

    Science.gov (United States)

    GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE. JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.Particulate matter (PM) air pollution is capable of damaging the airway epitheli...

  12. A continuous analyzer for soluble anionic constituents and ammonium in atmospheric particulate matter.

    Science.gov (United States)

    Al-Horr, Rida; Samanta, Gautam; Dasgupta, Purnendu K

    2003-12-15

    A new continuous soluble particle collector (PC) that does not use steam is described. Preceded by a denuder and interfaced with an ion chromatograph, this compact collector (3 in. o.d., approximately 5 in. total height) permits collection and continuous extraction of soluble components in atmospheric particulate matter. The PC is mounted atop a parallel plate wetted denuder for removal of soluble gases. The soluble gas denuded air enters the PC through an inlet. One version of the PC contained an integral cyclone-like inlet. For this device, penetration of particles as a function of size was characterized. In the simpler design, the sampled air enters the PC through a nozzle, and deionized water flows through a capillary tube placed close to the exit side of the nozzle by Venturi action or is forcibly pumped. Some growth of the aerosol occurs in the highly humid mist-chamber environment, but the dominant aerosol capture mechanism involves capture by the water film that forms on the hydrophobic PTFE membrane filter that constitutes the top of the PC and the airflow exit. Water drops coalesce on the filter and fall below into a purpose-machined cavity equipped with a liquid sensor. The water and the dissolved constituents are aspirated by a pump onto serial cation and anion preconcentrator columns. NH4+ captured by the cation preconcentrator is eluted with NaOH and is passed across an asymmetric membrane device. NH3 diffuses from the alkaline donor stream into a deionized water flowing countercurrent; the conductivity of the latter provides a measure of ammonium. The anions on the anion preconcentrator column are eluted and measured by a fully automated ion chromatography system. The total system thus provides automated semicontinuous measurement of soluble anions and ammonium. With a 15 min analytical cycle and a sampling rate of 5 L/min, the limit of detection (LOD) for ammonium is 8 ng/m3 and those for sulfate, nitrate, and oxalate are < or = 0.1 ng/m3. The

  13. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration.

    Science.gov (United States)

    Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří

    2017-12-01

    The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities.

    Science.gov (United States)

    Guo, Ling-Chuan; Zhang, Yonghui; Lin, Hualiang; Zeng, Weilin; Liu, Tao; Xiao, Jianpeng; Rutherford, Shannon; You, Jing; Ma, Wenjun

    2016-08-01

    Though rainfall is recognized as one of the main mechanisms to reduce atmospheric particulate pollution, few studies have quantified this effect, particularly the corresponding lag effect and threshold. This study aimed to investigate the association between rainfall and air quality using a distributed lag non-linear model. Daily data on ambient PM2.5 and PM2.5-10 (particulate matter with an aerodynamic diameter less than 2.5 μm and from 2.5 to 10 μm) and meteorological factors were collected in Guangzhou and Xi'an from 2013 to 2014. A better washout effect was found for PM2.5-10 than for PM2.5, and the rainfall thresholds for both particle fractions were 7 mm in Guangzhou and 1 mm in Xi'an. The decrease in PM2.5 levels following rain lasted for 3 and 6 days in Guangzhou and Xi'an, respectively. Rainfall had a better washout effect in Xi'an compared with that in Guangzhou. Findings from this study contribute to a better understanding of the washout effects of rainfall on particulate pollution, which may help to understand the category and sustainability of dust-haze and enforce anthropogenic control measures in time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 40 CFR Appendix L to Part 50 - Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere

    Science.gov (United States)

    2010-07-01

    ... and 1000 W/m2 solar radiation intensity. 7.4.8.2 The ambient temperature sensor shall be of such a... measurement of the mass concentration of fine particulate matter having an aerodynamic diameter less than or... matter specified in § 50.7 and § 50.13 of this part are met. The measurement process is considered to be...

  16. Externality costs by emission. E. Particulates

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fossil-fuel-fired electricity generating systems, particularly coal and oil-fired facilities, are significant emitters of particulate matter. The major components of particulate emissions from a power plant include ash, which is made up of heavy metals, radioactive isotopes and hydrocarbons, and sulfates (SO 4 ) and nitrates (NO 3 ), which are formed by reaction of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) in the atmosphere. The smallest ash particulates (including sulfates and nitrates) cause human respiratory effects and impaired visibility. Other effects may include materials damage due to soiling and possibly corrosion, damage to domestic and wild flora through deposition of particulates on foliage, and possible health effects on domestic animals and wild fauna. Several studies focus on the direct effects of high ambient levels of small particulates. This chapter reviews the available literature on the effects of particulate emissions on humans and their environment, and attempts to assign a cost figure to the environmental effects and human health impairments associated with particulate matter emissions. Specifically, this report focuses on the effects of particulates related to human health, visibility, flora, fauna and materials

  17. Transportation conformity particulate matter hot-spot air quality modeling.

    Science.gov (United States)

    2013-07-01

    In light of the new development in particulate matter (PM) hot-spot regulations and Illinois Department : of Transportation (IDOT)s National Environmental Policy Act (NEPA) documentation requirements, : this project is intended to (1) perform and ...

  18. Chemical characterization of urban air particulate matter of Kuala Lumpur 2002-2004

    International Nuclear Information System (INIS)

    Wee Boon Siong; Ab. Khalik Bin Haji Wood

    2006-01-01

    Urban air particulate samples of Kuala Lumpur ambient air have been collected characterize according to fine and coarse airborne particulates. The air filters containing particulate matter were collected using GENT stack filter unit fitted with appropriate polycarbonate filters. The sampling location site (Lat: 03deg 10'30''; Long: 101deg 43'24.2'') is approximately 1 km from the Kuala Lumpur city center. All the sampling conducted from January 2002 until October 2004 was included in the analysis and results were reported. The mass loading for finest air particulate matter (PM 2.5) in Kuala Lumpur are 199±55 μg (2002), 171±53 μg (2003), and 171±61 μg (2004), respectively. The mass loading for coarse air particulate matter (PM 10) in Kuala Lumpur were 125±29 μg (2002), 134±48 μg (2003), and 137 ± 57 μg (2004), respectively. The elemental concentration of the air filters were determined using INAA technique utilizing both short and long irradiation facilities at MINT's TRIGA MKII reactor. Upon irradiation the air filters were counted at suitable counting time using HPGe gamma-ray detectors. The elements reported for this monitoring are Al, As, Br, Co, Cr, K, Lu, Mn, Na, Sb, Sc, Ti, V, and Zn. Certified reference materials were also included in the sample analysis function as quality control materials. (author)

  19. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  20. Particulate matter regulation for two-stroke two wheelers: necessity or haphazard legislation?

    NARCIS (Netherlands)

    Rijkeboer, R.C.; Bremmers, D.A.C.M.; Samaras, Z.; Ntziachristos, L.

    2005-01-01

    Although interest in particulate emissions has increased considerably during recent years, the subject of particulate matter (PM) emissions from small two-stroke engines used in road vehicles is still largely unexplored. This paper presents the results of an investigation, which examined the typical

  1. Distribution of lead in relation to size of airborne particulate matter in Islamabad, Pakistan.

    Science.gov (United States)

    Shah, Munir H; Shaheen, N; Jaffar, M; Saqib, M

    2004-02-01

    Airborne particulate matter (PM) collected from two sampling stations in Islamabad, Pakistan, was analyzed for lead content and size gradation. A high volume air sampler was used to trap particulates on glass fiber filters for 8-12 h on a daily basis. Lead was estimated using a nitric acid digestion based AAS method on 44 samples from station 1 and 61 samples from station 2. Particle size fractions were categorized as 100 microm. The correlation between lead concentration and particle size was investigated. The results from two stations indicated average airborne lead concentrations of 0.505 and 0.185 microg/m3. Enhanced levels of lead were measured at a maximum of 4.075 microg/m3 at station 1 and 4.000 microg/m3 at station 2. PM 100 were found to constitute the local atmosphere in comparable proportions. A comparison of the lead levels is made with the existing permissible levels of this element laid down by different international agencies.

  2. Evidence of molybdenum association with particulate organic matter under sulfidic conditions

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Chappaz, A.; Hoek, Joost

    2017-01-01

    , consisting of mainly Mo(IV)-sulfide compounds with molecular structures similar to Mo enzymes and to those found in natural euxinic sediments. Therefore, we propose that Mo removal in natural sulfidic waters can proceed via a non-Fe-assisted pathway that requires particulate organic matter (dead or living......The geochemical behavior of molybdenum (Mo) in the oceans is closely linked to the presence of sulfide species in anoxic environments, where Fe availability may play a key role in the Mo scavenging. Here, we show that Mo(VI) is reduced in the presence of particulate organic matter (represented...

  3. Long-Term Exposure to Fine Particulate Matter and Breast Cancer Incidence in the Danish Nurse Cohort Study

    DEFF Research Database (Denmark)

    Andersen, Zorana J; Ravnskjaer, Line; Andersen, Klaus Kaae

    BACKGROUND: An association between air pollution and breast cancer risk has been suggested but evidence is sparse and inconclusive. METHODS: We included 22,877 female nurses from the Danish Nurse cohort who were recruited in 1993 or 1999, and followed them for incidence of breast cancer (N=1......,145) until 2013 in the Danish Cancer Register. We estimated annual mean concentrations of particulate matter with diameter nurses' residences since 1990 using an atmospheric chemistry transport model. We examined the association between...

  4. Source apportionment studies on particulate matter in Beijing/China

    Science.gov (United States)

    Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.

    2013-05-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and

  5. Relationship between Particulate matter less than 10 microns exposures and health effects on humans in Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Sahar Geravandi

    2015-06-01

    Full Text Available Background & Aims of the Study: Particulate matters less than 10 microns can absorb into your lungs and reacting with the moisture and enter the circulatory system directly through the airways. The aim of this study is to assess Behavior PM 10 data in different seasons and Determination effects on human health in Ahvaz city during 2013. Materials & Methods: Data Particulate matters less than 10 microns were taken from Ahvaz Department of Environment and Meteorological Organization. Sampling was performed for 24 hours in 4 stations. Method of sampling and analysis were performed according to EPA guideline. Processing data include the instruction set correction of averaging, coding and filtering. Finally, health-effects of Particulate matters less than 10 exposures were calculated with impact of meteorological parameters and converted as input file to the Air Q model. Results: PM 10 concentration in winter season was maximum amount in the year 2013. According to the research findings, highest and the lowest Particulate matters less than 10 microns concentrations during 2013 had the Bureau of Meteorology “Havashenasi” and Head office of ADoE “Mohitzist”. Sum of total numbers of cardiovascular death and hospitals admission to respiratory diseases attributed to Particulate matters less than 10 microns were 923 and 2342 cases in 2013. Conclusions: Particulate matter emissions are highly regulated in most industrialized countries. Due to environmental concerns, most industries and dust storm phenomena are required to decrease in source produce particle mater and kind of dust collection system to control particulate emissions. Pollution prevention and control measures that reduce Particulate matters less than 10 microns can very useful for expected to reduce people’s exposures to Sulfur dioxide.

  6. Regions of pollution with particulate matter in Poland

    Directory of Open Access Journals (Sweden)

    Rawicki Kacper

    2018-01-01

    Full Text Available The study presents the temporal and spatial variability of particulate matter concentration in Poland in the calendar winter season (December-February. The basis for the study were the hourly and daily values of particulate matter PM10 concentration from the period 2005/06 – 2014/15, obtained from 33 air pollution monitoring stations. In Poland, the obligation to monitor the concentration of the finer fraction of particles smaller than 2.5µm in aerodynamic diameter was introduced only in 2010. Consequently, data on PM2.5 concentration refer to a shorter period, i.e. 2009/10 – 2014/15, and were obtained from 23 stations. Using the cluster analysis (k-means method, three regions of comparable variability of particulate matter concentration were delineated. The largest region, i.e. Region I, comprises the northern and eastern central area of Poland, and its southern boundary is along the line Gorzów Wlkp-Bydgoszcz-Konin-Łódź-Kielce-Lublin. Markedly smaller Region II is located to the south of Region I. By far the smallest area was designated to Region III which covers the south west area of Poland. The delineated regions show a marked variability in terms of mean concentration of both PM fractions in winter (PM10: region I - 33 µg·m-3, region II - 55 µg·m-3, region III - 83 µg·m-3; PM2,5: region I - 35 µg·m-3, region II - 50 µg·m-3, region III - 60 µg·m-3 and, in the case of PM10, the frequency of excessive daily limit value.

  7. Regions of pollution with particulate matter in Poland

    Science.gov (United States)

    Rawicki, Kacper; Czarnecka, Małgorzata; Nidzgorska-Lencewicz, Jadwiga

    2018-01-01

    The study presents the temporal and spatial variability of particulate matter concentration in Poland in the calendar winter season (December-February). The basis for the study were the hourly and daily values of particulate matter PM10 concentration from the period 2005/06 - 2014/15, obtained from 33 air pollution monitoring stations. In Poland, the obligation to monitor the concentration of the finer fraction of particles smaller than 2.5µm in aerodynamic diameter was introduced only in 2010. Consequently, data on PM2.5 concentration refer to a shorter period, i.e. 2009/10 - 2014/15, and were obtained from 23 stations. Using the cluster analysis (k-means method), three regions of comparable variability of particulate matter concentration were delineated. The largest region, i.e. Region I, comprises the northern and eastern central area of Poland, and its southern boundary is along the line Gorzów Wlkp-Bydgoszcz-Konin-Łódź-Kielce-Lublin. Markedly smaller Region II is located to the south of Region I. By far the smallest area was designated to Region III which covers the south west area of Poland. The delineated regions show a marked variability in terms of mean concentration of both PM fractions in winter (PM10: region I - 33 µg·m-3, region II - 55 µg·m-3, region III - 83 µg·m-3; PM2,5: region I - 35 µg·m-3, region II - 50 µg·m-3, region III - 60 µg·m-3) and, in the case of PM10, the frequency of excessive daily limit value.

  8. Modelling of particulate matter pollution (PM10) over the Etang de Berre area Determination of areas of homogeneous pollution

    International Nuclear Information System (INIS)

    Brocheton, F.; Poulet, D.; Mesbah, B.; Hourdin, G.

    2010-01-01

    AIRFOBEP is the association in charge of the air quality monitoring in the Etang de Berre area. AIRFOBEP is managing a network of ten sensors to monitor the PMI (particulate matter index) particulate pollution. This network is updated once a year according to the Air Quality Monitoring Plan (PSQA). Optimizing this network needs to know how the particulate pollution is distributed in the area. In other words, to determine the limits of homogeneous zones of PM 10 pollution. The aim of the project presented in this article is to produce a map of homogeneous zones of PM 10 pollution in the Etang de Berre area. The project was carried out in two steps: - PM 10 atmospheric dispersion modeling, using a ADMS-URBAN software, - Statistic classification, based on the well known Hierarchical Ascending Classification (HAC) technique. Results of the atmospheric dispersion modeling was namely adjusted using an original technique for the 'background PM 10 pollution' computation. Good performances have been obtained when comparing modeling and measurements data. Finally, a set of five homogeneous zones was found to well describe the PM 10 pollution level distribution in the Etang de Berre area. (author)

  9. Characterization of coarse particulate matter in school gyms.

    Science.gov (United States)

    Braniš, Martin; Šafránek, Jiří

    2011-05-01

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM(10-2.5) and PM(2.5-1.0)) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM(10-2.5) 4.1-7.4 μg m(-3) and PM(2.5-1.0) 2.0-3.3 μg m(-3)) than indoors (average PM(10-2.5) 13.6-26.7 μg m(-3) and PM(2.5-1.0) 3.7-7.4 μg m(-3)). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM(10-2.5) and 1.4-4.8 for the PM(2.5-1.0) values. Under extreme conditions, the I/O ratios reached 180 (PM(10-2.5)) and 19.1 (PM(2.5-1.0)). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high

  10. Comprehensive characterization of atmospheric organic matter in Fresno, California fog water.

    Science.gov (United States)

    Herckes, Pierre; Leenheer, Jerry A; Collett, Jeffrey L

    2007-01-15

    Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds.

  11. The Concentrations and Reduction of Airborne Particulate Matter (PM10, PM2.5, PM1 at Shelterbelt Site in Beijing

    Directory of Open Access Journals (Sweden)

    Jungang Chen

    2015-05-01

    Full Text Available Particulate matter is a serious source of air pollution in urban areas, where it exerts adverse effects on human health. This article focuses on the study of subduction of shelterbelts for atmospheric particulates. The results suggest that (1 the PM mass concentration is higher in the morning or both morning and noon inside the shelterbelts and lower mass concentrations at other times; (2 the particle mass concentration inside shelterbelt is higher than outside; (3 the particle interception efficiency of the two forest belts over the three months in descending order was PM10 > PM1 > PM2.5; and (4 the two shelterbelts captured air pollutants at rates of 1496.285 and 909.075 kg/month and the major atmospheric pollutant in Beijing city is PM10. Future research directions are to study PM mass concentration variation of shelterbelt with different tree species and different configuration.

  12. Deposition of Suspended Fine Particulate Matter in a Library

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Mašková, Ludmila; Zíková, Naděžda; Ondráčková, Lucie; Ondráček, Jakub

    2013-01-01

    Roč. 1, 3 April (2013) ISSN 2050-7445 R&D Projects: GA MK DF11P01OVV020 Keywords : fine particulate matter * deposition * brownian diffusion Subject RIV: CF - Physical ; Theoretical Chemistry http://www.heritagesciencejournal.com/content/1/1/7

  13. Source contributions and regional transport of primary particulate matter in China

    International Nuclear Information System (INIS)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-01-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50–80%), POC (60%–90%), and PPM (30–70%). For summer/fall, industrial contributes 30–50% for EC/POC and 40–60% for PPM. Transportation is more important for EC (20–30%) than POC/PPM ( 90% in Beijing. - Highlights: • A source-oriented CMAQ was established for primary particulate matter (PPM). • Source and region contributions to EC, POC and PPM in China were quantified. • Residential is major in spring/winter and industrial dominates in summer/fall. • Open burning is more important for southern while dust is in contrast. • Both local and Heibei emissions contribute to PPM in Beijing. - Source and region contributions to primary particulate matter in China were quantified for four months during 2012-2013. Residential and industrial are the major contributors.

  14. Characteristics of particulate matter emissions from toy cars with electric motors.

    Science.gov (United States)

    Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

    2015-04-01

    Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

  15. Trace metals concentration assessment in urban particulate matter ...

    African Journals Online (AJOL)

    This study was conducted to investigate the distribution and correlation of selected trace elements (Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in Yenagoa, Bayelsa State and its environs. Air particulate matter was collected gravimetrically at five stations (using a high volume portable SKC air check MTXSidekickair sampler ...

  16. Particulate organic matter predicts bacterial productivity in a river dominated estuary

    Science.gov (United States)

    Crump, B. C.

    2015-12-01

    Estuaries act as coastal filters for organic and inorganic fluvial materials in which microbial, biogeochemical, and ecological processes combine to transform organic matter and nutrients prior to export to the coastal ocean. The function of this estuarine 'bioreactor' is linked to the residence times of those materials and to rates of microbial heterotrophic activity. Our ability to forecast the impact of global change on estuarine bioreactor function requires an understanding of the basic controls on microbial community activity and diversity. In the Columbia River estuary, the microbial community undergoes a dramatic seasonal shift in species composition during which a spring bacterioplankton community, dominated by Flavobacteriaceae and Oceanospirillales, is replaced by a summer community, dominated by Rhodobacteraceae and several common marine taxa. This annual shift occurs in July, following the spring freshet, when river flow and river chlorophyll concentration decrease and when estuarine water residence time increases. Analysis of a large dataset from 17 research cruises (1990-2014) showed that the composition of particulate organic matter in the estuary changes after the freshet with decreasing organic carbon and nitrogen content, and increasing contribution of marine and autochthonous estuarine organic matter (based on PO13C and pigment ratios). Bacterial production rates (measured as leucine or thymidine incorporation rates) in the estuary respond to this change, and correlate strongly with labile particulate nitrogen concentration and temperature during individual sampling campaigns, and with the concentration of chlorophyll in the Columbia River across all seasons. Regression models suggest that the concentration of labile particulate nitrogen and the rate of bacterial production can be predicted from sensor measurements of turbidity, salinity, and temperature in the estuary and chlorophyll in the river. These results suggest that the quality of

  17. Forest vegetation as a sink for atmospheric particulates: Quantitative studies in rain and dry deposition

    International Nuclear Information System (INIS)

    Russel, I.J.; Choquette, C.E.; Fang, S.; Dundulis, W.P.; Pao, A.A.; Pszenny, A.A.P.

    1981-01-01

    Radionuclides in the atmosphere are associated with nonradioactive air particulates and hence serve to trace the fluxes of air particulates to various surfaces. Natural and artificial radioactivities found in the atmosphere have been measured in vegetation for 10 years to elucidate some of the mechanisms of acquirement by forest trees of atmospheric particulates. Whole tree analysis, in conjunction with soil assay, have served to establish the fraction of the flux of radionuclides retained by above-ground tissues of a forest stand. Interpretation is facilitated because most radionuclides in the atmosphere are superficially acquired. Typically 5--20% of the total open field flux is retained by the forest canopy in a moderately rainy climate (120 cm/year). Short-lived daughters of radon give a dry deposition velocity of particulates in the Aitken size range of 0.03--0.05 cm/s, thus permitting an estimate of transient removal by forest canopies by dry deposition of this size fraction

  18. Particulate Matter and Gaseous Pollutions in Three Metropolises along the Chinese Yangtze River: Situation and Implications.

    Science.gov (United States)

    Mao, Mao; Zhang, Xiaolin; Yin, Yan

    2018-05-28

    The situation of criteria atmospheric pollutants, including particulate matter and trace gases (SO₂, NO₂, CO and O₃), over three metropolises (Chongqing, Wuhan, and Nanjing), representing the upstream, midstream and downstream portions of the Yangtze River Basin from September 2015 to August 2016 were analyzed. The maximum annual mean PM 2.5 and PM 10 concentrations were 61.3 and 102.7 μg/m³ in Wuhan, while highest annual average gaseous pollutions occurred in Nanjing, with 49.6 and 22.9 ppb for 8 h O₃ and NO₂, respectively. Compared to a few years ago, SO₂ and CO mass concentrations have dropped to well below the qualification standards, and the O₃ and NO₂ concentrations basically meet the requirements though occasionally is still high. In contrary, about 13%, 25%, 22% for PM 2.5 , and 4%, 17%, 15% for PM 10 exceed the Chinese Ambient Air Quality Standard (CAAQS) Grade II. Particulate matter, especially PM 2.5 , is the most frequent major pollutant to poor air quality with 73%, 64% and 88% accounting for substandard days. Mean PM 2.5 concentrations on PM 2.5 episode days are 2⁻3 times greater than non-episode days. On the basis of calculation of PM 2.5 /PM 10 and PM 2.5 /CO ratios, the enhanced particulate matter pollution on episode days is closely related to secondary aerosol production. Except for O₃, the remaining five pollutants exhibit analogous seasonal patterns, with the highest magnitude in winter and lowest in summer. The results of back trajectories show that air pollution displays synergistic effects on local emissions and long range transport. O₃ commonly demonstrated negative correlations with other pollutants, especially during winter, while moderate to strong positive correlation between particulate matter and NO₂, SO₂, CO were seen. Compared to pollutant substandard ratios over three megacities in eastern China (Beijing, Shanghai, and Guangzhou), the situation in our studied second-tier cities are also severe. The

  19. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    Science.gov (United States)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  20. Determination of lead associated with airborne particulate matter by flame atomic absorption and wave-length dispersive x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Talebi, S.M.

    1997-01-01

    The lead content of airborne particulate matter was determined by flame atomic absorption spectrometry (FAAS) following digestion with a mixture of nitric acid and hydrogen peroxide and also by wave-length dispersive x-ray fluorescence (WDXRF). The extraction procedure was checked by analyzing a standard reference material of airborne particulate matter (NIST, SRM -1648). It was concluded that lead can quantitatively (98%) be extracted from airborne particulate matter by the leaching process. A five-stage sequential extraction was performed to assess the potential mobility of lead associated with airborne particulate matter. Comparison of the airborne particulate lead measured by WDXRF to that measured by FAAS showed good agreement. The WDXRF method requires no time-consuming sample preparation or use of environmentally unfriendly solvents. The technique is suggested for direct determination of lead in airborne particulate matter in air pollution studies. (author)

  1. Determinants of exposure to fine particulate matter (PM 2.5) for waiting passengers at bus stops

    Science.gov (United States)

    Hess, Daniel Baldwin; Ray, Paul David; Stinson, Anne E.; Park, JiYoung

    2010-12-01

    This research evaluates commuter exposure to particulate matter during pre-journey commute segments for passengers waiting at bus stops by investigating 840 min of simultaneous exposure levels, both inside and outside seven bus shelters in Buffalo, New York. A multivariate regression model is used to estimate the relation between exposure to particulate matter (PM 2.5 measured in μg m -3) and three vectors of determinants: time and location, physical setting and placement, and environmental factors. Four determinants have a statistically significant effect on particulate matter: time of day, passengers' waiting location, land use near the bus shelter, and the presence of cigarette smoking at the bus shelter. Model results suggest that exposure to PM 2.5 inside a bus shelter is 2.63 μg m -3 (or 18 percent) higher than exposure outside a bus shelter, perhaps due in part to the presence of cigarette smoking. Morning exposure levels are 6.51 μg m -3 (or 52 percent) higher than afternoon levels. Placement of bus stops can affect exposure to particulate matter for those waiting inside and outside of shelters: air samples at bus shelters located in building canyons have higher particulate matter than bus shelters located near open space.

  2. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  3. Characterization of urban particulate matter by diffusive gradients in thin film technique

    Czech Academy of Sciences Publication Activity Database

    Dufka, Michaela; Dočekal, Bohumil

    (2018), s. 1-8, č. článku 9698710. ISSN 2090-8865 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : thin film technique * urban particulate matter * particulate air pollution Subject RIV: CB - Analytical Chemistry , Separation OBOR OECD: Analytical chemistry Impact factor: 1.801, year: 2016

  4. Characterization of urban particulate matter by diffusive gradients in thin film technique

    Czech Academy of Sciences Publication Activity Database

    Dufka, Michaela; Dočekal, Bohumil

    (2018), s. 1-8, č. článku 9698710. ISSN 2090-8865 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : thin film technique * urban particulate matter * particulate air pollution Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 1.801, year: 2016

  5. Diesel Particulate Matter Polygons, US EPA Region 9, 2005, NATA

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national-scale assessment includes 177 air pollutants (a subset of the air toxics on the Clean Air Act's list of 187 air toxics plus diesel particulate matter...

  6. Samplings of urban particulate matter for mutagenicity assays

    International Nuclear Information System (INIS)

    De Zaiacono, T.

    1996-07-01

    In the frame of a specific program relating to the evaluation of mutagenic activity of urban particulate matter, an experimental arrangement has been developed to sample aerosuspended particles from the external environment carried indoor by means of a fan. Instrumentation was placed directly in the air flow to minimize particle losses, and consisted of total filter, collecting particles without any size separation; cascade impactor, fractioning urban particulate to obtain separate samples for analyses; an optical device, for real time monitoring of aerosol concentration, temperature and relative humidity sensors. Some of the samples obtained were analysed to investigate: particle morphology, aerosol granulometric distributions, effect of relative humidity on collected particulate, amount of ponderal mass compared with real time optical determinations. The results obtained are reported here, together with some considerations about carbonaceous particles, in urban areas mainly originated from diesel exhausts, their degree of agglomeration and role to vehiculate substances into the human respiratory

  7. Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR

    Science.gov (United States)

    Kaushik, Rajni; Balasubramanian, Rajasekhar

    2012-01-01

    Bacterial pathogens in airborne particulate matter (PM) and in rainwater (RW) were detected using a robust and sensitive Real-Time PCR method. Both RW and PM were collected simultaneously in the tropical atmosphere of Singapore, which were then subjected to analysis for the presence of selected bacterial pathogens and potential pathogen of health concern ( Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila). These pathogens were found to be prevalent in both PM and RW samples with E. coli being the most prevalent potential pathogen in both types of samples. The temporal distribution of these pathogens in PM and RW was found to be similar to each other. Using the proposed microbiological technique, the atmospheric deposition (dry and wet deposition) of bacterial pathogens to lakes and reservoirs can be studied in view of growing concerns about the outbreak of waterborne diseases.

  8. Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi.

    Science.gov (United States)

    Srivastava, Arun; Jain, V K

    2007-06-01

    A study of the atmospheric particulate size distribution of total suspended particulate matter (TSPM) and associated heavy metal concentrations has been carried out for the city of Delhi. Urban particles were collected using a five-stage impactor at six sites in three different seasons, viz. winter, summer and monsoon in the year 2001. Five samples from each site in each season were collected. Each sample (filter paper) was extracted with a mixture of nitric acid, hydrochloric acid and hydrofluoric acid. The acid solutions of the samples were analysed in five-particle fractions by atomic absorption spectrometry (AAS). The impactor stage fractionation of particles shows that a major portion of TSPM concentration is in the form of PM0.7 (i.e. metal mass viz. Mn, Cr, Cd, Pb, Ni, and Fe are also concentrated in the PM0.7 mode. The only exceptions are size distributions pertaining to Cu and Ca. Though, Cu is more in PM0.7 mode, its presence in size intervals 5.4-1.6microm and 1.6-0.7microm is also significant, whilst in case of Ca there is no definite pattern in its distribution with size of particles. The average PM10.9 (i.e. Source apportionment reveals that there are two sources of TSPM and PM10.9, while three and four sources were observed for PM1.6 (i.e. <1.6microm) and PM0.7, respectively. Results of regression analyses show definite correlations between PM10.9 and other fine size fractions, suggesting PM10.9 may adequately act as a surrogate for both PM1.6 and PM0.7, while PM1.6 may adequately act as a surrogate for PM0.7.

  9. An overview of particulate emissions from residential biomass combustion

    Science.gov (United States)

    Vicente, E. D.; Alves, C. A.

    2018-01-01

    Residential biomass burning has been pointed out as one of the largest sources of fine particles in the global troposphere with serious impacts on air quality, climate and human health. Quantitative estimations of the contribution of this source to the atmospheric particulate matter levels are hard to obtain, because emission factors vary greatly with wood type, combustion equipment and operating conditions. Updated information should improve not only regional and global biomass burning emission inventories, but also the input for atmospheric models. In this work, an extensive tabulation of particulate matter emission factors obtained worldwide is presented and critically evaluated. Existing quantifications and the suitability of specific organic markers to assign the input of residential biomass combustion to the ambient carbonaceous aerosol are also discussed. Based on these organic markers or other tracers, estimates of the contribution of this sector to observed particulate levels by receptor models for different regions around the world are compiled. Key areas requiring future research are highlighted and briefly discussed.

  10. Characterization of coarse particulate matter in school gyms

    International Nuclear Information System (INIS)

    Branis, Martin; Safranek, Jiri

    2011-01-01

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM 10-2.5 and PM 2.5-1.0 ) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM 10-2.5 4.1-7.4 μg m -3 and PM 2.5-1.0 2.0-3.3 μg m -3 ) than indoors (average PM 10-2.5 13.6-26.7 μg m -3 and PM 2.5-1.0 3.7-7.4 μg m -3 ). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM 10-2.5 and 1.4-4.8 for the PM 2.5-1.0 values. Under extreme conditions, the I/O ratios reached 180 (PM 10-2.5 ) and 19.1 (PM 2.5-1.0 ). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of

  11. Particulate matter characterization of Cauca River water in Colombia

    NARCIS (Netherlands)

    Gutierrez Marin, Juan Pablo; van Halem, D.; Rietveld, L.C.

    2016-01-01

    The particulate matter composition in the Upper Cauca River section was studied, considering the importance of this river for the water supply of Cali, Colombia, and the implications that the turbidity of this water source has had for the city's water treatment. Additionally, the upstream Palo River

  12. Improvements in PIXE analysis of hourly particulate matter samples

    Energy Technology Data Exchange (ETDEWEB)

    Calzolai, G., E-mail: calzolai@fi.infn.it [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Lucarelli, F. [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Chiari, M.; Nava, S. [National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Giannoni, M. [National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Carraresi, L. [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN), Division of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Prati, P. [Department of Physics, University of Genoa and INFN Division of Genoa, Via Dodecaneso 33, 16146 Genoa (Italy); Vecchi, R. [Department of Physics, Università degli Studi di Milano and INFN Division of Milan, Via Celoria 16, 20133 Milan (Italy)

    2015-11-15

    Most air quality studies on particulate matter (PM) are based on 24-h averaged data; however, many PM emissions as well as their atmospheric dilution processes change within a few hours. Samplings of PM with 1-h resolution can be performed by the streaker sampler (PIXE International Corporation), which is designed to separate the fine (aerodynamic diameter less than 2.5 μm) and the coarse (aerodynamic diameter between 2.5 and 10 μm) fractions of PM. These samples are efficiently analyzed by Particle Induced X-ray Emission (PIXE) at the LABEC laboratory of INFN in Florence (Italy), equipped with a 3 MV Tandetron accelerator, thanks to an optimized external-beam set-up, a convenient choice of the beam energy and suitable collecting substrates. A detailed description of the adopted set-up and results from a methodological study on the detection limits for the selection of the optimal beam energy are shown; the outcomes of the research on alternative collecting substrates, which produce a lower background during the measurements, and with lower contaminations, are also discussed.

  13. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  14. Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz

    Directory of Open Access Journals (Sweden)

    L. Poulain

    2011-12-01

    Full Text Available Ammonium nitrate and several organic compounds such as dicarboxylic acids (e.g. succinic acid, glutaric acid, some Polycyclic Aromatic Hydrocarbon (PAHs or some n-alkanes are semi-volatile. The transition of these compounds between the gas and particulate phase may significantly change the aerosol particles radiative properties, the heterogeneous chemical properties, and, naturally, the total particulate mass concentration. To better assess these time-dependent effects, three intensive field experiments were conducted in 2008–2009 at the Central European EMEP research station Melpitz (Germany using an Aerodyne Aerosol Mass Spectrometer (AMS. Data from all seasons highlight organic matter as being the most important particulate fraction of PM1 in summer (59% while in winter, the nitrate fraction was more prevalent (34.4%. The diurnal variation of nitrate always showed the lowest concentration during the day while its concentration increased during the night. This night increase of nitrate concentration was higher in winter (ΔNO3 = 3.6 μg m−3 than in summer (ΔNO3 = 0.7 μg m−3. The variation in particulate nitrate was inherently linked to the gas-to-particle-phase equilibrium of ammonium nitrate and the dynamics of the atmosphere during day. The results of this study suggest that during summer nights, the condensation of HNO3 and NH3 on pre-existing particles represents the most prevalent source of nitrate, whereas during winter, nighttime chemistry is the predominant source of nitrate. During the summer 2008's campaign, a clear diurnal evolution in the oxidation state of the organic matter became evident (Organic Mass to Organic Carbon ratio (OM/OC ranging from 1.65 during night to 1.80 during day and carbon oxidation state (OSc from −0.66 to −0.4, which could be correlated to hydroxyl radical (OH and ozone

  15. Toward Distinguishing Woodsmoke and Diesel Exhaust in Ambient Particulate Matter

    International Nuclear Information System (INIS)

    Braun, A.; Huggins, F.; Kubatova, A.; Wirick, S.; Maricq, M.; Mun, B.; McDonald, J.; Kelly, K.; Shah, N.; Huffman, G.

    2008-01-01

    Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.

  16. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    Science.gov (United States)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  17. Seasonal variations and size distributions of water-soluble ions of atmospheric particulate matter at Shigatse, Tibetan Plateau.

    Science.gov (United States)

    Yang, Yongjie; Zhou, Rui; Yan, Yan; Yu, Yue; Liu, Junqing; Di, Yi'an; Du, Zhenyu; Wu, Dan

    2016-02-01

    Size-segregated atmospheric particulate matter (PM) samples were collected from July 2012 to September 2013 at Shigatse, high-altitude (3836 m above sea level) site on the south Tibetan Plateau (TP); objectives were to determine the characteristics and size distribution of water-soluble ions (WSIs). Eight major WSIs (Na(+), K(+), Mg(2+), Ca(2+), NH4(+), Cl(-), SO4(2-), and NO3(-)) were detected by ion chromatography. The total concentrations of WSIs were 6370 ± 1916 ng m(-3) in dry season (October - December, January - April), and 5261 ± 769 ng/m(3) during wet phase (May - September). The contribution of K(+) (130 ng m(-3)), Cl(-) (2035 ng m(-3)), SO4(2-) (1176 ng m(-3)), and NO3(-) (706 ng m(-3))(-)were significantly enhanced in dry season, and that of Na(+) (455 ng m(-3)), Mg(2+)(65.4 ng m(-3)), Ca(2+)(1034 ng m(-3)), and NH4(+) (1948 ng m(-3)) were significantly enhanced during wet phase. Mg(2+) and Ca(2+) were concentrated in the coarse mode, and the other ions concentrated in fine mode and coarse mode during two seasons. The correlation coefficients between K(+) and NH4(+), Cl(-), SO4(2-) and NO3(-) were 0.58 (P burning in dry season. The significant correlation between NH4(+) and HCO3(-) which were calculated by ion balance (r = 0.89, P < 0.01), suggesting the source from nitrogen fertilizers during wet phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Short term variations in particulate matter in Mahi river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Rokade, M.A.; Zingde, M.D.

    The particulate matter (PM) collected from Mahi River Estuary was analysed for organic carbon (POC), nitrogen (PON), and chlorophyll a (Chl a). The concentration of PM, POC, PON and Chl a showed short term variations. Average surface concentration...

  19. Atmospheric chemistry and climate

    OpenAIRE

    Satheesh, SK

    2012-01-01

    Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian reg...

  20. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis

    Science.gov (United States)

    Lang-Yona, N.; Dannemiller, K.; Yamamoto, N.; Burshtein, N.; Peccia, J.; Yarden, O.; Rudich, Y.

    2012-03-01

    Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rehovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.

  1. Nature of suspended particulate matter and concentrations of heavy ...

    African Journals Online (AJOL)

    The concentrations of metals in bottom sediment in the Tanzanian waters of Lake Victoria and the nature of suspended particulate matter (SPM) were analysed. The objective of the study was to compare levels of metals in sediment from different locations and to establish their sources. Metal concentrations were higher in ...

  2. A Review of Particulate Matter and Health: Focus on Developing Countries.

    OpenAIRE

    L. Panyacosit

    2000-01-01

    The burden of ill human health attributable to particulate air pollution is a critical problem of growing concern. In developing countries it is not uncommon to experience today the same particulate matter levels that characterized the devastating "London fog episodes" of the 1950s which resulted in over 4000 cases of premature mortality and countless cases of exacerbated morbidity related health endpoints. This literature review gives an overview of the situation in developing countries...

  3. Evaluation of sampling inhalable PM10 particulate matter (≤ 10 μm) using co-located high volume samplers

    International Nuclear Information System (INIS)

    Rajoy, R R S; Dias, J W C; Rego, E C P; Netto, A D Pereira

    2015-01-01

    This paper presents the results of the determination of the concentrations of atmospheric particulate matter ≤ 10 μm (PM10), collected simultaneously by six PM10 high volume samplers from two different manufacturers installed in the same location. Fifteen samples of 24 h were obtained with each equipment at a selected urban area of Rio de Janeiro city. The concentration of PM10 ranged between 10.73 and 54.04 μg m −3 . The samplers were considered comparable to each other, as the adopted methodology presented good repeatability

  4. [Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event].

    Science.gov (United States)

    Qian, Peng; Zheng, Xiang-min; Zhou, Li-min

    2013-05-01

    Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.

  5. Characterization of coarse particulate matter in school gyms

    Energy Technology Data Exchange (ETDEWEB)

    Branis, Martin, E-mail: branis@natur.cuni.cz [Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Prague (Czech Republic); Safranek, Jiri [Charles University in Prague, Faculty of Physical Education, Department of Outdoor Sports, Prague (Czech Republic)

    2011-05-15

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} and PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school

  6. Association between exposure to particulate matter and hospital admissions for respiratory disease in children

    Science.gov (United States)

    Cesar, Ana Cristina Gobbo; Nascimento, Luiz Fernando C; de Carvalho, João Andrade

    2013-01-01

    The aim of this study was to estimate the association between exposure to particulate matter less than 2.5 microns in diameter and hospitalization for respiratory disease. It was an ecological time series study with daily indicators of hospitalization for respiratory diseases in children up to 10 years old, living in Piracicaba, SP, Southeastern Brazil, between August 1, 2011 and July 31, 2012. A generalized additive Poisson regression model was used. The relative risks were RR = 1.008; 95%CI 1.001;1.016 for lag 1 and RR = 1.009; 95%CI 1.001;1.017 for lag 3. The increment of 10 μg/m3in particulate matter less than 2.5 microns in diameter implies increase in relative risk of between 7.9 and 8.6 percentage points. In conclusion, exposure to particulate matter less than 2.5 microns in diameter was associated with hospitalization for respiratory disease in children. PMID:24626559

  7. Airborne particulate matter from livestock production systems: A review of an air pollution problem

    International Nuclear Information System (INIS)

    Cambra-Lopez, Maria; Aarnink, Andre J.A.; Zhao Yang; Calvet, Salvador; Torres, Antonio G.

    2010-01-01

    Livestock housing is an important source of emissions of particulate matter (PM). High concentrations of PM can threaten the environment, as well as the health and welfare of humans and animals. Particulate matter in livestock houses is mainly coarse, primary in origin, and organic; it can adsorb and contain gases, odorous compounds, and micro-organisms, which can enhance its biological effect. Levels of PM in livestock houses are high, influenced by kind of housing and feeding, animal type, and environmental factors. Improved knowledge on particle morphology, primarily size, composition, levels, and the factors influencing these can be useful to identify and quantify sources of PM more accurately, to evaluate their effects, and to propose adequate abatement strategies in livestock houses. This paper reviews the state-of-the-art of PM in and from livestock production systems. Future research to characterize and control PM in livestock houses is discussed. - Control of particulate matter emissions, a major challenge to modern livestock production.

  8. Elementos traço em material particulado atmosférico de uma região agroindustrial do sudeste do Brasil Trace elements in atmospheric particulate matter from an agro-industrial region in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Patrícia Lopes de Oliveira

    2013-01-01

    Full Text Available Trace element concentrations were measured in atmospheric particulate matter collected in 2009 and 2010, in a Brazilian region influenced by pre-harvest burning of sugar cane crops. For coarse particles, high concentrations of Al, Fe, K and Ca suggested that re-suspended soil dust was the main source of aerosol trace elements, subsequently confirmed by XRD analysis. High levels of K, Zn, As, Cd and Pb were found in fine particles, confirming the contribution of biomass burning and vehicle emissions, whereas Na, Al, K, Fe and Zn were the representative elements in ultrafine particles, influenced by a diversity of sources.

  9. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  10. Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation.

    Science.gov (United States)

    Feld-Cook, Elisabeth E; Bovenkamp-Langlois, Lisa; Lomnicki, Slawo M

    2017-09-19

    Environmentally Persistent Free Radicals (EPFRs) are newly discovered, long-lived surface bound radicals that form on particulate matter and combustion borne particulates, such as fly ash. Human exposure to such particulates lead to translocation into the lungs and heart resulting in cardio-vascular and respiratory disease through the production of reactive oxygen species. Analysis of some waste incinerator fly ashes revealed a significant difference between their EPFR contents. Although EPFR formation occurs on the metal domains, these differences were correlated with the altering concentration of calcium and sulfur. To analyze these phenomena, surrogate fly ashes were synthesized to mimic the presence of their major mineral components, including metal oxides, calcium, and sulfur. The results of this study led to the conclusion that the presence of sulfates limits formation of EPFRs due to inhibition or poisoning of the transition metal active sites necessary for their formation. These findings provide a pathway toward understanding differences in EPFR presence on particulate matter and uncover the possibility of remediating EPFRs from incineration and hazardous waste sites.

  11. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    Science.gov (United States)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  12. Policy research programme on particulate matter. Main results and policy consequences; Beleidsgericht onderzoeksprogramma fijn stof. Resultaten op hoofdlijnen en beleidsconsequenties

    Energy Technology Data Exchange (ETDEWEB)

    Matthijsen, J.; Koelemeijer, R.B.A.

    2010-06-15

    The Policy-Oriented Research on Particulate Matter (BOP) programme aimed at increasing knowledge on particulate matter so that future policy can be supported adequately. The main research objectives of BOP were to improve knowledge of the PM10 and PM2,5 concentrations, composition and sources of particulate matter; Increasing the understanding of the behavior of particulate matter in the urban area; Determining the trends in concentrations of particulate matter and its components; and Clarify the impact of policies in the past and the future of PM10 and PM2,5 concentrations. The first part of this study presents the main findings of the study, discussing the (chemical) composition of particulate matter, concentration trends, expected developments, health impacts, policy implications, and how to proceed with the particulate matter dossier. In the second part of the study the underlying analysis are elaborated. [Dutch] Het Beleidsgericht Onderzoeksprogramma Particulate Matter (BOP) had als doel om de kennis over fijn stof te vergroten, zodat beleidsvorming in de toekomst adequater ondersteund kan worden. De belangrijkste onderzoeksdoelstellingen van BOP waren: Verbeteren van de kennis over de PM10- en PM2,5-concentraties, de samenstelling en de bronnen van fijn stof; Vergroten van het inzicht in het gedrag van fijn stof in het stedelijke gebied; Bepalen van de trends in fijnstofconcentraties en de bestanddelen ervan; Verduidelijken van de invloed van beleidsmaatregelen in het verleden en de toekomst op de PM10- en PM2,5-concentraties. Het eerste deel van deze studie, de Bevindingen, presenteert de belangrijkste uitkomsten van het onderzoek. Hierbij komen achtereenvolgens aan de orde: de (chemische) samenstelling van fijn stof, trends in concentraties, verwachte ontwikkelingen, gezondheidseffecten, beleidsconsequenties en hoe nu verder te gaan met het dossier fijn stof. In het tweede deel van de studie, de Verdieping, staat de verantwoording en worden de

  13. Sub-micrometre Particulate Matter is Primarily in Liquid Form over Amazon Rainforests

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Adam P.; Gong, Z. H.; Liu, Pengfei; Sato, Bruno; Cirino, Glauber; Zhang, Yue; Artaxo, Paulo; Bertram, Allan K.; Manzi, A.; Rizzo, L. V.; Souza, Rodrigo A.; Zaveri, Rahul A.; Martin, Scot T.

    2016-01-01

    Particulate matter (PM) occurs in the Earth’s atmosphere both in liquid and non-liquid forms. The physical state affects the available physical and chemical mechanisms of growth and reactivity, ultimately affecting the number, size, and composition of the atmospheric particle population. Herein, the physical state, including the response to relative humidity (RH), was investigated on-line and in real time for PM (< 1 μm) over the tropical rain forest of central Amazonia during both the wet and dry seasons of 2013. The results show that the PM was liquid for RH > 80% across 296 to 300 K. These results, in conjunction with the distributions of RH and temperature in Amazonia, imply that near-surface submicron PM in Amazonia is liquid most of the time. The observations are consistent with laboratory experiments showing that PM produced by isoprene photo-oxidation is liquid across these meteorological conditions. The findings have implications for the mechanisms of new particle production in Amazonia, the growth of submicron particles and hence dynamics of the cloud life cycle, and the sensitivity of these processes to anthropogenic activities. An approach for inclusion of particle physical state in chemical transport models is presented.

  14. Chemical-morphological analysis and evaluation of the distribution of particulate matter in the Toluca Valley

    International Nuclear Information System (INIS)

    Romero G, E.T.; Sandoval P, A.; Morelos M, J.; Reyes G, L.R.

    2007-01-01

    The breathable fraction of the suspended particles is the main pollutant in the Metropolitan Area of the Toluca Valley (ZMVT), to have the bigger number of days outside of standard, especially during the winter and low water time, its registered maximum value is of 367 IMECA points in 2004. The particles present a potential risk for the lungs, its increase the chemical reactions in the atmosphere; its reduce the visibility; its increase the possibility of the precipitation, the fog and the clouds; its reduce the solar radiation, with the changes in the environmental temperature and in the biological growth rates of those plants; and it dirties the soil matters. For that reason it is very important to characterize physicochemical and morphologically by scanning electron microscopy the particulate material of the Toluca Valley, to determine to that type of particles is potentially exposed the population before drastic scenarios of air pollution of the Toluca Valley, as well as to evaluate the distribution of the one particulate material in the ZMVT. (Author)

  15. INAA for the characterization of airborne particulate matter from the industrial area of Islamabad city

    International Nuclear Information System (INIS)

    Wasim, M.; Rahman, A.; Waheed, S.; Daud, M.; Ahmad, S.

    2003-01-01

    Air particulate matter (PM) was collected in two size fractions using stacked filter units (SFUs) provided by the International Atomic Energy Agency (IAEA) from the industrial area of Islamabad. Nucleopore polycarbonate filters were used for collecting from Oct 98 to Jun 99 the particulate matter in coarse and fine size fractions. The samples were characterized by the instrumental neutron activation analysis (INAA). About 33 elements were quantified using different irradiation and counting protocols. (author)

  16. Resuspension of particulate matter from grass and soil

    International Nuclear Information System (INIS)

    Garland, J.A.

    1979-05-01

    Measurements of resuspension of particulate matter from grassland and bare soil in Britain at controlled wind speeds are described in this report. The measurements were performed in an outdoor wind tunnel. Resuspension factors for a sub-micron powder deposited from the air on to 10m 2 of grass and soil and for a suspension of silt, sprayed on to a similar grass area, were similar. The resuspension factor declined as the reciprocal of time of wind exposure and increased as the square or cube of wind speed. An appreciable fraction of the resuspended tracer was in the respirable size range. A large fraction of the total material suspended from a small contaminated area deposited again within three metres. The strong dependence of deposition rates on particle size and the rapid deposition close to the source questions the extrapolation of small scale resuspension measurements to practical situations, suggesting that analysis of the concentrations of widely distributed tracers may usefully supplement resuspension measurements. Atmospheric concentrations of trace elements and the distribution of weapons fallout were used to deduce an upper limit for the resuspension factor for a fifteen year old deposit of 7 x 10 -11 m -1 . The fraction of deposited fallout resuspended during such a period cannot much exceed 10 per cent. (author)

  17. Atmospheric pollution in Lisbon urban atmosphere

    Science.gov (United States)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µmwork are expected to cover a lack of reliable information regarding sources of atmospheric pollutants in Portugal and present, for the first time, systematic data of PAHs levels in Lisbon. Acknowledgement: This work was performed under Project PAHLIS (PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia". C. Oliveira thanks Project PAHLIS his scholarship.

  18. Trends in atmospheric particulate matter in Dhaka, Bangladesh, and the vicinity.

    Science.gov (United States)

    Rana, Md Masud; Sulaiman, Norela; Sivertsen, Bjarne; Khan, Md Firoz; Nasreen, Sabera

    2016-09-01

    Dhaka and its neighboring areas suffer from severe air pollution, especially during dry season (November-April). We investigated temporal and directional variations in particulate matter (PM) concentrations in Dhaka, Gazipur, and Narayanganj from October 2012 to March 2015 to understand different aspects of PM concentrations and possible sources of high pollution in this region. Ninety-six-hour backward trajectories for the whole dry season were also computed to investigate incursion of long-range pollution into this area. We found yearly PM10 concentrations in this area about three times and yearly PM2.5 concentrations about six times greater than the national standards of Bangladesh. Dhaka and its vicinity experienced several air pollution episodes in dry season when PM2.5 concentrations were 8-13 times greater than the World Health Organization (WHO) guideline value. Higher pollution and great contribution of PM2.5 most of the time were associated with the north-westerly wind. Winter (November to January) was found as the most polluted season in this area, when average PM10 concentrations in Dhaka, Gazipur, and Narayanganj were 257.1, 240.3, and 327.4 μg m(-3), respectively. Pollution levels during wet season (May-October) were, although found legitimate as per the national standards of Bangladesh, exceeded WHO guideline value in 50 % of the days of that season. Trans-boundary source identifications using concentration-weighted trajectory method revealed that the sources in the eastern Indian region bordering Bangladesh, in the north-eastern Indian region bordering Nepal and in Nepal and its neighboring areas had high probability of contributing to the PM pollutions at Gazipur station.

  19. Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study

    NARCIS (Netherlands)

    Badaloni, Chiara; Cesaroni, Giulia; Cerza, Francesco; Davoli, Marina; Brunekreef, Bert; Forastiere, Francesco

    2017-01-01

    BACKGROUND: The effect of long-term exposure to metal components in particulate matter on mortality are still controversial. OBJECTIVES: To study the association between long-term exposure to PM10, PM2.5, PM2.5 absorbance, particulate matter components (copper, iron, zinc, sulfur, silicon,

  20. Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China

    Directory of Open Access Journals (Sweden)

    Lili Li

    2015-06-01

    Full Text Available Satellite remote sensing offers an effective approach to estimate indicators of air quality on a large scale. It is critically significant for air quality monitoring in areas experiencing rapid urbanization and consequently severe air pollution, like the Pearl River Delta (PRD in China. This paper starts with examining ground observations of particulate matter (PM and the relationship between PM10 (particles smaller than 10 μm and aerosol optical thickness (AOT by analyzing observations on the sampling sites in the PRD. A linear regression (R2 = 0.51 is carried out using MODIS-derived 500 m-resolution AOT and PM10 concentration from monitoring stations. Data of atmospheric boundary layer (ABL height and relative humidity are used to make vertical and humidity corrections on AOT. Results after correction show higher correlations (R2 = 0.55 between extinction coefficient and PM10. However, coarse spatial resolution of meteorological data affects the smoothness of retrieved maps, which suggests high-resolution and accurate meteorological data are critical to increase retrieval accuracy of PM. Finally, the model provides the spatial distribution maps of instantaneous and yearly average PM10 over the PRD. It is proved that observed PM10 is more relevant to yearly mean AOT than instantaneous values.

  1. Multifaceted health impacts of Particulate Matter (PM and its management: An overview

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-03-01

    Full Text Available Urban air quality is becoming a serious public health concern at global scale. Particulate matter (PM pollution is intimately linked with human health. Present review describes the different human health implications associated with PM pollution. PM may derive its origin from natural and anthropogenic sources. Vehicle derived pollutants as well as industrial emissions simultaneously release deleterious fine-grained PM into the atmosphere. Fine PM especially PM2.5 and PM10 are particularly deleterious to human health. Air pollution PM is an important environmental health risk factor for several respiratory and cardiovascular morbidity and mortality. Further, PM is inextricably linked with genotoxicity and mutations. Literature review of the cellular and molecular basis of adverse effects associated with PM is presented in this paper. Finally, management, existing technologies and policy options to reduce or mitigate the adverse health impacts of PM pollution is discussed as an eco-sustainable approach.

  2. Comparison and trend study on acidity and acidic buffering capacity of particulate matter in China

    Science.gov (United States)

    Ren, Lihong; Wang, Wei; Wang, Qingyue; Yang, XiaoYang; Tang, Dagang

    2011-12-01

    The acidity of about 2000 particulate matter samples from aircraft and ground-based monitoring is analyzed by the method similar to soil acidity determination. The ground-based samples were collected at about 50 urban or background sites in northern and southern China. Moreover, the acidic buffering capacity of those samples is also analyzed by the method of micro acid-base titration. Results indicate that the acidity level is lower in most northern areas than those in the south, and the acidic buffering capacity showed inverse tendency, correspondingly. This is the most important reason why the pollution of acidic-precipitation is much more serious in Southern China than that in Northern China. The acidity increases and the acidic buffering capacity drops with the decreasing of the particle sizes, indicating that fine particle is the main influencing factor of the acidification. The ionic results show that Ca salt is the main alkaline substance in particulate matter, whereas the acidification of particulate matter is due to the SO 2 and NO x emitted from the fossil fuel burning. And among of them, coal burning is the main contributor of SO 2, however the contribution of NO x that emitted from fuel burning of motor vehicles has increased in recent years. By comparison of the experimental results during the past 20 years, it can be concluded that the acid precipitation of particulate matter has not been well controlled, and it even shows an increasing tendency in China lately. The acid precipitation of particulate matter has begun to frequently attack in part of the northern areas. Multiple regression analysis indicates that coefficient value of the ions is the lowest at the urban sites and the highest at the regional sites, whereas the aircraft measurement results are intermediate between those two kinds of sites.

  3. Assessment of heavy metals in the particulate matter of two Brazilian metropolitan areas by using Tillandsia usneoides as atmospheric biomonitor.

    Science.gov (United States)

    Vianna, Nelzair A; Gonçalves, Daniel; Brandão, Flavia; de Barros, Roberta P; Amado Filho, Gilberto M; Meire, Rodrigo O; Torres, João Paulo M; Malm, Olaf; D'Oliveira Júnior, Argemiro; Andrade, Leonardo R

    2011-03-01

    The aims of this paper were to quantify the heavy metals (HM) in the air of different sites in Rio de Janeiro (RJ) and Salvador (SA) using Tillandsia usneoides (Bromeliaceae) as a biomonitor, and to study the morphology and elemental composition of the air particulate matter (PM) retained on the Tillandsia surface. Tillandsia samples were collected in a noncontaminated area and exposed to the air of five sites in RJ State and seven in SA for 45 days, in two seasons. Samples were prepared to HM quantification by flame atomic absorption spectrophotometry, while morphological and elemental characterizations were studied by using scanning electron microscopy. HM concentrations were significantly higher when compared to control sites. We found an increasing metal concentration as follows: Cd < Cr < Pb < Cu < Zn. PM exhibited a morphology varying from amorphous- to polygonal-shaped particles. Size measurements indicated that more than 80% of particles were less than 10 μm. PM contained aluminosilicates iron-rich particles, but Zn, Cu, Cr, and Ba were also detected. HM input in the atmosphere was mainly associated with anthropogenic sources such as vehicle exhaust. Elemental analysis detected HM in the inhalable particles, indicating that those HMs may intensify the toxic effects of PM on human health. Our results indicated T. usneoides as an adequate biomonitor of HM in the PM belonging to the inhalable fraction.

  4. Elemental quantification of airborne particulate matter in Bandung and Lembang area

    International Nuclear Information System (INIS)

    Sutisna; Achmad Hidayat; Dadang Supriatna

    2004-01-01

    ELEMENTAL QUANTIFICATION OF AIRBORNE PARTICULATE MATTER IN BANDUNG AND LEMBANG REGION: The contaminated airborne particulates by toxic gases and elements have a potential affect to the human health. Some toxic elements related to air pollution have carcinogenic affect. The quantification of those elements is important to monitor a level of pollutant contained in the airborne particulate. The aim of this work is to analyze the air particulate sample using instrumental neutron activation analysis and other related technique. Two sampling points of Bandung and Lembang that represent and urban and rural area respectively have been chosen to collect the air particulate sample. The samplings were carried out using Gent Stacked Filter Unit Sampler for 24 hours, and two cellulose filters of 8 μm and 0.45 μm pore size were used. Trace elements in the sample collected were determined using NAA based on a comparative method. Elemental distribution on PM 2.5 and PM 10 fraction of airborne particulate was analyzed, the enrichment factor was calculated using Al as reference elements, and the black carbons contents were determined using FEL Smoke Stain Reflectometer analyzed. The results are presented and discussed. (author)

  5. New Insights from Zinc and Copper Isotopic Compositions into the Sources of Atmospheric Particulate Matter from Two Major European Cities.

    Science.gov (United States)

    Gonzalez, R Ochoa; Strekopytov, S; Amato, F; Querol, X; Reche, C; Weiss, D

    2016-09-20

    This study reports spatial and temporal variability of Zn and Cu isotopes in atmospheric particulate matter (PM) collected in two major European cities with contrasting atmospheric pollution, Barcelona and London. We demonstrate that nontraditional stable isotopes identify source contributions of Zn and Cu and can play a major role in future air quality studies. In Barcelona, samples of fine PM were collected at street level at sites with variable traffic density. The isotopic signatures ranged between -0.13 ± 0.09 and -0.51 ± 0.05‰ for δ(66)ZnIRMM and between +0.04 ± 0.20 and +0.33 ± 0.15‰ for δ(65)CuAE633. Copper isotope signatures similar to those of Cu sulfides and Cu/Sb ratios within the range typically found in brake wear suggest that nonexhaust emissions from vehicles are dominant. Negative Zn isotopic signatures characteristic for gaseous emissions from smelting and combustion and large enrichments of Zn and Cd suggest contribution from metallurgical industries. In London, samples of coarse PM collected on the top of a building over 18 months display isotope signatures ranging between +0.03 ± 0.04 and +0.49 ± 0.02‰ for δ(66)ZnIRMM and between +0.37 ± 0.17 and +0.97 ± 0.21‰ for δ(65)CuAE633. Heavy Cu isotope signatures (up to +0.97 ± 0.21‰) and higher enrichments and Cu/Sb ratios during winter time indicate important contribution from fossil fuel combustion. The positive δ(66)ZnIRMM signatures are in good agreement with signatures characteristic for ore concentrates used for the production of tires and galvanized materials, suggesting nonexhaust emissions from vehicles as the main source of Zn pollution.

  6. Screening of various diesel particulate matter samples from various commodity mines

    CSIR Research Space (South Africa)

    Mahlangu, Vusi J

    2016-09-01

    Full Text Available This paper presents qualitative analysis results of diesel particulate matter (DPM) from various mining commodities in South Africa. The objective of this work was to determine the concentrations of elements in DPM samples. For this screening...

  7. Ambient air quality of karachi city as reflected by atmospheric particulate matter (PM/sub 10/) concentrations

    International Nuclear Information System (INIS)

    Hashmi, D.R.; Shareef, A.

    2016-01-01

    The present study examines the variation of ambient aerosol (PM/sub 10/) concentrations in Karachi, city. Samples were collected from ten different locations, representative of urban background, residential, traffic and industrial areas from 2007 to 2011. At each location, PM/sub 10/) was measured continuously from 08:00 am to 06:00 pm at local time. The maximum 10 h average particulate matter (PM/sub 10/) mass concentrations were found at Tibet Centre (440.1 mg/m/sup 3/) and minimum at PCSIR Campus (21.7 mg/m/sup 3/) during 2008. A rising trend during 2008 may be due to the civil works for bridges and extension of roads at different locations in Karachi. The results also suggest that urban traffic and industrial areas appeared to have higher PM/sub 10/) concentration than residential and background areas. (author)

  8. Diesel particulate matter exposure in South African platinum mines: an overview

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2014-08-01

    Full Text Available Personal diesel particulate matter (DPM) sampling was conducted on nearly 300 mine workers in the diesel and non-diesel sections of three platinum mines in South Africa. Respiratory health questionnaires were administered to all of these workers...

  9. Indoor/outdoor Particulate Matter Number and Mass Concentration in Modern Offices

    Czech Academy of Sciences Publication Activity Database

    Chatoutsidou, S.E.; Ondráček, Jakub; Tesař, Ondřej; Tørseth, K.; Ždímal, Vladimír; Lazaridis, M.

    2015-01-01

    Roč. 92, OCT 2015 (2015), s. 462-474 ISSN 0360-1323 EU Projects: European Commission(XE) 315760 Institutional support: RVO:67985858 Keywords : modern offices * particulate matter * mechanical ventilation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.394, year: 2015

  10. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L.

    Science.gov (United States)

    Kuki, Kacilda Naomi; Oliva, Marco Antônio; Pereira, Eduardo Gusmão; Costa, Alan Carlos; Cambraia, José

    2008-09-15

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.

  11. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L

    Energy Technology Data Exchange (ETDEWEB)

    Kuki, Kacilda Naomi [Departamento de Biologia Vegetal, Universidade Federal de Vicosa (Brazil)], E-mail: naomikuki@hotmail.com; Oliva, Marco Antonio; Pereira, Eduardo Gusmao; Costa, Alan Carlos [Departamento de Biologia Vegetal, Universidade Federal de Vicosa (Brazil); Cambraia, Jose [Departamento de Biologia Geral, Universidade Federal de Vicosa (Brazil)

    2008-09-15

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.

  12. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L

    International Nuclear Information System (INIS)

    Kuki, Kacilda Naomi; Oliva, Marco Antonio; Pereira, Eduardo Gusmao; Costa, Alan Carlos; Cambraia, Jose

    2008-01-01

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions

  13. PARTICULATE MATTER AND HUMAN HEALTH: USING HUMAN STUDIES TO UNDERSTAND SUSCEPTIBILITY

    Science.gov (United States)

    The potential for experiencing adverse health effects from air pollution particulate matter (PM) exposure is an important public health issue. The World Health Organization has estimated that PM contributes to the deaths of 500,000 people world-wide each year. Epidemiologic stu...

  14. Development of methods to examine the effects of atmospheric particulate matter (PM) on human peripheral blood leukocytes

    Science.gov (United States)

    Zussman, Lisa Ann

    In vitro methods to study the effect of atmospheric particulate matter (PM) on leukocyte function using human peripheral blood were developed. These methods were demonstrated using the blood of 1-5 individuals and National Institute of Standards and Technology (NIST) urban PM #1648, diesel PM #1650, silica PM, and a locally collected PM sample (New Jersey PM10). For the blood samples analyzed in this study NIST urban PM and New Jersey PM10 treatment mediated the release of granule contents from peripheral blood leukocytes and induced structural changes associated with degranulation. Flow cytometry revealed PM-induced changes in phagocytosis and cell structure associated with degranulation. Transmission electron microscopy confirmed NIST urban PM-induced cell structure changes were associated with PM internalization. Colorametric and electrophoretic methods showed no PM-induced release of primary granules and a slight PM-induced release of secondary granules associated with only NIST urban PM. Enzyme Immunosorbent Assays detected increased histamine release from basophils treated with NIST urban PM, a locally collected PM, and the soluble and insoluble components of these particles. NIST urban PM was found to be a potent inducer of histamine release in 4 out of 6 individuals tested. Fractionation studies revealed that soluble (aqueous) and insoluble fractions of NIST urban PM contain histamine-releasing activity. This was also demonstrated for the New Jersey PM10 sample for which the soluble fraction exhibited the most activity. Complementary studies with inhibitors of IgE-mediated histamine release conducted on one test subject suggest that PM-induced histamine release was partially mediated by IgE. A new hypothesis has been formed, suggesting that particle toxicity is related to PM-induced histamine release. Due to the bioactive nature of histamine and its association with many cardiopulmonary responses, the PM- mediated release of histamine should be investigated

  15. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars.

    Science.gov (United States)

    Platt, S M; El Haddad, I; Pieber, S M; Zardini, A A; Suarez-Bertoa, R; Clairotte, M; Daellenbach, K R; Huang, R-J; Slowik, J G; Hellebust, S; Temime-Roussel, B; Marchand, N; de Gouw, J; Jimenez, J L; Hayes, P L; Robinson, A L; Baltensperger, U; Astorga, C; Prévôt, A S H

    2017-07-13

    Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NO X ). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

  16. Impacts of Particulate Matter on Gulf of Mexico Tropical Cyclones

    Science.gov (United States)

    Cao, W.; Rohli, R. V.

    2017-12-01

    The purpose of this project is to analyze the relationship between tropical cyclones of the Gulf of Mexico-Atlantic basin and fine particulate matter (PM2.5). The daily mean PM2.5 concentration values were collected from United States Environmental Protection Agency (EPA). Tropical cyclone data were collected from Tropical Prediction Center Best Track Reanalysis in Unisys Weather®. The GRIdded Binary (GRIB-formatted) data were downloaded from the Data Support Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR). Through ArcGIS®, the tropical cyclone tracks were compared with the interpolated daily mean PM2.5 concentration value. Results suggest that the tracks tend to avoid areas with higher PM2.5 concentrations, and the intensity was weakened significantly after passing the PM2.5-rich area. Through simulation using the Weather Research and Forecasting (WRF) model, the pressure and vertical structure of Hurricane Lili were weakened after passing the most PM2.5-rich area in Louisiana. Also, little evidence is found for the possibility of precipitation generated by the approaching tropical cyclone to cleanse the atmosphere of PM2.5 before storm passage. These results have important implications for tropical cyclone prediction as storms approach polluted areas or other places where PM2.5 particles are abundant, not only including urban environments but also in coastal areas where proscribed burns take place during tropical cyclone season, such as during sugarcane harvesting in southern Louisiana.

  17. Elemental composition of particulate matter and the association with lung function

    NARCIS (Netherlands)

    Eeftens, Marloes; Hoek, Gerard; Gruzieva, Olena; Mölter, Anna; Agius, Raymond; Beelen, Rob; Brunekreef, Bert; Custovic, Adnan; Cyrys, Josef; Fuertes, Elaine; Heinrich, Joachim; Hoffmann, Barbara; de Hoogh, Kees; Jedynska, Aleksandra; Keuken, Menno; Klümper, Claudia; Kooter, Ingeborg; Krämer, Ursula; Korek, Michal; Koppelman, Gerard H; Kuhlbusch, Thomas A J; Simpson, Angela; Smit, Henriëtte A; Tsai, Ming-Yi; Wang, Meng; Wolf, Kathrin; Pershagen, Göran; Gehring, Ulrike

    BACKGROUND: Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. METHODS: We conducted a multicenter study in 5

  18. Elemental composition of particulate matter and the association with lung function

    NARCIS (Netherlands)

    Eeftens, M.; Hoek, G.; Gruzieva, O.; Mölter, A.; Agius, R.; Beelen, R.; Brunekreef, B.; Custovic, A.; Cyrys, J.; Fuertes, E.; Heinrich, J.; Hoffmann, B.; De Hoogh, K.; Jedynska, A.; Keuken, M.; Klümper, C.; Kooter, I.; Krämer, U.; Korek, M.; Koppelman, G.H.; Kuhlbusch, T.A.J.; Simpson, A.; Smit, H.A.; Tsai, M.Y.; Wang, M.; Wolf, K.; Pershagen, G.; Gehring, U.

    2014-01-01

    BACKGROUND: Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. METHODS: We conducted a multicenter study in 5

  19. Influence of particulate matter on microfouling biomass in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Nandakumar, K.; Wagh, A.B.

    ~ E :; :; 00 " " 200 '\\00 6001&. I&. Olslonc. from rne St>cre tn. miles! Leg , 0----4L~2 L~3 Leo .; Log $ Fig.3 Suspended matter (A), and particulate organic carbon (B) of surface seawater. and microfouling biomass as dry weight (C) and organic carbon...

  20. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis

    International Nuclear Information System (INIS)

    Santibáñez-Andrade, Miguel; Quezada-Maldonado, Ericka Marel; Osornio-Vargas, Álvaro; Sánchez-Pérez, Yesennia; García-Cuellar, Claudia M.

    2017-01-01

    In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage. - Highlights: • Air pollution represents a worldwide problem with impact on human health. • Particulate matter (PM) has a recognized carcinogenic potential in humans. • Lung cancer susceptibility depends on gene-environment interactions. • Epidemiological and experimental evidence links PM exposure to genomic instability. • PM and genomic instability are co-dependent factors during cancer continuum. - We summarize the association between particulate matter (a component of air pollution) and genomic instability as well as discuss how new strategies to study the impact of air pollution on genomic instability and lung-cancer development could improve our understanding of the lung-cancer genome.

  1. LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPS) IN RATS

    Science.gov (United States)

    2003 AAR PM MeetingParticulate Matter: Atmospheric Sciences,Exposure and the Fourth Colloquium on PM and Human HealthLACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPs) IN RATS. JA Dye, LC Walsh, C...

  2. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects.

    Science.gov (United States)

    Mukherjee, Arideep; Agrawal, Madhoolika

    Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM 2.5 (particles levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM 2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM 2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.

  3. Species of fine particulate matter and the risk of preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  4. ACUTE EXPOSURE TO PARTICULATE MATTER IN A RAT MODEL OF HEART FAILURE

    Science.gov (United States)

    Human exposure to ambient particulate matter (PM) has been linked to cardiovascular morbidity and mortality. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). To better characterize the cardiovascular effects of PM, we...

  5. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  6. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    Science.gov (United States)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  7. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts

    DEFF Research Database (Denmark)

    Wang, Meng; Beelen, Rob; Stafoggia, Massimo

    2014-01-01

    Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only.......Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only....

  8. 40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.

    Science.gov (United States)

    2010-07-01

    ... amount of fugitive particulate matter that may be emitted from certain air pollution sources operating... minimize the accumulation of dusty materials that have the potential to become airborne, and the prompt... materials likely to become airborne. (viii) The prompt removal from paved streets of earth or other material...

  9. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I) and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.

  10. Structural Variation in the Bacterial Community Associated with Airborne Particulate Matter in Beijing, China, during Hazy and Nonhazy Days.

    Science.gov (United States)

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2018-05-01

    The structural variation of the bacterial community associated with particulate matter (PM) was assessed in an urban area of Beijing during hazy and nonhazy days. Sampling for different PM fractions (PM 2.5 [airborne bacterial community in these samples was analyzed using the Illumina MiSeq platform with bacterium-specific primers targeting the 16S rRNA gene. A total of 1,707,072 reads belonging to 6,009 operational taxonomic units were observed. The airborne bacterial community composition was significantly affected by PM fractions ( R = 0.157, P airborne bacterial community composition. Only six genera increased across PM 10 samples ( Dokdonella , Caenimonas , Geminicoccus , and Sphingopyxis ) and PM 2.5 samples ( Cellulomonas and Rhizobacter ), while a large number of taxa significantly increased in total suspended particulate samples, such as Paracoccus , Kocuria , and Sphingomonas Network analysis indicated that Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Overall, the findings presented here suggest that diverse airborne bacterial communities are associated with PM and provide further understanding of bacterial community structure in the atmosphere during hazy and nonhazy days. IMPORTANCE The results presented here represent an analysis of the airborne bacterial community associated with particulate matter (PM) and advance our understanding of the structural variation of these communities. We observed a shift in bacterial community composition with PM fractions but no significant difference with haze levels. This may be because the bacterial differences are obscured by high bacterial diversity in the atmosphere. However, we also observed that a few genera (such as Methylobacillus , Tumebacillus , and Desulfurispora ) increased significantly on heavy-haze days. In addition, Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Accurate and real

  11. A possible link between particulate matter air pollution and type 2 diabetes

    NARCIS (Netherlands)

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  12. Associations between particulate matter composition and childhood blood pressure - The PIAMA study

    NARCIS (Netherlands)

    Bilenko, Natalya; Brunekreef, Bert; Beelen, Rob; Eeftens, Marloes; de Hoogh, Kees; Hoek, Gerard; Koppelman, Gerard H.; Wang, Meng; van Rossem, Lenie; Gehring, Ulrike

    2015-01-01

    Background: Childhood blood pressure is an important predictor of hypertension and cardiovascular disease in adulthood. Evidence for an association between ambient particulate matter (PM) exposure and blood pressure is increasing, but little is known about the relevance of different PM constituents.

  13. Seasonal Variability of Airborne Particulate Matter and Bacterial Concentrations in Colorado Homes

    Directory of Open Access Journals (Sweden)

    Nicholas Clements

    2018-04-01

    Full Text Available Aerosol measurements were collected at fifteen homes over the course of one year in Colorado (USA to understand the temporal variability of indoor air particulate matter and bacterial concentrations and their relationship with home characteristics, inhabitant activities, and outdoor air particulate matter (PM. Indoor and outdoor PM2.5 concentrations averaged (±st. dev. 8.1 ± 8.1 μg/m3 and 6.8 ± 4.5 μg/m3, respectively. Indoor PM2.5 was statistically significantly higher during summer compared to spring and winter; outdoor PM2.5 was significantly higher for summer compared to spring and fall. The PM2.5 I/O ratio was 1.6 ± 2.4 averaged across all homes and seasons and was not statistically significantly different across the seasons. Average indoor PM10 was 15.4 ± 18.3 μg/m3 and was significantly higher during summer compared to all other seasons. Total suspended particulate bacterial biomass, as determined by qPCR, revealed very little seasonal differences across and within the homes. The qPCR I/O ratio was statistically different across seasons, with the highest I/O ratio in the spring and lowest in the summer. Using one-minute indoor PM10 data and activity logs, it was observed that elevated particulate concentrations commonly occurred when inhabitants were cooking and during periods with elevated outdoor concentrations.

  14. Characterization of particulate matter deposited on urban tree foliage: A landscape analysis approach

    Science.gov (United States)

    Lin, Lin; Yan, Jingli; Ma, Keming; Zhou, Weiqi; Chen, Guojian; Tang, Rongli; Zhang, Yuxin

    2017-12-01

    Plants can mitigate ambient particulate matter by cleaning the air, which is crucial to urban environments. A novel approach was presented to quantitatively characterize particulate matter deposited on urban tree foliage. This approach could accurately quantify the number, size, shape, and spatial distribution of particles with different diameters on leaves. Spatial distribution is represented by proximity, which measures the closeness of particles. We sampled three common broadleaf species and obtained images through field emission scanning electron microscopy. We conducted the object-based method to extract particles from images. We then used Fragstats to analyze the landscape characteristics of these particles in term of selected metrics. Results reveal that Salix matsudana is more efficient than Ailanthus altissima and Fraxinus chinensis in terms of the number and area of particles per unit area and the proportion of fine particulate matter. The shape complexity of the particles increases with their size. Among the three species, S. matsudana and A. altissima particles respectively yield the highest and lowest proximity. PM1 in A. altissima and PM10 in F. chinensis and S. matsudana show the highest proximity, which may influence subsequent particle retention. S. matsudana should be generally considered to collect additional small particles. Different species and particle sizes exhibit various proximities, which should be further examined to elucidate the underlying mechanism.

  15. Adverse effect of diesel engine produced particulate matter on various stone types and concrete: a laboratory exposure experiment

    Science.gov (United States)

    Farkas, Orsolya; Szabados, György; Antal, Ákos; Török, Ákos

    2015-04-01

    The effect of particulate matter on construction materials have been studied under laboratory conditions. For testing the adverse effects of diesel soot and particulate matter on stone and concrete a small scale laboratory exposure chamber was constructed. Blocks of 9 different stone types and concrete was placed in the chamber and an exhaust pipe of diesel engine was diverted into the system. Tested stones included: porous limestone, cemented non-porous limestone, travertine, marble, rhyolite tuff, andesite and granite. The engine was operated for 10 hours and the produced particulate matter was diverted directly to the surface of the material specimens of 3 cm in diameter each. Working parameters of the engine were controlled; the composition of the exhaust gas, smoke value and temperature were continuously measured during the test. Test specimens were documented and analysed prior to exposure and after the exposure test. Parameters such colorimetric values, weight, surface properties, mineralogical compositions of the test specimens were recorded. The working temperature was in the order of 300°C-320°C. The gas concentration was in ppm as follows: 157 CO; 5.98 CO2, 34.3 THC; 463 NOx; 408 NO; 12.88 O2. Our tests have demonstrated that significant amount of particulate matter was deposited on construction materials even at a short period of time; however the exposure was very intense. It also indicates that that the interaction of particulate matter and aerosol compounds with construction materials in urban areas causes rapid decay and has an adverse effect not only on human health but also on built structures.

  16. Study of Hydrothermal Particulate Matter from a Shallow Venting System, offshore Nayarit, Mexico

    Science.gov (United States)

    Ortega-Osorio, A.; Prol-Ledesma, R. M.; Reyes, A. G.; Rubio-Ramos, M. A.; Torres-Vera, M. A.

    2001-12-01

    A shallow (30 ft) hydrothermal site named ``Cora'' (after the indigenous people thereby) was surveyed and sampled throughout direct observation with SCUBA diving during November 25 to December 4, 2000. A total of 10 dives were conducted in order to obtain representative samples from an 85oC fluid source of approximately 10 cm in diameter. Inherent difficulties to the sampling, such as poor visibility and strong bottom currents were overcome and samples of hydrothermal fluid, gas, rocks, and particulate matter were collected directly from the vent. Water samples and hydrothermal fluid were taken with a homemade 1 l cylindrical bottles of two lines by flushing in from the bottom for about ten minutes until total displacement of the seawater; similar procedure was carried out for gas samples. Particulate matter was collected with 0.4mm polycarbonate membrane filters and preserved in a desiccators at a fridge temperature until analysis onshore. Preliminary description of the rock samples suggest that pyritization is the main mineralisation process. Filters containing hydrothermal particulate matter were surveyed under the scanning electron microscope in order to identify the nature (inorganic and organic), as well as the chemistry of the particles. SEM examination revealed the presence of particles of different kind that suggests high degree of mixing and re-suspension: Planctonic organisms and organic matter appeared to be abundant; 25 micron particles of different carbonate faces and inorganic particles of silicates were also recognized. Distinctive euhedral colloidal grains were identified as the resulting process of precipitation from the solution. Microanalysis of iron and sulfur content of 10 micron particles indicate a very likely sulphide mineral face (greigite); 8 micron cinnabar particles are consistent with the mineralization conditions, observed as well in the inner walls of the vent. Analyses of dissolved and particulate trace metals are still ongoing at

  17. Integrated indoor and outdoor exposure assessment framework for fine particulate matter pollution

    DEFF Research Database (Denmark)

    McKone, Thomas E; Hodas, Natasha; Apte, Joshua S.

    2016-01-01

    The 2010 Global Burden of Disease report demonstrates that fine particulate matter (PM2.5) pollution is the major environmental contributor to mortality. Exposures outdoors (ambient) and indoors (household) contribute almost qually to this burden. Unfortunately, the health impacts from exposure t...

  18. Trace elements present in airborne particulate matter-Stressors of plant metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavlík, Milan; Pavlíková, D.; Zemanová, V.; Hnilička, F.; Urbanová, V.; Száková, J.

    2012-01-01

    Roč. 79, May 2012 (2012), s. 101-107 ISSN 0147-6513 Grant - others:GA ČR(CZ) GA521/09/1150 Program:GA Institutional research plan: CEZ:AV0Z50380511 Keywords : Airborne particulate matter * Amino acids * Gas-exchange parameters Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.203, year: 2012

  19. Particulate organic compounds in the atmosphere surrounding an industrialised area of Prato (Italy)

    Science.gov (United States)

    Cincinelli, Alessandra; Mandorlo, Stefano; Dickhut, Rebecca M.; Lepri, Luciano

    Atmospheric aerosols were collected during the period from May 2000 through January 2001 at 13 different sites in and around the Baciacavallo sewage treatment plant in Prato (Italy). The urban area surrounding the plant contains significant textile industrial activity and a main arterial road. Aerosol-associated n-alkane, polycyclic aromatic hydrocarbon (PAH), nonylphenol (NP) and nonylphenolethoxylate (NPnEO) ( n=1-3) concentrations were measured in order to evaluate contributions from the sewage treatment plant, naturally produced aerosols, transportation and industrial activities to the air quality in the vicinity of the sewage treatment plant. Aerosol-associated n-alkane concentrations ranged from 36.7 to 205 ng/m 3 and their possible origin was determined by the presence of typical petroleum characteristics such as the unresolved complex mixture and an odd/even carbon ratio (Carbon Preference Index). PAH concentrations ranged from 0.855 to 24.2 ng/m 3, in accordance with those generally found for urban aerosols in Europe. NP and NPnEO ( n=1-3), as well as fine aerosol particulate matter (PM 10) were significantly correlated with relative wind direction with increased levels observed in the ambient atmosphere when the relative wind direction was from the Baciacavallo sewage treatment plant. This study confirms the use of NP and NPnEO ( n=1-3) as markers of sewage treatment emissions and the importance of the contribution of aerosols produced by sewage treatment plant aeration tanks to the local atmospheric composition.

  20. Particulate Matter Concentrations in East Oakland's High Street Corridor

    Science.gov (United States)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  1. Atmospheric particulate pollution in Kenitra (Morocco)

    International Nuclear Information System (INIS)

    Zghaid, Mustapha; Noack, Yves; Boukla, Moussa; Benyaich, Fouad

    2009-01-01

    Cities of Morocco are exposed to a high atmospheric particulate pollution due to automobile traffic, industrialization, but also to soil dusts (in relation with aridity and desert proximity). Monitoring networks and data about air pollution still rare. The present study is a preliminary work about particulate and heavy metals pollution in Kenitra city. Aerosols had been collected with a PM10 sampler (Partisol), a dichotomous sampler (P M2.5 and P M2.5-10 fractions) and stacked filter unit (Gent type) with a fine fraction (below 2.5 um) and a coarse fraction. In summer, the average PM10 concentration is near 80 u g/N m 3 , above the EEC rule and OMS recommendations, but similar to some other african towns. The ratio P M2.5/PM 10 is low (below 0.5), with seasonal variation in relation with meteorology. The lead and nickel concentrations are also very low, in relation with the use of leaded gasoline and the oldness of many vehicles. This preliminary work reveals high levels of pollution (especially PM10, Pb and Ni) in the town of Kenitra. The major sources are traffic, soil dusts and resuspension of deposited particles. It is necessary to develop monitoring network and sanitary and and environmental impact studies in these cities [fr

  2. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  3. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  4. Particulate matter analysis at elementary schools in Curitiba, Brazil.

    Science.gov (United States)

    Avigo, Devanir; Godoi, Ana F L; Janissek, Paulo R; Makarovska, Yaroslava; Krata, Agnieszka; Potgieter-Vermaak, Sanja; Alfoldy, Balint; Van Grieken, René; Godoi, Ricardo H M

    2008-06-01

    The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.

  5. Sampling and analytical methodologies for instrumental neutron activation analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    1992-01-01

    The IAEA supports a number of projects having to do with the analysis of airborne particulate matter by nuclear techniques. Most of this work involves the use of activation analysis in its various forms, particularly instrumental neutron activation analysis (INAA). This technique has been widely used in many different countries for the analysis of airborne particulate matter, and there are already many publications in scientific journals, books and reports describing such work. The present document represents an attempt to summarize the most important features of INAA as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of INAA to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability, although they are presented here in a way that takes account of the particular requirements arising from the use of INAA as the analytical technique. The analytical part of the document, however, is presented in a form that is applicable only to INAA. (Subsequent publications in this series are expected to deal specifically with other nuclear related techniques such as energy dispersive X ray fluorescence (ED-XRF) and particle induced X ray emission (PIXE) analysis). Although the methods and procedures described here have been found through experience to yield acceptable results, they should not be considered mandatory. Any other procedure used should, however, be chosen to be capable of yielding results at least of equal quality to those described

  6. Sampling and analytical methodologies for instrumental neutron activation analysis of airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-01

    The IAEA supports a number of projects having to do with the analysis of airborne particulate matter by nuclear techniques. Most of this work involves the use of activation analysis in its various forms, particularly instrumental neutron activation analysis (INAA). This technique has been widely used in many different countries for the analysis of airborne particulate matter, and there are already many publications in scientific journals, books and reports describing such work. The present document represents an attempt to summarize the most important features of INAA as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of INAA to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability, although they are presented here in a way that takes account of the particular requirements arising from the use of INAA as the analytical technique. The analytical part of the document, however, is presented in a form that is applicable only to INAA. (Subsequent publications in this series are expected to deal specifically with other nuclear related techniques such as energy dispersive X ray fluorescence (ED-XRF) and particle induced X ray emission (PIXE) analysis). Although the methods and procedures described here have been found through experience to yield acceptable results, they should not be considered mandatory. Any other procedure used should, however, be chosen to be capable of yielding results at least of equal quality to those described.

  7. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

    2006-08-15

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  8. New Tropical Peatland Gas and Particulate Emissions Factors Indicate 2015 Indonesian Fires Released Far More Particulate Matter (but Less Methane than Current Inventories Imply

    Directory of Open Access Journals (Sweden)

    Martin J. Wooster

    2018-03-01

    Full Text Available Deforestation and draining of the peatlands in equatorial SE Asia has greatly increased their flammability, and in September–October 2015 a strong El Niño-related drought led to further drying and to widespread burning across parts of Indonesia, primarily on Kalimantan and Sumatra. These fires resulted in some of the worst sustained outdoor air pollution ever recorded, with atmospheric particulate matter (PM concentrations exceeding those considered “extremely hazardous to health” by up to an order of magnitude. Here we report unique in situ air quality data and tropical peatland fire emissions factors (EFs for key carbonaceous trace gases (CO2, CH4 and CO and PM2.5 and black carbon (BC particulates, based on measurements conducted on Kalimantan at the height of the 2015 fires, both at locations of “pure” sub-surface peat burning and spreading vegetation fires atop burning peat. PM2.5 are the most significant smoke constituent in terms of human health impacts, and we find in situ PM2.5 emissions factors for pure peat burning to be 17.8 to 22.3 g·kg−1, and for spreading vegetation fires atop burning peat 44 to 61 g·kg−1, both far higher than past laboratory burning of tropical peat has suggested. The latter are some of the highest PM2.5 emissions factors measured worldwide. Using our peatland CO2, CH4 and CO emissions factors (1779 ± 55 g·kg−1, 238 ± 36 g·kg−1, and 7.8 ± 2.3 g·kg−1 respectively alongside in situ measured peat carbon content (610 ± 47 g-C·kg−1 we provide a new 358 Tg (± 30% fuel consumption estimate for the 2015 Indonesian fires, which is less than that provided by the GFEDv4.1s and GFASv1.2 global fire emissions inventories by 23% and 34% respectively, and which due to our lower EFCH4 produces far less (~3× methane. However, our mean in situ derived EFPM2.5 for these extreme tropical peatland fires (28 ± 6 g·kg−1 is far higher than current emissions inventories assume, resulting in our total

  9. Characterization of airborne particulate matter in Santiago, Chile. Part 1: design, sampling and analysis for an experimental campaign

    International Nuclear Information System (INIS)

    Toro E, P.

    1995-01-01

    This work describes the siting and sampling procedures of collecting airborne particulate matter in Santiago, Chile, determining its chemical composition and daily behaviour. The airborne particulate matter was collected onto polycarbonate membranes, one of fine pore and other of coarse pore, using Pm 10 samplers. The material was analyzed using neutron activation analysis., proton induced X ray emission, X ray fluorescence, voltametry, atomic absorption spectrometry, ion chromatography and isotope dilution. (author). 1 tab

  10. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    Science.gov (United States)

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-22

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  11. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    Directory of Open Access Journals (Sweden)

    Qiulin Xiong

    2015-09-01

    Full Text Available Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  12. Isolating the Meteorological Impact of 21st Century GHG Warming on the Removal and Atmospheric Loading of Anthropogenic Fine Particulate Matter Pollution at Global Scale

    Science.gov (United States)

    Xu, Yangyang; Lamarque, Jean-François

    2018-03-01

    Particulate matter with the diameter smaller than 2.5 μm (PM2.5) poses health threats to human population. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5%-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause of the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Our results suggest climate change impact needs to be accounted for to define the future emission standards necessary to meet air quality standard.

  13. Ultrafine Particulate Matter Combined With Ozone Exacerbates Lung Injury in Mature Adult Rats With Cardiovascular Disease.

    Science.gov (United States)

    Wong, Emily M; Walby, William F; Wilson, Dennis W; Tablin, Fern; Schelegle, Edward S

    2018-05-01

    Particulate matter (PM) and ozone (O3) are dominant air pollutants that contribute to development and exacerbation of multiple cardiopulmonary diseases. Mature adults with cardiovascular disease (CVD) are particularly susceptible to air pollution-related cardiopulmonary morbidities and mortalities. The aim was to investigate the biologic potency of ultrafine particulate matter (UFPM) combined with O3 in the lungs of mature adult normotensive and spontaneously hypertensive (SH) Wistar-Kyoto rats. Conscious, mature adult male normal Wistar-Kyoto (NW) and SH rats were exposed to one of the following atmospheres: filtered air (FA); UFPM (∼ 250 μg/m3); O3 (1.0 ppm); or UFPM + O3 (∼ 250 μg/m3 + 1.0 ppm) combined for 6 h, followed by an 8 h FA recovery period. Lung sections were evaluated for lesions in the large airways, terminal bronchiolar/alveolar duct regions, alveolar parenchyma, and vasculature. NW and SH rats were similarly affected by the combined-pollutant exposure, displaying severe injury in both large and small airways. SH rats were particularly susceptible to O3 exposure, exhibiting increased injury scores in terminal bronchioles and epithelial degeneration in large airways. UFPM-exposure groups had minimal histologic changes. The chemical composition of UFPM was altered by the addition of O3, indicating that ozonolysis promoted compound degradation. O3 increased the biologic potency of UFPM, resulting in greater lung injury following exposure. Pathologic manifestations of CVD may confer susceptibility to air pollution by impairing normal lung defenses and responses to exposure.

  14. A study of bacteria, fungi and biomass in particulate matter in ambient air of Khorramabad during summer and autumn 2012

    Directory of Open Access Journals (Sweden)

    hatam Godini

    2015-05-01

    Full Text Available Introduction: Particulate matter refers to the combination of atmospheric pollutants that a portion of this particulate is bioaerosol. The aim of this study was the evaluation of bacteria, fungi and biomass in particulate matter in ambient air of Khorramabad during summer and autumn 2012. Materials and Methods: This study was a cross sectional study that conducted in Khorramabad city during summer and fall 2012. Sampling has been done via high-volume sampler. The special cultures were used for cultivation and determination of fungal and Heterotrophic Plate Count (HPC (and Bradford method were used to determine bacteria and protein as biomass indicator, respectively. Relationship between these variables with metrological parameters was evaluated too. Results: The highest PM10 in July (257.18 µg/m3 and lowest in September (92.45 µg/m3 had been recorded. The highest amount of bacteria and fungi were measured as monthly in November (605 No/m3 and December (120 No/m3, respectively. The highest of protein concentration was measured in August, September and December (27-30 µg/m3. With the increase in PM10, biomass concentration in the air showed a meaningful increase. Conclusion: Biomass concentration in the air increased with increasing PM10 but it had no significant effect on the concentration of bacteria and fungi in the air. Meteorological factors such as temperature, humidity, wind speed, solar radiation and the amount of exposure time had a significant impact on bioaerosol concentrations in the air.

  15. The influence of atmospheric pollutants on the deterioration of museum collections

    International Nuclear Information System (INIS)

    Injuk, J.; Van Grieken, R.

    2001-01-01

    In view of the above issues, the purpose of our research effort was to establish the ranges of chemical composition, concentration, size distribution and sources of the airborne particulate matter found in the indoor atmosphere of several European and one Japanese museum. The chemical composition, size and indoor and outdoor origin of the suspended particulate matter have been identified with a number of X-ray techniques such as electron Probe X-Ray microanalysis (EPXMA) and energy Dispersive X-ray Fluorescence Analysis. Our results constitute to our knowledge the first detailed study of the chemical nature of the indoor particulate matter in the selected museums and to the lasting conservation of the works of art

  16. Environmental studies in two communes of Santiago de Chile by the analysis of magnetic properties of particulate matter deposited on leaves of roadside trees

    Science.gov (United States)

    Muñoz, David; Aguilar, Bertha; Fuentealba, Raúl; Préndez, Margarita

    2017-03-01

    Emissions from motor vehicles are considered to be one of the main sources of airborne particulate matter in Santiago. International researchers have shown that particulate matter contains metal oxides and magnetic particles, both of which are emitted mainly from vehicles exhaust pipes. On the other hand, trees are effective in reducing such contamination, so that they act as passive collectors of particulate matter. This work presents the results obtained from the first magnetic study of the particulate matter collected in two areas of the city of Santiago de Chile. Magnetic susceptibility and Saturation Isothermic Remanent Magnetization (SIRM) were determined in leaves from abundant urban trees and from urban dust samples. Results indicate that most of the samples contain ferromagnetic minerals with magnetite (Fe3O4) as the main carrier. Values of magnetic susceptibility (SI ×10-6 m3/kg) in the range 0.04-0.24 for leaves and in the range 10-45 for urban dust were determinated. In one of the city areas studied, significant correlation between the particulate matter deposited on leaves of Platanus orientalis and measured traffic flows was obtained. In addition, it was possible to estimate that the species Platanus orientalis and Acer negundo have a better ability to capture particulate matter than the species Robinia pseudoacacia.

  17. Particulate Matter Air Pollution in an Urban Area : a Case Study

    Directory of Open Access Journals (Sweden)

    Piotr Holnicki

    2016-01-01

    Full Text Available Many European agglomerations suffer from high concentrations of particulate matter (PM, which is now one of the most detrimental pollutants characterizing the urban atmospheric environment. This paper addresses the problem of PM10 pollution in the Warsaw metropolitan area, including very harmful fine fractions (PM2.5, and also some heavy metals. The analysis of air quality in the Warsaw agglomeration discussed in this study is based on results from computer modeling presented elsewhere, and refers to emission and meteorological data for the year 2012. The range of emissions considered in this analysis includes the main sectors of municipal activity: energy generation, industry, urban transport, residential sector. The trans-boundary inflow of the main pollutants coming from distant sources is also taken into account. The regional scale computer model CALPUFF was used to assess the annual mean concentrations of major pollutants in the urban area. The results show the regions where the air quality limits are exceeded and indicate the dominant sources of emission which are responsible for these violations (source apportionment. These are the key data required to implement efficient regulatory actions. (original abstract

  18. Size, Composition, and Sources of Health Relevant Particulate Matter in the San Joaquin Valley

    Science.gov (United States)

    Ham, Walter Allan

    Particulate Matter (PM) is an environment contaminant that has been associated with adverse health effects in epidemiological and toxicological studies. Atmospheric PM is made up of a diverse array of chemical species that are emitted from multiple sources across a range of aerodynamic diameters spanning several orders of magnitude. The focus of the present work was the characterization of ambient PM with aerodynamic diameters below 1.8 mum (PM1.8) in 6 size sub-fractions including PM0.1. Chemical species measured included organic carbon, elemental carbon, water soluble ions, trace metals, and organic molecular markers in urban and rural environments in the San Joaquin Valley. These measurements were used to determine differences in relative diurnal size distributions during a severe winter stagnation event, seasonal changes in PM size and composition, and the source origin of carbonaceous PM. This size-resolved information was used to calculate lung deposition patterns of health relevant PM species to evaluate seasonal differences in PM dose. By accurately calculating PM dose, researchers are able to more directly link ambient PM characterization data with biological endpoints. All of these results are used to support ongoing toxicological health effects studies. These types of analyses are important as this type of information may assist regulators with developing control strategies to reduce health effects caused by particulate air pollution.

  19. Effect of Feeding Schedule on Fractionated Particulate Matter Distribution in Rooster House

    Science.gov (United States)

    The persistence and long life expectancy of ammonia, odors and toxic pollutants from poultry houses may be due to the ability of suspended particulate matters (SPM) to serve as carriers for odorous compounds such as ammonium ions and volatile organic compounds. SPM is generated from the feed, anima...

  20. Sampling and analytical methodologies for energy dispersive X-ray fluorescence analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    1993-01-01

    The present document represents an attempt to summarize the most important features of the different forms of ED-XFR as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of ED-XRF to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability. Emphasis is also placed on the sources of errors affecting the sampling of airborne particulate matter. The analytical part of the document describes the different forms of ED-XRF and their potential applications. Spectrum evaluation, a key step in X-ray spectrometry, is covered in depth, including discussion on several calibration and peak fitting techniques and computer programs especially designed for this purpose. 148 refs, 25 figs, 13 tabs

  1. Application of digital image processing to a β-gauge for determining mass concentration of suspending particulate matter in atmosphere

    International Nuclear Information System (INIS)

    Gotoh, Takao

    1992-01-01

    A two-dimensional image of the mass concentration of suspending particulate matter (SPM) collected on Millipore filter paper was photographed with Ultrofilm- 3 H. The printed paper image was transformed into a digital image (256 x 256 pixels) with 256 gray levels. Two results were obtained. The averaged values of gray level over all pixels of the digital image was found to correlate with the mass value measured by a β-gauge. The characteristic range of the digital image which was transformed to frequency by two-dimensional fast fourier transformation was found in the low frequency. It was presumed to relate to SPM from anthropogenic sources because the SPMs usually show higher density and smaller particle size than SPMs from natural sources. (author)

  2. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    Science.gov (United States)

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  3. Effects of Source-Apportioned Coarse Particulate Matter (PM) on Allergic Responses in Mice

    Science.gov (United States)

    The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coa...

  4. Approximation of personal exposure to fine particulate matters (PM2.5) during cooking using solid biomass fuels in the kitchens of rural West Bengal, India.

    Science.gov (United States)

    Nayek, Sukanta; Padhy, Pratap Kumar

    2018-03-27

    More than 85% of the rural Indian households use traditional solid biofuels (SBFs) for daily cooking. Burning of the easily available unprocessed solid fuels in inefficient earthen cooking stoves produce large quantities of particulate matters. Smaller particulates, especially with aerodynamic diameter of 2.5 μm or less (PM 2.5 ), largely generated during cooking, are considered to be health damaging in nature. In the present study, kitchen level exposure of women cooks to fine particulate matters during lunch preparation was assessed considering kitchen openness as surrogate to the ventilation condition. Two-way ANCOVA analysis considering meal quantity as a covariate revealed no significant interaction between the openness and the seasons explaining the variability of the personal exposure to the fine particulate matters in rural kitchen during cooking. Multiple linear regression analysis revealed the openness as the only significant predictor for personal exposure to the fine particulate matters. In the present study, the annual average fine particulate matter exposure concentration was found to be 974 μg m -3 .

  5. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    Science.gov (United States)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  6. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Piniero, T.; Cerqueira Alves, L.; Reis, M.

    1998-01-01

    The aim of this project is to search for respiratory system particular aggressors to which workers are submitted in their labouring activity. The work plan under the current IAEA contract comprise a prospective study to identify particulate matter deposited in the human respiratory ducts and lung tissue and workers respiratory health status survey at a steel plant, Siderurgia Nacional (SN). So far, the selection of areas of interest at SN, workers exposed, airborne particulate monitoring sites according to the periodicity of labouring cycles, and the beginning of workers medical survey have been achieved and/or initiated. The SN selected area, where steel is processed and steel casting is achieved, involve approximately 80 workers, most of them working at that location for more than 15 years. Blood elemental content data determined by PIXE and INAA and a preliminary health status evaluation from 32 of the 80 workers included in this survey are presented and discussed. (author)

  7. Influence of Channel Geomorphology on Retention of Dissolved and Particulate Matter in a Cascade Mountain Stream

    Science.gov (United States)

    Gary A. Lamberti; Stan V. Gregory; Linda R. Ashkenas; Randall C. Wildman; Alan G. Steinman

    1989-01-01

    Retention of particulate and dissolved nutrients in streams is a major determinant of food avail-ability to stream biota. Retention of particulate matter (leaves) and dissolved nutrients (nitrogen) was studied experimentally during summer 1987 in four 300-500 m reaches of Lookout Creek, a fifth-order stream in the Cascade Mountains of Oregon. Constrained (narrow valley...

  8. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  9. Sensitive emission spectrometric method for the analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Sugimae, A.

    1975-01-01

    A rapid and sensitive emission spectrometric method for the routine analysis of airborne particulate matter collected on the glass fiber filter is reported. The method is a powder--dc arc technique involving no chemical pre-enrichment procedures. The elements--Ag, BA: Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, La, Mn, Ni, Pb, Sn, V, Y, Yb, and Zn--were determined. (U.S.)

  10. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Loft, Steffen; Jacobsen, Nicklas Raun

    2010-01-01

    Wood combustion is a significant source of ambient particulate matter (PM) in many regions of the world. Exposure occurs through inhalation or ingestion after deposition of wood smoke particulate matter (WSPM) on crops and food. We investigated effects of ambient PM and WSPM by intragastric...

  11. Influence of Acidification on the Partitioning of Steroid Hormones among Filtrate, Filter Media, and Retained Particulate Matter.

    Science.gov (United States)

    Havens, Sonya M; Hedman, Curtis J; Hemming, Jocelyn D C; Mieritz, Mark G; Shafer, Martin M; Schauer, James J

    2016-09-01

    Hormone contamination of aquatic systems has been shown to have deleterious effects on aquatic biota. However, the assessment of hormone contamination of aquatic environments requires a quantitative evaluation of the potential effects of sample preservation on hormone concentrations. This study investigated the influence of acidification (pH 2) of surface water samples on the partitioning of hormones among filtrate, filter media, and filter-retained particulate matter. Hormones were spiked into unpreserved and sulfuric acid-preserved ultrapure water and surface water runoff samples. The samples were filtered, and hormones were extracted from the filter and filtrate and analyzed by high-performance liquid chromatography. Acidification did not influence the partitioning of hormones onto the filter media. For the majority of the hormones investigated in this study, the partitioning of hormones to the filter-retained particulate matter was not influenced by acidification. Acidification increased the partitioning of progesterone and melengestrol acetate onto the retained particulate matter (about 25% for both analytes). Incorporation of an isotopically labeled internal standard (ISTD) for progesterone accounted for the loss of progesterone to the filter-retained particulates and resulted in accurate concentrations of progesterone in the filtrate. The incorporation of an ISTD for melengestrol acetate, however, was unable to account for the loss of melengestrol acetate to the retained particulates and resulted in underestimations of melengestrol acetate in the filtrate. Our results indicate that the analysis of melengestrol acetate in acid preserved surface runoff samples should be conducted on the filter-retained particulates as well as the filtrate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Global Guidance On LCIA Indicators: Impacts Of Particulate Matter And Of Land Use

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Fantke, Peter; McKone, Thomas E.

    2017-01-01

    Improving life cycle impact assessment models is crucial. The flagship project of the UNEP-SETAC Life Cycle Initiative provides global guidance and consensus on environmental LCIA indicators for climate change, particulate matter impacts, land use impact on biodiversity, water scarcity and water ...

  13. Elemental constituents of particulate matter and newborn’s size in eight European cohorts

    NARCIS (Netherlands)

    Pedersen, M.; Gehring, U.; Beelen, R.; Wang, M.; Giorgis-Allemand, L.; Andersen, A.M.N.; Basagaña, X.; Bernard, C.; Cirach, M.; Forastiere, F.; Hoogh, K. de; Gražuleviĉvienė, R.; Gruzieva, O.; Hoek, G.; Jedynska, A.; Klümper, C.; Kooter, I.M.; Krämer, U.; Kukkonen, J.; Porta, D.; Postma, D.S.; Raaschou-Nielsen, O.; Rossem, L. van; Sunyer, J.; Sørensen, M.; Tsai, M.Y.; Vrijkotte, T.G.M.; Wilhelm, M.; Nieuwenhuijsen, M.J.; Pershagen, G.; Brunekreef, B.; Kogevinas, M.; Slama, R.

    2016-01-01

    Background: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn’s size have been little examined. Objective: We aimed to investigate the associations of exposure to elemental

  14. Health impact caused by exposure to particulate matter in the air of Tehran in the past decade

    Directory of Open Access Journals (Sweden)

    Majid Kermani

    2017-03-01

    Full Text Available Background: Air pollution, especially the phenomenon of dust and particulate matter can cause mortality of many civilians, and causes various diseases including cardiovascular and respiratory diseases. One of the major pollutants in the air is particulate matter that concentration has increased over recent years. So, present study with aim of Quantification Health Endpoints Attributed to particulate matter in Tehran, Capital of Iran during the past decade (2005-2014 by AirQ software, version 2.2.3 (WHO European Centre for Environment and Health was performed. Methods: This study is a descriptive-analytic investigation. The process of performance this study lasted 12 months. Subject of this the study and research was in Environmental Health Engineering Department of Iran University of Medical Sciences. Exact data of every hour pollutants were taken from Department of environmental (DOE Islamic Republic Iran and Air Quality Control Company of Tehran. Then validated according to the World Health Organization (WHO guidelines and Statistical parameters for quantifying health effects were calculated in excel software. Finally, assessment of cases total mortality, cardiovascular mortality, respiratory mortality and cardiovascular disease and respiratory disease, with AirQ software was performed. Results: The results of this study showed that the number of total mortality, cardiovascular mortality and respiratory mortality caused by exposure to Particulate matter smaller than 10 microns (PM10 in the past decade is 11776, 12121 and 33066 cases respectively. Also the total number of hospital admission due to cardiovascular disease and respiratory disease in the past decade is 20990 and 54352 cases in 2005-2014 years. Conclusion: According to the results of this study, during the last decade the level of air pollution and Concentration of pollutants in Tehran Increased. Effects and health consequences due to exposure to Particulate matter smaller than 10

  15. Difference in Pro-Inflammatory Cytokine Responses Induced in THP1 Cells by Particulate Matter Collected on Days with and without ASIAN Dust Storms

    Directory of Open Access Journals (Sweden)

    Masanari Watanabe

    2015-07-01

    Full Text Available The associations between particulate matter from Asian dust storms (ADS and health disorders differ among studies, and the underlying mechanisms remain unclear. In this study, ADS and non-ADS particles were tested for their potential to induce pro-inflammatory cytokines associated with adverse respiratory effects. Particulate matter was collected in Japan during four periods in 2013 (2 × ADS periods; 2 × non-ADS. THP1 cells were exposed to this particulate matter, and the levels of various interleukins (ILs, and tumor necrosis factor (TNF-α were measured. Levels of IL-2 increased significantly following exposure to all particulate matter samples (compared to levels in a solvent control. Increased levels of IL-10 and TNF-α were also observed following exposure to particles collected during three (one ADS and two non-ADS and two (one ADS and one non-ADS collection periods, respectively. Thus, the effects of particulate matter on cytokine responses differed according to collection period, and the effects of ADS particles differed for each ADS event. Additionally, the levels of pro-inflammatory cytokines induced by ADS particles were not always higher than those induced by non-ADS particles.

  16. Evaluation of atmospheric particulate concentrations derived from analysis of ratio Thematic Mapper data

    Science.gov (United States)

    Carnahan, W. H.; Mausel, P. W.; Zhou, G. P.

    1984-01-01

    An approach for atmospheric particulate concentration evaluation above urban areas using ratio Thematic Mapper (TM) data is discussed. October 25, 1982 TM data over Chicago, IL are analyzed using TM band ratios of 1/2, 1/3, 1/4, 1/5, and 1/6 and particulate concentration estimates derived from TM ratios are tested over low reflective turbid water sites and highly reflective concrete highways. From analysis of the data it is evident that for water, the pattern of increasing particulate concentration is associated with decreasing ratio values in all band combinations used. Over concrete features, the TM band 1/4 ratio values follow the predicted pattern, while the TM band 1/6 has ratios which are reversed from anticipated values.

  17. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  18. Influence of advections of particulate matter from biomass combustion on specific-cause mortality in Madrid in the period 2004-2009.

    Science.gov (United States)

    Linares, C; Carmona, R; Tobías, A; Mirón, I J; Díaz, J

    2015-05-01

    Approximately, 20 % of particulate and aerosol emissions into the urban atmosphere are of natural origin (including wildfires and Saharan dust). During these natural episodes, PM10 and PM2.5 levels usually exceed World Health Organisation (WHO) health protection thresholds. This study sought to evaluate the possible effect of advections of particulate matter from biomass fuel combustion on daily specific-cause mortality among the general population and the segment aged ≥ 75 years in Madrid. Ecological time-series study in the city of Madrid from January 01, 2004 to December 31, 2009. The dependent variable analysed was daily mortality due to natural (ICD-10:A00-R99), circulatory (ICD-10:I00-I99), and respiratory (ICD-10:J00-J99) causes in the population, both general and aged ≥ 75 years. The following independent and control variables were considered: a) daily mean PM2.5 and PM10 concentrations; b) maximum daily temperature; c) daily mean O3 and NO2 concentrations; d) advection of particulate matter from biomass combustion ( http://www.calima.ws/ ), using a dichotomous variable and e) linear trend and seasonalities. We conducted a descriptive analysis, performed a test of means and, to ascertain relative risk, fitted a model using autoregressive Poisson regression and stratifying by days with and without biomass advection, in both populations. Of the 2192 days analysed, biomass advection occurred on 56, with mean PM2.5 and PM10 values registering a significant increase during these days. PM10 had a greater impact on organic mortality with advection (RRall ages = 1.035 [1.011-1.060]; RR  ≥  75 years = 1.066 [1.031-1.103]) than did PM2.5 without advection (RRall ages = 1.017 [1.009-1.025]; RR  ≥  75 years = 1.012 [1.003-1.022]). Among specific causes, respiratory-though not circulatory-causes were associated with PM10 on days with advection in ≥ 75 year age group. PM10, rather than PM2.5, were associated with an increase in natural

  19. High-Latitude Wintertime Urban Pollution: Particulate Matter Composition and Temporal Trends in Fairbanks, Alaska

    Science.gov (United States)

    Simpson, W. R.; Nattinger, K.; Hooper, M.

    2017-12-01

    High latitude cities often experience severe pollution episodes during wintertime exacerbated by thermal inversion trapping of pollutant emissions. Fairbanks, Alaska is an extreme example of this problem, currently being classified by the US Environmental Protection Agency (EPA) as a "serious" non-attainment area for fine particulate matter (PM2.5). For this reason, we have studied the chemical composition of PM2.5 at multiple EPA monitoring sites in the non-attainment area from 2006 to the present. The chemical composition is dominated by organic carbon with lesser amounts of black carbon and inorganic ionic species such as ammonium, sulfate, and nitrate. We find large spatial differences in composition and amount of PM2.5 that indicate a different mix of sources in residential areas as compared to the city center. Specifically, the difference in composition is consistent with increased wood smoke source in the residential areas. The extent to which organic matter could be secondary (formed through conversion of emitted gases) is also an area needing study. Ammonium sulfate is responsible for about a fifth to a quarter of the particles mass during the darkest months, possibly indicating a non-photochemical source of sulfate, but the chemical mechanism for this possible transformation is unclear. Therefore, we quantified the relationship between particulate sulfate concentrations and gas-phase sulfur dioxide concentrations along with particulate metals and inferred particulate acidity with the hopes that these data can assist in elucidation of the mechanism of particulate sulfate formation. We also analyze temporal trends in PM2.5 composition in an attempt to understand how the problem is changing over time and find most trends are small despite regulatory changes. Improving mechanistic understanding of particulate formation under cold and dark conditions could assist in reducing air-quality-related health effects.

  20. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    was the most important sector, contributing about 60 % for BC and OC, 45 % for PM2. 5, and less than 40 % for PM10, where large combustion sources and industrial processes are equally important. Global anthropogenic emissions of BC were estimated at about 6.6 and 7.2 Tg in 2000 and 2010, respectively, and represent about 15 % of PM2. 5 but for some sources reach nearly 50 %, i.e. for the transport sector. Our global BC numbers are higher than previously published owing primarily to the inclusion of new sources. This PM estimate fills the gap in emission data and emission source characterization required in air quality and climate modelling studies and health impact assessments at a regional and global level, as it includes both carbonaceous and non-carbonaceous constituents of primary particulate matter emissions. The developed emission dataset has been used in several regional and global atmospheric transport and climate model simulations within the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) project and beyond, serves better parameterization of the global integrated assessment models with respect to representation of black carbon and organic carbon emissions, and built a basis for recently published global particulate number estimates.

  1. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    anthropogenic total, and residential combustion was the most important sector, contributing about 60 % for BC and OC, 45 % for PM2. 5, and less than 40 % for PM10, where large combustion sources and industrial processes are equally important. Global anthropogenic emissions of BC were estimated at about 6.6 and 7.2 Tg in 2000 and 2010, respectively, and represent about 15 % of PM2. 5 but for some sources reach nearly 50 %, i.e. for the transport sector. Our global BC numbers are higher than previously published owing primarily to the inclusion of new sources. This PM estimate fills the gap in emission data and emission source characterization required in air quality and climate modelling studies and health impact assessments at a regional and global level, as it includes both carbonaceous and non-carbonaceous constituents of primary particulate matter emissions. The developed emission dataset has been used in several regional and global atmospheric transport and climate model simulations within the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project and beyond, serves better parameterization of the global integrated assessment models with respect to representation of black carbon and organic carbon emissions, and built a basis for recently published global particulate number estimates.

  2. Temperature modifies the health effects of particulate matter in Brisbane, Australia

    Science.gov (United States)

    Ren, Cizao; Tong, Shilu

    2006-11-01

    A few epidemiological studies have examined whether there was an interactive effect between temperature and ambient particulate matter on cardiorespiratory morbidity and mortality, but the results were inconsistent. The present study used three time-series approaches to explore whether maximum temperature modified the impact of ambient particulate matter less than 10 μm in diameter (PM10) on daily respiratory hospital admissions, cardiovascular hospital admissions, respiratory emergency visits, cardiovascular emergency visits, non-external cause mortality and cardiovascular mortality in Brisbane between 1996 and 2001. The analytical approaches included a bivariate response surface model, a non-stratification parametric model and a stratification parametric model. Results show that there existed a statistically significant interaction between PM10 and temperature on most health outcomes at various lags. PM10 exhibited more adverse health effects on warm days than cold days. The choice of the degree of freedom for smoothers to adjust for confounders and the selection of arbitrary cut-offs for temperature affected the interaction estimates to a certain extent, but did not change the overall conclusion. The results imply that it is important to control and reduce the emission of air particles in Brisbane, particularly when temperature increases.

  3. Theoretical research of probability of wedging of particulate matters at polishing

    Directory of Open Access Journals (Sweden)

    V.F. Molchanov

    2017-12-01

    Full Text Available The mechanism of formation of mikroprofile of the polished surface is expounded taking into account influence of particulate matters, contained in lubricating-coolings liquids. Probability of wedging of abrasive particles is investigational in the area of contact of diamond-impregnated with the surface of detail. It is set that for determination of probability of event, when a particle, getting together with a liquid in the area of contact, abandons track-scratch on a superficial layer, it is necessary to take into account, that three mutual locations of hard particle are possible in the area of contact of diamond-impregnated with the surface of detail. It is set researches, that a hard particle, getting together with a liquid in the area of contact, abandons track-scratch on-the-spot in that case, when the sizes of particle are equal or a few exceed distance from the surface of detail to the ledges on-the-spot diamond-impregnated. Researches allow mathematically to define probability of wedging of particulate matters in the area of contact of diamond-impregnated with the surface of the polished detail.

  4. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  5. Applicability and limitations of instruments for particle sizing and real time evaluation of airbone particulate matter; Applicabilita` e limiti di strumenti per la separazione granulometrica e per la valutazione in tempo reale del particolato in sospensione

    Energy Technology Data Exchange (ETDEWEB)

    De Zaiacomo, T. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dip. Ambiente

    1998-12-31

    After a brief of difficulties in characterizing airbone particulates by means of particle sizing instruments, the accumulation mode of the atmospheric aerosol is highlighted as carrier of many noxious substances. Two different types of impactors are described in detail, and examples of particle size distributions obtainable by means of these instruments are shown; a miniaturized real-time aerosol monitor is briefly described too. Results of some tests are shown, carried on by sampling both a laboratory produced aerosol and ambient airbone particulate, by means of two identical impactors, with the aim of verifying their responses in term of collected ponderal mass; examples of the aerosol size distributions obtained are reported, together with some comments about problems arising when sampling morphologically complex (agglomerates) and hygroscopic urban particulate matter in different meteorological conditions. Then aerosol size distribution data are presented, obtained by simultaneously sampling airbone particulate matter both in an urban and extra-urban area, by means of the two cited impactors. Some proposals are finally made, in order to use a portable system, equipped with two optical monitors and a miniaturized personal-type impactor, to evaluate both fine and coarse mode of urban particulate matter, with the aim of better estimate the contribution of these two aerosol fractions both in personal exposures and in environmental monitoring data.

  6. Assessment of occupational exposure and contamination by means of airborne particulate matter and biomonitors using k0 instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Menezes, M.A. de B.C.; Pereira Maia, E.C.; Filho, S.S.; Albinati, C.

    2002-01-01

    In order to assess the elemental concentration level in a galvanizing industry and alert for the need to assess the outcome of a long-term exposure, scalp hair and toenail samples were used as bioindicators and the industry environment was evaluated through airborne particulate matter. The elemental concentration results have pointed out a high exposure to pollutant at workplaces and a high elemental concentration in biomonitors suggesting endogenous contamination. The majority of the elements determined in airborne particulate matter were also determined in hair and toenail samples. The results evidence the efficiency of these matrixes as biomonitors and the importance to carry out the airborne particulate matter sampling in parallel to these biomonitors mainly in occupational epidemiological studies. (author)

  7. Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control

    Directory of Open Access Journals (Sweden)

    Magdalena Penkała

    2018-01-01

    Full Text Available Along with house heating and industry, emissions from road traffic (exhaust and tire, brake, car body or road surface abrasions are one of the primary sources of particulate matter (PM in the atmosphere in urban areas. Though numerous regulations and vehicle-control mechanisms have led to a significant decline of PM emissions from vehicle exhaust gases, other sources of PM remain related to road and car abrasion are responsible for non-exhaust emissions. Quantifying these emissions is a hard problem in both laboratory and field conditions. First, we must recognize the physicochemical properties of the PM that is emitted by various non-exhaust sources. In this paper, we underline the problem of information accessibility with regards to the properties and qualities of PM from non-exhaust sources. We also indicate why scarce information is available in order to find the possible solution to this ongoing issue.

  8. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  9. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  10. The filtering effect of buildings on airborne particulate matter

    International Nuclear Information System (INIS)

    Christensen, G.C.; Mustonen, R.

    1987-06-01

    Within the radioecological programme of the Nordic Liaison Committee for Atomic Energy (NKA), the possible consequences of a major reactor accident are one of its main research branches. This study of the filtering effect of buildings on airborne particulate matter has been one part of this branch. The absorbed dose to a person from a passing radioactive cloud will be lower if he has been indoors and not ourdoors during the cloud passage. The aim of this study has been to find filtering factors for typical Finnish and Norwegian houses to use in model work

  11. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles

    Science.gov (United States)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-03-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  12. A robust sebum, oil, and particulate pollution model for assessing cleansing efficacy of human skin.

    Science.gov (United States)

    Peterson, G; Rapaka, S; Koski, N; Kearney, M; Ortblad, K; Tadlock, L

    2017-06-01

    With increasing concerns over the rise of atmospheric particulate pollution globally and its impact on systemic health and skin ageing, we have developed a pollution model to mimic particulate matter trapped in sebum and oils creating a robust (difficult to remove) surrogate for dirty, polluted skin. To evaluate the cleansing efficacy/protective effect of a sonic brush vs. manual cleansing against particulate pollution (trapped in grease/oil typical of human sebum). The pollution model (Sebollution; sebum pollution model; SPM) consists of atmospheric particulate matter/pollution combined with grease/oils typical of human sebum. Twenty subjects between the ages of 18-65 were enrolled in a single-centre, cleansing study comparisons between the sonic cleansing brush (normal speed) compared to manual cleansing. Equal amount of SPM was applied to the centre of each cheek (left and right). Method of cleansing (sonic vs. manual) was randomized to the side of the face (left or right) for each subject. Each side was cleansed for five-seconds using the sonic cleansing device with sensitive brush head or manually, using equal amounts of water and a gel cleanser. Photographs (VISIA-CR, Canfield Imaging, NJ, USA) were taken at baseline (before application of the SPM), after application of SPM (pre-cleansing), and following cleansing. Image analysis (ImageJ, NIH, Bethesda, MD, USA) was used to quantify colour intensity (amount of particulate pollutants on the skin) using a scale of 0 to 255 (0 = all black pixels; 255 = all white pixels). Differences between the baseline and post-cleansing values (pixels) are reported as the amount of SPM remaining following each method of cleansing. Using a robust cleansing protocol to assess removal of pollutants (SPM; atmospheric particulate matter trapped in grease/oil), the sonic brush removed significantly more SPM than manual cleansing (P pollution method easily allows assessment of efficacy through image analysis. © 2016 The Authors

  13. Assessing atmospheric particulate matter distribution based on Saturation Isothermal Remanent Magnetization of herbaceous and tree leaves in a tropical urban environment.

    Science.gov (United States)

    Barima, Yao Sadaiou Sabas; Angaman, Djédoux Maxime; N'gouran, Kobenan Pierre; Koffi, N'guessan Achille; Kardel, Fatemeh; De Cannière, Charles; Samson, Roeland

    2014-02-01

    Particulate matter (PM) emissions, and the associated human health risks, are likely to continue increasing in urban environments of developing countries like Abidjan (Ivory Cost). This study evaluated the potential of leaves of several herbaceous and tree species as bioindicators of urban particulate matter pollution, and its variation over different land use classes, in a tropical area. Four species well distributed (presence frequencies >90%) over all land use classes, easy to harvest and whose leaves are wide enough to be easily scanned were selected, i.e.: Amaranthus spinosus (Amaranthaceae), Eleusine indica (Poaceae), Panicum maximum (Poaceae) and Ficus benjamina (Moraceae). Leaf sampling of these species was carried out at 3 distances from the road and at 3 height levels. Traffic density was also noted and finally biomagnetic parameters of these leaves were determined. Results showed that Saturation Isothermal Remanent Magnetization (SIRM) of leaves was at least 4 times higher (27.5×10(-6)A) in the vicinity of main roads and industrial areas than in parks and residential areas. The main potential sources of PM pollution were motor vehicles and industries. The slightly hairy leaves of the herbaceous plant A. spinosus and the waxy leaves of the tree F. benjamina showed the highest SIRM (25×10(-6)A). Leaf SIRM increased with distance to road (R(2)>0.40) and declined with sampling height (R(2)=0.17). The distance between 0 and 5m from the road seemed to be the most vulnerable in terms of PM pollution. This study has showed that leaf SIRM of herbaceous and tree species can be used to assess PM exposure in tropical urban environments. © 2013.

  14. Cytotoxicity and genotoxicity properties of particulate matter fraction 2.5 μm

    Science.gov (United States)

    Bełcik, Maciej K.; Trusz-Zdybek, Agnieszka; Zaczyńska, Ewa; Czarny, Anna; Piekarska, Katarzyna

    2017-11-01

    In the ambient is more than 2,000 chemical substances, some of them are absorbed on the surface of the particulate matter and may causes many health problems. Air pollution is responsible for more than 3.2 million premature deaths which classifies it as a second place environmental risk factor. Especially dangerous for health are polycyclic aromatic hydrocarbons and their nitro- and amino derivatives which shows mutagenic and carcinogenic properties. Air pollutions were also classified by International Agency for Research on Cancer to group which carcinogenic properties on human were proved by available knowledge. Air pollutions, including particulate matter are one of the biggest problem in Polish cities. World Health Organization in report published in May 2016 set many of Polish cities on the top of the list most polluted in European Union. The article presents results of mutagenicity, genotoxicity and cytotoxicity researches conducted on a particulate matter fraction 2.5 μm collected during all year long in Wroclaw agglomeration. The material were collected on filters using high-flow air aspirator and extracted using dichloromethane. Additionally it was fractionated into 2 parts containing: all pollutants and only polycyclic aromatic hydrocarbons. Dry residue of this fractions were dissolving in DMSO and tested using biological methods. Biological methods include mutagenicity properties which are investigated by Salmonella assay (Ames assay). Other biological method was comet assay and 4 parameter cytotoxicity test PAN-I assay. Results of the conducted experiments shows differences in mutagenic, genotoxic and cytotoxic properties between seasons of collection and between volume of dust pollutions fractions. The worst properties shows particles collected in autumn and winter season and this containing only polycyclic aromatics hydrocarbons. Results showed also some correlations in results obtained during different methods and properties.

  15. PIXE analysis of airborne particulate matter from Monterrey, Mexico. A first survey

    International Nuclear Information System (INIS)

    Aldape, F.; Flores M, J.; Diaz, R.V.; Hernandez-Mendez, B.; Montoya Z, J.M.; Blanco, E.E.; Fuentes, A.F.; Torres-Martinez, L.M.

    1999-01-01

    A first survey of elemental contents in airborne particulate matter from Monterrey, Nuevo Leon, Mexico, was performed using PIXE. This second largest industrial city is located 715 km north of Mexico City, and counts with a population of nearly three million inhabitants in its conurbation. Air pollution in the place comes from a great variety of industries ranging from iron smelters to furniture manufacturing, as well as from fuel combustion in vehicles and industries. This study presents results of elemental contents in airborne particulate matter in two particle size fractions: PM 2.5 and PM 15 . The samples were collected during five weeks on working days, Monday-Friday, from 9 December 1996 to 14 January 1997. Two samples a day were collected, 12 h each, night-time and day-time. These first results show local pollution as typical from a large urban area in conjunction with an active industry. Thirteen elements were consistently detected in most of the samples and some episodes due to both industrial and human activities were identified. A general discussion about the results obtained is presented

  16. Results of measurements of particulate matter concentrations inside a pig fattening facility

    Directory of Open Access Journals (Sweden)

    Ulens, T.

    2016-01-01

    Full Text Available Description of the subject. This research note discusses the results of measurements of particulate matter concentrations inside a pig fattening facility. Objectives. The objectives of the present study were to investigate the correlations between the different size fractions of indoor particulate matter (PM inside a pig fattening facility and to investigate the evolution of particle size distribution (PSD through a fattening period and between two housing systems and two cleaning protocols. Method. Data from two consecutive fattening periods in a commercial pig barn were used. Results. Very high correlations were found between PM10 and PM2.5 indoor concentrations. Depending on the measuring instrument, high or low correlations were found between PM1 and PM10 or PM2.5 indoor concentrations. No differences in PSD could be found between the two housing systems or the two cleaning protocols. Conclusions. The results from the present study showed high correlations between the indoor concentrations of PM10 and PM2.5. In the present study, no differences in PSD were found.

  17. Particulate matter emission from livestock houses: measurement methods, emission levels and abatement systems

    NARCIS (Netherlands)

    Winkel, Albert

    2016-01-01

    Animal houses are extremely dusty environments. Airborne particulate matter (PM) poses a health threat not only to the farmer and the animals, but, as a result of emissions from ventilation systems, also to residents living in livestock farming areas. In relation to this problem, the objectives

  18. Investigation of the suspended particulate matter in the Asian region for seven years

    International Nuclear Information System (INIS)

    Harasawa, Susumu

    1999-01-01

    Activities of the workshops for the investigation of environmental materials by NAA (Neutron Activation Analysis) methods during 1992 to 1997 held in Jakarta are briefly reported. Detail of selection of the theme (investigation of the suspended particulate matter in the Asian region by NAA), the results of the inter-comparison for the analysis using NIES No. 8 reference standard samples (vehicle exhaust particulate) are presented. In conclusion, systematically accumulated data on the environmental substances and their time variations measured and analyzed by INAA (Instrumental Neutron Activation Analysis) method give useful information on pollution problems and air movement in the Asia region. (S. Ohno)

  19. Investigation of the suspended particulate matter in the Asian region for seven years

    Energy Technology Data Exchange (ETDEWEB)

    Harasawa, Susumu [Institute for Atomic Energy, Rikkyo Univ., Yokosuka, Kanagawa (Japan)

    1999-10-01

    Activities of the workshops for the investigation of environmental materials by NAA (Neutron Activation Analysis) methods during 1992 to 1997 held in Jakarta are briefly reported. Detail of selection of the theme (investigation of the suspended particulate matter in the Asian region by NAA), the results of the inter-comparison for the analysis using NIES No. 8 reference standard samples (vehicle exhaust particulate) are presented. In conclusion, systematically accumulated data on the environmental substances and their time variations measured and analyzed by INAA (Instrumental Neutron Activation Analysis) method give useful information on pollution problems and air movement in the Asia region. (S. Ohno)

  20. Seasonal Variability of Concentration and Air Quality of Ambient Particulate Matter in Sosnowiec City

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2015-12-01

    Full Text Available Introduction: Exposing the population to more than standard concentration of particulate matter (PM is a crucial factor shaping the public health on urbanized areas both in Europe and Poland. In most cases, exceeded air quality standards relate to the winter period, in which there has been the greatest amount. Many studies have indicated, that exposure to PM can cause adverse health effects. Human exposure especially to fine particles (with an aerodynamic diameter less than 2.5 µm, causes risk of cardiovascular and respiratory diseases, due to daily mortality and hospital admissions. Various types of epidemiological studies have indicated, that ambient air pollution is responsible for increasing risk of lung cancer. For this reason, in 2013 The International Agency for Research on Cancer (IARC classified outdoor air pollution and particulate matter as carcinogenic to humans (Group 1.

  1. Air emission in France. Metropolitan area particulate matter; Emissions dans l'air en France. Metropole poussieres

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Substances and index currently in survey are: Particulate matter: Total suspended particulates (TSP), Fine particulates with an equivalent aerodynamic diameter less than 10 {mu}m (PM{sub 10}), 2.5 {mu}m (PM{sub 2.5}) and 1.0 {mu}m (PM{sub 1.0}). Density ratios relating to population, area, gross product, primary energy consumption, etc. Annual emissions are provided for each substance since 1990. Dates corresponding to the maximum and minimum values are also included. Results are provisional for 2001. (author)

  2. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    Directory of Open Access Journals (Sweden)

    Ramachandran Prasannavenkatesh

    2015-01-01

    Full Text Available Research outcomes from the epidemiological studies have found that the course (PM10 and the fine particulate matter (PM2.5 are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  3. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India.

    Science.gov (United States)

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Kumar, Divya Subash; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013-January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  4. Composição elementar do material particulado presente no aerossol atmosférico do município de Sete Lagoas, Minas Gerais Elemental composition of the particulate matter present in the atmospheric aerosols of Sete Lagoas, MG

    Directory of Open Access Journals (Sweden)

    Paula Guimarães Moura Queiroz

    2007-10-01

    Full Text Available The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS. The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 µm (PM10, indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region.

  5. Kuwaiti oil fires—Particulate monitoring

    Science.gov (United States)

    Husain, Tahir; Amin, Mohamed B.

    The total suspended particulate (TSP) matters using a high-volume sampler and inhalable particulate matters using PM-10 samplers were collected at various locations in the Eastern Province of Saudi Arabia during and after the Kuwaiti oil fires. The collected samples were analysed for toxic metals and oil hydrocarbon concentrations including some carcinogenic organic compounds in addition to gravimetric analysis. The concentration values of particulate matters were determined on a daily basis at Dhahran. Abqaiq, Rahima, Tanajib and Jubail locations. The analyses of the filters show a high concentration of the inhalable particulate at various locations, especially when north or northwest winds were blowing. It was found that the inhalable particulate concentration exceeded the Meteorology and Environmental Protection Administration (MEPA) permissible limit of 340 μg m- 3 at most of these locations during May-October 1991. A trend between the total suspended particulate and inhalable particulate measured concurrently at the same locations was observed and a regression equation was developed to correlate PM-10 data with the total suspended particulate data.

  6. Dynamic and thermodynamic mechanisms of TFA adsorption by particulate matter.

    Science.gov (United States)

    Guo, Junyu; Zhai, Zihan; Wang, Lei; Wang, Ziyuan; Wu, Jing; Zhang, Boya; Zhang, Jianbo

    2017-06-01

    Trifluoroacetic acid (TFA) in the atmosphere is produced by degradation of hydrochlorofluorocarbons and hydrofluorocarbons. In recent years, TFA has attracted global attention because of increased environmental concentrations, biological toxicity and accumulation in aqueous environments. This study focused on the mechanisms underlying the adsorption of TFA by particulate matter to identify the appropriate descriptive model for this process and thus improve estimation of TFA adsorption in future environmental monitoring. Onsite gas and particle phase sampling in Beijing, China, and subsequent measurement of TFA concentrations indicated that the TFA concentration in the gas phase (1396 ± 225 pg m -3 ) was much higher than that in the particle phase (62 ± 8 pg m -3 ) and that monthly concentrations varied seasonally with temperature. Based on the field results and analysis, an adsorption experiment of TFA on soot was then conducted at three different temperatures (293, 303, and 313 K) to provide parameters for kinetic and thermodynamic modelling. The proportion of atmospheric TFA concentration in the gas phase increased with temperature, indicating that temperature affected the phase distribution of TFA. The subsequent kinetic and thermodynamic modelling showed that the adsorption of TFA by soot could be described well by the Bangham kinetic model. The adsorption was controlled by diffusion, and the key mechanism was physical adsorption. The adsorption behavior can be well described by the Langmuir isotherm model. The calculated thermodynamic parameters ΔG° (-2.34, -1.25, and -0.15 kJ mol -1  at 293, 303, and 313 K, respectively), ΔH° (-34.34 kJ mol -1 ), and ΔS° (-109.22 J mol -1  K -1 ) for TFA adsorption by soot were negative, indicating that adsorption was a spontaneous, exothermic process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  8. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    International Nuclear Information System (INIS)

    Haynes, Erin N.; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N.

    2011-01-01

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban–rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003–2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3–4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter ≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  9. Coarse Particulate Organic Matter: Storage, Transport, and Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, Scott [Oakland University, Rochester, MI; Lamberti, Gary A. [University of Notre Dame, IN; Entrekin, Sally A. [University of Central Arkansas; Griffiths, Natalie A. [ORNL

    2017-08-01

    Coarse particulate organic matter, or CPOM, is a basal energy and nutrient resource in many stream ecosystems and is provided by inputs from the riparian zone, incoming tributaries, and to a lesser extent from in-stream production. The ability of a stream to retain CPOM or slow its transport is critical to its consumption and assimilation by stream biota. In this chapter, we describe basic exercises to measure (1) the amount of CPOM in the streambed and (2) the retention of CPOM from standardized particle releases. We further describe advanced exercises that (1) experimentally enhance the retentiveness of a stream reach and (2) measure organic carbon transport and turnover (i.e., spiraling) in the channel.

  10. Coarse Particulate Organic Matter: Storage, Transport, and Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, Scott [Oakland University, Rochester, MI; Lamberti, Gary A. [University of Notre Dame, IN; Entrekin, Sally A. [University of Central Arkansas; Griffiths, Natalie A. [ORNL

    2017-06-01

    Coarse particulate organic matter, or CPOM, is a basal energy and nutrient resource in many stream ecosystems and is provided by inputs from the riparian zone, incoming tributaries, and to a lesser extent from in-stream production. The ability of a stream to retain CPOM or slow its transport is critical to its consumption and assimilation by stream biota. In this chapter, we describe basic exercises to measure (1) the amount of CPOM in the streambed and (2) the retention of CPOM from standardized particle releases. We further describe advanced exercises that (1) experimentally enhance the retentiveness of a stream reach and (2) measure organic carbon transport and turnover (i.e., spiraling) in the channel.

  11. Surface water, particulate matter, and sediments of inland waters

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1985-01-01

    The Bundesanstalt fuer Gewaesserkunde (BfG) since 1958 runs a system for monitoring the surface water and sediments of Federal German waterways in its capacity as a directing water monitoring centre. The data recorded over the years show that the radioactivity released by the various emission sources leads to radionuclide concentrations in water, particulate matter, or sediments that generally are below the detection limits defined in the relevant legal provisions governing monitoring and surveillance of nuclear facilities effluents. Representative examples of measuring methods and results (as for e.g. for H-3) are given. (DG) [de

  12. IDENTIFICATION OF POSSIBLE SOURCES OF PARTICULATE MATTER IN THE PERSONAL CLOUD USING SEM/EDX

    Science.gov (United States)

    The United States Environmental Protection Agency (U.S. EPA) conducted the Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly during the summer of 1998. The study design included PM2.5 samples obtained from elderly (65+ years of age) retirement facility ...

  13. PARTICULATE MATTER EXPOSURE IN CARS IS ASSOCIATED WITH CARDIOVASCULAR EFFECTS IN HEALTHY YOUNG MEN

    Science.gov (United States)

    Exposure to fine airborne particulate matter (PM(2.5)) is associated with cardiovascular events and mortality in older and cardiac patients. Potential physiologic effects of in-vehicle, roadside, and ambient PM(2.5) were investigated in young, healthy, nonsmoking, male North Caro...

  14. RELATIONSHIP BETWEEN HVAC SYSTEM OPERATION, AIR EXCHANGE RATE, AND INDOOR-OUTDOOR PARTICULATE MATTER RATIOS

    Science.gov (United States)

    Measurements of duty cycle , the fraction of time the heating and cooling (HVAC) system was operating, were made in each participant's home during the spring season of the RTP Particulate Matter Panel Study. A miniature temperature sensor/data logger combination placed on the ...

  15. The effect of diesel properties on the emissions of particulate matter

    International Nuclear Information System (INIS)

    Bello, A; Torres, J; Herrera, J; Sarmiento, J

    2000-01-01

    An evaluation was carried out on the effect that modifying some properties of Colombian diesel fuel, such as final boiling point (FBP), density and sulfur content, has on the emissions of particulate matter (PM). Four diesel engines with different technologies and work capacity were used for the evaluation. Different alternatives to modify the properties of commercial diesel fuel, from the fuel treatment viewpoint, as well as that of the incorporation or segregation of some of the streams from the pool at the Barrancabermeja refinery were studied. The particulate matter was measured using a partial flow (AVL-SPC472) Constant volume sampler (CVS) with following the 13-step steady state European cycle and the ECE-R49 European guideline. The tests were performed at the Instituto Colombiano del Petroleo. (ICP) test cell in the city of Bucaramanga, Colombia. General tendencies show reductions of up to 25% in PM emissions when final boiling point and sulfur content are reduced. But levels of reduction vary from one engine to another depending on technology and working time. As a baseline, the emission levels of the commercial diesel fuel for each engine are used, and as a reference the results obtained are compared with the EURO I and II European standards defined for the emission levels of heavy duty engines

  16. Contribution of fungal spores to particulate matter in a tropical rainforest

    International Nuclear Information System (INIS)

    Zhang Ting; Chan Chuenyu; Zhang Yinan; Zhang Zhisheng; Lin Mang; Sang Xuefang; Engling, Guenter; Li, Y D; Li, Yok-Sheung

    2010-01-01

    The polyols arabitol and mannitol, recently proposed as source tracers for fungal spores, were used in this study to estimate fungal contributions to atmospheric aerosol. Airborne particulate matter (PM 2.5 and PM 10 ) was collected at Jianfengling Mountain, a tropical rainforest on Hainan Island situated off the south China coast, during spring and analyzed for arabitol and mannitol by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The average concentrations of arabitol and mannitol exhibited high values with averages of 7.0 and 16.0 ng m -3 respectively in PM 2.5 and 44.0 and 71.0 ng m -3 in PM 10 . The two tracers correlated well with each other, especially in the coarse mode aerosol (PM 2.5-10 ), indicating they were mainly associated with coarse aerosol particles and had common sources. Arabitol and mannitol in PM 10 showed significant positive correlations with relative humidity, as well as positive correlations with average temperature, suggesting a wet emissions mechanism of biogenic aerosol in the form of fungal spores. We made estimations of the contribution of fungal spores to ambient PM mass and to organic carbon, based on the observed ambient concentrations of these two tracers. The relative contributions of fungal spores to the PM 10 mass were estimated to range from 1.6 to 18.2%, with a rather high mean value of 7.9%, and the contribution of fungal spores to organic carbon in PM 10 ranged from 4.64 to 26.1%, with a mean value of 12.1%, implying that biological processes are important sources of atmospheric aerosol.

  17. Air immunogenicity in quito: activation of immune responses by particulate matter

    OpenAIRE

    Cevallos Bonilla, Victoria Maritza

    2016-01-01

    Urban development experienced around the world in recent years has resulted in the degradation of air quality caused by air pollutants, which are emitted mainly as a product of burning fossil fuels for transportation, in the generation of electricity, and in industrial processes. Exposure to air particulate matter (PM) affects human health, and has been linked to respiratory, cardiovascular and neurological diseases. The mechanisms underlying inflammation in these diverse diseases and to what...

  18. Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles

    Science.gov (United States)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-08-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  19. Zebrafish Locomotor Responses Predict Irritant Potential of Smoke Particulate Matter from Five Biomass Fuels

    Science.gov (United States)

    Over the past few decades, the drying and warming trends of global climate change have increased wildland fire (WF) season length, as well as geographic area impacted. Consequently, exposures to WF fine particulate matter (PM2.5; aerodynamic diameter <2.5 µm) are likely ...

  20. Changes to the structure of blood clots formed in the presence of fine particulate matter

    International Nuclear Information System (INIS)

    Metassan, Sofian; Routledge, Michael N; Ariens, Robert A S; Scott, D Julian

    2009-01-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  1. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters

    International Nuclear Information System (INIS)

    Guo Xueyan; Luo Lei; Ma Yibing; Zhang Shuzhen

    2010-01-01

    Particulate organic matter (POM) is a key organic matter fraction which can influence soil fertility. Its interactions with hydrophobic organic pollutants (HOCs) have not been characterized and the mechanisms of retention of HOCs by POM remain unclear. In the present study, sorption behaviors of polycyclic aromatic hydrocarbons (PAHs) naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by POMs separated from different soils were examined and the POMs were characterized by elemental analysis, solid state 13 C NMR, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that POMs were mainly composed of aliphatic components with high polarity. The different original POMs showed similar chemical composition and configuration. Sorption behaviors of PAHs indicated that there was no significant difference in sorption capacity among the POMs. Sorption of NAP and PHE by POMs displayed a nonlinear isotherm, while sorption of PYR yielded a linear isotherm. No significant hysteresis and ionic strength effect were observed for PAH desorption from the POMs.

  2. Limitations in Using Chemical Oxidative Potential to Understand Oxidative Stress from Particulate Matter

    Science.gov (United States)

    Chan, A. W. H.; Wang, S.; Wang, X.; Kohl, L.; Chow, C. W.

    2017-12-01

    Particulate matter (PM) in the atmosphere is known to cause adverse cardiorespiratory health effects. It has been suggested that the ability of PM to generate oxidative stress leads to a proinflammatory response. In this work, we study the biological relevance of using a chemical oxidative potential (OP) assay to evaluate proinflammatory response in airway epithelial cells. Here we study the OPs of laboratory secondary organic aerosol (SOA) and metal mixtures, ambient PM from India, ash from the 2016 Alberta wildfires, and diesel exhaust particles. We use SOA derived from naphthalene and from monoterpenes as model systems for SOA. We measure OP using the dithiothreitol (DTT) assay, and cytosolic reactive oxygen species (ROS) production in BEAS-2B cell culture was measured using CellROX assay. We found that both SOA and copper show high OPs individually, but the OP of the combined SOA/copper mixture, which is more atmospherically relevant, was lower than either of the individual OPs. The reduced activity is attributed to chelation between metals and organic compounds using proton nuclear magnetic resonance. There is reasonable association between DTT activity and cellular ROS production within each particle type, but weak association across different particle types, suggesting that particle composition plays an important role in distinguishing between antioxidant consumption and ROS production. Our results highlight that while oxidative potential is a useful metric of PM's ability to generate oxidative stress, the chemical composition and cellular environment should be considered in understanding health impacts of PM.

  3. Characterisation of air particulate matter in Klang Valley by neutron activation analysis technique

    International Nuclear Information System (INIS)

    Mohd Suhaimi Hamzah; Shamsiah Abd Rahman; Mohd Khalid Matori; Abd Khalik Wood

    2000-01-01

    Air particulate matter is known to affect human health, impairs visibility and can cause climate change. Study on air particulate matter in term of particle size and chemical contents is very important to indicate the quality of air in a sampling area. Information on concentration of important constituents in air particles can be used to identify some of emission sources which contribute to the pollution problem. The data collected may also be, used as a basis to design a strategy in order to overcome the air pollution problem in the area. The study involved sampling of air dust at two stations, one in Bangi and the other in Kuala Lumpur using Gent Stack Sampler units. Each sampler capable of collecting air particle sizes smaller than 2.5 micron (PM 2.5) and between 2.5 - O micron on two different filters simultaneously. The filters were measured for their mass, elemental carbon and elemental concentrations using analytical equipment or techniques including reflectometer and Neutron Activation Analysis. The results of analysis on samples collected in 1997-1998 are discussed. (author)

  4. 77 FR 31262 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Science.gov (United States)

    2012-05-25

    ... otherwise protected. The www.regulations.gov Web site is an ``anonymous access'' system, which means EPA... Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory, portion of the State...

  5. Remote sensing of atmospheric particulates: Technological innovation and physical limitations in applications to short-range weather prediction

    Science.gov (United States)

    Curran, R. J.; Kropfil, R.; Hallett, J.

    1984-01-01

    Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.

  6. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Cheng, Zhen; Wang, Shuxiao; Jiang, Jingkun; Fu, Qingyan; Chen, Changhong; Xu, Bingye; Yu, Jianqiao; Fu, Xiao; Hao, Jiming

    2013-01-01

    Haze pollution caused by heavy particulate matter (PM) loading brings significant damage in eastern China. Long-term monitoring from 1980 to 2011 and 1-year field measurement in 2011–2012 are used for investigating visibility variation and the impact of PM pollution for the Yangtze River Delta (YRD). It was found that visual range in the YRD endured a sharp reduction from 13.2 km to 10.5 km during 1980–2000. Average mass extinction efficiency (MEE) for inhalable PM (PM 10 ) is 2.25 m 2 /g in 2001–2011, and extinction coefficient due to PM 10 is 207 Mm −1 , accounting for 36.2% of total extinction coefficient. MEE of PM 2.5 and PM 2.5–10 are 4.08 m 2 /g and 0.58 m 2 /g, respectively. Extinction coefficient due to PM 2.5 and PM 2.5–10 is 198 Mm −1 (39.6%) and 20 Mm −1 (4.0%) in 2011–2012. Maximum daily concentration of PM 10 and PM 2.5 is estimated to be 63 μg/m 3 (RH: 73%) and 38 μg/m 3 (RH: 70%) to keep visual range above 10 km. Fine particulate matter is the key factor for haze pollution improvement in the YRD area. -- Highlights: •Long-term visual range variation and its causes in the Yangtze River Delta are analyzed. •Quantitative contribution of particulate matter to haze pollution is estimated. •Mass extinction efficiency of PM 10 , PM 2.5 , and PM 2.5–10 is estimated. -- The long-term variation of haze pollution in the YRD and its cause is investigated and the quantitative contribution of particulate matter to haze pollution is estimated

  7. Identification and chemical characterization of industrial particulate matter sources in southwest Spain.

    Science.gov (United States)

    Alastuey, Andrés; Querol, Xavier; Plana, Feliciano; Viana, Mar; Ruiz, Carmen R; Sánchez de la Campa, Ana; de la Rosa, Jesús; Mantilla, Enrique; García dos Santos, Saul

    2006-07-01

    A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.

  8. Dynamics of coarse particulate matter in the turbidity maximum zone of the Gironde Estuary

    Science.gov (United States)

    Fuentes-Cid, Ana; Etcheber, Henri; Schmidt, Sabine; Abril, Gwenaël; De-Oliveira, Eric; Lepage, Mario; Sottolichio, Aldo

    2014-01-01

    There is a lack of studies devoted to coarse particulate matter (CPM) in estuaries, although this fraction can disturb activities that filter large volumes of water, such as industrial or fishery activities. In the macrotidal and highly-turbid Gironde Estuary, a monthly sampling of CPM was performed in 2011 and 2013 at two stations in the Turbidity Maximum Zone (TMZ) to understand its seasonal, tidal and hydrological dynamics. Regardless of the season and station, low quantities of CPM (few g m-3) were observed in comparison with suspended particulate matter (several 103 g m-3). The highest concentrations were consistently recorded in bottom waters and at the upstream station. Whereas there is no clear link between the CPM present in the column water and spring or neap tides, an increase in the CPM size has been identified at the two stations after a flood event, fact potentially critical regarding filtering functioning of estuarine activities.

  9. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    Science.gov (United States)

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  10. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  11. Atmospheric stability analysis and its relationship with the atmospheric pollution in Salamanca

    International Nuclear Information System (INIS)

    Fidalgo, M.R.; Garmendia, J.

    1989-01-01

    In this paper we have studied the relationship between the sulphur dioxide and suspended particulate matter concentrations and the atmospheric stability in Salamanca over 4 year (1978-1982). Of the various indices cited in the bibliography for estimating stratification stability, two were used. First, the Pasquill categories and later a method based on Montgomery's potential, which was the one that gave the best results. (Author)

  12. A study to reduce DPM(Diesel Particulate Matter) emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research commenced in 1994 for the purpose of providing safety and environmental measures of underground mines where the mobile diesel equipment are operating. In this last research year, research on filtering of DPM(diesel particulate matter) has been carried out. Through the research, it was known that water scrubber is only one practical way to reduce DPM emission as of now. There are several kinds of the sophisticated DPM filters, but it is not practical yet to be used in underground equipment due to the many adverse effects of the devices such as tremendous increase of SOx, NOx and back pressure etc. (author). 1 tab., 3 figs.

  13. Ambient Air Pollution and Increases in Blood Pressure: Role for biological constituents of particulate matter

    Science.gov (United States)

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies con...

  14. Chemical characterization of organic particulate matter from on-road traffic in Sao Paulo, Brazil

    NARCIS (Netherlands)

    Oyama, Beatriz Sayuri; Andrade, Maria de Fatima; Herckes, Pierre; Dusek, Ulrike; Rockmann, Thomas; Holzinger, Rupert

    2016-01-01

    This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of Sao Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25% ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5%

  15. From concentration to dose: factors influencing airborne particulate matter deposition in humans and rats

    NARCIS (Netherlands)

    Winter-sorkina R de; Cassee FR; LBV; LBO

    2003-01-01

    Particulate matter (PM) consisting of solid particles and droplets is present in the ambient air. Particles with an aerodynamic diameter less than 10 micro m can be inhaled by humans. Knowledge of the tissue-specific internal dose of PM is a critical link between individual external exposure and

  16. Characterization of Fine Particulate Matter in Sharjah, United Arab Emirates Using Complementary Experimental Techniques

    Directory of Open Access Journals (Sweden)

    Nasser M. Hamdan

    2018-04-01

    Full Text Available Airborne particulate matter (PM pollutants were sampled from an urban background site in Sharjah, United Arab Emirates. The fine fraction (PM2.5 (particulates with aerodynamic diameters of less than 2.5 μm was collected on 47-mm Teflon filters and analyzed using a combined set of non-destructive techniques in order to provide better understanding of the sources of pollutants and their interaction during transport in the atmosphere. These techniques included gravimetric analysis, equivalent black carbon (EBC, X-ray fluorescence, scanning electron microscopy, and X-ray diffraction. Generally, the PM2.5 concentrations are within the limits set by the World Health Organization (WHO and the United States (US Environmental Protection Agency. The EBC content is in the range of 10–12% of the total PM concentration (2–4 µg m−3, while S (as ammonium sulfate, Ca (as calcite, gypsum, and calcium carbonate, Si (as quartz, Fe, and Al were the major sources of PM pollution. EBC, ammonium sulfate, Zn, V, and Mn originate from anthropogenic sources such as fossil fuel burning, traffic, and industrial emissions. Natural elements such as Ca, Fe, Al, Si, and Ti are due to natural sources such as crustal materials (enhanced during dust episodes and sea salts. The average contribution of natural sources in the total PM2.5 mass concentration over the sampling period is about 40%, and the contribution of the secondary inorganic compounds is about 27% (mainly ammonium sulfate in our case. The remaining 22% is assumed to be secondary organic compounds.

  17. [Reduction of exposure to particulate matter in classrooms by improved cleaning: extent of exposure and results of a pilot study in Bavaria].

    Science.gov (United States)

    Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C

    2009-02-01

    The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at

  18. [Burden of disease attributable to ambient particulate matter pollution in 1990 and 2010 in China].

    Science.gov (United States)

    Liu, Shiwei; Zhou, Maigeng; Wang, Lijun; Li, Yichong; Liu, Yunning; Liu, Jiangmei; You, Jinling; Yin, Peng

    2015-04-01

    To assess the burden of disease attributable to ambient particulate matter pollution in 1990 and 2010 in China. On the basis of the results of the Global Burden of Diseases Study 2010 (GBD 2010) for China's estimates, we used population attributable fractions (PAF) to examine the burden of disease (mortality and disability-adjusted life years (DALY)) attributable to ambient particulate matter pollution in 1990 and 2010 in China, with 95% uncertainty interval (95% UI) estimate, and increasing rate to explore the trends of attributed burden of disease across the study period of 20 years. In 2010, 38.9% (95% UI: 27.0%-49.4%) of lower respiratory infections for disease, 35.0% (95% UI: 27.4%-41.1%) of stroke, and 21.0% (95% UI: 10.7%-30.3%) of chronic obstructive pulmonary disease (COPD) for ≥ 25 years adults were attributable to ambient particulate matter pollution, which accounted for 1.235 (95% UI: 1.038-1.410) million deaths and 25.230 (95% UI: 21.770-28.600) million person years DALY in total, and increased by 33.4% and 4.0%, respectively by comparison with that in 1990 (0.926 million and 24.260 million person years). Lung cancer accounted for the largest increasing rate of 154.5% (from 0.055 million to 0.140 million) and 130.1% (from 1.330 million person years to 3.060 million person years), followed by ischemic heart disease (118.5%, from 0.130 million to 0.284 million, and 86.6%, from 3.280 million person years to 6.120 million person years) and stroke (41.0%, from 0.429 million to 0.605 million, and 33.8%, from 8.970 million person years to 12.000 million person years). The attributed mortality for both gender mostly occurred in age group of 60-79 years (male: 0.260 million and 0.404 million accounting for 53.7% and 54.8%; female: 0.214 million and 0.236 million accounting for 48.5% and 47.5%) both in 1990 and 2010. The age group of 40-79 years accounted for the most portion of attributed DALY for both gender (male: 8.458 million person years and 13

  19. [Distribution and origin of polycyclic aromatic hydrocarbons in suspended particulate matters from the Yangtze estuarine and nearby coastal areas].

    Science.gov (United States)

    Ou, Dong-ni; Liu, Min; Xu, Shi-yuan; Cheng, Shu-bo; Hou, Li-jun; Gao, Lei

    2008-09-01

    Parent PAHs have been quantified in suspended particulate matters from the Yangtze Estuarine and Coastal Areas. The results show that the concentrations of total PAHs ranged from 2278.79-14293.98 ng/g, and were characterized by greatest content near sewage discharge point with trend to decrease by increasing distance. As for PAHs composition, 4-6 rings PAHs were dominant while 2-3 rings PAHs were relative low. Cluster analysis found that except urban sewage discharge, the hydrodynamic force was influencing PAHs distribution patterns. Moreover, the content of suspended particulate matters, organic carbon and soot carbon of suspended particulate matters also play the important roles in PAHs distribution from the Yangtze estuarine and nearby coastal areas. Principal component analysis and PAH ratios demonstrated that uncompleted combustion of fossil fuels was the main source of PAHs in coastal areas, as well as a few anthropogenic releases of oil and oil products. Ecological risk assessment indicated that most of PAH compounds exceeded the effects range ER-L values and ISQV-L values, which might certain potential damage to the Yangtze Estuary ecosystem.

  20. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors.

    Science.gov (United States)

    Zhai, Yunbo; Li, Xue; Wang, Tengfei; Wang, Bei; Li, Caiting; Zeng, Guangming

    2018-04-01

    Airborne microorganisms (AM), vital components of particulate matters (PM), are widespread in the atmosphere. Since some AM have pathogenicity, they can lead to a wide range of diseases in human and other organisms, meanwhile, some AM act as cloud condensation nuclei and ice nuclei which let them can affect the climate. The inherent characteristics of AM play critical roles in many aspects which, in turn, can decide microbial traits. The uncertain factors bring various influences on AM, which make it difficult to elaborate effect trends as whole. Because of the potential roles of AM in environment and potent effects of factors on AM, detailed knowledge of them is of primary significance. This review highlights the issues of composition and characteristics of AM with size-distribution, species diversity, variation and so on, and summarizes the main factors which affect airborne microbial features. This general information is a knowledge base for further thorough researches of AM and relevant aspects. Besides, current knowledge gaps and new perspectives are offered to roundly understand the impacts and application of AM in nature and human health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. [Pollution of Halogenated Polycyclic Aromatic Hydrocarbons in Atmospheric Particulate Matters of Shenzhen].

    Science.gov (United States)

    Sun, Jian-lin; Chang, Wen-jing; Chen, Zheng-xia; Zeng, Hui

    2015-05-01

    Concentrations of halogenated polycyclic aromatic hydrocarbons ( HPAHs) in atmospheric PM10 and PM2.5 samples collected from Shenzhen were determined using GC-MS. Total concentrations of nine HPAHs in atmospheric PM10 and PM2.5 samples ranged from 118 to 1,476 pg · m(-3) and 89 to 407 pg · m(-3), respectively. In PM10 and PM(2.5) samples, the concentration of 9-BrAnt was the highest, followed by 7-BrBaA and 9, 10-Br2Ant. Seasonal levels of total HPAHs in atmospheric PM10 and PM2.5 samples in Shenzhen decreased in the following order: winter > autumn > spring > summer, whereas concentrations of individual HPAHs showed different seasonal levels. Meteorological conditions, including temperature, precipitation, and relative humidity, might be important factors affecting the seasonal levels of HPAHs in atmospheric PM10 and PM2.5 In addition, there were significant correlations between concentrations of HPAHs and parent PAHs. Finally, the toxic equivalency quotients (TEQs) of HPAHs were estimated. The TEQs of HPAHs in atmospheric PM10 and PM2.5 samples ranged from 17.6 to 86.2 pg · m(-3) and 14.6 to 70.4 pg · m(-3), respectively. Among individual HPAHs, 7-BrBaA contributed greatly to the total TEQs of HPAHs. Our results indicated that the total TEQs of HPAHs were lower than parent PAHs in atmospheric PM10 and PM2.5 samples in Shenzhen.

  2. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  3. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0

  4. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  5. Chemical Composition of Fine Particulate Matter and Life Expectancy

    Science.gov (United States)

    Dominici, Francesca; Wang, Yun; Correia, Andrew W.; Ezzati, Majid; Pope, C. Arden; Dockery, Douglas W.

    2016-01-01

    Background In a previous study, we provided evidence that a decline in fine particulate matter (PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life expectancy in 545 counties in the United States. In this article, we investigated which chemical constituents of PM2.5 were the main drivers of the observed association. Methods We estimated associations between temporal changes in seven major components of PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We included US counties that had adequate chemical components of PM2.5 mass data across all seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban counties. Results In multiple pollutant models, we found that: (1) a reduction in sulfate was associated with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were associated with increases in life expectancy in nonurban counties only. Conclusions Our findings suggest that recent reductions in long-term exposure to sulfate, ammonium, and sodium ion between 2002 and 2007 are associated with improved public health. PMID:25906366

  6. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater tratment - A review

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Kommedal, Roald; Harremoës, Poul

    2002-01-01

    Carbon cycling and the availability of organic carbon for nutrient removal processes are in most wastewater treatment systems restricted by the rate of hydrolysis of slowly biodegradable (particulate) organic matter. To date, the mechanisms of hydrolysis are not well understood for complex...

  7. Study of indoor and ambient air fungual bioaerosols and its relation with particulate matters in a hospital of khorramabad

    Directory of Open Access Journals (Sweden)

    Hasan Basiri

    2016-02-01

    Full Text Available Background: The climate change and particulate matter emission contented of bioaerosols is known as an important reason of increasing the allergic interactions especially in patients with defect in immunity system. The aim of this study was to investigate fungal bioaerosol concentrations in relation to particulate matter (PM10, PM2.5 and PM1 in indoor parts and ambient air of the generd educational hospital of Khorramabad city. Materials and Methods: In this descriptive-analytical study, 192 samples (168 for indoor and 24 for outdoor were gathered during 6 months at the seven indoor wards and one outdoor unit using Quick Take-30 method  at an airflow rate of 28.3 L/min and sampling time of 2.5 min on to Sabouraud dextrose agar medium containing chloramphenicol. The sampling of particulate matter was carried out by Monitor Dust-Trak 8520. Also, the relative humidity and temperature were surveyed by TES-1360 digital. Results: The results showed that infectious ward with 101.7 CFU/m3 was as the most contaminated part and operating room with 46.4 CFU/m3 was the cleanest part. Cladosporium with 36.75% and Rodotorolla with 1.3% had higher and lower of fungi rates, respectively. The rate of  I/O<1  illustrate that this contamination had an outdoor source. Conclusion: The surveys demonstrated that the increase of temperature and relative humidity have an effective influence on the pollutant accumulation. In addition, between fungi bioaerosols frequency and particulate matter ther was a significant correlation.

  8. Characteristics of organic compounds in aerosol particulate matter from Dhahran city, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed I. Rushdi

    2017-05-01

    Full Text Available Organic chemical pollutants in atmospheric particulate matter (PM have a potential toxicity hazard resulting in human responses that vary from no discernible effect to premature death. The formation and sources of PM also affect air quality of metropolitan areas as well as climate change. The new developments and industrial activities in the Middle East, especially Saudi Arabia, are expected to contribute to the natural, regional, and anthropogenic input sources of organic matter (OM. Here we report the occurrence, concentrations and sources of organic tracers, including n-alkanes, polycyclic aromatic hydrocarbons (PAHs, plasticizers, and petroleum biomarkers, in ambient atmospheric PM from the city of Dhahran, Saudi Arabia. The major compounds were unresolved complex mixtures (UCM of branched and cyclic hydrocarbons (489 ± 296 ng m−3, plasticizers (131 ± 119 ng m−3 for phenyl phosphates, 87 ± 42 ng m−3 for phthalates, n-alkanes (73 ± 53 ng m−3, hopane biomarkers (11 ± 8 ng m−3, n-alkanones (6.7 ± 6.3 ng m−3, PAHs (2.0 ± 2.1 ng m−3, n-alkanols (1.2 ± 1.2 ng m−3, sterane biomarkers (0.4 ± 0.3 ng m−3, and sterols (0.5 ± 0.4 ng m−3. Obviously, UCM and plasticizers were the major components (56 ± 9% and 26 ± 10% of the total extracts, respectively in the PM of Dhahran, which might have adverse public health effects. The major sources of this OM are emissions from industrial factories north of the city, plastics and biomass burning, and petroleum product combustion (traffic/refining.

  9. Polarization-based enhancement of ocean color signal for estimating suspended particulate matter: radiative transfer simulations and laboratory measurements.

    Science.gov (United States)

    Liu, Jia; He, Xianqiang; Liu, Jiahang; Bai, Yan; Wang, Difeng; Chen, Tieqiao; Wang, Yihao; Zhu, Feng

    2017-04-17

    Absorption and scattering by molecules, aerosols and hydrosols, and the reflection and transmission over the sea surface can modify the original polarization state of sunlight. However, water-leaving radiance polarization, containing embedded water constituent information, has largely been neglected. Here, the efficiency of the parallel polarization radiance (PPR) for enhancing ocean color signal of suspended particulate matter is examined via vector radiative transfer simulations and laboratory experiments. The simulation results demonstrate that the PPR has a slightly higher ocean color signal at the top-of-atmosphere as compared with that of the total radiance. Moreover, both the simulations and laboratory measurements reveal that, compared with total radiance, PPR can effectively enhance the normalized ocean color signal for a large range of observation geometries, wavelengths, and suspended particle concentrations. Thus, PPR has great potential for improving the ocean color signal detection from satellite.

  10. Honey Bees (Apis mellifera, L.) as Active Samplers of Airborne Particulate Matter.

    Science.gov (United States)

    Negri, Ilaria; Mavris, Christian; Di Prisco, Gennaro; Caprio, Emilio; Pellecchia, Marco

    2015-01-01

    Honey bees (Apis mellifera L.) are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy) that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX). The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs). The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  11. A critical review of nuclear activation techniques for the determination of trace elements in atmospheric aerosols, particulates and sludge samples

    International Nuclear Information System (INIS)

    Dams, R.

    1992-01-01

    Activation analysis is one of the major techniques for the determination of many minor and trace elements in a large variety of solid environmental and pollution samples, such as atmospheric aerosols, particulate emissions, fly ash, coal, incineration ash and sewage sludge, etc. Neutron activation analysis of total, inhalable or respirable airborne particulate matter collected on a filter or in a cascade impactor on some substrate, is very popular. By Instrumental Neutron Activation Analysis (INAA) up to 45 elements can be determined. The irradiation and counting procedures can be adapted to optimize the sensitivity for particular elements. The precision is largely governed by counting statistics and a high accuracy can be obtained after calibration with multi-elemental standards. Radiochemical Neutron Activation Analysis (RNAA) is applied only when extremely low limits of determination are required. Instrumental Photon Activation Analysis (IPAA) is complementary to INAA, since some elements of environmental interest can be determined which do not produce appropriate radionuclides by neutron irradiation. Charged Particle Activation Analysis (CPAA) is used in particular circumstances such as for certification purposes or coupled to radiochemical separations for extremely low concentrations. (author)

  12. Role of heavy metals in structuring the microbial community associated with particulate matter in a tropical estuary

    International Nuclear Information System (INIS)

    Sheeba, V.A.; Abdulaziz, Anas; Gireeshkumar, T.R.; Ram, Anirudh; Rakesh, P.S.; Jasmin, C.; Parameswaran, P.S.

    2017-01-01

    Particulate matter (PM), which are chemically and biochemically complicated particles, accommodate a plethora of microorganisms. In the present study, we report the influence of heavy metal pollution on the abundance and community structure of archaea and bacteria associated with PM samples collected from polluted and non-polluted regions of Cochin Estuary (CE), Southwest coast of India. We observed an accumulation of heavy metals in PM collected from CE, and their concentrations were in the order Fe > Zn > Mn > Cr > Pb > Cu > Cd > Co > Ni. Zinc was a major pollutant in the water (4.36–130.50 μgL −1 ) and in the particulate matter (765.5–8451.28 μgg −1 ). Heavy metals, Cd, Co, and Pb were recorded in the particulate matter, although they were below detectable limits in the water column. Statistical analysis showed a positive influence of particulate organic carbon, nitrogen, PM-Pb, PM-Zn and PM-Fe on the abundance of PM-archaea and PM-bacteria. The abundance of archaea and bacteria were ten times less in PM compared with planktonic ones. The abundance of PM-archaea ranged between 4.27 and 9.50 × 10 7 and 2.73 to 3.85 × 10 7 cellsL −1 respectively for the wet and dry season, while that of PM-bacteria was between 1.14 and 6.72 × 10 8 cellsL −1 for both seasons. Community structure of PM-bacteria varied between polluted and non-polluted stations, while their abundance does not show a drastic difference. This could be attributed to the selective enrichment of bacteria by heavy metals in PM. Such enrichment may only promote the growth of metal resistant archaea and bacteria, which may not participate in the processing of PM. In such cases, the PM may remain without remineralization in the system arresting the food web dynamics and biogeochemical cycles. - Highlights: • Heavy metal pollution proliferated substantially in Cochin estuary. • Heavy metal pollutants are accumulated in the particulate matter. • Pollution affected

  13. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  14. INAA at the top of the world: Elemental characterization and analysis of airborne particulate matter collected in the Himalayas at 5,100 m high

    International Nuclear Information System (INIS)

    Giaveri, G.; Bergamaschi, L.; Rizzio, E.; Brandone, A.; Profumo, A.; Gallorini, M.; Zambelli, G.; Baudo, R.; Tartari, G.

    2005-01-01

    In 1990, following an agreement with the Royal Nepal Academy of Science, the Italian National Research Council (CNR) installed a scientific laboratory (Pyramid) at 5,050 m (s.l.) in the Himalayan region. Among the environmental related researches, the task project RATEAP (Remote Areas Trace Elements Atmospheric Pollution), started in 2001, aims at obtaining information about the chemical composition of the high altitude airborne particulate matter. During the period of March-April 2002 series of samplings have been carried out by pump aspiration. Samples of total suspended particles (TSP) as well as of the particles size fraction PM10 and PM 2.5 have been collected and submitted to INAA for the determination of more than 30 elements present, at nanogram levels, in few micrograms of air dust. Data quality assurance has been performed by the analysis of different NIST SRMs and, in particular, the SRM 2783 Air particulate on Filter Media. (author)

  15. Lantana camara invasion in urban forests of an Indo–Burma hotspot region and its ecosustainable management implication through biomonitoring of particulate matter

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-12-01

    Full Text Available The present study was performed in urban forests of Aizawl, Mizoram, north east India falling under an Indo–Burma hot spot region of existing ecological relevance and pristine environment. The phytosociolology of invasive weeds has been studied, showing that Lantana camara was the most dominant invasive weed. Further, the air quality studies revealed high suspended particulate matter as well as respirable suspended particulate matter in the ambient air of Aizawl. Biomonitoring through plant leaves has been recognized as a recent thrust area in the field of particulate matter science. We aimed to investigate whether L. camara leaves may act as a biomonitoring tool hence allowing its sustainable management. The quantity of respirable suspended particulate matter and suspended particulate matter at four different sites were much higher than the prescribed limits of Central Pollution Control Board of India during the summer and winter seasons. The dust deposition of L. camara leaves was 1.01 mg/cm2 and, pertaining to the biochemical parameters: pH was 7.49; relative water content 73.74%; total chlorophyll 1.91 mg/g; ascorbic acid 7.06 mg/g; sugar 0.16 mg/g; protein 0.67 mg/g; catalase 30.76 U/mg protein; peroxidase 0.16 U/mg protein; and air pollution tolerance index was 12.91. L. camara was observed in the good category in anticipated performance index, which shows the tolerant and conditioning capacity of air pollution. Therefore, the present study recommends the use of L. camara as biomonitor that may further have sustainable management implications for an invasive plant.

  16. The relationship between fine particulate matter (PM2.5) and schizophrenia severity.

    Science.gov (United States)

    Eguchi, Rika; Onozuka, Daisuke; Ikeda, Kouji; Kuroda, Kenji; Ieiri, Ichiro; Hagihara, Akihito

    2018-04-23

    Although particulate matter (PM) is reported to affect the rate of emergency admissions for schizophrenia, no study has examined the relationship between particulate matter less than 2.5 μm in diameter (PM 2.5 ) and the severity of schizophrenia. We obtained data on patients with schizophrenia at a psychiatric hospital, and on air pollution in Sakai, Japan between Feb 1, 2013 and April 30, 2016. Multivariate logistic regression analyses were used to estimate the relationship between PM 2.5 concentrations and scores on the Brief Psychiatric Rating Scale (BPRS) of schizophrenia patients at admission, with a lag of up to 7 days. During the study period, there were 1193 schizophrenia cases. The odds ratio (OR) for a BPRS score ≥ 50 at admission was 1.05 [95% confidence interval 1.00-1.10] and the effect of PM 2.5 concentration was significant for lag period of 2 days. The ORs associated with PM 2.5 concentration increased substantially for patients over 65 years of age. Ambient PM 2.5 concentration was associated with exacerbation of schizophrenia. Our results suggest that protection for several days should be considered for controlling PM 2.5 -related schizophrenia, especially among elderly patients.

  17. Chemical characterization of organic particulate matter from on-road traffic in Sao Paulo, Brazil

    NARCIS (Netherlands)

    Oyama, Beatriz Sayuri; Andrade, Maria de Fatima; Herckes, Pierre; Dusek, Ulrike; Rockmann, Thomas; Holzinger, Rupert

    2016-01-01

    This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of São Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25 % ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5 %

  18. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    International Nuclear Information System (INIS)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-01-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  19. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  20. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earths climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earths radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earths surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  1. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    Le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea andplay a major role in the processing of organic matter. We investigated the biogeochemical consequencesof these transports on particulate organic matter at the molecular level in the southern North

  2. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women.

    Science.gov (United States)

    Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A

    2017-08-01

    Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    Science.gov (United States)

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  4. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    International Nuclear Information System (INIS)

    Chan, K.L.; Jiang, S.Y.N.; Ning, Z.

    2016-01-01

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R 2  > 0.999) and low detection limit (0.06 μg L −1 ) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  5. Characterizing Aggregated Exposure to Primary Particulate Matter: Recommended Intake Fractions for Indoor and Outdoor Sources

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier; Apte, Joshua Schulz

    2017-01-01

    Exposure to fine particulate matter (PM_(2.5)) from indoor and outdoor sources is a leading environmental contributor to global disease burden. In response, we established under the auspices of the UNEP/SETAC Life Cycle Initiative a coupled indoor-outdoor emission-to-exposure framework to provide...

  6. A multi-approach monitoring of particulate matter, metals and PAHs in an urban street canyon.

    Science.gov (United States)

    De Nicola, Flavia; Murena, Fabio; Costagliola, M Antonietta; Alfani, Anna; Baldantoni, Daniela; Prati, M Vittoria; Sessa, Ludovica; Spagnuolo, Valeria; Giordano, Simonetta

    2013-07-01

    For the first time until now, the results from a prediction model (Atmospheric Dispersion Modelling System (ADMS)-Road) of pollutant dispersion in a street canyon were compared to the results obtained from biomonitors. In particular, the instrumental monitoring of particulate matter (PM10) and the biomonitoring of 14 polycyclic aromatic hydrocarbons (PAHs) and 11 metals by Quercus ilex leaves and Hypnum cupressiforme moss bags, acting as long- and short-term accumulators, respectively, were carried out. For both PAHs and metals, similar bioaccumulation trends were observed, with higher concentrations in biomonitors exposed at the leeward canyon side, affected by primary air vortex. The major pollutant accumulation at the leeward side was also predicted by the ADMS-Road model, on the basis of the prevailing wind direction that determines different exposure of the street canyon sides to pollutants emitted by vehicular traffic. A clear vertical (3, 6 and 9 m) distribution gradient of pollutants was not observed, so that both the model and biomonitoring results suggested that local air turbulences in the street canyon could contribute to uniform pollutant distribution at different heights.

  7. Biomass Burning: The Cycling of Gases and Particulates from the Biosphere to the Atmosphere

    Science.gov (United States)

    Levine, J. S.

    2003-12-01

    Biomass burning is both a process of geochemical cycling of gases and particulates from the biosphere to the atmosphere and a process of global change. In the preface to the book, One Earth, One Future: Our Changing Global Environment (National Academy of Sciences, 1990), Dr. Frank Press, the President of the National Academy of Sciences, writes: "Human activities are transforming the global environment, and these global changes have many faces: ozone depletion, tropical deforestation, acid deposition, and increased atmospheric concentrations of gases that trap heat and may warm the global climate."It is interesting to note that all four global change "faces" identified by Dr. Press have a common thread - they are all caused by biomass burning.Biomass burning or vegetation burning is the burning of living and dead vegetation and includes human-initiated burning and natural lightning-induced burning. The bulk of the world's biomass burning occurs in the tropics - in the tropical forests of South America and Southeast Asia and in the savannasof Africa and South America. The majority of the biomass burning, primarily in the tropics (perhaps as much as 90%), is believed to be human initiated for land clearing and land-use change. Natural fires triggered by atmospheric lightning only accounts for ˜10% of all fires (Andreae, 1991). As will be discussed, a significant amount of biomass burning occurs in the boreal forests of Russia, Canada, and Alaska.Biomass burning is a significant source of gases and particulates to the regional and global atmosphere (Crutzen et al., 1979; Seiler and Crutzen, 1980; Crutzen and Andreae, 1990; Levine et al., 1995). Its burning is truly a multidiscipline subject, encompassing the following areas: fire ecology, fire measurements, fire modeling, fire combustion, remote sensing, fire combustion gaseous and particulate emissions, the atmospheric transport of these emissions, and the chemical and climatic impacts of these emissions. Recently

  8. Short term variation in particulate matter in the shelf waters of the Princess Astrid Coast, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Bhosle, N.B.

    Particulate matter collected at a single station in the shelf waters of Princess Astrid coast (70 degrees S, 11 degrees E) Antarctica, during the austral summer (Jan.-Feb. 1986) was analysed for phytoplankton biomass (Chl @ia@@), living carbon (ATP...

  9. Characterization and speciation of fine particulate matter inside the public transport buses running on bio-diesel.

    Science.gov (United States)

    2009-09-01

    Air pollution with respect to particulate matter was investigated in Toledo, Ohio, USA, a : city of approximately 300,000, in 2009. Two study buses were selected to reflect typical : exposure conditions of passengers while traveling in the bus. Monit...

  10. Individual and population intake fractions of diesel particulate matter (DPM) in bus stop microenvironments.

    Science.gov (United States)

    Xu, Jia; Jin, Taosheng; Miao, Yaning; Han, Bin; Gao, Jiajia; Bai, Zhipeng; Xu, Xiaohong

    2015-12-01

    Diesel particulate matter (DPM) is associated with adverse human health effects. This study aims to investigate the relationship between DPM exposure and emissions by estimating the individual intake fraction (iFi) and population intake fraction (iFp) of DPM. Daily average concentrations of particulate matter at two bus stops during rush hours were measured, and then they were apportioned to DPM due to heavy-duty diesel bus emissions using Chemical Mass Balance Model. The DPM emissions of diesel buses for different driving conditions (idling, creeping and traveling) were estimated on the basis of field observations and published emission factors. The median iFi of DPM was 0.67 and 1.39 per million for commuters standing at the bus stop and pedestrians/cyclists passing through the bus stop during rush hours, respectively. The median iFp of DPM was 94 per million. Estimations of iFi and iFp of DPM are potentially significant for exposure assessment and risk management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China

    Science.gov (United States)

    Hagler, G. S. W.; Bergin, M. H.; Salmon, L. G.; Yu, J. Z.; Wan, E. C. H.; Zheng, M.; Zeng, L. M.; Kiang, C. S.; Zhang, Y. H.; Lau, A. K. H.; Schauer, J. J.

    Fine particulate matter (PM 2.5) was measured for 4 months during 2002-2003 at seven sites located in the rapidly developing Pearl River Delta region of China, an area encompassing the major cities of Hong Kong, Shenzhen and Guangzhou. The 4-month average fine particulate matter concentration ranged from 37 to 71 μg m -3 in Guangdong province and from 29 to 34 μg m -3 in Hong Kong. Main constituents of fine particulate mass were organic compounds (24-35% by mass) and sulfate (21-32%). With sampling sites strategically located to monitor the regional air shed patterns and urban areas, specific source-related fine particulate species (sulfate, organic mass, elemental carbon, potassium and lead) and daily surface winds were analyzed to estimate influential source locations. The impact of transport was investigated by categorizing 13 (of 20 total) sampling days by prevailing wind direction (southerly, northerly or low wind-speed mixed flow). The vicinity of Guangzhou is determined to be a major source area influencing regional concentrations of PM 2.5, with levels observed to increase by 18-34 μg m -3 (accounting for 46-56% of resulting particulate levels) at sites immediately downwind of Guangzhou. The area near Guangzhou is also observed to heavily impact downwind concentrations of lead. Potassium levels, related to biomass burning, appear to be controlled by sources in the northern part of the Pearl River Delta, near rural Conghua and urban Guangzhou. Guangzhou appears to contribute 5-6 μg m -3 of sulfate to downwind locations. Guangzhou also stands out as a significant regional source of organic mass (OM), adding 8.5-14.5 μg m -3 to downwind concentrations. Elemental carbon is observed to be strongly influenced by local sources, with highest levels found in urban regions. In addition, it appears that sources outside of the Pearl River Delta contribute a significant fraction of overall fine particulate matter in Hong Kong and Guangdong province. This is evident

  12. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea and play a major role in the processing of organic matter. We investigated the biogeochemical consequences of these transports on particulate organic matter at the molecular level in the southern

  13. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters

    Directory of Open Access Journals (Sweden)

    Stéfani Novoa

    2017-01-01

    Full Text Available The accurate measurement of suspended particulate matter (SPM concentrations in coastal waters is of crucial importance for ecosystem studies, sediment transport monitoring, and assessment of anthropogenic impacts in the coastal ocean. Ocean color remote sensing is an efficient tool to monitor SPM spatio-temporal variability in coastal waters. However, near-shore satellite images are complex to correct for atmospheric effects due to the proximity of land and to the high level of reflectance caused by high SPM concentrations in the visible and near-infrared spectral regions. The water reflectance signal (ρw tends to saturate at short visible wavelengths when the SPM concentration increases. Using a comprehensive dataset of high-resolution satellite imagery and in situ SPM and water reflectance data, this study presents (i an assessment of existing atmospheric correction (AC algorithms developed for turbid coastal waters; and (ii a switching method that automatically selects the most sensitive SPM vs. ρw relationship, to avoid saturation effects when computing the SPM concentration. The approach is applied to satellite data acquired by three medium-high spatial resolution sensors (Landsat-8/Operational Land Imager, National Polar-Orbiting Partnership/Visible Infrared Imaging Radiometer Suite and Aqua/Moderate Resolution Imaging Spectrometer to map the SPM concentration in some of the most turbid areas of the European coastal ocean, namely the Gironde and Loire estuaries as well as Bourgneuf Bay on the French Atlantic coast. For all three sensors, AC methods based on the use of short-wave infrared (SWIR spectral bands were tested, and the consistency of the retrieved water reflectance was examined along transects from low- to high-turbidity waters. For OLI data, we also compared a SWIR-based AC (ACOLITE with a method based on multi-temporal analyses of atmospheric constituents (MACCS. For the selected scenes, the ACOLITE-MACCS difference was

  14. Data on microscale atmospheric pollution of Bolshoy Kamen town (Primorsky region, Russia)

    Science.gov (United States)

    Kholodov, Aleksei; Ugay, Sergey; Drozd, Vladimir; Maiss, Natalia; Golokhvast, Kirill

    2017-10-01

    The paper discusses the study of atmospheric particulate matter of Bolshoy Kamen town by means of laser granulometry of snow water samples. Snow sampling points were selected close to major enterprises, along the main streets and roads of the town and in the residential area. The near-ground layer of atmospheric air of the town contains particulate matter of three main size classes: under 10 microns, 10-50 microns and over 700 microns. It is shown that the atmosphere of this town is lightly polluted with particles under 10 μm (PM10). Only in 5 sampling points out of 11 we found microparticles potentially hazardous to human health in significant quantities - from 16.2% to 34.6%. On the most territory of the town large particles (over 400 μm) dominate reaching 79.2%. We can conclude that judging by the particle size analysis of snow water samples Bolshoy Kamen town can be considered safe in terms of presence of particles under 10 μm (PM10) in the atmosphere.

  15. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon

    International Nuclear Information System (INIS)

    Colls, J.J.; Micallef, A.

    1999-01-01

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM 10 and PM 2.5 ) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data

  16. Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results

    Science.gov (United States)

    We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...

  17. Preliminary analysis of variability in concentration of fine particulate matter - PM1.0, PM2.5 and PM10 in area of Poznań city

    Directory of Open Access Journals (Sweden)

    Sówka Izabela

    2018-01-01

    Full Text Available It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10 in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 – 8.7-69.6 μg/m3, PM2.5 – 2.2-88.5 μg/m3, PM1.0 – 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10, 1.2-40.3 μg/m3 (PM2.5 and 2.7-10.4 (PM1.0 in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street, -0.53 and -0.53 (Szymanowskiego Street, for PM2.5: -0.60 and -0.53 (Jana Pawła II Street and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street.

  18. Particulate matter pollution over a Mediterranean urban area.

    Science.gov (United States)

    Pateraki, St; Assimakopoulos, V D; Maggos, Th; Fameli, K M; Kotroni, V; Vasilakos, Ch

    2013-10-01

    The main purpose of this study is to investigate the aerosols' (PM10, PM2.5, and PM1) spatial and temporal distribution in different types of environment in a Mediterranean urban region, the Greater Athens Area based on data from a sampling campaign that took place during the cold and warm period of 2008. The influence of the atmospheric circulation patterns, the possible local transport mechanisms, as well as the differentiation of the PM behaviour from that of the inorganic pollutants (NOx, O3), are analysed and discussed. Furthermore, the Comprehensive Air Quality Model with extensions (CAMx) was applied for selected sampling dates and its results were evaluated against measurements in order to interpret qualitatively the configured picture of the air pollution above the GAA. Analysis of the measurement data show that local sources such as traffic and industry dominate over the prevailing PM loads, especially at the 'hot spot' areas. Moreover, the synoptic circulation patterns associated with calm conditions and southerly flows lead to high particulate pollution levels that also affect the urban background stations. Saharan dust outbreaks appeared to increase the particles' diameter as well as the number of E.U. limit value exceedances within the stations of our network. Without any dependence on the characteristics of the investigated atmosphere, PM1 always constituted the greatest part of the PM2.5 mass while PM10, especially during the Saharan dust episodes, was mainly constituted by the coarse fraction. The numerical modelling approach of the geographical distribution of PM10, PM2.5, NOx and O3 justified the design of the sampling campaign, indicating the need for the systematic and parallel monitoring and modelling of the pollutants' dispersion in order to understand the particulate pollution problem in the GAA and to aid to the formulation of pollution control strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    Science.gov (United States)

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from

  20. Association of uranium with colloidal and suspended particulate matter in Arabian sea near the west coast of Maharashtra (India)

    International Nuclear Information System (INIS)

    Singhal, R.K.; Joshi, S.N.; Hegde, A.G.

    2004-01-01

    Association of natural uranium in seawater with colloidal and suspended-particulate matter was determined. The separation of suspended particulate material (>0.45 ) and colloidal fraction (as dissolved fractions) in seawater were done by suction and ultra filtration techniques. Seawater samples were collected at 1 km away from the shore and subjected to sequential fractionation in nine stages ranging from 2.7 μm to 1.1 nm. Suspended particulate matter were separated in three different size groups namely >2.7 μm, 0.45 μm and 0.22 μm by suction filtration using cellulose acetate and nitrate membranes filters. To concentrate the solution with colloidal particles <0.22 μm-1.1 nm (0.5 k Nominal Molecular Weight cut-off Limit (NMWL), the solution obtained from filtration through <0.22 μm was passed through stirred ultra-filtration cell. The pH and conductivity at different stages of fractionation (dissolved) showed minor variations. The concentration of uranium was measured in suspended and dissolved fractions by using a pulsed nitrogen laser at 337.1 nm. In order to evaluate the role of mineral colloids in various stages of filtration, concentration of calcium, magnesium, potassium were measured by using ion chromatography and atomic absorption spectrometry. The clay mineral at seawater pH (approximately 8) behave as negative ions and provides binding site for the positively charge species of uranium. Among the dissolved fraction, the maximum concentrations of colloidal uranium was observed about 4 times higher than that compared to average concentration of 6.93 ± 3.10 ppb in other fractions. In the case of suspended particulate matter, the concentration of uranium was below detection limits (<1 ppb). The maximum concentration of Ca, Mg and K in the dissolved fraction were in the <1.1 nm fraction, while for suspended particulate matter, the concentration of Ca, Mg and K decreased with the decrease in size and it is highest in the fraction of 0.22 -0.45 μm.(author)

  1. Trends and the effect of management on macronutrients in fractionated particulate matter in rooster house

    Science.gov (United States)

    The persistence and long life expectancy of ammonia, odors and toxic pollutants from poultry houses may be due to the ability of suspended particulate matters (SPM) to serve as carriers for odorous compounds such as ammonium ions and volatile organic compounds. SPM is generated from the feed, anima...

  2. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Renard, Jean-Baptiste; Gaubicher, Bertrand; Thaury, Claire; Mineau, Jean-Luc

    2010-01-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  3. Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona).

    Science.gov (United States)

    Mesquita, Sofia R; van Drooge, Barend L; Dall'Osto, Manuel; Grimalt, Joan O; Barata, Carlos; Vieira, Natividade; Guimarães, Laura; Piña, Benjamin

    2017-06-01

    Atmospheric particulate matter (PM) is a recognized risk factor contributing to a number of diseases in human populations and wildlife globally. Organic matter is a major component of PM, but its contribution to overall toxicity of PM has not been thoroughly evaluated yet. In the present work, the biological activity of organic extracts from PM1 (particles with less than 1 μm of aerodynamic diameter) collected from an urban road site in the centre of Barcelona (NE Spain) was evaluated using a yeast-based assay (AhR-RYA) and different gene expression markers in zebrafish embryos. Dioxin-like activity of the extracts correlated to primary emissions from local traffic exhausts, reflecting weekday/weekend alternance. Expression levels of cyp1a and of gene markers for key cellular processes and development (ier2, fos) also correlated to vehicle emissions, whereas expression of gene markers related to antioxidant defence and endocrine effects (gstal, hao1, ttr) was strongly reduced in samples with strong contribution from regional air masses with aged secondary organic species or with strong influence of biomass burning emissions. Our data suggest that the toxic potential of PM1 organic chemical constituents strongly depends on the emission sources and on the process of ageing from primary to secondary organic aerosols.

  4. Fine Particulate Matter Air Pollution and Cognitive Function Among Older US Adults

    OpenAIRE

    Ailshire, Jennifer A.; Crimmins, Eileen M.

    2014-01-01

    Existing research on the adverse health effects of exposure to pollution has devoted relatively little attention to the potential impact of ambient air pollution on cognitive function in older adults. We examined the cross-sectional association between residential concentrations of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) and cognitive function in older adults. Using hierarchical linear modeling, we analyzed data from the 2004 Health and Retirement Study, a large...

  5. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Science.gov (United States)

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  6. Measurement of emissions of fine particulate organic matter from Chinese cooking

    Science.gov (United States)

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan

    Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.

  7. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki

    2002-01-01

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  8. Gaseous and particulate air pollutants in the Northeastern Mediterranean Coast

    International Nuclear Information System (INIS)

    Soner Erduran, M.; Tuncel, Semra G.

    2001-01-01

    The concentrations of sulfur dioxide (SO 2 ), ammonia (NH 3 ) and particulate matter were measured for a 6-month period and the concentration of gas phase nitric acid (HNO 3 ) was measured for a 1-month period in the North-eastern Mediterranean atmosphere (Kuecuek Calticak, Antalya) using a 'filter pack' system that was developed and optimised in our laboratory. Among all the gas phase pollutants, HNO 3 had the lowest concentration (0.42 μg m -3 ) followed by ammonia. Most of the measured parameters showed variation in time depending on strengths of source regions and meteorological conditions. Nitric acid is found mostly in particulate form, but gas to particulate partitioning of SO 2 shows seasonal variation. Wind trajectory analyses indicate that the major contribution to the observed concentrations come mostly from Eastern Europe and Blacksea regions as well as the southern sector

  9. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    International Nuclear Information System (INIS)

    Sun, J.; Environment Canada, Ottawa, ON; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C.; Zheng, X.; Wong, S.; So, L.C.

    2009-01-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs

  10. Experimental study on kinetics oil oil-suspended particulate matter aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Khelifa, A.; Wang, Z.; Brown, C.; Fieldhouse, B.; Yang, C. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Section, Emergencies, Operational Analytical Laboratories and Research Support Division; Zheng, X. [Ocean Univ. of China, Qingdoa (China). Environmental Science and Engineering Inst.; Wong, S. [Ottawa Univ., ON (Canada). Dept. of Chemistry; So, L.C. [Waterloo Univ., ON (Canada). Faculty of Engineering

    2009-07-01

    Past studies of oil spills have shown that oil suspended particulate matter aggregates (OSAs) play a role in enhancing the natural cleansing of oiled shorelines. OSAs result from aggregation between suspended oil droplets and suspended particulate matter (SPM) in aquatic environments. During this process, oil dispersion into the water column is significantly increased since the surface of the oil droplet is surrounded by sediment particles. In addition, the accelerated biodegradation of the oil can be attributed to the greater oil-water contact area. This study focused on the kinetic aspects of OSA formation, with particular reference to the time scale of this process and its significance to oil dispersion following oil spills in water. A laboratory study was conducted to measure the time scale of OSA formation and its variations with mixing conditions. A reciprocating shaker and various oil/sediment mixtures were used to prepare the OSAs. Standard reference material 1941b was used as the natural sediment mixed with Arabian medium crude and artificial seawater under various mixing energies. The sediment-to-oil ratio remained constant for all experiments. Gas chromatography-flame ionization detection (GC-FID) analysis was used to measure the total petroleum hydrocarbons (TPH) trapped in negatively buoyant OSAs. Results showed that the TPH in OSAs increased exponentially with shaking time and reached an equilibrium value within 3 hours. The equilibrium decreased from 3 hours to 1.3 hours when the shaking rate increased from 2.0 to 2.3 Hz. It was concluded that high mixing energy enhances OSA formation and shortens the time for OSA formation. 42 refs., 6 tabs., 5 figs.

  11. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  12. Contrasts in oxidative potential and other particulate matter characteristics collected near major streets and background locations

    NARCIS (Netherlands)

    Boogaard, H.; Janssen, N.A.H.; Fischer, P.H.; Kos, G.P.A.; Weijers, E.P.; Cassee, F.R.; van der Zee, S.C.; Hartog, J. de; Brunekreef, B.; Hoek, G.

    2012-01-01

    BACKGROUND: Measuring the oxidative potential of airborne particulate matter (PM) may provide a more health-based exposure measure by integrating various biologically relevant properties of PM into a single predictor of biological activity. OBJECTIVES: We aimed to assess the contrast in oxidative

  13. Contrasts in oxidative potential and other particulate matter characteristics collected near major streets and background locations.

    NARCIS (Netherlands)

    Boogaard, H.; Janssen, N.A.; Fischer, P.H.; Kos, G.P.; Weijers, E.P.; Cassee, F.R.; Zee, S.C. van der; Hartog, J.J. de; Brunekreef, B.; Hoek, G.

    2012-01-01

    BACKGROUND: Measuring the oxidative potential of airborne particulate matter (PM) may provide a more health-based exposure measure by integrating various biologically relevant properties of PM into a single predictor of biological activity. OBJECTIVES: We aimed to assess the contrast in oxidative

  14. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Science.gov (United States)

    2010-07-01

    ....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide...

  15. Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices

    Science.gov (United States)

    Zhang, Ying; Li, Zhengqiang; Sun, Yele; Lv, Yang; Xie, Yisong

    2018-04-01

    Aerosols have adverse effects on human health and air quality, changing Earth's energy balance and lead to climate change. The components of aerosol are important because of the different spectral characteristics. Based on the low hygroscopic and high scattering properties of organic matter (OM) in fine modal atmospheric aerosols, we develop an inversion algorithm using remote sensing to obtain aerosol components including black carbon (BC), organic matter (OM), ammonium nitrate-like (AN), dust-like (DU) components and aerosol water content (AW). In the algorithm, the microphysical characteristics (i.e. volume distribution and complex refractive index) of particulates are preliminarily separated to fine and coarse modes, and then aerosol components are retrieved using bimodal parameters. We execute the algorithm using remote sensing measurements of sun-sky radiometer at AERONET site (Beijing RADI) in a period from October of 2014 to January of 2015. The results show a reasonable distribution of aerosol components and a good fit for spectral feature calculations. The mean OM mass concentration in atmospheric column is account for 14.93% of the total and 56.34% of dry and fine-mode aerosol, being a fairly good correlation (R = 0.56) with the in situ observations near the surface layer.

  16. INAA of airborne particulate matter collected in Bangkok 2002-2004

    International Nuclear Information System (INIS)

    Chueinta, W.; Bunprapob, S.; Tedthong, S.

    2006-01-01

    This paper presents the summary report of the monitoring study on ambient air quality in Bangkok metropolis and its boundary covering the period from 2002 to 2004. The work performed included sampling of fine and coarse fractions of particulate matter at the sites representing urban and suburban areas; measurement of particle mass concentration and elemental concentration; and data interpretation. Instrumental neutron activation by use of research reactor facilities at Office of Atoms for Peace was carried out for multielemental analysis of all filter samples collected. Twenty elements were determined. The database of the three consecutive years are summarized and reviewed in this paper. (author)

  17. Power plant emissions: particulate matter-related health damages and the benefits of alternative emission reduction scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, C.

    2004-06-15

    This report estimates the avoidable health effects of each of a series of alternative regulatory scenarios for power plants, focusing on the adverse human health effects due to exposure to fine particulate matter (PM2.5) This report uses the same analytical methods that the U.S. Environmental Protection Agency used in 2003 to prepare an analysis of the potential health effects of the proposed Clear Skies Act (EPA 2003). This report conducts an analysis of the impacts in 2010 and 2020 of three policy alternatives to the proposed Clear Skies Act, The Jeffords/Lieberman/Collins 'The Clean Power Act', S. 366, and the EPA August 2001 Straw Proposal (one of several alternatives EPA analyzed prior to the announcement of the Clear Skies Initiative in 2002). The report also examines the health impacts associated with the total emissions from coal fired electricity generating units in 2010. Chapter 2 describes the emissions inventory estimates, and the changes in the emissions associated with each scenario analyzed. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and Chapter 6 presents the results of these analyses. Chapter 7 presents estimates of the impact of these alternative policy options on the PM non-attainment status. 117 refs., 21 figs., 32 tabs., 3 apps.

  18. Optical properties of size fractions of suspended particulate matter in littoral waters of Québec

    Science.gov (United States)

    Mohammadpour, Gholamreza; Gagné, Jean-Pierre; Larouche, Pierre; Montes-Hugo, Martin A.

    2017-11-01

    Mass-specific absorption (ai∗(λ)) and scattering (bi∗(λ)) coefficients were derived for four size fractions (i = 0.2-0.4, 0.4-0.7, 0.7-10, and > 10 µm, λ = wavelength in nm) of suspended particulate matter (SPM) and with samples obtained from surface waters (i.e., 0-2 m depth) of the Saint Lawrence Estuary and Saguenay Fjord (SLE-SF) during June of 2013. For the visible-near-infrared spectral range (i.e., λ = 400-710 nm), mass-specific absorption coefficients of total SPM (i.e., particulates > 0.2 µm) (hereafter aSPM∗) had low values (e.g., 0.05 m2 g-1 at λ = 440 nm) corresponded with locations of the upper estuary and SF where particulates were mineral-rich and/or their mean diameter was relatively small. The variability of two optical proxies (the spectral slope of particulate beam attenuation coefficient and the mass-specific particulate absorption coefficient, hereafter γ and Svis, respectively) with respect to changes in particle size distribution (PSD) and chemical composition was also examined. The slope of the PSD was correlated with bi∗(550) (Spearman rank correlation coefficient ρs up to 0.37) and ai∗(440) estimates (ρs up to 0.32) in a comparable way. Conversely, the contribution of particulate inorganic matter to total mass of SPM (FSPMPIM) had a stronger correlation with ai∗ coefficients at a wavelength of 440 nm (ρs up to 0.50). The magnitude of γ was positively related to FSPMi or the contribution of size fraction i to the total mass of SPM (ρs up to 0.53 for i = 0.2-0.4 µm). Also, the relation between γ and FSPMPIM variability was secondary (ρs = -0.34, P > 0.05). Lastly, the magnitude of Svis was inversely correlated with aSPM∗(440) (ρs = -0.55, P = 0.04) and FSPMPIM (ρs = -0.62, P = 0.018) in sampling locations with a larger marine influence (i.e., lower estuary).

  19. Differential electrocardiogram efffects in normal and hypertensive rats after inhalation exposure to transition metal rich particulate matter

    Science.gov (United States)

    Inhalation of particulate matter (PM) associated with air pollution causes adverse effects on cardiac function including heightened associations with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. Some of these effects have been attributable to transitio...

  20. Investigation of the atmospheric particulates deposited on leaves using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Cercasov, V.

    1985-01-01

    A method for the separation of surface contamination on plant leaves by plastic film stripping was applied. The particulate matter embedded in the film was analysed by neutron activation. The investigation was directed especially towards the determination of the trace element content of the suitable plastic matrices and of the influence of solvents. The practicability of this method is demonstrated by analysing films stripped from plant leaves with different degrees of pollution. (author)

  1. Atmospheric Transport of Nutrient Matter during a Red Tide Event

    Science.gov (United States)

    Tian, R.; Weng, H.; Lin, Q.

    2017-12-01

    Harmful algal blooms (HABs) resulting from an explosive increase in algae population have become a global problem in coastal marine environment. During 3rd -8th, May of 2006, large-scale, mixed prorocentrum dentatum stein and skeletonema costatum bloom developed in those water off the coast of Zhejiang province (Zhoushan city and Liuheng Island) of China. Using Global Nested Air Quality Prediction Modeling System (GNAQPMS), we find an atmospheric transport of considerable nutrient matter (nitrate, ammonium, Fe (Ⅱ)) to East China Sea (ECS) before the red tide event. It be inferred that the atmospheric transport of nutrient matter is a significant source of nutrient matter in the water of East China Sea whose hydrological setting is dominated by oligotrophic Taiwan Warm Current in spring. Such atmospheric transport of nutrient matter is likely a cause factor of red tide in the coast of East China Sea, especially during dust event. The study provides new information for discovering the occurring mechanism of the red tides in ECS and the essential parameters for the red tide research.

  2. Risk of human health by particulate matter as a source of air pollution--comparison with tobacco smoking.

    Science.gov (United States)

    Enomoto, Makoto; Tierney, William J; Nozaki, Kohsuke

    2008-08-01

    Increased air pollution, containing carcinogenic particulate matter smaller than 2.5 microm (PM(2.5)), has gained particular attention in recent years as a causative factor in the increased incidence of respiratory diseases, including lung cancer. Extensive carcinogenicity studies conducted recently under Good Laboratory Practice conditions by National Toxicology Program in the USA, Ramazzini Foundation in Italy or Contract Research Organizations on numerous chemical compounds have demonstrated the importance of considering dose levels, times and duration of exposure in the safety evaluation of carcinogenic as well as classical toxic agents. Data on exposure levels to chemical carcinogens that produce tumor development have contributed to the evaluation of human carcinogens from extrapolation of animal data. A popular held misconception is that the risk from smoking is the result of inhaling assorted particulate matter and by products from burning tobacco rather than the very low ng levels of carcinogens present in smoke. Consider the fact that a piece of toasted bread contains ng levels of the carcinogen urethane (ethyl carbamate). Yet, no one has considered toast to be a human carcinogen. Future human carcinogenic risk assessment should emphasize consideration of inhalation exposure to higher levels of benzo (a) pyrene and other possible carcinogens and particulate matter present in polluted air derived from automobile exhaust, pitch and coal tar on paved roads and asbestos, in addition to other environmental contaminant exposure via the food and drinking water.

  3. Modelling the transport of suspended particulate matter by the Rhone River plume (France). Implications for pollutant dispersion

    International Nuclear Information System (INIS)

    Perianez, R.

    2005-01-01

    A model to simulate the transport of suspended particulate matter by the Rhone River plume has been developed. The model solves the 3D hydrodynamic equations, including baroclinic terms and a 1-equation turbulence model, and the suspended matter equations including advection/diffusion of particles, settling and deposition. Four particle classes are considered simultaneously according to observations in the Rhone. Computed currents, salinity and particle distributions are, in general, in good agreement with observations or previous calculations. The model also provides sedimentation rates and the distribution of different particle classes over the sea bed. It has been found that high sedimentation rates close to the river mouth are due to coarse particles that sink rapidly. Computed sedimentation rates are also similar to those derived from observations. The model has been applied to simulate the transport of radionuclides by the plume, since suspended matter is the main vector for them. The radionuclide transport model, previously described and validated, includes exchanges of radionuclides between water, suspended matter and bottom sediment described in terms of kinetic rates. A new feature is the explicit inclusion of the dependence of kinetic rates upon salinity. The model has been applied to 137 Cs and 239,240 Pu. Results are, in general, in good agreement with observations. - A model has been developed to simulate transport of suspended particulate matter in the Rhone River plume

  4. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    Science.gov (United States)

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  5. Microbiota and Particulate Matter Assessment in Portuguese Optical Shops Providing Contact Lens Services

    Directory of Open Access Journals (Sweden)

    Carla Viegas

    2017-05-01

    Full Text Available The aim of this work was to assess the microbiota (fungi and bacteria and particulate matter in optical shops, contributing to a specific protocol to ensure a proper assessment. Air samples were collected through an impaction method. Surface and equipment swab samples were also collected side-by-side. Measurements of particulate matter were performed using portable direct-reading equipment. A walkthrough survey and checklist was also applied in each shop. Regarding air sampling, eight of the 13 shops analysed were above the legal requirement and 10 from the 26 surfaces samples were overloaded. In three out of the 13 shops fungal contamination in the analysed equipment was not detected. The bacteria air load was above the threshold in one of the 13 analysed shops. However, bacterial counts were detected in all sampled equipment. Fungi and bacteria air load suggested to be influencing all of the other surface and equipment samples. These results reinforce the need to improve air quality, not only to comply with the legal requirements, but also to ensure proper hygienic conditions. Public health intervention is needed to assure the quality and safety of the rooms and equipment in optical shops that perform health interventions in patients.

  6. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin

    International Nuclear Information System (INIS)

    Cachon, Boris Fresnel; Firmin, Stéphane; Verdin, Anthony; Ayi-Fanou, Lucie

    2014-01-01

    After particulate matter (PM) collection in Cotonou (Benin), a complete physicochemical characterization of PM 2.5 and PM >2.5 was led. Then, their adverse health effects were evaluated by using in vitro culture of human lung cells. BEAS-2B (bronchial epithelial cells) were intoxicated during short-term exposure at increasing PM concentrations (1.5–96 μg/cm 2 ) to determine global cytotoxicity. Hence, cells were exposed to 3 and 12 μg/cm 2 to investigate the potential biological imbalance generated by PM toxicity. Our findings showed the ability of both PM to induce oxidative stress and to cause inflammatory cytokines/chemokines gene expression and secretion. Furthermore, PM were able to induce gene expression of enzymes involved in the xenobiotic metabolism pathway. Strong correlations between gene expression of metabolizing enzymes, proinflammatory responses and cell cycle alteration were found, as well as between proinflammatory responses and cell viability. Stress oxidant parameters were highly correlated with expression and protein secretion of inflammatory mediators. Highlights: • The aim of this study was to investigate the toxic potential of collected particles. • Toxicological effects were determined by using human bronchial epithelial cells. • Both particles induced oxidative stress, proinflammatory response and cell alterations. • Metabolizing enzymes were linked to proinflammatory responses and cell alterations. • Oxidative stress was highly correlated to the proinflammatory mediators. -- This study evidences the toxic potential of African fine and coarse particulate matters on respiratory epithelial cells

  7. Can particulate organic matter reveal emerging changes in soil organic carbon?

    DEFF Research Database (Denmark)

    Simonsson, Magnus; Kirchmann, Holger; Magid, Jakob

    2014-01-01

    different cropping systems, N fertilizer applications, and organic amendments, we found that C and N in the fine to medium sand fraction (0.063-0.600 mm, "Fraction B") showed considerably larger relative errors according to ANOVA (RMSE was 11-20% of the mean), slightly lower values of the F statistic......This study assessed whether particulate organic matter (POM) in sand fractions, isolated by wet sieving after treatment with Na hexametaphosphate, can be a sensitive indicator of incipient changes in the content and composition of soil organic matter. In five long-term field experiments including......, and slightly less contrast between treatments than total organic C and N (RMSE 3-9% of the mean). Imprecision in laboratory procedures only explained part of the increase in RMSE for C and N in Fraction B compared with total C and N; within-field spatial variability most likely had a greater influence...

  8. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.L. [Meteorological Institute, Ludwig Maximilian University of Munich, Munich (Germany); School of Energy and Environment, City University of Hong Kong (Hong Kong); Jiang, S.Y.N. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong)

    2016-03-31

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R{sup 2} > 0.999) and low detection limit (0.06 μg L{sup −1}) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  9. Inhibition of intercellular communication by airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Heussen, G.A.H. (Landbouwhogeschool Wageningen (Netherlands). Dept. of Toxicology)

    1991-04-01

    To investigate the inhibition of gap junction mediated intercellular communication (IC) by extracts of airborne particulate matter (APM), V79 cells were incubated with extracts of APM and subsequently microinjected with the fluorescent dye Lucifer Yellow, after which the number of fluorescent (= communicating) cells was determined. To compare inhibitory effects on IC with mutagenicity, APM was also tested in the Salmonella microsome assay. Six different extracts were tested, two outdoor extracts representing a heavily polluted and a relatively clean sample, and four indoor extracts, taken either in livingrooms with or without wood combustion in an open fire place, or in a room with or without cigarette smoking. Non-cytotoxic doses of outdoor and indoor APM inhibited IC in V79 cells in dose- and time-dependent manner. Mutagenicity data and IC data were correlated. These results suggest that APM has tumor promoter activity in addition to mutagenic activity. (orig.).

  10. Fine particulate matter in acute exacerbation of COPD

    Directory of Open Access Journals (Sweden)

    Lei eNi

    2015-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress, immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden.

  11. Consumption-based Total Suspended Particulate Matter Emissions in Jing-Jin-Ji Area of China

    Science.gov (United States)

    Yang, S.; Chen, S.; Chen, B.

    2014-12-01

    The highly-industrialized regions in China have been facing a serious problem of haze mainly consisted of total suspended particulate matter (TSPM), which has attracted great attention from the public since it directly impairs human health and clinically increases the risks of various respiratory and pulmonary diseases. In this paper, we set up a multi-regional input-output (MRIO) model to analyze the transferring routes of TSPM emissions between regions through trades. TSPM emission from particulate source regions and sectors are identified by analyzing the embodied TSPM flows through monetary flow and carbon footprint. The track of TSPM from origin to end via consumption activities are also revealed by tracing the product supply chain associated with the TSPM emissions. Beijing-Tianjin-Hebei (Jing-Jin-Ji) as the most industrialized area of China is selected for a case study. The result shows that over 70% of TSPM emissions associated with goods consumed in Beijing and Tianjin occurred outside of their own administrative boundaries, implying that Beijing and Tianjin are net embodied TSPM importers. Meanwhile, 63% of the total TSPM emissions in Hebei Province are resulted from the outside demand, indicating Hebei is a net exporter. In addition, nearly half of TSPM emissions are the by-products related to electricity and heating supply and non-metal mineral products in Jing-Jin-Ji Area. Based on the model results, we provided new insights into establishing systemic strategies and identifying mitigation priorities to stem TSPM emissions in China. Keywords: total suspended particulate matter (TSPM); urban ecosystem modeling; multi-regional input-output (MRIO); China

  12. Carbonaceous content of atmospheric aerosols in Lisbon urban atmosphere

    Science.gov (United States)

    Mirante, Fátima; Oliveira, C.; Martins, N.; Pio, C.; Caseiro, A.; Cerqueira, M.; Alves, C.; Oliveira, C.; Oliveira, J.; Camões, F.; Matos, M.; Silva, H.

    2010-05-01

    Lisbon is the capital city of Portugal with about 565,000 residents and a population density of 6,600 inhabitants per square kilometre. The town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants. It is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams. Airborne particulate matter limit values are frequently exceeded, with important consequences on air pollution levels and obvious negative impacts on human health. Atmospheric aerosols are known to have in their structure significant amounts of carbonaceous material. The knowledge of the aerosols carbon content, particularly on their several carbon forms (as TC, EC and OC, meaning respectively Total, Elemental and Organic carbon) is often required to provide information for source attribution. In order to assess the vehicles PM input, two sampling campaigns (summer and winter periods) were carried out in 2008 in Lisbon in two contrasting sites, a roadside and an urban background site. Particulate matter was collected in two fractions on quartz fibre filters using Hi-Vol samplers (coarse fraction, 2.5µmwork was performed under Project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere - PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia" - FCT. Fátima Mirante acknowledges FCT her PhD grant (SFRH/BD/45473/2008).

  13. Exploring the direct impacts of particulate matter and surface ozone on global crop production

    Science.gov (United States)

    Schiferl, L. D.; Heald, C. L.

    2016-12-01

    The current era of rising food demand to feed an increasing population along with expansion of industrialization throughout the globe has been accompanied by deteriorating air quality and an enhancement in agricultural activity. Both air quality and the food supply are vitally important to sustaining human enterprise, and understanding the effects air quality may have on agricultural production is critical. Particulate matter (PM) in the atmosphere decreases the total photosynthetically available radiation (PAR) available to crops through the scattering and absorption of radiation while also increasing the diffuse fraction (DF) of this PAR. Since plants respond positively to a higher DF through the more even distribution of photons to all leaves, the net effect of PM on crop production depends on the magnitudes of these values and the response mechanisms of a specific crop. In contrast, atmospheric ozone always acts to decrease crop production through its phytotoxic properties. While the relationships between ozone and crop production have been readily studied, the effects of PM on crop production and their relative importance compared to ozone is much more uncertain. This study uses the GEOS-Chem chemical transport model linked to the RRTMG radiative transfer model and the DSSAT crop model to explore the impacts of PM and ozone on the globally distributed production of maize, rice, wheat and soybeans. First, we examine how air quality differentially affects total seasonal production by crop and region. Second, we investigate the dependence of simulated production on air quality over different timescales and under varying cloud conditions.

  14. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Pinheiro, T.; Freitas, M.C.; Alves, L.C.; Reis, M.; Bugalho de Almeida, A.; Moniz, D.; Monteiro, P.; Alvarez, E.

    2000-01-01

    Biological and environmental monitoring was carried out at a steel processing sector of a steel plant in Portugal. Approximately 70 workers were surveyed for their respiratory function and blood elemental contents as indicators for a long-term exposure. The characterisation of chemical elements in air at the workplace was also evaluated taking in account the separation of particles by their aerodynamic diameter. Two fractions were collected, a coarse fraction for particles below 10 μm and above 2 μm, and a fine fraction for particles below 2 μm. PIXE and INAA analytical techniques were used for the determination of blood and aerosol elemental concentrations. Up to 12 elements (Na, Cl, K, Ca, Fe, Cu, Zn, As, Se, Sb, Hg, and Pb) were determined in blood and so far, up to 18 elements for aerosols (e.g., Na, Al Si, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, As, Se, Cd, Sb, Hg, and Pb). The concentrations of the essential elements in blood (e.g., Fe, Zn and Se) were found to be altered relative to a reference Portuguese group constituted by non-exposed persons. Relative to the blood average elemental contents for As, Sb, Hg and Pb, the levels determined were below maximum permissible concentrations or reference values, except for Pb. Nevertheless, concentrations above maximum limit values were determined for some of the surveyed subjects. There are evidences that the levels of Se, Cu, and Sb in blood are influenced by exposure. Also, living habits (smoking and other activities) and pulmonary affections may modulate As, Pb and Zn concentrations in blood. For all the chemical elements identified in the particulate matter of the working atmosphere the limit values indicated in the Portuguese regulation were not exceeded, except for Fe. (author)

  15. Airborne particulate matter and spacecraft internal environments

    Science.gov (United States)

    Liu, Benjamin Y. H.; Rubow, Kenneth L.; Mcmurry, Peter H.; Kotz, Thomas J.; Russo, Dane

    1991-01-01

    Instrumentation, consisting of a Shuttle Particle Sampler (SPS) and a Shuttle Particle Monitor (SPM), has been developed to characterize the airborne particulate matter in the Space Shuttle cabin during orbital flight. The SPS size selectively collects particles in four size fractions (0-2.5, 2.5-10, 10-100, and greater than 100 microns) which are analyzed postflight for mass concentration and size distribution, elemental composition, and morphology. The SPM provides a continuous record of particle concentration through photometric light scattering. Measurements were performed onboard Columbia, OV-102, during the flight of STS-32 in January 1990. No significant changes were observed in the particle mass concentration, size distribution, or chemical composition in samples collected during flight-day 2 and flight-day 7. The total mass concentration was 56 microg/cu cm with approximately half of the particles larger than 100 microns. Elemental analysis showed that roughly 70 percent of the particles larger than 2.5 microns were carbonaceous with small amounts of other elements present. The SPM showed no temporal or spatial variation in particle mass concentration during the mission.

  16. Particulate matter emissions of different brands of mentholated cigarettes.

    Science.gov (United States)

    Gerharz, Julia; Bendels, Michael H K; Braun, Markus; Klingelhöfer, Doris; Groneberg, David A; Mueller, Ruth

    2018-01-09

    Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM 10 , PM 2.5 , and PM 1 ), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic. Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L -1 ), mass concentration (µg m -3 ), and dust mass fractions shown as PM 10 , PM 2.5 , and PM 1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.

  17. Recent Advances in Particulate Matter and Nanoparticle Toxicology: A Review of the In Vivo and In Vitro Studies

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2013-01-01

    Full Text Available Epidemiological and clinical studies have linked exposure to particulate matter (PM to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques.

  18. Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA

    Science.gov (United States)

    Weisend, R.; Morton, P. L.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Phytoplankton in oligotrophic marine deserts depend on remote sources to supply trace nutrients. To examine these sources, marine particulate matter samples from the central North Pacific (Station ALOHA) were collected during the July-August 2012 HOE-DYLAN cruises and analyzed for a suite of trace (e.g., Fe, Mn) and major (e.g. Al, P) elements. Daily surface SPM samples were examined for evidence of atmospheric deposition and biological uptake, while five vertical profiles were examined for evidence of surface vertical export and subsurface horizontal transport from nearby sources (e.g., margin sediments, hydrothermal plumes). Maxima in surface particulate P (a biological tracer) corresponded with a diatom bloom, and surprisingly also coincided with maxima in particulate Al (typically a tracer for lithogenic inputs). The surface particulate Al distributions likely result from the adsorption of dissolved Al onto diatom silica frustules, not from atmospheric dust deposition. In addition, a subsurface maximum in particulate Al and P was observed four days later at 75m, possibly resulting from vertical export of the surface diatom bloom. The distributions of other bioactive trace elements (e.g. Cd, Co, Cu) will be presented in the context of the diatom bloom and other biological, chemical and physical features. A second, complementary poster is also being presented which examines the cycling of trace elements in lithogenic particles (Morton et al., "Trace Element Cycling in Lithogenic Particles at Station ALOHA").

  19. Electrically heated particulate filter restart strategy

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  20. NAAQS Designated Area Polygons - Fine Particulate Matter (24-Hr, PM-2.5), Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Designated Areas for Particulate Matter < 2.5 microns, according to the 24-Hour National Ambient Air Quality Standards (NAAQS). Nonattainment areas are geographic...

  1. Floc size and aspects of flocculation processes of suspended particulate matter in the North Sea area

    NARCIS (Netherlands)

    Chen, S.

    1995-01-01

    Investigations on the size of suspended particulate matter in the North Sea and two adjacent estuaries were carried out using an in situ technique: image analysis of photographs from an underwater camera system. The results obtained from such an in situ method gave a new knowledge on the size

  2. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongliang [Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave, Davis, CA 95616 (United States); Magara-Gomez, Kento T. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Environmental Engineering Department, Pontificia Bolivariana University-Bucaramanga, Km 7 Vía Piedecuesta, Bucaramanga (Colombia); Olson, Michael R. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Okuda, Tomoaki [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Walz, Kenneth A. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Madison Area Technical College, 3550 Anderson Street, Madison, WI 53704 (United States); Schauer, James J. [Environmental Chemistry and Technology Program, University of Wisconsin–Madison, 660 North Park Street, Madison, WI 53706 (United States); Kleeman, Michael J., E-mail: mjkleeman@ucdavis.edu [Department of Civil and Environmental Engineering, University of California at Davis, 1 Shields Ave, Davis, CA 95616 (United States)

    2015-12-15

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ± 5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  3. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.; Kleeman, Michael J.

    2015-01-01

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ± 5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  4. CHARACTERISTIC OF AIRBORNE PARTICULATE MATTER SAMPLES COLLECTED FROM TWO SEMI INDUSTRIAL SITES IN BANDUNG, INDONESIA

    Directory of Open Access Journals (Sweden)

    Diah Dwiana Lestiani

    2013-12-01

    Full Text Available Air particulate matter concentrations, black carbon as well as elemental concentrations in two semi industrial sites were investigated as a preliminary study for evaluation of air quality in these areas. Sampling of airborne particulate matter was conducted in July 2009 using a Gent stacked filter unit sampler and a total of 18 pairs of samples were collected. Black carbon was determined by reflectance measurement and elemental analysis was performed using particle induced X-ray emission (PIXE. Elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn and As were detected. Twenty four hour PM2.5 concentration at semi industrial sites Kiaracondong and Holis ranged from 4.0 to 22.2 µg m-3, while the PM10 concentration ranged from 24.5 to 77.1 µg m-3. High concentration of crustal elements, sulphur and zinc were identified in fine and coarse fractions for both sites. The fine fraction data from both sites were analyzed using a multivariate principal component analysis and for Kiaracondong site, identified factors are attributed to sea-salt with soil dust, vehicular emissions and biomass burning, non ferrous smelter, and iron/steel work industry, while for Holis site identified factors are attributed to soil dust, industrial emissions, vehicular emissions with biomass burning, and sea-salt. Although particulate samples were collected from semi industrial sites, vehicular emissions constituted with S, Zn and BC were identified in both sites.

  5. Satellite Remote Sensing of Particulate Matter Air Quality: Progress, Potential and Pitfalls (Invited)

    Science.gov (United States)

    Christopher, S. A.

    2009-12-01

    Satellite Remote Sensing of Particulate Matter Air Quality: Progress, Potential and Pitfalls Abstract. Fine or respirable particles with particle aerodynamic diameters less than 2.5 µm (PM2.5) affect visibility, change cloud properties, reflect and absorb incoming solar radiation, affect human health and are ubiquitous in the atmosphere. These particles are injected into the atmosphere either as primary emissions or form into the atmosphere by gas to particle conversion. There are various sources of PM2.5 including emissions from automobiles, industrial exhaust, and agricultural fires. In 2006, the United States Environmental Protection Agency (EPA) made the standards stringent by changing the 24-hr averaged PM2.5 mass values from 65µgm-3 to 35µgm-3. This was primarily based on epidemiological studies that showed the long term health benefits of making the PM2.5 standards stringent. Typically PM2.5 mass concentration is measured from surface monitors and in the United States there are nearly 1000 such filter based daily and 600 contiguous stations managed by federal, state, local, and tribal agencies. Worldwide, there are few PM2.5 ground monitors since they are expensive to purchase, maintain and operate. Satellite remote sensing therefore provides a viable method for monitoring PM2.5 from space. Although, there are several hundred satellites currently in orbit and not all of them are suited for PM2.5 air quality assessments. Typically multi-spectral reflected solar radiation measurements from space-borne sensors are converted to aerosol optical depth (AOD) which is a measure of the column (surface to top of atmosphere) integrated extinction (absorption plus scattering). This column AOD (usually at 550 nm) is often converted to PM2.5 mass near the ground using various techniques. In this presentation we discuss the progress over the last decade on assessing PM2.5 from satellites; outline the potential and discuss the various pitfalls that one encounters. We

  6. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    International Nuclear Information System (INIS)

    Qadir, Muhammad Abdul; Zaidi, Jamshaid Hussain; Ahmad, Shaikh Asrar; Gulzar, Asad; Yaseen, Muhammad; Atta, Sadia; Tufail, Asma

    2012-01-01

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 μm. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: ► Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. ► Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. ► 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. ► The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. ► There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  7. Application for airborne particulate matter as a demonstration using k0-NAA method in Dalat nuclear research institute of Vietnam

    International Nuclear Information System (INIS)

    Ho Manh Dung; Cao Dong Vu; Nguyen Thi Sy; Truong Y; Nguyen Thanh Binh

    2004-01-01

    The airborne particulate samples have been collected using two types of polycarbonate membrane filter PM 2.5 and PM 2-5-10 in two typical sites of industrial (Ho Chi Minh City) and rural (Dateh) regions in south of Vietnam. The concentration of trace elements in the samples has been determined by the k 0 -NAA procedure developed in Dalat NRI. In order to check the developed k 0 -NAA procedure for the airborne particulate matter, two standard reference materials (SRMs) Urban Particulate NIST-1648 and Vehicle Exhaust Particulates NIES-8 were analyzed and the obtained results have been compared and interpreted in term of deviation between experimental results and the certified values. (author)

  8. The use of nuclear and related techniques for the studies of possible health impact of airborne particulate matter in a metal industry

    International Nuclear Information System (INIS)

    Djojosubroto, Harjoto; Supriatna, Dadang; Kumolowati, Endang; Widjajakusuma, Benjamin

    2000-01-01

    Various processes in an industry may produce gases and fine airborne particulate matters. Elements and hazardous chemicals in the fine particulate matters may enter the human body through inhalation and direct contact with the skin. Excessive inhalation and contact with the fine airborne particulate matter may lead to intoxication due to excessive intake of the hazardous chemicals and toxic elements. The elements will be accumulated in human organs, such as liver, kidneys and brain, manifest in clinical syndromes such as hypertension, renal failure and neurological symptoms and signs. The absorbed elements are excreted through the urinary tract as urine. They also can be excreted through hair and nails. Elevated blood and urinary aluminum levels have been observed after occupational exposure to various aluminum compounds. This phenomenon indicates the absorption through inhalation, as there are no data indicating significant dermal absorption for aluminum. Absorption of chromium compounds in the workplace occurs mainly through inhalation. The absorption is dependent on the valence and solubility of the particular chromium species. Some elements such as trivalent chromium ions are readily cleared from the blood, but hexavalent chromium ions are retained much longer in the blood. The aluminum compounds vary greatly in their toxic and carcinogenic effects. Although the trivalent chromium is readily excreted, continuous intake may cause the blood chromium level to be higher than normal. These elements may either have an deleterious effect on, or be considered essential for human health. In this study, the levels and health effects of airborne particulate matter in the workplace are assessed by elemental quantification of blood, hair and nail of workers in a metal industry and in airborne particulate samples that are collected at the workplace. The present report represents progress of activities following the first Research Co-ordination Meeting 1997 in Vienna

  9. Particulate Matter Mass Concentration in Residential Prefabricated Buildings Related to Temperature and Moisture

    Science.gov (United States)

    Kraus, Michal; Juhásová Šenitková, Ingrid

    2017-10-01

    Building environmental audit and the assessment of indoor air quality (IAQ) in typical residential buildings is necessary process to ensure users’ health and well-being. The paper deals with the concentrations on indoor dust particles (PM10) in the context of hygrothermal microclimate in indoor environment. The indoor temperature, relative humidity and air movement are basic significant factors determining the PM10 concentration [μg/m3]. The experimental measurements in this contribution represent the impact of indoor physical parameters on the concentration of particulate matter mass concentration. The occurrence of dust particles is typical for the almost two-thirds of interiors of the buildings. Other parameters indoor environment, such as air change rate, volume of the room, roughness and porosity of the building material surfaces, static electricity, light ions and others, were set constant and they are not taken into account in this study. The mass concentration of PM10 is measured during summer season in apartment of residential prefabricated building. The values of global temperature [°C] and relative humidity of indoor air [%] are also monitored. The quantity of particulate mass matter is determined gravimetrically by weighing according to CSN EN 12 341 (2014). The obtained results show that the temperature difference of the internal environment does not have a significant effect on the concentration PM10. Vice versa, the difference of relative humidity exhibits a difference of the concentration of dust particles. Higher levels of indoor particulates are observed for low values of relative humidity. The decreasing of relative air humidity about 10% caused 10µg/m3 of PM10 concentration increasing. The hygienic limit value of PM10 concentration is not exceeded at any point of experimental measurement.

  10. Use of health effect risk estimates and uncertainty in formal regulatory proceedings: a case study involving atmospheric particulates

    International Nuclear Information System (INIS)

    Habegger, L.J.; Oezkaynak, A.H.

    1984-01-01

    Coal combustion particulates are released to the atmosphere by power plants supplying electrical to the nuclear fuel cycle. This paper presents estimates of the public health risks associated with the release of these particulates at a rate associated with the annual nuclear fuel production requirements for a nuclear power plan. Utilization of these risk assessments as a new component in the formal evaluation of total risks from nuclear power plants is discussed. 23 references, 3 tables

  11. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    Science.gov (United States)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  12. Development of atmosphere-soil-vegetation model for investigation of radioactive materials transport in terrestrial biosphere

    International Nuclear Information System (INIS)

    Katata, Genki; Nagai, Haruyasu; Zhang, Leiming; Held, Andreas; Serca, Dominique; Klemm, Otto

    2010-01-01

    In order to investigate the transport of radionuclides in the terrestrial biosphere we have developed a one-dimensional numerical model named SOLVEG that predicts the transfer of water, heat, and gaseous and particulate matters in atmosphere-soil-vegetation system. The SOLVEG represents atmosphere, soil, and vegetation as an aggregation of several layers. Basic equations used in the model are solved using the finite difference method. Most of predicted variables are interrelated with the source/sink terms of momentum, water, heat, gases, and particles based on mathematically described biophysical processes in atmosphere, soil and vegetation. The SOLVEG can estimate dry, wet and fog deposition of gaseous and particulate matters at each canopy layer. Performance tests of the SOLVEG with several observational sites were carried out. The SOLVEG predicted the observed temporal changes in water vapor, CO 2 , and ozone fluxes over vegetated surfaces. The SOLVEG also reproduced measured fluxes of fog droplets and of fine aerosols over the forest. (author)

  13. Association between particulate matter 2.5 and diabetes mellitus: A meta-analysis of cohort studies.

    Science.gov (United States)

    He, Dian; Wu, Shaowen; Zhao, Haiping; Qiu, Hongyan; Fu, Yang; Li, Xingming; He, Yan

    2017-09-01

    The present meta-analysis was carried out to assess the association between exposure to the level of atmospheric particulate matter 2.5 (PM2.5; fine particulate matter with aerodynamic diameter less than 2.5 μm) and type 2 diabetes mellitus or gestational diabetes mellitus (GDM). We searched the Medline, EMBASE, Cochrane and Web of Science databases to obtain articles according to the responding literature search strategies. Among a total of 279 identified articles, 55 were reviewed in depth, of which 10 articles (11 cohort studies) satisfied the inclusion criteria. Only cohort studies that disclosed the association between PM2.5 and type 2 diabetes mellitus or GDM were included in this article. A fixed-effects model was selected if P > 0.1 and I 2 diabetes mellitus (type 2 diabetes mellitus and GDM). The relative risk was used to estimate the association between PM2.5 and diabetes mellitus. The positive associations between PM2.5 and the incidence of type 2 diabetes mellitus were found in the long-term exposure period (relative risk 1.25, 95% confidence interval 1.10-1.43), which showed that with every 10-μg/m 3 increase in PM2.5, the risk of type 2 diabetes mellitus would increase by 25% in the long-term exposure. Although the significant associations were not identified between maternal exposure to PM2.5 and GDM in the first trimester, the second trimester and the entire pregnancy periods, we could conclude that maternal exposure to PM2.5 in the entire pregnancy period would be more likely to lead to developing GDM (relative risk 1.162, 95% confidence interval 0.806-1.675) than the other two periods. Long-term exposure to PM2.5 would be more likely to lead to developing type 2 diabetes mellitus, but more studies would be required to confirm the association between PM2.5 and GDM. It might be a wise to take effective measures to reduce PM2.5 exposure in vulnerable populations, especially for pregnant women. © 2017 The Authors. Journal of Diabetes Investigation

  14. The size distribution of 210Po in the atmosphere around Mt. Sakurajima in Kagoshima prefecture, Japan

    International Nuclear Information System (INIS)

    Ashikawa, N.; Matsuoka, N.; Takashima, Y.; Syojo, N.; Imamura, H.; Fujisaki, M.

    1998-01-01

    The concentration and size distribution of 210 Po in particulate matters in the atmosphere were measured around the active volcano, Mt. Sakurajima in Kagoshima prefecture, Japan. The samples were collected eight times at four sampling points for the period from June 1994 to January 1996. The highest concentration of 210 Po was 2940 μBq/m 3 at Akamizu located 2 km away from the crater of Mt. Sakurajima. The 210 Po concentrations decreased with the increase of distance form Mt. Sakurajima. The size distribution curves of 210 Po in the particulate matters showed that 210 Po is usually condensed to fine particles smaller than 2 μm in diameter. In addition, it was suggested that the 210 Po concentration in particulate matters collected at Akamizu was affected by the wind direction over Mt. Sakurajima. (author)

  15. Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic obstructive pulmonary disease: a European multicentre panel study

    NARCIS (Netherlands)

    Karakatsani, A.; Analitis, A.; Perifanou, D.; Ayres, J.G.; Harrison, R.M.; Kotronarou, A.; Kavouras, I.G.; Pekkanen, J.; Hameri, K.; Kos, G.P.; de Hartog, J.J.; Hoek, G.; Katsouyanni, K.

    2012-01-01

    ABSTRACT: BACKGROUND: Particulate matter air pollution has been associated with adverse health effects. The fraction of ambient particles that are mainly responsible for the observed health effects is still a matter of controversy. Better characterization of the health relevant particle fraction

  16. Processing of atmospheric polycyclic aromatic hydrocarbons by fog in an urban environment.

    Science.gov (United States)

    Ehrenhauser, Franz S; Khadapkar, Kalindi; Wang, Youliang; Hutchings, James W; Delhomme, Olivier; Kommalapati, Raghava R; Herckes, Pierre; Wornat, Mary J; Valsaraj, Kalliat T

    2012-10-26

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous pollutants in the atmosphere, predominantly known for their toxicity. Although there has been substantial work on the atmospheric degradation of PAH, little is known about how the presence of atmospheric droplets (e.g., a fog cloud) affects the fate of PAH. In order to assess the processing of PAH and their corresponding oxidation products during a fog event, two field-sampling campaigns in Fresno, CA and Davis, CA were conducted. The simultaneous evaluation of concentrations of the PAH and oxygenated polycyclic aromatic compounds (OPAC) in the gas phase, particulate matter and fog water droplets before, during and after fog allows for the characterization of transformative and transport processes in a fog cloud. By tracking the ratio of OPAC to PAH in the individual atmospheric phases, two major polycyclic aromatic compounds-processing pathways can be identified: (i) the dissolution of OPAC from particulate matter and (ii) the uptake and oxidation of PAH in the fog water droplets. Wet deposition steadily decreases the pollutant concentration in the fog cloud droplets during a fog event; however, uptake and concentration via evaporative water loss upon the dissipation of a fog cloud cause an increase in the atmospheric pollutant concentration.

  17. Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis

    Czech Academy of Sciences Publication Activity Database

    Sgrigna, G.; Baldacchini, C.; Eposito, R.; Calandrelli, R.; Tiwary, A.; Calfapietra, Carlo

    548-549, apr (2016), s. 91-99 ISSN 0048-9697 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Air pollution * EDX * Human health * Particulate matter * Urban trees * SEM Subject RIV: EH - Ecology, Behaviour Impact factor: 4.900, year: 2016

  18. ARE CARS OR TREES MORE IMPORTANT TO PARTICULATE MATTER AIR POLUTION? WHAT RADIOCARBON MEASUREMENTS HAVE TO SAY

    Science.gov (United States)

    Air pollution in the form of particulate matter (PM) originates from both human activities and "natural" phenomena. Setting and achieving National Ambient Air Quality Standards (NAAQS) for PM has to take into account the latter since they are in general less controllable than th...

  19. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    Science.gov (United States)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  20. Evaluations of particulate mass loading from visibility observations and atmospheric turbidity measurements: Pt. 1

    International Nuclear Information System (INIS)

    Tomasi, C.; Vitale, V.

    1984-01-01

    Two extinction models for continental and rural particles were defined by using a very accurate computer programme based on Mie extinction theory for spherical particles. The first extinction model gives several sets of volume extinction coefficients at seven visible and near-infra-red wave-lengths, calculated for twenty-seven Junge-type size distribution curves (with Junge parameter ranging from 1.8 to 4.4) and for eight relative-humidity values of the air. This model also gives the corresponding values of Aangstroem's exponent α and mean particle mass. The second extinction model gives similar sets of data, calculated for two log-normal size distribution curves of tropospheric and large rural particles at five relative-humidity values of the air. These monomodal models can be used to determine bimodal extinction models consisting of variable number fractions of tropospherics and rural particles. Evaluations of the particulate mass loading can be obtained from measurements of visual range and atmospheric turbidity, choosing the most appropriate extinction model on the basis of the spectral features characterizing atmospheric attenuation. Measurements of visibility and atmospheric turbidity in two rural localities of the Po valley were examined by employing both the present extinction models and other extinction models commonly used. The comparison of the results shows that the Junge-type extinction model can be reliably used in cases in which the exponent Junge-type extinction model and bimodal model were found to give realistic evaluations of the lower and upper limits of particulate mass loading

  1. Composition and Sources of Particulate Matter Measured near Houston, TX: Anthropogenic-Biogenic Interactions

    Directory of Open Access Journals (Sweden)

    Jeffrey K. Bean

    2016-05-01

    Full Text Available Particulate matter was measured in Conroe, Texas (~60 km north of downtown Houston, Texas during the September 2013 DISCOVER-AQ campaign to determine the sources of particulate matter in the region. The measurement site is influenced by high biogenic emission rates as well as transport of anthropogenic pollutants from the Houston metropolitan area and is therefore an ideal location to study anthropogenic-biogenic interactions. Data from an Aerosol Chemical Speciation Monitor (ACSM suggest that on average 64 percent of non-refractory PM1 was organic material, including a high fraction (27%–41% of organic nitrates. There was little diurnal variation in the concentrations of ammonium sulfate; however, concentrations of organic and organic nitrate aerosol were consistently higher at night than during the day. Potential explanations for the higher organic aerosol loadings at night include changing boundary layer height, increased partitioning to the particle phase at lower temperatures, and differences between daytime and nighttime chemical processes such as nitrate radical chemistry. Positive matrix factorization was applied to the organic aerosol mass spectra measured by the ACSM and three factors were resolved—two factors representing oxygenated organic aerosol and one factor representing hydrocarbon-like organic aerosol. The factors suggest that the measured aerosol was well mixed and highly processed, consistent with the distance from the site to major aerosol sources, as well as the high photochemical activity.

  2. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  3. Observations of a narrow zone of high suspended particulate matter (SPM) concentrations along the Dutch coast

    NARCIS (Netherlands)

    van der Hout, C.M.; Gerkema, T.; Nauw, J.J.; Ridderinkhof, H.

    2015-01-01

    The objective of the study described in this paper is to localize the transport path of suspended particulate matter (SPM) in the Dutch coastal zone in the southern North Sea. It is known that a large mass of SPM is transported northward from the Strait of Dover, which is however mostly hidden from

  4. ANALYSIS OF PARTICULATE ORGANIC MATTER IN HOLOCENE SEDIMENTS OF COASTAL PLAIN FROM PERO BEACH, CABO FRIO, RIO DE JANEIRO, BRAZIL

    Directory of Open Access Journals (Sweden)

    Taísa Camila Silveira de Souza

    2016-06-01

    Full Text Available The study of palynofacies along a core drilled on the coastal plain of Cabo Frio, State of Rio de Janeiro, was carried out in order to contribute to the knowledge of the paleoenvironmental evolution of the Pero Beach region. The ages obtained from 14C datings allowed to verify that the studied core records the past 6761 ± 130 yrs cal BP. Thirty samples were prepared by standard methodology for palynofacies. About three hundred particles of the particulate organic material was classified and recorded for each sample. Statistical methods were employed for the associations of particulate organic matter (R-mode cluster analysis and levels (samples; Q-mode cluster analysis analyzed along the core. Furthermore, the ratio Phytoclast - Total Organic Carbon (Phy-TOC was used to verify the proximity of the source area. The three major groups of particulate organic matter found along the studied core are Phytoclasts, Amorphous Organic Matter (AOM and Palynomorphs. The samples showed in general, a predominance of phytoclasts (73.2%, followed by AOM (18.6% and Palynomorphs (8.2%. Supported by statistical analysis, it was possible to deduce that the study area evolved since the middle Holocene from a marine environment to a paleolagoon.

  5. Estimating the acute health effects of coarse particulate matter accounting for exposure measurement error.

    Science.gov (United States)

    Chang, Howard H; Peng, Roger D; Dominici, Francesca

    2011-10-01

    In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse particulate matter (PM) with aerodynamic diameter between 2.5 and 10 μm. Coarse PM concentrations can exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not remain suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling approach for estimating the short-term effects of air pollution in time series analysis when the ambient concentrations vary spatially within the study region. Specifically, our approach quantifies the error in the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations measured across monitoring stations. This is accomplished by viewing monitor-level measurements as error-prone repeated measurements of the unobserved population average exposure. Inference is carried out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters. Finally, by using different exposure indicators, we investigate the sensitivity of the association between coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive association between coarse PM and same-day admission for cardiovascular diseases.

  6. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    Science.gov (United States)

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites.

  7. Two Simulated-Smog Atmospheres with Different Chemical Compositions Produce Contrasting Mutagenicity in Salmonella**

    Science.gov (United States)

    Ozone (O3), particulate matter (PM), and nitrogen dioxide (NO2) are criteria pollutants used to evaluate air quality. Using EPA’s Mobile Reaction Chamber (MRC), we generated 2 simulated-smog atmospheres (SSA-1 & SSA-2) with different concentrations of these criteria pol...

  8. Concentration and Size Distribution of Particulate Matter in a Broiler House Ambient Air

    Directory of Open Access Journals (Sweden)

    Ismael Rodrigues Amador

    2016-07-01

    Full Text Available Atmospheric particulate matter (PM is an important constituent of ambient air. The determination of its concentration and size distribution in different environments is essential because of its ability to penetrate deeply into animal and human respiratory tract. In this study, air sampling was performed in a broiler house to estimate the concentration and size distribution of PM emitted along with its activities. Low-vol impactor (< 10 mm, cyclones (< 2.5 e < 1.0 mm, and Sioutas cascade impactor (> 2.5; 1.0 – 2.5; 0.50 – 1.0; 0.25 – 0.50; < 0.25 mm connected with membrane pumps were used. PM10 showed high concentration (209 - 533 mg m-3. PM2.5 and PM1.0 initially showed relatively low concentration (20.8 and 16.0 mg m-3 respectively with significantly increasing levels (412.9 and 344.8 mg m-3 respectively during the samplings. It was also possible to observe the contribution of fine particles. This was evidenced by the high correlation between PM2.5 and PM1.0 and by the profile of particle distribution in the Sioutas sampler. PM concentration levels are considered excessively high, with great potential to affect animal and human health. DOI: http://dx.doi.org/10.17807/orbital.v8i3.847 

  9. Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study

    Science.gov (United States)

    Nguyen, Thanh T. N.; Bui, Hung Q.; Pham, Ha V.; Luu, Hung V.; Man, Chuc D.; Pham, Hai N.; Le, Ha T.; Nguyen, Thuy T.

    2015-09-01

    Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM2.5 data compared to ground-based PM2.5 (n = 285, r2 = 0.411, RMSE = 20.299 μg m-3 and RE = 39.789%). Further, validation of satellite-derived PM2.5 on two independent datasets for North East and South Central Coast suggested similar results (n = 40, r2 = 0.455, RMSE = 21.512 μg m-3, RE = 45.236% and n = 45, r2 = 0.444, RMSE = 8.551 μg m-3, RE = 46.446% respectively). Also, our satellite-derived PM2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM2.5 peaks needs further investigations on ground data, atmospheric conditions and physical aspects.

  10. Particulate matter air pollution may offset ozone damage to global crop production

    Science.gov (United States)

    Schiferl, Luke D.; Heald, Colette L.

    2018-04-01

    Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM) in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010) global net impact of air quality on crop production varies by crop (+5.6, -3.7, and +4.5 % for maize, wheat, and rice, respectively). Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  11. Particulate matter air pollution may offset ozone damage to global crop production

    Directory of Open Access Journals (Sweden)

    L. D. Schiferl

    2018-04-01

    Full Text Available Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010 global net impact of air quality on crop production varies by crop (+5.6, −3.7, and +4.5 % for maize, wheat, and rice, respectively. Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  12. Levels of particulate matter in rural, urban and industrial sites in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Alastuey, A.; Rodriguez, S.; Viana, M.M. [Instituto de Ciencias de la Tierra del CSIC, C/Luis Sole y Sabaris s/n, 08028 Barcelona (Spain); Artinano, B.; Salvador, P. [Centro de Investigaciones Energeticas, Mediambientales y Tecnologicas, CIEMAT Avda. Complutense 22, 28040 Madrid (Spain); Mantilla, E. [Centro de Estudios Ambientales del Mediterraneo, CEAM. Parque tecnologico, C-4, sector oeste, 46980 Paterna, Valencia (Spain); Santos, S. Garcia do; Patier, R. Fernandez [Area de Contaminacion Atmosferica, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km n. 2, 28220 Majadahonda, Madrid (Spain); De La Rosa, J.; De la Campa, A. Sanchez [Departamento de Geologia, Universidad de Huelva, Campus Universitario de la Rabida, La Rabida, 21819 Huelva (Spain); Menendez, M.; Gil, J.J. [Departamento Mineralogia y Petrologia. Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao (Spain)

    2004-12-01

    This paper summarises the results of a series of studies on the interpretation of time series of levels of total suspended particles (TSP) and particulate matter (PM, <10 {mu}m) in six regions of Spain in the period 1996-2000. In addition to the local pollution events, high PM10 episodes are recorded during African dust outbreaks, regional atmospheric recirculation events (mainly in spring to autumn), and to a lesser extent, under the influence of European and Mediterranean long range transported air masses. The lowest PM10 levels are usually recorded under Atlantic air mass advective conditions. All these regional and large-scale processes account for the relatively high PM10 levels recorded in regional background stations in Spain. Thus, the PM10 levels recorded at EMEP (Cooperative Program for Monitoring and Evaluation of the Long Range Transmission of Air Pollutants in Europe) regional background stations between March 2001 and March 2002 are very close to the annual limit value proposed for 2010 by the EU Air Quality Directive 1999/30/CE. Chemical data obtained for the different monitoring stations during 2001 show a high mineral load in PM10 for most of the study sites in Spain. Furthermore, a high marine aerosol load is evidenced in the Canary Islands. These mineral and marine loads are lower when considering PM2.5, but a relatively high proportion (8-21%) of mineral dust is still present.

  13. The Effect of Mississippi River Discharge on the Concentration and Composition of Particulate Matter along the Texas-Louisiana Shelf during Summers 2012 and 2013

    Science.gov (United States)

    Richardson, M. J.; Zuck, N.; Gardner, W. D.

    2016-02-01

    Flow from the Mississippi-Atchafalaya River System generally peaks during the spring freshet, discharging nutrient-rich fresh water and sediment into the northern Gulf of Mexico. The peak discharge varies year to year as a result of varying drought or flood conditions in the Mississippi watershed. When compared to an 8-year climatological average, summer 2012 is characterized by low discharge into the northern Gulf of Mexico, whereas summer 2013 is characterized by average discharge conditions. Water samples were collected during four cruises during June and August of 2012 and 2013 to assess the changes in concentration and composition of bulk particulate matter. While no consistent relationship between particulate matter composition and hypoxia was observed, there are several statistically significant seasonal and inter-annual changes in the concentration and composition of particulate matter associated with varying river discharge. There is also evidence that some sub-pycnocline turbidity and chlorophyll-a may be due to in situ primary productivity, rather than settled plankton containing chlorophyll-a.

  14. [Real-time measurement of indoor particulate matter originating from environmental tobacco smoke: a pilot study].

    Science.gov (United States)

    Invernizzi, Giovanni; Ruprecht, Ario; Mazza, Roberto; Majno, Edoardo; Rossetti, Edoardo; Paredi, Paolo; Boffi, Roberto

    2002-01-01

    Short-term measurement of suspended particulate matter has been recently made possible since the release of laser-operating portable instruments. Data of a pilot study of field evaluation of environmental tobacco smoke (ETS) with a portable instrument are reported. We analysed the concentrations of total suspended particle (TSP) and of the fine particles PM10, PM7, PM2.5 and PM1 released indoor from a single cigarette, and their levels inside smoking- and non-smoking-areas of a restaurant. The results indicate that ETS creates high level indoor particulate pollution, with concentrations of PM10 exceeding air quality standards. This kind of field evaluation could allow a more careful assessing of short-term exposure to ETS and its relevance to public health.

  15. Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry

    Science.gov (United States)

    Jia, Jia; Cheng, Shuiyuan; Yao, Sen; Xu, Tiebing; Zhang, Tingting; Ma, Yuetao; Wang, Hongliang; Duan, Wenjiao

    2018-06-01

    As one of the highest energy consumption and pollution industries, the iron and steel industry is regarded as a most important source of particulate matter emission. In this study, chemical components of size-segregated particulate matters (PM) emitted from different manufacturing units in iron and steel industry were sampled by a comprehensive sampling system. Results showed that the average particle mass concentration was highest in sintering process, followed by puddling, steelmaking and then rolling processes. PM samples were divided into eight size fractions for testing the chemical components, SO42- and NH4+ distributed more into fine particles while most of the Ca2+ was concentrated in coarse particles, the size distribution of mineral elements depended on the raw materials applied. Moreover, local database with PM chemical source profiles of iron and steel industry were built and applied in CMAQ modeling for simulating SO42- and NO3- concentration, results showed that the accuracy of model simulation improved with local chemical source profiles compared to the SPECIATE database. The results gained from this study are expected to be helpful to understand the components of PM in iron and steel industry and contribute to the source apportionment researches.

  16. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  17. Long-term exposure to fine particulate matter and incidence of diabetes in the Danish Nurse Cohort

    DEFF Research Database (Denmark)

    Hansen, Anne Busch; Ravnskjær, Line; Loft, Steffen

    2016-01-01

    AIMS/HYPOTHESIS: It has been suggested that air pollution may increase the risk of type 2 diabetes but data on particulate matter with diameter PM2.5) are inconsistent. We examined the association between long-term exposure to PM2.5 and diabetes incidence. METHODS: We used the Danish Nurse...... Cohort with 28,731 female nurses who at recruitment in 1993 or 1999 reported information on diabetes prevalence and risk factors, and obtained data on incidence of diabetes from National Diabetes Register until 2013. We estimated annual mean concentrations of PM2.5, particulate matter with diameter ... diabetes. We detected a significant positive association between PM2.5 and diabetes incidence (hazard ratio; 95% confidence interval: 1.11; 1.02-1.22 per interquartile range of 3.1μg/m(3)), and weaker associations for PM10 (1.06; 0.98-1.14 per 2.8μg/m(3)), NO2 (1.05; 0.99-1.12 per 7.5μg/m(3)), and NOx (1...

  18. Trace elements in suspended particulate matter and liquid fraction of the Arno River waters

    International Nuclear Information System (INIS)

    Capannesi, G.; Cecchi, A.; Mando, P.A.

    1984-01-01

    The concentrations of 46 elements along the course of the Arno River (Tuscany, Italy) have been determined by means of Instrumental Neutron Activation Analysis. Both suspended particulate matter and liquid fraction have been investigated. No chemical treatment has been performed on the samples, either before or after irradiation. Anticoincidence techniques have been employed in the γ spectroscopy. Results are briefly discussed also from a methodological point of view. 4 references, 16 figures, 2 tables

  19. Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier; Evans, John S.

    2015-01-01

    Purpose Fine particulate matter (PM2.5) is considered to be one of the most important environmental factors contributing to the global human disease burden. However, due to the lack of broad consensus and harmonization in the life cycle assessment (LCA) community, there is no clear guidance on ho...

  20. Microscale atmospheric pollution of Pogranichny settlement (Primorsky region, Russia)

    Science.gov (United States)

    Kholodov, Aleksei; Ugay, Sergey; Drozd, Vladimir; Agoshkov, Alexander; Golokhvast, Kirill

    2017-10-01

    The paper discusses the study of atmospheric particulate matter in the small urban settlement Pogranichny by means of laser granulometry of snow water. The atmosphere of this settlement is polluted with particles under 10 μm (PM10) to a certain extent. We found microparticles potentially hazardous to health in significant quantities (from 176.3% to 24.9%) in 4 sampling points out of 9. Large particles (sized over 400 μm) dominate on the most territory of the settlement reaching 78.1%.

  1. Theoretical analysis and experimental evaluation of small cyclone separator to remove fine particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Han Gyul; Kim, Hong Seok [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2013-01-15

    A cyclone separator has been widely used in various industrial processes for removing fine particulate matter because it is easy to fabricate, cost effective, and adaptable to extremely harsh conditions. However, owing to the complex flow field in cyclones, a complete understanding of the detailed mechanisms of particulate removal has not yet been gained. In this study, a theoretical analysis was performed for calculating the collection efficiency and cut off size in cyclones by taking into account the effects of geometrical and flow parameters. The collection efficiency and cut off size values predicted by the theoretical model showed good agreement with experimental measurements for particles with a diameter of 0.5-30{mu}m. It was also revealed that the surface friction, along with the flow and geometrical parameters, has a significant effect on the cyclone performance.

  2. Biomass Burning Smoke Climatology of the United States: Implications for Particulate Matter Air Quality.

    Science.gov (United States)

    Kaulfus, Aaron S; Nair, Udaysankar; Jaffe, Daniel; Christopher, Sundar A; Goodrick, Scott

    2017-10-17

    We utilize the NOAA Hazard Mapping System smoke product for the period of 2005 to 2016 to develop climatology of smoke occurrence over the Continental United States (CONUS) region and to study the impact of wildland fires on particulate matter air quality at the surface. Our results indicate that smoke is most frequently found over the Great Plains and western states during the summer months. Other hotspots of smoke occurrence are found over state and national parks in the southeast during winter and spring, in the Gulf of Mexico southwards of the Texas and Louisiana coastline during spring season and along the Mississippi River Delta during the fall season. A substantial portion (20%) of the 24 h federal standard for particulate pollution exceedance events in the CONUS region occur when smoke is present. If the U.S. Environmental Protection Agency regulations continue to reduce anthropogenic emissions, wildland fire emissions will become the major contributor to particulate pollution and exceedance events. In this context, we show that HMS smoke product is a valuable tool for analysis of exceptional events caused by wildland fires and our results indicate that these tools can be valuable for policy and decision makers.

  3. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Qadir, Muhammad Abdul, E-mail: mabdulqadir@gmail.com [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan); Zaidi, Jamshaid Hussain [Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad Capital Territory (Pakistan); Ahmad, Shaikh Asrar; Gulzar, Asad [Division of Science and Technology, University of Education, Township, Lahore (Pakistan); Yaseen, Muhammad [Department of Chemistry, Gugrat University, Gugrat (Pakistan); Atta, Sadia; Tufail, Asma [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan)

    2012-05-15

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 {mu}m. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: Black-Right-Pointing-Pointer Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. Black-Right-Pointing-Pointer Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. Black-Right-Pointing-Pointer 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. Black-Right-Pointing-Pointer The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. Black-Right-Pointing-Pointer There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  4. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    Science.gov (United States)

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  5. Metal/nonmetal diesel particulate matter rule

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, D.M. [United States Dept. of Labor, Mine Safety and Health Administration, Pittsburgh, PA (United States). Safety and Health Technology Center; Stackpole, R.P. [United States Dept. of Labor, Mine Safety and Health Administration, Triadelphia, WV (United States). Approval and Certification Center; Findlay, C.D. [United States Dept. of Labor, Mine Safety and Health Administration, Arlington, VA (United States). Metal/Nonmetal Safety and Health; Pomroy, W.H. [United States Dept. of Labor, Mine Safety and Health Administration, Duluth, MN (United States). Metal/Nonmetal North Central District

    2010-07-01

    The American Mine Safety and Health Administration (MSHA) issued a health standard in January 2001 designed to reduce exposure to diesel particulate matter (DPM) in underground metal and nonmetal mines. The rule established an interim concentration limit for DPM of 400 {mu}g/m{sup 3} of total carbon, to be followed in 2004 by a final limit of 160 {mu}g/m{sup 3} of total carbon. The 2001 rule was challenged in federal court by various mining trade associations and mining companies. The rule was subsequently amended. This paper highlighted the major provisions of the 2006 final rule and summarized MSHAs current compliance sampling procedures. The concentration limit was changed to a permissible exposure limit and the sampling surrogate was changed from total carbon to elemental carbon. The MSHA published a new rule in 2006 which based the final limit on a miner's personal exposure rather than a concentration limit. The final limit was phased in using 3 steps over 2 years. This paper also discussed engineering controls and a recent MSHA report on organic carbon, elemental carbon and total carbon emissions from a diesel engine fueled with various blends of standard diesel and biodiesel. In May 2008, about two-thirds of all underground metal/nonmetal mines achieved and maintained compliance with the rule. 20 refs.

  6. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    Science.gov (United States)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures

  7. Characterization of particulate amines

    International Nuclear Information System (INIS)

    Gundel, L.A.; Chang, S.G.; Clemenson, M.S.; Markowitz, S.S.; Novakov, T.

    1979-01-01

    The reduced nitrogen compounds associated with ambient particulate matter are chemically characterized by means of ESCA and proton activation analysis. Ambient particulate samples collected on silver filters in Berkeley, California were washed with water and organic solvents, and ESCA and proton activation analysis were performed in order to determine the composition of various nitrogen compounds and the total nitrogen content. It is found that 85% of the amines originally present in ambient particulate matter can be removed by water extraction, whereas the ammonium and nitrate are completely removed. An observed increase in ammonium ion in the extract, compared with its concentration in the original sample, coupled with the commensurate decrease in amine concentration, is attributed to the hydrolysis of amide groups, which may cause analytical methods based on extraction to yield erroneous results

  8. Composition of airborne particulate matter in the industrial area versus mountain area

    Directory of Open Access Journals (Sweden)

    Barbora Sýkorová

    2016-03-01

    Full Text Available The paper deals with research of air pollution in two different locations on the Moravian-Silesian Region, Czech Republic. These are the sites Ostrava-Radvanice, which is located in the area affected by the industry and Ostravice in the mountains (without significant effect of the industry. The dust particles collected at these locations were subjected to a wide range of analyses. The mass concentration, the mass-size distribution, mineralogical composition, the concentration of PAHs (polycyclic aromatic hydrocarbons, and the concentrations of selected metals (Cd, Pb, Zn, Fe, Mn, As, Ni, Co, and Cr were observed at the particulate matter.

  9. INAA of Airborne Particulate Matter Collected in Bangkok and Pathumthani 2002-2004

    International Nuclear Information System (INIS)

    Chueinta, W.; Bunprapob, S.

    2005-01-01

    This paper presents the summary report of the monitoring study on ambient air quality in Bangkok metropolis and its boundary covering the period from 2002 to 2004. The work performed included sampling of fine and coarse fractions of particulate matter at the sites representing urban and suburban areas; measurement of particle mass concentration and elemental concentration; and data interpretation. Instrumental neutron activation by use of research reactor facilities at Office of Atoms for Peace was carried out for multielemental analysis of all filter samples collected. Twenty elements were determined. The database of the three consecutive years are summarized and reviewed in this paper

  10. The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine.

    Science.gov (United States)

    Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée

    2017-11-01

    Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Ge, Xinlei; Zhang, Kai; Ge, Pengxiang

    2018-01-01

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits. PMID:29584626

  12. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Directory of Open Access Journals (Sweden)

    Dongyang Nie

    2018-03-01

    Full Text Available Particulate matter (PM air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5 over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER model was applied to assess premature mortality, years of life lost (YLL attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF, stroke was the major cause of death, followed by ischemic heart disease (IHD, lung cancer (LC and chronic obstructive pulmonary disease (COPD. The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO Air Quality Guidelines (AQG of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  13. Occupational Exposure to Diesel Particulate Matter in Municipal Household Waste Workers.

    Science.gov (United States)

    Lee, Kyong-Hui; Jung, Hye-Jung; Park, Dong-Uk; Ryu, Seung-Hun; Kim, Boowook; Ha, Kwon-Chul; Kim, Seungwon; Yi, Gwangyong; Yoon, Chungsik

    2015-01-01

    The purposes of this study were to determine the following: 1) the exposure levels of municipal household waste (MHW) workers to diesel particulate matter (DPM) using elemental carbon (EC), organic carbon (OC), total carbon (TC), black carbon (BC), and fine particulate matter (PM 2.5) as indicators; 2) the correlations among the indicators; 3) the optimal indicator for DPM; and 4) factors that influence personal exposure to DPM. A total of 72 workers in five MHW collection companies were assessed over a period of 7 days from June to September 2014. Respirable EC/OC samples were quantified using the thermal optical transmittance method. BC and PM 2.5 were measured using real-time monitors, an aethalometer and a laser photometer. All results were statistically analyzed for occupational and environmental variables to identify the exposure determinants of DPM. The geometric mean of EC, OC, TC, BC and PM 2.5 concentrations were 4.8, 39.6, 44.8, 9.1 and 62.0 μg/m3, respectively. EC concentrations were significantly correlated with the concentrations of OC, TC and BC, but not with those of PM 2.5. The exposures of the MHW collectors to EC, OC, and TC were higher than those of the drivers (pemission standard had higher exposures to EC, OC, TC and PM 2.5 than those working on Euro 4 trucks (pemission standard, and average driving speed were the most influential factors in determining worker exposure. We assessed MHW workers' exposure to DPM using parallel sampling of five possible indicators. Of these five indicators, EC was shown to be the most useful indicator of DPM exposure for MHW workers, and the job task, European emission standard, and average driving speed were the main determinants of EC exposure.

  14. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing.

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Wu, Yun; Ge, Xinlei; Hu, Jianlin; Zhang, Kai; Ge, Pengxiang

    2018-03-27

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM 2.5 ) over Nanjing were analyzed using hourly and daily averaged PM 2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM 2.5 , and mortality benefits due to PM 2.5 reductions. The concentrations of PM 2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM 2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM 2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM 2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m³, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  15. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Dua, S.K.; Hillol Guha

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro

  16. High exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  17. Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Angelidaki, Irini; Ahring, Birgitte Kiær

    2000-01-01

    of a macerator make it attractive to use this pretreatment method for a more complete degradation of particulate organic matter. investigation of the size distribution of the fibers showed that a change in biogas potential was not correlated to a smaller size of the fibers. Results from the macerators indicate......% by pretreatment of the whole feed in the macerator before the reactor was observed. implementation concepts with a treatment of the fibers alone after separation from the manure showed to be not efficient due to a low recovery of organic matter in the fibers by the separation unit. The low operational costs...

  18. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case-crossover analysis.

    Science.gov (United States)

    Yamazaki, S; Nitta, H; Ono, M; Green, J; Fukuhara, S

    2007-01-01

    To examine the association of hourly time lagged concentration of ambient particulate matter and death due to stroke. Mortality data for five years (January 1990 to December 1994) were obtained from the Ministry of Health, Labour, and Welfare of Japan. Data were used only if the deceased was 65 years old or older at the time of death, if death was attributed to intracerebral haemorrhage or ischaemic stroke, and if the deceased lived in one of 13 major urban areas. Hourly mean concentrations of PM7, NO2, and photochemical oxidants were measured at monitoring stations in the 13 areas. Time stratified case-crossover analysis was used to examine the data for evidence of triggering stroke mortality. The 1-hour mean concentration of PM7 measured about 2 hours before death was associated with the risk of death due to intracerebral haemorrhage from April to September (odds ratio = 2.40, 95% CI 1.48 to 3.89, for exposure to PM7 of more than 200 microg/m3 (threshold)). The higher risk was independent of the 24-hour mean concentration of PM7. PM7 was not associated with death due to ischaemic stroke. Transiently high concentrations of PM7 are associated with death due to intracerebral haemorrhage. Air quality standards or guidelines for particulate matter should be based not only on 24-hour mean concentrations, but also on hourly data.

  19. Intracerebral haemorrhage associated with hourly concentration of ambient particulate matter: case‐crossover analysis

    Science.gov (United States)

    Yamazaki, S; Nitta, H; Ono, M; Green, J; Fukuhara, S

    2007-01-01

    Aims To examine the association of hourly time lagged concentration of ambient particulate matter and death due to stroke. Methods Mortality data for five years (January 1990 to December 1994) were obtained from the Ministry of Health, Labour, and Welfare of Japan. Data were used only if the deceased was 65 years old or older at the time of death, if death was attributed to intracerebral haemorrhage or ischaemic stroke, and if the deceased lived in one of 13 major urban areas. Hourly mean concentrations of PM7, NO2, and photochemical oxidants were measured at monitoring stations in the 13 areas. Time stratified case‐crossover analysis was used to examine the data for evidence of triggering stroke mortality. Results The 1‐hour mean concentration of PM7 measured about 2 hours before death was associated with the risk of death due to intracerebral haemorrhage from April to September (odds ratio = 2.40, 95% CI 1.48 to 3.89, for exposure to PM7 of more than 200 μg/m3 (threshold)). The higher risk was independent of the 24‐hour mean concentration of PM7. PM7 was not associated with death due to ischaemic stroke. Conclusions Transiently high concentrations of PM7 are associated with death due to intracerebral haemorrhage. Air quality standards or guidelines for particulate matter should be based not only on 24‐hour mean concentrations, but also on hourly data. PMID:16847037

  20. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China.

    Science.gov (United States)

    Liu, Jinqiang; Cao, Zhiguo; Zou, Songyan; Liu, Huanhuan; Hai, Xiao; Wang, Shihua; Duan, Jie; Xi, Benye; Yan, Guangxuan; Zhang, Shaowei; Jia, Zhongkui

    2018-03-01

    Urban trees have the potential to reduce air pollution, but the retention capacity and efficiency of different tree species for atmospheric particulate matter (PM) accumulation and the underlying mechanism hasn't been well understood. To select tree species with high air purification abilities, the supplementing ultrasonic cleaning (UC) procedure was first introduced into the conventional leaf cleaning methods [single water cleaning (WC) or plus brush cleaning (BC)] for eluting the leaf-retained PM. Further updates to the methodology were applied to investigate the retention capacity, efficiency, and mechanism for PM of five typical greening tree species in Beijing, China. Meanwhile, the particle size distribution of PM on the leaves, the PM retention efficiencies of easily removable (ERP), difficult-to-remove (DRP) and totally removable (TRP) particles on the leaf (AE leaf ), and the individual tree scales were estimated. The experimental leaf samples were collected from trees with similar sizes 4 (SDR) and 14days (LDR) after rainfall. When the leaves were cleaned by WC+BC, there was, on average, 29%-46% of the PM remaining on the leaves of different species, which could be removed almost completely if UC was supplemented. From SDR to LDR, the mass of the leaf-retained PM increased greatly, and the particle size distribution changed markedly for all species except for Sophorajaponica. Pinus tabuliformis retains particles with the largest average diameter (34.2μm), followed by Ginkgo biloba (20.5μm), Sabina chinensis (16.4μm), Salix babylonica (16.0μm), and S. japonica (13.1μm). S. japonica and S. chinensis had the highest AE leaf to retain the TRP and ERP of both PM 1 and PM 1-2.5 , respectively. Conversely, S. babylonica and P. tabuliformis could retain both TRP and ERP of PM 2.5-5 and PM 5-10 , and PM >10 and TSP with the highest AE leaf , respectively. In conclusion, our results could be useful in selecting greening tree species with high air purification