WorldWideScience

Sample records for atmospheric aerosol particles

  1. PIXE analysis of atmospheric aerosol and hydrometeor particles

    International Nuclear Information System (INIS)

    Groeneveld, K.O.; Hofmann, D.; Georgii, H.W.

    1993-01-01

    Atmospheric aerosol and hydrometeor particles act decisively on our weather, climate and thereby on all living conditions on Earth. Particle induced X-ray emission (PIXE) analysis has been demonstrated to be an extremely valuable tool for quantitative and qualitative elemental analysis of aerosol particles and hydrometeors. Reliability and detection limits of PIXE are determined, including comparison with other techniques. Aerosol particles are collected on a global scale in ground stations, or by ships and by planes. Correlation between wind direction and elemental composition of atmospheric aerosols, elemental particle size distributions of the tropospheric aerosol, aerosol elemental composition in particle size fractions in the case of long range transport, transport pathways of pollution aerosol, and trace element content precipitation are discussed. Hydrometeors were studied in the form of rain, snow, fog, dew and frost. The time dependence of the melting process of snow was studied in detail, in particular the washout phenomena of impurity ions. (orig.)

  2. Contributions of Organic Sources to Atmospheric Aerosol Particle Concentrations and Growth

    Science.gov (United States)

    Russell, L. M.

    2017-12-01

    Organic molecules are important contributors to aerosol particle mass and number concentrations through primary emissions as well as secondary growth in the atmosphere. New techniques for measuring organic aerosol components in atmospheric particles have improved measurements of this contribution in the last 20 years, including Scanning Transmission X-ray Microscopy Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS), Fourier Transform Infrared spectroscopy (FTIR), and High-Resolution Aerosol Mass Spectrometry (AMS). STXM-NEXAFS individual aerosol particle composition illustrated the variety of morphology of organic components in marine aerosols, the inherent relationships between organic composition and shape, and the links between atmospheric aerosol composition and particles produced in smog chambers. This type of single particle microscopy has also added to size distribution measurements by providing evidence of how surface-controlled and bulk-controlled processes contribute to the growth of particles in the atmosphere. FTIR analysis of organic functional groups are sufficient to distinguish combustion, marine, and terrestrial organic particle sources and to show that each of those types of sources has a surprisingly similar organic functional group composition over four different oceans and four different continents. Augmenting the limited sampling of these off-line techniques with side-by-side inter-comparisons to online AMS provides complementary composition information and consistent quantitative attribution to sources (despite some clear method differences). Single-particle AMS techniques using light scattering and event trigger modes have now also characterized the types of particles found in urban, marine, and ship emission aerosols. Most recently, by combining with off-line techniques, single particle composition measurements have separated and quantified the contributions of organic, sulfate and salt components from ocean biogenic and sea spray

  3. Nuclear microprobe analysis and source apportionment of individual atmospheric aerosol particles

    International Nuclear Information System (INIS)

    Artaxo, P.; Rabello, M.L.C.; Watt, F.; Grime, G.; Swietlicki, E.

    1993-01-01

    In atmospheric aerosol reserach, one key issue is to determine the sources of the airborne particles. Bulk PIXE analysis coupled with receptor modeling provides a useful, but limited view of the aerosol sources influencing one particular site or sample. The scanning nuclear microprobe (SNM) technique is a microanalytical technique that gives unique information on individual aerosol particles. In the SNM analyses a 1.0 μm size 2.4 MeV proton beam from the Oxford SNM was used. The trace elements with Z>11 were measured by the particle induced X-ray emission (PIXE) method with detection limits in the 1-10 ppm range. Carbon, nitrogen and oxygen are measured simultaneously using Rutherford backscattering spectrometry (RBS). Atmospheric aerosol particles were collected at the Brazilian Antarctic Station and at biomass burning sites in the Amazon basin tropical rain forest in Brazil. In the Antarctic samples, the sea-salt aerosol particles were clearly predominating, with NaCl and CaSO 4 as major compounds with several trace elements as Al, Si, P, K, Mn, Fe, Ni, Cu, Zn, Br, Sr, and Pb. Factor analysis of the elemental data showed the presence of four components: 1) Soil dust particles; 2) NaCl particles; 3) CaSO 4 with Sr; and 4) Br and Mg. Strontium, observed at 20-100 ppm levels, was always present in the CaSO 4 particles. The hierarchical cluster procedure gave results similar to the ones obtained through factor analysis. For the tropical rain forest biomass burning aerosol emissions, biogenic particles with a high organic content dominate the particle population, while K, P, Ca, Mg, Zn, and Si are the dominant elements. Zinc at 10-200 ppm is present in biogenic particles rich in P and K. The quantitative aspects and excellent detection limits make SNM analysis of individual aerosol particles a very powerful analytical tool. (orig.)

  4. Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization

    International Nuclear Information System (INIS)

    Yuan Yuan; Yi Hongliang; Shuai Yong; Wang Fuqiang; Tan Heping

    2010-01-01

    As a part of resolving optical properties in atmosphere radiative transfer calculations, this paper focuses on obtaining aerosol optical thicknesses (AOTs) in the visible and near infrared wave band through indirect method by gleaning the values of aerosol particle size distribution parameters. Although various inverse techniques have been applied to obtain values for these parameters, we choose a stochastic particle swarm optimization (SPSO) algorithm to perform an inverse calculation. Computational performances of different inverse methods are investigated and the influence of swarm size on the inverse problem of computation particles is examined. Next, computational efficiencies of various particle size distributions and the influences of the measured errors on computational accuracy are compared. Finally, we recover particle size distributions for atmospheric aerosols over Beijing using the measured AOT data (at wavelengths λ=0.400, 0.690, 0.870, and 1.020 μm) obtained from AERONET at different times and then calculate other AOT values for this band based on the inverse results. With calculations agreeing with measured data, the SPSO algorithm shows good practicability.

  5. Scattering of aerosol particles by a Hermite-Gaussian beam in marine atmosphere.

    Science.gov (United States)

    Huang, Qingqing; Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Yan, Xu; Liu, Songhua

    2017-07-01

    Based on the complex-source-point method and the generalized Lorenz-Mie theory, the scattering properties and polarization of aerosol particles by a Hermite-Gaussian (HG) beam in marine atmosphere is investigated. The influences of beam mode, beam width, and humidity on the scattered field are analyzed numerically. Results indicate that when the number of HG beam modes u (v) increase, the radar cross section of aerosol particles alternating appears at maximum and minimum values in the forward and backward scattering, respectively, because of the special petal-shaped distribution of the HG beam. The forward and backward scattering of aerosol particles decreases with the increase in beam waist. When beam waist is less than the radius of the aerosol particle, a minimum value is observed in the forward direction. The scattering properties of aerosol particles by the HG beam are more sensitive to the change in relative humidity compared with those by the plane wave and the Gaussian beam (GB). The HG beam shows superiority over the plane wave and the GB in detecting changes in the relative humidity of marine atmosphere aerosol. The effects of relative humidity on the polarization of the HG beam have been numerically analyzed in detail.

  6. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    Science.gov (United States)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  7. Elemental composition of aerosol particles from two atmospheric monitoring stations in the Amazon Basin

    International Nuclear Information System (INIS)

    Artaxo, P.; Gerab, F.; Rabello, M.L.C.

    1993-01-01

    One key region for the study of processes that are changing the composition of the global atmosphere is the Amazon Basin tropical rain forest. The high rate of deforestation and biomass burning is emitting large amounts of gases and fine-mode aerosol particles to the global atmosphere. Two background monitoring stations are operating continuously measuring aerosol composition, at Cuiaba, and Serra do Navio. Fine- and coarse-mode aerosol particles are being collected using stacked filter units. Particle induced X-ray emission (PIXE) was used to measure concentrations of up to 21 elements: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, and Pb. The elemental composition was measured at the new PIXE facility from the University of Sao Paulo, using a dedicated 5SDH tandem Pelletron nuclear accelerator. Absolute principal factor analysis (APFA) has derived absolute elemental source profiles. At the Serra do Navio sampling site a very clean background aerosol is being observed. Biogenic aerosol dominates the fine-mode mass concentration, with the presence of K, P, S, Cl, Zn, Br, and FPM. Three components dominate the aerosol composition: Soil dust particles, the natural biogenic release by the forest, and a marine aerosol component. At the Cuiaba site, during the dry season, a strong component of biomass burning is observed. An aerosol mass concentration up to 120 μg/m 3 was measured. APFA showed three components: Soil dust (Al, Ca, Ti, Mn, Fe), biomass burning (soot, FPM, K, Cl) and natural biogenic particles (K, S, Ca, Mn, Zn). The fine-mode biogenic component of both sites shows remarkable similarities, although the two sampling sites are 3000 km apart. Several essential plant nutrients like P, K, S, Ca, Ni and others are transported in the atmosphere as a result of biomass burning processes. (orig.)

  8. Evidence for the role of organics in aerosol particle formation under atmospheric conditions

    International Nuclear Information System (INIS)

    Metzger, A.; Dommen, J.; Duplissy, J.; Prevot, A.S.H.; Weingartner, E.; Baltensperger, U.; Verheggen, B.; Riipinen, I.; Kulmala, M.; Spracklen, D.V.; Carslaw, K.S.

    2010-01-01

    New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.

  9. Toward Quantifying the Mass-Based Hygroscopicity of Individual Submicron Atmospheric Aerosol Particles with STXM/NEXAFS and SEM/EDX

    Science.gov (United States)

    Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.

    2014-12-01

    The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.

  10. Natural and Anthropogenic Influences on Atmospheric Aerosol Variability

    Energy Technology Data Exchange (ETDEWEB)

    Asmi, A.

    2012-07-01

    Aerosol particles are everywhere in the atmosphere. They are a key factor in many important processes in the atmosphere, including cloud formation, scattering of incoming solar radiation and air chemistry. The aerosol particles have relatively short lifetimes in lower atmosphere, typically from days to weeks, and thus they have a high spatial and temporal variability. This thesis concentrates on the extent and reasons of sub-micron aerosol particle variability in the lower atmosphere, using both global atmospheric models and analysis of observational data. Aerosol number size distributions in the lower atmosphere are affected strongly by the new particle formation. Perhaps more importantly, a strong influence new particle formation is also evident in the cloud condensation nuclei (CCN) concentrations, suggesting a major role of the sulphuric acid driven new particle formation in the climate system. In this thesis, the sub-micron aerosol number size distributions in the European regional background air were characterized for the first time from consistent, homogenized and comparable datasets. Some recent studies have suggested that differences in aerosol emissions between weekdays could also affect the weather via aerosol-cloud interactions. In this thesis, the weekday-to-weekday variation of CCN sized aerosol number concentrations in Europe were found to be much smaller than expected from earlier studies, based on particle mass measurements. This result suggests that a lack of week-day variability in meteorology is not necessarily a sign of weak aerosol-cloud interactions. An analysis of statistically significant trends in past decades of measured aerosol number concentrations from Europe, North America, Pacific islands and Antarctica generally show decreases in concentrations. The analysis of these changes show that a potential explanation for the decreasing trends is the general reduction of anthropogenic emissions, especially SO{sub 2}, although a combination of

  11. Hygroscopic growth of atmospheric aerosol particles and its relation to nucleation scavenging in clouds

    Energy Technology Data Exchange (ETDEWEB)

    Svenningsson, B.

    1997-11-01

    Aerosol particles in the atmosphere are important in several aspects. Some major aerosol constituents that are deposited in ecosystems are acidic or fertilizers and some minor or trace constituents are toxic. Aerosol particles are also involved in the earth`s radiation balance, both directly by scattering the sunlight and indirectly by influencing the clouds. All these effects are influenced by the interaction between the aerosol particles and water vapour. A tandem differential mobility analyser (TDMA) has been designed to measure hygroscopic growth, i.e. the particle diameter change due to uptake of water at well defined relative humidities below 100%. Tests of the instrument performance have been made using aerosol particles of pure inorganic salts. Three field experiments have been performed as parts of large fog and cloud experiments. Bimodal hygroscopic growth spectra were found: less-hygroscopic particles containing a few percent and more-hygroscopic particles around 50% by volume of hygroscopically active material. In general the fraction of less-hygroscopic particles decreases with particle size and it is larger in polluted continental aerosols than in remote background aerosols. This external mixing cannot be fully understood using present views on the formation of aerosols. Evidence or the importance of the external mixing on the cloud nucleating properties of the particles are found in comparisons between hygroscopic growth spectra for the total aerosol, the interstitial aerosol in clouds, and cloud drop residuals. Cloud condensation nuclei spectra, calculated using aerosol particle size distributions and hygroscopic growth spectra, in combination with information on the major inorganic ions are presented. These CCN spectra reveal for instance that the influence of less-hygroscopic particles on the cloud droplets increases with increasing peak supersaturation. The fraction of the particles that were scavenged to cloud drops, as a function of particle

  12. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  13. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  14. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    International Nuclear Information System (INIS)

    Keck, L; Pesch, M; Grimm, H

    2011-01-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  15. Dust in the Sky: Atmospheric Composition. Modeling of Aerosol Optical Thickness

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Kinne, Stefan; Torres, Omar; Holben, Brent; Duncan, Bryan; Martin, Randall; Logan, Jennifer; Higurashi, Akiko; Nakajima, Teruyuki

    2000-01-01

    Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.

  16. Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology.

    Science.gov (United States)

    Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H

    2013-07-21

    Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.

  17. Dispersion of aerosol particles in the free atmosphere using ensemble forecasts

    Directory of Open Access Journals (Sweden)

    T. Haszpra

    2013-10-01

    Full Text Available The dispersion of aerosol particle pollutants is studied using 50 members of an ensemble forecast in the example of a hypothetical free atmospheric emission above Fukushima over a period of 2.5 days. Considerable differences are found among the dispersion predictions of the different ensemble members, as well as between the ensemble mean and the deterministic result at the end of the observation period. The variance is found to decrease with the particle size. The geographical area where a threshold concentration is exceeded in at least one ensemble member expands to a 5–10 times larger region than the area from the deterministic forecast, both for air column "concentration" and in the "deposition" field. We demonstrate that the root-mean-square distance of any particle from its own clones in the ensemble members can reach values on the order of one thousand kilometers. Even the centers of mass of the particle cloud of the ensemble members deviate considerably from that obtained by the deterministic forecast. All these indicate that an investigation of the dispersion of aerosol particles in the spirit of ensemble forecast contains useful hints for the improvement of risk assessment.

  18. Ice nucleation properties of atmospheric aerosol particles collected during a field campaign in Cyprus

    Science.gov (United States)

    Yordanova, Petya; Maier, Stefanie; Lang-Yona, Naama; Tamm, Alexandra; Meusel, Hannah; Pöschl, Ulrich; Weber, Bettina; Fröhlich-Nowoisky, Janine

    2017-04-01

    Atmospheric aerosol particles, including desert and soil dust as well as marine aerosols, are well known to act as ice nuclei (IN) and thus have been investigated in numerous ice nucleation studies. Based on their cloud condensation nuclei potential and their impacts on radiative properties of clouds (via scattering and absorption of solar radiation), aerosol particles may significantly affect the cloud and precipitation development. Atmospheric aerosols of the Eastern Mediterranean have been described to be dominated by desert dust, but only little is known on their composition and ice nucleating properties. In this study we investigated the ice nucleating ability of total suspended particles (TSP), collected at the remote site Agia Marina Xyliatou on Cyprus during a field campaign in April 2016. Airborne TSP samples containing air masses of various types such as African (Saharan) and Arabian dust and European and Middle Eastern pollution were collected on glass fiber filters at 24 h intervals. Sampling was performed ˜5 m above ground level and ˜521 m above sea level. During the sampling period, two major dust storms (PM 10max 118 μg/m3 and 66 μg/m3) and a rain event (rainfall amount: 3.4 mm) were documented. Chemical and physical characterizations of the particles were analyzed experimentally through filtration, thermal, chemical and enzyme treatments. Immersion freezing experiments were performed at relatively high subzero temperatures (-1 to -15˚ C) using the mono ice nucleation array. Preliminary results indicate that highest IN particle numbers (INPs) occurred during the second dust storm event with lower particle concentrations. Treatments at 60˚ C lead to a gradual IN deactivation, indicating the presence of biological INPs, which were observed to be larger than 300 kDa. Additional results originating from this study will be shown. Acknowledgement: This work was funded by the DFG Ice Nuclei Research Unit (INUIT).

  19. Modification of combustion aerosols in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    Combustion aerosols particles are released on large scale into the atmosphere in the industrialized regions as well as in the tropics (by wood fires). The particles are subjected to various aging processes which depend on the size, morphology, and chemical composition of the particles. The interaction of combustion particles with sunlight and humidity as well as adsorption and desorption of volatile material to or from the particles considerably changes their physical and chemical properties and thus their residence time in the atmosphere. This is of importance because combustion particles are known to have a variety of health effects on people. Moreover, atmospheric aerosol particles have an influence on climate, directly through the reflection and absorption of solar radiation and indirectly through modifying the optical properties and lifetime of clouds. In a first step, a field experiment was carried out to study the sources and characteristics of combustion aerosols that are emitted from vehicles in a road tunnel. It was found that most of the fine particles were tail pipe emissions of diesel powered vehicles. The calculation shows that on an average these vehicles emit about 300 mg fine particulate matter per driven kilometer. This emission factor is at least 100 times higher than the mean emission factor estimated for gasoline powered vehicles. Furthermore, it is found that during their residence time in the tunnel, the particles undergo significant changes: The particles change towards a more compact structure. The conclusion is reached that this is mainly due to adsorption of volatile material from the gas phase to the particle surface. In the atmosphere, the life cycle as well as the radiative and chemical properties of an aerosol particle is strongly dependent on its response to humidity. Therefore the hygroscopic behavior of combustion particles emitted from single sources (i.e. from a gasoline and a diesel engine) were studied in laboratory experiments.

  20. Aerosol Properties of the Atmospheres of Extrasolar Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Lavvas, P. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims Champagne Ardenne, Reims (France); Koskinen, T., E-mail: panayotis.lavvas@univ-reims.fr [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States)

    2017-09-20

    We use a model of aerosol microphysics to investigate the impact of high-altitude photochemical aerosols on the transmission spectra and atmospheric properties of close-in exoplanets, such as HD 209458 b and HD 189733 b. The results depend strongly on the temperature profiles in the middle and upper atmospheres, which are poorly understood. Nevertheless, our model of HD 189733 b, based on the most recently inferred temperature profiles, produces an aerosol distribution that matches the observed transmission spectrum. We argue that the hotter temperature of HD 209458 b inhibits the production of high-altitude aerosols and leads to the appearance of a clearer atmosphere than on HD 189733 b. The aerosol distribution also depends on the particle composition, photochemical production, and atmospheric mixing. Due to degeneracies among these inputs, current data cannot constrain the aerosol properties in detail. Instead, our work highlights the role of different factors in controlling the aerosol distribution that will prove useful in understanding different observations, including those from future missions. For the atmospheric mixing efficiency suggested by general circulation models, we find that the aerosol particles are small (∼nm) and probably spherical. We further conclude that a composition based on complex hydrocarbons (soots) is the most likely candidate to survive the high temperatures in hot-Jupiter atmospheres. Such particles would have a significant impact on the energy balance of HD 189733 b’s atmosphere and should be incorporated in future studies of atmospheric structure. We also evaluate the contribution of external sources to photochemical aerosol formation and find that their spectral signature is not consistent with observations.

  1. Present role of PIXE in atmospheric aerosol research

    Energy Technology Data Exchange (ETDEWEB)

    Maenhaut, Willy, E-mail: Willy.Maenhaut@UGent.be

    2015-11-15

    In the 1980s and 1990s nearly half of the elemental analyses of atmospheric aerosol samples were performed by PIXE. Since then, other techniques for elemental analysis became available and there has been a steady increase in studies on organic aerosol constituents and other aspects of aerosols, especially in the areas of nucleation (new particle formation), optical properties, and the role of aerosol particles in cloud formation and properties. First, a brief overview and discussion is given of the developments and trends in atmospheric aerosol analysis and research of the past three decades. Subsequently, it is indicated that there is still invaluable work to be done by PIXE in atmospheric aerosol research, especially if one teams up with other aerosol researchers and performs complementary measurements, e.g., on small aerosol samples that are taken with high-time resolution. Fine examples of such research are the work done by the Lund group in the CARIBIC aircraft studies and the analysis of circular streaker samples by the Florence PIXE group. These and other examples are presented and other possibilities of PIXE are indicated.

  2. Dynamics of neutral and charged aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Leppae, J.

    2012-07-01

    Atmospheric aerosol particles have various climate effects and adverse health effects, which both depend on the size and number concentration of the particles. Freshly-formed particles are not large enough to impact neither health nor climate and they are most susceptible to removal by collisions with larger pre-existing particles. Consequently, the knowledge of both the formation and the growth rate of particles are crucially important when assessing the health and climate effects of atmospheric new particle formation. The purpose of this thesis is to increase our knowledge of the dynamics of neutral and charged aerosol particles with a specific interest towards the particle growth rate and processes affecting the aerosol charging state. A new model, Ion-UHMA, which simulates the dynamics of neutral and charged particles, was developed for this purpose. Simple analytical formulae that can be used to estimate the growth rate due to various processes were derived and used to study the effects of charged particles on the growth rate. It was found that the growth rate of a freshly-formed particle population due to condensation and coagulation could be significantly increased when a considerable fraction of the particles are charged. Finally, recent data-analysis methods that have been applied to the aerosol charging states obtained from the measurements were modified for a charge asymmetric framework. The methods were then tested on data obtained from aerosol dynamics simulations. The methods were found to be able to provide reasonable estimates on the growth rate and proportion of particles formed via ion-induced nucleation, provided that the growth rate is high enough and that the charged particles do not grow much more rapidly than the neutral ones. A simple procedure for estimating whether the methods are suitable for analysing data obtained in specific conditions was provided. In this thesis, the dynamics of neutral and charged aerosol particles were studied in

  3. Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere

    Directory of Open Access Journals (Sweden)

    A. Wonaschütz

    2013-10-01

    Full Text Available During the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE, a plume of organic aerosol was produced by a smoke generator and emitted into the marine atmosphere from aboard the R/V Point Sur. In this study, the hygroscopic properties and the chemical composition of the plume were studied at plume ages between 0 and 4 h in different meteorological conditions. In sunny conditions, the plume particles had very low hygroscopic growth factors (GFs: between 1.05 and 1.09 for 30 nm and between 1.02 and 1.1 for 150 nm dry size at a relative humidity (RH of 92%, contrasted by an average marine background GF of 1.6. New particles were produced in large quantities (several 10 000 cm−3, which lead to substantially increased cloud condensation nuclei (CCN concentrations at supersaturations between 0.07 and 0.88%. Ratios of oxygen to carbon (O : C and water-soluble organic mass (WSOM increased with plume age: from −3, respectively, while organic mass fractions decreased slightly (~ 0.97 to ~ 0.94. High-resolution aerosol mass spectrometer (AMS spectra show that the organic fragment m/z 43 was dominated by C2H3O+ in the small, new particle mode and by C3H7+ in the large particle mode. In the marine background aerosol, GFs for 150 nm particles at 40% RH were found to be enhanced at higher organic mass fractions: an average GF of 1.06 was observed for aerosols with an organic mass fraction of 0.53, and a GF of 1.04 for an organic mass fraction of 0.35.

  4. Modelization and numerical simulation of atmospheric aerosols dynamics

    International Nuclear Information System (INIS)

    Debry, Edouard

    2004-01-01

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr

  5. Liquid chromatography-dopant-assisted atmospheric pressure photoionization-mass spectrometry: Application to the analysis of aldehydes in atmospheric aerosol particles.

    Science.gov (United States)

    Ruiz-Jiménez, José; Hautala, Sanna; Parshintsev, Jevgeni; Laitinen, Totti; Hartonen, Kari; Petäjä, Tuukka; Kulmala, Markku; Riekkola, Marja-Liisa

    2013-01-01

    A complete methodology based on LC-anisole-toluene dopant-assisted atmospheric pressure photoionization-IT-MS was developed for the determination of aldehydes in atmospheric aerosol particles. For the derivatization, ultrasound was used to accelerate the reaction between the target analytes and 2,4-dinitrophenylhydrazine. The developed methodology was validated for three different samples, gas phase, ultrafine (Dp = 30 ± 4 nm; where Dp stands for particle diameter) and all-sized particles, collected on Teflon filters. The method quantitation limits ranged from 5 to 227 pg. The accuracy and the potential matrix effects were evaluated using standard addition methodology. Recoveries ranged between 91.7 and 109.9%, and the repeatability and the reproducibility of the method developed between 0.5 and 8.0% and between 2.9 and 11.1%, respectively. The results obtained by the developed methodology compared to those provided by the previously validated method revealed no statistical differences. The method developed was applied to the determination of aldehydes in 16 atmospheric aerosol samples (30 nm and all-sized samples) collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations II during spring 2011. The mean concentrations of aldehydes, and oxidation products of terpenes were between 0.05 and 82.70 ng/m(3). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The size distribution of marine atmospheric aerosol with regard to primary biological aerosol particles over the South Atlantic Ocean

    Science.gov (United States)

    Matthias-Maser, Sabine; Brinkmann, Jutta; Schneider, Wilhelm

    The marine atmosphere is characterized by particles which originate from the ocean and by those which reached the air by advection from the continent. The bubble-burst mechanism produces both sea salt as well as biological particles. The following article describes the determination of the size distribution of marine aerosol particles with special emphasis on the biological particles. Th data were obtained on three cruises with the German Research Vessel "METEOR" crossing the South Atlantic Ocean. The measurements showed that biological particles amount to 17% in number and 10% in volume concentration. Another type of particle became obvious in the marine atmosphere, the biologically contaminated particle, i.e. particles which consist partly (approximately up to one-third) of biological matter. Their concentration in the evaluated size class ( r>2 μm) is higher than the concentration of the pure biological particles. The concentrations vary over about one to two orders of magnitude during all cruises.

  7. Comprehensive Airborne in Situ Characterization of Atmospheric Aerosols: From Angular Light Scattering to Particle Microphysics

    Science.gov (United States)

    Espinosa, W. Reed

    A comprehensive understanding of atmospheric aerosols is necessary both to understand Earth's climate as well as produce skillful air quality forecasts. In order to advance our understanding of aerosols, the Laboratory for Aerosols, Clouds and Optics (LACO) has recently developed the Imaging Polar Nephelometer instrument concept for the in situ measurement of aerosol scattering properties. Imaging Nephelometers provide measurements of absolute phase function and polarized phase function over a wide angular range, typically 3 degrees to 177 degrees, with an angular resolution smaller than one degree. The first of these instruments, the Polarized Imaging Nephelometer (PI-Neph), has taken part in five airborne field experiments and is the only modern aerosol polar nephelometer to have flown aboard an aircraft. A method for the retrieval of aerosol optical and microphysical properties from I-Neph measurements is presented and the results are compared with existing measurement techniques. The resulting retrieved particle size distributions agree to within experimental error with measurements made by commercial optical particle counters. Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, whose refractive index is well established. A synopsis is then presented of aerosol scattering measurements made by the PI-Neph during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Deep Convection Clouds and Chemistry (DC3) field campaigns. To better summarize these extensive datasets a novel aerosol classification scheme is developed, making use of ancillary data that includes gas tracers, chemical composition, aerodynamic particle size and geographic location, all independent of PI-Neph measurements. Principal component analysis (PCA) is then used to reduce the

  8. Non-ammonium reduced nitrogen species in atmospheric aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Dod, R.L.; Gundel, L.A.; Benner, W.H.; Novakov, T.

    1983-08-01

    The traditional belief that ambient aerosol particles contain nitrogen predominantly in the form of inorganic ionic species such as NH/sub 4//sup +/ and NO/sub 3//sup -/ was challenged about 10 years ago by results from x-ray photoelectron spectroscopic analysis (ESCA) of California aerosol particles. A significant fraction (approx. 50%) of the reduced nitrogen was observed to have an oxidation state more reduced than ammonium, characteristic of organic nitrogen species. We have used a recently developed thermal evolved gas analysis method (NO/sub x/) in conjunction with ESCA to confirm the existence of these species in aerosol particles collected in both the United States and Europe. The agreement of EGA and ESCA analyses indicates that these species are found not only on the surface but also throughout the particles. 9 references, 6 figures.

  9. Particle pollution changes the atmospheric circulation

    International Nuclear Information System (INIS)

    Kristjansson, Jon Egill; Iversen, Trond; Kirkevaag, Alf; Seland, Oeyvind; Debernard, Jens; Roeed, Lars Petter

    2002-01-01

    Industrial emissions and combustion of fossil fuels create large amounts of sulfate- and carbon containing soot particles. These mix with natural particles to change the natural aerosols. Such anthropogenic changes in the aerosols may have a great impact on the climate of the earth. Altered properties of the aerosols may change the atmosphere's absorption and reflection of solar radiation and contribute to heating or cooling. This is the direct effect. Changes in the properties of aerosols may also affect the number and size of recently formed cloud droplets. This may change the ability of the clouds to reflect solar radiation and to produce precipitation. This is the indirect effect. Recent research at the University of Oslo shows that anthropogenic particles significantly change the atmospheric circulation, in particular in the tropics, but also at European latitudes

  10. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    Directory of Open Access Journals (Sweden)

    Daniel J Cooney

    2008-08-01

    Full Text Available Daniel J Cooney1, Anthony J Hickey21Department of Biomedical Engineering; 2School of Pharmacy, University of North Carolina, Chapel Hill, NC, USAAbstract: The influence of diesel exhaust particles (DEP on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene in the particles resulting from the aerosolization process.Keywords: diesel exhaust particles, aerosol, inhalation toxicology

  11. Impact of aerosol particles on the structure of an atmospheric pressure microwave plasma afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chunku [Ceramic and Composite Materials Centre, 209 Farris Engineering Centre, University of New Mexico, Albuquerque, NM (United States); Phillips, Jonathan [Los Alamos National Laboratory, MS C930, Los Alamos, NM (United States)

    2002-05-21

    Several novel ceramic processing technologies (e.g. oxide ceramic melting and spheroidization) using an atmospheric pressure microwave plasma torch were recently developed in our lab. Understanding the processes and optimization requires complete characterization of the plasma as a function of operating condition. As a first step, a non-intrusive spectroscopic method was employed to map rotational (gas), electron and excitation temperatures and electron densities of the afterglow region of microwave generated atmospheric plasmas with and without alumina particle aerosol. Two-dimensional spatially resolved mapping of rotational (gas), excitation and electron temperatures and electron densities as a function of operating conditions during material processing were developed. It was shown that the passage of an aerosol dramatically changes the structure of the afterglow. Also the non-equilibrium nature of microwave generated atmospheric argon plasma was confirmed, suggesting that only multi-temperature models are capable of modelling this region of the plasma. (author)

  12. Characterization of regional atmospheric aerosols over Hungary by PIXE elemental analysis

    International Nuclear Information System (INIS)

    Koltay, E.; Szabo, G.; Borbely Kiss, I.; Somorjai, E.; Kiss, A.Z.

    1994-01-01

    Studying the characteristic features of atmospheric aerosols emitted by natural and anthropogenic sources is of basic importance for a detailed understanding of the physics and chemistry of the atmosphere. Environmental pollution by atmospheric aerosols and their impact can be tested in the same way, too. The separation of natural and anthropogenic components of the aerosol can be done through enrichment factors and size distribution curves deduced from analytical information. The Particle Induced X-ray Emission (PIXE) technique has been applied in aerosol studies by the authors. Results obtained on atmospheric aerosols collected over Hungary and presented in terms of concentrations, enrichment factors, regional signatures, deposition velocities, transport properties and apportionment of sources illustrate the scope and proportions of the potential contribution of PIXE to the methodology of atmospheric aerosol studies. Continued activity planned in the framework of the present CRP may widen the scope of the investigations mainly in the field of size-fractioned sampling and - possibly - in the direction of individual characterization of aerosol particles. (author). 14 refs

  13. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  14. Effects of anthropogenic aerosol particles on the radiation balance of the atmosphere. Einfluss anthropogener Aerosolteilchen auf den Strahlungshaushalt der Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Newiger, M

    1985-01-01

    The influence of aerosol particles is assessed on the basis of the changes in the climate parameters ''albedo'' and ''neutron flux''. Apart from the directly emitted particles, particles formed in the atmosphere as a result of SO/sub 2/ emissions are investigated. The model of aerosol effects on the radiation field takes account of the feedback with the microphysical parameters of the clouds. In the investigation, given particle concentrations were recalculated for three size classes using a two-dimensional transport model. The particle size distribution is described by a modified power function. Extreme-value estimates are made because the absorption capacity of anthropogenic particles is little known. A comparison of the climatic effects of anthropogenic activities shows that aerosol particles and SO/sub 2/ emissions have opposite effects on the radiation balance. (orig./PW).

  15. Aerosol counterflow two-jets unit for continuous measurement of the soluble fraction of atmospheric aerosols.

    Science.gov (United States)

    Mikuska, Pavel; Vecera, Zbynek

    2005-09-01

    A new type of aerosol collector employing a liquid at laboratory temperature for continuous sampling of atmospheric particles is described. The collector operates on the principle of a Venturi scrubber. Sampled air flows at high linear velocity through two Venturi nozzles "atomizing" the liquid to form two jets of a polydisperse aerosol of fine droplets situated against each other. Counterflow jets of droplets collide, and within this process, the aerosol particles are captured into dispersed liquid. Under optimum conditions (air flow rate of 5 L/min and water flow rate of 2 mL/min), aerosol particles down to 0.3 microm in diameter are quantitatively collected in the collector into deionized water while the collection efficiency of smaller particles decreases. There is very little loss of fine aerosol within the aerosol counterflow two-jets unit (ACTJU). Coupling of the aerosol collector with an annular diffusion denuder located upstream of the collector ensures an artifact-free sampling of atmospheric aerosols. Operation of the ACTJU in combination with on-line detection devices allows in situ automated analysis of water-soluble aerosol species (e.g., NO2-, NO3-)with high time resolution (as high as 1 s). Under the optimum conditions, the limit of detection for particulate nitrite and nitrate is 28 and 77 ng/m(3), respectively. The instrument is sufficiently rugged for its application at routine monitoring of aerosol composition in the real time.

  16. Size distribution of natural aerosols and radioactive particles issued from radon, in marine and hardly polluted urban atmospheres

    International Nuclear Information System (INIS)

    Tymen, Georges.

    1979-03-01

    With a view to studying the natural radioactive particles produced by atttachment of 222 Rn daughters on environmental aerosol particles, the behaviours of CASELLA MK2 and ANDERSEN cascade impactors were first investigated. Their characteristic stage diameters were determined and size distributions of airborne particles were obtained in various situations. Moreover, an experimental and automatic equipment for measuring radon was devised and a method was developed in order to evaluate RaA, RaB, RaC concentrations in the free atmosphere. A degree of radioactive desequilibrium between 222 Rn and its daughters, more important than that in other locations was thus demonstrated. Furthermore, by means of various aerosol collection systems (ion tubes, diffusion batteries, cascade impactors, filters), the cumulative size distribution of natural radioactivity was established in the air, at ground level. Finally, from a theory of attachment of small radioactive ions on atmospheric particles, a tentative explanation of experimental results was made [fr

  17. High-power laser radiation in atmospheric aerosols: Nonlinear optics of aerodispersed media

    Science.gov (United States)

    Zuev, V. E.; Zemlianov, A. A.; Kopytin, Iu. D.; Kuzikovskii, A. V.

    The bulk of this book contains the results of investigations carried out at the Institute of Atmospheric Optics, Siberian Branch, USSR Academy of Science with the participation of the authors. The microphysical and optical characteristics of atmospheric aerosols are considered, taking into account light scattering by a single aerosol particle, light scattering by a system of particles, the scattering phase matrix, light scattering by clouds and fogs, light scattering by hazes, and scattering phase functions of polydispersed aerosols. Other topics studies are related to low-energy (subexplosive) effects of radiation on individual particles, the formation of clear zones in clouds and fogs due to the vaporization of droplets under regular regimes, self-action of a wave beam in a water aerosol under conditions of regular droplet vaporization, laser beam propagation through an explosively evaporating water-droplet aerosol, the propagation of high-power laser radiation through hazes, the ionization and optical breakdown in aerosol media, and laser monitoring of a turbid atmosphere using nonlinear effects.

  18. Novel Measurements of Aerosol Particle Interfaces Using Biphasic Microfluidics

    Science.gov (United States)

    Metcalf, A. R.; Dutcher, C. S.

    2014-12-01

    Secondary organic aerosol (SOA) particles are nearly ubiquitous in the atmosphere and yet there remains large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. These aerosol interfaces can profoundly affect the fate of condensable organic compounds emitted into the atmosphere by altering the way in which organic vapors interact with the ambient aerosol. Aerosol interfaces affect particle internal structure, species uptake, equilibrium partitioning, activation to cloud condensation or ice nuclei, and optical properties. For example, organic thin films can shield the core of the aerosol from the ambient environment, which may disrupt equilibrium partitioning and mass transfer. To improve our ability to accurately predict the fate of SOA in the atmosphere, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Few technologies exist to accurately probe aerosol interfaces at atmospherically-relevant conditions. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred. Chemical compositions of the liquid phases studied here span a range of viscosities and include electrolyte and water soluble organic acid species often observed in the atmosphere, such as mixtures

  19. Characterization of aerosol particles at the forested site in Lithuania

    Science.gov (United States)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  20. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    Science.gov (United States)

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  1. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  2. Biomonitoring of atmospheric pollution: a novel approach for the evaluation of natural and anthropogenic contribution to atmospheric aerosol particles.

    Science.gov (United States)

    Caggiano, Rosa; Calamita, Giuseppe; Sabia, Serena; Trippetta, Serena

    2017-03-01

    The investigation of the potential natural and anthropogenic contribution to atmospheric aerosol particles by using lichen-bag technique was performed in the Agri Valley (Basilicata region, southern Italy). This is an area of international concern since it houses one of the largest European on-shore reservoirs and the biggest oil/gas pre-treatment plant (i.e., Centro Olio Val d'Agri (COVA)) within an anthropized context. In particular, the concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti, and Zn) were measured in lichen bags exposed in 59 selected monitoring points over periods of 6 months (from October 2011 to April 2012) and 12 months (from October 2011 to October 2012). The general origin of the main air masses affecting the sampling site during the study period was assessed by the back trajectories clustering calculated using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results allowed the identification and characterization of the crustal material, smoke, sea salt, sulfate, and anthropogenic trace element contributions to the atmospheric aerosol particles in the study area. Finally, the application of the trend surface analysis (TSA) allowed the study of the spatial distribution of the considered contributions highlighting the existence of a continuous broad variation of these contributions in the area of interest.

  3. Atmospheric Aerosol Emissions Related to the Mediterranean Seawater Biogeochemistry

    Science.gov (United States)

    Sellegri, K.; Schwier, A.; Rose, C.; Gazeau, F. P. H.; Guieu, C.; D'anna, B.; Ebling, A. M.; Pey, J.; Marchand, N.; Charriere, B.; Sempéré, R.; Mas, S.

    2016-02-01

    Marine aerosols contribute significantly to the global aerosol load and consequently has an important impact on the Earth's climate. Different factors influence the way they are produced at the air/seawater interface. The sea state (whitecap coverage, temperature, etc. ) influence the size and concentration of primarily produced particles but also biogeochemical characteristics of the seawater influence both the physical and chemical primary fluxes to the atmosphere. An additional aerosol source of marine aerosol to the atmosphere is the formation of new particles by gaz-to-particle conversion, i.e. nucleation. How the seawater and surface microlayer biogeochemical compositions influences the aerosol emissions is still a large debate. In order to study marine emissions, one approach is to use semi-controlled environments such as mesocosms. Within the MedSea and SAM projects, we characterize the primary Sea Spray Aerosol (SSA) during mesocosms experiments performed during different seasons in the Mediteranean Sea. Mesocosms were either left unchanged as control or enriched by addition of nutriments in order to create different levels of phytoplanctonic activities. The mesocosms waters were daily analyzed for their chemical and biological composition (DOC, CDOM, TEP, Chl-a, virus, bacteria, phytoplankton and zooplankton concentrations). SSA production by bubble bursting was daily simulated in a dedicated set-up. The size segregated SSA number fluxes, cloud condensation nuclei (CCN) properties, and chemical composition were determined as a function of the seawater characteristics. We show that the SSA organic content was clearly correlated to the seawater Chl-a level, provided that the mesocosm was not enriched to create an artificial phytoplanctonic bloom. In our experiments, the enrichment of the seawater with natural surface microlayer did not impact the SSA organic content nor its CCN properties. At last, nucleation of secondary particles were observed to occur in

  4. Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF): performance, reference spectra and classification of atmospheric samples

    Science.gov (United States)

    Shen, Xiaoli; Ramisetty, Ramakrishna; Mohr, Claudia; Huang, Wei; Leisner, Thomas; Saathoff, Harald

    2018-04-01

    The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH) is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE) of the instrument we use was determined to range from ˜ (0.01 ± 0.01) to ˜ (4.23 ± 2.36) % for polystyrene latex (PSL) in the size range of 200 to 2000 nm, ˜ (0.44 ± 0.19) to ˜ (6.57 ± 2.38) % for ammonium nitrate (NH4NO3), and ˜ (0.14 ± 0.02) to ˜ (1.46 ± 0.08) % for sodium chloride (NaCl) particles in the size range of 300 to 1000 nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core-organic shell particles; more complex particles such as soot and dust particles) were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements.

  5. Marine Emissions and Atmospheric Processing Influence Aerosol Mixing States in the Bering Strait and Chukchi Sea

    Science.gov (United States)

    Kirpes, R.; Rodriguez, B.; Kim, S.; Park, K.; China, S.; Laskin, A.; Pratt, K.

    2017-12-01

    The Arctic region is rapidly changing due to sea ice loss and increasing oil/gas development and shipping activity. These changes influence aerosol sources and composition, resulting in complex aerosol-cloud-climate feedbacks. Atmospheric particles were collected aboard the R/V Araon in July-August 2016 in the Alaskan Arctic along the Bering Strait and Chukchi Sea. Offline analysis of individual particles by microscopic and spectroscopic techniques provided information on particle size, morphology, and chemical composition. Sea spray aerosol (SSA) and organic aerosol (OA) particles were the most commonly observed particle types, and sulfate was internally mixed with both SSA and OA. Evidence of multiphase sea spray aerosol reactions was observed, with varying degrees of chlorine depletion observed along the cruise. Notably, atmospherically processed SSA, completely depleted in chlorine, and internally mixed organic and sulfate particles, were observed in samples influenced by the central Arctic Ocean. Changes in particle composition due to fog processing were also investigated. Due to the changing aerosol sources and atmospheric processes in the Arctic region, it is crucial to understand aerosol composition in order to predict climate impacts.

  6. Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles

    Directory of Open Access Journals (Sweden)

    A. Virtanen

    2011-08-01

    Full Text Available The assessment of the climatic impacts and adverse health effects of atmospheric aerosol particles requires detailed information on particle properties. However, very limited information is available on the morphology and phase state of secondary organic aerosol (SOA particles. The physical state of particles greatly affects particulate-phase chemical reactions, and thus the growth rates of newly formed atmospheric aerosol. Thus verifying the physical phase state of SOA particles gives new and important insight into their formation, subsequent growth, and consequently potential atmospheric impacts. According to our recent study, biogenic SOA particles produced in laboratory chambers from the oxidation of real plant emissions as well as in ambient boreal forest atmospheres can exist in a solid phase in size range >30 nm. In this paper, we extend previously published results to diameters in the range of 17–30 nm. The physical phase of the particles is studied by investigating particle bounce properties utilizing electrical low pressure impactor (ELPI. We also investigate the effect of estimates of particle density on the interpretation of our bounce observations. According to the results presented in this paper, particle bounce clearly decreases with decreasing particle size in sub 30 nm size range. The comparison measurements by ammonium sulphate and investigation of the particle impaction velocities strongly suggest that the decreasing bounce is caused by the differences in composition and phase of large (diameters greater than 30 nm and smaller (diameters between 17 and 30 nm particles.

  7. Aspects of airborne particles and radiation in the atmosphere

    International Nuclear Information System (INIS)

    Hidy, G.M.

    1975-01-01

    There are two major ways that thermal radiation may interact with airborne particles in the Earth's atmosphere. The first is a classical problem in which the radiation balance is influenced by scattering and absorption from haze or aerosol layers in the atmosphere. Absorption is generally believed to have a minor effect on attenuation of radiation compared with scattering. In the visible and infrared, scattering by submicron sized particles can have a substantial influence on the balance of radiation in the atmosphere. Considerable interest in this question has developed recently with the assessment of the global impact of air pollution in the lower atmosphere and of exhaust emissions from aircraft flying in the stratosphere. In the first part of this review, the physics of atmospheric aerosol scattering is summarized, and the current status of observational knowledge is examined to identify areas of greatest uncertainty. The second way the radiation is involved in aerosols lies in the production in the atmosphere. Until recently, evidence for airborne particle production by atmospheric photochemistry was quite ambiguous. However, with the advent of results from several new field experiments the role of photochemistry in the generation of aerosol precursors from traces of such gases as sulfur dioxide, nitrogen oxides, and olefinic hydrocarbons is much better understood. The remaining part of this paper is devoted to the discussion of several new observations that indicate the complicated nature of photochemical aerosol formation in the polluted and non-polluted atmosphere

  8. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    D. A. Pedernera

    2008-09-01

    Full Text Available A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulfate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1 and

  9. Heterogeneous Uptake of HO2 Radicals onto Atmospheric Aerosols

    Science.gov (United States)

    George, I. J.; Matthews, P. S.; Brooks, B.; Goddard, A.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2011-12-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, together known as HOx, play a vital role in atmospheric chemistry by controlling the oxidative capacity of the troposphere. The atmospheric lifetime and concentrations of many trace reactive species, such as volatile organic compounds (VOCs), are determined by HOx radical levels. Therefore, the ability to accurately predict atmospheric HOx concentrations from a detailed knowledge of their sources and sinks is a very useful diagnostic tool to assess our current understanding of atmospheric chemistry. Several recent field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models, where HO2 loss onto aerosols was suggested as a possible missing sink [1, 2]. However, the mechanism on HO2 uptake onto aerosols and its impact on ambient HOx levels are currently not well understood. To improve our understanding of this process, we have conducted laboratory experiments to measure HO2 uptake coefficients onto submicron aerosol particles. The FAGE (Fluorescence Assay by Gas Expansion) technique, a highly sensitive laser induced fluorescence based detection method, was used to monitor HO2 uptake kinetics onto aerosol particles in an aerosol flow tube. The application of the FAGE technique allowed for kinetic experiments to be performed under low HO2 concentrations, i.e. [HO2] atomizing dilute salt solutions or by homogeneous nucleation. HO2 uptake coefficients (γ) have been measured for single-component solid and aqueous inorganic salt and organic aerosol particles with a wide range of hygroscopicities. HO2 uptake coefficients on solid particles were below the detection limit (γ < 0.001), whereas on aqueous aerosols uptake coefficients were somewhat larger (γ = 0.001 - 0.008). HO2 uptake coefficients were highest on aerosols containing metal ions, such as Cu and Fe. Humidity and aerosol pH did not significantly impact the reactive HO2 uptake. Preliminary experiments have also

  10. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    Science.gov (United States)

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-12-22

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

  11. Microphysical processing of aerosol particles in orographic clouds

    Science.gov (United States)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  12. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  13. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  14. The role of ammonia in the chemistry of atmospheric aerosols

    International Nuclear Information System (INIS)

    Brosset, C.

    1979-01-01

    Data is presented on the concentrations of hydrogen and ammonium ions in aerosol samples taken under various meteorological conditions in different areas of Sweden, and implications for the atmospheric chemistry of aerosols are discussed. Particle compositions at coastal and inland stations were determined during situations when particle concentrations increased as much as a hundred times due to atmospheric transport from Europe or air movements from the east or west. Analysis of particle compositions during both types of particle episodes reveals variations in the H(+)/NH4(+) ratio which indicate that particles present over agricultural areas take up ammonia from the ground and release it over a forest district with acid lakes. The ratio is found to be dependent on the atmospheric partial pressure of ammonia at equilibrium, with the flow of ammonia to or from the ground and transport conditions also likely to influence the ratio

  15. Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF: performance, reference spectra and classification of atmospheric samples

    Directory of Open Access Journals (Sweden)

    X. Shen

    2018-04-01

    Full Text Available The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE of the instrument we use was determined to range from  ∼  (0.01 ± 0.01 to  ∼  (4.23 ± 2.36 % for polystyrene latex (PSL in the size range of 200 to 2000 nm,  ∼  (0.44 ± 0.19 to  ∼  (6.57 ± 2.38 % for ammonium nitrate (NH4NO3, and  ∼  (0.14 ± 0.02 to  ∼  (1.46 ± 0.08 % for sodium chloride (NaCl particles in the size range of 300 to 1000 nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core–organic shell particles; more complex particles such as soot and dust particles were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements.

  16. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  17. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

    Science.gov (United States)

    Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; Amorim Holanda, Bruna; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Cecchini, Micael A.; Costa, Anja; Dollner, Maximilian; Fütterer, Daniel; Järvinen, Emma; Jurkat, Tina; Klimach, Thomas; Konemann, Tobias; Knote, Christoph; Krämer, Martina; Krisna, Trismono; Machado, Luiz A. T.; Mertes, Stephan; Minikin, Andreas; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Sauer, Daniel; Schlager, Hans; Schnaiter, Martin; Schneider, Johannes; Schulz, Christiane; Spanu, Antonio; Sperling, Vinicius B.; Voigt, Christiane; Walser, Adrian; Wang, Jian; Weinzierl, Bernadett; Wendisch, Manfred; Ziereis, Helmut

    2018-01-01

    Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September-October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles ( 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable

  18. Measurements of Primary Biogenic Aerosol Particles with an Ultraviolet Aerodynamic Particle Sizer (UVAPS) During AMAZE-08

    Science.gov (United States)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2008-12-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the AMazonian Aerosol CharacteriZation Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. The presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 μm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as 'viable aerosols' or 'fluorescent bioparticles' (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. First data analyses show a pronounced peak of FBAP at diameters around 2-3 μm. In this size range the biogenic particle fraction was

  19. Formation and dynamic change of aerosol particles

    International Nuclear Information System (INIS)

    Kasahara, Mikio

    1986-01-01

    Processes of aerosol particle nucleation are roughly grouped into two types. In one, aerosol is produced as a result of dispersion of solid or liquid by mechanical force while in the other it is formed through phase transition from gas to solid or liquid due to cohesion caused by cooling, expansion or chemical reaction. This article reviews various aspects of aerosol particle nucleation through the latter type of processes and behaviors of the particles formed. Gas-to-particle conversion processes are divided into those of homogeneous and heterogeneous nucleation, and the former include homogeneous homomolecular and homogeneous heteromolecular nucleation processes. Here, homoneneous homomolecular nucleation is described centering on the theories proposed by Backer and Doring-Zeldovich-Volmer-Frenkel while homogeneous heteromolecular systems are outlined citing the theory developed by Kiang and Stauffer. Heterogeneous nucleation (or heterogeneous condensation) is discussed on the basis of the relationship between the mean free path of air molecules and the particle size. Various theories for particle formation and growth are listed and briefly outlined. Some of them are compared with experimental results. Models are cited to explain behaviors of aerosol particles after being formed. Also described is simulation of particle nucleation and growth in relation to atmospheric pollution and possible accidents of liquid-metal fast breeder reactors. (Nogami, K.)

  20. Field and Laboratory Studies of Atmospheric Organic Aerosol

    Science.gov (United States)

    Coggon, Matthew Mitchell

    This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation. The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate. Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f 99) was found to coincide with periods of heavy (f 42 > 0.15; f99 > 0.04), moderate (0.05 controlled organic plume emitted from the R/V Point Sur. Under sunny conditions, nucleated particles composed

  1. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions

    Directory of Open Access Journals (Sweden)

    M. Stock

    2011-05-01

    Full Text Available This work examines the effect of direct radiative forcing of aerosols in the eastern Mediterranean troposphere as a function of air mass composition, particle size distribution and hygroscopicity, and relative humidity (RH. During intensive field measurements on the island of Crete, Greece, the hygroscopic properties of atmospheric particles were determined using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA and a Hygroscopicity Differential Mobility Analyzer-Aerodynamic Particle Sizer (H-DMA-APS. Similar to former studies, the H-TDMA identified three hygroscopic sub-fractions of particles in the sub-μm range: a more hygroscopic group, a less hygroscopic group and a nearly hydrophobic particle group. The average hygroscopic particle growth factors at 90 % RH were a significant function of particle mobility diameter (Dp: 1.42 (± 0.05 at 30 nm compared to 1.63 (± 0.07 at 250 nm. The H-DMA-APS identified up to three hygroscopic sub-fractions at mobility diameters of 1.0 and 1.2 μm. The data recorded between 12 August and 20 October 2005 were classified into four distinct synoptic-scale air mass types distinguishing between different regions of origin (western Mediterranean vs. the Aegean Sea as well as the degree of continental pollution (marine vs. continentally influenced. The hygroscopic properties of particles with diameter Dp≥150 nm showed the most pronounced dependency on air mass origin, with growth factors in marine air masses exceeding those in continentally influenced air masses. Particle size distributions and hygroscopic growth factors were used to calculate aerosol light scattering coefficients at ambient RH using a Mie model. A main result was the pronounced enhancement of particle scattering over the eastern Mediterranean due to hygroscopic growth, both in the marine and continentally influenced air masses. When RH reached its summer daytime values around 70

  2. Atmospheric particle formation in spatially and temporally varying conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lauros, J.

    2011-07-01

    Atmospheric particles affect the radiation balance of the Earth and thus the climate. New particle formation from nucleation has been observed in diverse atmospheric conditions but the actual formation path is still unknown. The prevailing conditions can be exploited to evaluate proposed formation mechanisms. This study aims to improve our understanding of new particle formation from the view of atmospheric conditions. The role of atmospheric conditions on particle formation was studied by atmospheric measurements, theoretical model simulations and simulations based on observations. Two separate column models were further developed for aerosol and chemical simulations. Model simulations allowed us to expand the study from local conditions to varying conditions in the atmospheric boundary layer, while the long-term measurements described especially characteristic mean conditions associated with new particle formation. The observations show statistically significant difference in meteorological and back-ground aerosol conditions between observed event and non-event days. New particle formation above boreal forest is associated with strong convective activity, low humidity and low condensation sink. The probability of a particle formation event is predicted by an equation formulated for upper boundary layer conditions. The model simulations call into question if kinetic sulphuric acid induced nucleation is the primary particle formation mechanism in the presence of organic vapours. Simultaneously the simulations show that ignoring spatial and temporal variation in new particle formation studies may lead to faulty conclusions. On the other hand, the theoretical simulations indicate that short-scale variations in temperature and humidity unlikely have a significant effect on mean binary water sulphuric acid nucleation rate. The study emphasizes the significance of mixing and fluxes in particle formation studies, especially in the atmospheric boundary layer. The further

  3. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    Science.gov (United States)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  4. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    Science.gov (United States)

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-06

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  5. PIXE application to the study of atmospheric aerosol

    International Nuclear Information System (INIS)

    Zhu Guanghua

    1998-11-01

    In order to confirm the measurement accuracy of PIXE (Particle Induced X-ray Emission), cross-check test were carried out between three laboratories. Thirty single element samples and one plural elements sample were used in the test. The agreements between three laboratories were evaluated to be better than 10% for the most of tested samples. The reproducibility test showed very good agreement and the dispersion in three times repeated PIXE measurements was within 6% on average. Using an automatic time sequence step sampler in Beijing collected atmospheric aerosol samples. Element concentrations were analyzed by PIXE technique. Then the data were analyzed by the absolute principal factor analysis (APFA) to evaluate the principal components and the percent variance explained by them. As a result, it shows that the PIXE analysis combed with statistical method can effectively resolve the aerosol components in urban area and distinguish between local and remote area aerosol components. The atmospheric aerosol samples were collected at four representative sites with an 8-stage cascade impactor sampler and analyzed for their elemental mass concentrations by PIXE analytic method. Based on some indicator elements, the characteristics of size distributions of particles from different sources were obtained

  6. Spatial and Temporal Variations of Atmospheric Aerosol in Osaka

    Directory of Open Access Journals (Sweden)

    Sonoyo Mukai

    2013-05-01

    Full Text Available It is well known that the aerosol distribution in Asia is complex due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the behavior of natural dusts. Therefore, detailed observations of atmospheric particles in Asian urban cities are important. In this work, we focus on the spatial and temporal variations of atmospheric particles around Higashi-Osaka in Japan. Higashi-Osaka is located in the eastern part of Osaka, the second-largest city in Japan, and is famous for small- and medium-sized manufacturing enterprises. For this study, we placed various ground measurement devices around the Higashi-Osaka campus of Kinki University including a Cimel sunphotometer supported by NASA/AERONET (Aerosol robotics network, suspended particulate matter (SPM sampler and LIDAR (light detection and ranging. Individual particle analyses with a SEM (scanning electron microscope/EDX (energy-dispersive X-ray analyzer show the temporal variations of particle properties, such as size, shape and components, during a dust event on 21 March 2010. The simultaneous measurement using a portable sun photometer with AERONET was conducted from April to November 2011. A comparison of the data at each site and the combination of the observed LIDAR data and model simulations indicate the difference in the transportation processes between dust and anthropogenic particles. We suppose this difference is attributed to the differences in the vertical aerosol profiles, where one aerosol is transported over Mount Ikoma and the other is blocked by it.

  7. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles

    CERN Document Server

    Riccobono, Francesco; Baltensperger, Urs; Worsnop, Douglas R; Curtius, Joachim; Carslaw, Kenneth S; Wimmer, Daniela; Wex, Heike; Weingartner, Ernest; Wagner, Paul E; Vrtala, Aron; Viisanen, Yrjö; Vaattovaara, Petri; Tsagkogeorgas, Georgios; Tomé, Antonio; Stratmann, Frank; Stozhkov, Yuri; Spracklen, Dominick V; Sipilä, Mikko; Praplan, Arnaud P; Petäjä, Tuukka; Onnela, Antti; Nieminen, Tuomo; Mathot, Serge; Makhmutov, Vladimir; Lehtipalo, Katrianne; Laaksonen, Ari; Kvashin, Alexander N.; Kürten, Andreas; Kupc, Agnieszka; Keskinen, Helmi; Kajos, Maija; Junninen, Heikki; Hansel, Armin; Franchin, Alessandro; Flagan, Richard C; Ehrhart, Sebastian; Duplissy, Jonathan; Dunne, Eimear M; Downard, Andrew; David, André; Breitenlechner, Martin; Bianchi, Federico; Amorim, Antonio; Almeida, João; Rondo, Linda; Ortega, Ismael K; Dommen, Josef; Scott, Catherine E; Vrtala, Aron; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipila, Mikko; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku

    2014-01-01

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.

  8. Interaction of radon progeny with atmospheric aerosols

    International Nuclear Information System (INIS)

    Morawska, Lidia

    1994-01-01

    The radiological health hazard due to the airborne radon progeny depends on three factors (i) radon concentration in the air, (ii) radon progeny concentration, and (iii) active particle size distribution. Conclusions as to the health hazard cannot be drawn without full understanding of the interaction mechanisms between radon progeny and atmospheric aerosols. The aim of this work was to study the interaction mechanisms between radon progeny, natural environmental aerosols and environmental tobacco smoke (ETS). The experiments were performed under controlled laboratory conditions of radon concentration (1.85 and 3.70 Bq m -3 ), relative humidity (35, 50, 75 and 95%) and ETS generation. The size distribution of radioactivity carrying aerosols was measured using a wire screen diffusion battery system and size distribution of all airborne aerosols using a differential mobility particle sizer. The paper presents and discusses the results of activity size distribution and radon progeny concentration measurements for different environmental conditions. 7 refs., 2 tabs

  9. Aerosolization and Atmospheric Transformation of Engineered Nanoparticles

    Science.gov (United States)

    Tiwari, Andrea J.

    While research on the environmental impacts of engineered nanoparticles (ENPs) is growing, the potential for them to be chemically transformed in the atmosphere has been largely ignored. The overall objective of this work was to assess the atmospheric transformation of carbonaceous nanoparticles (CNPs). The research focuses on C60 fullerene because it is an important member of the carbonaceous nanoparticle (CNP) family and is used in a wide variety of applications. The first specific objective was to review the potential of atmospheric transformations to alter the environmental impacts of CNPs. We described atmospheric processes that were likely to physically or chemically alter aerosolized CNPs and demonstrated their relevance to CNP behavior and toxicity in the aqueous and terrestrial environment. In order to investigate the transformations of CNP aerosols under controlled conditions, we developed an aerosolization technique that produces nano-scale aerosols without using solvents, which can alter the surface chemistry of the aerosols. We demonstrated the technique with carbonaceous (C60) and metal oxide (TiO2, CeO2) nanoparticle powders. All resulting aerosols exhibited unimodal size distributions and mode particle diameters below 100 nm. We used the new aerosolization technique to investigate the reaction between aerosolized C60 and atmospherically realistic levels of ozone (O3) in terms of reaction products, reaction rate, and oxidative stress potential. We identified C60O, C60O2, and C60O3 as products of the C60-O3 reaction. We demonstrated that the oxidative stress potential of C 60 may be enhanced by exposure to O3. We found the pseudo-first order reaction rate to be 9 x 10-6 to 2 x 10 -5 s-1, which is several orders of magnitude lower than the rate for several PAH species under comparable conditions. This research has demonstrated that a thorough understanding of atmospheric chemistry of ENPs is critical for accurate prediction of their environmental

  10. Can Condensing Organic Aerosols Lead to Less Cloud Particles?

    Science.gov (United States)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S.

    2017-12-01

    We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.

  11. Organic aerosol formation during the atmospheric degradation of toluene.

    Science.gov (United States)

    Hurley, M D; Sokolov, O; Wallington, T J; Takekawa, H; Karasawa, M; Klotz, B; Barnes, I; Becker, K H

    2001-04-01

    Organic aerosol formation during the atmospheric oxidation of toluene was investigated using smog chamber systems. Toluene oxidation was initiated by the UV irradiation of either toluene/air/NOx or toluene/air/CH3ONO/NO mixtures. Aerosol formation was monitored using scanning mobility particle sizers and toluene loss was monitored by in-situ FTIR spectroscopy or GC-FID techniques. The experimental results show that the reaction of OH radicals, NO3 radicals and/or ozone with the first generation products of toluene oxidation are sources of organic aerosol during the atmospheric oxidation of toluene. The aerosol results fall into two groups, aerosol formed in the absence and presence of ozone. An analytical expression for aerosol formation is developed and values are obtained for the yield of the aerosol species. In the absence of ozone the aerosol yield, defined as aerosol formed per unit toluene consumed once a threshold for aerosol formation has been exceeded, is 0.075 +/- 0.004. In the presence of ozone the aerosol yield is 0.108 +/- 0.004. This work provides experimental evidence and a simple theory confirming the formation of aerosol from secondary reactions.

  12. Extraction and Characterization of Surfactants from Atmospheric Aerosols.

    Science.gov (United States)

    Nozière, Barbara; Gérard, Violaine; Baduel, Christine; Ferronato, Corinne

    2017-04-21

    Surface-active compounds, or surfactants, present in atmospheric aerosols are expected to play important roles in the formation of liquid water clouds in the Earth's atmosphere, a central process in meteorology, hydrology, and for the climate system. But because specific extraction and characterization of these compounds have been lacking for decades, very little is known on their identity, properties, mode of action and origins, thus preventing the full understanding of cloud formation and its potential links with the Earth's ecosystems. In this paper we present recently developed methods for 1) the targeted extraction of all the surfactants from atmospheric aerosol samples and for the determination of 2) their absolute concentrations in the aerosol phase and 3) their static surface tension curves in water, including their Critical Micelle Concentration (CMC). These methods have been validated with 9 references surfactants, including anionic, cationic and non-ionic ones. Examples of results are presented for surfactants found in fine aerosol particles (diameter <1 μm) collected at a coastal site in Croatia and suggestions for future improvements and other characterizations than those presented are discussed.

  13. Microphysical processing of aerosol particles in orographic clouds

    Directory of Open Access Journals (Sweden)

    S. Pousse-Nottelmann

    2015-08-01

    aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener–Bergeron–Findeisen (WBF process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number

  14. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Science.gov (United States)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-07-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  15. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2011-07-01

    Full Text Available Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  16. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere

    CERN Document Server

    Almeida, João; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Vehkamaki, Hanna; Kirkby, Jasper

    2013-01-01

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates ...

  17. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

    Science.gov (United States)

    Riccobono, Francesco; Schobesberger, Siegfried; Scott, Catherine E; Dommen, Josef; Ortega, Ismael K; Rondo, Linda; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Downard, Andrew; Dunne, Eimear M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hansel, Armin; Junninen, Heikki; Kajos, Maija; Keskinen, Helmi; Kupc, Agnieszka; Kürten, Andreas; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipilä, Mikko; Spracklen, Dominick V; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjö; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Wimmer, Daniela; Carslaw, Kenneth S; Curtius, Joachim; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku; Worsnop, Douglas R; Baltensperger, Urs

    2014-05-16

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations. Copyright © 2014, American Association for the Advancement of Science.

  18. Nuclear analytical techniques applied to characterization of atmospheric aerosols in Amazon Region

    International Nuclear Information System (INIS)

    Gerab, Fabio; Artaxo, Paulo

    1996-01-01

    This work presents the atmospheric aerosols characterization that exist in different regions of Amazon basin. The biogenic aerosol emission by forest, as well as the atmospheric emissions of particulate materials due to biomass burning, were analyzed. Samples of aerosol particles were collected during three years in two different locations of Amazon region using Stacked Unit Filters. In order to study these samples some analytical nuclear techniques were used. The high concentrations of aerosols as a result of biomass burning process were observed in the period of june-september

  19. Hygroscopic Properties and Chemical Composition of Aerosol Particles at the High Alpine Site Jungfraujoch

    Energy Technology Data Exchange (ETDEWEB)

    Weingarter, E.; Gysel, M.; Sjoegren, S.; Baltesperger, U.; Alfarra, R.; Bower, K.; Coe, H.

    2004-03-01

    The hygroscopic properties of aerosols play a significant role in atmospheric phenomena such as acid deposition, visibility degradation and climate change. Due to the hygroscopic growth of the particles, water is often the dominant component of the ambient aerosol at high relative humidity (RH) conditions. The ability to absorb water depends on the particle chemical composition, dry size, and shape. The aim of this study is to link the chemical composition of the atmospheric aerosol to its hygroscopic properties. (author)

  20. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion......-effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  1. Dissolution process of atmospheric aerosol particles into cloud droplets; Processus de dissolution des aerosols atmospheriques au sein des gouttes d'eau nuageuses

    Energy Technology Data Exchange (ETDEWEB)

    Desboeufs, K

    2001-01-15

    Clouds affect both climate via the role they play in the Earth's radiation balance and tropospheric chemistry since they are efficient reaction media for chemical transformation of soluble species. Cloud droplets are formed in the atmosphere by condensation of water vapour onto aerosol particles, the cloud condensation nuclei (CCN). The water soluble fraction of these CCN governs the cloud micro-physics, which is the paramount factor playing on the radiative properties of clouds. Moreover, this soluble fraction is the source of species imply in the oxidation/reduction reactions in the aqueous phase. Thus, it is of particular importance to understand the process controlling the solubilization of aerosols in the cloud droplets. The main purpose of this work is to investigate experimentally and theoretically the dissolution of particles incorporated in the aqueous phase. From the studies conducted up to now, we have identify several factors playing on the dissolution reaction of aerosols. However, the quantification of the effects of these factors is difficult since the current means of study are not adapted to the complexity of cloud systems. First, this work consisted to perform a experimental system, compound by an open flow reactor, enabling to follow the kinetic of dissolution in conditions representative of cloud. This experimental device is used to a systematic characterisation of the known factors playing on the dissolution, i.e. pH, aerosol nature, aerosol weathering... and also for the identification and the quantification of the effects of other factors: ionic strength, acid nature, clouds processes. These experiments gave quantitative results, which are used to elaborate a simple model of aerosol dissolution in the aqueous phase. This model considers the main factors playing on the dissolution and results in a general mechanism of aerosol dissolution extrapolated to the cloud droplets. (author)

  2. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    International Nuclear Information System (INIS)

    Hallock, K.A.; Mazurek, M.A.; Cass, G.R.

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon

  3. A contribution to the study of atmospheric aerosols in urban, marine and oceanic areas

    International Nuclear Information System (INIS)

    Butor, Jean-Francois

    1980-01-01

    A study of atmospheric aerosols, especially marine aerosols, was carried out, using impactors and nuclepore filters in association with electron microscopy techniques. The performances of the experimental device were first determined carefully and a generator of monodisperse aerosols was built at the laboratory in order to measure the efficiency of the filters used. It was demonstrated that the chief atmospheric particulate constituents could be determined by electron microscopy. The particle-size distribution of oceanic aerosols was next studied on the basis of the results of three measurement campaigns carried out in the Atlantic ocean. In Brest, where urban aerosols more or less affected by the meteorological conditions can be found superimposed to marine aerosols, an assessment was made of the effects of moderate anthropogeneous pollution on marine aerosols as measured in the Atlantic ocean. Two cases of marine aerosol disturbance, the former by an accidental marine pollution, the latter linked to a natural local phenomenon are related and a model of the marine aerosol in the Northern Atlantic ocean is proposed which takes into account the mean particle size spectra, the characteristic parameters of its three-modal distribution and the qualitative analysis of particles. (author) [fr

  4. Oxalate metal complexes in aerosol particles: implications for the hygroscopicity of oxalate-containing particles

    Directory of Open Access Journals (Sweden)

    T. Furukawa

    2011-05-01

    Full Text Available Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to weaken the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA play an important role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is an important component of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca and zinc (Zn in aerosols collected at Tsukuba in Japan. Size-fractionated aerosol samples were collected for this purpose using an impactor aerosol sampler. It was shown that 10–60% and 20–100% of the total Ca and Zn in the finer particles (<2.1 μm were present as Ca and Zn oxalate complexes, respectively. Oxalic acid is hygroscopic and can thus increase the CCN activity of aerosol particles, while complexes with various polyvalent metal ions such as Ca and Zn are not hygroscopic, which cannot contribute to the increase of the CCN activity of aerosols. Based on the concentrations of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not always increase the hygroscopicity of aerosols in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is advisable that the cooling effect of organic aerosols should be estimated by including the

  5. Relation between aerosol sources and meteorological parameters for inhalable atmospheric particles in Sao Paulo City, Brazil

    Science.gov (United States)

    Andrade, Fatima; Orsini, Celso; Maenhaut, Willy

    Stacked filter units were used to collect atmospheric particles in separate coarse and fine fractions at the Sao Paulo University Campus during the winter of 1989. The samples were analysed by particle-induced X-ray emission (PIXE) and the data were subjected to an absolute principal component analysis (APCA). Five sources were identified for the fine particles: industrial emissions, which accounted for 13% of the fine mass; emissions from residual oil and diesel, explaining 41%; resuspended soil dust, with 28%; and emissions of Cu and of Mg, together with 18%. For the coarse particles, four sources were identified: soil dust, accounting for 59% of the coarse mass; industrial emissions, with 19%; oil burning, with 8%; and sea salt aerosol, with 14% of the coarse mass. A data set with various meteorological parameters was also subjected to APCA, and a correlation analysis was performed between the meteorological "absolute principal component scores" (APCS) and the APCS from the fine and coarse particle data sets. The soil dust sources for the fine and coarse aerosol were highly correlated with each other and were anticorrelated with the sea breeze component. The industrial components in the fine and coarse size fractions were also highly positively correlated. Furthermore, the industrial component was related with the northeasterly wind direction and, to a lesser extent, with the sea breeze component.

  6. Dissolution process of atmospheric aerosol particles into cloud droplets; Processus de dissolution des aerosols atmospheriques au sein des gouttes d'eau nuageuses

    Energy Technology Data Exchange (ETDEWEB)

    Desboeufs, K.

    2001-01-15

    Clouds affect both climate via the role they play in the Earth's radiation balance and tropospheric chemistry since they are efficient reaction media for chemical transformation of soluble species. Cloud droplets are formed in the atmosphere by condensation of water vapour onto aerosol particles, the cloud condensation nuclei (CCN). The water soluble fraction of these CCN governs the cloud micro-physics, which is the paramount factor playing on the radiative properties of clouds. Moreover, this soluble fraction is the source of species imply in the oxidation/reduction reactions in the aqueous phase. Thus, it is of particular importance to understand the process controlling the solubilization of aerosols in the cloud droplets. The main purpose of this work is to investigate experimentally and theoretically the dissolution of particles incorporated in the aqueous phase. From the studies conducted up to now, we have identify several factors playing on the dissolution reaction of aerosols. However, the quantification of the effects of these factors is difficult since the current means of study are not adapted to the complexity of cloud systems. First, this work consisted to perform a experimental system, compound by an open flow reactor, enabling to follow the kinetic of dissolution in conditions representative of cloud. This experimental device is used to a systematic characterisation of the known factors playing on the dissolution, i.e. pH, aerosol nature, aerosol weathering... and also for the identification and the quantification of the effects of other factors: ionic strength, acid nature, clouds processes. These experiments gave quantitative results, which are used to elaborate a simple model of aerosol dissolution in the aqueous phase. This model considers the main factors playing on the dissolution and results in a general mechanism of aerosol dissolution extrapolated to the cloud droplets. (author)

  7. Nuclear analytical techniques applied to the large scale measurements of atmospheric aerosols in the amazon region

    International Nuclear Information System (INIS)

    Gerab, Fabio

    1996-03-01

    This work presents the characterization of the atmosphere aerosol collected in different places of the Amazon Basin. We studied both the biogenic emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burning during the dry season. The samples were collected during a three year period at two different locations in the Amazon, namely the Alta Floresta (MT) and Serra do Navio (AP) regions, using stacked unit filters. These regions represent two different atmospheric compositions: the aerosol is dominated by the forest natural biogenic emission at Serra do Navio, while at Alta Floresta it presents an important contribution from the man-made burning during the dry season. At Alta Floresta we took samples in gold in order to characterize mercury emission to the atmosphere related to the gold prospection activity in Amazon. Airplanes were used for aerosol sampling during the 1992 and 1993 dry seasons to characterize the atmospheric aerosol contents from man-made burning in large Amazonian areas. The samples were analyzed using several nuclear analytic techniques: Particle Induced X-ray Emission for the quantitative analysis of trace elements with atomic number above 11; Particle Induced Gamma-ray Emission for the quantitative analysis of Na; and Proton Microprobe was used for the characterization of individual particles of the aerosol. Reflectancy technique was used in the black carbon quantification, gravimetric analysis to determine the total atmospheric aerosol concentration and Cold Vapor Atomic Absorption Spectroscopy for quantitative analysis of mercury in the particulate from the Alta Floresta gold shops. Ionic chromatography was used to quantify ionic contents of aerosols from the fine mode particulate samples from Serra do Navio. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. (author)

  8. On the sources of submicron aerosol particles in savannah: implications for climate and air quality

    Energy Technology Data Exchange (ETDEWEB)

    Vakkari, V.

    2013-11-01

    Aerosol is defined as solid or liquid particles suspended in a gas lighter than the particles, which means that the atmosphere we live in is an aerosol in itself. Although aerosol particles are only a trace component of the atmosphere they affect our lives in several ways. The aerosol particles can cause adverse health effects and deteriorate visibility, but they affect also the Earth s climate directly by scattering and absorbing solar radiation and indirectly by modulating the properties of the clouds. Anthropogenic aerosol particles have a net cooling effect on the climate, but the uncertainty in the amount of cooling is presently as large as the heating effect of carbon dioxide. To reduce the uncertainty in the aerosol climate effects, spatially representative reference data of high quality are needed for the global climate models. To be able to capture the diurnal and seasonal variability the data have to be collected continuously over time periods that cover at least one full seasonal cycle. Until recently such data have been nearly non-existing for continental Africa and hence one aim of this work was to establish a permanent measurement station measuring the key aerosol particle properties in a continental location in southern Africa. In close collaboration with the North-West University in South Africa this aim has now been achieved at the Welgegund measurement station. The other aims of this work were to determine the aerosol particle concentrations including their seasonal and diurnal variation and to study the most important aerosol particle sources in continental southern Africa. In this thesis the aerosol size distribution and its seasonal and diurnal variation is reported for different environments ranging from a clean rural background to an anthropogenically heavily influenced mining region in continental southern Africa. Atmospheric regional scale new particle formation has been observed at a world record high frequency and it dominates the diurnal

  9. Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign

    Science.gov (United States)

    Kupc, Agnieszka; Williamson, Christina; Wagner, Nicholas L.; Richardson, Mathews; Brock, Charles A.

    2018-01-01

    Atmospheric aerosol is a key component of the chemistry and climate of the Earth's atmosphere. Accurate measurement of the concentration of atmospheric particles as a function of their size is fundamental to investigations of particle microphysics, optical characteristics, and chemical processes. We describe the modification, calibration, and performance of two commercially available, Ultra-High Sensitivity Aerosol Spectrometers (UHSASs) as used on the NASA DC-8 aircraft during the Atmospheric Tomography Mission (ATom). To avoid sample flow issues related to pressure variations during aircraft altitude changes, we installed a laminar flow meter on each instrument to measure sample flow directly at the inlet as well as flow controllers to maintain constant volumetric sheath flows. In addition, we added a compact thermodenuder operating at 300 °C to the inlet line of one of the instruments. With these modifications, the instruments are capable of making accurate (ranging from 7 % for Dp 0.13 µm), precise ( 1000 to 225 hPa, while simultaneously providing information on particle volatility.We assessed the effect of uncertainty in the refractive index (n) of ambient particles that are sized by the UHSAS assuming the refractive index of ammonium sulfate (n = 1.52). For calibration particles with n between 1.44 and 1.58, the UHSAS diameter varies by +4/-10 % relative to ammonium sulfate. This diameter uncertainty associated with the range of refractive indices (i.e., particle composition) translates to aerosol surface area and volume uncertainties of +8.4/-17.8 and +12.4/-27.5 %, respectively. In addition to sizing uncertainty, low counting statistics can lead to uncertainties of 1000 cm-3.Examples of thermodenuded and non-thermodenuded aerosol number and volume size distributions as well as propagated uncertainties are shown for several cases encountered during the ATom project. Uncertainties in particle number concentration were limited by counting statistics

  10. Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2011-12-01

    Full Text Available Atmospheric particles were measured in the late winter (25 February–26 March 2009 at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2009. A quadrupole aerosol mass spectrometer (Q-AMS was employed to quantify the size-resolved chemical composition of non-refractory submicron aerosol, and a thermodenuder was used to analyze the organic aerosol (OA volatility. Complementary measurements included particle size distributions from a scanning mobility particle sizer, inorganic and organic particle composition from filter analysis, air ion concentrations, O3, NOx and NOy concentrations, and meteorological measurements. Factor analysis was performed on the OA mass spectra, and the variability in OA composition could best be explained with three OA components. The oxygenated organic aerosol (OOA was similar in composition and volatility to the summertime OA previously measured at this site and may represent an effective endpoint in particle-phase oxidation of organics. The two other OA components, one associated with amines (Amine-OA and the other probably associated with the burning of olive branches (OB-OA, had very low volatility but were less oxygenated. Hydrocarbon-like organic aerosol (HOA was not detected. The absence of OB-OA and Amine-OA in the summer data may be due to lower emissions and/or photochemical conversion of these components to OOA.

  11. Aerosol Particle Interfacial Thermodynamics and Phase Partitioning Measurements Using Biphasic Microfluidics

    Science.gov (United States)

    Dutcher, Cari; Metcalf, Andrew

    2015-03-01

    Secondary organic aerosol particles are nearly ubiquitous in the atmosphere and yet there remain large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. Interfacial properties affect the ambient aerosol morphology, or internal structure of the particle, which in turn can affect the way a particle interacts with an environment of condensable clusters and organic vapors. To improve our ability to accurately predict ambient aerosol morphology, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Unfortunately, many techniques employed to measure interfacial properties do so in bulk solutions or in the presence of a ternary (e.g. solid) phase. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface or interfacial tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred.

  12. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no

  13. The physico-chemical evolution of atmospheric aerosols and the gas-particle partitioning of inorganic aerosol during KORUS-AQ

    Science.gov (United States)

    Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Desyaterik, Y.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly by scattering and absorption and indirectly by acting as cloud condensation nuclei and some of the effects of aerosols are reduction in visibility, deterioration of human health, and deposition of pollutants to ecosystems. Urban area is large source of aerosols and aerosol precursors. Aerosol sources are both local and from long-range transport. Long-range transport processed aerosol are often dominant sources of aerosol pollution in Korea. To improve our knowledge of aerosol chemistry, Korea and U.S-Air Quality (KORUS-AQ) of Aircraft-based aerosol measurement took place in and around Seoul, Korea during May and June 2016. KORUS-AQ campaigns were conducted to study the chemical characterization and processes of pollutants in the Seoul Metropolitan area to regional scales of Korean peninsula. Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on aircraft platforms on-board DC-8 (NASA) aircraft. We characterized aerosol chemical properties and mass concentrations of sulfate, nitrate, ammonium and organics in polluted air plumes and investigate the spatial and vertical distribution of the species. The results of studies show that organics is predominant in Aerosol and a significant fraction of the organics is oxygenated organic aerosol (OOA) at the high altitude. Both Nitrate and sulfate can partition between the gas and particle phases. The ratios for HNO3/(N(V) (=gaseous HNO3 + particulate Nitrate) and SO2/(SO2+Sulfate) were found to exhibit quite different distributions between the particles and gas phase for the locations during KORUS-AQ campaign, representing potential for formation of additional particulate nitrate and sulfate. The results of those studies can provide highly resolved temporal and spatial air pollutant, which are valuable for air quality model input parameters for aerosol behaviour.

  14. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    Science.gov (United States)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  15. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    Science.gov (United States)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  16. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state: an aerosol microphysical module for global atmospheric models

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2008-10-01

    Full Text Available A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS climate model (ModelE are described. This module, which is based on the quadrature method of moments (QMOM, represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations.

    A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment

  17. Modeling of particle mixing in the atmosphere

    International Nuclear Information System (INIS)

    Zhu, Shupeng

    2015-01-01

    This thesis presents a newly developed size-composition resolved aerosol model (SCRAM), which is able to simulate the dynamics of externally-mixed particles in the atmosphere, and evaluates its performance in three-dimensional air-quality simulations. The main work is split into four parts. First, the research context of external mixing and aerosol modelling is introduced. Secondly, the development of the SCRAM box model is presented along with validation tests. Each particle composition is defined by the combination of mass-fraction sections of its chemical components or aggregates of components. The three main processes involved in aerosol dynamic (nucleation, coagulation, condensation/ evaporation) are included in SCRAM. The model is first validated by comparisons with published reference solutions for coagulation and condensation/evaporation of internally-mixed particles. The particle mixing state is investigated in a 0-D simulation using data representative of air pollution at a traffic site in Paris. The relative influence on the mixing state of the different aerosol processes and of the algorithm used to model condensation/evaporation (dynamic evolution or bulk equilibrium between particles and gas) is studied. Then, SCRAM is integrated into the Polyphemus air quality platform and used to conduct simulations over Greater Paris during the summer period of 2009. This evaluation showed that SCRAM gives satisfactory results for both PM2.5/PM10 concentrations and aerosol optical depths, as assessed from comparisons to observations. Besides, the model allows us to analyze the particle mixing state, as well as the impact of the mixing state assumption made in the modelling on particle formation, aerosols optical properties, and cloud condensation nuclei activation. Finally, two simulations are conducted during the winter campaign of MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for

  18. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.

    Science.gov (United States)

    Rutter, Andrew P; Schauer, James J

    2007-06-01

    A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.

  19. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.

    Science.gov (United States)

    Parshintsev, Jevgeni; Vaikkinen, Anu; Lipponen, Katriina; Vrkoslav, Vladimir; Cvačka, Josef; Kostiainen, Risto; Kotiaho, Tapio; Hartonen, Kari; Riekkola, Marja-Liisa; Kauppila, Tiina J

    2015-07-15

    On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Investigation of the evolution of atmospheric particles with integration of the stochastic particle-resolved model partmc-mosaic and atmospheric measurements

    Science.gov (United States)

    Tian, Jian

    With the recently-developed particle-resolved model PartMC-MOSAIC, the mixing state and other physico-chemical properties of individual aerosol particles can be tracked as the particles undergo aerosol aging processes. However, existing PartMC-MOSAIC applications have mainly been based on idealized scenarios, and a link to real atmospheric measurement has not yet been established. In this thesis, we extend the capability of PartMC-MOSAIC and apply the model framework to three distinct scenarios with different environmental conditions to investigate the physical and chemical aging of aerosols in those environments. The first study is to investigate the evolution of particle mixing state and cloud condensation nuclei (CCN) activation properties in a ship plume. Comparisons of our results with observations from the QUANTIFY Study in 2007 in the English channel and the Gulf of Biscay showed that the model was able to reproduce the observed evolution of total number concentration and the vanishing of the nucleation mode consisting of sulfate particles. Further process analysis revealed that during the first hour after emission, dilution reduced the total number concentration by four orders of magnitude, while coagulation reduced it by an additional order of magnitude. Neglecting coagulation resulted in an overprediction of more than one order of magnitude in the number concentration of particles smaller than 40 nm at a plume age of 100 s. Coagulation also significantly altered the mixing state of the particles, leading to a continuum of internal mixtures of sulfate and black carbon. The impact of condensation on CCN concentrations depended on the supersaturation threshold at which CCN activity was evaluated. Nucleation was observed to have a limited impact on the CCN concentration in the ship plume we studied, but was sensitive to formation rates of secondary aerosol. For the second study we adapted PartMC to represent the aerosol evolution in an aerosol chamber, with

  1. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    Science.gov (United States)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  2. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  3. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  4. Virtual cascade impactors for the collection of radioactive atmospheric aerosols

    International Nuclear Information System (INIS)

    Berner, A.

    1988-01-01

    Starting from impaction theory, the properties of virtual impaction stages are discussed and compared to classical impactors. Virtual impaction stages offer the benefit of sampling coarse particles without bouncing and reentrainment, but turbulent mixing affects the performance of virtual stages. Future research should concentrate on special configurations for reducing the effects of turbulent mixing. Virtual impaction stages for sampling radioactive aerosols are to be designed in regard of the analytical requirements, the purpose of the measurements, and the aerosol. Therefore, the aerosol components expected in radioactive aerosols are discussed on the background of the multimodal model, which relates the size distribution to the genesis and the history of the aerosol. Reference is made to recent data of the radioactive atmospheric aerosol

  5. Size distributions of various radioactive aerosols in the ground-level atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, G.; Baust, E.

    1963-11-15

    To know the size spectra of radioactive aerosols is important for many reasons. Among others, the efficiency of measuring devices or biological processes, as for instance, retention in the lungs, depend on particle size.The work described deals mainly with two different components of radioactive aerosols in the atmosphere: the natural radon daughters and the fission products originating from nuclear test explosions.

  6. Analyses on the formation of atmospheric particles and stabilized sulphuric acid clusters

    Energy Technology Data Exchange (ETDEWEB)

    Paasonen, P.

    2012-11-01

    Aerosol particles have various effects on our life. They affect the visibility and have diverse health effects, but are also applied in various applications, from drug inhalators to pesticides. Additionally, aerosol particles have manifold effects on the Earths' radiation budget and thus on the climate. The strength of the aerosol climate effect is one of the factors causing major uncertainties in the global climate models predicting the future climate change. Aerosol particles are emitted to atmosphere from various anthropogenic and biogenic sources, but they are also formed from precursor vapours in many parts of the world in a process called atmospheric new particle formation (NPF). The uncertainties in aerosol climate effect are partly due to the current lack of knowledge of the mechanisms governing the atmospheric NPF. It is known that gas phase sulphuric acid most certainly plays an important role in atmospheric NPF. However, also other vapours are needed in NPF, but the exact roles or even identities of these vapours are currently not exactly known. In this thesis I present some of the recent advancements in understanding of the atmospheric NPF in terms of the roles of the participating vapours and the meteorological conditions. Since direct measurements of new particle formation rate in the initial size scale of the formed particles (below 2 nm) are so far infrequent in both spatial and temporal scales, indirect methods are needed. The work presented on the following pages approaches the NPF from two directions: by analysing the observed formation rates of particles after they have grown to sizes measurable with widely applied instruments (2 nm or larger), and by measuring and modelling the initial sulphuric acid cluster formation. The obtained results can be summarized as follows. (1) The observed atmospheric new particle formation rates are typically connected with sulphuric acid concentration to the power close to two. (2) Also other compounds, most

  7. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    Science.gov (United States)

    Shields, Laura Grace

    Composed of a mixture of chemical species and phases and existing in a variety of shapes and sizes, atmospheric aerosols are complex and can have serious influence on human health, the environment, and climate. In order to better understand the impact of aerosols on local to global scales, detailed measurements on the physical and chemical properties of ambient particles are essential. In addition, knowing the origin or the source of the aerosols is important for policymakers to implement targeted regulations and effective control strategies to reduce air pollution in their region. One of the most ground breaking techniques in aerosol instrumentation is single particle mass spectrometry (SPMS), which can provide online chemical composition and size information on the individual particle level. The primary focus of this work is to further improve the ability of one specific SPMS technique, aerosol time-of-flight mass spectrometry (ATOFMS), for the use of identifying the specific origin of ambient aerosols, which is known as source apportionment. The ATOFMS source apportionment method utilizes a library of distinct source mass spectral signatures to match the chemical information of the single ambient particles. The unique signatures are obtained in controlled source characterization studies, such as with the exhaust emissions of heavy duty diesel vehicles (HDDV) operating on a dynamometer. The apportionment of ambient aerosols is complicated by the chemical and physical processes an individual particle can undergo as it spends time in the atmosphere, which is referred to as "aging" of the aerosol. Therefore, the performance of the source signature library technique was investigated on the ambient dataset of the highly aged environment of Riverside, California. Additionally, two specific subsets of the Riverside dataset (ultrafine particles and particles containing trace metals), which are known to cause adverse health effects, were probed in greater detail. Finally

  8. Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric Tomography Mission (ATom airborne campaign

    Directory of Open Access Journals (Sweden)

    A. Kupc

    2018-01-01

    Full Text Available Atmospheric aerosol is a key component of the chemistry and climate of the Earth's atmosphere. Accurate measurement of the concentration of atmospheric particles as a function of their size is fundamental to investigations of particle microphysics, optical characteristics, and chemical processes. We describe the modification, calibration, and performance of two commercially available, Ultra-High Sensitivity Aerosol Spectrometers (UHSASs as used on the NASA DC-8 aircraft during the Atmospheric Tomography Mission (ATom. To avoid sample flow issues related to pressure variations during aircraft altitude changes, we installed a laminar flow meter on each instrument to measure sample flow directly at the inlet as well as flow controllers to maintain constant volumetric sheath flows. In addition, we added a compact thermodenuder operating at 300 °C to the inlet line of one of the instruments. With these modifications, the instruments are capable of making accurate (ranging from 7 % for Dp < 0.07 µm to 1 % for Dp > 0.13 µm, precise (< ±1.2 %, and continuous (1 Hz measurements of size-resolved particle number concentration over the diameter range of 0.063–1.0 µm at ambient pressures of > 1000 to 225 hPa, while simultaneously providing information on particle volatility.We assessed the effect of uncertainty in the refractive index (n of ambient particles that are sized by the UHSAS assuming the refractive index of ammonium sulfate (n =  1.52. For calibration particles with n between 1.44 and 1.58, the UHSAS diameter varies by +4/−10 % relative to ammonium sulfate. This diameter uncertainty associated with the range of refractive indices (i.e., particle composition translates to aerosol surface area and volume uncertainties of +8.4/−17.8 and +12.4/−27.5 %, respectively. In addition to sizing uncertainty, low counting statistics can lead to uncertainties of < 20 % for aerosol surface area and < 30

  9. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2010-02-01

    Full Text Available Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008 that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII. We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.

  10. Aerosol size and chemical composition measurements at the Polar Environment Atmospheric Research Lab (PEARL) in Eureka, Nunavut

    Science.gov (United States)

    Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.

    2016-12-01

    This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and

  11. Increased aerosol content in the atmosphere over Ukraine during summer 2010

    Science.gov (United States)

    Galytska, Evgenia; Danylevsky, Vassyl; Hommel, René; Burrows, John P.

    2018-04-01

    In this paper we assessed the influence of biomass burning during forest fires throughout summer (1 June-31 August) 2010 on aerosol abundance, dynamics, and its properties over Ukraine. We also considered influences and effects over neighboring countries: European Russia, Estonia, Belarus, Poland, Moldova, and Romania. We used MODIS satellite instrument data to study fire distribution. We also used ground-based remote measurements from the international sun photometer network AERONET plus MODIS and CALIOP satellite instrument data to determine the aerosol content and optical properties in the atmosphere over Eastern Europe. We applied the HYSPLIT model to investigate atmospheric dynamics and model pathways of particle transport. As with previous studies, we found that the highest aerosol content was observed over Moscow in the first half of August 2010 due to the proximity of the most active fires. Large temporal variability of the aerosol content with pronounced pollution peaks during 7-17 August was observed at the Ukrainian (Kyiv and Sevastopol), Belarusian (Minsk), Estonian (Toravere), and Romanian (Bucharest) AERONET sites. We analyzed aerosol spatiotemporal distribution over Ukraine using MODIS AOD 550 nm and further compared with the Kyiv AERONET site sun photometer measurements; we also compared CALIOP AOD 532 nm with MODIS AOD data. We analyzed vertical distribution of aerosol extinction at 532 nm, retrieved from CALIOP measurements, for the territory of Ukraine at locations where high AOD values were observed during intense fires. We estimated the influence of fires on the spectral single scattering albedo, size distribution, and complex refractive indices using Kyiv AERONET measurements performed during summer 2010. In this study we showed that the maximum AOD in the atmosphere over Ukraine recorded in summer 2010 was caused by particle transport from the forest fires in Russia. Those fires caused the highest AOD 500 nm over the Kyiv site, which in

  12. Synthesis of nanosized metal particles from an aerosol

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2013-10-01

    Full Text Available The synthesis of metallic nanoparticles from the precursor solution of salts using the ultrasonic spray pyrolysis method was considered in this work. During the control of process parameters (surface tension and density, the concentration of solution, residence time of aerosol in the reactor, presence of additives, gas flow rate, decomposition temperature of aerosol, type of precursor and working atmosphere it is possible to guide the process in order to obtain powders with such a morphology which satisfies more complex requirements for the desired properties of advanced engineering materials.  Significant advance in the improvement of powder characteristics (lower particles sizes, better spheroidity, higher surface area was obtained by the application of the ultrasonic generator for the preparation of aerosols. Ultrasonic spray pyrolysis is performed by the action of a powerful source of ultrasound on the corresponding precursor solution forming the aerosol with a constant droplet size, which depends on the characteristics of liquid and the frequency of ultrasound. The produced aerosols were transported into the hot reactor, which enables the reaction to occur in a very small volume of a particle and formation of  nanosized powder. Spherical, nanosized particles of metals (Cu, Ag, Au, Co were produced with new and improved physical and chemical characteristics at the IME, RWTH Aachen University. The high costs associated with small quantities of produced nanosized particles represent a limitation of the USP-method. Therefore, scale up of the ultrasonic spray pyrolysis was performed as a final target in the synthesis of nanosized powder.

  13. Aerosol composition and microstructure in the smoky atmosphere of Moscow during the August 2010 extreme wildfires

    Science.gov (United States)

    Popovicheva, O. B.; Kistler, M.; Kireeva, E. D.; Persiantseva, N. M.; Timofeev, M. A.; Shoniya, N. K.; Kopeikin, V. M.

    2017-01-01

    This is a comprehensive study of the physicochemical characterization of multicomponent aerosols in the smoky atmosphere of Moscow during the extreme wildfires of August 2010 and against the background atmosphere of August 2011. Thermal-optical analysis, liquid and ion chromatography, IR spectroscopy, and electron microscopy were used to determine the organic content (OC) and elemental content (EC) of carbon, organic/inorganic and ionic compounds, and biomass burning markers (anhydrosaccharides and the potassium ion) and study the morphology and elemental composition of individual particles. It has been shown that the fires are characterized by an increased OC/EC ratio and high concentrations of ammonium, potassium, and sulfate ions in correlation with an increased content of levoglucosan as a marker of biomass burning. The organic compounds containing carbonyl groups point to the process of photochemical aging and the formation of secondary organic aerosols in the urban atmosphere when aerosols are emitted from forest fires. A cluster analysis of individual particles has indicated that when the smokiest atmosphere is characterized by prevailing soot/tar ball particles, which are smoke-emission micromarkers.

  14. Application of PIXE technique to studies on global warming/cooling effect of atmospheric aerosols

    International Nuclear Information System (INIS)

    Kasahara, M.; Hoeller, R.; Tohno, S.; Onishi, Y.; Ma, C.-J.

    2002-01-01

    During the last decade, the importance of global warming has been recognized worldwide. Atmospheric aerosols play an important role in the global warming/cooling effects. The physicochemical properties of aerosol particles are fundamental to understanding such effects. In this study, the PIXE technique was applied to measure the average chemical properties of aerosols. Micro-PIXE was also applied to investigate the mixing state of the individual aerosol particle. The chemical composition data were used to estimate the optical properties of aerosols. The average values of aerosol radiative forcing were -1.53 w/m 2 in Kyoto and +3.3 w/m 2 in Nagoya, indicating cooling and warming effects respectively. The difference of radiative forcing in the two cities may be caused by the large difference in chemical composition of aerosols

  15. Nature of Atmospheric Aerosols over the Desert Areas in the Asian Continent: Chemical State and Number Concentration of Particles Measured at Dunhuang, China

    International Nuclear Information System (INIS)

    Iwasaka, Y.; Shi, G.-Y.; Shen, Z.; Kim, Y. S.; Trochkine, D.; Matsuki, A.; Zhang, D.; Shibata, T.; Nagatani, M.; Nakata, H.

    2003-01-01

    Measurements of aerosol were made in August and October 2001, and January 2002, at Dunhuang, China (40 o 00'N, 94 o 30'E), to understand the nature of atmospheric particles over the desert areas in the Asian continent. Balloon-borne measurements with an optical particle counter suggested that particle size and concentration had a noticeable peak in size range of super micron in not only the boundary mixing layer but also the free troposphere. Thickness of the boundary mixing layer, from distributions of particle concentration, was about 4 km in summer (17 August 2001), about2.5 km in fall (17 October 2001), and about 3 km in winter (11 January 2002), which suggest active mixing of particles near the boundary in summer. Number-size distribution of particle showed a noticeable peak in the super micron particles size range in the mixing boundary layer: 0.4-2 particles cm -3 at diameter>1.2 μm in summer, 0.05-4 particles cm -3 at diameter >1.2 μm in fall, and 0.1-5 particles cm -3 at diameter>1.2 μm in winter. In winter strong inversion of atmospheric temperature was found in the height range from the boundary to about 3 km and vertical distribution of particle concentration well corresponded with the temperature distribution. Chemical elements of individual aerosols, which were collected in the boundary layer atmosphere at Dunhuang (18 October 2001) were analyzed with an electron microscope equipped with EDX. Those single particle analysis suggested that most of the particles with supermicron size were soil particles, and those particles had little sulfate on its surface. This is a very important different point,comparing with the chemical state of soil particles, which were transported from the desert area of China to Japan, and showed frequently the existence of sulfate on the particle surface. Therefore, it is strongly suggested that dust particles can be chemically modified during their long-range transport from desert areas to Japan

  16. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.

    Science.gov (United States)

    Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

    2013-10-17

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  17. Global atmospheric particle formation from CERN CLOUD measurements

    CERN Document Server

    Dunne, E M; Kurten, A; Almeida, J; Duplissy, J; Williamson, C; Ortega, I K; Pringle, K J; Adamov, A; Baltensperger, U; Barmet, P; Benduhn, F; Bianchi, F; Breitenlechner, M; Clarke, A; Curtius, J; Dommen, J; Donahue, N M; Ehrhart, S; Flagan, R C; Franchin, A; Guida, R; Hakala, J; Hansel, A; Heinritzi, M; Jokinen, T; Kangasluoma, J; Kirkby, J; Kulmala, M; Kupc, A; Lawler, M J; Lehtipalo, K; Makhmutov, V; Mann, G; Mathot, S; Merikanto, J; Miettinen, P; Nenes, A; Onnela, A; Rap, A; Reddington, C L S; Riccobono, F; Richards, N A D; Rissanen, M P; Rondo, L; Sarnela, N; Schobesberger, S; Sengupta, K; Simon, M; Sipila, M; Smith, J N; Stozkhov, Y; Tome, A; Trostl, J; Wagner, P E; Wimmer, D; Winkler, P M; Worsnop, D R; Carslaw, K S

    2016-01-01

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. Here we build a global model of aerosol formation using extensive laboratory-measured nucleation rates involving sulfuric acid, ammonia, ions and organic compounds. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds in addition to sulfuric acid. A significant fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied variations in cosmic ray intensity do not significantly affect climate via nucleation in the present-day atmosphere.

  18. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    Science.gov (United States)

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.

  19. Lidar investigations of atmospheric aerosols over Sofia

    International Nuclear Information System (INIS)

    Dreischuh, T.; Deleva, A.; Peshev, Z.; Grigorov, I.; Kolarov, G.; Stoyanov, D.

    2016-01-01

    An overview is given of the laser remote sensing of atmospheric aerosols and related processes over the Sofia area performed in the Institute of Electronics, Bulgarian Academy of Sciences, during the last three years. Results from lidar investigations of the optical characteristics of atmospheric aerosols obtained in the frame of the European Aerosol Research Lidar Network, as well as from the lidar mapping of near-surface aerosol fields for remote monitoring of atmospheric pollutants are presented and discussed in this paper.

  20. Wintertime hygroscopicity and volatility of ambient urban aerosol particles

    Science.gov (United States)

    Enroth, Joonas; Mikkilä, Jyri; Németh, Zoltán; Kulmala, Markku; Salma, Imre

    2018-04-01

    Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20), 50, 75, 110 and 145 nm were determined in situ by using a volatility-hygroscopicity tandem differential mobility analyser (VH-TDMA) system with a relative humidity of 90 % and denuding temperature of 270 °C in central Budapest during 2 months in winter 2014-2015. The probability density function of the hygroscopic growth factor (HGF) showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033) independently of the particle size and was assigned to nearly hydrophobic (NH) particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196) with particle diameter, and it was attributed to less hygroscopic (LH) particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF) also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV) and volatile (V) particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non-hygroscopic hydrocarbon-like organics. The hygroscopic

  1. Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles

    Science.gov (United States)

    Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

    2013-04-01

    On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 μg/m3-12.6 μg/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 μg/m3 to 9.3 μg/m3 and 3.1 μg/m3 to 6.4 μg /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these

  2. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...... atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far...

  3. Deposition of aerosols formed by HCDA due to decay heat transport in inner containment atmospheres

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1976-01-01

    Coupling of decay heat transfer by aerosol-laden inner containment atmospheres with aerosol deposition from such atmospheres leads to useful and simple models for calculation of the time dependence of the aerosol mass concentration. Special attention is given to thermophoretic deposition (dry case) and condensation followed by gravitational deposition (wet case). Attractive features of the models are: 1) coagulation can be omitted and therefore complicated and doubtful calculations on coagulation are avoided, 2) material and particle size of the aerosol are not important for the aerosol decay rate, 3) the aerosol decay rate is related to the decay heat production which is known function of time, and the relevant part of it must be assessed usually for other purposes as well. (orig.) [de

  4. Global atmospheric particle formation from CERN CLOUD measurements

    Science.gov (United States)

    Dunne, Eimear M.; Gordon, Hamish; Carslaw, Kenneth S.

    2017-04-01

    New particle formation (or nucleation) is acknowledged as a significant source of climate-relevant aerosol throughout the atmosphere. However, performing atmospherically relevant nucleation experiments in a laboratory setting is extremely challenging. As a result, until now, the parameterisations used to represent new particle formation in global aerosol models were largely based on in-situ observations or theoretical nucleation models, and usually only represented the binary H2SO4-H2O system. Several different chemicals can affect particle formation rates, even at extremely low trace concentrations, which are technically challenging to measure directly. Nucleation rates also respond to environmental changes in e.g. temperature in a highly non-linear fashion. The CERN CLOUD experiment was designed to provide the most controlled and accurate nucleation rate measurements to date, over the full range of free tropospheric temperatures and down to sulphuric acid concentrations of the order of 105 cm-3. We will present a parameterisation of inorganic nucleation rates for use in global models, based on these measurements, which includes four separate nucleation pathways: binary neutral, binary ion-induced, ternary neutral, and ternary ion-induced. Both inorganic and organic nucleation parameterisations derived from CLOUD measurements have been implemented in the GLOMAP global aerosol model. The parameterisations depend on temperature and on concentrations of sulphuric acid, ammonia, organic vapours, and ions. One of CLOUD's main original goals was to determine the sensitivity of atmospheric aerosol to changes in the nucleation rate over a solar cycle. We will show that, in a present-day atmosphere, the changes in climate-relevant aerosol (in the form of cloud-level cloud condensation nuclei) over a solar cycle are on average about 0.1%, with local changes of less than 1%. In contrast, anthropogenic changes in ammonia since pre-industrial times were estimated to have a

  5. Single-particle characterization of urban aerosol particles collected in three Korean cites using low-Z electron probe X-ray microanalysis.

    Science.gov (United States)

    Ro, Chul-Un; Kim, HyeKyeong; Oh, Keun-Young; Yea, Sun Kyung; Lee, Chong Bum; Jang, Meongdo; Van Grieken, René

    2002-11-15

    A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.

  6. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    Science.gov (United States)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  7. Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region

    Science.gov (United States)

    Gunsch, Matthew J.; May, Nathaniel W.; Wen, Miao; Bottenus, Courtney L. H.; Gardner, Daniel J.; VanReken, Timothy M.; Bertman, Steven B.; Hopke, Philip K.; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Long-range aerosol transport affects locations hundreds of kilometers from the point of emission, leading to distant particle sources influencing rural environments that have few major local sources. Source apportionment was conducted using real-time aerosol chemistry measurements made in July 2014 at the forested University of Michigan Biological Station near Pellston, Michigan, a site representative of the remote forested Great Lakes region. Size-resolved chemical composition of individual 0.5-2.0 µm particles was measured using an aerosol time-of-flight mass spectrometer (ATOFMS), and non-refractory aerosol mass less than 1 µm (PM1) was measured with a high-resolution aerosol mass spectrometer (HR-AMS). The field site was influenced by air masses transporting Canadian wildfire emissions and urban pollution from Milwaukee and Chicago. During wildfire-influenced periods, 0.5-2.0 µm particles were primarily aged biomass burning particles (88 % by number). These particles were heavily coated with secondary organic aerosol (SOA) formed during transport, with organics (average O/C ratio of 0.8) contributing 89 % of the PM1 mass. During urban-influenced periods, organic carbon, elemental carbon-organic carbon, and aged biomass burning particles were identified, with inorganic secondary species (ammonium, sulfate, and nitrate) contributing 41 % of the PM1 mass, indicative of atmospheric processing. With current models underpredicting organic carbon in this region and biomass burning being the largest combustion contributor to SOA by mass, these results highlight the importance for regional chemical transport models to accurately predict the impact of long-range transported particles on air quality in the upper Midwest, United States, particularly considering increasing intensity and frequency of Canadian wildfires.

  8. Study of particle size and trace metal distribution in atmospheric aerosols of islamabad

    International Nuclear Information System (INIS)

    Shah, M.H.; Shaheen, N.

    2009-01-01

    Atmospheric aerosol samples were collected on glass fibre filters using high volume air samplers Half of each aerosol sample was solubilized in nitric acid/hydrochloric acid based wet digestion method and the concentration of trace metals was determined through flame atomic absorption spectrophotometer. Among the eight trace metals analyzed, mean concentration recorded for Zn (844 ng/m3), Fe (642 ng/m3) and Pb (253 ng/m3), was found to be higher than mean levels of Mn, Cr and Co. The size distribution of the collected particulate samples was carried out on mastersizer, which revealed PM/sub 100-10/ as the major fraction (55 %) followed by PM/sub 2.5-10/ (28 %). The correlation study evidenced a strong tendency of trace metals to be associated with fine particulate fractions. The atmospheric trace metal levels showed that the mean metal concentrations in the atmosphere of Islamabad are far higher than background and European urban sites mainly due to the anthropogenic emissions. (author)

  9. Measuring and modeling the hygroscopic growth of two humic substances in mixed aerosol particles of atmospheric relevance

    Directory of Open Access Journals (Sweden)

    I. R. Zamora

    2013-09-01

    Full Text Available The hygroscopic growth of atmospheric particles affects atmospheric chemistry and Earth's climate. Water-soluble organic carbon (WSOC constitutes a significant fraction of the dry submicron mass of atmospheric aerosols, thus affecting their water uptake properties. Although the WSOC fraction is comprised of many compounds, a set of model substances can be used to describe its behavior. For this study, mixtures of Nordic aquatic fulvic acid reference (NAFA and Fluka humic acid (HA, with various combinations of inorganic salts (sodium chloride and ammonium sulfate and other representative organic compounds (levoglucosan and succinic acid, were studied. We measured the equilibrium water vapor pressure over bulk solutions of these mixtures as a function of temperature and solute concentration. New water activity (aw parameterizations and hygroscopic growth curves at 25 °C were calculated from these data for particles of equivalent composition. We examined the effect of temperature on the water activity and found a maximum variation of 9% in the 0–30 °C range, and 2% in the 20–30 °C range. Five two-component mixtures were studied to understand the effect of adding a humic substance (HS, such as NAFA and HA, to an inorganic salt or a saccharide. The deliquescence point at 25 °C for HS-inorganic mixtures did not change significantly from that of the pure inorganic species. However, the hygroscopic growth of HA / inorganic mixtures was lower than that exhibited by the pure salt, in proportion to the added mass of HA. The addition of NAFA to a highly soluble solute (ammonium sulfate, sodium chloride or levoglucosan in water had the same effect as the addition of HA to the inorganic species for most of the water activity range studied. Yet, the water uptake of these NAFA mixtures transitioned to match the growth of the pure salt or saccharide at high aw values. The remaining four mixtures were based on chemical composition data for different

  10. Constraining the atmospheric composition of the day-night terminators of HD 189733b: Atmospheric retrieval with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Min [Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Irwin, Patrick G. J.; Fletcher, Leigh N.; Barstow, Joanna K. [Department of Atmospheric, Oceanic, and Planetary Physics, University of Oxford, OX1 3PU Oxford (United Kingdom); Heng, Kevin, E-mail: lee@physik.uzh.ch [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO{sub 3}, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  11. Under What Conditions Can Equilibrium Gas-Particle Partitioning Be Expected to Hold in the Atmosphere?

    Science.gov (United States)

    Mai, Huajun; Shiraiwa, Manabu; Flagan, Richard C; Seinfeld, John H

    2015-10-06

    The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.

  12. Modeling the evolution of the aerosol cloud of toxicants in the atmosphere

    Directory of Open Access Journals (Sweden)

    Bondarchuk Ivan

    2017-01-01

    Full Text Available Using the methods of mathematical modeling, the formation and evolution of aerosol clouds of toxicants in the atmosphere from the chemical industry enterprises, thermal power engineering and rocket carriers of space vehicles is analyzed. The processes of dynamic interaction of drops between themselves and a two-phase flow, processes of agglomeration, crushing and evaporation of aerosol particles are taken into account. The results of numerical calculations are presented.

  13. Global atmospheric particle formation from CERN CLOUD measurements.

    Science.gov (United States)

    Dunne, Eimear M; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K; Pringle, Kirsty J; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L S; Riccobono, Francesco; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E; Wimmer, Daniela; Winkler, Paul M; Worsnop, Douglas R; Carslaw, Kenneth S

    2016-12-02

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere. Copyright © 2016, American Association for the Advancement of Science.

  14. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  15. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    Directory of Open Access Journals (Sweden)

    S. Bastelberger

    2017-07-01

    Full Text Available Field measurements indicating that atmospheric secondary organic aerosol (SOA particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas–particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4 is investigated in an electrodynamic balance at controlled relative humidity (RH and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes–Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10−14 cm2 s−1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol−1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs.

  16. Atmospheric aerosol in an urban area: Comparison of measurement instruments and methodologies and pulmonary deposition assessment

    International Nuclear Information System (INIS)

    Berico, M.; Luciani, A.; Formignani, M.

    1996-07-01

    In March 1995 a measurement campaign of atmospheric aerosol in the Bologna urban area (Italy) was carried out. A transportable laboratory, set up by ENEA (Italian national Agency for New Technologies, Energy and the Environment) Environmental Department (Bologna), was utilized with instruments for measurement of atmospheric aerosol and meteorological parameters. The aim of this campaign was of dual purpose: to characterize aerosol in urban area and to compare different instruments and methodologies of measurements. Mass concentrations measurements, evaluated on a 23-hour period with total filter, PM10 dichotomous sampler and low pressure impactor (LPI Berner), have provided information respectively about total suspended particles, respirable fraction and granulometric parameters of aerosol. Eight meteorologic parameters, number concentration of submicromic fraction of aerosol and mass concentration of micromic fraction have been continually measured. Then, in a daytime period, several number granulometries of atmospheric aerosol have also been estimated by means of diffusion battery system. Results related to different measurement methodologies and granulometric characteristics of aerosol are presented here. Pulmonary deposition of atmospheric aerosol is finally calculated, using granulometries provided by LPI Brener and ICRP 66 human respiratory tract model

  17. Inside versus Outside: Ion Redistribution in Nitric Acid Reacted Sea Spray Aerosol Particles as Determined by Single Particle Analysis (Invited)

    Science.gov (United States)

    Ault, A. P.; Guasco, T.; Ryder, O. S.; Baltrusaitis, J.; Cuadra-Rodriguez, L. A.; Collins, D. B.; Ruppel, M. J.; Bertram, T. H.; Prather, K. A.; Grassian, V. H.

    2013-12-01

    Sea spray aerosol (SSA) particles were generated under real-world conditions using natural seawater and a unique ocean-atmosphere facility equipped with actual breaking waves or a marine aerosol reference tank (MART) that replicates those conditions. The SSA particles were exposed to nitric acid in situ in a flow tube and the well-known chloride displacement and nitrate formation reaction was observed. However, as discussed here, little is known about how this anion displacement reaction affects the distribution of cations and other chemical constituents within and phase state of individual SSA particles. Single particle analysis of individual SSA particles shows that cations (Na+, K+, Mg2+ and Ca2+) within individual particles undergo a spatial redistribution after heterogeneous reaction with nitric acid, along with a more concentrated layer of organic matter at the surface of the particle. These data suggest that specific ion and aerosol pH effects play an important role in aerosol particle structure in ways that have not been previously recognized. The ordering of organic coatings can impact trace gas uptake, and subsequently impact trace gas budgets of O3 and NOx.

  18. Determination of the particle size distribution of aerosols by means of a diffusion battery

    International Nuclear Information System (INIS)

    Maigne, J.P.

    1978-09-01

    The different methods allowing to determine the particle size distribution of aerosols by means of diffusion batteries are described. To that purpose, a new method for the processing of experimental data (percentages of particles trapped by the battery vs flow rate) was developed on the basis of calculation principles which are described and assessed. This method was first tested by numerical simulation from a priori particle size distributions and then verified experimentally using a fine uranine aerosol whose particle size distribution as determined by our method was compared with the distribution previously obtained by electron microscopy. The method can be applied to the determination of particle size distribution spectra of fine aerosols produced by 'radiolysis' of atmospheric gaseous impurities. Two other applications concern the detection threshold of the condensation nuclei counter and the 'critical' radii of 'radiolysis' particles [fr

  19. Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens

    Science.gov (United States)

    Psichoudaki, Magda; Nenes, Athanasios; Florou, Kalliopi; Kaltsonoudis, Christos; Pandis, Spyros N.

    2018-04-01

    This study explores the Cloud Condensation Nuclei (CCN) activity of atmospheric particles during intense biomass burning periods in an urban environment. During a one-month campaign in the center of Athens, Greece, a CCN counter coupled with a Scanning Mobility Particle Sizer (SMPS) and a high resolution Aerosol Mass Spectrometer (HR-AMS) were used to measure the size-resolved CCN activity and composition of the atmospheric aerosols. During the day, the organic fraction of the particles was more than 50%, reaching almost 80% at night, when the fireplaces were used. Positive Matrix Factorization (PMF) analysis revealed 4 factors with biomass burning being the dominant source after 18:00 until the early morning. The CCN-based overall hygroscopicity parameter κ ranged from 0.15 to 0.25. During the night, when the biomass burning organic aerosol (bbOA) dominated, the hygroscopicity parameter for the mixed organic/inorganic particles was on average 0.16. The hygroscopicity of the biomass-burning organic particles was 0.09, while the corresponding average value for all organic particulate matter during the campaign was 0.12.

  20. Some considerations about the natural atmospheric radioactive aerosol

    International Nuclear Information System (INIS)

    Renoux, A.; Madelaine, G.

    1985-01-01

    From experiments made in Brest by the use of a semi-automatic device for direct measurements of atmospheric radon (the double filter method), we obtained daily average values of Radon 222 concentration, and establish that the values obtained are completely different according to the wind direction. We establish that radioactive balance is never realized in the air between radon and its daughters RaA(Po218), RaB(Pb214) and RaC(Bi214); the state of radioactive balance strongly depends on wind direction. We also study the ionic state of the radioactive aerosol accruing from Radon 222. Using an experimental system consisting of absolute filters, diffusion batteries, cascade impactors and ions tubes, we establish the size distribution of natural radioactive aerosol. We thus show 40% of the natural atmospheric radioactivity is located on particles whose radii are inferior to 2 . 10-2 mm. A good agreement is provided between the theory and our experimental points

  1. Wintertime hygroscopicity and volatility of ambient urban aerosol particles

    Directory of Open Access Journals (Sweden)

    J. Enroth

    2018-04-01

    Full Text Available Hygroscopic and volatile properties of atmospheric aerosol particles with dry diameters of (20, 50, 75, 110 and 145 nm were determined in situ by using a volatility–hygroscopicity tandem differential mobility analyser (VH-TDMA system with a relative humidity of 90 % and denuding temperature of 270 °C in central Budapest during 2 months in winter 2014–2015. The probability density function of the hygroscopic growth factor (HGF showed a distinct bimodal distribution. One of the modes was characterised by an overall mean HGF of approximately 1.07 (this corresponds to a hygroscopicity parameter κ of 0.033 independently of the particle size and was assigned to nearly hydrophobic (NH particles. Its mean particle number fraction was large, and it decreased monotonically from 69 to 41 % with particle diameter. The other mode showed a mean HGF increasing slightly from 1.31 to 1.38 (κ values from 0.186 to 0.196 with particle diameter, and it was attributed to less hygroscopic (LH particles. The mode with more hygroscopic particles was not identified. The probability density function of the volatility GF (VGF also exhibited a distinct bimodal distribution with an overall mean VGF of approximately 0.96 independently of the particle size, and with another mean VGF increasing from 0.49 to 0.55 with particle diameter. The two modes were associated with less volatile (LV and volatile (V particles. The mean particle number fraction for the LV mode decreased from 34 to 21 % with particle diameter. The bimodal distributions indicated that the urban atmospheric aerosol contained an external mixture of particles with a diverse chemical composition. Particles corresponding to the NH and LV modes were assigned mainly to freshly emitted combustion particles, more specifically to vehicle emissions consisting of large mass fractions of soot likely coated with or containing some water-insoluble organic compounds such as non

  2. Distinct high molecular weight organic compound (HMW-OC) types in aerosol particles collected at a coastal urban site

    Science.gov (United States)

    Dall'Osto, M.; Healy, R. M.; Wenger, J. C.; O'Dowd, C.; Ovadnevaite, J.; Ceburnis, D.; Harrison, Roy M.; Beddows, D. C. S.

    2017-12-01

    Organic oligomers were discovered in laboratory-generated atmospheric aerosol over a decade ago. However, evidence for the presence of oligomers in ambient aerosols is scarce and mechanisms for their formation have yet to be fully elucidated. In this work, three unique aerosol particle types internally mixed with High molecular weight organic compounds (HMW-OC) species - likely oligomers - were detected in ambient air using single particle Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS) in Cork (Ireland) during winter 2009. These particle types can be described as follows: (1) HMW-OCs rich in organic nitrogen - possibly containing nitrocatechols and nitroguaiacols - originating from primary emissions of biomass burning particles during evening times; (2) HMW-OCs internally mixed with nitric acid, occurring in stagnant conditions during night time; and (3) HMW-OCs internally mixed with sea salt, likely formed via photochemical reactions during day time. The study exemplifies the power of methodologies capable of monitoring the simultaneous formation of organic and inorganic particle-phase reaction products. Primary emissions and atmospheric aging of different types of HMW-OC contributes to aerosol with a range of acidity, hygroscopic and optical properties, which can have different impacts on climate and health.

  3. Arctic sea ice melt leads to atmospheric new particle formation.

    Science.gov (United States)

    Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M

    2017-06-12

    Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.

  4. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    Science.gov (United States)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  5. Tight coupling of particle size, number and composition in atmospheric cloud droplet activation

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2012-04-01

    Full Text Available The substantial uncertainty in the indirect effect of aerosol particles on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the long wave, and on (ii their ability to precipitate, with implications for cloud cover and lifetime.

    Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived by Köhler (1936. However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate.

    We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has potentially larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition, a particles size and concentration under ambient conditions.

    Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; more so even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.

  6. Aerosol vertical distribution, new particle formation, and jet aircraft particle emissions in the free troposhere and tropopause region; Vertikalverteilung und Neubildungsprozesse des Aerosols und partikelfoermige Flugzeugemissionen in der freien Troposphaere und Tropopausenregion

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F P

    2000-07-01

    A contribution to the understanding of natural and anthropogenously induced particle formation as well as aerosol physical transformation processes within the free troposphere (FT) is introduced. Documentation and interpretation of empirical data relevant with respect to possible climatologic impact of anthropogenous aerosol emissions into the atmosphere is presented. The first section describes new technique for high spatial resolution measurements of ultrafine aerosol particles by condensation nucleus counters (CNCs), a necessary prerequisite for the observation of natural particle formation and jet aircraft emissions. The second section illustrates vertical distribution and variability ranges of the aerosol in the FT and the tropopause region (TP). Typical microphysical states of the atmospheric aerosol within the Northern Hemisphere are documented by means of systematic measurements during more than 60 flight missions. Simple mathematical parameterizations of the aerosol vertical distribution and aerosol size distributions are developed. Important aerosol sources within the FT are localized and possible aerosol formation processes are discussed. The third section is focussed on jet-engine particle emissions within the FT and TP. A unique inflight experiment for detection of extremely high concentrations (>10{sup 6} cm{sup -3}) of extremely small (donw to <3 nm) aerosols inside the exhaust plumes of several jet aircraft is described. Particle emission indices and emission-controlling parameters are deduced. Most important topic is the impact of fuel sulfur content of kerosine on number, size and chemical composition of jet particle emissions. Generalized results are parameterized in form of lognormal aerosol particle size distributions. (orig.) [German] Ein Beitrag zum Verstaendnis natuerlicher und anthropogen induzierter Aerosolneubildung sowie physikalischer Aerosolumwandlung in der freien Troposphaere wird vorgestellt. Empirisch gewonnenes Datenmaterial wird

  7. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    Science.gov (United States)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  8. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles

    Directory of Open Access Journals (Sweden)

    M. I. Cotterell

    2017-08-01

    Full Text Available Calculations of aerosol radiative forcing require knowledge of wavelength-dependent aerosol optical properties, such as single-scattering albedo. These aerosol optical properties can be calculated using Mie theory from knowledge of the key microphysical properties of particle size and refractive index, assuming that atmospheric particles are well-approximated to be spherical and homogeneous. We provide refractive index determinations for aqueous aerosol particles containing the key atmospherically relevant inorganic solutes of NaCl, NaNO3, (NH42SO4, NH4HSO4 and Na2SO4, reporting the refractive index variation with both wavelength (400–650 nm and relative humidity (from 100 % to the efflorescence value of the salt. The accurate and precise retrieval of refractive index is performed using single-particle cavity ring-down spectroscopy. This approach involves probing a single aerosol particle confined in a Bessel laser beam optical trap through a combination of extinction measurements using cavity ring-down spectroscopy and elastic light-scattering measurements. Further, we assess the accuracy of these refractive index measurements, comparing our data with previously reported data sets from different measurement techniques but at a single wavelength. Finally, we provide a Cauchy dispersion model that parameterises refractive index measurements in terms of both wavelength and relative humidity. Our parameterisations should provide useful information to researchers requiring an accurate and comprehensive treatment of the wavelength and relative humidity dependence of refractive index for the inorganic component of atmospheric aerosol.

  9. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  10. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    Science.gov (United States)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles cloud formation and potential

  11. Aerosol trace metals, particle morphology and total gaseous mercury in the atmosphere of Oxford, UK

    Science.gov (United States)

    Witt, M. L. I.; Meheran, N.; Mather, T. A.; de Hoog, J. C. M.; Pyle, D. M.

    2010-04-01

    An investigation of atmospheric trace metals was conducted in Oxford, UK, a small city ˜60 miles northwest of London, in 2007 and 2008. Concentrations of Sr, Mo, Cd, Pb, V, Cr, Mn, Fe, Co, Ni, Cu and Zn in aerosol were measured in bulk and size segregated samples. In addition, total gaseous mercury (TGM) concentrations were monitored semi-continuously by cold vapour-atomic fluorescence spectroscopy. Metal concentrations in Oxford were intermediate between previously reported levels of UK rural and urban areas for most metals studied and levels of Cd, Ni and Pb were within European guidelines. Metal concentrations appeared to be influenced by higher traffic volume on a timescale of hours. The influence of traffic on the aerosols was also suggested by the observation of carbonaceous particles via scanning electron microscopy (SEM). Air mass back trajectories suggest air masses arriving in Oxford from London and mainland Europe contained the highest metal concentrations. Aerosol samples collected over Bonfire Weekend, a period of intense firework use and lighting of bonfires in the UK, showed metal concentrations 6-46 times higher than at other times. Strontium, a tracer of firework release, was present at higher concentrations and showed a change in its size distribution from the coarse to fine mode over Bonfire Weekend. The presence of an abundance of spherical Sr particles was also confirmed in SEM images. The average TGM concentration in Oxford was 3.17 ng m -3 (st. dev. 1.59) with values recorded between 1.32 and 23.2 ng m -3. This is a higher average value than reported from nearby rural locations, although during periods when air was arriving from the west, similar concentrations to these rural areas were seen in Oxford. Comparison to meteorological data suggests that TGM in Oxford's air is highest when wind is arriving from the east/southeast. This may be due to emissions from London/mainland Europe with a possible contribution from emissions from a local

  12. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea

    Science.gov (United States)

    Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona

    2018-05-01

    Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition

  13. Physical characterization of aerosol particles during the Chinese New Year’s firework events

    Science.gov (United States)

    Zhang, Min; Wang, Xuemei; Chen, Jianmin; Cheng, Tiantao; Wang, Tao; Yang, Xin; Gong, Youguo; Geng, Fuhai; Chen, Changhong

    2010-12-01

    Measurements for particles 10 nm to 10 μm were taken using a Wide-range Particle Spectrometer during the Chinese New Year (CNY) celebrations in 2009 in Shanghai, China. These celebrations provided an opportunity to study the number concentration and size distribution of particles in an especial atmospheric pollution situation due to firework displays. The firework activities had a clear contribution to the number concentration of small accumulation mode particles (100-500 nm) and PM 1 mass concentration, with a maximum total number concentration of 3.8 × 10 4 cm -3. A clear shift of particles from nucleation and Aitken mode to small accumulation mode was observed at the peak of the CNY firework event, which can be explained by reduced atmospheric lifetimes of smaller particles via the concept of the coagulation sink. High particle density (2.7 g cm -3) was identified as being particularly characteristic of the firework aerosols. Recalculated fine particles PM 1 exhibited on average above 150 μg m -3 for more than 12 hours, which was a health risk to susceptible individuals. Integral physical parameters of firework aerosols were calculated for understanding their physical properties and further model simulation.

  14. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  15. Aerosols radioactivity in the Bratislava atmosphere

    International Nuclear Information System (INIS)

    Sykora, I.; Chudy, M.; Durana, L.; Holy, K.; Meresova, J.

    2001-01-01

    In our laboratory we measured temporal variation of 7 Be concentration in the atmosphere in period 1977 -1994 years. The aerosols were collected through every month at Hydrometeorological Institute in Bratislava-Koliba, latitude 48 grad 10' and altitude 286 m above sea level. Since end of year 2000 we have started to continue monitoring radioactivity of atmosphere aerosols in new locality in Bratislava-Mlynska dolina. Beside 7 Be we measured also 210 Pb radionuclide aerosols concentration. For measured values 7 Be concentrations are considered corrections for decay radionuclide during the time of filters collection, time between end of collection and measurement and decay during the time of measurement. Obtained results for 7 Be concentrations in aerosols shows seasonal summer maximum, but for 210 Pb concentration in aerosols the seasonal variations are not evident. The temporal variations of this radionuclide which is originated in ground-level atmosphere are more sensitive on meteorological factors and can be also influenced by the industrial activity. For better understanding is needed long term monitoring. (authors)

  16. Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin

    Science.gov (United States)

    Harrison, Roy M.; Pio, Casimiro A.

    Atmospheric aerosols were sampled with a high volume impactor/diffusion battery system and the collected fractions analysed for their major water-soluble inorganic constituents. Sulphate, nitrate and chloride showed bimodal distributions; sulphate and nitrate were mainly associated with NH 4+, having approximately log-normal distributions with modes at 1.0 μm. In unpolluted maritime air, chlorides appeared as salts of sodium and magnesium with average modes at c. 5 μm, whilst in polluted air masses significant concentrations of ammonium chloride sub-μm aerosols were detected. Sodium nitrate and sodium sulphate aerosols having average modes of c. 3.5 μm were observed in mixed maritime/polluted air masses. The dimensions of these particles indicate formation from absorption of H 2SO 4 and HNO 3 at the surface of marine NaCl particles. The concentration of H + was very low, but the possibility of its neutralization by atmospheric ammonia during sampling was ruled out by parallel air sampling using an 'ammonia denuder'.

  17. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols

    Science.gov (United States)

    Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël

    2017-01-01

    Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed. PMID:28632170

  18. Long term atmospheric aerosol characterization in the Amazon Basin

    Science.gov (United States)

    Artaxo, Paulo; Gerab, Fábio; Yamasoe, Marcia A.

    This chapter presents a characterization of atmospheric aerosols collected in different places in the Amazon Basin. Both the biogenic aerosol emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burns during the dry season were studied. The samples were collected during a three year period at three different locations in the Amazon (Cuiabá, Alta Floresta and Serra do Navio), using stacked filter units. Aerosol samples were also collected directly over fires of cerrado vegetation and tropical primary forest burns The samples were analyzed using several techniques for a number of elements. Gravimetric analyses were used to determine the total atmospheric aerosol concentration. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. Cerrado burning emissions were enriched compared to forest ones, specially for Cl, K and Zn. High atmospheric aerosol concentrations were observed in large amazonian areas due to emissions from man-made burns in the period from June to September. The emissions from burns dominate the fine fraction of the atmospheric aerosol with characteristic high contents of black carbon, S and K. Aerosols emitted in biomass burning process are correlated to the increase in the aerosol optical thickness of the atmosphere during the Amazonian dry season. The Serra do Navio aerosol is characterized by biogenic emissions with strong marine influence. The presence of trace elements characteristic of soil particulate associated with this marine contribution indicates the existence of aerosol transport from Africa to South America. Similar composition characteristics were observed in the biogenic emission aerosols from Serra do Navio and Alta Floresta.

  19. Interpretation of aerosol trace metal particle size distributions

    International Nuclear Information System (INIS)

    Johansson, T.B.; Van Grieken, R.E.; Winchester, J.W.

    1974-01-01

    Proton-induced X-ray emission (PIXE) analysis is capable of rapid routine determination of 10--15 elements present in amounts greater than or equal to 1 ng simultaneously in aerosol size fractions as collected by single orifice impactors over short periods of time. This enables detailed study of complex relationships between elements detected. Since absolute elemental concentrations may be strongly influenced by meteorological and topographical conditions, it is useful to normalize to a reference element. Comparison between the ratios of concentrations with aerosol and corresponding values for anticipated sources may lead to the identification of important sources for the elements. Further geochemical insights may be found through linear correlation coefficients, regression analysis, and cluster analysis. By calculating correlations for elemental pairs, an indication of the degree of covariance between the elements is obtained. Preliminary results indicate that correlations may be particle size dependent. A high degree of covariance may be caused either by a common source or may only reflect the conservative nature of the aerosol. In a regression analysis, by plotting elemental pairs and estimating the regression coefficients, we may be able to conclude if there is more than one source operating for a given element in a certain size range. Analysis of clustering of several elements, previously investigated for aerosol filter samples, can be applied to the analysis of aerosol size fractions. Careful statistical treatment of elemental concentrations as a function of aerosol particle size may thus yield significant information on the generation, transport and deposition of trace metals in the atmosphere

  20. Particle-Resolved Modeling of Aerosol Mixing State in an Evolving Ship Plume

    Science.gov (United States)

    Riemer, N. S.; Tian, J.; Pfaffenberger, L.; Schlager, H.; Petzold, A.

    2011-12-01

    The aerosol mixing state is important since it impacts the particles' optical and CCN properties and thereby their climate impact. It evolves continuously during the particles' residence time in the atmosphere as a result of coagulation with other particles and condensation of secondary aerosol species. This evolution is challenging to represent in traditional aerosol models since they require the representation of a multi-dimensional particle distribution. While modal or sectional aerosol representations cannot practically resolve the aerosol mixing state for more than a few species, particle-resolved models store the composition of many individual aerosol particles directly. They thus sample the high-dimensional composition state space very efficiently and so can deal with tens of species, fully resolving the mixing state. Here we use the capabilities of the particle-resolved model PartMC-MOSAIC to simulate the evolution of particulate matter emitted from marine diesel engines and compare the results to aircraft measurements made in the English Channel in 2007 as part of the European campaign QUANTIFY. The model was initialized with values of gas concentrations and particle size distributions and compositions representing fresh ship emissions. These values were obtained from a test rig study in the European project HERCULES in 2006 using a serial four-stroke marine diesel engine operating on high-sulfur heavy fuel oil. The freshly emitted particles consisted of sulfate, black carbon, organic carbon and ash. We then tracked the particle population for several hours as it evolved undergoing coagulation, dilution with the background air, and chemical transformations in the aerosol and gas phase. This simulation was used to compute the evolution of CCN properties and optical properties of the plume on a per-particle basis. We compared our results to size-resolved data of aged ship plumes from the QUANTIFY Study in 2007 and showed that the model was able to reproduce

  1. Atmospheric and aerosol chemistry

    International Nuclear Information System (INIS)

    McNeill, V. Faye; Ariya, Parisa A.; McGill Univ. Montreal, QC

    2014-01-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  2. Pathways, Impacts, and Policies on Severe Aerosol Injections into the Atmosphere: 2011 Severe Atmospheric Aerosols Events Conference

    KAUST Repository

    Weil, Martin

    2012-09-01

    The 2011 severe atmospheric events conference, held on August 11-12, 2011, Hamburg, Germany, discussed climatic and environmental changes as a result of various kinds of huge injections of aerosols into the atmosphere and the possible consequences for the world population. Various sessions of the conference dealt with different aspects of large aerosol injections and severe atmospheric aerosol events along the geologic time scale. A presentation about radiative heating of aerosols as a self-lifting mechanism in the Australian forest fires discussed the question of how the impact of tropical volcanic eruptions depends on the eruption season. H.-F. Graf showed that cloud-resolving plume models are more suitable to predict the volcanic plume height and dispersion than one-dimensional models. G. Stenchikov pointed out that the absorbing smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the solar heating and lofting effect.

  3. Pathways, Impacts, and Policies on Severe Aerosol Injections into the Atmosphere: 2011 Severe Atmospheric Aerosols Events Conference

    KAUST Repository

    Weil, Martin; Grassl, Hartmut; Hoshyaripour, Gholamali; Kloster, Silvia; Kominek, Jasmin; Misios, Stergios; Scheffran, Juergen; Starr, Steven; Stenchikov, Georgiy L.; Sudarchikova, Natalia; Timmreck, Claudia; Zhang, Dan; Kalinowski, Martin

    2012-01-01

    The 2011 severe atmospheric events conference, held on August 11-12, 2011, Hamburg, Germany, discussed climatic and environmental changes as a result of various kinds of huge injections of aerosols into the atmosphere and the possible consequences for the world population. Various sessions of the conference dealt with different aspects of large aerosol injections and severe atmospheric aerosol events along the geologic time scale. A presentation about radiative heating of aerosols as a self-lifting mechanism in the Australian forest fires discussed the question of how the impact of tropical volcanic eruptions depends on the eruption season. H.-F. Graf showed that cloud-resolving plume models are more suitable to predict the volcanic plume height and dispersion than one-dimensional models. G. Stenchikov pointed out that the absorbing smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the solar heating and lofting effect.

  4. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  5. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  6. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan; Petters, Markus D.; O' Brien, Rachel; Wang, Bingbing; Teske, Ken; Dowell, Pat; Laskin, Alexander; Gilles, Mary K.

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.

  7. Atmospheric washout of radioactive aerosol for different types of precipitation events

    International Nuclear Information System (INIS)

    Bernauer, Felix

    2015-01-01

    Ionizing radiation is widely used in many applications such as medical diagnostics and radiotherapy, where the beneficial aspect of radiation exposure is obvious. However, the exposure of human beings to ionizing radiation may also have some negative effects on human health. After the Fukushima Dai-Ichi nuclear power plant accident measured deposition patterns did not match to patterns predicted by atmospheric transport models used in decision support systems. It was suggested that one reason for these discrepancies might be that these models do not differentiate between deposition by rain and snow. Up to now much effort has been spent on the theoretical and experimental investigation of the washout of atmospheric aerosol particles by rain. In contrast, only limited knowledge is available on the washout efficiency of snow, due to the complexity of the process. Therefore, the aim of the presented work was to analyze wet deposition of aerosol particles and particle bound radionuclides in different types of precipitation events. The thesis focused on below-cloud scavenging of aerosol particles in a size range from 10 nm to 510 nm in solid phase precipitation events. It is based on measurements of natural precipitation and natural aerosol particle concentration that were performed in the free atmosphere, at the Environmental Research Station Schneefernerhaus. For this purpose, a method was developed to characterize and classify precipitation events, which goes beyond the common differentiation between liquid, mixed and solid phase precipitation. The method included use of a 2D-Video Disdrometer (2DVD), that was adapted for the detection of mixed and solid phase hydrometeors (e.g. snowflakes). A new matching algorithm, that was developed for this thesis, allowed detection of solid, mixed and liquid phase hydrometeors with a maximum dimension larger than 0.5 mm. On the basis of shape and velocity descriptors, a classification algorithm that differentiates between three

  8. Atmospheric washout of radioactive aerosol for different types of precipitation events

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer, Felix

    2015-12-15

    Ionizing radiation is widely used in many applications such as medical diagnostics and radiotherapy, where the beneficial aspect of radiation exposure is obvious. However, the exposure of human beings to ionizing radiation may also have some negative effects on human health. After the Fukushima Dai-Ichi nuclear power plant accident measured deposition patterns did not match to patterns predicted by atmospheric transport models used in decision support systems. It was suggested that one reason for these discrepancies might be that these models do not differentiate between deposition by rain and snow. Up to now much effort has been spent on the theoretical and experimental investigation of the washout of atmospheric aerosol particles by rain. In contrast, only limited knowledge is available on the washout efficiency of snow, due to the complexity of the process. Therefore, the aim of the presented work was to analyze wet deposition of aerosol particles and particle bound radionuclides in different types of precipitation events. The thesis focused on below-cloud scavenging of aerosol particles in a size range from 10 nm to 510 nm in solid phase precipitation events. It is based on measurements of natural precipitation and natural aerosol particle concentration that were performed in the free atmosphere, at the Environmental Research Station Schneefernerhaus. For this purpose, a method was developed to characterize and classify precipitation events, which goes beyond the common differentiation between liquid, mixed and solid phase precipitation. The method included use of a 2D-Video Disdrometer (2DVD), that was adapted for the detection of mixed and solid phase hydrometeors (e.g. snowflakes). A new matching algorithm, that was developed for this thesis, allowed detection of solid, mixed and liquid phase hydrometeors with a maximum dimension larger than 0.5 mm. On the basis of shape and velocity descriptors, a classification algorithm that differentiates between three

  9. Particle size of radioactive aerosols generated during machine operation in high-energy proton accelerators

    International Nuclear Information System (INIS)

    Oki, Yuichi; Kanda, Yukio; Kondo, Kenjiro; Endo, Akira

    2000-01-01

    In high-energy accelerators, non-radioactive aerosols are abundantly generated due to high radiation doses during machine operation. Under such a condition, radioactive atoms, which are produced through various nuclear reactions in the air of accelerator tunnels, form radioactive aerosols. These aerosols might be inhaled by workers who enter the tunnel just after the beam stop. Their particle size is very important information for estimation of internal exposure doses. In this work, focusing on typical radionuclides such as 7 Be and 24 Na, their particle size distributions are studied. An aluminum chamber was placed in the EP2 beam line of the 12-GeV proton synchrotron at High Energy Accelerator Research Organization (KEK). Aerosol-free air was introduced to the chamber, and aerosols formed in the chamber were sampled during machine operation. A screen-type diffusion battery was employed in the aerosol-size analysis. Assuming that the aerosols have log-normal size distributions, their size distributions were obtained from the radioactivity concentrations at the entrance and exit of the diffusion battery. Radioactivity of the aerosols was measured with Ge detector system, and concentrations of non-radioactive aerosols were obtained using condensation particle counter (CPC). The aerosol size (radius) for 7 Be and 24 Na was found to be 0.01-0.04 μm, and was always larger than that for non-radioactive aerosols. The concentration of non-radioactive aerosols was found to be 10 6 - 10 7 particles/cm 3 . The size for radioactive aerosols was much smaller than ordinary atmospheric aerosols. Internal doses due to inhalation of the radioactive aerosols were estimated, based on the respiratory tract model of ICRP Pub. 66. (author)

  10. Development of a 10 Hz measurement system for atmospheric aerosol concentration

    International Nuclear Information System (INIS)

    Bouarouri, Assia

    2014-01-01

    The goal is to develop an aerosol charger based on a corona discharge for atmospheric concentration measurements (10 3 -10 5 cm -3 ) within a response time of 100 ms. Two ion sources, point-to-hole and wire-to-slit have been characterized. The increase of the ion flow in the post-discharge by EHD ion confinement in both the discharge gap and the hole has been shown. At first, using an experimental survey driven in two mixing configurations, concentric and face-to-face, we have confirmed the aerosol diffusion charging law which depends on aerosol diameter and N i .t product, with N i , the ions concentration and t, the charging time. Thus, the originality of this charger relies on the very high heterogeneity of unipolar ion densities (N i 0 ≥10 9 cm -3 ) required to compensate the charging time of 50 ms. In these conditions, we have shown that aerosol diameter and the charging dynamic (which depends also on the diameter) control the aerosol trajectory. The chargers have, next, been compared in different operating conditions, mainly in terms of the maximal charging and the minimal losses. In the chosen charger (point-to-hole ion source and concentric mixing), the relations charge/mobility and losses according to diameter have been characterized. We have also shown the linearity of the charged particles current with the aerosol concentration which allows the current-concentration data inversion. The preliminary measurement system composed by the charger, the separator and the particle current measurements, satisfies the objectives of the study in terms of the concentration detection limit (10 3 cm -3 ) and the response time (100 ms). We have thus shown the feasibility of an atmospheric aerosol concentration measurement system at 10 Hz using a corona discharge charger provided that the separation power is improved. Furthermore, knowing that aerosol losses are negligible and the lower limit of the partial charging, the developed charger is adaptable with other

  11. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Pedersen, Jens Olaf Pepke; Marsh, N.D.

    2007-01-01

    Experimental studies of aerosol nucleation in air, containing trace amounts of ozone, sulphur dioxide and water vapour at concentrations relevant for the Earth's atmosphere, are reported. The production of new aerosol particles is found to be proportional to the negative ion density and yields...... nucleation rates of the order of 0.1 1 cm(-3) s(-1). This suggests that the ions are active in generating an atmospheric reservoir of small thermodynamically stable clusters, which are important for nucleation processes in the atmosphere and ultimately for cloud formation....

  12. Atmospheric residence times of continental aerosols

    International Nuclear Information System (INIS)

    Balkanski, Y.J.

    1991-01-01

    The global atmospheric distributions of Rn-222 are simulated with a three-dimensional model of atmospheric transport based on the meteorology of the NASA Goddard Institute for Space Studies (GISS) general circulation model. The short-lived radioactive gas Rn-222 (half-life = 3.8d) is emitted almost exclusively from land, at a relatively uniform rate; hence it is an excellent tracer of continental influences. Lead-210 is produced by decay of Rn-222 and immediately condenses to preexisting aerosol surfaces. It provides an excellent measure of aerosol residence times in the atmosphere because its source is accurately defined by the Rn-222 distribution. Results from the three-dimensional model are compared to measurements of Rn-222 and Pb-210 atmospheric concentrations to evaluate model's long-range transport over oceanic regions and to study the deposition mechanisms of atmospheric aerosols. Model results for Rn-222 are used to examine the long-range transport of continental air over two selected oceanic regions, the subantarctic Indian Ocean and the North Pacific. It is shown that the fast transport of air from southern Africa causes substantial continental pollution at southern mid-latitudes, a region usually regarded as pristine. Air over the North Pacific is heavily impacted by continental influences year round, but the altitude at which the transport occurs varies seasonally. Observations of aerosols at island sites, which are commonly used as diagnostics of continental influences, may be misleading because they do not account for influences at high altitude and because aerosols are efficiently scavenged by deposition during transport. The study of Pb-210 focuses on defining the residence times of submicron aerosols in the troposphere. Scavenging in wet convective updrafts is found to provide the dominant sink on a global scale

  13. Atmospheric aerosol in an urban area: Comparison of measurement instruments and methodologies and pulmonary deposition assessment; Aerosol atmosferico in area urbanae di misura e valutazione di deposizione polmonare

    Energy Technology Data Exchange (ETDEWEB)

    Berico, M; Luciani, A; Formignani, M [ENEA, Centro Ricerche Bologna (Italy). Dip. Ambiente

    1996-07-01

    In March 1995 a measurement campaign of atmospheric aerosol in the Bologna urban area (Italy) was carried out. A transportable laboratory, set up by ENEA (Italian national Agency for New Technologies, Energy and the Environment) Environmental Department (Bologna), was utilized with instruments for measurement of atmospheric aerosol and meteorological parameters. The aim of this campaign was of dual purpose: to characterize aerosol in urban area and to compare different instruments and methodologies of measurements. Mass concentrations measurements, evaluated on a 23-hour period with total filter, PM10 dichotomous sampler and low pressure impactor (LPI Berner), have provided information respectively about total suspended particles, respirable fraction and granulometric parameters of aerosol. Eight meteorologic parameters, number concentration of submicromic fraction of aerosol and mass concentration of micromic fraction have been continually measured. Then, in a daytime period, several number granulometries of atmospheric aerosol have also been estimated by means of diffusion battery system. Results related to different measurement methodologies and granulometric characteristics of aerosol are presented here. Pulmonary deposition of atmospheric aerosol is finally calculated, using granulometries provided by LPI Brener and ICRP 66 human respiratory tract model.

  14. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    Science.gov (United States)

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  15. Unintended consequences of atmospheric injection of sulphate aerosols.

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the

  16. AEROSOL VARIABILITY OBSERVED WITH RPAS

    Directory of Open Access Journals (Sweden)

    B. Altstädter

    2013-08-01

    Full Text Available To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter. Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  17. Spatial Variability of CCN Sized Aerosol Particles

    Science.gov (United States)

    Asmi, A.; Väänänen, R.

    2014-12-01

    The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.

  18. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth and Aerosol Particle Size Distribution Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of aerosol optical depth (AOD) and particle size from the Visible Infrared Imaging...

  19. Infrared remote sensing of atmospheric aerosols; Apports du sondage infrarouge a l'etude des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Pierangelo, C

    2005-09-15

    The 2001 report from the Intergovernmental Panel on Climate Change emphasized the very low level of understanding of atmospheric aerosol effects on climate. These particles originate either from natural sources (dust, volcanic aerosols...) or from anthropogenic sources (sulfates, soot...). They are one of the main sources of uncertainty on climate change, partly because they show a very high spatio-temporal variability. Observation from space, being global and quasi-continuous, is therefore a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain a better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the infrared domain still remains marginal. Yet, not only the knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing, but also infrared remote sensing provides a way to retrieve other aerosol characteristics (observations are possible at night and day, over land and sea). In this PhD dissertation, we show that aerosol optical depth, altitude and size can be retrieved from infrared sounder observations. We first study the sensitivity of aerosol optical properties to their micro-physical properties, we then develop a radiative transfer code for scattering medium adapted to the very high spectral resolution of the new generation sounder NASA-Aqua/AIRS, and we finally focus on the inverse problem. The applications shown here deal with Pinatubo stratospheric volcanic aerosol, observed with NOAA/HIRS, and with the building of an 8 year climatology of dust over sea and land from this sounder. Finally, from AIRS observations, we retrieve the optical depth at 10 {mu}m, the average altitude and the coarse mode effective radius of mineral dust over sea. (author)

  20. Atmospheric Residence Times of Continental Aerosols.

    Science.gov (United States)

    Balkanski, Yves Jacques

    The global atmospheric distributions of ^{222}Rn and ^{210 }Pb are simulated with a three-dimensional model of atmospheric transport based on the meteorology of the NASA GISS^1>=neral circulation model. The short-lived radioactive gas ^ {222}Rn (half-life = 3.8d) is emitted almost exclusively from land, at a relatively uniform rate; hence it is an excellent tracer of continental influences. Lead -210 is produced by decay of ^{222} Rn and immediately condenses to preexisting aerosol surfaces. It provides an excellent measure of aerosol residence times in the atmosphere because its source is accurately defined by the ^{222} Rn distribution. Results from the three-dimensional model are compared to measurements of ^ {222}Rn and ^{210 }Pb atmospheric concentrations to evaluate model's long-range transport over oceanic regions and to study the deposition mechanisms of atmospheric aerosols. Model results for ^{222} Rn are used to examine the long-range transport of continental air over two selected oceanic regions, the subantartic Indian Ocean and the North Pacific. It is shown that fast transport of air from southern Africa causes substantial continental pollution at southern mid-latitudes, a region usually regarded as pristine. Air over the North Pacific is heavily impacted by continental influences year round, but the altitude at which the transport occurs varies seasonally. Observations of aerosols at island sites, which are commonly used as diagnostics of continental influences, may be misleading because they do not account for influences at high altitude and because aerosols are efficiently scavenged by deposition during transport. The study of ^{210}Pb focuses on defining the residence times of submicron aerosols in the troposphere. Scavenging in wet convective updrafts is found to provide the dominant sink on a global scale. The globally averaged residence time for ^{210 }Pb-containing aerosols in the troposphere is 7 days. The average increase in residence time

  1. Workplace aerosol mass concentration measurement using optical particle counters.

    Science.gov (United States)

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  2. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L.M., E-mail: baoliangman@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, G.L., E-mail: zhangguilin@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Lei, Q.T.; Li, Y.; Li, X.L. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Hwu, Y.K. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Yi, J.M. [Advanced Photon Source, Argonne National Laboratory, Argonne 60439 (United States)

    2015-09-15

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  3. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  4. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    Science.gov (United States)

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  5. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    Science.gov (United States)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  6. The role of ion-induced aerosol formation in the lower atmosphere

    International Nuclear Information System (INIS)

    Raes, Frank; Janssens, Augustin; Dingenen, Rita van

    1986-01-01

    The rate of ion-induced aerosol formation in a H 2 0-H 2 S0 4 mixture depends on the relative humidity, the relative acidity and the number of ions (clusters) available for nucleation. Figure 1 shows the rates of homogeneous and ion-induced aerosol formation as a function of the H 2 S0 4 sup((gas)) concentration, for conditions prevailing in the lower atmosphere. The rate of ion-induced aerosol formation is plotted for different concentrations of pre-existing aerosol. It can be seen that ion-induced aerosol formation will only play a role in the formation of new particles when (1) the H 2 S0 4 sup((gas)) concentration is confined within the critical values for ion-induced and homogeneous aerosol formation (about 5 x 10 7 and 4 x 10 8 cm -3 respectively), and (2) the concentration of pre-existing aerosol is lower than about 5 x 10 3 cm -3 (Dp = 0.1 μm). It will be shown by numerical calculations that such conditions may be expected above the oceans. (author)

  7. Secondary organic aerosol importance in the future atmosphere

    International Nuclear Information System (INIS)

    Tsigaridis, K.; Kanakidou, M.

    2007-01-01

    In order to investigate the secondary organic aerosol (SOA) response to changes in biogenic volatile organic compounds (VOC) emissions in the future atmosphere and how important will SOA be relative to the major anthropogenic aerosol component (sulfate), the global three-dimensional chemistry/transport model TM3 has been used. Emission estimates of biogenic VOC (BVOC) and anthropogenic gases and particles from the literature for the year 2100 have been adopted. According to our present-day model simulations, isoprene oxidation produces 4.6 Tg SOA yr -1 , that is less than half of the 12.2 Tg SOA yr -1 formed by the oxidation of other BVOC. In the future, nitrate radicals and ozone become more important than nowadays, but remain minor oxidants for both isoprene and aromatics. SOA produced by isoprene is estimated to almost triple, whereas the production from other BVOC more than triples. The calculated future SOA burden change, from 0.8 Tg at present to 2.0 Tg in the future, is driven by changes in emissions, oxidant levels and pre-existing particles. The non-linearity in SOA formation and the involved chemical and physical feedbacks prohibit the quantitative attribution of the computed changes to the above-mentioned individual factors. In 2100, SOA burden is calculated to exceed that of sulfate, indicating that SOA might become more important than nowadays. These results critically depend on the biogenic emissions and thus are subject to the high uncertainty associated with these emissions estimated due to the insufficient knowledge on plant response to carbon dioxide changes. Nevertheless, they clearly indicate that the change in oxidants and primary aerosol caused by human activities can contribute as much as the change in BVOC emissions to the increase of the biogenic SOA production in the future atmosphere. (authors)

  8. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    Science.gov (United States)

    Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N-20° S) for 10 years (2002-2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder

  9. Infrared remote sensing of atmospheric aerosols; Apports du sondage infrarouge a l'etude des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Pierangelo, C.

    2005-09-15

    The 2001 report from the Intergovernmental Panel on Climate Change emphasized the very low level of understanding of atmospheric aerosol effects on climate. These particles originate either from natural sources (dust, volcanic aerosols...) or from anthropogenic sources (sulfates, soot...). They are one of the main sources of uncertainty on climate change, partly because they show a very high spatio-temporal variability. Observation from space, being global and quasi-continuous, is therefore a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain a better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the infrared domain still remains marginal. Yet, not only the knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing, but also infrared remote sensing provides a way to retrieve other aerosol characteristics (observations are possible at night and day, over land and sea). In this PhD dissertation, we show that aerosol optical depth, altitude and size can be retrieved from infrared sounder observations. We first study the sensitivity of aerosol optical properties to their micro-physical properties, we then develop a radiative transfer code for scattering medium adapted to the very high spectral resolution of the new generation sounder NASA-Aqua/AIRS, and we finally focus on the inverse problem. The applications shown here deal with Pinatubo stratospheric volcanic aerosol, observed with NOAA/HIRS, and with the building of an 8 year climatology of dust over sea and land from this sounder. Finally, from AIRS observations, we retrieve the optical depth at 10 {mu}m, the average altitude and the coarse mode effective radius of mineral dust over sea. (author)

  10. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Directory of Open Access Journals (Sweden)

    I. A. Mironova

    2012-01-01

    Full Text Available Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III, and Optical Spectrograph and Infrared Imaging System (OSIRIS, we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak

  11. Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence

    Science.gov (United States)

    Mironova, I. A.; Usoskin, I. G.; Kovaltsov, G. A.; Petelina, S. V.

    2012-01-01

    Energetic cosmic rays are the main source of ionization of the low-middle atmosphere, leading to associated changes in atmospheric properties. Via the hypothetical influence of ionization on aerosol growth and facilitated formation of clouds, this may be an important indirect link relating solar variability to climate. This effect is highly debated, however, since the proposed theoretical mechanisms still remain illusive and qualitative, and observational evidence is inconclusive and controversial. Therefore, important questions regarding the existence and magnitude of the effect, and particularly the fraction of aerosol particles that can form and grow, are still open. Here we present empirical evidence of the possible effect caused by cosmic rays upon polar stratospheric aerosols, based on a case study of an extreme solar energetic particle (SEP) event of 20 January 2005. Using aerosol data obtained over polar regions from different satellites with optical instruments that were operating during January 2005, such as the Stratospheric Aerosol and Gas Experiment III (SAGE III), and Optical Spectrograph and Infrared Imaging System (OSIRIS), we found a significant simultaneous change in aerosol properties in both the Southern and Northern Polar regions in temporal association with the SEP event. We speculate that ionization of the atmosphere, which was abnormally high in the lower stratosphere during the extreme SEP event, might have led to formation of new particles and/or growth of preexisting ultrafine particles in the polar stratospheric region. However, a detailed interpretation of the effect is left for subsequent studies. This is the first time high vertical resolution measurements have been used to discuss possible production of stratospheric aerosols under the influence of cosmic ray induced ionization. The observed effect is marginally detectable for the analyzed severe SEP event and can be undetectable for the majority of weak-moderate events. The present

  12. Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results

    International Nuclear Information System (INIS)

    Mironova, I A; Usoskin, I G

    2014-01-01

    This letter presents a summary of a phenomenological study of the response of the polar stratosphere to strong solar energetic particle (SEP) events corresponding to ground level enhancements (GLEs) of cosmic rays. This work is focused on evaluation of the possible influence of the atmospheric ionization caused by SEPs upon formation of aerosol particles in the stratosphere over polar regions. Following case studies of two major SEP/GLE events, in January 2005 and September 1989, and their possible effects on polar stratospheric aerosols, we present here the results of an analysis of variations of the daily profiles of the stratospheric aerosol parameters (aerosol extinction for different wavelengths, as well as Ångstrom exponent) for both polar hemispheres during SEP/GLE events of July 2000, April 2001 and October 2003, which form already five clear cases corresponding to extreme and strong SEP/GLE events. The obtained results suggest that an enhancement of ionization rate by a factor of about two in the polar region with night/cold/winter conditions can lead to the formation/growing of aerosol particles in the altitude range of 10–25 km. We also present a summary of the investigated effects based on the phenomenological study of the atmospheric application of extreme SEP events. (paper)

  13. The single scattering properties of the aerosol particles as aggregated spheres

    International Nuclear Information System (INIS)

    Wu, Y.; Gu, X.; Cheng, T.; Xie, D.; Yu, T.; Chen, H.; Guo, J.

    2012-01-01

    The light scattering and absorption properties of anthropogenic aerosol particles such as soot aggregates are complicated in the temporal and spatial distribution, which introduce uncertainty of radiative forcing on global climate change. In order to study the single scattering properties of anthorpogenic aerosol particles, the structures of these aerosols such as soot paticles and soot-containing mixtures with the sulfate or organic matter, are simulated using the parallel diffusion limited aggregation algorithm (DLA) based on the transmission electron microscope images (TEM). Then, the single scattering properties of randomly oriented aerosols, such as scattering matrix, single scattering albedo (SSA), and asymmetry parameter (AP), are computed using the superposition T-matrix method. The comparisons of the single scattering properties of these specific types of clusters with different morphological and chemical factors such as fractal parameters, aspect ratio, monomer radius, mixture mode and refractive index, indicate that these different impact factors can respectively generate the significant influences on the single scattering properties of these aerosols. The results show that aspect ratio of circumscribed shape has relatively small effect on single scattering properties, for both differences of SSA and AP are less than 0.1. However, mixture modes of soot clusters with larger sulfate particles have remarkably important effects on the scattering and absorption properties of aggregated spheres, and SSA of those soot-containing mixtures are increased in proportion to the ratio of larger weakly absorbing attachments. Therefore, these complex aerosols come from man made pollution cannot be neglected in the aerosol retrievals. The study of the single scattering properties on these kinds of aggregated spheres is important and helpful in remote sensing observations and atmospheric radiation balance computations.

  14. Laboratory Studies of Planetary Hazes: composition of cool exoplanet atmospheric aerosols with very high resolution mass spectrometry

    Science.gov (United States)

    Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole

    2017-10-01

    We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.

  15. Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France

    Directory of Open Access Journals (Sweden)

    E. J. Freney

    2011-12-01

    Full Text Available Detailed investigations of the chemical and microphysical properties of atmospheric aerosol particles were performed at the puy-de-Dôme (pdD research station (1465 m in autumn (September and October 2008, winter (February and March 2009, and summer (June 2010 using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS. Over the three campaigns, the average mass concentrations of the non-refractory submicron particles ranged from 10 μg m−3 up to 27 μg m−3. Highest nitrate and ammonium mass concentrations were measured during the winter and during periods when marine modified airmasses were arriving at the site, whereas highest concentrations of organic particles were measured during the summer and during periods when continental airmasses arrived at the site. The measurements reported in this paper show that atmospheric particle composition is strongly influenced by both the season and the origin of the airmass. The total organic mass spectra were analysed using positive matrix factorisation to separate individual organic components contributing to the overall organic particle mass concentrations. These organic components include a low volatility oxygenated organic aerosol particle (LV-OOA and a semi-volatile organic aerosol particle (SV-OOA. Correlations of the LV-OOA components with fragments of m/z 60 and m/z 73 (mass spectral markers of wood burning during the winter campaign suggest that wintertime LV-OOA are related to aged biomass burning emissions, whereas organic aerosol particles measured during the summer are likely linked to biogenic sources. Equivalent potential temperature calculations, gas-phase, and LIDAR measurements define whether the research site is in the planetary boundary layer (PBL or in the free troposphere (FT/residual layer (RL. We observe that SV-OOA and nitrate particles are associated with air masses arriving from the PBL where as particle composition measured from RL

  16. TEM study of soot, organic aerosol, and sea-salt particles collected during CalNex

    Science.gov (United States)

    Adachi, K.; Buseck, P. R.

    2010-12-01

    Anthropogenic aerosol particles are emitted in abundance from megacities. Those particles can have important effects on both human health and climate. In this study, aerosol particles having aerodynamic diameters between 50 and 300 nm were collected during the CalNex campaign at the Pasadena ground site from May 15 to June 15, 2010, ~15 km northeast of downtown Los Angeles. The samples were analyzed using transmission electron microscopes (TEMs) to characterize particle shapes and compositions. Most samples are dominated by soot, organic aerosol (OA), sulfate, sea salt, or combinations thereof. Sizes and amounts of OA particles increased during the afternoons, and most soot particles were internally mixed with OA and sulfate in the afternoons. The proportion of soot to other material in individual particles increased and soot particles were more compact during the nights and early mornings. Sea-salt particles were commonly internally mixed with other materials. They have high Na contents with lesser N, Mg, S, K, and Ca and almost no Cl, suggesting that the Cl was replaced by sulfate or nitrate in the atmosphere. There is less OA and more sea salt and sulfate in the CalNex samples than in the samples from Mexico City that were collected during the MILAGRO campaign. Our study indicates that compositions of internally mixed aerosol particles and shapes of soot particles change significantly within a day. These changes probably influence the estimates of their effects on human health and climate.

  17. Origins of atmospheric aerosols. Basic concepts on aerosol main physical properties; L`aerosol atmospherique: ses origines quelques notions sur les principales proprietes physiques des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, A. [Paris-12 Univ., 94 - Creteil (France). Laboratoire de Physique des aerosols et de transferts des contaminations

    1996-12-31

    Natural and anthropogenic sources of atmospheric aerosols are reviewed and indications of their concentrations and granulometry are given. Calculation of the lifetime of an atmospheric aerosol of a certain size is presented and the various modes of aerosol granulometry and their relations with photochemical and physico-chemical processes in the atmosphere are discussed. The main physical, electrical and optical properties of aerosols are also presented: diffusion coefficient, dynamic mobility and relaxation time, Stokes number, limit rate of fall, electrical mobility, optical diffraction

  18. Influence of particle size and chemistry on the cloud nucleating properties of aerosols

    Directory of Open Access Journals (Sweden)

    P. K. Quinn

    2008-02-01

    Full Text Available The ability of an aerosol particle to act as a cloud condensation nuclei (CCN is a function of the size of the particle, its composition and mixing state, and the supersaturation of the cloud. In-situ data from field studies provide a means to assess the relative importance of these parameters. During the 2006 Texas Air Quality – Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS, the NOAA RV Ronald H. Brown encountered a wide variety of aerosol types ranging from marine near the Florida panhandle to urban and industrial in the Houston-Galveston area. These varied sources provided an opportunity to investigate the role of aerosol sources and chemistry in the potential activation of particles to form cloud droplets. Measurements were made of CCN concentrations, aerosol chemical composition in the size range relevant for particle activation in warm clouds, and aerosol size distributions. Variability in aerosol composition was parameterized by the mass fraction of Hydrocarbon-like Organic Aerosol (HOA for particle diameters less than 200 nm (vacuum aerodynamic. The HOA mass fraction in this size range was lowest for marine aerosol and highest for aerosol sampled close to anthropogenic sources. Combining all data from the experiment reveals that composition (defined by HOA mass fraction explains 40% of the variance in the critical diameter for particle activation at the instrumental supersaturation (S of 0.44%. Correlations between HOA mass fraction and aerosol mean diameter show that these two parameters are essentially independent of one another for this data set. We conclude that, based on the variability of the HOA mass fraction observed during TexAQS-GoMACCS, variability in particle composition played a significant role in determining the fraction of particles that could activate to form cloud droplets. Using a simple model based on Köhler theory and the assumption that HOA is insoluble, we estimate the

  19. A study on characteristics and sources of winter time atmospheric aerosols in Kyoto and Seoul using PIXE and supplementary analysis

    International Nuclear Information System (INIS)

    Ma, C.-J.; Kasahara, M.; Tohno, S.; Yeo, H.-G.

    1999-01-01

    Atmospheric aerosols were collected using a two stages filter sampler to classify into the fine and coarse fraction in Kyoto and Seoul in winter season. Elemental concentrations of aerosols were analyzed by PIXE and EAS as well as ion concentrations by IC. Analyzed data were used to source of aerosol particles. (author)

  20. Examining Model Atmospheric Particles Inside and Out

    Science.gov (United States)

    Wingen, L. M.; Zhao, Y.; Fairhurst, M. C.; Perraud, V. M.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2017-12-01

    Atmospheric particles scatter incoming solar radiation and act as cloud condensation nuclei (CCN), thereby directly and indirectly affecting the earth's radiative balance and reducing visibility. These atmospheric particles may not be uniform in composition. Differences in the composition of a particle's outer surface from its core can arise during particle growth, (photo)chemical aging, and exchange of species with the gas phase. The nature of the surface on a molecular level is expected to impact growth mechanisms as well as their ability to act as CCN. Model laboratory particle systems are explored using direct analysis in real time-mass spectrometry (DART-MS), which is sensitive to surface composition, and contrasted with average composition measurements using high resolution, time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Results include studies of the heterogeneous reactions of amines with solid dicarboxylic acid particles, which are shown to generate aminium dicarboxylate salts at the particle surface, leaving an unreacted core. Combination of both mass spectrometric techniques reveals a trend in reactivity of C3-C7 dicarboxylic acids with amines and allows calculation of the DART probe depth into the particles. The results of studies on additional model systems that are currently being explored will also be reported.

  1. Reactivity of liquid and semisolid secondary organic carbon with chloride and nitrate in atmospheric aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingbing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Brien, Rachel E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of the Pacific, Stockton, CA (United States); Kelly, Stephen T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shilling, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moffet, Ryan C. [Univ. of the Pacific, Stockton, CA (United States); Gilles, Mary K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Laskin, Alexander [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-14

    Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semi-solid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary micro-spectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO₃ particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO₃ from reacted aerosol particles may have important implications for atmospheric chemistry.

  2. The hygroscopicity of indoor aerosol particles

    International Nuclear Information System (INIS)

    Wei, L.

    1993-07-01

    A system to study the hygroscopic growth of particle was developed by combining a Tandem Differential Mobility Analyzer (TDMA) with a wetted wall reactor. This system is capable of mimicking the conditions in human respiratory tract, and measuring the particle size change due to the hygroscopic growth. The performance of the system was tested with three kinds of particles of known composition, NaCl, (NH 4 ) 2 SO 4 , and (NH 4 )HS0 4 particles. The hygroscopicity of a variety of common indoor aerosol particles was studied including combustion aerosols (cigarette smoking, cooking, incenses and candles) and consumer spray products such as glass cleaner, general purpose cleaner, hair spray, furniture polish spray, disinfectant, and insect killer. Experiments indicate that most of the indoor aerosols show some hygroscopic growth and only a few materials do not. The magnitude of hygroscopic growth ranges from 20% to 300% depending on the particle size and fraction of water soluble components

  3. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2010-09-01

    Full Text Available This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds. Products of these processes include (a oligomers, (b nitrogen-containing products, (c photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud chemistry for the same conditions (liquid water content, particle size.

    The application of the new module including detailed chemical processes in a box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the predicted atmospheric relevance of SOA formation from glyoxal. During day time, a photochemical (most likely radical-initiated process is the major SOA formation pathway forming ∼5 μg m−3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt. During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5 < pH < 7.

    Glyoxal uptake into ammonium sulfate seed under dark conditions can be represented with a single reaction parameter keffupt that does not depend

  4. Unattached fraction and the aerosol size distribution of the radon progeny in a natural cave and mine atmospheres

    International Nuclear Information System (INIS)

    Butterweck, G.; Porstendoerfer, J.; Reineking, A.; Kesten, J.

    1992-01-01

    Measurements of the activity size distribution of aerosol-attached radon progeny and the amount of unattached radon daughters have been performed in mine atmospheres and a tourist cave. During working hours a large number (10 5 -10 6 cm -3 ) of aerosol particles is generated in mines, mainly by diesel engines. The activity size distribution of these aerosol particles has smaller median diameters (AMAD about 200 nm) than the aged aerosol existing in the mine during non-working hours (AMAD about 350 nm). Strictly correlated to the aerosol concentration, the unattached fraction of the radon progeny, f p , in the tourist cave (3000 particles per cm 3 ) is higher (f p = 0.1) than in mines (f p 0.01) during working hours. This yields 1.4-2.5 times higher radiation dose conversion factors in the natural cave than in mines under working conditions. (author)

  5. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    Science.gov (United States)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  6. Particle characterization at rural, suburban and urban aerosol sampling sites in Hungary

    International Nuclear Information System (INIS)

    Borbely-Kiss, I.; Koltay, E.; Szabo, G.; Meszaros, E.; Molnar, A.; Bozo, L.

    1994-01-01

    The study of atmospheric aerosols originating from natural and anthropogenic processes is of basic importance for a detailed understanding of the physics and chemistry of the atmosphere. Particle Induced X-ray Emission (PIXE) technique has been used by the authors for studying regularly the elemental composition of rural, suburban, and urban aerosols collected at six sampling sites in Hungary. Observed data presented in terms of concentrations and regional signature values and evaluated wind sector partition and in transport modelling revealed the natural/anthropogenic contribution to the moderate air pollution here. Dry deposition velocities have been deduced for elements V, Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb. Model calculations based on annual emission data and observed elemental concentrations resulted in total dry and wet deposition masses of the above elements to the territory of the country. At the same time, deduced budget data for the emission and deposition of the constituents indicated whether the country represents a net source or a sink for the above mentioned elements in the regional aerosol transport between neighbouring countries. Evidences have been found for intrusion events of Saharan aerosol to the atmosphere of Hungary. Part of the data collected recently will be evaluated in the frame-work of an international co-ordinated research programme. (author)

  7. Influence of aerosol particles, clouds, and condensation trails on the climate in Bavaria

    International Nuclear Information System (INIS)

    Wiegner, M.

    1994-01-01

    Human interventions in the climate system occur mainly through the emission of trace gases and aerosol particles. Emissions of aerosol particles can also change the properties of clouds. Climate model calculations have shown that an increase in trace gas concentrations causes the lower atmosphere to warm. According to numerical studies performed during the past few years, anthropogenic aerosol sources can have a cooling effect which is of the same order as the warming caused by greenhouse gases. However, due to their differing time constants and spatial characteristics the two effects are unlikely to neutralise each other over extended regions for any length of time. The currently available models with their very coarse spatial resolution are not suitable for making climatological predictions for Bavaria on the basis of cloud or aerosol properties. What can be done at present is to formulate warnings and propose measures for reducing environmental hazards and conserving our natural surroundings as far as possible. (orig.) [de

  8. Lung Deposition Calculations for Radioactive Aerosol Particles Originating from Caves and Uranium Mines

    International Nuclear Information System (INIS)

    Alfoldy, B.; Torok, Sz.; Winkler, R.

    2001-01-01

    Full text: The present study simulates lung deposition of radioactive aerosol particles originating from the atmosphere of a therapeutic cave (Szemlohegyi cave, Budapest) and several uranium mines. Particle deposition patterns and surface densities have been calculated by the stochastic lung model of Koblinger and Hofmann. In the model, deposition can be caused by the simultaneous effects of Brownian motion, inertial impaction and gravitational settling. The calculations were carried out by considering the aerosol particle size distribution and radon concentration of the atmosphere of the cave and mines. The deposition was computed in the whole lung, in characteristic parts of the respiratory system such as extrathoracic, tracheobronchial, acinar and alveolar regions and in the singe airway generations at different flow rates for adults. The adverse health effects of inhaled radionuclides strongly depend from the local deposition density values in cellular dimensions. Thus we will built in the results to a cellular effects model of Balashazy and Hofmann for the simulation of the pathological effects of inhaled radionuclides for risk assessment. (author)

  9. Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh)

    Science.gov (United States)

    Salam, Abdus; Mamoon, Hassan Al; Ullah, Md. Basir; Ullah, Shah M.

    2012-11-01

    Aerosol particle size distribution was measured with an aerodynamic particle sizer (APS) spectrometer continuously from January 21 to April 24, 2006 in Dhaka, Bangladesh. Particles number, surface and mass distributions data were stored automatically with Aerosol Instrument Manager (AIM) software on average every half an hour in a computer attached to the APS. The grand total average of number, surface and mass concentrations were 8.2 × 103 ± 7.8 × 103 particles cm-3, 13.3 × 103 ± 11.8 × 103 μm2 cm-3 and 3.04 ± 2.10 mg m-3, respectively. Fine particles with diameter smaller than 1.0 μm aerodynamic diameter (AD) dominated the number concentration, accounted for 91.7% of the total particles indicating vehicular emissions were dominating in Dhaka air either from fossil fuel burning or compressed natural gas (CNGs). The surface and mass concentrations between 0.5 and 1.0 μm AD were about 56.0% and 26.4% of the total particles, respectively. Remarkable seasonal differences were observed between winter and pre-monsoon seasons with the highest monthly average in January and the lowest in April. Aerosol particles in winter were 3.79 times higher for number, 3.15 times for surface and 2.18 times for mass distributions than during the pre-monsoon season. Weekends had lower concentrations than weekdays due to less vehicular traffic in the streets. Aerosol particles concentrations were about 15.0% (ranging from 9.4% to 17.3%) higher during traffic peak hours (6:00am-8:00pm) than off hours (8:00pm-6:00am). These are the first aerosol size distribution measurements with respect to number, surface and mass concentrations in real time at Dhaka, Bangladesh.

  10. The electrical charging of inactive aerosols in high ionised atmosphere, the electrical charging of artificial beta radioactive aerosols; Le processus de charge electrique: des aerosols non radioactifs en milieu fortement ionise, des aerosols radioactifs artificiels emetteurs beta

    Energy Technology Data Exchange (ETDEWEB)

    Gensdarmes, F

    2000-07-01

    The electrical properties of aerosols greatly influence their transport and deposition in a containment. In a bipolar ionic atmosphere, a neutral electric charge on aerosols is commonly assumed. However, many studies report a different charge distribution in some situations, like highly ionised atmosphere or in the case of radioactive aerosols. Such situations could arise from a hypothetical accident in a nuclear power plant. Within the framework of safety studies which are carried out at IPSN, our aims were the study of electrical properties of aerosols in highly ionised atmosphere, and the study of artificial radioactive aerosols, in order to suggest experimental validation of available theories. For this purpose, we designed an experimental device that allows us to measure non-radioactive aerosol charge distribution under high gamma irradiation, up to 10{sup 4} Gy/h. With our experimental device we also studied the properties of small ions in the medium. Our results show a variation of the charge distribution in highly ionised atmosphere. The charge increases with the dose of gamma ray. We have related this variation with the one of the small ions in the gases, according to theoretical prediction. However, the model overestimates slightly our experimental results. In the case of the radioactive aerosols, we have designed an original experimental device, which allows us to study the charge distribution of a {sup 137}Cs aerosol. Our results show that the electric charging of such aerosols is strongly dependent on evolution parameters in a containment. So, our results underline a great enhancement of self-charging of particles which are sampled in a confined medium. Our results are qualitatively in agreement with the theoretical model; nevertheless the latter underestimates appreciably the self-charging, owing to the fact that wall effects are not taken into account. (author)

  11. Maxwell-Stefan diffusion: a framework for predicting condensed phase diffusion and phase separation in atmospheric aerosol

    Science.gov (United States)

    Fowler, Kathryn; Connolly, Paul J.; Topping, David O.; O'Meara, Simon

    2018-02-01

    The composition of atmospheric aerosol particles has been found to influence their micro-physical properties and their interaction with water vapour in the atmosphere. Core-shell models have been used to investigate the relationship between composition, viscosity and equilibration timescales. These models have traditionally relied on the Fickian laws of diffusion with no explicit account of non-ideal interactions. We introduce the Maxwell-Stefan diffusion framework as an alternative method, which explicitly accounts for non-ideal interactions through activity coefficients. e-folding time is the time it takes for the difference in surface and bulk concentration to change by an exponential factor and was used to investigate the interplay between viscosity and solubility and the effect this has on equilibration timescales within individual aerosol particles. The e-folding time was estimated after instantaneous increases in relative humidity to binary systems of water and an organic component. At low water mole fractions, viscous effects were found to dominate mixing. However, at high water mole fractions, equilibration times were more sensitive to a range in solubility, shown through the greater variation in e-folding times. This is the first time the Maxwell-Stefan framework has been applied to an atmospheric aerosol core-shell model and shows that there is a complex interplay between the viscous and solubility effects on aerosol composition that requires further investigation.

  12. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    Science.gov (United States)

    Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas

    2017-07-01

    Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).

  13. In-situ observations of interstitial aerosol particles and cloud residues found in contrails

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    In spring 1994 a series of flights were conducted in cirrus clouds and contrails over southern Germany. One of the aims of this campaign was to study the phase partitioning of aerosols and water in these clouds. To achieve this separation of particles two complementary sampling probes were mounted on the research aircraft Falcon. These are the Counterflow Virtual Impactor (CVI) or super-micrometer inlet, and the interstitial inlet or submicrometer inlet. The CVI is a device that inertially separates cloud elements larger than a certain aerodynamic size from the surrounding atmosphere into a warm, dry and particle free air. Assuming that each cloud element leaves behind only one residue particle, these measurements yield an equivalent number concentration for cloud particles having an aerodynamic diameter larger than the lower cut size of the CVI. The size distribution of the sampled aerosol and residual particles between 0.1 to 3.5 {mu}m diameter was measured by a PMS PCASP (Passive Cavity Aerosol Spectrometer) working alternatively on both inlets. The gas-phase water vapor content was measured by a cryogenic frost point mirror. (R.P.) 4 refs.

  14. In-situ observations of interstitial aerosol particles and cloud residues found in contrails

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, J [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-12-31

    In spring 1994 a series of flights were conducted in cirrus clouds and contrails over southern Germany. One of the aims of this campaign was to study the phase partitioning of aerosols and water in these clouds. To achieve this separation of particles two complementary sampling probes were mounted on the research aircraft Falcon. These are the Counterflow Virtual Impactor (CVI) or super-micrometer inlet, and the interstitial inlet or submicrometer inlet. The CVI is a device that inertially separates cloud elements larger than a certain aerodynamic size from the surrounding atmosphere into a warm, dry and particle free air. Assuming that each cloud element leaves behind only one residue particle, these measurements yield an equivalent number concentration for cloud particles having an aerodynamic diameter larger than the lower cut size of the CVI. The size distribution of the sampled aerosol and residual particles between 0.1 to 3.5 {mu}m diameter was measured by a PMS PCASP (Passive Cavity Aerosol Spectrometer) working alternatively on both inlets. The gas-phase water vapor content was measured by a cryogenic frost point mirror. (R.P.) 4 refs.

  15. Pulmonary deposition of urban atmospheric aerosol. Assessments of the mass, number and surface of the deposited particles; Deposizione polmonare dell'aerosol atmosferico urbano in termini di massa, numero e superficie delle particelle

    Energy Technology Data Exchange (ETDEWEB)

    Luciani, A.; Berico, M.; Castellani, C.M. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente

    1998-07-01

    Pulmonary deposition of urban atmospheric aerosol has been calculated by means of the data derived from March 1995 measurement campaign of urban aerosol. The human respiratory tract model of the International Commission on Radiological Protection (n. 66) developed for radiation protection purposes has been used. The number and surface of the deposited particles, as well as the mass, have been also evaluated. [Italian] I dati relativi alla campagna di misure effettuata nel marzo 1995 sono stati rielaborati al fine di valutare la deposizione polmonare dell'aerosol atmosferico in area urbana. Le valutazioni di deposizione nel tratto respiratorio umano sono state condotte mediante l'utilizzo del modello del tratto respiratorio umano presentato per fini radioprotezionistici dalla International Commission on Radiological Protection (n. 66). Sono state effettuate valutazioni di deposizione in massa e in termini di numero e superficie delle particelle.

  16. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    Science.gov (United States)

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  17. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  18. Aerosol particle shrinkage event phenomenology in a South European suburban area during 2009-2015

    Science.gov (United States)

    Alonso-Blanco, E.; Gómez-Moreno, F. J.; Núñez, L.; Pujadas, M.; Cusack, M.; Artíñano, B.

    2017-07-01

    A high number of aerosol particle shrinkage cases (70) have been identified and analyzed from an extensive and representative database of aerosol size distributions obtained between 2009 and 2015 at an urban background site in Madrid (Spain). A descriptive classification based on the process from which the shrinkage began is proposed according which shrinkage events were divided into three groups: (1) NPF + shrinkage (NPF + S) events, (2) aerosol particle growth process + shrinkage (G + S) events, and (3) pure shrinkage (S) events. The largest number of shrinkages corresponded to the S-type followed by NPF + S, while the G + S events were the least frequent group recorded. Duration of shrinkages varied widely from 0.75 to 8.5 h and SR from -1.0 to -11.1 nm h-1. These processes typically occurred in the afternoon, around 18:00 UTC, caused by two situations: i) a wind speed increase usually associated with a change in the wind direction (over 60% of the observations) and ii) the reduction of photochemical activity at the end of the day. All shrinkages were detected during the warm period, mainly between May and August, when local meteorological conditions (high solar irradiance and temperature and low relative humidity), atmospheric processes (high photochemical activity) and availability of aerosol-forming precursors were favorable for their development. As a consequence of these processes, the particles concentration corresponding to the Aitken mode decreased into the nucleation mode. The accumulation mode did not undergo significant changes during these processes. In some cases, a dilution of the particulate content in the ambient air was observed. This work, goes further than others works dealing with aerosol particles shrinkages, as it incorporates as a main novelty a classification methodology for studying these processes. Moreover, compared to other studies, it is supported by a high and representative number of observations. Thus, this study contributes to

  19. Aerosol release from a hot sodium pool and behaviour in inert gas atmosphere

    International Nuclear Information System (INIS)

    Sauter, H.; Schuetz, W.

    1986-01-01

    In the KfK-NALA program, experiments were carried out on the subject of aerosol release from a contaminated sodium pool into inert gas atmosphere under various conditions. Besides the determination of retention factors for fuel and fission products, the sodium aerosol system was investigated and characterized, concerning aerosol generation (evaporation rate), particle size, mass concentration, and deposition behaviour. Pool temperatures were varied between 700 and 1000 K at different geometrical and convective conditions. Technical scale experiments with a 531-cm 2 pool surface area were performed at natural convection in a 2.2-m 3 heated vessel, as well as additional small scale experiments at forced convection and 38.5-cm 2 pool surface area. A best-fit formula is given for the specific evaporation rate into a 400 K argon atmosphere. Approximately, the very convenient relation (dm/dt) (kg/m 2 /h) = 0.1 p (mm Hg) was found. The sodium aerosol diameter lay between 0.6 μm, less than 1 sec after production, and 2.5 μm at maximum concentration. The deposition behaviour was characterized by very small quantities ( 80%) on the bottom cover of the vessel. In the model theoretic studies with the PARDISEKO code, calculations were performed of the mass concentration, particle diameter and deposition behaviour. Agreement with the experimental values could not be achieved until a modulus was introduced to allow for turbulent deposition. (author)

  20. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    International Nuclear Information System (INIS)

    Middleton, P.; Kiang, C.S.

    1979-01-01

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  1. Characterization of atmospheric aerosols in Chichi of the Ogasawara (Bonin) Islands

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, K.; Asakuno, K.

    1986-01-01

    Atmospheric aerosols in Chichi of the Ogasawara (Bonin) Islands, which is isolated by approximately 1000 km from the main island of Japan in the Pacific Ocean, were investigated by using an Andersen sampler. The ratio of Na to Cl in the aerosol was almost consistent with that is seawater. The Cl discrepancy of 3.1% to total Cl amount on the mole basis was explained by the Cl loss from a sea salt particle through the formation of NaNO/sub 3/. Al and V were considered to be derived from soil and fuel oil burning fly ash which were distributed dominatively in the coarse and fine particle ranges, respectively. It was shown that most of the nitrate consisted of NaNO/sub 3/ which was distributed in the coarse particle range. In addition, a very small amount of NH/sub 4/NO/sub 3/ was observed with a peak in the fine particle range. The sulfate was found to be distributed in a bimodal form with a peak in the coarse particle range which was derived from seawater, and a peak in the fine particle range which would be ascribed to sulfate converted from oceanic DMS. Finally, the inventory of total suspended particulate matter was presented.

  2. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0)

    Science.gov (United States)

    Zhu, S.; Sartelet, K. N.; Seigneur, C.

    2015-06-01

    The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.

  3. Mineralogy and origin of atmospheric particles in the industrial area of Huelva (SW Spain)

    Science.gov (United States)

    Bernabé, J. M.; Carretero, M. I.; Galán, E.

    The mineralogy of atmospheric particles at the confluence of the Tinto and Odiel rivers, south of Huelva (a highly industrialized city in the SW Spain), was characterized in view to identify source origins. In spite of the small amount of sample collected, mineralogical characterization was performed by X-ray diffraction, polarized light microscopy and scanning electron microscopy with EDS analysis system, using an adequate sample preparation methodology. Sedimentable (SP) and aerosols particles were sampled an one-week basis every two months for one year. Quartz, calcite and feldspars were found to be the major minerals in both fractions, and phyllosilicates, dolomite and gypsum were also identified in lower content. Minor mineral particles included barite, apatite, sphalerite and pyrite. SEM studies revealed the additional presence of chalcopyrite in both SP and aerosols, and of chalcocite-covellite, halite and sylvite in the latter. Siderite, hematite and ankerite were only detected in the SP fraction. The concentrations of the previous minerals increased in summer by effect of the limited rain and the resulting scarcity of atmosphere washing. Non-mineral particles detected by SEM in SP and aerosol fractions included spherical, biological and compositionally complex particles. The main source of mineral particles was found to be the soil suspension in addition to the metallurgical and fertilizer production industries in the area.

  4. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  5. Modelling organic particles in the atmosphere

    International Nuclear Information System (INIS)

    Couvidat, Florian

    2012-01-01

    Organic aerosol formation in the atmosphere is investigated via the development of a new model named H 2 O (Hydrophilic/Hydrophobic Organics). First, a parameterization is developed to take into account secondary organic aerosol formation from isoprene oxidation. It takes into account the effect of nitrogen oxides on organic aerosol formation and the hydrophilic properties of the aerosols. This parameterization is then implemented in H 2 O along with some other developments and the results of the model are compared to organic carbon measurements over Europe. Model performance is greatly improved by taking into account emissions of primary semi-volatile compounds, which can form secondary organic aerosols after oxidation or can condense when temperature decreases. If those emissions are not taken into account, a significant underestimation of organic aerosol concentrations occurs in winter. The formation of organic aerosols over an urban area was also studied by simulating organic aerosols concentration over the Paris area during the summer campaign of Megapoli (July 2009). H 2 O gives satisfactory results over the Paris area, although a peak of organic aerosol concentrations from traffic, which does not appear in the measurements, appears in the model simulation during rush hours. It could be due to an underestimation of the volatility of organic aerosols. It is also possible that primary and secondary organic compounds do not mix well together and that primary semi volatile compounds do not condense on an organic aerosol that is mostly secondary and highly oxidized. Finally, the impact of aqueous-phase chemistry was studied. The mechanism for the formation of secondary organic aerosol includes in-cloud oxidation of glyoxal, methylglyoxal, methacrolein and methylvinylketone, formation of methyltetrols in the aqueous phase of particles and cloud droplets, and the in-cloud aging of organic aerosols. The impact of wet deposition is also studied to better estimate the

  6. Study of Cl containing urban aerosol particles by ion beam analytical methods

    International Nuclear Information System (INIS)

    Angyal, A.; Kertesz, Zs.; Szikszai, Z.; Szoboszlai, T.

    2009-01-01

    Complete text of publication follows. In the densely populated areas of Europe one of the most important environmental problems is aerosol pollution. Thus one of the main goals of atmospheric research is to determine aerosol sources. In order to identify the origin of the particles, the knowledge of the chemical composition and size distribution is demanded. As a result of a source apportionment study, several sources of fine (particles with aerodynamic diameter < 2.5 μm) and coarse (10 μm ≥ aerodynamic diameter ≥ 2.5 μm) urban particulate matter were identified in Debrecen, using the hourly evolution of the elemental components. Sources characterized by high chlorine content were found in both size fractions, which gave significant contribution to the aerosol concentration in Debrecen. However, the origin of these particles could not be identified on the available information. In this work we give a more accurate characterization of the sources of coarse-mode Cl by using single particle analysis. Aerosol samples with 2-3 hours time resolution were collected in the frame of sampling campaigns in the garden of ATOMKI between October 2007 and January 2009. The elemental composition (for Z ≥ 13) was determined by Particle Induced X-ray Emission (PIXE). Single particle analysis of chosen samples was done on the ATOMKI Scanning Nuclear Microprobe Facility. Morphology, size and elemental composition for Z ≥ 6 of around 1000 coarse mode particles were determined by Scanning Transmission Ion Microscopy, light element PIXE and PIXE analytical methods. Hierarchical cluster analysis was performed on the data set to group the particles. In order to determine the possible sources of Cl in the coarse mode, the correlation between Cl and other elements, which could be used as tracers of different sources, was examined. Cl showed very strong correlation with Na. However the Cl:Na ratio was found to be different for different episodes indicating different origin of these

  7. Remote sensing for studying atmospheric aerosols in Malaysia

    Science.gov (United States)

    Kanniah, Kasturi D.; Kamarul Zaman, Nurul A. F.

    2015-10-01

    The aerosol system is Southeast Asia is complex and the high concentrations are due to population growth, rapid urbanization and development of SEA countries. Nevertheless, only a few studies have been carried out especially at large spatial extent and on a continuous basis to study atmospheric aerosols in Malaysia. In this review paper we report the use of remote sensing data to study atmospheric aerosols in Malaysia and document gaps and recommend further studies to bridge the gaps. Satellite data have been used to study the spatial and seasonal patterns of aerosol optical depth (AOD) in Malaysia. Satellite data combined with AERONET data were used to delineate different types and sizes of aerosols and to identify the sources of aerosols in Malaysia. Most of the aerosol studies performed in Malaysia was based on station-based PM10 data that have limited spatial coverage. Thus, satellite data have been used to extrapolate and retrieve PM10 data over large areas by correlating remotely sensed AOD with ground-based PM10. Realising the critical role of aerosols on radiative forcing numerous studies have been conducted worldwide to assess the aerosol radiative forcing (ARF). Such studies are yet to be conducted in Malaysia. Although the only source of aerosol data covering large region in Malaysia is remote sensing, satellite observations are limited by cloud cover, orbital gaps of satellite track, etc. In addition, relatively less understanding is achieved on how the atmospheric aerosol interacts with the regional climate system. These gaps can be bridged by conducting more studies using integrated approach of remote sensing, AERONET and ground based measurements.

  8. Is Distant Pollution Contaminating Local Air? Analyzing the Origins of Atmospheric Aerosols

    Directory of Open Access Journals (Sweden)

    David Geng

    2012-01-01

    Full Text Available Understanding the origin of aerosols in the atmosphere is important because of visual pollution, climate impacts, and deleterious health effects due to the inhalation of fine particles. This research analyzed aerosols characterized by their chloride, sulfate, and nitrate content as a function of size over a 3-month period. Due to wind patterns over coal-burning power plants, a higher concentration of local sulfate pollution was expected. Aerosols were harvested on the Purdue University campus using a high-volume air sampler with glass fiber filters and a five-stage impactor that separates the aerosols into five sizes. The filters were extracted in water to dissolve anions and the solution was analyzed using high-pressure liquid ion chromatography. Only trace amounts of chloride with no distinct patterns in size were detected. In total, nitrate content ranged from 0.12 to 2.10 μg/m3 and sulfate content ranged from 0.44 to 6.45 μg/m3 over a 3-month period. As for fine particles, a higher concentration of sulfate was observed. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT model determines air mass origin, and in this study, higher total sulfate content was observed when the air mass moved out of the southwest, and higher total nitrate content was observed when the air mass originated from the southeast. The author concluded that small particles resulted in sulfate from sulfur dioxide, typically from gas to particle conversion. High sulfur dioxide levels are directly correlated with coal-burning power plant density. Small particulate sulfate found in West Lafayette, Indiana, was determined to originate primarily from power plants in southwest Indiana. Though the results do show a significant amount of potentially harmful aerosols in West Lafayette, there is still further research to be done concerning isotopic composition of those particles in attempts to better explain the chemical pathways.

  9. Heterogeneous conversion of NO2 on secondary organic aerosol surfaces: A possible source of nitrous acid (HONO in the atmosphere?

    Directory of Open Access Journals (Sweden)

    R. Bröske

    2003-01-01

    Full Text Available The heterogeneous conversion of NO2 on different secondary organic aerosols (SOA was investigated with the focus on a possible formation of nitrous acid (HONO. In one set of experiments different organic aerosols were produced in the reactions of O3 with alpha-pinene, limonene or catechol and OH radicals with toluene or limonene, respectively. The aerosols were sampled on filters and exposed to humidified NO2  mixtures under atmospheric conditions. The estimated upper limits for the uptake coefficients of NO2  and the reactive uptake coefficients NO2  -> HONO are in the range of 10-6 and 10-7, respectively. The integrated HONO formation for 1 h reaction time was 13 cm-2 geometrical surface and 17 g-1 particle mass. In a second set of experiments the conversion of NO2 into HONO in the presence of organic particles was carried out in an aerosol flow tube under atmospheric conditions. In this case the aerosols were produced in the reaction of O3 with beta-pinene, limonene or catechol, respectively. The upper limits for the reactive uptake coefficients NO2 -> HONO were in the range of 7 x 10-7 - 9 x 10-6. The results from the present study show that heterogeneous formation of nitrous acid on secondary organic aerosols (SOA is unimportant for the atmosphere.

  10. submitter On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation

    CERN Document Server

    Schobesberger, S; Bianchi, F; Rondo, L; Duplissy, J; Kürten, A; Ortega, I K; Metzger, A; Schnitzhofer, R; Almeida, J; Amorim, A; Dommen, J; Dunne, E M; Ehn, M; Gagné, S; Ickes, L; Junninen, H; Hansel, A; Kerminen, V -M; Kirkby, J; Kupc, A; Laaksonen, A; Lehtipalo, K; Mathot, S; Onnela, A; Petäjä, T; Riccobono, F; Santos, F D; Sipilä, M; Tomé, A; Tsagkogeorgas, G; Viisanen, Y; Wagner, P E; Wimmer, D; Curtius, J; Donahue, N M; Baltensperger, U; Kulmala, M; Worsnop, D R

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia $(NH_3)$ and sulfuric acid $(H-2SO_4)$. Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small $NH_3–H_2SO_4$ clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high $[NH_3]$ / $[H_2SO_4]$. The $H_2SO_4$ molecules of these clusters are partially neutralized by $NH_3$, in close resemblance...

  11. Individual aerosol particles in and below clouds along a Mt. Fuji slope: Modification of sea-salt-containing particles by in-cloud processing

    Science.gov (United States)

    Ueda, S.; Hirose, Y.; Miura, K.; Okochi, H.

    2014-02-01

    Sizes and compositions of atmospheric aerosol particles can be altered by in-cloud processing by absorption/adsorption of gaseous and particulate materials and drying of aerosol particles that were formerly activated as cloud condensation nuclei. To elucidate differences of aerosol particles before and after in-cloud processing, aerosols were observed along a slope of Mt. Fuji, Japan (3776 m a.s.l.) during the summer in 2011 and 2012 using a portable laser particle counter (LPC) and an aerosol sampler. Aerosol samples for analyses of elemental compositions were obtained using a cascade impactor at top-of-cloud, in-cloud, and below-cloud altitudes. To investigate composition changes via in-cloud processing, individual particles (0.5-2 μm diameter) of samples from five cases (days) collected at different altitudes under similar backward air mass trajectory conditions were analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. For most cases (four cases), most particles at all altitudes mainly comprised sea salts: mainly Na with some S and/or Cl. Of those, in two cases, sea-salt-containing particles with Cl were found in below-cloud samples, although sea-salt-containing particles in top-of-cloud samples did not contain Cl. This result suggests that Cl in the sea salt was displaced by other cloud components. In the other two cases, sea-salt-containing particles on samples at all altitudes were without Cl. However, molar ratios of S to Na (S/Na) of the sea-salt-containing particles of top-of-cloud samples were higher than those of below-cloud samples, suggesting that sulfuric acid or sulfate was added to sea-salt-containing particles after complete displacement of Cl by absorption of SO2 or coagulation with sulfate. The additional volume of sulfuric acid in clouds for the two cases was estimated using the observed S/Na values of sea-salt-containing particles. The estimation revealed that size changes by in

  12. Labeling suspended aerosol particles with short-lived radionuclides for determination of particle deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Bryant, S.; Welch, S.; Digenis, G.A.

    1984-01-01

    Radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to deliver insoluble particles suspended in the aerosol formulation. Microaggregated bovine serum albumin microspheres that were to be suspended were labeled with iodine-131 (t1/2 . 8 d). This iodination procedure (greater than 80% effective) is also applicable to iodine-123, which possesses superior characteristics for external imaging and further in vivo studies. This report shows that for pressurized aerosols containing suspended particles, each metered dose is approximately equal (not including the priming doses and the emptying doses). Increase in the delivery of the albumin particles out of the canister was best achieved by pretreating the valve assembly with a solution of 2% (w/v) bovine serum albumin in phosphate buffer. Use of a cascade impactor delineated the particle size distribution of the micropheres, with the majority of particles ranging in size from 2 to 8 microns. The data disclosed here indicate that the techniques developed with short-lived radionuclides can be used to quantitate each metered dose, characterize the particle size distribution profile of the aerosol contents, and determine the extent of deposition of the particles in the aerosol canister and all of its components

  13. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    Science.gov (United States)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  14. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S. Suresh, E-mail: s_sureshbabu@vssc.gov.in [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022 (India); Kompalli, Sobhan Kumar [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022 (India); Moorthy, K. Krishna [Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012 (India)

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~ 15–15,000 nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter < 100 nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167 nm and 1150 to 1760 nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  15. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts

    International Nuclear Information System (INIS)

    Babu, S. Suresh; Kompalli, Sobhan Kumar; Moorthy, K. Krishna

    2016-01-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~ 15–15,000 nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter < 100 nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167 nm and 1150 to 1760 nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  16. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  17. Lidar-measurement of the atmospheric aerosols' extinction based on the field study SAMUM-1; Lidar-Messung der Extinktion des atmosphaerischen Aerosols am Beispiel der Feldstudie SAMUM-1

    Energy Technology Data Exchange (ETDEWEB)

    Esselborn, Michael

    2008-07-01

    In the frame of this thesis a high-resolution spectral LIDAR (HSRL) was used for the field study SAMUM during May/June 2006 and January/February 2008 on board of the research aircraft Falcon. The intensity of the LIDAR signals are mainly influences by backscattering and extinction of atmospheric particles (aerosols). Using a narrow-band optical filter the HSRL allows the measurement of the molecular backscattering besides the total atmospheric backscattering. During SAMUM-1 the optical properties of the Sahara dust aerosols were measured for the first time, esp. its extinction, the ratio extinction/backscattering and the depolarization close to the source region. The results of the optical density of the aerosols were compared with satellite-based data. South of the Atlas-mountains optical aerosol densities in the range of 0.50 to 0.60 were measured.

  18. Optical properties, morphology and elemental composition of atmospheric particles at T1 supersite on MILAGRO campaign

    Science.gov (United States)

    Carabali, G.; Mamani-Paco, R.; Castro, T.; Peralta, O.; Herrera, E.; Trujillo, B.

    2012-03-01

    Atmospheric particles were sampled at T1 supersite during MILAGRO campaign, in March 2006. T1 was located at the north of Mexico City (MC). Aerosol sampling was done by placing copper grids for Transmission Electron Microscope (TEM) on the last five of an 8-stage MOUDI cascade impactor. Samples were obtained at different periods to observe possible variations on morphology. Absorption and scattering coefficients, as well as particle concentrations (0.01-3 μm aerodynamic diameter) were measured simultaneously using a PSAP absorption photometer, a portable integrating nephelometer, and a CPC particle counter. Particle images were acquired at different magnifications using a CM 200 Phillips TEM-EDAX system, and then calculated the border-based fractal dimension. Also, Energy Dispersive X-Ray Spectroscopy (EDS) was used to determine the elemental composition of particles. The morphology of atmospheric particles for two aerodynamic diameters (0.18 and 1.8 μm) was compared using border-based fractal dimension to relate it to the other particle properties, because T1-generated particles have optical, morphological and chemical properties different from those transported by the MC plume. Particles sampled under MC pollution influence showed not much variability, suggesting that more spherical particles (border-based fractal dimension close to 1.0) are more common in larger sizes (d50 = 1.8 μm), which may be attributed to aerosol aging and secondary aerosol formation. Between 06:00 and 09:00 a.m., smaller particles (d50 = 0.18 μm) had more irregular shapes resulting in higher border-based fractal dimensions (1.2-1.3) for samples with more local influence. EDS analysis in d50 = 0.18 μm particles showed high contents of carbonaceous material, Si, Fe, K, and Co. Perhaps, this indicates an impact from industrial and vehicle emissions on atmospheric particles at T1.

  19. Geographical Distribution and Sources of Nutrients in Atmospheric Aerosol Over the Pacific Ocean

    Science.gov (United States)

    Uematsu, M.

    2016-12-01

    The Pacific Ocean, the world's largest (occupying about 30% of the Earth's total surface area) has several distinguishing biogeochemical features. In the western Pacific, dust particles originating from arid and semi-arid regions in Asia and Australia are transported to the north and south, respectively. Biomass burning emissions from Southeast Asia are exported to the tropical Pacific, and anthropogenic substances flowing out of Asia and Eurasia spread both regionally and globally. Over high primary productive areas such as the subarctic North Pacific, the equatorial Pacific and the Southern Ocean, biogenic gasses are released to the atmosphere and transported to other areas. These processes may affect cloud and rainfall patterns, air quality, and the radiative balance of downwind regions. The deposition of atmospheric aerosols containing iron and other essential nutrients is important for biogeochemical cycles in the oceans because this source of nutrients helps sustain primary production and affects food-web structure; these effects in turn influence the chemical properties of marine atmosphere. From an atmospheric chemistry standpoint, sea-salt aerosols produced by strong winds and marine biogenic gases emitted from highly productive waters affect the physicochemical characteristics of marine aerosols. As phytoplankton populations are patchy and atmospheric processes sporadic, the interactions between atmospheric chemical constituents and marine biota vary for different regions as well as seasonally and over longer timescales. To address these and other emerging issues, and more generally to better understand the important biogeochemical processes and interactions occurring over the open oceans, more long-term recurrent research cruises with standardized atmospheric shipboard measurements will be needed in the future.

  20. Assessment of capabilities of multiangle imaging photo-polarimetry for atmospheric correction in presence of absorbing aerosols

    Science.gov (United States)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F. C.; Diner, D. J.

    2015-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard

  1. Ozonolysis and Subsequent Photolysis of unsaturated organic molecules: Model Systems for Photochemical Aging of Organic Aerosol Particles

    Science.gov (United States)

    Park, J.; Gomez, A. L.; Walser, M. L.; Lin, A.; Nizkorodov, S. A.

    2005-12-01

    Chemical and photochemical aging of organic species adsorbed on aerosol particle surfaces is believed to have a significant effect on cloud condensation properties of atmospheric aerosols. Ozone initiated oxidation reactions of thin films of undecylenic acid and alkene-terminated self assembled monolayers (SAMs) on SiO2 surface were investigated using a combination of spectroscopic and mass spectrometric techniques. Photolysis of the oxidized film in the tropospheric actinic region (λ>290 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the enhanced photochemical activity. The presence of peroxides in the oxidized sample was confirmed by mass-spectrometric analysis and by an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is also observed. The reaction mechanism and its implications for photochemical aging of atmospheric aerosol particles will be discussed.

  2. Evaluation of applicability of high-resolution multiangle imaging photo-polarimetric observations for aerosol atmospheric correction

    Science.gov (United States)

    Kalashnikova, Olga; Garay, Michael; Xu, Feng; Diner, David; Seidel, Felix

    2016-07-01

    Multiangle spectro-polarimetric measurements have been advocated as an additional tool for better understanding and quantifying the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of this work is the assessment of the effects of absorbing aerosol properties on remote sensing reflectance measurement uncertainty caused by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. In this work a vector Markov Chain radiative transfer code including bio-optical models was used to quantitatively evaluate in water leaving radiances between atmospheres containing realistic UV-enhanced and non-spherical aerosols and the SEADAS carbonaceous and dust-like aerosol models. The phase matrices for the spherical smoke particles were calculated using a standard Mie code, while those for non-spherical dust particles were calculated using the numerical approach developed for modeling dust for the AERONET network of ground-based sunphotometers. As a next step, we have developed a retrieval code that employs a coupled Markov Chain (MC) and adding/doubling radiative transfer method for joint retrieval of aerosol properties and water leaving radiance from Airborne Multiangle SpectroPolarimetric Imager-1 (AirMSPI-1) polarimetric observations. The AirMSPI-1 instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI typically acquires observations of a target area at 9 view angles between ±67° at 10 m resolution. AirMSPI spectral channels are centered at 355, 380, 445, 470, 555, 660, and 865 nm, with 470, 660, and 865 reporting linear polarization. We

  3. Continuous air monitor for alpha-emitting aerosol particles

    International Nuclear Information System (INIS)

    McFarland, A.R.; Ortiz, C.A.; Rodgers, J.C.; Nelson, D.C.

    1991-01-01

    A new alpha continuous air monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of the interest. At the present time the authors have a prototype of the aerosol sampling system and they have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Wind tunnel tests show that ≥ 50% of 10 μm aerodynamic equivalent diameter (AED) particles penetrate the flow system from the ambient air to the collection filter when the flow rate is 57 L/min (2 cfm) and the wind speed is 1 m/s. The coefficient of variation of deposits of 10 μm AED aerosol particles on the collection filter is 7%. An inlet fractionator for removing high mobility background aerosol particles has been designed and successfully tested. The results show that it is possible to strip 95% of freshly formed radon daughters and 33% of partially aged radon daughters from the aerosol sample. This approach offers the opportunity to improve the signal-to-noise ratio in the alpha energy spectrum region of interest thereby enhancing the performance of background compensation algorithms

  4. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    Science.gov (United States)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  5. Sampling and characterization of aerosols formed in the atmospheric hydrolysis of UF6

    International Nuclear Information System (INIS)

    Bostick, W.D.; McCulla, W.H.; Pickrell, P.W.; Branam, D.A.

    1983-01-01

    When gaseous UF 6 is released into the atmosphere, it rapidly reacts with ambient moisture to form an aerosol of uranyl fluoride and HF. As part of our Safety Analysis program, we have performed several experimental releases of UF 6 (from natural uranium) in contained volumes in order to investigate techniques for sampling and characterizing the aerosol materials. The aggregrate particle morphology and size distribution have been found to be dependent upon several conditions, including the relative humidity at the time of the release and the elapse time after the release. Aerosol composition and settling rate have been investigated using isokinetic samplers for the separate collection of UO 2 F 2 and HF, and via laser spectroscopic remote sensing (Mie scatter and infrared spectroscopy). 8 references

  6. Atmospheric aerosol and gas sensing using Scheimpflug lidar

    Science.gov (United States)

    Mei, Liang; Brydegaard, Mikkel

    2015-04-01

    This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard

  7. An improved criterion for new particle formation in diverse atmospheric environments

    Directory of Open Access Journals (Sweden)

    C. Kuang

    2010-09-01

    Full Text Available A dimensionless theory for new particle formation (NPF was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter LΓ, characterizing the ratio of the particle scavenging loss rate to the particle growth rate, exclusively determined whether or not NPF would occur on a particular day. This parameter determines the probability that a nucleated particle will grow to a detectable size before being lost by coagulation with the pre-existing aerosol. Cluster-cluster coagulation was shown to contribute negligibly to this survival probability under conditions pertinent to the atmosphere. Data acquired during intensive measurement campaigns in Tecamac (MILAGRO, Atlanta (ANARChE, Boulder, and Hyytiälä (QUEST II, QUEST IV, and EUCAARI were used to test the validity of LΓ as an NPF criterion. Measurements included aerosol size distributions down to 3 nm and gas-phase sulfuric acid concentrations. The model was applied to seventy-seven NPF events and nineteen non-events (characterized by growth of pre-existing aerosol without NPF measured in diverse environments with broad ranges in sulfuric acid concentrations, ultrafine number concentrations, aerosol surface areas, and particle growth rates (nearly two orders of magnitude. Across this diverse data set, a nominal value of LΓ=0.7 was found to determine the boundary for the occurrence of NPF, with NPF occurring when LΓ<0.7 and being suppressed when LΓ>0.7. Moreover, nearly 45% of measured LΓ values associated with NPF fell in the relatively narrow range of 0.1<LΓ<0.3.

  8. Lidar-measurement of the atmospheric aerosols' extinction based on the field study SAMUM-1; Lidar-Messung der Extinktion des atmosphaerischen Aerosols am Beispiel der Feldstudie SAMUM-1

    Energy Technology Data Exchange (ETDEWEB)

    Esselborn, Michael

    2008-07-01

    In the frame of this thesis a high-resolution spectral LIDAR (HSRL) was used for the field study SAMUM during May/June 2006 and January/February 2008 on board of the research aircraft Falcon. The intensity of the LIDAR signals are mainly influences by backscattering and extinction of atmospheric particles (aerosols). Using a narrow-band optical filter the HSRL allows the measurement of the molecular backscattering besides the total atmospheric backscattering. During SAMUM-1 the optical properties of the Sahara dust aerosols were measured for the first time, esp. its extinction, the ratio extinction/backscattering and the depolarization close to the source region. The results of the optical density of the aerosols were compared with satellite-based data. South of the Atlas-mountains optical aerosol densities in the range of 0.50 to 0.60 were measured.

  9. Ion chemistry and individual particle analysis of atmospheric aerosols over Mt. Bogda of eastern Tianshan Mountains, Central Asia.

    Science.gov (United States)

    Zhao, Shuhui; Li, Zhongqin; Zhou, Ping

    2011-09-01

    Aerosol samples were collected during the scientific expedition to Mt. Bogda in July-August, 2009. The major inorganic ions (Na( + ), NH⁺₄, K( + ), Mg(2 + ), Ca(2 + ), Cl( - ), SO²⁻₄, and NO⁻₃) of the aerosols were determined by ion chromatography. SO²⁻₄, NO⁻₃, and Ca(2 + ) were the dominate ions, with the mean concentrations of 0.86, 0.56, and 0.28 μg m⁻³, respectively. These mean ion concentrations were generally comparable with the background conditions in remote site of Xinjiang, while much lower than those in Ürümqi. Morphology and elemental compositions of 1,500 particles were determined by field emission scanning electron microscopy equipped with an energy dispersive X-ray spectrometer. Based on the morphology and elemental compositions, particles were classed into four major groups: soot (15.1%), fly ash (4.7%), mineral particles (78.9%), and little other matters (0.8% Fe-rich particles and 0.5% unrecognized particles). Presence of soot and fly ash particles indicated the influence of anthropogenic pollutions, while abundance mineral particles suggested that natural processes were the primary source of aerosols over this region, coinciding with the ionic analysis. Backward air mass trajectory analysis suggested that Ürümqi may contribute some anthropogenic pollution to this region, while the arid and semi-arid regions of Central Asia were the primary source.

  10. Simulated nutrient dissolution of Asian aerosols in various atmospheric waters: Potential links to marine primary productivity

    Science.gov (United States)

    Wang, Lingyan; Bi, Yanfeng; Zhang, Guosen; Liu, Sumei; Zhang, Jing; Xu, Zhaomeng; Ren, Jingling; Zhang, Guiling

    2017-09-01

    To probe the bioavailability and environmental mobility of aerosol nutrient elements (N, P, Si) in atmospheric water (rainwater, cloud and fog droplets), ten total suspended particulate (TSP) samples were collected at Fulong Mountain, Qingdao from prevailing air mass trajectory sources during four seasons. Then, a high time-resolution leaching experiment with simulated non-acidic atmospheric water (non-AAW, Milli-Q water, pH 5.5) and subsequently acidic atmospheric water (AAW, hydrochloric acid solution, pH 2) was performed. We found that regardless of the season or source, a monotonous decreasing pattern was observed in the dissolution of N, P and Si compounds in aerosols reacted with non-AAW, and the accumulated dissolved curves of P and Si fit a first-order kinetic model. No additional NO3- + NO2- dissolved out, while a small amount of NH4+ in Asian dust (AD) samples was released in AAW. The similar dissolution behaviour of P and Si from non-AAW to AAW can be explained by the Transition State Theory. The sources of aerosols related to various minerals were the natural reasons that affected the amounts of bioavailable phosphorus and silicon in aerosols (i.e., solubility), which can be explained by the dissolution rate constant of P and Si in non-AAW with lower values in mineral aerosols. The acid/particle ratio and particle/liquid ratio also have a large effect on the solubility of P and Si, which was implied by Pearson correlation analysis. Acid processing of aerosols may have great significance for marine areas with limited P and Si and post-acidification release increases of 1.1-10-fold for phosphorus and 1.2-29-fold for silicon. The decreasing mole ratio of P and Si in AAW indicates the possibility of shifting from a Si-limit to a P-limit in aerosols in the ocean, which promotes the growth of diatoms prior to other algal species.

  11. Study of atmospheric aerosol by means of nuclear techniques with accelerator at LABEC

    International Nuclear Information System (INIS)

    Calzolai, G.

    2011-01-01

    The atmospheric aerosols, despite their tiny concentration in the air, have a relevant impact on a wide range of issues, spanning from the local to the global scale. Many epidemiologic studies on human exposures to ambient particulate matter have clearly established a statistically significant correlation between fine-particles concentration in the air and health effects. Moreover, increasing interest originates by the role of aerosols in climate change, and in particular in global warming and changes in hydrological cycles. Nuclear techniques have been demonstrated to be an effective tool for aerosol study. In particular, the IBA (Ion Beam Analysis) techniques may allow the detection of all the elements present in the aerosol samples. Radiocarbon measurements, performed by AMS (Accelerator Mass Spectrometry), can give fundamental information about the sources of the aerosol carbonaceous fraction. Without claiming to be exhaustive, a brief description of the role of these techniques in the aerosol study is given in the present paper, with a special attention to their application at the INFN-LABEC laboratory of Florence.

  12. Aerosols, clouds and their climatic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M; Laaksonen, A; Korhonen, P [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    The increasing atmospheric concentrations of greenhouse gases such as carbon dioxide and methane may drive a significant warming of the earth`s climate. However, a topic of more recent attention is the possibility that increased atmospheric concentrations of aerosol particles might drive a cooling of the planet. There are two distinct cooling mechanisms related to the enhanced concentrations of aerosol particles: the increase in the direct reflection of solar radiation (the direct effect), and the increase in cloud reflectivity caused by greater numbers of cloud condensation nuclei available (the indirect effect). Aerosols and clouds play a major role in the scattering and absorption of radiation in the Earth`s atmosphere. Locally the net effect can vary because of different kinds of surfaces. But according to measurements, the global net effect of clouds (and aerosols) on the atmosphere is net cooling and thus in opposition to the effect of greenhouse gases. The prediction of the future evolution of the climate involves substantial uncertainties. Clouds have a major effect on the radiation balance of the Earth and the prediction of amount and radiative properties of clouds is very difficult. Also the formation mechanisms and residence times of aerosol particles in the atmosphere involve large uncertainties. Thus the most serious difficulties arise in the area of the physics of clouds and aerosols

  13. Aerosols, clouds and their climatic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M.; Laaksonen, A.; Korhonen, P. [Helsinki Univ. (Finland). Dept. of Physics

    1995-12-31

    The increasing atmospheric concentrations of greenhouse gases such as carbon dioxide and methane may drive a significant warming of the earth`s climate. However, a topic of more recent attention is the possibility that increased atmospheric concentrations of aerosol particles might drive a cooling of the planet. There are two distinct cooling mechanisms related to the enhanced concentrations of aerosol particles: the increase in the direct reflection of solar radiation (the direct effect), and the increase in cloud reflectivity caused by greater numbers of cloud condensation nuclei available (the indirect effect). Aerosols and clouds play a major role in the scattering and absorption of radiation in the Earth`s atmosphere. Locally the net effect can vary because of different kinds of surfaces. But according to measurements, the global net effect of clouds (and aerosols) on the atmosphere is net cooling and thus in opposition to the effect of greenhouse gases. The prediction of the future evolution of the climate involves substantial uncertainties. Clouds have a major effect on the radiation balance of the Earth and the prediction of amount and radiative properties of clouds is very difficult. Also the formation mechanisms and residence times of aerosol particles in the atmosphere involve large uncertainties. Thus the most serious difficulties arise in the area of the physics of clouds and aerosols

  14. Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

    2007-05-16

    A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

  15. A marine biogenic source of atmospheric ice-nucleating particles

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  16. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    Science.gov (United States)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  17. UAS as a Support for Atmospheric Aerosols Research: Case Study

    Science.gov (United States)

    Chiliński, Michał T.; Markowicz, Krzysztof M.; Kubicki, Marek

    2018-01-01

    Small drones (multi-copters) have the potential to deliver valuable data for atmospheric research. They are especially useful for collecting vertical profiles of optical and microphysical properties of atmospheric aerosols. Miniaturization of sensors, such as aethalometers and particle counters, allows for collecting profiles of black carbon concentration, absorption coefficient, and particle size distribution. Vertical variability of single-scattering properties has a significant impact on radiative transfer and Earth's climate, but the base of global measurements is very limited. This results in high uncertainties of climate/radiation models. Vertical range of modern multi-copters is up to 2000 m, which is usually enough to study aerosols up to the top of planetary boundary layer on middle latitudes. In this study, we present the benefits coming from usage of small drones in atmospheric research. The experiment, described as a case study, was conducted at two stations (Swider and Warsaw) in Poland, from October 2014 to March 2015. For over 6 months, photoacoustic extinctiometers collected data at both stations. This enabled us to compare the stations and to establish ground reference of black carbon concentrations for vertical profiles collected by ceilometer and drone. At Swider station, we used Vaisala CL-31 ceilometer. It delivered vertical profiles of range corrected signal, which were analysed together with profiles acquired by micro-aethalometer AE-51 and Vaisala RS92-SGP radiosonde carried by a hexacopter drone. Near to the surface, black carbon gradient of ≈ 400 (\\upmu g/m^3 )/100 m was detected, which was below the ceilometer minimal altitude of detection. This confirmed the usefulness of drones and potential of their support for remote sensing techniques.

  18. On the dynamics of fine aerosols artificially produced. Application to the atmosphere

    International Nuclear Information System (INIS)

    Perrin, Marie-Line

    1980-01-01

    We take advantage of the developments of a new method of measurement, using a diffusion battery, to analyse the evolution of ultra-fine particles generated as a result of gas-phase reactions (radiolysis and photolysis). The evolution of aerosols instantaneously produced by radiolysis of gaseous impurities is studied and a theoretical model from the coagulation equation's resolution is shown to well describe the phenomena. Experiments with aerosols continuously produced by photo-oxidation of SO 2 show the effect of the condensable molecules production rate and the preexisting aerosol, on the subsequent growth of the primary embryos. Different theoretical models are qualitatively and quantitatively verified. Our experiments are then extended to 'in situ' measurements in urban and marine atmospheres, and in every case, we quantitatively determine the importance of each intervening process, namely nucleation, coagulation and condensation. (author) [fr

  19. Reconstruction of the size of nuclear fuel particle aerosol by the investigation of a radionuclide behaviour in body of the Chernobyl accident witnesses

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    1996-01-01

    As a result of the Chernobyl NPP (ChNPP) accident aerosol particles of dispersed nuclear fuel were released to the atmosphere. Inhalation of those aerosol became the source of internal exposure for witnesses of the Chernobyl accident. To assess correctly internal doses from a mixture of radionuclides present in air in the form of aerosol particles one mast assign each radionuclide to a certain inhalation class by its chemical speciation in aerosol and define the airborne characteristics (the activity median aerodynamic diameter, AMAD and the standard geometric deviation, fig) of that particular aerosol. Moreover, information on any particular radionuclide is useless for other components since, in such a mixture, the radionuclides are generally independent and may belong to different particles. On the contrary, all nuclear fuel particle (NFP) radionuclides belong to the same particle, being matrix-bound. The collective behaviour of the matrix-bound radionuclides in the environment and in the human barrier organs makes it possible to spread to the aerosol of NFP any estimates of AMAD and β g obtained for any particular NFP radionuclide. This is principal feature of NFP aerosol as distinguished from a mere mixture of aerosol particles carry different radionuclides. (author)

  20. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    Directory of Open Access Journals (Sweden)

    J. H. Slade

    2015-09-01

    Full Text Available Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA surrogate particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc coupled to an aerosol flow reactor (AFR. Levoglucosan (LEV, 4-methyl-5-nitrocatechol (MNC, and potassium sulfate (KS serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC or inorganic ions

  1. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    Science.gov (United States)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  2. Modelling and numerical simulation of the General Dynamic Equation of aerosols; Modelisation et simulation des aerosols atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Debry, E.

    2005-01-15

    Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as fine suspended particles, called aerosols, which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelling and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelling. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelling issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author)

  3. Modelling Contribution of Biogenic VOCs to New Particle Formation in the Jülich Plant Atmosphere Chamber

    Science.gov (United States)

    Liao, L.; Boy, M.; Mogensen, D.; Mentel, T. F.; Kleist, E.; Kiendler-Scharr, A.; Tillman, R.; Kulmala, M. T.; Dal Maso, M.

    2012-12-01

    Biogenic VOCs are substantially emitted from vegetation to atmosphere. The oxidation of BVOCs by OH, O3, and NO3 in air generating less volatile compounds may lead to the formation and growth of secondary organic aerosol, and thus presents a link to the vegetation, aerosol, and climate interaction system (Kulmala et al, 2004). Studies including field observations, laboratory experiments and modelling have improved our understanding on the connection between BVOCs and new particle formation mechanism in some extent (see e.g. Tunved et al., 2006; Mentel et al., 2009). Nevertheless, the exact formation process still remains uncertain, especially from the perspective of BVOC contributions. The purpose of this work is using the MALTE aerosol dynamics and air chemistry box model to investigate aerosol formation from reactions of direct tree emitted VOCs in the presence of ozone, UV light and artificial solar light in an atmospheric simulation chamber. This model employs up to date air chemical reactions, especially the VOC chemistry, which may potentially allow us to estimate the contribution of BVOCs to secondary aerosol formation, and further to quantify the influence of terpenes to the formation rate of new particles. Experiments were conducted in the plant chamber facility at Forschungszentrum Jülich, Germany (Jülich Plant Aerosol Atmosphere Chamber, JPAC). The detail regarding to the chamber facility has been written elsewhere (Mentel et al., 2009). During the experiments, sulphuric acid was measured by CIMS. VOC mixing ratios were measured by two GC-MS systems and PTR-MS. An Airmodus Particle size magnifier coupled with a TSI CPC and a PH-CPC were used to count the total particle number concentrations with a detection limit close to the expected size of formation of fresh nanoCN. A SMPS measured the particle size distribution. Several other parameters including ozone, CO2, NO, Temperature, RH, and flow rates were also measured. MALTE is a modular model to predict

  4. A single-column particle-resolved model for simulating the vertical distribution of aerosol mixing state: WRF-PartMC-MOSAIC-SCM v1.0

    Science.gov (United States)

    Curtis, Jeffrey H.; Riemer, Nicole; West, Matthew

    2017-11-01

    The PartMC-MOSAIC particle-resolved aerosol model was previously developed to predict the aerosol mixing state as it evolves in the atmosphere. However, the modeling framework was limited to a zero-dimensional box model approach without resolving spatial gradients in aerosol concentrations. This paper presents the development of stochastic particle methods to simulate turbulent diffusion and dry deposition of aerosol particles in a vertical column within the planetary boundary layer. The new model, WRF-PartMC-MOSAIC-SCM, resolves the vertical distribution of aerosol mixing state. We verified the new algorithms with analytical solutions for idealized test cases and illustrate the capabilities with results from a 2-day urban scenario that shows the evolution of black carbon mixing state in a vertical column.

  5. Uncertainty evaluation in correlated quantities: application to elemental analysis of atmospheric aerosols

    International Nuclear Information System (INIS)

    Espinosa, A.; Miranda, J.; Pineda, J. C.

    2010-01-01

    One of the aspects that are frequently overlooked in the evaluation of uncertainty in experimental data is the possibility that the involved quantities are correlated among them, due to different causes. An example in the elemental analysis of atmospheric aerosols using techniques like X-ray Fluorescence (X RF) or Particle Induced X-ray Emission (PIXE). In these cases, the measured elemental concentrations are highly correlated, and then are used to obtain information about other variables, such as the contribution from emitting sources related to soil, sulfate, non-soil potassium or organic matter. This work describes, as an example, the method required to evaluate the uncertainty in variables determined from correlated quantities from a set of atmospheric aerosol samples collected in the Metropolitan Area of the Mexico Valley and analyzed with PIXE. The work is based on the recommendations of the Guide for the Evaluation of Uncertainty published by the International Organization for Standardization. (Author)

  6. Filter-based Aerosol Measurement Experiments using Spherical Aerosol Particles under High Temperature and High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Young [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    Optical Particle Counter (OPC) is used to provide real-time measurement of aerosol concentration and size distribution. Glass fiber membrane filter also be used to measure average mass concentration. Three tests (MTA-1, 2 and 3) have been conducted to study thermal-hydraulic effect, a filtering tendency at given SiO{sub 2} particles. Based on the experimental results, the experiment will be carried out further with a main carrier gas of steam and different aerosol size. The test results will provide representative behavior of the aerosols under various conditions. The aim of the tests, MTA 1, 2 and 3, are to be able to 1) establish the test manuals for aerosol generation, mixing, sampling and measurement system, which defines aerosol preparation, calibration, operating and evaluation method under high pressure and high temperature 2) develop commercial aerosol test modules applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant. Based on the test results, sampled aerosol particles in the filter indicate that important parameters affecting aerosol behavior aerosols are 1) system temperature to keep above a evaporation temperature of ethanol and 2) aerosol losses due to the settling by ethanol liquid droplet.

  7. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    Science.gov (United States)

    Helin, Aku; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Bäck, Jaana; Riekkola, Marja-Liisa; Parshintsev, Jevgeni

    2017-11-01

    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute ˜ 30 % of atmospheric aerosol particle mass in sizes > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples ( 10 µm) were collected in boreal forest (Hyytiälä, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  8. Humidity influence on gas-particle phase partitioning of α-pinene + O3 secondary organic aerosol

    Science.gov (United States)

    Prisle, N. L.; Engelhart, G. J.; Bilde, M.; Donahue, N. M.

    2010-01-01

    Water vapor uptake to particles could potentially affect organic-aerosol mass in three ways: first, water in the organic phase could reduce organic (equilibrium) partial pressures according to Raoult's law; second, an aqueous phase could attract water soluble organics according to Henry's law; finally, deliquescence of inorganic particle cores could mix the organic and inorganic particle phases, significantly diluting the organics and again reducing organic partial pressures according to Raoult's law. We present experiments using initially dry α-pinene + ozone secondary organic aerosol (SOA) on ammonium sulfate (AS) seeds at atmospheric concentrations in a smog chamber. After SOA formation, the chamber relative humidity is increased steadily by addition of steam to near 100%. Little subsequent SOA mass growth is observed, suggesting that none of these potential effects play a strong role in this system.

  9. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-11-01

    Full Text Available A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA. The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber is designed to allow research in multiphase atmospheric (photo- chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290–297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10−3 s−1 for JNO2 and (1.4 × 10−5 s−1 for JO1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-Air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber

  10. Application of PIXE analysis to study urban atmospheric aerosols from downtown Havana City

    International Nuclear Information System (INIS)

    Perez Zayas, Grizel; Pinnera Hernandez, Ibrahin; Ramos Aruca, Maridelin; Guibert Gala, Rolando; Molina Esquivel, Enrique; Martinez Varona, Miriam; Fernandez Arocha, Ariadna; Aldape Ugalde, Francisca; Flores Maldonado, Javier

    2010-01-01

    The present work reports, the results of a first study of elemental composition in airborne particulate matter (in fine and coarse particle size fractions) collected at the Atmospheric Monitoring Station in the Municipality of Centro Habana, using the Particle-Induced X-ray Emission (PIXE) technique. At present, there is not information available about elements contents in airborne particulate matter from this region. For this study, we carried out a sampling campaign during five months (November 14, 2006 to April 19, 2007). The samples were collected every second day during 24 h under an air flux of 20 l/min. The air sampler used was a Gent Sampler equipped with a Stacked Filter Unit (SFU) system which allows the aerosol collection in both size fractions simultaneously. A total of 144 aerosol samples were collected (72 correspond to the fine mass particle and 72 to the coarse mass particle). For PIXE analysis, the samples were irradiated by 2.5 MeV energy protons from the 2MV Van de Graff Tandetron Accelerator from the Laboratory of PIXE analysis at ININ, Mexico. A total of 14 elements (S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb) were consistently detected in both particle size fractions with minimum detection limits in the range of 1-10 ng/m3. The quantitative results obtained from PIXE elemental analysis for mass of particles in both fractions have revealed important information that has been used in a first attempt to understand and to characterize the atmospheric pollution of this area. A general discussion about these results is presented in this paper. (author)

  11. Application of PIXE analysis to study urban atmospheric aerosols from downtown Havana City

    International Nuclear Information System (INIS)

    Perez Zayas, Grizel; Pinnera Hernandez, Ibrahin; Ramos Aruca, Maridelin; Guibert Gala, Rolando; Molina Esquivel, Enrique; Martinez Varona, Miriam; Fernandez Arocha, Ariadna; Aldape Ugalde, Francisca; Flores Maldonado, Javier

    2009-01-01

    The present work reports, the results of a first study of elemental composition in airborne particulate matter (in fine and coarse particle size fractions) collected at the Atmospheric Monitoring Station in the Municipality of Centro Habana, using the Particle-Induced X-ray Emission (PIXE) technique. At present, there is not information available about elements contents in airborne particulate matter from this region. For this study, we carried out a sampling campaign during five months (November 14, 2006 to April 19, 2007). The samples were collected every second day during 24 h under an air flux of 20 l/min. The air sampler used was a Gent Sampler equipped with a Stacked Filter Unit (SFU) system which allows the aerosol collection in both size fractions simultaneously. A total of 144 aerosol samples were collected (72 correspond to the fine mass particle and 72 to the coarse mass particle). For PIXE analysis, the samples were irradiated by 2.5 MeV energy protons from the 2MV Van de Graff Tandetron Accelerator from the Laboratory of PIXE analysis at ININ, Mexico. A total of 14 elements (S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br and Pb) were consistently detected in both particle size fractions with minimum detection limits in the range of 1-10 ng/m3. The quantitative results obtained from PIXE elemental analysis for mass of particles in both fractions have revealed important information that has been used in a first attempt to understand and to characterize the atmospheric pollution of this area. A general discussion about these results is presented in this paper. (author)

  12. Characteristics of aerosol particles and trace gases in ship exhaust plumes

    Science.gov (United States)

    Drewnick, F.; Diesch, J.; Borrmann, S.

    2011-12-01

    Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 μm. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high

  13. Volatile organic compounds and secondary organic aerosol in the Earth's atmosphere

    International Nuclear Information System (INIS)

    Galbally, Ian

    2007-01-01

    Full text: Recent research, when considered as a whole, suggests that a substantial fraction of both gas-phase and aerosol atmospheric organics have not been, or have very rarely been, directly measured. A review of the global budget for organic gases shows that we cannot account for the loss of approximately half the non-methane organic carbon entering the atmosphere. We suggest that this unaccounted-for loss most likely occurs through formation of secondary organic aerosols (SOAs), indicating that the source for these aerosols is an order of magnitude larger than current estimates. There is evidence that aged secondary organic aerosol can participate in both direct and indirect (cloud modifying) radiative forcing and that this influence may change with other global climate change. Even though our knowledge of the organic composition of the atmosphere is limited, these compounds clearly influence the reactive chemistry of the atmosphere and the formation, composition, and climate impact of aerosols A major challenge in the coming decade of atmospheric chemistry research will be to elucidate the sources, structure, chemistry, fate and influences of these clearly ubiquitous yet poorly constrained organic atmospheric constituents

  14. Atmospheric aerosols in Rome, Italy: sources, dynamics and spatial variations during two seasons

    Directory of Open Access Journals (Sweden)

    C. Struckmeier

    2016-12-01

    Full Text Available Investigations on atmospheric aerosols and their sources were carried out in October/November 2013 and May/June 2014 consecutively in a suburban area of Rome (Tor Vergata and in central Rome (near St Peter's Basilica. During both years a Saharan dust advection event temporarily increased PM10 concentrations at ground level by about 12–17 µg m−3. Generally, in October/November the ambient aerosol was more strongly influenced by primary emissions, whereas higher relative contributions of secondary particles (sulfate, aged organic aerosol were found in May/June. Absolute concentrations of anthropogenic emission tracers (e.g. NOx, CO2, particulate polycyclic aromatic hydrocarbons, traffic-related organic aerosol were generally higher at the urban location. Positive matrix factorization was applied to the PM1 organic aerosol (OA fraction of aerosol mass spectrometer (HR-ToF-AMS data to identify different sources of primary OA (POA: traffic, cooking, biomass burning and (local cigarette smoking. While biomass burning OA was only found at the suburban site, where it accounted for the major fraction of POA (18–24 % of total OA, traffic and cooking were more dominant sources at the urban site. A particle type associated with cigarette smoke emissions, which is associated with a potential characteristic marker peak (m∕z 84, C5H10N+, a nicotine fragment in the mass spectrum, was only found in central Rome, where it was emitted in close vicinity to the measurement location. Regarding secondary OA, in October/November, only a very aged, regionally advected oxygenated OA was found, which contributed 42–53 % to the total OA. In May/June total oxygenated OA accounted for 56–76 % of the OA. Here a fraction (18–26 % of total OA of a fresher, less oxygenated OA of more local origin was also observed. New particle formation events were identified from measured particle number concentrations and size distributions in May/June 2014 at

  15. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  16. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    Directory of Open Access Journals (Sweden)

    A. Wiedensohler

    2012-03-01

    Full Text Available Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers or SMPS (Scanning Mobility Particle Sizers have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer.

    We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data.

    Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the

  17. Nuclear track radiography of 'hot' aerosol particles

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P.

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the α-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (γ,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by 235 U, 239 Pu and 241 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 -6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles

  18. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Nevenick, Calec

    2013-01-01

    Whether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts in the medium and long-term on the environment and the population. In this context, this work focuses on the characterization and modeling of dry deposition of submicron aerosols on liquid surfaces in motion such as rivers. Unlike wet deposition which is conditioned by washout and rainout (rain and clouds), dry deposition is a phenomenon that depends entirely on the characteristics of aerosols, receiving surfaces, and air flow. In practice, the evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity which can vary over several orders of magnitude depending on the receiving surfaces (forest, snow, urban, grassland...). This topic is motivated by the virtual non-existence of studies on the mechanisms of dry deposition on continental water systems such as rivers; and respect for submicron aerosols. They have the lowest deposition efficiencies and filtration and the longer residence time in the atmosphere. In addition, they are potentially the most dangerous to living beings because they can penetrate deeper into the airway. Due to the lack of data on the dry deposition of submicron aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA wind tunnel (Interface Ocean Atmosphere) of the Institute for Research on Non Equilibrium Phenomena which is configured to study the coupling between the air flow and water. These experiments have given many dry deposition velocities for different configurations characterized according to wind

  19. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Calec, Nevenick

    2013-01-01

    Whether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts in the medium and long-term on the environment and the population. In this context, this work focuses on the characterization and modeling of dry deposition of submicron aerosols on liquid surfaces in motion such as rivers. Unlike wet deposition which is conditioned by washout and rainout (rain and clouds), dry deposition is a phenomenon that depends entirely on the characteristics of aerosols, receiving surfaces, and air flow. In practice, the evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity which can vary over several orders of magnitude depending on the receiving surfaces (forest, snow, urban, grassland..). This topic is motivated by the virtual non-existence of studies on the mechanisms of dry deposition on continental water systems such as rivers; and respect for submicron aerosols. They have the lowest deposition efficiencies and filtration and the longer residence time in the atmosphere. In addition, they are potentially the most dangerous to living beings because they can penetrate deeper into the airway. Due to the lack of data on the dry deposition of submicron aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA wind tunnel (Interface Ocean Atmosphere) of the Institute for Research on Non Equilibrium Phenomena which is configured to study the coupling between the air flow and water. These experiments have given many dry deposition velocities for different configurations characterized according to wind

  20. Electrospray ionizer for mass spectrometry of aerosol particles

    Science.gov (United States)

    He, Siqin; Hogan, Chris; Li, Lin; Liu, Benjamin Y. H.; Naqwi, Amir; Romay, Francisco

    2017-09-19

    A device and method are disclosed to apply ESI-based mass spectroscopy to submicrometer and nanometer scale aerosol particles. Unipolar ionization is utilized to charge the particles in order to collect them electrostatically on the tip of a tungsten rod. Subsequently, the species composing the collected particles are dissolved by making a liquid flow over the tungsten rod. This liquid with dissolved aerosol contents is formed into highly charged droplets, which release unfragmented ions for mass spectroscopy, such as time-of-flight mass spectroscopy. The device is configured to operate in a switching mode, wherein aerosol deposition occurs while solvent delivery is turned off and vice versa.

  1. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    Science.gov (United States)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  2. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  3. Organic condensation - a vital link connecting aerosol formation to climate forcing

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-01-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly-nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We demonstrate that state-of-the-science organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We demonstrate the large sensitivity of climatic forcing of atmospheric aerosols to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  4. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2009-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  5. Organic condensation: A vital link connecting aerosol formation to climate forcing (Invited)

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petdjd, T. T.; Slowik, J. G.; Chang, R. Y.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M. T.

    2010-12-01

    Aerosol-cloud interactions represent the largest uncertainty in calculations of Earth’s radiative forcing. Number concentrations of atmospheric aerosol particles are in the core of this uncertainty, as they govern the numbers of cloud condensation nuclei (CCN) and influence the albedo and lifetime of clouds. Aerosols also impair air quality through their adverse effects on atmospheric visibility and human health. The ultrafine fraction ( 100 nm) and enhance the loss of ultrafine particles. Primary organic aerosol (POA) contributes to the large end of the aerosol size distribution, enhancing the scavenging of the ultrafine particles.

  6. A study of the effect of non-spherical dust particles on Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals

    Science.gov (United States)

    Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.

    2017-12-01

    Non-spherical assumption of particle shape has been used to replace the spherical assumption in the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals for dust particles. GEMS aerosol retrieval algorithms are based on optimal estimation method to provide aerosol optical depth (AOD), single scattering albedo (SSA) at 443nm, and aerosol loading height (ALH) simultaneously as products. Considering computing time efficiency, the algorithm takes Look-Up Table (LUT) approach using Vector Linearized Discrete Ordinate Radiative Transfer code (VLIDORT), and aerosol optical properties for three aerosol types of absorbing fine aerosol (BC), dust and non-absorbing aerosol (NA) are integrated from AERONET inversion data, and fed into the LUT calculation. In this study, by applying the present algorithm to OMI top-of the atmosphere normalized radiance, retrieved AOD, SSA with both spherical and non-spherical assumptions have been compared to the surface AERONET observations at East Asia sites for 3 years from 2005 to 2007 to evaluate and quantify the effect of non-spherical dust particles on the satellite aerosol retrievals. The root-mean-square error (RMSE) in the satellite retrieved AOD have been slightly reduced as a result of adopting the non-spherical assumption in the GEMS aerosol retrieval algorithm. For SSA, algorithm tested with spheroid models on dust particle shows promising results for the improved SSA. In terms of ALH, the results are qualitatively compared with CALIOP products, and shows consistent variation. This result suggests the importance of taking into account the effects of non-sphericity in the retrieval of dust particles from GEMS measurements.

  7. Airborne observations of newly formed boundary layer aerosol particles under cloudy conditions

    Directory of Open Access Journals (Sweden)

    B. Altstädter

    2018-06-01

    Full Text Available This study describes the appearance of ultrafine boundary layer aerosol particles under classical non-favourable conditions at the research site of TROPOS (Leibniz Institute for Tropospheric Research. Airborne measurements of meteorological and aerosol properties of the atmospheric boundary layer (ABL were repeatedly performed with the unmanned aerial system ALADINA (Application of Light-weight Aircraft for Detecting IN-situ Aerosol during three seasons between October 2013 and July 2015. More than 100 measurement flights were conducted on 23 different days with a total flight duration of 53 h. In 26 % of the cases, maxima of ultrafine particles were observed close to the inversion layer at altitudes between 400 and 600 m and the particles were rapidly mixed vertically and mainly transported downwards during short time intervals of cloud gaps. This study focuses on two measurement days affected by low-level stratocumulus clouds, but different wind directions (NE, SW and minimal concentrations (< 4.6 µg m−3 of SO2, as a common indicator for precursor gases at ground. Taken from vertical profiles, the onset of clouds led to a non-linearity of humidity that resulted in an increased turbulence at the local-scale and caused fast nucleation e.g., but in relation to rapid dilution of surrounding air, seen in sporadic clusters of ground data, so that ultrafine particles disappeared in the verticality. The typical banana shape of new particle formation (NPF and growth was not seen at ground and thus these days might not have been classified as NPF event days by pure surface studies.

  8. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2012-09-01

    Full Text Available The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA, levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re

  9. The attachment of radon daughters to submicron aerosol particles

    International Nuclear Information System (INIS)

    Grenier, M.G.; Bigu, J.

    1984-04-01

    A study of the effects of aerosol concentration, aerosol size distribution and relative humidity on the Working Level and the radon daughter concentration was conducted in a 3000 L radon environmental chamber. Typical values of the aerosol concentration varied in the 1 x 10 3 particles/cm 3 to 4.5 x 10 5 particles/cm 3 range. Various size distributions of aerosols that have mean diffusional aerodynamic diameters of .025 μm, .045 μm and .090 μm were tested. A good correlation was found between the Working Level and the aerosol concentration as well as the relative humidity. Most of the activity seems to be associated with particles of diameter between .05 μm and .2 μm. The results presented here are in agreement with work done by other investigators in the health physics field

  10. Time evolution and emission factors of aerosol particles from day and night time savannah fires

    Science.gov (United States)

    Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri

    2013-04-01

    The largest uncertainties in the current global climate models originate from aerosol particle effects (IPCC, 2007) and at the same time aerosol particles also pose a threat to human health (Pope and Dockery, 2006). In southern Africa wild fires and prescribed burning are one of the most important sources of aerosol particles, especially during the dry season from June to September (e.g. Swap et al., 2003; Vakkari et al., 2012). The aerosol particle emissions from savannah fires in southern Africa have been studied in several intensive campaigns such as SAFARI 1992 and 2000 (Swap et al., 2003). However, all previous measurements have been carried out during the daytime, whereas most of the prescribed fires in southern Africa are lit up only after sunset. Furthermore, the previous campaigns followed the plume evolution for up to one hour after emission only. In this study, combining remote sensing fire observations to ground-based long-term measurements of aerosol particle and trace gas properties at the Welgegund measurement station (www.welgegund.org), we have been able to follow the time evolution of savannah fire plumes up to several hours in the atmosphere. For the first time the aerosol particle size distribution measurements in savannah fire plumes cover both day and night time plumes and also the ultrafine size range below 100 nm. During the period from May 20th 2010 to April 15th 2012 altogether 61 savannah fire plumes were observed at Welgegund. The evolution of the aerosol size distribution remained rapid for at least five hours after the fire: during this period the growth rate of the aerosol particle count mean diameter (size range 12 to 840 nm) was 24 nm h-1 for daytime plumes and 8 nm h-1 for night time plumes. The difference in the day and night time growth rate shows that photochemical reactions significantly increase the condensable vapour concentration in the plume. Furthermore, the condensable vapour concentration was found to affect both the

  11. Sugars in atmospheric aerosols over the Eastern Mediterranean

    Science.gov (United States)

    Theodosi, Christina; Panagiotopoulos, Christos; Nouara, Amel; Zarmpas, Pavlos; Nicolaou, Panagiota; Violaki, Kalliopi; Kanakidou, Maria; Sempéré, Richard; Mihalopoulos, Nikolaos

    2017-04-01

    The role of biomass combustion and primary bio-particles in atmospheric PM10 aerosols in the Eastern Mediterranean over a two-year period was estimated by studying sugar tracers. Sugar concentrations ranged from 6 to 334 ng m-3, while their contributions to the organic carbon (OC) and water soluble organic carbon (WSOC) pools were 3 and 11%, respectively. Over the studied period, glucose and levoglucosan were the two most abundant sugars accounting equally about 25% of the total sugar concentration in PM10 aerosols whereas fructose, sucrose, and mannitol represented 18%, 15% and 10%, respectively. Primary saccharides (glucose, fructose, and sucrose) peaked at the beginning of spring (21, 17 and 15 ng m-3, respectively), indicating significant contributions of bioaerosols to the total organic aerosol mass. On the other hand, higher concentrations of anhydrosugars (burning biomass tracers including levoglucosan, mannosan and galactosan) were recorded in winter (19, 1.4 and 0.2 ng m-3, respectively) than in summer (9.1, 1.1 and 0.5 ng m-3, respectively). Levoglucosan was the dominant monosaccharide in winter (37% of total sugars) with less contribution in summer (19%) probably in relation with enhanced photochemical oxidation reactions by hydroxyl (ṡOH) radicals impacting anhydrosugars. We estimate that atmospheric oxidation by ṡOH decreases levoglucosan levels by 54% during summer. Biomass burning, based on levoglucosan observations, was estimated to contribute up to 13% to the annual average OC measured at Finokalia. Annual OC, WSOC, and carbohydrate dry deposition fluxes for the studied period were estimated to 414, 175, and 9 mg C m-2 y-1, respectively. Glucose and levoglucosan accounted for 34% and 2% of the total sugar fluxes. According to our estimations, atmospheric OC and WSOC inputs account for ˜0.70% of the carbon produced by annual primary production (PP) in the Cretan Sea. Considering the entire Mediterranean, dry deposition of OC could provide at

  12. Single-particle characterization of the high-Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-07-01

    Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition

  13. Single-particle characterization of the High Arctic summertime aerosol

    Science.gov (United States)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-01-01

    Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition

  14. Atmospheric aerosols size distribution properties in winter and pre-monsoon over western Indian Thar Desert location

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Chhagan, E-mail: chhaganpanwar@gmail.com; Vyas, B. M. [Department of Physics, M.L. Sukhadia University, Udaipur-313001 (India)

    2016-05-06

    The first ever experimental results over Indian Thar Desert region concerning to height integrated aerosols size distribution function in particles size ranging between 0.09 to 2 µm such as, aerosols columnar size distribution (CSD), effective radius (R{sub eff}), integrated content of total aerosols (N{sub t}), columnar content of accumulation and coarse size aerosols particles concentration (N{sub a}) (size < 0.5 µm) and (N{sub c}) (size between 0.5 to 2 µm) have been described specifically during winter (a stable weather condition and intense anthropogenic pollution activity period) and pre-monsoon (intense dust storms of natural mineral aerosols as well as unstable atmospheric weather condition period) at Jaisalmer (26.90°N, 69.90°E, 220 m above surface level (asl)) located in central Thar desert vicinity of western Indian site. The CSD and various derived other aerosols size parameters are retrieved from their average spectral characteristics of Aerosol Optical Thickness (AOT) from UV to Infrared wavelength spectrum measured from Multi-Wavelength solar Radiometer (MWR). The natures of CSD are, in general, bio-modal character, instead of uniformly distributed character and power law distributions. The observed primary peaks in CSD plots are seen around about 10{sup 13} m{sup 2} μm{sup −1} at radius range 0.09-0.20 µm during both the seasons. But, in winter months, secondary peaks of relatively lower CSD values of 10{sup 10} to 10{sup 11} m{sup 2}/μm{sup −1} occur within a lower radius size range 0.4 to 0.6 µm. In contrast to this, while in dust dominated and hot season, the dominated secondary maxima of the higher CSD of about 10{sup 12} m{sup 2}μm{sup −3} is found of bigger aerosols size particles in a rage of 0.6 to 1.0 µm which is clearly demonstrating the characteristics of higher aerosols laden of bigger size aerosols in summer months relative to their prevailed lower aerosols loading of smaller size aerosols particles (0

  15. Observations of bromine monoxide transport in the Arctic sustained on aerosol particles

    Directory of Open Access Journals (Sweden)

    P. K. Peterson

    2017-06-01

    Full Text Available The return of sunlight in the polar spring leads to the production of reactive halogen species from the surface snowpack, significantly altering the chemical composition of the Arctic near-surface atmosphere and the fate of long-range transported pollutants, including mercury. Recent work has shown the initial production of reactive bromine at the Arctic surface snowpack; however, we have limited knowledge of the vertical extent of this chemistry, as well as the lifetime and possible transport of reactive bromine aloft. Here, we present bromine monoxide (BrO and aerosol particle measurements obtained during the March 2012 BRomine Ozone Mercury EXperiment (BROMEX near Utqiaġvik (Barrow, AK. The airborne differential optical absorption spectroscopy (DOAS measurements provided an unprecedented level of spatial resolution, over 2 orders of magnitude greater than satellite observations and with vertical resolution unable to be achieved by satellite methods, for BrO in the Arctic. This novel method provided quantitative identification of a BrO plume, between 500 m and 1 km aloft, moving at the speed of the air mass. Concurrent aerosol particle measurements suggest that this lofted reactive bromine plume was transported and maintained at elevated levels through heterogeneous reactions on colocated supermicron aerosol particles, independent of surface snowpack bromine chemistry. This chemical transport mechanism explains the large spatial extents often observed for reactive bromine chemistry, which impacts atmospheric composition and pollutant fate across the Arctic region, beyond areas of initial snowpack halogen production. The possibility of BrO enhancements disconnected from the surface potentially contributes to sustaining BrO in the free troposphere and must also be considered in the interpretation of satellite BrO column observations, particularly in the context of the rapidly changing Arctic sea ice and snowpack.

  16. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    J. Rissler

    2006-01-01

    Full Text Available Aerosol particle number size distributions and hygroscopic properties were measured at a pasture site in the southwestern Amazon region (Rondonia. The measurements were performed 11 September-14 November 2002 as part of LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia - SMOke aerosols, Clouds, rainfall and Climate, and cover the later part of the dry season (with heavy biomass burning, a transition period, and the onset of the wet period. Particle number size distributions were measured with a DMPS (Differential Mobility Particle Sizer, 3-850nm and an APS (Aerodynamic Particle Sizer, extending the distributions up to 3.3 µm in diameter. An H-TDMA (Hygroscopic Tandem Differential Mobility Analyzer measured the hygroscopic diameter growth factors (Gf at 90% relative humidity (RH, for particles with dry diameters (dp between 20-440 nm, and at several occasions RH scans (30-90% RH were performed for 165nm particles. These data provide the most extensive characterization of Amazonian biomass burning aerosol, with respect to particle number size distributions and hygroscopic properties, presented until now. The evolution of the convective boundary layer over the course of the day causes a distinct diel variation in the aerosol physical properties, which was used to get information about the properties of the aerosol at higher altitudes. The number size distributions averaged over the three defined time periods showed three modes; a nucleation mode with geometrical median diameters (GMD of ~12 nm, an Aitken mode (GMD=61-92 nm and an accumulation mode (GMD=128-190 nm. The two larger modes were shifted towards larger GMD with increasing influence from biomass burning. The hygroscopic growth at 90% RH revealed a somewhat external mixture with two groups of particles; here denoted nearly hydrophobic (Gf~1.09 for 100 nm particles and moderately hygroscopic (Gf~1.26. While the hygroscopic growth factors were surprisingly similar over the

  17. Assessing the impact of aerosol-atmosphere interactions in convection-permitting regional climate simulations: the Rolf medicane in 2011

    Science.gov (United States)

    José Gómez-Navarro, Juan; María López-Romero, José; Palacios-Peña, Laura; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro

    2017-04-01

    A critical challenge for assessing regional climate change projections relies on improving the estimate of atmospheric aerosol impact on clouds and reducing the uncertainty associated with the use of parameterizations. In this sense, the horizontal grid spacing implemented in state-of-the-art regional climate simulations is typically 10-25 kilometers, meaning that very important processes such as convective precipitation are smaller than a grid box, and therefore need to be parameterized. This causes large uncertainties, as closure assumptions and a number of parameters have to be established by model tuning. Convection is a physical process that may be strongly conditioned by atmospheric aerosols, although the solution of aerosol-cloud interactions in warm convective clouds remains nowadays a very important scientific challenge, rendering parametrization of these complex processes an important bottleneck that is responsible from a great part of the uncertainty in current climate change projections. Therefore, the explicit simulation of convective processes might improve the quality and reliability of the simulations of the aerosol-cloud interactions in a wide range of atmospheric phenomena. Particularly over the Mediterranean, the role of aerosol particles is very important, being this a crossroad that fuels the mixing of particles from different sources (sea-salt, biomass burning, anthropogenic, Saharan dust, etc). Still, the role of aerosols in extreme events in this area such as medicanes has been barely addressed. This work aims at assessing the role of aerosol-atmosphere interaction in medicanes with the help of the regional chemistry/climate on-line coupled model WRF-CHEM run at a convection-permitting resolution. The analysis is exemplary based on the "Rolf" medicane (6-8 November 2011). Using this case study as reference, four sets of simulations are run with two spatial resolutions: one at a convection-permitting configuration of 4 km, and other at the

  18. Review: The Use of Real-Time Fluorescence Instrumentation to Monitor Ambient Primary Biological Aerosol Particles (PBAP

    Directory of Open Access Journals (Sweden)

    Mehael J. Fennelly

    2017-12-01

    Full Text Available Primary biological aerosol particles (PBAP encompass many particle types that are derived from several biological kingdoms. These aerosol particles can be composed of both whole living units such as pollen, bacteria, and fungi, as well as from mechanically formed particles, such as plant debris. They constitute a significant proportion of the overall atmospheric particle load and have been linked with adverse health issues and climatic effects on the environment. Traditional methods for their analysis have focused on the direct capture of PBAP before subsequent laboratory analysis. These analysis types have generally relied on direct optical microscopy or incubation on agar plates, followed by time-consuming microbiological investigation. In an effort to address some of these deficits, real-time fluorescence monitors have come to prominence in the analysis of PBAP. These instruments offer significant advantages over traditional methods, including the measurement of concentrations, as well as the potential to simultaneously identify individual analyte particles in real-time. Due to the automated nature of these measurements, large data sets can be collected and analyzed with relative ease. This review seeks to highlight and discuss the extensive literature pertaining to the most commonly used commercially available real-time fluorescence monitors (WIBS, UV-APS and BioScout. It discusses the instruments operating principles, their limitations and advantages, and the various environments in which they have been deployed. The review provides a detailed examination of the ambient fluorescent aerosol particle concentration profiles that are obtained by these studies, along with the various strategies adopted by researchers to analyze the substantial data sets the instruments generate. Finally, a brief reflection is presented on the role that future instrumentation may provide in revolutionizing this area of atmospheric research.

  19. Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, Christopher D [Univ. of California, Davis, CA (United States); Atkinson, Dean B [Portland State Univ., Portland, OR (United States)

    2017-12-17

    The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements is facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?

  20. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    Science.gov (United States)

    Stevens, R. G.; Pierce, J. R.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.

    2012-01-01

    New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM). The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the downwind plume aerosols can be greatly modified by both meteorological and background aerosol conditions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.

  1. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    OpenAIRE

    Bauer , S. E.; Wright , D.; Koch , D.; Lewis , E. R.; Mcgraw , R.; Chang , L.-S.; Schwartz , S. E.; Ruedy , R.

    2008-01-01

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mod...

  2. Observation of radioactive aerosol particle sizes in 30-km zone of the ChNPP in 1986-1987 years

    International Nuclear Information System (INIS)

    Skitovich, V.I.; Budyka, A.K.; Ogorodnikov, B.I.

    1989-01-01

    Investigation into disperse composition of radioactive aerosols was conducted in the ChNPP spaces, over ruins of 4 block, on job site and separate points of the 30-km zone by multilayer filters from ultrathin fibers. In probes taken from the job site radioactive isotopes were grouped on the particles with more than 2,5 μcm diameter. Particle sizes in the room were less than near terrestrial layer of atmosphere on job site. It is shown that the aerosol sizes containing alpha active nuclides are idential with gamma radiating isotopes of refractory elements. 4 refs., 1 fig., 2 tabs

  3. Nuclear track radiography of 'hot' aerosol particles

    CERN Document Server

    Boulyga, S F; Kievets, M K; Lomonosova, E M; Zhuk, I V; Yaroshevich, O I; Perelygin, V P; Petrova, R I; Brandt, R; Vater, P

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the alpha-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (gamma,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 9 Pu and sup 2 sup 4 sup 1 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 sup - sup 6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical imag...

  4. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance

    Directory of Open Access Journals (Sweden)

    B. Svenningsson

    2006-01-01

    Full Text Available The organic fraction of atmospheric aerosols contains a multitude of compounds and usually only a small fraction can be identified and quantified. However, a limited number of representative organic compounds can be used to describe the water-soluble organic fraction. In this work, initiated within the EU 5FP project SMOCC, four mixtures containing various amounts of inorganic salts (ammonium sulfate, ammonium nitrate, and sodium chloride and three model organic compounds (levoglucosan, succinic acid and fulvic acid were studied. The interaction between water vapor and aerosol particles was studied at different relative humidities: at subsaturation using a hygroscopic tandem differential mobility analyzer (H-TDMA and at supersaturation using a cloud condensation nuclei spectrometer (CCN spectrometer. Surface tensions as a function of carbon concentrations were measured using a bubble tensiometer. Parameterizations of water activity as a function of molality, based on hygroscopic growth, are given for the pure organic compounds and for the mixtures, indicating van't Hoff factors around 1 for the organics. The Zdanovskii-Stokes-Robinson (ZSR mixing rule was tested on the hygroscopic growth of the mixtures and it was found to adequately explain the hygroscopic growth for 3 out of 4 mixtures, when the limited solubility of succinic acid is taken into account. One mixture containing sodium chloride was studied and showed a pronounced deviation from the ZSR mixing rule. Critical supersaturations calculated using the parameterizations of water activity and the measured surface tensions were compared with those determined experimentally.

  5. A study of the attachment of thoron decay products to aerosols using an aerosol centrifuge

    International Nuclear Information System (INIS)

    Menon, V.B.; Kotrappa, P.; Bhanti, D.P.

    1980-01-01

    An aerosol centrifuge is used for the study of the attachment of thoron decay products to aerosol particles under dynamic flow conditions. The number concentration of aerosols was kept high (10 5 to 10 6 particles cm -3 ) as compared to the number of decay product atoms (10 2 to 10 3 cm -3 ) as is usually the case in a mine atmosphere. The polydispersed aerosols flow in and out of a chamber containing a steady source of thoron and the aerosols tagged with the decay products were separated into different size groups by an aerosol centrifuge (Lovelace Aerosol Particle Separator). The average activity per particle was fitted as a power function of the radius in the form of Asub(p) = aRsup(b). The average value of b was found to be 1.08 +- 0.054 for particles in the radii range 0.25 to 1.35 μm and 1.34 +- 0.12 for particles in the radii range 0.1 to 0.33 μm. (author)

  6. Optical properties, morphology and elemental chemical composition of atmospheric particles at T1 supersite on MILAGRO campaign

    Science.gov (United States)

    Carabali, G.; Mamani-Paco, R.; Castro, T.; Peralta, O.; Herrera, E.; Trujillo, B.

    2011-05-01

    Atmospheric particles were sampled at T1 supersite (19°43' N latitude, 98°58' W longitude, and 2340 m above sea level) during MILAGRO campaign. T1 was located at the north of Mexico City Metropolitan Area (MCMA). Aerosol sampling was done by placing transmission electron microscope (TEM) copper grids on the last 5 stages of an 8-stage MOUDI cascade impactor (d50 = 1.8, 1.0, 0.56, 0.32, and 0.18 μm). Samples were obtained at morning (06:00-09:00), noon (11:00-14:00), afternoon (16:00-19:00) and evening (21:00-24:00) local time. Absorption and scattering coefficients, and particles concentration (0.01-3 μm aerodynamic diameter) were measured simultaneously using a PASP absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm) and a CNI particle counter. TEM images of particles were acquired at different magnifications using a CM 200 Phillips TEM-EDAX system. The morphology of atmospheric particles for two aerodynamic diameters (0.18 and 1.8 μm) was compared using border-based fractal dimension. Particles sampled under Mexico City pollution influence showed not much variability, suggesting the presence of more compact particles in smaller sizes (d50 = 1.8 μm) at the site. The presence of higher numbers of compact particles can be attributed to aerosol aging and secondary aerosol formation, among others. Under early morning conditions, smaller particles (d50 = 0.18 μm) had more irregular features resulting in a higher average fractal dimension. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50 = 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, Fe, K, and Co. This may indicate an impact from industrial and vehicle's emissions on atmospheric particles.

  7. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a

  8. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  9. Observations of linear dependence between sulfate and nitrate in atmospheric particles

    Science.gov (United States)

    Kong, Lingdong; Yang, Yiwei; Zhang, Shuanqin; Zhao, Xi; Du, Huanhuan; Fu, Hongbo; Zhang, Shicheng; Cheng, Tiantao; Yang, Xin; Chen, Jianmin; Wu, Dui; Shen, Jiandong; Hong, Shengmao; Jiao, Li

    2014-01-01

    Hourly measurements of water-soluble inorganic ionic species in ambient atmospheric particles were conducted at Shanghai, Hangzhou, and Guangzhou sampling sites in China during the period of 2009-2011. The relation between sulfate and nitrate in particulate matter (PM10 and PM2.5) was examined based on these measurements. Results showed that the mass fraction of sulfate was strongly negatively correlated with that of nitrate in atmospheric particles on most of the sampling days, especially when sulfate and nitrate made up the vast majority of the total soluble anions and cations (Na+, K+, Ca2+, and Mg2+) made a small contribution to the total water-soluble ions, revealing that the formation mechanisms of sulfate and nitrate in the atmosphere are highly correlated, and there exists a significant negative correlation trend between sulfate and nitrate mass fractions in the atmospheric particles. We found that local meteorological conditions presented opposite influences on the mass fractions of sulfate and nitrate. Further analysis indicated that the two mass fractions were modulated by the neutralizing level of atmospheric aerosols, and the negative correlation could be found in acidic atmospheric particles. Strong negative correlation was usually observed on clear days, hazy days, foggy days, and respirable particulate air pollution days, whereas poor negative correlation was often observed during cloud, rain, snow, dust storm, and suspended dust events. The results can help to better understand the formation mechanisms of atmospheric sulfate and nitrate during air pollution episodes and to better explain field results of atmospheric chemistry concerning sulfate and nitrate.

  10. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S., E-mail: sp5hd@Virginia.EDU; Lee, T.R.; Phelps, S.; De Wekker, S.F.J.

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (z{sub i}), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime z{sub i} from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the z{sub i} and the fine fraction (0.3–0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. - Highlights: • Role of atmospheric boundary layer depth on particle

  11. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  12. Aerosol Inlet Characterization Experiment Report

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Robert L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kuang, Chongai [Brookhaven National Lab. (BNL), Upton, NY (United States); Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerosol Observation System inlet stack was characterized for particle penetration efficiency from 10 nm to 20 μm in diameter using duplicate scanning mobility particle sizers (10 nm-450 nm), ultra-high-sensitivity aerosol spectrometers (60 nm-μm), and aerodynamic particle sizers (0.5 μm-20 μm). Results show good model-measurement agreement and unit transmission efficiency of aerosols from 10 nm to 4 μm in diameter. Large uncertainties in the measured transmission efficiency exist above 4 μm due to low ambient aerosol signal in that size range.

  13. Aerosol particle transport modeling for preclosure safety studies of nuclear waste repositories

    International Nuclear Information System (INIS)

    Gelbard, F.

    1989-01-01

    An important concern for preclosure safety analysis of a nuclear waste repository is the potential release to the environment of respirable aerosol particles. Such particles, less than 10 μm in aerodynamic diameter, may have significant adverse health effects if inhaled. To assess the potential health effects of these particles, it is not sufficient to determine the mass fraction of respirable aerosol. The chemical composition of the particles is also of importance since different radionuclides may pose vastly different health hazards. Thus, models are needed to determine under normal and accident conditions the particle size and the chemical composition distributions of aerosol particles as a function of time and of position in the repository. In this work a multicomponent sectional aerosol model is used to determine the aerosol particle size and composition distributions in the repository. A range of aerosol mass releases with varying mean particle sizes and chemical compositions is used to demonstrate the sensitivities and uncertainties of the model. Decontamination factors for some locations in the repository are presented. 8 refs., 1 tab

  14. Preliminary data on atmospheric aerosol of the Amazon basin

    International Nuclear Information System (INIS)

    Orsini, C.M.Q.; Artaxo Netto, P.E.; Tabacniks, M.H.

    1981-10-01

    Preliminary distributions of the trace-elements Al, Si, P, S, Cl, K, Ca, Ti, V and Fe in the atmospheric aerosol of the Amazon Basin have been determined through samples collected from August 23 to September 2 of 1980, at a remote place located in the Amazon Forest, about 30 km NE of the city of Manaus. In all, 10 complete cascade impactors of 6-stage, Battelle model, have been exposed but only with 8 success, thus generating 48 samples. From these, 33 samples have been succesfully analyzed by the PIXE method (Particle Induced X-Ray Emission), using particle beam of the Pelletron Accelerator of the University of Sao Paulo, and the results revealed that the trace-elements S and K have a noticeable predominance, mainly as fine particle size, relative to the others. The high correlation factor found between the fine particle concentrations of S and K (0,96) support the assumption of their common airbone transport on the same particulates, originated from the gas-to-particle conversion of gases exuded by the trees of the forest, their only existing sources. Coarse airborne particles, of a probable soil origin, are also present but in unusually small amounts, as it was revelead by the Al, Si, Ca, Ti and Fe size distribution curves. (Author) [pt

  15. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  16. New Particle Formation in an Urban Atmosphere: The Role of Various Ingredients Investigated in the CLOUD Chamber

    Science.gov (United States)

    Baltensperger, U.; Xiao, M.; Hoyle, C.; Dada, L.; Garmash, O.; Stolzenburg, D.; Molteni, U.; Lehtipalo, K.; El-Haddad, I.; Dommen, J.

    2017-12-01

    Atmospheric aerosols play an important role on climate via aerosol-radiation interaction and aerosol-cloud interaction. The latter is strongly influenced by new particle formation (NPF). The physical and chemical mechanisms behind the NPF process are still under investigation. Great advancements were made in resolving chemical and physical mechanisms of NPF with a series of experiments conducted at the CLOUD (Cosmics Leaving Outdoor Droplets) chamber facility at CERN (Geneva, Switzerland), including binary nucleation of sulfuric acid - water, ternary nucleation of sulfuric acid - water with ammonia or dimethylamine as well as oxidation products (highly oxygenated molecules, HOMs) from biogenic precursors with and without the presence of sulfuric acid. Here, we investigate possible NPF mechanisms in urban atmospheres, where large populations are exposed to high aerosol concentrations; these mechanisms are still missing and are urgently needed. Urban atmospheres are highly polluted with high concentrations of SO2, ammonia, NOx and volatile organic vapors from anthropogenic activity as well as with high particle concentrations, which provide a high condensation sink for condensable gases. Aromatic hydrocarbons from industrial activities, traffic and residential combustion are present at high concentrations and contribute significantly to photochemical smog in the urban environment.The experiments were conducted at the CLOUD chamber facility during the CLOUD11 campaign in fall 2016. Three aromatic hydrocarbons were selected: toluene, 1,2,4-trimethylbenzene (1,2,4-TMB) and naphthalene (NPT). Experiments were also conducted with mixtures of the three aromatic hydrocarbons to better represent the urban atmosphere. All the experiments were conducted in the presence of sulfuric acid concentrations with or without the addition of ammonia and NOx. New particle formation rates and early growth rates derived for each precursor and their mixture, together with sulfuric acid and

  17. Impact of cloud-borne aerosol representation on aerosol direct and indirect effects

    Directory of Open Access Journals (Sweden)

    S. J. Ghan

    2006-01-01

    Full Text Available Aerosol particles attached to cloud droplets are much more likely to be removed from the atmosphere and are much less efficient at scattering sunlight than if unattached. Models used to estimate direct and indirect effects of aerosols employ a variety of representations of such cloud-borne particles. Here we use a global aerosol model with a relatively complete treatment of cloud-borne particles to estimate the sensitivity of simulated aerosol, cloud and radiation fields to various approximations to the representation of cloud-borne particles. We find that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for aerosol, droplet number, and direct and indirect radiative forcing. Aerosol number, aerosol optical depth and droplet number are significantly underestimated in regions and seasons where and when wet removal is primarily by stratiform rather than convective clouds (polar regions during winter, but direct and indirect effects are less biased because of the limited sunlight there and then. A treatment that predicts the total mass concentration of cloud-borne particles for each mode yields smaller errors and runs 20% faster than the complete treatment. The errors are much smaller than current estimates of uncertainty in direct and indirect effects of aerosols, which suggests that the treatment of cloud-borne aerosol is not a significant source of uncertainty in estimates of direct and indirect effects.

  18. Atmospheric Aerosol Properties and Climate Impacts

    Science.gov (United States)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; hide

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  19. Aerosol processes relevant for the Netherlands

    NARCIS (Netherlands)

    Brugh, Aan de J.M.J.

    2013-01-01

    Particulate matter (or aerosols) are particles suspended in the atmosphere. Aerosols are believed to be the most important pollutant associated with increased human mortality and morbidity. Therefore, it is important to investigate the relationship between sources of aerosols (such as industry)

  20. Properties of Arctic Aerosol Particles and Residuals of Warm Clouds: Cloud Activation Efficiency and the Aerosol Indirect Effect

    Science.gov (United States)

    Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.

    2012-12-01

    Single particle mass spectrometer, SPLAT II, was used to characterize the size, composition, number concentration, density, and shape of individual Arctic spring aerosol. Background particles, particles above and below the cloud, cloud droplet residuals, and interstitial particles were characterized with goal to identify the properties that separate cloud condensation nuclei (CCN) from background aerosol particles. The analysis offers a comparison between warm clouds formed on clean and polluted days, with clean days having maximum particle concentrations (Na) lower than ~250 cm-3, as compared with polluted days, in which maximum concentration was tenfold higher. On clean days, particles were composed of organics, organics mixed with sulfates, biomass burning (BB), sea salt (SS), and few soot and dust particles. On polluted days, BB, organics associated with BB, and their mixtures with sulfate dominated particle compositions. Based on the measured compositions and size distributions of cloud droplet residuals, background aerosols, and interstitial particles, we conclude that these three particle types had virtually the same compositions, which means that cloud activation probabilities were surprisingly nearly composition independent. Moreover, these conclusions hold in cases in which less than 20% or more than 90% of background particles got activated. We concluded that for the warm clouds interrogated in this study particle size played a more important factor on aerosol CCN activity. Comparative analysis of all studied clouds reveals that aerosol activation efficiency strongly depends on the aerosol concentrations, such that at Na <200 cm-3, nearly all particles activate, and at higher concentrations the activation efficiency is lower. For example, when Na was greater than 1500 cm-3, less than ~30% of particles activated. The data suggest that as the number of nucleated droplets increases, condensation on existing droplets effectively competes with particle

  1. The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions

    Directory of Open Access Journals (Sweden)

    M. Righi

    2013-10-01

    Full Text Available We use the EMAC (ECHAM/MESSy Atmospheric Chemistry global model with the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications to quantify the impact of transport emissions (land transport, shipping and aviation on the global aerosol. We consider a present-day (2000 scenario according to the CMIP5 (Climate Model Intercomparison Project Phase 5 emission data set developed in support of the IPCC (Intergovernmental Panel on Climate Change Fifth Assessment Report. The model takes into account particle mass and number emissions: The latter are derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport sectors. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations show that the impact of the transport sectors closely matches the emission patterns. Land transport is the most important source of black carbon (BC pollution in the USA, Europe and the Arabian Peninsula, contributing up to 60–70% of the total surface-level BC concentration in these regions. Shipping contributes about 40–60% of the total aerosol sulfate surface-level concentration along the most-traveled routes of the northern Atlantic and northern Pacific oceans, with a significant impact (~ 10–20% along the coastlines. Aviation mostly affects aerosol number, contributing about 30–40% of the particle number concentration in the northern midlatitudes' upper troposphere (7–12 km, although significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The transport-induced perturbations to the particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles, with the largest uncertainties (about one order of magnitude obtained for the land transport sector. The simulated climate impacts, due to

  2. Gas-to-particle conversion in the atmospheric environment by radiation-induced and photochemical reactions

    International Nuclear Information System (INIS)

    Vohra, K.G.

    1975-01-01

    During the last few years a fascinating new area of research involving ionizing radiations and photochemistry in gas-to-particle conversion in the atmosphere has been developing at a rapid pace. Two problems of major interest and concern in which this is of paramount importance are: (1) radiation induced and photochemical aerosol formation in the stratosphere and, (2) role of radiations and photochemistry in smog formation. The peak in cosmic ray intensity and significant solar UV flux in the stratosphere lead to complex variety of reactions involving major and trace constituents in this region of the atmosphere, and some of these reactions are of vital importance in aerosol formation. The problem is of great current interest because the pollutant gases from industrial sources and future SST operations entering the stratosphere could increase the aerosol burden in the stratosphere and affect the solar energy input of the troposphere with consequent ecological and climatic changes. On the other hand, in the nuclear era, the atmospheric releases from reactors and processing plants could lead to changes in the cloud nucleation behaviour of the environment and possible increase in smog formation in the areas with significant levels of radiations and conventional pollutants. A review of the earlier work, current status of the problem, and conventional pollutants. A review of the earlier work, current status of the problem, and some recent results of the experiments conducted in the author's laboratory are presented. The possible mechanisms of gas-to-particle conversion in the atmosphere have been explained

  3. Surface aerosol and rehabilitation properties of ground-level atmosphere in the mountains of the North Caucasus

    Science.gov (United States)

    Reps, Valentina; Efimenko, Natalia; Povolotskaya, Nina; Abramtsova, Anna; Ischenko, Dmitriy; Senik, Irina; Slepikh, Victor

    2017-04-01

    The rehabilitative properties (RP) of ground-level atmosphere (GA) of Russian resorts are considered as natural healing resources and received state legal protection [1]. Due to global urbanization the chemical composition and particle size distribution of the surface aerosol are changing rapidly. However, the influence of surface aerosol on the RP of GA has been insufficiently studied. At the resort region of the North Caucasus complex monitoring (aerosol, trace gases NOx, CO, O3, CH4; periodically - heavy metals) is performed at two high levels (860 masl - a park zone of a large mountain resort, 2070 masl - alpine grassland, the net station). The results of the measurements are used in programs of bioclimatic, landscape and medical monitoring to specify the influence of aerosol on rehabilitation properties of the environment and human adaptative reserves. The aerosol particles of size range 500-1000 nm are used as a marker of the pathogenic effect of aerosol [2]. In the conditions of regional urbanization and complicated mountain atmospheric circulation the influence of aerosol on RP of GA and the variability of heart rhythm with the volunteers at different heights were investigated. At the height of 860 masl (urbanized resort) there have been noticed aerosol variations in the range of 0,04-0,35 particles/cm3 (slightly aerosol polluted), in mountain conditions - background pollution aerosol level. The difference of bioclimatic conditions at the specified high-rise levels has been referred to the category of contrasts. The natural aero ionization ∑(N+)+(N-) varied from 960 ion/cm3 to 1460 ion/cm3 in the resort park (860 m); from 1295 ion/cm3 to 4850 ion/cm3 on the Alpine meadow (2070 m); from 1128 ion/cm3 to 3420 ion/cm3 - on the tested site near the edge of the pinewood (1720 m). In the group of volunteers the trip from low-hill terrain zone (860 m) to the lower zone of highlands (2070 m) caused the activation of neuro and humoral regulation, vegetative and

  4. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    Science.gov (United States)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  5. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    Science.gov (United States)

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  6. Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Apituley, A.; Volten, H.; Mijling, B.; Di Noia, A.; Heikamp, S.; Heinsbroek, R.C.; Hasekamp, O.P.; Smit. , J.M.; Vonk, J.; Stam, D.M.; van Harten, G.; de Boer, J.; Keller, C.U.; iSPEX citizen scientists; Stuut, J.B.W.; Wernand, M.R.; Philippart, C.J.M.

    2014-01-01

    To assess the impact of atmospheric aerosols on health, climate, and air traffic, aerosol properties must be measured with fine spatial and temporal sampling. This can be achieved by actively involving citizens and the technology they own to form an atmospheric measurement network. We establish this

  7. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    Science.gov (United States)

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    Science.gov (United States)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  9. Single-particle characterization of the high-Arctic summertime aerosol

    Directory of Open Access Journals (Sweden)

    B. Sierau

    2014-07-01

    Full Text Available Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS. The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol–cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of

  10. Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates

    Directory of Open Access Journals (Sweden)

    G. McFiggans

    2009-12-01

    Full Text Available Marine aerosol composition continues to represent a large source of uncertainty in the study of climate and atmospheric chemistry. In addition to their physical size and chemical composition, hygroscopicity plays a significant role, increasing the particles' surface areas and scattering potential. Simultaneous aerosol measurements were performed on board the RRS Discovery and at the Cape Verde atmospheric observatory during the Aerosol Composition and Modelling in the Marine Environment (ACMME and Reactive Halogens in the Marine Boundary Layer (RHAMBLE experiments. These included online measurements of number and dry size and bulk collection for offline analysis of aqueous ions. In addition, the measurements on board the Discovery included online measurements of composition using an Aerodyne Aerosol Mass Spectrometer, optical absorption using a Multi Angle Absorption Photometer, ambient humidity size distribution measurements using a humidified differential mobility particle sizer (DMPS and optical particle counter (OPC and hygroscopicity measurements with a hygroscopicity tandem differential mobility analyser (HTDMA.

    Good agreement between platforms in terms of the sea salt (ss and non sea salt (nss modes was found during the period when the Discovery was in close proximity to Cape Verde and showed a composition consistent with remote marine air. As the Discovery approached the African coast, the aerosol showed signs of continental influence such as an increase in particle number, optical absorption, enhancement of the nss mode and dust particles. The Cape Verde site was free of this influence during this period. Chloride and bromide showed concentrations with significant deviations from seawater relative to sodium, indicating that atmospheric halogen processing (and/or acid displacement for chloride had taken place. The time dependent ambient size distribution was synthesised using humidified DMPS and OPC data, corrected to ambient

  11. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    Directory of Open Access Journals (Sweden)

    R. G. Stevens

    2012-01-01

    Full Text Available New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM, a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM. The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the downwind plume aerosols can be greatly modified by both meteorological and background aerosol conditions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.

  12. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change

    Directory of Open Access Journals (Sweden)

    I. J. George

    2007-08-01

    Full Text Available The kinetics and reaction mechanism for the heterogeneous oxidation of saturated organic aerosols by gas-phase OH radicals were investigated under NOx-free conditions. The reaction of 150 nm diameter Bis(2-ethylhexyl sebacate (BES particles with OH was studied as a proxy for chemical aging of atmospheric aerosols containing saturated organic matter. An aerosol reactor flow tube combined with an Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS and scanning mobility particle sizer (SMPS was used to study this system. Hydroxyl radicals were produced by 254 nm photolysis of O3 in the presence of water vapour. The kinetics of the heterogeneous oxidation of the BES particles was studied by monitoring the loss of a mass fragment of BES with the ToF-AMS as a function of OH exposure. We measured an initial OH uptake coefficient of γ0=1.3 (±0.4, confirming that this reaction is highly efficient. The density of BES particles increased by up to 20% of the original BES particle density at the highest OH exposure studied, consistent with the particle becoming more oxidized. Electrospray ionization mass spectrometry analysis showed that the major particle-phase reaction products are multifunctional carbonyls and alcohols with higher molecular weights than the starting material. Volatilization of oxidation products accounted for a maximum of 17% decrease of the particle volume at the highest OH exposure studied. Tropospheric organic aerosols will become more oxidized from heterogeneous photochemical oxidation, which may affect not only their physical and chemical properties, but also their hygroscopicity and cloud nucleation activity.

  13. Multiangle Implementation of Atmospheric Correction (MAIAC): 2. Aerosol Algorithm

    Science.gov (United States)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J. S.

    2011-01-01

    An aerosol component of a new multiangle implementation of atmospheric correction (MAIAC) algorithm is presented. MAIAC is a generic algorithm developed for the Moderate Resolution Imaging Spectroradiometer (MODIS), which performs aerosol retrievals and atmospheric correction over both dark vegetated surfaces and bright deserts based on a time series analysis and image-based processing. The MAIAC look-up tables explicitly include surface bidirectional reflectance. The aerosol algorithm derives the spectral regression coefficient (SRC) relating surface bidirectional reflectance in the blue (0.47 micron) and shortwave infrared (2.1 micron) bands; this quantity is prescribed in the MODIS operational Dark Target algorithm based on a parameterized formula. The MAIAC aerosol products include aerosol optical thickness and a fine-mode fraction at resolution of 1 km. This high resolution, required in many applications such as air quality, brings new information about aerosol sources and, potentially, their strength. AERONET validation shows that the MAIAC and MOD04 algorithms have similar accuracy over dark and vegetated surfaces and that MAIAC generally improves accuracy over brighter surfaces due to the SRC retrieval and explicit bidirectional reflectance factor characterization, as demonstrated for several U.S. West Coast AERONET sites. Due to its generic nature and developed angular correction, MAIAC performs aerosol retrievals over bright deserts, as demonstrated for the Solar Village Aerosol Robotic Network (AERONET) site in Saudi Arabia.

  14. Neutron activation analysis of atmospheric aerosol

    International Nuclear Information System (INIS)

    Obrusnik, I.

    1986-01-01

    Neutron activation analysis (NAA) is a modern analytical method well suited for the analysis of atmospheric aerosols. Particular steps of the NAA procedure and especially different types of aerosol sampling and sample preparation for analysis are discussed in detail. Several possible NAA techniques are described and the advantages of a purely instrumental technique with short and long irradiation are pointed out. Important performance characteristics of the NAA method such as precision, accuracy, sensitivity and detection limits are also discussed. Different applications of NAA in environmental studies are reviewed. (author)

  15. Comprehensive characterisation of atmospheric aerosols in Budapest, Hungary: physicochemical properties of inorganic species

    Science.gov (United States)

    Salma, Imre; Maenhaut, Willy; Zemplén-Papp, Éva; Záray, Gyula

    As part of an air pollution project in Budapest, aerosol samples were collected by stacked filter units and cascade impactors at an urban background site, two downtown sites, and within a road tunnel in field campaigns conducted in 1996, 1998 and 1999. Some criteria pollutants were also measured at one of the downtown sites. The aerosol samples were analysed by one or more of the following methods: instrumental neutron activation analysis, particle-induced X-ray emission analysis, a light reflection technique, gravimetry, thermal profiling carbon analysis and capillary electrophoresis. The quantities measured or derived include atmospheric concentrations of elements (from Na to U), of particulate matter, of black and elemental carbon, and total carbonaceous fraction, of some ionic species (e.g., nitrate and sulphate) in the fine ( EAD) or in both coarse (10- 2 μm EAD) and fine size fractions, atmospheric concentrations of NO, NO 2, SO 2, CO and total suspended particulate matter, and meteorological parameters. The analytical results were used for characterisation of the concentration levels, elemental composition, time trends, enrichment of and relationships among the aerosol species in coarse and fine size fractions, for studying their fine-to-coarse concentration ratios, spatial and temporal variability, for determining detailed elemental mass size distributions, and for examining the extent of chemical mass closure.

  16. submitter The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    CERN Document Server

    Lehtipalo, Katrianne; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a ...

  17. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  18. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  19. Gravitational agglomeration of post-HCDA LMFBR aerosols: nonspherical particles

    International Nuclear Information System (INIS)

    Tuttle, R.F.; Loyalka, S.K.

    1982-12-01

    Aerosol behavior analysis computer programs have shown that temporal aerosol size distributions in nuclear reactor containments are sensitive to shape factors. This research investigates shape factors by a detailed theoretical analysis of hydrodynamic interactions between a nonspherical particle and a spherical particle undergoing gravitational collisions in an LMFBR environment. First, basic definitions and expressions for settling speeds and collisional efficiencies of nonspherical particles are developed. These are then related to corresponding quantities for spherical particles through shape factors. Using volume equivalent diameter as the defining length in the gravitational collision kernel, the aerodynamic shape factor, the density correction factor, and the gravitational collision shape factor, are introduced to describe the collision kernel for collisions between aerosol agglomerates. The Navier-Stokes equation in oblate spheroidal coordinates is solved to model a nonspherical particle and then the dynamic equations for two particle motions are developed. A computer program (NGCEFF) is constructed, and the dynamical equations are solved by Gear's method

  20. Analysis of aerosol agglomeration and removal mechanisms relevant to a reactor containment

    International Nuclear Information System (INIS)

    Chiang, H.W.; Mulpuru, S.R.; Lindquist, E.D.

    1995-01-01

    During some Postulated accidents in a nuclear reactor, radioactive aerosols may be formed and could be released from a rupture of the primary heat transport system into the containment. The released aerosols can agglomerate and form larger aerosol particles. The airborne aerosols can be removed from containment atmosphere by deposition onto the walls and other surfaces in contact with the gas-aerosol mixture. The rate of removal of aerosols depends on the aerosol size, which, in turn, is related to the amount of agglomeration of the aerosol particles. The extent of the removal of the aerosol mass from the containment atmosphere is important in determining the potential radioactive releases to the outside atmosphere. In this paper, selected conditions have been assessed to illustrate the significance of agglomeration for situations potentially of interest in containment safety studies

  1. Correlation of Optical Properties with Atmospheric Solid Organic Particles (ASOPs) in the Southern Great Plains

    Science.gov (United States)

    Bonanno, D.; Fraund, M. W.; Pham, D.; China, S.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2017-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed to obtain airborne soil organic particles (ASOP), which are believed to be ejected following rain events. The unique composition of the ASOP have been shown to affect optical properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP) from the ARM archive are correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with optical properties.

  2. Atmospheric pollution in the mediterranean area: geochemical studies of aerosols and rain waters

    International Nuclear Information System (INIS)

    Caboi, R.; Chester, R.

    1998-01-01

    It is now recognised that the atmosphere is a major pathway for the transport of material to the oceans. The material in the atmosphere is present as gaseous and particulate (aerosol) phases. Aerosols may be removed from the atmosphere by a combination of 'dry' (i.e. not involving an atmospheric aqueous phase) and 'wet' (precipitation scavenging) processes. Thus, aerosols are intimately related to rain waters, and interactions between the two are discusses below in relation to the input of material to the Mediterranean Sea

  3. Aerosol processing in stratiform clouds in ECHAM6-HAM

    Science.gov (United States)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the

  4. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    International Nuclear Information System (INIS)

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  5. Impact of Aerosol Processing on Orographic Clouds

    Science.gov (United States)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  6. Single particle analysis of eastern Mediterranean aerosol particles: Influence of the source region on the chemical composition

    Science.gov (United States)

    Clemen, Hans-Christian; Schneider, Johannes; Köllner, Franziska; Klimach, Thomas; Pikridas, Michael; Stavroulas, Iasonas; Sciare, Jean; Borrmann, Stephan

    2017-04-01

    The Mediterranean region is one of the most climatically sensitive areas and is influenced by air masses of different origin. Aerosol particles are one important factor contributing to the Earth's radiative forcing, but knowledge about their composition and sources is still limited. Here, we report on results from the INUIT-BACCHUS-ACTRIS campaign, which was conducted at the Cyprus Atmospheric Observatory (CAO, Agia Marina Xyliatou) in Cyprus in April 2016. Our results show that the chemical composition of the aerosol particles in the eastern Mediterranean is strongly dependent on their source region. The composition of particles in a size range between 150 nm and 3 μm was measured using the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA), which is a single particle laser ablation instrument using a bipolar time-of-flight mass spectrometer. The mass spectral information on cations and anions allow for the analysis of different molecular fragments. The information about the source regions results from backward trajectories using HYSPLIT Trajectory Model (Trajectory Ensemble) on hourly basis. To assess the influence of certain source regions on the air masses arriving at CAO, we consider the number of trajectories that crossed the respective source region within defined time steps. For a more detailed picture also the height and the velocity of the air masses during their overpass above the source regions will be considered. During the campaign at CAO in April 2016 three main air mass source regions were observed: 1) Northern Central Europe, likely with an enhanced anthropogenic influence (e.g. sulfate and black carbon from combustion processes, fly ash particles from power plants, characterized by Sr and Ba), 2) Southwest Europe, with a higher influence of the Mediterranean Sea including sea salt particles (characterized by, e.g., NaxCly, NaClxNOy), 3) Northern Africa/Sahara, with air masses that are expected to have a higher load of mineral dust

  7. Source Apportionment of Atmospheric Particles by Electron Probe X-Ray Microanalysis and Receptor Models.

    Science.gov (United States)

    van Borm, Werner August

    Electron probe X-ray microanalysis (EPXMA) in combination with an automation system and an energy-dispersive X-ray detection system was used to analyse thousands of microscopical particles, originating from the ambient atmosphere. The huge amount of data was processed by a newly developed X-ray correction method and a number of data reduction procedures. A standardless ZAF procedure for EPXMA was developed for quick semi-quantitative analysis of particles starting from simple corrections, valid for bulk samples and modified taking into account the particle finit diameter, assuming a spherical shape. Tested on a limited database of bulk and particulate samples, the compromise between calculation speed and accuracy yielded for elements with Z > 14 accuracies on concentrations less than 10% while absolute deviations remained below 4 weight%, thus being only important for low concentrations. Next, the possibilities for the use of supervised and unsupervised multivariate particle classification were investigated for source apportionment of individual particles. In a detailed study of the unsupervised cluster analysis technique several aspects were considered, that have a severe influence on the final cluster analysis results, i.e. data acquisition, X-ray peak identification, data normalization, scaling, variable selection, similarity measure, cluster strategy, cluster significance and error propagation. A supervised approach was developed using an expert system-like approach in which identification rules are builded to describe the particle classes in a unique manner. Applications are presented for particles sampled (1) near a zinc smelter (Vieille-Montagne, Balen, Belgium), analyzed for heavy metals, (2) in an urban aerosol (Antwerp, Belgium), analyzed for over 20 elements and (3) in a rural aerosol originating from a swiss mountain area (Bern). Thus is was possible to pinpoint a number of known and unknown sources and characterize their emissions in terms of particles

  8. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    Directory of Open Access Journals (Sweden)

    P. J. Gallimore

    2011-12-01

    Full Text Available Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent

  9. The trace-elements of the atmospheric aerosol of the Amazon basin

    International Nuclear Information System (INIS)

    Orsini, C.M.Q.; Artaxo Netto, P.E.; Tabacniks, M.H.

    1981-05-01

    The distribution of the trace-elements AL, Si, P, S, CL, K, Ca, Ti, Fe and V in the atmospheric aerosol of the Amazon Basin was determined by means of samples collected between August 23 and September 2 of 1980, at a remote place located in the Amazon Forest, about 30 Km NE of the city of Manaus, Brazil. 33 samples were succesfully analyzed by the PIXE method (Particle Induced X-Ray Emission) by using α-particle beam of the Pelletron Accelerator of the University of Sao Paulo, and the results revealed that the trace-elements S and K have a large predominance, mainly as fine particle size relative to the others; this fact is consistent with the statement that the natural cycles of these two elements are critically involved in the biophysical processes responsible for the life of the tropical rain forest of the Amazon. (Author) [pt

  10. Absorbing Aerosols: Field and Laboratory Studies of Black Carbon and Dust

    Science.gov (United States)

    Aiken, A. C.; Flowers, B. A.; Dubey, M. K.

    2011-12-01

    Currently, absorbing aerosols are thought to be the most uncertain factor in atmospheric climate models (~0.4-1.2 W/m2), and the 2nd most important factor after CO2 in global warming (1.6 W/m2; Ramanathan and Carmichael, Nature Geoscience, 2008; Myhre, Science, 2009). While most well-recognized atmospheric aerosols, e.g., sulfate from power-plants, have a cooling effect on the atmosphere by scattering solar radiation, black carbon (BC or soot) absorbs sunlight strongly which results in a warming of the atmosphere. Dust particles are also present globally and can absorb radiation, contributing to a warmer and drier atmosphere. Direct on-line measurements of BC and hematite, an absorbing dust aerosol, can be made with the Single Particle Soot Photometer (SP2), which measures the mass of the particles by incandescence on an individual particle basis. Measurements from the SP2 are combined with absorption measurements from the three-wavelength photoacoustic soot spectrometer (PASS-3) at 405, 532, and 781 nm and the ultraviolet photoacoustic soot spectrometer (PASS-UV) at 375 nm to determine wavelength-dependent mass absorption coefficients (MACs). Laboratory aerosol samples include flame-generated soot, fullerene soot, Aquadag, hematite, and hematite-containing dusts. Measured BC MAC's compare well with published values, and hematite MAC's are an order of magnitude less than BC. Absorbing aerosols measured in the laboratory are compared with those from ambient aerosols measured during the Las Conchas fire and BEACHON-RoMBAS. The Las Conchas fire was a wildfire in the Jemez Mountains of New Mexico that burned over 100,000 acres during the Summer of 2011, and BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) is a field campaign focusing on biogenic aerosols at the Manitou Forest Observatory near Colorado Springs, CO in Summer 2011. Optical properties and size

  11. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    Science.gov (United States)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  12. Size distribution measurements and chemical analysis of aerosol components

    Energy Technology Data Exchange (ETDEWEB)

    Pakkanen, T.A.

    1995-12-31

    The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subsequent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 {mu}m of equivalent aerodynamic particle diameter (EAD). Furthermore, it turned out that a substantial amount of analyses associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occurred. Chloride was depleted when acidic species reacted

  13. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    International Nuclear Information System (INIS)

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-01-01

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described

  14. Factors controlling the solubility of trace metals in atmospheric aerosols over the Eastern Mediterranean

    Science.gov (United States)

    Nikolaou, Panagiota; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2015-04-01

    Atmospheric input of aerosols is recognized, as an important source of nutrients, for the oceans. The chemical interactions between aerosols and varying composition of air masses lead to different coating of their surfaces with sulfate, nitrate and organic compounds, increasing their solubility and their role as a carrier of nutrients and pollutants in ecosystems. Recent works have highlighted that atmospheric inputs of nutrients and trace metals can considerably influence the marine ecosystem functioning at semi-enclosed or enclosed water bodies such as the eastern Mediterranean. The current work aims to determine the sources and the factors controlling the variability of nutrients in the eastern Mediterranean. Special focus has been given on trace elements solubility, considered either as key nutrients for phytoplankton growth such as iron (Fe), phosphorus (P) or inhibitors such as copper (Cu). This has been accomplished by analyzing size segregated aerosol samples collected at the background site of Finokalia in Crete for an entire year. Phosphorus concentrations indicate important increases in air masses influenced both by anthropogenic activities in the northeast European countries and by dust outbreaks. The last is confirmed by the correlation observed between total P and dust concentrations and by the air mass backward trajectories computed by running the NOAA Hysplit Model (Hybrid Single - Particle Langrangian Integrated Trajectory (http://www.arl.noaa.gov/ready/hysplit4.html). Overall 73% of total P has been found to be associated with anthropogenic sources. The solubility of P and Fe has been found to be closely related to the acidity (pH) and dust amount in aerosols. The aerosol pH was predicted using thermodynamic modeling (ISORROPIA-II), meteorological observations (RH, T), and gas/particle observations. More specifically P and Fe solubility appears to be inversely related to the crustal elements levels, while it increases in acidic environment. The

  15. a Study of the Origin of Atmospheric Organic Aerosols

    Science.gov (United States)

    Hildemann, Lynn Mary

    1990-01-01

    The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds. The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other. A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites studied. Emissions from vehicles and fireplaces are identified as significant sources of solvent-extractable organic aerosol. Differences between the model

  16. INDOOR-OUTDOOR AEROSOL CONCENTRATIONS IN TWO PORTUGUESE CITIES AND THE GLOBAL WARMING SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Antonio F. Miguel; A. Heitor Reis [Department of Physics, University of Evora (Portugal); Marta Melgao [Geophysics Centre of Evora (Portugal)

    2008-09-30

    Aerosols play a major role both in climate change and in air quality. They affect climate through interfering with radiative transfer and hence the atmospheric temperature, and also the air quality. Many epidemiological studies have confirmed that a relation exists between elevated aerosol particle concentration and adverse human health effects. Aerosol particle number and size distributions were measured both indoors and outdoors in the urban areas of Evora and Lisbon. We investigated the indoor-to-outdoor relationship of aerosol particles and the aerosol size distributions. The impact of the occurrence of a residential fire in the aerosol size distribution is also analyzed. Finally, we speculate of how global increase in temperature can affect concentration of aerosols in the atmosphere, via increased boundary layer convection.

  17. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    Directory of Open Access Journals (Sweden)

    C. Degrendele

    2016-02-01

    Full Text Available This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs and current-use pesticides (CUPs in air. Two years (2012/2013 of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine had higher concentrations on coarse particles ( >  3.0 µm, which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide and lower potential for long-range atmospheric transport.

  18. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    Directory of Open Access Journals (Sweden)

    T. Koop

    2009-12-01

    Full Text Available Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5–95% at 298 K. The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions:

    (1 Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids.

    (2 Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts.

    (3 In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks and undergo transitions between swollen and collapsed network structures.

    (4 Organic gels or (semi-solid amorphous shells (glassy, rubbery, ultra-viscous with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN and ice nuclei (IN. Moreover, (semi-solid amorphous phases may influence the uptake of gaseous photo

  19. Source specific risk assessment of indoor aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, A.J.

    2013-05-15

    In the urban environment, atmospheric aerosols consist mainly of pollutants from anthropogenic sources. The majority of these originate from traffic and other combustion processes. A fraction of these pollutants will penetrate indoors via ventilation. However, indoor air concentrations are usually predominated by indoor sources due to the small amount of dilution air. In modern societies, people spend most of their time indoors. Thus, their exposure is controlled mainly by indoor concentrations from indoor sources. During the last decades, engineering of nanosized structures has created a new field of material science. Some of these materials have been shown to be potentially toxic to human health. The greatest potential for exposure to engineered nanomaterials (ENMs) occurs in the workplace during production and handling of ENMs. In an exposure assessment, both gaseous and particulate matter pollutants need to be considered. The toxicities of the particles usually depend on the source and age. With time, particle morphology and composition changes due to their tendency to undergo coagulation, condensation and evaporation. The PM exposure risk is related to source specific emissions, and thus, in risk assessment one needs to define source specific exposures. This thesis describes methods for source specific risk assessment of airborne particulate matter. It consists of studies related to workers' ENM exposures during the synthesis of nanoparticles, packing of agglomerated TiO{sub 2} nanoparticles, and handling of nanodiamonds. Background particles were distinguished from the ENM concentrations by using different measurement techniques and indoor aerosol modelings. Risk characterization was performed by using a source specific exposure and calculated dose levels in units of particle number and mass. The exposure risk was estimated by using non-health based occupational exposure limits for ENMs. For the nanosized TiO{sub 2}, the risk was also assessed from dose

  20. Study of atmospheric aerosols by IBA techniques: The LABEC experience

    Science.gov (United States)

    Lucarelli, F.; Calzolai, G.; Chiari, M.; Nava, S.; Carraresi, L.

    2018-02-01

    At the 3 MV Tandetron accelerator of the LABEC laboratory of INFN (Florence, Italy) an external beam facility is fully dedicated to PIXE-PIGE measurements of the elemental composition of atmospheric aerosols. All the elements with Z > 10 are simultaneously detected by PIXE typically in one minute. This setup allows us an easy automatic positioning, changing and scanning of samples collected by different kinds of devices: long series of daily PM (Particulate Matter) samples can be analysed in short times, as well as size-segregated and high time-resolution aerosol samples. Thanks to the capability of detecting all the crustal elements, PIXE-PIGE analyses are unrivalled in the study of mineral dust: consequently, they are very effective in the study of natural aerosols, like, for example, Saharan dust intrusions. Among the detectable elements there are also important markers of anthropogenic sources, which allow effective source apportionment studies in polluted urban environments using a multivariate method like Positive Matrix Factorization (PMF). Examples regarding recent monitoring campaigns, performed in urban and remote areas, both daily and with high time resolution (hourly samples), as well as with size selection, are presented. The importance of the combined use of the Particle Induced Gamma Ray emission technique (PIGE) and of other complementary (non-nuclear) techniques is highlighted.

  1. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  2. Aerosol studies during the ESCOMPTE experiment: an overview

    Science.gov (United States)

    Cachier, Hélène; Aulagnier, Fabien; Sarda, Roland; Gautier, François; Masclet, Pierre; Besombes, Jean-Luc; Marchand, Nicolas; Despiau, Serge; Croci, Delphine; Mallet, Marc; Laj, Paolo; Marinoni, Angela; Deveau, Pierre-Alexandre; Roger, Jean-Claude; Putaud, Jean-Philippe; Van Dingenen, Rita; Dell'Acqua, Alessandro; Viidanoja, Jyrkki; Martins-Dos Santos, Sebastiao; Liousse, Cathy; Cousin, Frédéric; Rosset, Robert; Gardrat, Eric; Galy-Lacaux, Corinne

    2005-03-01

    The "Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions" (ESCOMPTE) experiment took place in the Southern part of France in the Marseilles/Fos-Berre region during 6 weeks in June and July 2001. One task was to document the regional sources of atmospheric particles and to gain some insight into the aerosol transformations in the atmosphere. For this purpose, seven sites were chosen and equipped with the same basic instrumentation to obtain the chemical closure of the bulk aerosol phase and size-segregated samples. Some specific additional experiments were conducted for the speciation of the organic matter and the aerosol size distribution in number. Finally, four multiwavelength sun-photometers were also deployed during the experiment. Interestingly, in this region, three intense aerosol sources (urban, industrial and biogenic) are very active, and data show consistent results, enlightening an important background of particles over the whole ESCOMPTE domain. Notable is the overwhelming importance of the carbonaceous fraction (comprising primary and secondary particles), which is always more abundant than sulphates. Particle size studies show that, on average, more than 90% of the mean regional aerosol number is found on a size range smaller than 300 nm in diameter. The most original result is the evidence of the rapid formation of secondary aerosols occurring in the whole ESCOMPTE domain. This formation is much more important than that usually observed at these latitudes since two thirds of the particulate mass collected off source zones is estimated to be generated during atmospheric transport. On the other hand, the marine source has poor influence in the region, especially during the overlapping pollution events of Intensive Observation Periods (IOP). Preliminary results from the 0D and 3D versions of the MesoNH-aerosol model show that, with optimised gas and particle sources, the model accounts

  3. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  4. Warming-induced increase in aerosol number concentration likely to moderate climate change

    NARCIS (Netherlands)

    Paasonen, P.; Asmi, A.; Petäjä, T.; Kajos, M.K.; Äijälä, M.; Junninen, H.; Holst, T.; Abbatt, J.P.D.; Arneth, A.; Birmili, W.; Denier van der Gon, H.A.C.; Hamed, A.; Hoffer, A.; Laakso, L.; Laaksonen, A.; Richard Leaitch, W.; Plass-Dülmer, C.; Pryor, S.C.; Räisänen, P.; Swietlicki, E.; Wiedensohler, A.; Worsnop, D.R.; Kerminen, V.-M.; Kulmala, M.

    2013-01-01

    Atmospheric aerosol particles influence the climate system directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. Apart from black carbon aerosol, aerosols cause a negative radiative forcing at the top of the atmosphere and substantially mitigate

  5. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2010-05-01

    Full Text Available The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  6. Reactions and mass spectra of complex particles using Aerosol CIMS

    Science.gov (United States)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  7. Results of concentration measurements of artificial radioactive aerosols in the lower atmosphere; Resultats des mesures de concentration, dans la basse atmosphere, des aerosols radioactifs artificiels

    Energy Technology Data Exchange (ETDEWEB)

    Ardouin, B; Jehanno, C; Labeyrie, J; Lambert, G; Tanaevsky, O; Vassy, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    This report gives the results of the measurements of artificial gross-{beta}-radioactivity in aerosols in the lower atmosphere; these measurements have been made by the Electronic Physics Service of the Electronic Department, and by the Atmospheric Physics Laboratory of the Paris Science Faculty. The measurements were begun in September 1956 and were continued in an increasing number of stations both in France and in the rest of the world. The present report deals with the period up to the end of august 1961, that is up to the end of the nuclear moratorium. After recalling the constitution and the properties of radioactive aerosols present in the atmosphere, the authors describe the measurement methods, estimate their accuracy and discuss various aspects of the results. (authors) [French] Ce rapport contient les resultats des mesures de radioactivite {beta} globale d'origine artificielle des aerosols dans la basse atmosphere, effectuees conjointement par le Service d'Electronique Physique du Departement d'Electronique et le Laboratoire de Physique de l'Atmosphere de la Faculte des Sciences de Paris. Les mesures ont commence en septembre 1956 et ont ete poursuivies dans un nombre croissant de stations, tant en France que dans le reste du monde. Le present rapport s'arrete a la fin aout 1961, c'est-a-dire au moment de la reprise des essais nucleaires. Apres avoir rappele la constitution et les proprietes des aerosols radioactifs presents dans l'atmosphere, les auteurs indiquent les methodes de mesure utilisees, evaluent leur precision et discutent les differents aspects des resultats de leurs mesures. (auteurs)

  8. Water content of aged aerosol

    OpenAIRE

    G. J. Engelhart; L. Hildebrandt; E. Kostenidou; N. Mihalopoulos; N. M. Donahue; S. N. Pandis

    2010-01-01

    The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008). A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS) was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH) as low as 20%. The aerosol was acidic during mo...

  9. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  10. Regional and global atmospheric aerosol studies using the ''Gent'' stacked filter unit sampler and other aerosol collectors, with multi-elemental analysis of the samples by nuclear-related analytical techniques

    International Nuclear Information System (INIS)

    Maenhaut, W.; Francois, F.; Salma, I.; Cafmeyer, J.; Gilot, C.

    1994-01-01

    The ''Gent'' staked filter unit sampler and other collection devices are used in regional and global scale studies on the tropospheric atmospheric aerosols, its composition, sources and fate. The aerosol samples are analyzed by particle-induced X-ray emission analysis, instrumental neutron activation analysis, ion chromatography, a light reflectance technique (for determining black carbon), and gravimetry (for measuring the particular mass). In evaluating the data, use is made of receptor modelling techniques, transport models and wind sector analysis, and also of air mass trajectories and other meteorological information. Preliminary results from a long-term study in southern Norway are presented. It is suggested that the anthropogenic and soil dust aerosol components are mainly adverted to southern Norway by long-range transport and that the major fraction of the submicrometer particle mass is from anthropogenic origin. Preliminary results are also presented for an intensive study in southern Africa. On the basis of the data for two sites (about 40 km apart) in the Kruger National Park it was concluded that regionally representative aerosol samples were collected and that the biomass burning products account for more than 50% of the fine particle mass. Finally, our plans for future work are given. (author). 70 refs, 4 figs, 1 tab

  11. Where and What Is Pristine Marine Aerosol?

    Science.gov (United States)

    Russell, L. M.; Frossard, A. A.; Long, M. S.; Burrows, S. M.; Elliott, S.; Bates, T. S.; Quinn, P.

    2014-12-01

    The sources and composition of atmospheric marine aerosol particles have been measured by functional group composition (from Fourier transform infrared spectroscopy) to identify the organic composition of the pristine primary marine (ocean-derived) particles as 65% hydroxyl, 21% alkane, 6% amine, and 7% carboxylic acid functional groups [Frossard et al., 2014a,b]. Pristine but non-primary components from photochemical reactions (likely from biogenic marine vapor emissions) add carboxylic acid groups. Non-pristine contributions include shipping effluent in seawater and ship emissions, which add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. The pristine primary marine (ocean-derived) organic aerosol composition is nearly identical to model generated primary marine aerosol particles from bubbled seawater, indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the generated primary marine aerosol particles remained nearly constant over a broad range of chlorophyll-a concentrations, the generated primary marine aerosol particle alkane group fraction increased with chlorophyll-a concentrations. In addition, the generated primary marine aerosol particles have a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater hydroxyl group peak location is closer to that of polysaccharides. References Cited Frossard, Amanda A., Lynn M. Russell, Paola Massoli, Timothy S. Bates, and Patricia K. Quinn, "Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles," Aerosol Science and Technology - Aerosol Research Letter

  12. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions - Part 1: General equations, parameters, and terminology

    Science.gov (United States)

    Pöschl, U.; Rudich, Y.; Ammann, M.

    2007-12-01

    Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It enables a detailed description of mass transport and chemical reactions at the gas-particle interface, and it allows linking aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined and consistent rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependences (transient and steady-state conditions); flexible addition of unlimited numbers of chemical species and physicochemical processes; optional aggregation or resolution

  13. SMEX03 Atmospheric Aerosol Optical Properties Data: Oklahoma

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  14. Science Plan Biogenic Aerosols – Effects on Clouds and Climate (BAECC)

    Energy Technology Data Exchange (ETDEWEB)

    Petäjä, T

    2013-12-01

    Atmospheric aerosol particles impact human health in urban environments, while on regional and global scales they can affect climate patterns, the hydrological cycle, and the intensity of radiation that reaches the Earth’s surface. In spite of recent advances in the understanding of aerosol formation processes and the links between aerosol dynamics and biosphere-atmosphere-climate interactions, great challenges remain in the analysis of related processes on a global scale. Boreal forests, situated in a circumpolar belt in the northern latitudes throughout the United States, Canada, Russia and Scandinavia, are among the most active areas of atmospheric aerosol formation among all biomes. The formation of aerosol particles and their growth to the sizes of cloud condensation nuclei in these areas are associated with biogenic volatile organic emissions from vegetation and soil.

  15. Sources and composition of submicron organic mass in marine aerosol particles

    Science.gov (United States)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-01

    The sources and composition of atmospheric marine aerosol particles (aMA) have been investigated with a range of physical and chemical measurements from open-ocean research cruises. This study uses the characteristic functional group composition (from Fourier transform infrared spectroscopy) of aMA from five ocean regions to show the following: (i) The organic functional group composition of aMA that can be identified as mainly atmospheric primary marine (ocean derived) aerosol particles (aPMA) is 65 ± 12% hydroxyl, 21 ± 9% alkane, 6 ± 6% amine, and 7 ± 8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. (ii) The organic composition of aPMA is nearly identical to model-generated primary marine aerosol particles from bubbled seawater (gPMA, which has 55 ± 14% hydroxyl, 32 ± 14% alkane, and 13 ± 3% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the gPMA remained nearly constant over a broad range of chlorophyll a concentrations, the gPMA alkane group fraction appeared to increase with chlorophyll a concentrations (r = 0.66). gPMA from productive seawater had a larger fraction of alkane functional groups (42 ± 9%) compared to gPMA from nonproductive seawater (22 ± 10%), perhaps due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of

  16. Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Peng; Aiona, Paige K.; Li, Ying; Shiraiwa, Manabu; Laskin, Julia; Nizkorodov, Sergey A.; Laskin, Alexander

    2016-11-01

    Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly-emitted biomass burning organic aerosol (BBOA) samples collected during test burns of selected biomass fuels: sawgrass, peat, ponderosa pine, and black spruce. We characterize individual BrC chromophores present in these samples using high performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. We demonstrate that both the overall BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels and burning conditions. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as potential markers of BrC originating from different biomass burning sources. On average, ~50% of the light absorption above 300 nm can be attributed to a limited number of strong BrC chromophores, which may serve as representative light-absorbing species for studying atmospheric processing of BrC aerosol. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of 16 hours. A “molecular corridors” analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low volatility (<1 g m-1) and will be retained in the particle phase under atmospherically relevant conditions.

  17. Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions

    Science.gov (United States)

    Pflieger, Maryline; Grgić, Irena; Kitanovski, Zoran

    2012-12-01

    The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.

  18. Estimation of aerosol water and chemical composition from AERONET Sun-sky radiometer measurements at Cabauw, the Netherlands

    NARCIS (Netherlands)

    Van Beelen, A. J.; Roelofs, G. J H; Hasekamp, O. P.; Henzing, J. S.; Röckmann, T.

    2014-01-01

    Remote sensing of aerosols provides important information on atmospheric aerosol abundance. However, due to the hygroscopic nature of aerosol particles observed aerosol optical properties are influenced by atmospheric humidity, and the measurements do not unambiguously characterize the aerosol dry

  19. The influence of ions on atmospheric aerosol processes

    DEFF Research Database (Denmark)

    Enghoff, Martin

    2008-01-01

    Considering the big climate changes of the recent centuries and the predictions of future changes, it becomes increasingly important to understand what mechanisms drive climate. One such mechanism, that has been held responsible for changes in cloud cover during the last 25 years, for the Little...... Ice Age, the Medieval Warmth, and other climate phenomena going further back in time, is that of Ion Induced Nucleation { the ability of ions to enhance the formation of aerosol particles in the atmosphere. Several nucleation events that cannot be explained with the standard theory of homogeneous...... nucleation have been speculated to be caused by ions. Correlations between ionisation sources and climate parameters have been put forth, and experiments with extreme gas or ion concentrations have shown an eect of the ions. The relevance of Ion Induced Nucleation is, however, still undergoing debate [1, p...

  20. Characterization of atmospheric aerosols in Ile-de-France: Local contribution and Long range transport

    International Nuclear Information System (INIS)

    Cuesta, J.E.

    2006-06-01

    Atmospheric aerosols interact directly in a great number of processes related to climate change and public health, modifying the energy budget and partly determining the quality of the air we breathe. In my PhD, I chose to study the perturbation, if not the aggravation, of the living conditions in Ile-de-France associated to aerosol transport episodes in the free troposphere. This situation is rather frequent and still badly known. To achieve my study, I developed the observation platform 'TReSS' Transportable Remote Sensing Station, whose instruments were developed at the Laboratoire de Meteorology Dynamique by the LiMAG team. 'TReSS' consists of a new high-performance 'Mini-Lidar' and of two standard radiometers: a sun photometer and a thermal infrared radiometer. The principle of my experimental approach is the synergy of the vertical Lidar profiles and the particle size distributions over the column, obtained by the 'Almucantar' inversion of sun photometer data. The new 'Lidar and Almucantar' method characterizes the vertical distribution by layer and the optical micro-physical properties of the local and transported aerosols. Firstly, I undertook the characterization of the Paris aerosol, mainly of anthropogenic origin. Their radiative properties were analyzed in the daily and yearly scales. Then, I conducted a statistical multi-year study of transport episodes and a two-week study case, representative of a succession of desert dust intrusion in Ile-de-France. My PhD work concludes by a study on the impact of biomass burning aerosols during the heat wave on August 2003. I study the impact of the transported aerosols into the local radiative budget and the possible consequences on the diurnal cycle of the atmospheric boundary layer. (author)

  1. Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.

    2015-01-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  2. Design Of A Novel Open-Path Aerosol Extinction Cavity Ringdown Spectrometer And Initial Data From Deployment At NOAA's Atmospheric Observatory

    Science.gov (United States)

    Gordon, T. D.; Wagner, N. L.; Richardson, M.; Law, D. C.; Wolfe, D. E.; Brock, C. A.; Erdesz, F.; Murphy, D. M.

    2014-12-01

    The ability to frame effective climate change policy depends strongly on reducing the uncertainty in aerosol radiative forcing, which is currently nearly as great as best estimates of its magnitude. Achieving this goal will require significant progress in measuring aerosol properties, including aerosol optical depth, single scattering albedo and the effect of relative humidity on these properties for both fine and coarse particles. However both ground- and space-based instruments fail or are highly biased in the presence of clouds, severely limiting quantitative estimates of the radiative effects of aerosols where they are advected over low-level clouds. Moreover, many in situ aerosol measurements exclude the coarse fraction, which can be very important in and downwind of desert regions. By measuring the decay rate of a pulsed laser in an optically resonant cavity, cavity ringdown spectrometers (CRDSs) have been employed successfully in measuring aerosol extinction for particles in relative humidities below 90%. At very high humidities (as found in and near clouds), however, existing CRDSs perform poorly, diverging significantly from theoretical extinction values as humidities approach 100%. The new open-path aerosol extinction CRDS described in this poster measures extinction as aerosol is drawn through the sample cavity directly without inlets or tubing for channeling the flow, which cause particle losses, condensation at high RH and other artifacts. This poster presents the key elements of the new open-path CRDS design as well as comparisons with an earlier generation closed-path CRDS and preliminary data obtained during a field study at the 300 meter tower at NOAA's Boulder Atmospheric Observatory (BAO) in Colorado.

  3. Aerosol modelling and validation during ESCOMPTE 2001

    Science.gov (United States)

    Cousin, F.; Liousse, C.; Cachier, H.; Bessagnet, B.; Guillaume, B.; Rosset, R.

    The ESCOMPTE 2001 programme (Atmospheric Research. 69(3-4) (2004) 241) has resulted in an exhaustive set of dynamical, radiative, gas and aerosol observations (surface and aircraft measurements). A previous paper (Atmospheric Research. (2004) in press) has dealt with dynamics and gas-phase chemistry. The present paper is an extension to aerosol formation, transport and evolution. To account for important loadings of primary and secondary aerosols and their transformation processes in the ESCOMPTE domain, the ORISAM aerosol module (Atmospheric Environment. 35 (2001) 4751) was implemented on-line in the air-quality Meso-NH-C model. Additional developments have been introduced in ORganic and Inorganic Spectral Aerosol Module (ORISAM) to improve the comparison between simulations and experimental surface and aircraft field data. This paper discusses this comparison for a simulation performed during one selected day, 24 June 2001, during the Intensive Observation Period IOP2b. Our work relies on BC and OCp emission inventories specifically developed for ESCOMPTE. This study confirms the need for a fine resolution aerosol inventory with spectral chemical speciation. BC levels are satisfactorily reproduced, thus validating our emission inventory and its processing through Meso-NH-C. However, comparisons for reactive species generally denote an underestimation of concentrations. Organic aerosol levels are rather well simulated though with a trend to underestimation in the afternoon. Inorganic aerosol species are underestimated for several reasons, some of them have been identified. For sulphates, primary emissions were introduced. Improvement was obtained too for modelled nitrate and ammonium levels after introducing heterogeneous chemistry. However, no modelling of terrigeneous particles is probably a major cause for nitrates and ammonium underestimations. Particle numbers and size distributions are well reproduced, but only in the submicrometer range. Our work points out

  4. A contribution to the study of the physical properties of natural and radioactive aerosols in controlled atmospheres

    International Nuclear Information System (INIS)

    Mouden, A.

    1986-01-01

    The major objective of this work was to study the properties of normal and radioactive particles produced by attachment of radon 222 daughters on environmental aerosol particles, in various and controlled atmospheres. In the first part, devoted to the radioactivity of radon 222, the influence of the number of nuclei on the radioactive equilibrium state and the size distribution of alpha radioactivity was demonstrated. In the second part, an experimental study of the C.E.A. α dosimeter was developed. We investigated the counting and the collection efficiency of the dosimeter for inlet particles in the 0.001-0.1 μm size range. The last part concerns aerosol-filtration behaviour. The comparison between experimental and theoretical procedures revealed a good agreement only in some circumstances for membrane filters. In the case of fibrous filters the agreement is quite satisfactory. Particularly, if the fiber size distribution is taken into account in the theoretical model, it results in an improved estimation of the collection efficiency [fr

  5. Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain)

    International Nuclear Information System (INIS)

    Revuelta, María Aránzazu; McIntosh, Gregg; Pey, Jorge; Pérez, Noemi; Querol, Xavier; Alastuey, Andrés

    2014-01-01

    A combined magnetic-chemical study of 15 daily, simultaneous PM 10 –PM 2.5 –PM 1 urban background aerosol samples has been carried out. The magnetic properties are dominated by non-stoichiometric magnetite, with highest concentrations seen in PM 10 . Low temperature magnetic analyses showed that the superparamagnetic fraction is more abundant when coarse, multidomain particles are present, confirming that they may occur as an oxidized outer shell around coarser grains. A strong association of the magnetic parameters with a vehicular PM 10 source has been identified. Strong correlations found with Cu and Sb suggests that this association is related to brake abrasion emissions rather than exhaust emissions. For PM 1 the magnetic remanence parameters are more strongly associated with crustal sources. Two crustal sources are identified in PM 1 , one of which is of North African origin. The magnetic particles are related to this source and so may be used to distinguish North African dust from other sources in PM 1 . - Highlights: • Magnetic properties of PM 10 , PM 2.5 and PM 1 defined for a Mediterranean urban site. • Vehicular source of magnetic particles dominates in PM 10 . • Crustal source of magnetic particles dominates in PM 1 . • Magnetic remanence may distinguish between North African and regional dust in PM 1 . - Capsule abstract two sources of magnetic atmospheric particles have been identified in Barcelona, a vehicular source which dominates in PM 10 and a crustal source that dominates in PM 1

  6. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-04-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  7. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  8. Nitrous Oxide Emissions from Biofuel Crops and Atmospheric Aerosols: Associations with Air Quality and Regional Climate

    Science.gov (United States)

    Pillai, Priya Ramachandran

    atmosphere (TOA) shortwave aerosol direct radiative forcing (SWARF) by regionally nucleated particles over a forest site in the Southeastern United States was estimated. Particle size distributions (aerodynamic diameter, Dp 10.2 nm to 250 nm), total number concentrations of nucleation mode (Dp < 25 nm) and fine mode (25 < Dp < 250 nm) particles, and growth rates were analyzed to identify regional nucleation events during November 2005 to September 2007. Shortwave flux from Clouds and Earth's Radiant Energy System (CERES) and aerosol optical depth at 550 nm (AOD, tau550) from Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Earth Observing System (EOS) Terra satellite were used to estimate SWARF. AOD was highest (0.38 +/- 0.20) in summer (period of highest particle growth rate) and lowest (0.06 +/- 0.05) in winter (period of lowest particle growth rate). The nucleation day SWARF forcing was -24 +/- 11 Wm-2 in summer and -15 +/- 19 Wm-2 in spring. The radiative forcing efficiency was lower (-54 Wm-2, tau550 -1) in summer (period of highest tau550 and organic PM2.5 concentrations) as compared to spring (-93 Wm-2, tau550 -1). The results show that, during spring and summer 2006 and 2007, the radiative forcing efficiency of regionally nucleated aerosols was -73 Wm-2, tau550 -1. Formations of particles during regional nucleation events introduced significant radiative forcing that need to examine for other regions of the globe where intense regional nucleation events occur frequently.

  9. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  10. Contact efflorescence as a pathway for crystallization of atmospherically relevant particles.

    Science.gov (United States)

    Davis, Ryan D; Lance, Sara; Gordon, Joshua A; Ushijima, Shuichi B; Tolbert, Margaret A

    2015-12-29

    Inadequate knowledge of the phase state of atmospheric particles represents a source of uncertainty in global climate and air quality models. Hygroscopic aqueous inorganic particles are often assumed to remain liquid throughout their atmospheric lifetime or only (re)crystallize at low relative humidity (RH) due to the kinetic limitations of efflorescence (salt crystal nucleation and growth from an aqueous solution). Here we present experimental observations of a previously unexplored heterogeneous nucleation pathway that we have termed "contact efflorescence," which describes efflorescence initiated by an externally located solid particle coming into contact with the surface of a metastable aqueous microdroplet. This study demonstrates that upon a single collision, contact efflorescence is a pathway for crystallization of atmospherically relevant aqueous particles at high ambient RH (≤80%). Soluble inorganic crystalline particles were used as contact nuclei to induce efflorescence of aqueous ammonium sulfate [(NH4)2SO4], sodium chloride (NaCl), and ammonium nitrate (NH4NO3), with efflorescence being observed in several cases close to their deliquescence RH values (80%, 75%, and 62%, respectively). To our knowledge, these observations represent the highest reported efflorescence RH values for microdroplets of these salts. These results are particularly important for considering the phase state of NH4NO3, where the contact efflorescence RH (∼20-60%) is in stark contrast to the observation that NH4NO3 microdroplets do not homogeneously effloresce, even when exposed to extremely arid conditions (<1% RH). Considering the occurrence of particle collisions in the atmosphere (i.e., coagulation), these observations of contact efflorescence challenge many assumptions made about the phase state of inorganic aerosol.

  11. Gas/particle partitioning behaviour of azaarenes in an urban atmosphere.

    Science.gov (United States)

    Chen, H Y; Preston, M R

    1997-01-01

    The gas/particle partitioning of azaarenes in the Liverpool urban atmosphere was measured from May 1995 to April 1996. This period included one of the hottest summers and coldest winters recorded in the UK. The changes of the relative proportions of particulate and vapour phases showed a strong seasonal variation in which over 80% of azaarene compounds are associated with the particles in the winter and over 60% of azaarene compounds exist as vapour phase during the summer. The results are fitted into a gas/particle partitioning equation. Calculated vapour pressures, vaporization and desorption enthalpies are also given. Azaarene partitioning behaviour is modelled at a variety of aerosol concentrations and over a temperature range which includes normal ambient temperatures. It is hypothesised that three ring azaarene species are more likely to undergo changes in the relative proportions of particle and vapour phase material than either two or four ring compounds.

  12. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    Science.gov (United States)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  13. Radiative Importance of Aerosol-Cloud Interaction

    Science.gov (United States)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  14. The effects of aerosols on climate

    International Nuclear Information System (INIS)

    Boucher, O.

    1997-01-01

    Atmospheric aerosols (fine particles suspended in the atmosphere) can play two roles in the Earth’s radiation budget. In cloud-free air, aerosols scatter sunlight, some of which is reflected back to space (direct effect). Aerosols also determine the microphysical and optical properties of clouds (indirect effect). Whereas changes in natural aerosols are probably small during the last 100 years, there has been a large increase in the concentration of anthropogenic aerosols. The magnitude of their radiative effects is still very uncertain but seems to be sufficient to mask part of the global warming expected to stem from anthropogenic greenhouse gases. This paper presents the physical mechanisms of aerosol influence on climate. We then estimate the anthropogenic aerosol radiative effects and assess the climate response to these perturbations. (author) [fr

  15. Applicability of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer for determination of chemical composition of ultrafine aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.

    2013-11-01

    This thesis is based on the construction of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer (laser AMS), which is capable of measuring 10 to 50 nm aerosol particles collected from urban and rural air at-site and in near real time. The operation and applicability of the instrument was tested with various laboratory measurements, including parallel measurements with filter collection/chromatographic analysis, and then in field experiments in urban environment and boreal forest. Ambient ultrafine aerosol particles are collected on a metal surface by electrostatic precipitation and introduced to the time-of-flight mass spectrometer (TOF-MS) with a sampling valve. Before MS analysis particles are desorbed from the sampling surface with an infrared laser and ionized with a UV laser. The formed ions are guided to the TOF-MS by ion transfer optics, separated according to their m/z ratios, and detected with a micro channel plate detector. The laser AMS was used in urban air studies to quantify the carbon cluster content in 50 nm aerosol particles. Standards for the study were produced from 50 nm graphite particles, suspended in toluene, with 72 hours of high power sonication. The results showed the average amount of carbon clusters (winter 2012, Helsinki, Finland) in 50 nm particles to be 7.2% per sample. Several fullerenes/fullerene fragments were detected during the measurements. In boreal forest measurements, the laser AMS was capable of detecting several different organic species in 10 to 50 nm particles. These included nitrogen-containing compounds, carbon clusters, aromatics, aliphatic hydrocarbons, and oxygenated hydrocarbons. A most interesting event occurred during the boreal forest measurements in spring 2011 when the chemistry of the atmosphere clearly changed during snow melt. On that time concentrations of laser AMS ions m/z 143 and 185 (10 nm particles) increased dramatically. Exactly at the same time, quinoline concentrations

  16. Trace elements in aerosols from background air pollution monitoring stations in the Amazon Basin using nuclear-related techniques

    International Nuclear Information System (INIS)

    Artaxo, P.; Martins, J.V.; Yamasoe, M.A.; Gerab, F.; Kocinas, S.

    1994-01-01

    In order to study the natural release of aerosol particles by the Amazon Basin tropical rain forest, the composition and size distribution of biogenic aerosol particles were analyzed. The role of the atmospheric emissions from the Amazon Basin rain forest in the global atmosphere will be investigated. The atmosphere was studied in long-term sampling stations in three different locations. The elemental composition of aerosol particles released during biomass burning was also measured in several different ecosystems, from primary forest to Savannah. One of the main focuses was to identify and quantify important physical and chemical processes in the generation, transformation and deposition of aerosol particles. Also important was to obtain a better understanding of natural aerosol sources concerning identification, their characteristics and strength, to be able to understand the natural chemistry in the atmosphere on a global scale. 36 refs, 3 figs, 3 tabs

  17. Chemical and optical properties of atmospheric aerosols in Phimai, Thailand by intensive surface measurements and satellite data analysis

    Science.gov (United States)

    Tsuruta, H.; Thana, B.; Takamura, T.; Hashimoto, M.; Yabuki, M.; Oikawa, E.; Nakajima, T.

    2013-12-01

    Atmospheric aerosols were measured at the Observatory of Atmospheric Research, in Phimai, Thailand, a key station of SKYNET, during 2006-2008. In the surface measurement, mass concentrations and major chemical components in fine and coarse aerosols were analyzed, and the optical properties such as AOT and SSA were measured by skyradiometer. Analysis of MODIS and CALIPSO satellite data was made for wild fire activities and aerosol distribution, respectively. In this paper, the following topics are summarized. The surface wind pattern in dry season was divided into the three periods as follows; D1 (Oct.-Nov.) with northeasterly monsoon, D3 (middle March-April) with southerly wind, and D2 (Dec.-early March) with a transit stage between D1 and D3. Wet season in southwesterly monsoon was from May to September. The concentration ratio of BC/nss-SO4 showed that the dominant PM2.5 aerosols in D1 were due to long-range transport of air pollutants emitted from urban/industrial area of east Asia. In contrast, most of aerosols in D3 were derived from biomass burning in Indochina, because the activity of biomass burning was highest in the latter D2 and early D3 period, by the analysis of the fire database in MODIS and of BC/nss-SO4. The mass concentration in PM2.5 showed a clear seasonal variation with the maximum in D2. On the contrary, AOT showed the maximum in D3, and which could be attributed to an increase in the vertical thickness of high aerosol concentration in the boundary layer by the CALIOP data analysis. Dust particles in D1 were directly transported from east Asia, and re-suspension of soil dusts was dominant in D2 because the surface soil became dry. In D3, soil dusts were re-suspended with the thermal plume caused by biomass burning. In contrast, high dust particles measured in the wet season was due to long range transport of dust aerosols from western desert area by the CALIOP data analysis.

  18. Mobile Atmospheric Aerosol and Radiation Characterization Observatory (MAARCO)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: MAARCO is designed as a stand-alone facility for basic atmospheric research and the collection of data to assist in validating aerosol and weather models....

  19. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Manish [Pacific Northwest National Laboratory, Richland Washington USA; Cappa, Christopher D. [Department of Civil and Environmental Engineering, University of California, Davis California USA; Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Goldstein, Allen H. [Department of Environmental Science, Policy and Management and Department of Civil and Environmental Engineering, University of California, Berkeley California USA; Guenther, Alex B. [Department of Earth System Science, University of California, Irvine California USA; Jimenez, Jose L. [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Kuang, Chongai [Brookhaven National Laboratory, Upton New York USA; Laskin, Alexander [Pacific Northwest National Laboratory, Richland Washington USA; Martin, Scot T. [School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge Massachusetts USA; Ng, Nga Lee [School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Petaja, Tuukka [Department of Physics, University of Helsinki, Helsinki Finland; Pierce, Jeffrey R. [Department of Atmospheric Science, Colorado State University, Fort Collins Colorado USA; Rasch, Philip J. [Pacific Northwest National Laboratory, Richland Washington USA; Roldin, Pontus [Department of Physics, Lund University, Lund Sweden; Seinfeld, John H. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena California USA; Shilling, John [Pacific Northwest National Laboratory, Richland Washington USA; Smith, James N. [Department of Earth System Science, University of California, Irvine California USA; Thornton, Joel A. [Department of Atmospheric Sciences, University of Washington, Seattle Washington USA; Volkamer, Rainer [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Wang, Jian [Brookhaven National Laboratory, Upton New York USA; Worsnop, Douglas R. [Aerodyne Research, Inc., Billerica Massachusetts USA; Zaveri, Rahul A. [Pacific Northwest National Laboratory, Richland Washington USA; Zelenyuk, Alla [Pacific Northwest National Laboratory, Richland Washington USA; Zhang, Qi [Department of Environmental Toxicology, University of California, Davis California USA

    2017-06-01

    Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the ‘climate sensitivity’). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through a combination of laboratory and field measurements, yet current climate models typically do not comprehensively include all important SOA-relevant processes. Therefore, major gaps exist at present between current measurement-based knowledge on the one hand and model implementation of organic aerosols on the other. The critical review herein summarizes some of the important developments in understanding SOA formation that could potentially have large impacts on our understanding of aerosol radiative forcing and climate. We highlight the importance of some recently discovered processes and properties that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. In addition, this review also highlights some of the important processes that involve interactions between natural biogenic emissions and anthropogenic emissions, such as the role of sulfate and oxides of nitrogen (NOx) on SOA formation from biogenic volatile organic compounds. Studies that relate the observed evolution of organic aerosol

  20. Molecular dynamics simulations of laser disintegration of amorphous aerosol particles with spatially nonuniform absorption

    International Nuclear Information System (INIS)

    Schoolcraft, Tracy A.; Constable, Gregory S.; Jackson, Bryan; Zhigilei, Leonid V.; Garrison, Barbara J.

    2001-01-01

    A series of molecular dynamics (MD) simulations are performed in order to provide qualitative information on the mechanisms of disintegration of aerosol particles as used in aerosol mass spectrometry. Three generic types of aerosol particles are considered: strongly absorbing particles with homogeneous composition, transparent particles with absorbing inclusion, and absorbing particles with transparent inclusion. To study the effect of the mechanical properties of the aerosol material on the disintegration process, the results for crystalline (brittle) and amorphous (ductile) particles are compared. For large laser fluences, nearly complete dissociation of the absorbing material is observed, whereas the nonabsorbing portions remain fairly intact. Because large fluences can cause photofragmentation of constituent molecules, multiple pulses at low laser fluence and/or lasers with different wavelengths are recommended for the best representative sampling of multicomponent aerosol particles in laser desorption/ionization (LDI) mass spectrometry

  1. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    Science.gov (United States)

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  2. Characteristics of agglomerates of sodium oxide aerosol particles: Task 7, topical report

    International Nuclear Information System (INIS)

    Gieseke, J.A.; Reed, L.D.; Jordan, H.; Lee, K.W.

    1977-01-01

    Accurate macroscopic predictions of aerosol population behavior within enclosed containments are known to depend strongly upon the microscopic characteristics of the individual aerosols. Also, coagulation rates due to mechanisms which produce relative motions between particles within the suspended aerosol are known to depend upon the cross sectional areas of the individual particles. Hence, it has been the primary concern of this study to examine experimentally the microscopic characteristics of sodium oxide aerosols produced in air. The results of these measurements can now be incorporated into the various macroscopic aerosol behavior prediction models

  3. Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays

    Science.gov (United States)

    Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Cruz Minguillón, Mari; Pey, Jorge; Rodriguez, Sergio; Vicente Miró, José; Felis, Carles; Gibbons, Wes

    The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L'Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO 2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m -3), aluminium (as Al 2O 3 from around 600 to 2200 ng m -3), titanium (from 200 to 700 ng m -3), magnesium (from 100 to 500 ng m -3), lead (from 17 to 379 ng m -3), barium (from 39 to 322 ng m -3), strontium (from 3 to 112 ng m -3), copper (from 12 to 71 ng m -3), and antimony (from 1 to 52 ng m -3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.

  4. Formation of charged particles in condensation aerosol generators used for inhalation studies

    International Nuclear Information System (INIS)

    Ramu, M.C.R.; Vohra, K.G.

    1976-01-01

    Formation of charged particles in a condensation aerosol generator has been studied using a charge collector and a mobility analyzer. Measurements carried out using the charge collector show that the number of charged particles increases with an increase in the particle diameter. The number of charged particles measured also depends on the thickness of the sodium chloride coating on the platinum wire used in the aerosol generator for the production of condensation nuclei. It was found that the charged particle concentration increases with decreasing coating thickness. Mobility measurements have shown that the particles are singly and doubly charged. It has been estimated that about 10% of the particles produced in the generator are charged. The mechanism of formation of charged particles in the aerosol generator has been briefly discussed. (author)

  5. Effective Density and Mixing State of Aerosol Particles in a Near-Traffic Urban Environment

    DEFF Research Database (Denmark)

    Rissler, Jenny; Nordin, Erik Z; Eriksson, Axel C

    2014-01-01

    -range transport from polluted continental areas. The effective density of each group was relatively stable over time, especially of the soot aggregates, which had effective densities similar to those observed in laboratory studies of fresh diesel exhaust emissions. When heated to 300 °C, the soot aggregate......In urban environments, airborne particles are continuously emitted, followed by atmospheric aging. Also, particles emitted elsewhere, transported by winds, contribute to the urban aerosol. We studied the effective density (mass-mobility relationship) and mixing state with respect to the density...... and more dense particles. Both groups were present at each size in varying proportions. Two types of temporal variability in the relative number fraction of the two groups were found: soot correlated with intense traffic in a diel pattern and dense particles increased during episodes with long...

  6. Formation of high-molecular-weight compounds via the heterogeneous reactions of gaseous C8-C10 n-aldehydes in the presence of atmospheric aerosol components

    Science.gov (United States)

    Han, Yuemei; Kawamura, Kimitaka; Chen, Qingcai; Mochida, Michihiro

    2016-02-01

    A laboratory study on the heterogeneous reactions of straight-chain aldehydes was performed by exposing n-octanal, nonanal, and decanal vapors to ambient aerosol particles. The aerosol and blank filters were extracted using methanol. The extracts were nebulized and the resulting compositions were examined using a high-resolution time-of-flight aerosol mass spectrometer. The mass spectral analysis showed that the exposures of the aldehydes to aerosol samples increased the peak intensities in the high mass range. The peaks in the mass spectra of the aerosol samples after exposure to different aldehydes were characterized by a homologous series of peak shifts due to the addition of multiple CH2 units. This result is explained by the formation of high-molecular-weight (HMW) compounds that contain single or multiple aldehyde moieties. The HMW fragment peaks for the blank filters exposed to n-aldehydes were relatively weak, indicating an important contribution from the ambient aerosol components to the formation of the HMW compounds. Among the factors affecting the overall interaction of aldehydes with atmospheric aerosol components, gas phase diffusion possibly limited the reactions under the studied conditions; therefore, their occurrence to a similar degree in the atmosphere is not ruled out, at least for the reactions involving n-nonanal and decanal. The major formation pathways for the observed HMW products may be the self-reactions of n-aldehydes mediated by atmospheric aerosol components and the reactions of n-aldehydes with organic aerosol components. The observed formation of HMW compounds encourages further investigations into their effects on the aerosol properties as well as the organic aerosol mass in the atmosphere.

  7. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    Science.gov (United States)

    Liu, Bin; Cong, Zhiyuan; Wang, Yuesi; Xin, Jinyuan; Wan, Xin; Pan, Yuepeng; Liu, Zirui; Wang, Yonghong; Zhang, Guoshuai; Wang, Zhongyan; Wang, Yongjie; Kang, Shichang

    2017-01-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at the Ngari, Qomolangma (QOMS), Nam Co, and Southeastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Daily averages of online PM2.5 (particulates with aerodynamic diameters below 2.5 µm) at these sites were sequentially 18.2 ± 8.9, 14.5 ± 7.4, 11.9 ± 4.9 and 11.7 ± 4.7 µg m-3. Correspondingly, the ratios of PM2.5 to total suspended particles (TSP) were 27.4 ± 6.65, 22.3 ± 10.9, 37.3 ± 11.1 and 54.4 ± 6.72 %. Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine-aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Dust aerosol content in PM2.1 samples gave fractions of 26 % at the Ngari station and 29 % at the QOMS station, or ˜ 2-3 times that of reported results at human-influenced sites. Furthermore, observed evidence confirmed the existence of the aerodynamic conditions necessary for the uplift of fine particles from a barren land surface. Combining surface aerosol data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from

  8. Nuclear track radiography of 'hot' aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P

    1999-06-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the {alpha}-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and ({gamma},f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by {sup 235}U, {sup 239}Pu and {sup 241}Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10{sup -6} Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles00.

  9. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-07-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  10. Tar balls are processed, weakly absorbing, primary aerosol particles formed downwind of boreal forest fires

    Science.gov (United States)

    Sedlacek, A. J., III; Buseck, P. R.; Adachi, K.; Kleinman, L. I.; Onasch, T. B.; Springston, S. R.

    2017-12-01

    Biomass burning is a major source of light-absorbing black and brown carbonaceous aerosols Brown carbon is a poorly characterized mixture that includes tar balls (TBs), a type of carbonaceous particle unique to biomass burning. Here we describe the first atmospheric observations of the formation and evolution of TBs Aerosol particles were collected on TEM grids during individual aircraft transects at varying downwind distances from the Colockum Tarp wildland fire. The TEM images show primary particles transforming from viscous, impact-deformed particles to spherical TBs. The number fraction of TBs in the wildfire smoke plume increased from less than 5% in samples collected close to the emission source to greater than 40% after 3 hours of aging, with little change in downwind TB diameters. The TB mass fraction increased from 2% near the fire to 23±9% downwind. Single-scatter albedo determined from scattering and absorption measurements increased slightly with downwind distance. Mie calculations show this observation is consistent with weak light absorbance by TBs (m=1.56 - 0.02i) but not consistent with order-of-magnitude stronger absorption observed in different settings. The field-derived TB mass fractions reported here indicate that this particle type should be accounted for in biomass-burn emission inventories.

  11. High Spatial Resolution of Atmospheric Particle Mixing State and Its Links to Particle Evolution in a Metropolitan Area

    Science.gov (United States)

    Ye, Q.; Gu, P.; Li, H.; Robinson, E. S.; Apte, J.; Sullivan, R. C.; Robinson, A. L.; Presto, A. A.; Donahue, N.

    2017-12-01

    Traditional air quality studies in urban areas have mostly relied on very few monitoring locations either at urban background sites or at roadside sites.However, air pollution is highly complex and dynamic and will undergo complicated transformations. Therefore, results from one or two monitoring sites may not be sufficient to address the spatial gradients of pollutants and their evolution after atmosphere processing on a local scale. Our study, as part of the Center for Air, Climate, and Energy Solutions, performed stratified mobile sampling of atmospheric particulate matter with high spatial resolution to address intra-city variability of atmospheric particle composition and mixing state. A suite of comprehensive real-time instrumentations including a state-of-the-art aerosol mass spectrometer with single particle measurement capability are deployed on the mobile platform. Our sampling locations covered a wide variety of places with substantial differences in emissions and land use types including tunnels, inter-state highways, commercial areas, residential neighborhood, parks, as well as locations upwind and downwind of the city center. Our results show that particles from traffic emissions and restaurant cookings are two major contributors to fresh particles in the urban environment. In addition, there are large spatial variabilities of source-specific particles and we identify the relevant physicochemical processes governing transformation of particle composition, size and mixing state. We also combine our results with demographic data to study population exposure to particles of specific sources. This work will help evaluate the performance of existing modeling tools for air quality and population exposure studies.

  12. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    Science.gov (United States)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    The chemical composition of organic nitrogen (ON) in the environment is a research topic of broad significance. The topic intersects the branches of atmospheric, aquatic, and ecological science; thus, a variety of instrumentation, analytical methods, and data interpretation tools have evolved for determination of ON. Recent studies that focus on atmospheric particulate nitrogen (N) suggest a significant fraction (20-80%) of total N is bound in organic compounds. The sources, bioavailability and transport mechanisms of these N-containing compounds can differ, producing a variety of environmental consequences. Amino acids (AA) are a key class of atmospheric ON compounds that can contribute to secondary organic aerosol (SOA) formation and potentially influence water cycles, air pollutant scavenging, and the radiation balance. AA are water-soluble organic compounds (WSOC) that can significantly alter the acid-base chemistry of aerosols, and may explain the buffering capacity that impacts heterogeneous atmospheric chemistry. The chemical transformations that N-containing organic compounds (including AA) undergo can increase the light-absorbing capacity of atmospheric carbon via formation of 'brown carbon'. Suggested sources of atmospheric AA include: marine surface layer transport from bursting sea bubbles, the suspension of bacteria, fungi, algae, pollen, spores, or biomass burning. Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed and validated (Samy et al., 2011). This presentation describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting

  13. Future aerosols of the southwest - Implications for fundamental aerosol research

    International Nuclear Information System (INIS)

    Friedlander, S.K.

    1980-01-01

    It is shown that substantial increases in the use of coal in the U.S. will lead to substantial increases in emissions of particulate matter, SO/sub x/, and NO/sub x/ in the part of the U.S. west of the Mississippi. A shift in the primary particulate emissions from coarse to submicron particles is predicted. Attention is given to the nature of the submicron aerosol in the southwest, the distribution of sulfur with respect to particle size, the formation of new particles in the atmosphere, and the ammonium nitrate equilibrium. It is concluded that increased coal use will result in a 50% increase in SO/sub x/ emissions and a doubling of NO/sub x/ emissions in the western U.S. by the year 2000, that ambient levels of aerosol sulfates and nitrates will increase, and that a large increase in submicron aerosol mass is likely

  14. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  15. Shortwave radiative effects of unactivated aerosol particles in clouds

    International Nuclear Information System (INIS)

    Ackerman, T.; Baker, M.B.

    1977-01-01

    Clouds in some polluted areas may contain high concentrations of anthropogenic aerosol particles. The possible role of these particles in perturbing the optical and dynamical properties of the clouds is an important question for climate studies. The direct radiative effects of unactivated aerosol particles in stable stratus clouds have been calculated at lambda=0.5μm. Several simplifying asumptions have been made relating the behavior of such particles in the high humidity enviornment within the cloud to their physicochemical make-up. It is shown that the energy absorbed by particles within the clouds may be, for realistic concentrations, comparable to the latent heat released and thus may play a significant role in cloud dynamics in some areas. These results are shown to be relatively insensitive to the assumptions about the particle properties within the cloud

  16. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    Science.gov (United States)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  17. Characterization of atmospheric aerosols in the Adirondack Mountains using PIXE, SEM/EDX, and Micro-Raman spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Vineyard, M.F., E-mail: vineyarm@union.edu; LaBrake, S.M.; Ali, S.F.; Nadareski, B.J.; Safiq, A.D.; Smith, J.W.; Yoskowitz, J.T.

    2015-05-01

    We are making detailed measurements of the composition of atmospheric aerosols collected in the Adirondack Mountains as a function of particle size using proton-induced X-ray emission, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and Micro-Raman spectroscopy. These measurements provide valuable data to help identify the sources and understand the transport, transformation, and effects of airborne pollutants in upstate New York. Preliminary results indicate significant concentrations of sulfur in small particles that can travel great distances, and that this sulfur may be in the form of oxides that can contribute to acid rain.

  18. Determination of Aerosol Particle Diameter Using Cascade Impactor Procedure

    International Nuclear Information System (INIS)

    Bunawas; Ruslanto, P. O

    1998-01-01

    Determination of aerosol particle size distribution has been done using a low pressure Andersen's cascade impactor with 13 stages. The aerosol has been sampled with flow rate of aerosol sampling of 28.3 Ipm. Preliminary study result shows that aerosol in the simulation chamber was spread in monomodal distribution with Mass Median Aerodynamic Diameter of 4.9 μm. The aerosol measurement in Japan Power Demonstration Reactor has been spread in trimodal distribution with Activity Median Aerodynamic Diameter equal to 13.3 μm. The use of mylar as impaction plate instead of aluminum foil gives good result

  19. Direct night-time ejection of particle-phase reduced biogenic sulfur compounds from the ocean to the atmosphere.

    Science.gov (United States)

    Gaston, Cassandra J; Furutani, Hiroshi; Guazzotti, Sergio A; Coffee, Keith R; Jung, Jinyoung; Uematsu, Mitsuo; Prather, Kimberly A

    2015-04-21

    The influence of oceanic biological activity on sea spray aerosol composition, clouds, and climate remains poorly understood. The emission of organic material and gaseous dimethyl sulfide (DMS) from the ocean represents well-documented biogenic processes that influence particle chemistry in marine environments. However, the direct emission of particle-phase biogenic sulfur from the ocean remains largely unexplored. Here we present measurements of ocean-derived particles containing reduced sulfur, detected as elemental sulfur ions (e.g., (32)S(+), (64)S2(+)), in seven different marine environments using real-time, single particle mass spectrometry; these particles have not been detected outside of the marine environment. These reduced sulfur compounds were associated with primary marine particle types and wind speeds typically between 5 and 10 m/s suggesting that these particles themselves are a primary emission. In studies with measurements of seawater properties, chlorophyll-a and atmospheric DMS concentrations were typically elevated in these same locations suggesting a biogenic source for these sulfur-containing particles. Interestingly, these sulfur-containing particles only appeared at night, likely due to rapid photochemical destruction during the daytime, and comprised up to ∼67% of the aerosol number fraction, particularly in the supermicrometer size range. These sulfur-containing particles were detected along the California coast, across the Pacific Ocean, and in the southern Indian Ocean suggesting that these particles represent a globally significant biogenic contribution to the marine aerosol burden.

  20. Cluster analysis of elemental constituents of individual atmospheric aerosol particles from the volcanic plume of Lonquimay eruption in 1989

    International Nuclear Information System (INIS)

    Koltay, E.; Rajta, I.; Kertesz, Zs.; Uzonyi, I.; Kiss, Z.A.; Morales, J.R.

    2002-01-01

    Aerosol samples collected around the Chilean site Lonquimay during major volcanic activities in January 1989 have been subjected to microPIXE measurements of 1 μm lateral resolution in the Debrecen Institute. Elemental concentrations relative to calcium have been determined for Al, Si, P, S, K, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Ba in 187 individual aerosol particles with the particle sizes between 15 μm and 1 μm. On the basis of a cluster analysis performed on the data set we defined eight clusters. Scatter plots for selected pairs of elements as Si/Al, K/Si, S/Cl, and Al/S elemental ratios that are considered as signatures characterizing types and mechanisms in volcanic eruption - have been compared with published data available in the literature for various volcanic sites. (author)

  1. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  2. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  3. Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST

    Directory of Open Access Journals (Sweden)

    K. Sellegri

    2005-01-01

    Full Text Available Biogenic VOCs are important in the growth and possibly also in the early stages of formation of atmospheric aerosol particles. In this work, we present 10 min-time resolution measurements of organic trace gases at Hyytiälä, Finland during March 2002. The measurements were part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer and took place during a two-week period when nucleation events occurred with various intensities nearly every day. Using a ground-based Chemical Ionization Mass Spectrometer (CIMS instrument, the following trace gases were detected: acetone, TMA, DMA, mass 68amu (candidate=isoprene, monoterpenes, methyl vinyl ketone (MVK and methacrolein (MaCR and monoterpene oxidation products (MTOP. For all of them except for the amines, we present daily variations during different classes of nucleation events, and non-event days. BVOC oxidation products (MVK, MaCR and MTOP show a higher ratio to the CS on event days compared to non-event days, indicating that their abundance relative to the surface of aerosol available is higher on nucleation days. Moreover, BVOC oxidation products are found to show significant correlations with the condensational sink (CS on nucleation event days, which indicates that they are representative of less volatile organic compounds that contribute to the growth of the nucleated particles and generally secondary organic aerosol formation. Behaviors of BVOC on event and non event days are compared to the behavior of CO.

  4. Uncertainty evaluation in correlated quantities: application to elemental analysis of atmospheric aerosols;Evaluacion de la incertidumbre en cantidades correlacionadas: aplicacion al analisis elemental de aerosoles atmosfericos

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, A.; Miranda, J.; Pineda, J. C., E-mail: miranda@fisica.unam.m [UNAM, Instituto de Fisica, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-07-01

    One of the aspects that are frequently overlooked in the evaluation of uncertainty in experimental data is the possibility that the involved quantities are correlated among them, due to different causes. An example in the elemental analysis of atmospheric aerosols using techniques like X-ray Fluorescence (X RF) or Particle Induced X-ray Emission (PIXE). In these cases, the measured elemental concentrations are highly correlated, and then are used to obtain information about other variables, such as the contribution from emitting sources related to soil, sulfate, non-soil potassium or organic matter. This work describes, as an example, the method required to evaluate the uncertainty in variables determined from correlated quantities from a set of atmospheric aerosol samples collected in the Metropolitan Area of the Mexico Valley and analyzed with PIXE. The work is based on the recommendations of the Guide for the Evaluation of Uncertainty published by the International Organization for Standardization. (Author)

  5. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    Science.gov (United States)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  6. PIXE Analysis of Atmospheric Aerosol Samples Collected in the Adirondack Mountains

    Science.gov (United States)

    Yoskowitz, Josh; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We have performed an elemental analysis of atmospheric aerosol samples collected at Piseco Lake in Upstate New York using proton induced x-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the samples and distribute the particulate matter onto Kapton foils by particle size. The PIXE experiments were performed with 2.2-MeV proton beams from the 1.1-MV pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. X-Ray energy spectra were measured with a silicon drift detector and analyzed with GUPIX software to determine the elemental concentrations of the aerosols. A broad range of elements from silicon to zinc were detected with significant sulfur concentrations measured for particulate matter between 0.25 and 0.5 μm in size. The PIXE analysis will be described and preliminary results will be presented.

  7. Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic

    Science.gov (United States)

    Kirpes, Rachel M.; Bondy, Amy L.; Bonanno, Daniel; Moffet, Ryan C.; Wang, Bingbing; Laskin, Alexander; Ault, Andrew P.; Pratt, Kerri A.

    2018-03-01

    Few measurements of aerosol chemical composition have been made during the winter-spring transition (following polar sunrise) to constrain Arctic aerosol-cloud-climate feedbacks. Herein, we report the first measurements of individual particle chemical composition near Utqiaġvik (Barrow), Alaska, in winter (seven sample days in January and February 2014). Individual particles were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX, 24 847 particles), Raman microspectroscopy (300 particles), and scanning transmission X-ray microscopy with near-edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS, 290 particles). Sea spray aerosol (SSA) was observed in all samples, with fresh and aged SSA comprising 99 %, by number, of 2.5-7.5 µm diameter particles, 65-95 % from 0.5-2.5 µm, and 50-60 % from 0.1-0.5 µm, indicating SSA is the dominant contributor to accumulation and coarse-mode aerosol during the winter. The aged SSA particles were characterized by reduced chlorine content with 94 %, by number, internally mixed with secondary sulfate (39 %, by number, internally mixed with both nitrate and sulfate), indicative of multiphase aging reactions during transport. There was a large number fraction (40 % of 1.0-4.0 µm diameter particles) of aged SSA during periods when particles were transported from near Prudhoe Bay, consistent with pollutant emissions from the oil fields participating in atmospheric processing of aerosol particles. Organic carbon and sulfate particles were observed in all samples and comprised 40-50 %, by number, of 0.1-0.4 µm diameter particles, indicative of Arctic haze influence. Soot was internally mixed with organic and sulfate components. All sulfate was mixed with organic carbon or SSA particles. Therefore, aerosol sources in the Alaskan Arctic and resulting aerosol chemical mixing states need to be considered when predicting aerosol climate effects, particularly cloud

  8. Examination of quantitative accuracy of PIXE analysis for atmospheric aerosol particle samples. PIXE analysis of NIST air particulate on filter media

    International Nuclear Information System (INIS)

    Saitoh, Katsumi; Sera, Koichiro

    2005-01-01

    In order to confirm accuracy of the direct analysis of filter samples containing atmospheric aerosol particles collected on a polycarbonate membrane filter by PIXE, we carried out PIXE analysis on a National Institute of Standards and Technology (NIST, USA) air particulate on filter media (SRM 2783). For 16 elements with NIST certified values determined by PIXE analysis - Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb - quantitative values were 80-110% relative to NIST certified values except for Na, Al, Si and Ni. Quantitative values of Na, Al and Si were 140-170% relative to NIST certified values, which were all high, and Ni was 64%. One possible reason why the quantitative values of Na, Al and Si were higher than the NIST certified values could be the difference in the X-ray spectrum analysis method used. (author)

  9. Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

    Science.gov (United States)

    Zuluaga-Arias, Manuel D.

    2011-12-01

    Earth's radiation budget is directly influenced by aerosols through the absorption of solar radiation and subsequent heating of the atmosphere. Aerosols modulate the hydrological cycle indirectly by modifying cloud properties, precipitation and ocean heat storage. In addition, polluting aerosols impose health risks in local, regional and global scales. In spite of recent advances in the study of aerosols variability, uncertainty in their spatio-temporal distributions still presents a challenge in the understanding of climate variability. For example, aerosol loading varies not only from year to year but also on higher frequency intraseasonal time scales producing strong variability on local and regional scales. An assessment of the impact of aerosol variability requires long period measurements of aerosols at both regional and global scales. The present dissertation compiles a large database of remotely sensed aerosol loading in order to analyze its spatio-temporal variability, and how this load interacts with different variables that characterize the dynamic and thermodynamic states of the environment. Aerosol Index (AI) and Aerosol Optical Depth (AOD) were used as measures of the atmospheric aerosol load. In addition, atmospheric and oceanic satellite observations, and reanalysis datasets is used in the analysis to investigate aerosol-environment interactions. A diagnostic study is conducted to produce global and regional aerosol satellite climatologies, and to analyze and compare the validity of aerosol retrievals. We find similarities and differences between the aerosol distributions over various regions of the globe when comparing the different satellite retrievals. A nonparametric approach is also used to examine the spatial distribution of the recent trends in aerosol concentration. A significant positive trend was found over the Middle East, Arabian Sea and South Asian regions strongly influenced by increases in dust events. Spectral and composite analyses

  10. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  11. Source apportionment of aerosol particles using polycapillary slightly focusing X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Sun Tianxi [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China) and Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China) and Beijing Radiation Center, Beijing 100875 (China)], E-mail: stxbeijing@163.com; Liu Zhiguo [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China) and Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China) and Beijing Radiation Center, Beijing 100875 (China)], E-mail: liuzgbeijing@163.com; Zhu Guanghua; Liu Hui [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Xu Qing [Institute of High Energy Physics, Chinese Academy of Science, Beijing 100039 (China); Li Yude; Wang Guangpu; Luo Ping; Pan Qiuli; Ding Xunliang [Key Laboratory of Beam Technology and Materials Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2009-06-11

    A micro-X-ray fluorescence (Micro-XRF) spectrometer based on a polycapillary slightly focusing X-ray lens (PSFXRL) and laboratory X-ray source was designed to carry out the source apportionment of aerosol particles. In the distribution curve of the X-ray intensity in the focal spot of PSFXRL, there was a plateau with a diameter of about 65 {mu}m. The uniformity of this plateau was about 3%. This was helpful in measuring the XRF spectrum of a single aerosol particle in which the element distributions are not uniform. The minimum detection limit (MDL) of this Micro-XRF spectrometer was 15 ppm for the Fe-K{sub {alpha}}. The origins of the aerosol particles at the exit of a subway station and a construction site were apportioned. This Micro-XRF spectrometer has potential applications in analysis of single aerosol particles.

  12. Deposition of aerosol particles in bent pipe

    International Nuclear Information System (INIS)

    Matsui, Hiroshi; Ohhata, Tsutomu

    1989-01-01

    An equation to estimate deposition fraction of aerosol particles in a bent pipe is derived and the validity is verified experimentally. The equation is obtained by assuming that the resultant acceleration of the gravity and the centrifugal force induced in the bend acts on the aerosol particles, and is found to give a relatively accurate estimation of the deposition fraction if a certain correction factor is introduced to the equation. The deposition fraction has a minimum against Reynold number, and the deposition due to centrifugal force dominates at greater Reynolds number than that at the minimum deposition fraction. On the other hand, the smaller the radius of curvature of the bend is, the larger the deposition fraction due to the centrifugal force is. (author)

  13. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  14. The influence of background aerosol on spectral transparency of urban air

    International Nuclear Information System (INIS)

    Ismayilov, F.I.

    2009-01-01

    The relations between distribution of city aerosol particles on dimensions and spectral transparency of aerosol layer of atmospheric air pollution in Baku city conditions. The power and logarithmically normal functions are used for city aerosol modeling

  15. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    Science.gov (United States)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  16. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  17. Daily and seasonal variation of aerosol concentration in the atmosphere near the surface in continental climate of Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Koutsenogii, P [Inst. of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation)

    1996-12-31

    Novosibirsk region is the area in southern part of West-Siberian lowland, covering about 200,000 km{sup 2}. The properties of atmospheric aerosol in Novosibirsk region were studied during few campaigns in the years 1992 and 1993, one complex expedition in Summer of 1994 and durable observations in Akademgorodok in the years 1993, 1994. Akademgorodok is situated 25 km S from the city Novosibirsk, has population of about 100,000 and no industry. Three different locations in remote areas of Novosibirsk region were used for the measurements. The first was situated 12 km E from Akademgorodok, and 30 km from Novosibirsk near the village Kljutchi. The second location was situated close to Lake Tchany in western part of Novosibirsk region. The third location was situated in south-western part of Novosibirsk region, 12 km from the town Karasuk. The total aerosol light scattering by aerosol particles was measured by commercially available nephelometer FAN-A in terms of units, related to the molecular scattering of clean air, measured by the same nephelometer. Aerosol samples in which the content of sulfate-, nitrate-, and cloride-anions was determined, using ion liquid chromatography, were collected with Whatman 41 or AFA-HA filters. Aerosol mass concentration was measured by weighting of AFA-HA filters. Aerosol particles were sampled on the filters with the volume velocity of about 500 l/min for Whatman 41 and 120 l/min for AFA-HA and mean sampling duration of 24 hours. The total aerosol number concentration was measured with a condensation nuclei counter TSI 3020

  18. Daily and seasonal variation of aerosol concentration in the atmosphere near the surface in continental climate of Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Koutsenogii, P. [Inst. of Chemical Kinetics and Combustion, Novosibirsk (Russian Federation)

    1995-12-31

    Novosibirsk region is the area in southern part of West-Siberian lowland, covering about 200,000 km{sup 2}. The properties of atmospheric aerosol in Novosibirsk region were studied during few campaigns in the years 1992 and 1993, one complex expedition in Summer of 1994 and durable observations in Akademgorodok in the years 1993, 1994. Akademgorodok is situated 25 km S from the city Novosibirsk, has population of about 100,000 and no industry. Three different locations in remote areas of Novosibirsk region were used for the measurements. The first was situated 12 km E from Akademgorodok, and 30 km from Novosibirsk near the village Kljutchi. The second location was situated close to Lake Tchany in western part of Novosibirsk region. The third location was situated in south-western part of Novosibirsk region, 12 km from the town Karasuk. The total aerosol light scattering by aerosol particles was measured by commercially available nephelometer FAN-A in terms of units, related to the molecular scattering of clean air, measured by the same nephelometer. Aerosol samples in which the content of sulfate-, nitrate-, and cloride-anions was determined, using ion liquid chromatography, were collected with Whatman 41 or AFA-HA filters. Aerosol mass concentration was measured by weighting of AFA-HA filters. Aerosol particles were sampled on the filters with the volume velocity of about 500 l/min for Whatman 41 and 120 l/min for AFA-HA and mean sampling duration of 24 hours. The total aerosol number concentration was measured with a condensation nuclei counter TSI 3020

  19. Real-time measurement of aerosol particle concentration at high temperatures; Hiukkaspitoisuuden reaaliaikainen mittaaminen korkeassa laempoetilassa

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, J; Hautanen, J; Laitinen, A [Tampere Univ. of Technology (Finland). Physics

    1997-10-01

    The aim of this project is to develop a new method for continuous aerosol particle concentration measurement at elevated temperatures (up to 800-1000 deg C). The measured property of the aerosol particles is the so called Fuchs surface area. This quantity is relevant for diffusion limited mass transfer to particles. The principle of the method is as follows. First, aerosol particles are charged electrically by diffusion charging process. The charging takes place at high temperature. After the charging, aerosol is diluted and cooled. Finally, aerosol particles are collected and the total charge carried by the aerosol particles is measured. Particle collection and charge measurement take place at low temperature. Benefits of this measurement method are: particles are charged in-situ, charge of the particles is not affected by the temperature and pressure changes after sampling, particle collection and charge measurement are carried out outside the process conditions, and the measured quantity is well defined. The results of this study can be used when the formation of the fly ash particles is studied. Another field of applications is the study and the development of gasification processes. Possibly, the method can also be used for the monitoring the operation of the high temperature particle collection devices. (orig.)

  20. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  1. Elucidating determinants of aerosol composition through particle-type-based receptor modeling

    Science.gov (United States)

    McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2011-08-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique

  2. Airborne studies of submicron aerosol in the troposphere over West Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Panchenko, M.V.; Zuev, V.E.; Belan, B.D.; Terpugova, S.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    Submicron fraction particles that have the longest lifespan and are included in almost all atmospheric processes are of special importance among the great variety of sizes of particles present in the atmosphere. Submicron particles mainly determine the opticle state of the atmosphere in the visible spectral range, essentially cause the absorption of infrared radiation and, since they are the products and participants in all aerosol-to-gas transformations, accumulate of a lot of various chemical compounds and transfer them to large distances. Investigation of the processes of the spatial-temporal variability of aerosol particles for different climatic zones of the earth is the experimental base for studying their effect on climatically and ecologically significant factors and estimating their unfavorable tendencies. The increasing anthropogenic loading of the earth`s atmosphere is creating an urgency for aerosol research. Regardless of how perfect the analytical and numerical methods of solving radiation problems may be, success in forecasting climatic change is mainly determined by the reliability of the experimental data on optical parameters of the atmosphere and of the description of their variability under the effect of external factors.

  3. Impact of Nano Particles on Cultural Properties in the Atmosphere of Gyeongju National Park Area Using a Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. W.; Do, J. Y.; Park, S. Y.; Kim, T. K.; Ha, J. K. [Gyeongju University, Gyeongju (Korea, Republic of)

    2008-04-15

    The objective of this research is to investigate the physical and chemical characteristics of atmospheric nanoparticles observed at the National Park area of Gyeongju. The elemental compositions of the submicron aerosols were analyzed using a PIXE (proton induced X-ray emission) method with a 3 MV Tandetron accelerator. In addition, submicron aerosols were prepared for a determination of ions using ion chromatography. Aerosol monitoring was conducted for airborne particles less than 1.0 and 2.5 micron. They were collected on nuclepore filters using PM1.0 and PM2.5 cyclone samplers. The impact of air-mass pathway on the characteristics of particulate matter was analyzed at an end point of Gyeongju with backward trajectory results obtained from the HYSPLIT model. The ratio of submicron aerosol to fine particles in the mass concentration was 40 - 50% in the urban area of Seoul and the national park area of Gyeongju. During the monitoring period, Asian Dust storm events occurred at each monitoring site. The contributions of elements to the submicron aerosols were 8% lower in the urban area than in the national park area. However, the contributions of aged ions to submicron aerosols were relatively higher by 42% in the urban area of Seoul. The elementals of the submicron aerosols were categorized as soil-related, anthropogenic-related, and aerosol-acidity-related species based on an enrichment factor analysis. The average mass fraction of soil-related elements was approximately 20% for Seoul and 75% for Gyeongju. That of the aerosol-acidity-related specie was higher in Seoul and showed a big difference among Asian Dust storm events, non-Asian Dust storm events, and clear atmospheric conditions due to precipitation. Anthropogenic-related elements accounted for 11.7% in Seoul and 5.7% in Gyeongju. S, SO42- and the anthropogenic related elements like Cr, Cd, Pb, which can not be derived from stone materials themselves, were detected both on the stone surface and in

  4. Impact of Nano Particles on Cultural Properties in the Atmosphere of Gyeongju National Park Area Using a Proton Beam

    International Nuclear Information System (INIS)

    Kim, K. W.; Do, J. Y.; Park, S. Y.; Kim, T. K.; Ha, J. K.

    2008-04-01

    The objective of this research is to investigate the physical and chemical characteristics of atmospheric nanoparticles observed at the National Park area of Gyeongju. The elemental compositions of the submicron aerosols were analyzed using a PIXE (proton induced X-ray emission) method with a 3 MV Tandetron accelerator. In addition, submicron aerosols were prepared for a determination of ions using ion chromatography. Aerosol monitoring was conducted for airborne particles less than 1.0 and 2.5 micron. They were collected on nuclepore filters using PM1.0 and PM2.5 cyclone samplers. The impact of air-mass pathway on the characteristics of particulate matter was analyzed at an end point of Gyeongju with backward trajectory results obtained from the HYSPLIT model. The ratio of submicron aerosol to fine particles in the mass concentration was 40 - 50% in the urban area of Seoul and the national park area of Gyeongju. During the monitoring period, Asian Dust storm events occurred at each monitoring site. The contributions of elements to the submicron aerosols were 8% lower in the urban area than in the national park area. However, the contributions of aged ions to submicron aerosols were relatively higher by 42% in the urban area of Seoul. The elementals of the submicron aerosols were categorized as soil-related, anthropogenic-related, and aerosol-acidity-related species based on an enrichment factor analysis. The average mass fraction of soil-related elements was approximately 20% for Seoul and 75% for Gyeongju. That of the aerosol-acidity-related specie was higher in Seoul and showed a big difference among Asian Dust storm events, non-Asian Dust storm events, and clear atmospheric conditions due to precipitation. Anthropogenic-related elements accounted for 11.7% in Seoul and 5.7% in Gyeongju. S, SO42- and the anthropogenic related elements like Cr, Cd, Pb, which can not be derived from stone materials themselves, were detected both on the stone surface and in

  5. Comparing the mechanism of water condensation and evaporation in glassy aerosol.

    Science.gov (United States)

    Bones, David L; Reid, Jonathan P; Lienhard, Daniel M; Krieger, Ulrich K

    2012-07-17

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3-4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫10(3) s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from  10(13) Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk.

  6. Ambient Observations of Aerosols, Novel Aerosol Structures, And Their Engineering Applications

    Science.gov (United States)

    Beres, Nicholas D.

    The role of atmospheric aerosols remains a crucial issue in understanding and mitigating climate change in our world today. These particles influence the Earth by altering the Earth's delicate radiation balance, human health, and visibility. In particular, black carbon particulate matter remains the key driver in positive radiative forcing (i.e., warming) due to aerosols. Produced from the incomplete combustion of hydrocarbons, these compounds can be found in many different forms around the globe. This thesis provides an overview of three research topics: (1) the ambient characterization of aerosols in the Northern Indian Ocean, measurement techniques used, and how these aerosols influence local, regional, and global climate; (2) the exploration of novel soot superaggregate particles collected in the Northern Indian Ocean and around the globe and how the properties of these particles relate to human health and climate forcing; and (3) how aerogelated soot can be produced in a novel, one-step method utilizing an inverted flame reactor and how this material could be used in industrial settings.

  7. Number concentrations of solid particles from the spinning top aerosol generator

    International Nuclear Information System (INIS)

    Mitchell, J.P.

    1983-02-01

    A spinning top aerosol generator has been used to generate monodisperse methylene blue particles in the size range from 0.6 to 6 μm. The number concentrations of these aerosols have been determined by means of an optical particle counter and compared with the equivalent measurements obtained by filter collection and microscopy. (author)

  8. Aerosol light absorption and its measurement: A review

    International Nuclear Information System (INIS)

    Moosmueller, H.; Chakrabarty, R.K.; Arnott, W.P.

    2009-01-01

    Light absorption by aerosols contributes to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer. Besides the direct radiative effect, the heating can evaporate clouds and change the atmospheric dynamics. Aerosol light absorption in the atmosphere is dominated by black carbon (BC) with additional, significant contributions from the still poorly understood brown carbon and from mineral dust. Sources of these absorbing aerosols include biomass burning and other combustion processes and dust entrainment. For particles much smaller than the wavelength of incident light, absorption is proportional to the particle volume and mass. Absorption can be calculated with Mie theory for spherical particles and with more complicated numerical methods for other particle shapes. The quantitative measurement of aerosol light absorption is still a challenge. Simple, commonly used filter measurements are prone to measurement artifacts due to particle concentration and modification of particle and filter morphology upon particle deposition, optical interaction of deposited particles and filter medium, and poor angular integration of light scattered by deposited particles. In situ methods measure particle absorption with the particles in their natural suspended state and therefore are not prone to effects related to particle deposition and concentration on filters. Photoacoustic and refractive index-based measurements rely on the heating of particles during light absorption, which, for power-modulated light sources, causes an acoustic signal and modulation of the refractive index in the air surrounding the particles that can be quantified with a microphone and an interferometer, respectively. These methods may suffer from some interference due to light-induced particle evaporation. Laser-induced incandescence also monitors particle heating upon absorption, but heats absorbing particles to much higher temperatures to quantify BC mass

  9. Atmospheric Transport of Arid Aerosol from Desert Regions of Central Asia

    Science.gov (United States)

    Chen, Boris; Solomon, Paul; Sitnov, Sergei; Grechko, Evgeny; Maximenkov, Leonid; Artamonova, Maria; Pogarski, Fedor

    2010-05-01

    Investigation of atmospheric transport of arid aerosol from Central Asia was held within the ISTC project 3715. Particular attention was paid to the removal of aerosol from the Aral Sea region and its further transport, because aerosol and pollutants emission from Central Asia affect the airspace of the entire Asian continent. At the same time measurements of aerosols in the atmosphere of Central Asia are holding in a small number of stations, and currently available data are insufficient to define the initial conditions and/or verification of models of long-range transport. To identify sources of pollution transported from Central Asia, in Kyrgyzstan measurement and sampling of air were organized: at the station on the northern slope of the Kirgiz Range, 30 km south of Bishkek, at an altitude of 1700 m above sea level (Bishkek Site, 42,683N; 74,694E ), and on permanent alpine Teploklyuchenka lidar station in the Central Tien Shan at an altitude of 2000 m above sea level (Lidar Site, 42,467N; 78,533E). The chemical analysis of collected aerosol and soils samples was carried out. Measurements of aerosol at these stations have been merged with the simulation of the trajectories of air masses in the study region and with the satellite (the Terra and Aqua satellites) observations of aerosol optical thickness in this region. Satellite data for the region 43-47 N, and 58-62 E (Aral Sea) from April 2008 to September 2009 were analyzed. The moments were selected, when the value of aerosol optical thickness (AOT) was greatest (more than 0.5), and the transport from the Aral Sea region to the observation sites took place. For each of these days, the forward trajectories, which started at 6 points within the region, were calculated using the HYSPLIT model. The days, on which the trajectories reached the BISHKEK and LIDAR sites, were determined from the data obtained. Calculations on the basis of the RAMS model were performed for these days. These calculations were performed

  10. The formation of aerosol particles during combustion of biomass and waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hjerrild Zeuthen, J

    2007-05-15

    This thesis describes the formation of aerosol particles during combustion of biomass and waste. The formation of aerosol particles is investigated by studying condensation of alkali salts from synthetic flue gasses in a laboratory tubular furnace. In this so-called laminar flow aerosol condenser-furnace gaseous alkali chlorides are mixed with sulphur dioxide, water vapour and oxygen. At high temperatures the alkali chloride reacts with sulphur dioxide to form alkali sulphate. During subsequent cooling of the synthetic flue gas the chlorides and sulphates condense either as deposits on walls or on other particles or directly from the gas phase by homogenous nucleation. A previously developed computer code for simulation of one-component nucleation of particles in a cylindrical laminar flow is extended to include a homogeneous gas phase reaction to produce gaseous alkali sulphate. The formation of aerosol particles during full-scale combustion of wheat straw is investigated in a 100 MW grate-fired boiler. Finally, aerosols from incineration of waste are investigated during full-scale combustion of municipal waste in a 22 MW grate-fired unit. (BA)

  11. Long-term Chemical Characterization of Submicron Aerosol Particles in the Amazon Forest - ATTO Station

    Science.gov (United States)

    Carbone, S.; Brito, J.; Rizzo, L. V.; Holanda, B. A.; Cirino, G. G.; Saturno, J.; Krüger, M. L.; Pöhlker, C.; Ng, N. L.; Xu, L.; Andreae, M. O.; Artaxo, P.

    2015-12-01

    The study of the chemical composition of aerosol particles in the Amazon forest represents a step forward to understand the strong coupling between the atmosphere and the forest. For this reason submicron aerosol particles were investigated in the Amazon forest, where biogenic and anthropogenic aerosol particles coexist at the different seasons (wet/dry). The measurements were performed at the ATTO station, which is located about 150 km northeast of Manaus. At ATTO station the Aerosol chemical speciation monitor (ACSM, Aerodyne) and the Multiangle absorption photometer (MAAP, Thermo 5012) have been operated continuously from March 2014 to July 2015. In this study, long-term measurements (near-real-time, ~30 minutes) of PM1 chemical composition were investigated for the first time in this environment.The wet season presented lower concentrations than the dry season (~5 times). In terms of chemical composition, both seasons were dominated by organics (75 and 63%) followed by sulfate (11 and 13%). Nitrate presented different ratio values between the mass-to-charges 30 to 46 (main nitrate fragments) suggesting the presence of nitrate as inorganic and organic nitrate during both seasons. The results indicated that about 75% of the nitrate signal was from organic nitrate during the dry season. In addition, several episodes with elevated amount of chloride, likely in the form of sea-salt from the Atlantic Ocean, were observed during the wet season. During those episodes, chloride comprised up to 7% of the PM1. During the dry season, chloride was also observed; however, with different volatility, which suggested that Chloride was present in different form and source. Moreover, the constant presence of sulfate and BC during the wet season might be related to biomass burning emissions from Africa. BC concentration was 2.5 times higher during the dry season. Further characterization of the organic fraction was accomplished with the positive matrix factorization (PMF), which

  12. Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Beddows, D.C.S.; Telle, H.H.

    2005-01-01

    In this paper we discuss the prospects of real-time, in situ laser-induced breakdown spectroscopy applied for the identification and classification of bio-aerosols (including species of potential bio-hazard) within common urban aerosol mixtures. In particular, we address the issues associated with the picking out of bio-aerosols against common background aerosol particles, comparing laser-induced breakdown spectroscopy measurements with data from a mobile single-particle aerosol mass spectrometer (ATOFMS). The data from the latter provide statistical data over an extended period of time, highlighting the variation of the background composition. While single-particle bio-aerosols are detectable in principle, potential problems with small (∼ 1 μm size) bio-aerosols have been identified; constituents of the air mass other than background aerosols, e.g. gaseous CO 2 in conjunction with common background aerosols, may prevent unique recognition of the bio-particles. We discuss whether it is likely that laser-induced breakdown spectroscopy on its own can provide reliable, real-time identification of bio-aerosol in an urban environment, and it is suggested that more than one technique should be or would have to be used. A case for using a combination of laser-induced breakdown spectroscopy and Raman (and/or) laser-induced fluorescence spectroscopy is made

  13. OH-initiated Aging of Biomass Burning Aerosol during FIREX

    Science.gov (United States)

    Lim, C. Y.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Coggon, M.; Koss, A.; Sekimoto, K.; De Gouw, J. A.; Warneke, C.

    2017-12-01

    Biomass burning emissions represent a major source of fine particulate matter to the atmosphere, and this source will likely become increasingly important in the future due to changes in the Earth's climate. Understanding the effects that increased fire emissions have on both air quality and climate requires understanding the composition of the particles emitted, since chemical and physical composition directly impact important particle properties such as absorptivity, toxicity, and cloud condensation nuclei activity. However, the composition of biomass burning particles in the atmosphere is dynamic, as the particles are subject to the condensation of low-volatility vapors and reaction with oxidants such as the hydroxyl radical (OH) during transport. Here we present a series of laboratory chamber experiments on the OH-initiated aging of biomass burning aerosol performed at the Fire Sciences Laboratory in Missoula, MT as part of the Fire Influences on Regional and Global Environments Experiment (FIREX) campaign. We describe the evolution of biomass burning aerosol produced from a variety of fuels operating the chamber in both particle-only and gas + particle mode, focusing on changes to the organic composition. In particle-only mode, gas-phase biomass burning emissions are removed before oxidation to focus on heterogeneous oxidation, while gas + particle mode includes both heterogeneous oxidation and condensation of oxidized volatile organic compounds onto the particles (secondary organic aerosol formation). Variability in fuels and burning conditions lead to differences in aerosol loading and secondary aerosol production, but in all cases aging results in a significant and rapid increases in the carbon oxidation state of the particles.

  14. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2003-01-01

    Full Text Available The homogeneous freezing of supercooled H2SO4/H2O solution droplets was investigated in the aerosol chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere of Forschungszentrum Karlsruhe. 24 freezing experiments were performed at temperatures between 189 and 235 K with aerosol particles in the diameter range 0.05 to 1 µm. Individual experiments started at homogeneous temperatures and ice saturation ratios between 0.9 and 0.95. Cloud cooling rates up to -2.8 K min-1 were simulated dynamically in the chamber by expansion cooling using a mechanical pump. Depending on the cooling rate and starting temperature, freezing threshold relative humidities were exceeded after expansion time periods between about 1 and 10 min. The onset of ice formation was measured with three independent methods showing good agreement among each other. Ice saturation ratios measured at the onset of ice formation increased from about 1.4 at 231 K  to about 1.75 at 189 K. The experimental data set including thermodynamic parameters as well as physical and chemical aerosol analysis provides a good basis for microphysical model applications.

  15. Diurnal Cycles of Aerosol Optical Properties at Pico Tres Padres, Mexico City: Evidences for Changes in Particle Morphology and Secondary Aerosol Formation

    Science.gov (United States)

    Mazzoleni, C.; Dubey, M.; Chakrabarty, R.; Moosmuller, H.; Onasch, T.; Zavala, M.; Herndon, S.; Kolb, C.

    2007-12-01

    Aerosol optical properties affect planetary radiative balance and depend on chemical composition, size distribution, and morphology. During the MILAGRO field campaign, we measured aerosol absorption and scattering in Mexico City using the Los Alamos aerosol photoacoustic (LAPA) instrument operating at 781 nm. The LAPA was mounted on-board the Aerodyne Research Inc. mobile laboratory, which hosted a variety of gaseous and aerosol instruments. During the campaign, the laboratory was moved to different sites, capturing spatial and temporal variability. Additionally, we collected ambient aerosols on Nuclepore filters for scanning electron microscopy (SEM) analysis. SEM images of selected filters were taken to study particle morphology. Between March 7th and 19th air was sampled at the top of Pico Tres Padres, a mountain on the north side of Mexico City. Aerosol absorption and scattering followed diurnal patterns related to boundary layer height and solar insulation. We report an analysis of aerosol absorption, scattering, and morphology for three days (9th, 11th and 12th of March 2006). The single scattering albedo (SSA, ratio of scattering to total extinction) showed a drop in the tens-of-minutes-to-hour time frame after the boundary layer grew above the sampling site. Later in the day the SSA rose steadily reaching a maximum in the afternoon. The SEM images showed a variety of aerosol shapes including fractal-like aggregates, spherical particles, and other shapes. The absorption correlated with the CO2 signal and qualitatively with the fraction of fractal-like particles to the total particle count. In the afternoon the SSA qualitatively correlated with a relative increase in spherical particles and total particle count. These observed changes in optical properties and morphology can be explained by the dominant contribution of freshly emitted particles in the morning and by secondary particle formation in the afternoon. SSA hourly averaged values ranged from ~0.63 in

  16. American Association for Aerosol Research (AAAR) `95

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Fourteenth annual meeting of the American Association for Aerosol Research was held October 9-13, 1995 at Westin William Penn Hotel in Pittsburgh, PA. This volume contains the abstracts of the papers and poster sessions presented at this meeting, grouped by the session in which they were presented as follows: Radiation Effects; Aerosol Deposition; Collision Simulations and Microphysical Behavior; Filtration Theory and Measurements; Materials Synthesis; Radioactive and Nuclear Aerosols; Aerosol Formation, Thermodynamic Properties, and Behavior; Particle Contamination Issues in the Computer Industry; Pharmaceutical Aerosol Technology; Modeling Global/Regional Aerosols; Visibility; Respiratory Deposition; Biomass and Biogenic Aerosols; Aerosol Dynamics; Atmospheric Aerosols.

  17. PIXE analysis of atmospheric aerosols in the city of Buenos Aires

    International Nuclear Information System (INIS)

    Ozafran, M.J.; Vazquez, M.E.; Burlon, A.

    1999-01-01

    Lead pollution present in atmospheric aerosols in the city Buenos Aires was measured in 1989, using Heavy Ion PIXE. Since then, environmental conditions have changed significantly. The usage of unleaded gasoline was introduced, and the utilisation of compressed natural gas as car fuel has increased. Recently, a new sampling campaign of atmospheric aerosols has started, partly in collaboration with the Greenpeace Foundation. The present studies reveal that lead pollution in Buenos Aires has significantly decreased since 1989. The concentrations of other elements are determined as well. (author)

  18. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Shilling, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Zelenyuk, Alla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Liu, Jiumeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Bell, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. of Atmospheric Chemistry; D’Ambro, Emma L. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Gaston, Cassandra J. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Univ. of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Thornton, Joel A. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Laskin, Alexander [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Lin, Peng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Wilson, Jacqueline [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Easter, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Wang, Jian [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental & Climate Sciences Dept.; Bertram, Allan K. [Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Chemistry; Martin, Scot T. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences (SEAS) and Dept. of Earth and Planetary Sciences; Seinfeld, John H. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Div. of Chemistry and Chemical Engineering and Div. of Engineering and Applied Science; Worsnop, Douglas R. [Aerodyne Research, Billerica, MA (United States). Center for Aerosol and Cloud Chemistry

    2017-12-15

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.

  19. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    International Nuclear Information System (INIS)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-01-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  20. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  1. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earths climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earths radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earths surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  2. Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2013-10-01

    Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.183°N, 102.565°E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 ± 64 Mm-1; absorption: 15 ± 8 Mm-1; PM10 concentration: 33 ± 17 μg m-3), and dominated by submicron particles. Major aerosol compounds included carbonaceous (OC: 9.5 ± 3.6 μg m-3; EC: 2.0 ± 2.3 μg m-3) and secondary species (SO42-: 6.4 ± 3.7 μg m-3, NH4+: 2.2 ± 1.3 μg m-3). While the site was seldom under the direct influence of large forest fires to its north, agricultural fires were ubiquitous during the experiment, as suggested by the substantial concentration of K+ (0.56 ± 0.33 μg m-3). Besides biomass burning, aerosols in Phimai during the experiment were also strongly influenced by industrial and vehicular emissions from the Bangkok metropolitan region and long-range transport from southern China. High humidity played an important role in determining the aerosol composition and properties in the region. Sulfate was primarily formed via aqueous phase reactions, and hygroscopic growth could enhance the aerosol light scattering by up to 60%, at the typical morning RH level of 85%. The aerosol single scattering albedo demonstrated distinct diurnal variation, ranging from 0.86 ± 0.04 in the evening to 0.92 ± 0.02 in the morning. This experiment marks the first time such comprehensive characterization of aerosols was made for rural central Thailand. Our results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow.

  3. Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters

    Science.gov (United States)

    Snik, Frans; Rietjens, Jeroen H. H.; Apituley, Arnoud; Volten, Hester; Mijling, Bas; Di Noia, Antonio; Heikamp, Stephanie; Heinsbroek, Ritse C.; Hasekamp, Otto P.; Smit, J. Martijn; Vonk, Jan; Stam, Daphne M.; Harten, Gerard; Boer, Jozua; Keller, Christoph U.

    2014-10-01

    To assess the impact of atmospheric aerosols on health, climate, and air traffic, aerosol properties must be measured with fine spatial and temporal sampling. This can be achieved by actively involving citizens and the technology they own to form an atmospheric measurement network. We establish this new measurement strategy by developing and deploying iSPEX, a low-cost, mass-producible optical add-on for smartphones with a corresponding app. The aerosol optical thickness (AOT) maps derived from iSPEX spectropolarimetric measurements of the daytime cloud-free sky by thousands of citizen scientists throughout the Netherlands are in good agreement with the spatial AOT structure derived from satellite imagery and temporal AOT variations derived from ground-based precision photometry. These maps show structures at scales of kilometers that are typical for urban air pollution, indicating the potential of iSPEX to provide information about aerosol properties at locations and at times that are not covered by current monitoring efforts.

  4. Elemental composition of the particulate matter present in the atmospheric aerosols of Sete Lagoas, MG

    International Nuclear Information System (INIS)

    Queiroz, Paula Guimaraes Moura; Jacomino, Vanusa Maria Feliciano; Menezes, Maria Angela de Barros Correia

    2007-01-01

    The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS). The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 μm (PM 10 ), indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region. (author)

  5. Atmospheric aerosol dispersion models and their applications to environmental risk assessment

    Directory of Open Access Journals (Sweden)

    Andrzej Mazur

    2014-03-01

    Full Text Available Introduction. Numerical models of dispersion of atmospheric pollutants are widely used to forecast the spread of contaminants in the air and to analyze the effects of this phenomenon. The aim of the study is to investigate the possibilities and the quality of diagnosis and prediction of atmospheric transport of aerosols in the air using the dispersion model of atmospheric pollutants, developed at the Institute of Meteorology and Water Management (IMWM in Warsaw. Material and methods. A model of the dispersion of atmospheric pollutants, linked with meteorological models in a diagnostic mode, was used to simulate the transport of the cloud of aerosols released during the crash near the town of Ożydiw (Ukraine and of volcanic ash – during the volcanic eruption of Eyjafjallajökull in Iceland. Results. Possible directions of dispersion of pollutants in the air and its concentration in the atmosphere and deposition to the soil were assessed. The analysis of temporal variability of concentrations of aerosols in the atmosphere confirmed that the model developed at IMWM is an effective tool for diagnosis of air quality in the area of Poland as well as for determination of exposure duration to the aerosol clouds for different weather scenarios. Conclusions. The results are a confirmation of the thesis, that because in the environmental risk assessment, an important element is not only current information on the level of pollution concentrations, but also the time of exposure to pollution and forecast of these elements, and consequently the predicted effects on man or the environment in general; so it is necessary to use forecasting tools, similar to presented application. The dispersion model described in the paper is an operational tool for description, analysis and forecasting of emergency situations in case of emissions of hazardous substances.

  6. Aerosol Activation Properties within and above Mixing Layer in the North China Plain

    Science.gov (United States)

    Deng, Z.; Ran, L.

    2013-12-01

    Aerosol particles, serving as cloud condensation nuclei (CCN), may modify the properties of clouds and have an impact on climate. The vertical distribution of aerosols and their activation properties is critical to quantify the effect of aerosols on clouds. An intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP 2013), was conducted in the North China Plain during the late July and early August 2013 to measure the vertical profiles of atmospheric components in this polluted region and estimate their effects on atmospheric environment and climate. Aerosols were measured with in-situ instruments and Lidar. Particularly, the aerosols were collected at 1000 m height with a 1 m3 bag sampler attached to a tethered balloon, and subsequently measured with combined scanning mobility particle sizer (SMPS) and CCN counter. Comparisons of size-resolved activation ratios at ground level and 1000 m height showed that aerosols in upper atmosphere were not only less concentrated, but also less CCN-active than those at the surface. The difference in aerosol properties between upper atmosphere and the ground indicates that the analysis of impacts of aerosols on cloud might be misleading in heavily polluted region based on the relationship of cloud properties and surface aerosols or column without considering the vertical distribution of aerosol activation abilities.

  7. Real-time aerosol photometer and optical particle counter comparison

    International Nuclear Information System (INIS)

    Santi, E.; Belosi, F.; Santachiara, G.; Prodi, F.; Berico, M.

    2010-01-01

    The paper presents the results of a comparison exercise among real-time aerosol samplers, based on different light scattering techniques. The comparison was carried out near to the ISAC institute in a box positioned inside the CNR research area in Bologna. Two nephelometers (Dust Trak from TSI, and Air Genius from Unitec) and an optical particle counter (ENVIRO-check from Grimm) were used for P M1 and P M10 fraction assessment. In the case of the optical particle counter, the particle number concentration in each size bin was also used. In parallel, two manual sampling lines were employed for reference (gravimetric) measurements. The results highlight different factor scales for the dust monitors, in comparison with gravimetric assessment, underlining the importance of a user calibration of such monitors as a function of the specific aerosol sampled. Moreover, the relative fluctuations of the hourly P M 10 and P M1 concentrations, against daily average concentrations, were studied in order to compare the ability of each sampler to follow changes in the aerosol size distribution. It was found that the photometers and optical particle counter revealed different behaviours. In the latter, a small increase in the particle concentration number in the coarse fraction gave a relatively high increase in the mass concentration that was not measured by the photometers. The explanation could be the relatively slight influence of a small particle number variation on the total scattered light for the photometers, unlike the case of the optical particle counter, where each particle contributes to the mass concentration. This aspect merits future research in order to better understand optical particle counter output used in P Mx monitoring activities.

  8. Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers

    Directory of Open Access Journals (Sweden)

    R. H. Shepherd

    2018-04-01

    containing a 3 km thick layer of aerosol comprising pure water, pure insoluble organic aerosol, or an aerosol consisting of an aqueous core with an insoluble organic shell. The calculation demonstrated that the top-of-the-atmosphere albedo increases by 0.01 to 0.04 for pure organic particles relative to water particles of the same size and that the top-of-the-atmosphere albedo increases by 0.03 for aqueous core-shell particles as volume fraction of the shell material increases to 25 %.

  9. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth, E-mail: rsignorell@ethz.ch [Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland)

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  10. Climatological aspects of aerosol physical characteristics in Tunisia deduced from sun photometric measurements.

    Science.gov (United States)

    Chaâbane, Mabrouk; Azri, Chafai; Medhioub, Khaled

    2012-01-01

    Atmospheric and climatic data measured at Thala site (Tunisia) for a long-time period (1977-2001) are used to analyse the monthly, seasonal, and annual variations of the aerosol optical depth at 1 μm wavelength. We have shown that aerosol and microphysical properties and the dominating aerosol types depend on seasons. A comparison of the seasonal cycle of aerosol optical characteristics at Thala site showed that the contribution of long-range transported particles is expected to be larger in summer as a consequence of the weather stability typical of this season. Also, the winter decrease in atmospheric turbidity may result from increases in relative humidity and decreases in temperature, leading to increased particle size and mass and increased fall and deposition velocities. The spring and autumn weather patterns usually carry fine dust and sand particles for the desert area to Thala region. The annual behaviour of the aerosol optical depth recorded a period of stead increase started in 1986 until 2001. Trends in atmospheric turbidity after 1988 could be explained other ways by the contribution of the eruption of Mount Pinatubo in 1991 and by local or regional changes in climate or in aerosol emissions.

  11. Adsorption of radioactive I2 gas onto atmospheric aerosol

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Murata, Mikio; Suzuki, Katsumi.

    1990-01-01

    Laboratory scale experiments on the adsorption of radioactive elemental iodine (I 2 ) gas onto atmospheric aerosol showed that the adsorption reached an equilibrium state in about twelve minutes at high initial I 2 concentrations. The proportion of iodine which was adsorbed on the aerosol gradually decreased with increading initial I 2 concentration ranging over 10 -13 to 10 -9 g/cm 3 at a reaction time of 31 min but was almost constant at a reaction time of 2 min. A fraction of iodine desorbed from particulate iodine as mainly I 2 gas. An adsorption isotherm of atmospheric aerosol for I 2 gas was estimated from the experimental data of long reaction time and high I 2 concentrations. Using this adsorption isotherm, a theoretical equation, which was similar to our previous equation, was derived to explain the experimental results. A geometric mean and standard deviation of sticking probability in the equation were estimated to be 1.2 x 10 -2 and 2.7, respectively. Almost all experimental data were within ranges of calculated results considering the geometric standard deviation of sticking probability. (author)

  12. Impact of absorbing aerosols on the simulation of climate over the Indian region in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    A. Chakraborty

    2004-04-01

    Full Text Available The impact of anthropogenic absorbing aerosols (such as soot on the climate over the Indian region has been studied using the NCMRWF general circulation model. The absorbing aerosols increase shortwave radiative heating of the lower troposphere and reduce the heating at the surface. These effects have been incorporated as heating of the lower troposphere (up to 700hPa and cooling over the continental surface based on INDOEX measurements. The heating effect is constant in the pre-monsoon season and reduces to zero during the monsoon season. It is shown that even in the monsoon season when the aerosol forcing is zero, there is an overall increase in rainfall and a reduction in surface temperature over the Indian region. The rainfall averaged over the Tropics shows a small reduction in most of the months during the January to September period. The impact of aerosol forcing, the model's sensitivity to this forcing and its interaction with model-physics has been studied by changing the cumulus parameterization from the Simplified Arakawa-Schubert (SAS scheme to the Kuo scheme. During the pre-monsoon season the major changes in precipitation occur in the oceanic Inter Tropical Convergence Zone (ITCZ, where both the schemes show an increase in precipitation. This result is similar to that reported in Chung2002. On the other hand, during the monsoon season the changes in precipitation in the continental region are different in the SAS and Kuo schemes. It is shown that the heating due to absorbing aerosols changes the vertical moist-static stability of the atmosphere. The difference in the precipitation changes in the two cumulus schemes is on account of the different responses in the two parameterization schemes to changes in vertical stability. Key words. Atmospheric composition and structure (aerosols and particles – Meteorology and atmospheric dynamics (tropical meteorology; precipitation

  13. Urban light pollution - The effect of atmospheric aerosols on astronomical observations at night

    Science.gov (United States)

    Joseph, Joachim H.; Mekler, Yuri; Kaufman, Yoram J.

    1991-01-01

    The transfer of diffuse city light from a localized source through a dust-laden atmosphere with optical depth less than 0.5 has been analyzed in the source-observer plane on the basis of an approximate treatment. The effect on several types of astronomical observation at night has been studied, considering different size distributions and amounts as well as particle shapes of the aerosols. The analysis is made in terms of the signal-to-noise ratios for a given amount of aerosol. The model is applied to conditions at the Wise Astronomical Observatory in the Negev desert, and limiting backgrounds for spectroscopy, photometry, and photography of stars and extended objects have been calculated for a variety of signal-to-noise ratios. Applications to observations with different equipment at various distances from an urban area of any size are possible. Due to the use of signal-to-noise ratios, the conclusions are different for the different experimental techniques used in astronomy.

  14. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. A. Zawadowicz

    2017-06-01

    Full Text Available Measurements of primary biological aerosol particles (PBAP, especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.

  15. On the growth of atmospheric nanoparticles by organic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yli-Juuti, T.

    2013-09-01

    Atmospheric aerosol particles affect the visibility, damage human health and influence the Earth's climate by scattering and absorbing radiation and acting as cloud condensation nuclei (CCN). Considerable uncertainties are associated with the estimates of aerosol climatic effects and the extent of these effects depends on the particles size, composition, concentration and location in the atmosphere. Improved knowledge on the processes affecting these properties is of great importance in predicting future climate. Significant fraction of the atmospheric aerosol particles are formed in the atmosphere from trace gases through a phase change, i.e. nucleation. The freshly nucleated secondary aerosol particles are about a nanometer in diameter, and they need to grow tens of nanometers by condensation of vapors before they affect the climate. During the growth, the nanoparticles are subject to coagulational losses, and their survival to CCN sizes is greatly dependent on their growth rate. Therefore, capturing the nanoparticle growth correctly is crucial for representing aerosol effects in climate models. A large fraction of nanoparticle growth in many environments is expected to be due to organic compounds. However a full identification of the compounds and processes involved in the growth is lacking to date. In this thesis the variability in atmospheric nanoparticle growth rates with particle size and ambient conditions was studied based on observations at two locations, a boreal forest and a Central European rural site. The importance of various organic vapor uptake mechanisms and particle phase processes was evaluated, and two nanoparticle growth models were developed to study the effect of acid-base chemistry in the uptake of organic compounds by nanoparticles. Further, the effect of inorganic solutes on the partitioning of organic aerosol constituents between gas and particle phase was studied based on laboratory experiments. Observations of the atmospheric

  16. Ventilation conditions and atmospheric characteristics of a laboratory uranium mine. Application to the distribution of radioactive particles in the respiratory tract

    International Nuclear Information System (INIS)

    Duport, Philippe.

    1978-09-01

    The CEA laboratory uranium mine and the characteristics of its ventilation are described. A method of measuring air flows based on the determination of a tracer gas was developed. Variations of radon concentrations and of its daughter products concentrations and radioactive equilibrium were observed as a function of the various ventilation rates. Particle size distribution of radioactive aerosols was studied in the laboratory mine when unoperated. Several methods of evaluation of the free fraction were compared, and the application of the laws of aerosol physics to the production of radioactive aerosols in a mine was investigated. A study of radioactive ions showed that the usual equations of atmospheric electricity could be applied to charged radioactive aerosols in a mine. Finally an experimental method was developed in order to directly examine the deposit of an aerosol labelled by radon daughter products in the respiratory tract of animals. The experimental results obtained with aerosols in the particle size range 5.10 -8 - 5.10 -6 were compared to the theoretical data derived from models published in the literature [fr

  17. Characterization of aerosol particles from grass mowing by joint deployment of ToF-AMS and ATOFMS instruments

    Science.gov (United States)

    Drewnick, Frank; Dall'Osto, Manuel; Harrison, Roy

    During a measurement campaign at a semi-urban/industrial site a grass-cutting event was observed, when the lawn in the immediate surrounding of the measurement site was mowed. Using a wide variety of state-of-the-art aerosol measurement technology allowed a broad characterization of the aerosol generated by the lawn mowing. The instrumentation included two on-line aerosol mass spectrometers: an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS) and a TSI Aerosol Time-of-Flight Mass Spectrometer (ATOFMS); in addition, a selection of on-line aerosol concentration and size distribution instruments (OPC, APS, SMPS, CPC, FDMS-TEOM, MAAP) was deployed. From comparison of background aerosol measurements during most of the day with the aerosol measured during the lawn mowing, the grass cutting was found to generate mainly two different types of aerosol particles: an intense ultrafine particle mode (1 h average: 4 μg m -3) of almost pure hydrocarbon-like organics and a distinct particle mode in the upper sub-micrometer size range containing particles with potassium and nitrogen-organic compounds. The ultrafine particles are probably lubricating oil particles from the lawn mower exhaust; the larger particles are swirled-up plant debris particles from the mowing process. While these particle types were identified in the data from the two mass spectrometers, the on-line aerosol concentration and size distribution data support these findings. The results presented here show that the combination of quantitative aerosol particle ensemble mass spectrometry (ToF-AMS) and single particle mass spectrometry (ATOFMS) provides much deeper insights into the nature of the aerosol properties than each of the instruments could do alone. Therefore a combined deployment of both types of instruments is strongly recommended.

  18. Atmospheric aerosol brown carbon in the high Himalayas

    Science.gov (United States)

    Kirillova, Elena; Decesari, Stefano; Marinoni, Angela; Bonasoni, Paolo; Vuillermoz, Elisa; Facchini, M. Cristina; Fuzzi, Sandro

    2016-04-01

    Anthropogenic light-absorbing atmospheric aerosol can reach very high concentrations in the planetary boundary layer in South-East Asia ("brown clouds"), affecting atmospheric transparency and generating spatial gradients of temperature over land with a possible impact on atmospheric dynamics and monsoon circulation. Besides black carbon (BC), an important light-absorbing component of anthropogenic aerosols is the organic carbon component known as 'brown carbon' (BrC). In this research, we provided first measurements of atmospheric aerosol BrC in the high Himalayas during different seasons. Aerosol sampling was conducted at the GAW-WMO Global station "Nepal Climate Observatory-Pyramid" (NCO-P) located in the high Khumbu valley at 5079 m a.s.l. in the foothills of Mt. Everest. PM10 aerosol samples were collected from July 2013 to November 2014. The sampling strategy was set up in order to discriminate the daytime valley breeze bringing polluted air masses up to the observatory and free tropospheric air during nighttime. Water-soluble BrC (WS-BrC) and methanol-soluble BrC (MeS-BrC) were extracted and analyzed using a UV/VIS spectrophotometer equipped with a 50 cm liquid waveguide capillary cell. In the polluted air masses, the highest levels of the BrC light absorption coefficient at 365 nm (babs365) were observed during the pre-monsoon season (1.83±1.46 Mm-1 for WS-BrC and 2.86±2.49 Mm-1 for MeS-BrC) and the lowest during the monsoon season (0.21±0.22 Mm-1 for WS-BrC and 0.32±0.29 Mm-1 for MeS-BrC). The pre-monsoon season is the most frequently influenced by a strong atmospheric brown cloud (ABC) transport to NCO-P due to increased convection and mixing layer height over South Asia combined with the highest up-valley wind speed and the increase of the emissions from open fires due to the agricultural practice along the Himalayas foothills and the Indo-Gangetic Plain. In contrast, the monsoon season is characterized by a weakened valley wind regime and an

  19. Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China

    International Nuclear Information System (INIS)

    Shang, Dongjie; Hu, Min; Guo, Qingfeng; Zou, Qi; Zheng, Jing; Guo, Song

    2017-01-01

    Although organic compounds in marine atmospheric aerosols have significant effects on climate and marine ecosystems, they have rarely been studied, especially in the coastal regions of East China. To assess the origins of the organic aerosols in the East China coastal atmosphere, PM 2.5 samples were collected from the atmospheres of the Yellow Sea, the East China Sea, and Changdao Island during the CAPTAIN (Campaign of Air PolluTion At INshore Areas of Eastern China) field campaign in the spring of 2011. The marine atmospheric aerosol samples that were collected were grouped based on the backward trajectories of their air masses. The organic carbon concentrations in the PM 2.5 samples from the marine and Changdao Island atmospheres were 5.5 ± 3.1 μgC/m 3 and 6.9 ± 2.4 μgC/m 3 , respectively, which is higher than in other coastal water atmospheres. The concentration of polycyclic aromatic hydrocarbons (PAHs) in the marine atmospheric PM 2.5 samples was 17.0 ± 20.2 ng/m 3 , indicating significant continental anthropogenic influences. The influences of fossil fuels and biomass burning on the composition of organic aerosols in the coastal atmosphere of East China were found to be highly dependent on the origins of the air masses. Diesel combustion had a strong impact on air masses from the Yangtze River Delta (YRD), and gasoline emissions had a more significant impact on the “North China” marine atmospheric samples. The “Northeast China” marine atmospheric samples were most impacted by biomass burning. Coal combustion contributed significantly to the compositions of all of the atmospheric samples. The proportions of secondary compounds increased as samples aged in the marine atmosphere indicating that photochemical oxidation occured during transport. Our results quantified ecosystem effects on marine atmospheric aerosols and highlighted the uncertainties that arise when modeling marine atmospheric PM 2.5 without considering high spatial resolution

  20. The theory of the interaction of atmospheric aerosol with underlying surface

    International Nuclear Information System (INIS)

    Buikov, M.V.

    1993-01-01

    The interaction of wind with underlying surfaces through resuspension makes a great contribution to the total amount of atmospheric aerosols. The dry deposition process results in cleaning of the atmosphere and contamination of near-surface air layers of soil and vegetation. This paper examines the theory leading to an exact solution of the problem of turbulent transportation of pollution taking into account resuspension and dry-deposition. This may be useful for the interpretation of observational data and for the improvement of calculation methods to describe aerosol exchange at surfaces in air. (author)

  1. Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs simulated using the global aerosol model SPRINTARS

    Directory of Open Access Journals (Sweden)

    T. Takemura

    2012-12-01

    Full Text Available Global distributions and associated climate effects of atmospheric aerosols were simulated using a global aerosol climate model, SPRINTARS, from 1850 to the present day and projected forward to 2100. Aerosol emission inventories used by the Coupled Model Intercomparison Project Phase 5 (CMIP5 were applied to this study. Scenarios based on the Representative Concentration Pathways (RCPs were used for the future projection. Aerosol loading in the atmosphere has already peaked and is now reducing in Europe and North America. However, in Asia where rapid economic growth is ongoing, aerosol loading is estimated to reach a maximum in the first half of this century. Atmospheric aerosols originating from the burning of biomass have maintained high loadings throughout the 21st century in Africa, according to the RCPs. Evolution of the adjusted forcing by direct and indirect aerosol effects over time generally correspond to the aerosol loading. The probable future pathways of global mean forcing differ based on the aerosol direct effect for different RCPs. Because aerosol forcing will be close to the preindustrial level by the end of the 21st century for all RCPs despite the continuous increases in greenhouse gases, global warming will be accelerated with reduced aerosol negative forcing.

  2. iSPEX: everybody can measure atmospheric aerosols with a smartphone spectropolarimeter

    Science.gov (United States)

    Snik, F.; Heikamp, S.; de Boer, J.; Keller, C. U.; van Harten, G.; Smit, J. M.; Rietjens, J. H. H.; Hasekamp, O.; Stam, D. M.; Volten, H.; iSPEX Team

    2012-04-01

    An increasing amount people carry a mobile phone with internet connection, camera and large computing power. iSPEX, a spectropolarimetric add-on with complementary app, instantly turns a smartphone into a scientific instrument to measure dust and other aerosols in our atmosphere. A measurement involves scanning the blue sky, which yields the angular behavior of the degree of linear polarization as a function of wavelength, which can unambiguously be interpreted in terms of size, shape and chemical composition of the aerosols in the sky directly above. The measurements are tagged with location and pointing information, and submitted to a central database where they will be interpreted and compiled into an aerosol map. Through crowdsourcing, many people will thus be able to contribute to a better assessment of health risks of particulate matter and of whether or not volcanic ash clouds are dangerous for air traffic. It can also contribute to the understanding of the relationship between atmospheric aerosols and climate change. We will give a live presentation of the first iSPEX prototype. Furthermore, we will present the design and the plans for producing the iSPEX add-on, app and website. We aim to distribute thousands of iSPEX units, such that a unique network of aerosol measurement equipment is created. Many people will thus contribute to the solution of several urgent social and scientific problems, and learn about the nature of light, remote sensing and the issues regarding atmospheric aerosols in the process. In particular we focus on school classes where smartphones are usually considered a nuisance, whereas now they can be a crucial part of various educational programs in science class.

  3. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    X.-F. Huang

    2010-09-01

    Full Text Available As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008, an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008. The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m−3; the mean composition consisted of organics (37.9%, sulfate (26.7%, ammonium (15.9%, nitrate (15.8%, black carbon (3.1%, and chloride (0.87%. The average size distributions of the species (except BC were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA, cooking-related (COA, and two oxygenated organic aerosols (OOA-1 and OOA-2, which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses

  4. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    Science.gov (United States)

    Huang, X.-F.; He, L.-Y.; Hu, M.; Canagaratna, M. R.; Sun, Y.; Zhang, Q.; Zhu, T.; Xue, L.; Zeng, L.-W.; Liu, X.-G.; Zhang, Y.-H.; Jayne, J. T.; Ng, N. L.; Worsnop, D. R.

    2010-09-01

    As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008), an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008). The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m-3; the mean composition consisted of organics (37.9%), sulfate (26.7%), ammonium (15.9%), nitrate (15.8%), black carbon (3.1%), and chloride (0.87%). The average size distributions of the species (except BC) were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF) analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA), cooking-related (COA), and two oxygenated organic aerosols (OOA-1 and OOA-2), which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C) compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses contained a large fraction of primary HOA

  5. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    Science.gov (United States)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  6. Experimental study of heterogeneous organic chemistry induced by far ultraviolet light: Implications for growth of organic aerosols by CH3 addition in the atmospheres of Titan and early Earth

    Science.gov (United States)

    Hong, Peng; Sekine, Yasuhito; Sasamori, Tsutoni; Sugita, Seiji

    2018-06-01

    Formation of organic aerosols driven by photochemical reactions has been observed and suggested in CH4-containing atmospheres, including Titan and early Earth. However, the detailed production and growth mechanisms of organic aerosols driven by solar far ultraviolet (FUV) light remain poorly constrained. We conducted laboratory experiments simulating photochemical reactions in a CH4sbnd CO2 atmosphere driven by the FUV radiations dominated by the Lyman-α line. In the experiments, we analyzed time variations in thickness and infrared spectra of solid organic film formed on an optical window in a reaction cell. Gas species formed by FUV irradiation were also analyzed and compared with photochemical model calculations. Our experimental results show that the growth rate of the organic film decreases as the CH4/CO2 ratio of reactant gas mixture decreases, and that the decrease becomes very steep for CH4/CO2 organic film but that the addition reaction of CH3 radicals onto the organic film with the reaction probability around 10-2 can explain the growth rate. At CH4/CO2 organic film. Our results suggest that organic aerosols would grow through CH3 addition onto the surface during the precipitation of aerosol particles in the middle atmosphere of Titan and early Earth. On Titan, effective CH3 addition would reduce C2H6 production in the atmosphere. On early Earth, growth of aerosol particles would be less efficient than those on Titan, possibly resulting in small-sized monomers and influencing UV shielding.

  7. Volatile properties of atmospheric aerosols during nucleation events ...

    Indian Academy of Sciences (India)

    J. Earth Syst. ... position of nucleated particles, cloud condensa- ... the air sample heated by heating section, and (c) temperature profile inside ..... els of precursors and chemistry of aerosols affect ... global climate modeling: A review; Atmos.

  8. Health effects of acid aerosols formed by atmospheric mixtures

    International Nuclear Information System (INIS)

    Kleinman, M.T.; Phalen, R.F.; Mautz, W.J.; Mannix, R.C.; McClure, T.R.; Crocker, T.T.

    1989-01-01

    Under ambient conditions, sulfur and nitrogen oxides can react with photochemical products and airborne particles to form acidic vapors and aerosols. Inhalation toxicological studies were conducted, exposing laboratory animals, at rest and during exercise, to multicomponent atmospheric mixtures under conditions favorable to the formation of acidic reaction products. Effects of acid and ozone mixtures on early and late clearance of insoluble radioactive particles in the lungs of rats appeared to be dominated by the oxidant component (i.e., the mixture did cause effects that were significantly different from those of ozone alone). Histopathological evaluations showed that sulfuric acid particles alone did not cause inflammatory responses in centriacinar units of rat lung parenchyma (expressed in terms of percent lesion area) but did cause significant damage (cell killing followed by a wave of cell replication) in nasal respiratory epithelium, as measured by uptake of tritiated thymidine in the DNA of replicating cells. Mixtures of ozone and nitrogen dioxide, which form nitric acid, caused significant inflammatory responses in lung parenchyma (in excess of effects seen in rats exposed to ozone alone), but did not damage nasal epithelium. Mixtures containing acidic sulfate particles, ozone, and nitrogen dioxide damaged both lung parenchyma and nasal epithelia. In rats exposed at rest, the response of the lung appeared to be dominated by the oxidant gas-phase components, while responses in the nose were dominated by the acidic particles. In rats exposed at exercise, however, mixtures of ozone and sulfuric acid particles significantly (2.5-fold) elevated the degree of lung lesion formation over that seen in rats exposed to ozone alone under an identical exercise protocol

  9. The global impact of the transport sectors on atmospheric aerosol in 2030 – Part 1: Land transport and shipping

    Directory of Open Access Journals (Sweden)

    M. Righi

    2015-01-01

    Full Text Available Using the EMAC (ECHAM/MESSy Atmospheric Chemistry global climate-chemistry model coupled to the aerosol module MADE (Modal Aerosol Dynamics model for Europe, adapted for global applications, we simulate the impact of land transport and shipping emissions on global atmospheric aerosol and climate in 2030. Future emissions of short-lived gas and aerosol species follow the four Representative Concentration Pathways (RCPs designed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We compare the resulting 2030 land-transport- and shipping-induced aerosol concentrations to the ones obtained for the year 2000 in a previous study with the same model configuration. The simulations suggest that black carbon and aerosol nitrate are the most relevant pollutants from land transport in 2000 and 2030 and their impacts are characterized by very strong regional variations during this time period. Europe and North America experience a decrease in the land-transport-induced particle pollution, although in these regions this sector remains a major source of surface-level pollution in 2030 under all RCPs. In Southeast Asia, however, a significant increase is simulated, but in this region the surface-level pollution is still controlled by other sources than land transport. Shipping-induced air pollution is mostly due to aerosol sulfate and nitrate, which show opposite trends towards 2030. Sulfate is strongly reduced as a consequence of sulfur reduction policies in ship fuels in force since 2010, while nitrate tends to increase due to the excess of ammonia following the reduction in ammonium sulfate. The aerosol-induced climate impact of both sectors is dominated by aerosol-cloud effects and is projected to decrease between 2000 and 2030, nevertheless still contributing a significant radiative forcing to Earth's radiation budget.

  10. Evidence of transport, sedimentation and coagulation mechanisms in the relaxation of post-volcanic stratospheric aerosols

    Directory of Open Access Journals (Sweden)

    D. Fussen

    2001-09-01

    Full Text Available Spatio-temporal distributions of stratospheric aerosols, measured by the ORA instrument from August 1992 until May 1993, are presented in the latitude range (40° S–40° N. Particle total number density, mode radius and distribution width are derived and interpreted. The respective roles of advection, sedimentation and coagulation are discussed. We also identify clear transport/sedimentation patterns and we show the enhancement of coagulation in stagnation regions. Efficient transport of aerosol particles up to 50 km is suggested.Key words. Atmospheric composition and structure (aerosols and particles; middle atmosphere-composition and chemistry; volcanic effects

  11. Algorithm of Data Reduce in Determination of Aerosol Particle Size Distribution at Damps/C

    International Nuclear Information System (INIS)

    Muhammad-Priyatna; Otto-Pribadi-Ruslanto

    2001-01-01

    The analysis had to do for algorithm of data reduction on Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system, this is for determine aerosol particle size distribution with range 0,01 μm to 1 μm in diameter. Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system contents are software and hardware. The hardware used determine of mobilities of aerosol particle and so the software used determine aerosol particle size distribution in diameter. The mobilities and diameter particle had connection in the electricity field. That is basic program for reduction of data and particle size conversion from particle mobility become particle diameter. The analysis to get transfer function value, Ω, is 0.5. The data reduction program to do conversation mobility basis become diameter basis with number efficiency correction, transfer function value, and poly charge particle. (author)

  12. Physics of aerosols - Second part: nucleation-condensation-ions-electrification-optical properties

    International Nuclear Information System (INIS)

    Bricard, Jean

    1977-01-01

    This report is made of two volumes. Volume 1 includes the general properties of aerosols, the fundamentals of the theory of gases and mechanics are related to particle suspensions, ant the theories of diffusion and coagulation with their applications to atmospheric aerosols. Volume 2 begins with a chapter on nucleation (gas-particle conversion) in the case of one vapor, then two vapors, followed by the theory of aerosol evaporation. The following two chapters are devoted to the study of ions and their attachment to aerosol particles. Finally their optical properties are stated in the last chapter

  13. Characteristics and Composition of Atmospheric Aerosols in Phimai, Central Thailand During BASE-ASIA

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; hide

    2012-01-01

    Popular summary: Atmospheric aerosols play an important role in the Earth's climate system, and can also have adverse effects on air quality and human health. The environmental impacts of aerosols, on the other hand, are highly regional, since their temporal/spatial distribution is inhomogeneous and highly depends on the regional emission sources. To better understand the effects of aerosols, intensive field experiments are necessary to characterize the chemical and physical properties on a region-by-region basis. From late February to early May in 2006, NASA/GSFC's SMARTLabs facility was deployed at a rural site in central Thailand, Southeast Asia, to conduct a field experiment dubbed BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment). The group was joined by scientists from the University of Hawaii and other regional institutes. Comprehensive measurements were made during the experiment, including aerosol chemical composition, optical and microphysical properties, as well as surface energetics and local . meteorology. This study analyzes part of the data from the BASE-ASIA experiment. It was found that, even for the relatively remote rural site, the aerosol loading was still substantial. Besides agricultural burning in the area, industrial pollution near the Bangkok metropolitan area, about 200 km southeast of the site, and even long-range transport from China, also contribute to the area's aerosol loading. The results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow. Abstract: Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.l83 N, 102.565 E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 +/- 64 Mm(exp -1); absorption: 15

  14. Structural aspects of the atmospheric aerosol of the Amazon basin

    International Nuclear Information System (INIS)

    Artaxo Netto, P.E.; Orsini, C.M.Q.

    1982-01-01

    The results presented on this paper may be considered as complementary to the ones published on two previous papers about the natural atmospheric aerosol of the Amazon Basin, and the effects, on these physical-chemical systems of the large scale brushfires carried out from time to time on that region. The experiments have been performed in August-September, 1980, simultaneously to the ones of the 'Projeto Queimadas - 1980' promoted by the National Center for Atmospheric Research from the U.S.A.. The new results here in presented are size distribution concentration data as log-probability curves for the detected tracer-elements; from these curves, by introducing a new technique, is was possible to derive the corresponding log-normal curves. These last curves can be used conveniently to characterize the atmospheric aerosol system which is under investigation. (Author) [pt

  15. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  16. Crystal nucleation initiated by transient ion-surface interactions at aerosol interfaces.

    Science.gov (United States)

    Davis, Ryan D; Tolbert, Margaret A

    2017-07-01

    Particle collisions are a common occurrence in the atmosphere, but no empirical observations exist to fully predict the potential effects of these collisions on air quality and climate projections. The current consensus of heterogeneous crystal nucleation pathways relevant to the atmosphere dictates that collisions with amorphous particles have no effect on the crystallization relative humidity (RH) of aqueous inorganic aerosols because there is no stabilizing ion-surface interaction to facilitate the formation of crystal nuclei. In contrast to this view of heterogeneous nucleation, we report laboratory observations demonstrating that collisions with hydrophobic amorphous organic aerosols induced crystallization of aqueous inorganic microdroplets at high RH, the effect of which was correlated with destabilizing water-mediated ion-specific surface interactions. These same organic aerosols did not induce crystallization once internally mixed in the droplet, pointing toward a previously unconsidered transient ion-specific crystal nucleation pathway that can promote aerosol crystallization via particle collisions.

  17. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    Science.gov (United States)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2008-05-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  18. A study of the attachment of thoron decay products to aerosols using an aerosol centrifuge

    International Nuclear Information System (INIS)

    Balakrishnan, V.

    1979-01-01

    The physical attachment of radioactive decay products (particulate, not gas) to polydisperse fluorescein aerosal particles in two size ranges 0.1 μM-0.33 μM radius and 0.25 μM-1.35 μM radius has been studied under dynamic conditions with a view to find the fraction of thoron decay products attached to the aerosals and the particle size distribution of the host aerosols in the atmosphere of uranium mines. The experimental set-up and procedure are described. An aerosol cloud of fluorescein was introduced into a reaction chamber containing a steady source of thoron and decay products were allowed to interact and attach to the aerosols in the chamber. To simulate conditions normally encountered in uranium mining and milling operations, the concentration of aerosol particles was kept high as compared to the number of decay products. The Lovelace Aerosol Particle Separator, which is an advanced, continuous centrifugal aerosol separator, was used to sample and separate the tagged aerosols into various size groups. The radioactivity associated with each group was determined. The results show the same dependence of attachment of decay products on the size of aerosol particles as predicted by the diffusion theory proposed by Lassen and Rau (1960), even though the experimental conditions of the present study do not conform to those required to satisfy the above mentioned diffusion theory. The method employed in this work to study attachment is reproducible and simple and can be adopted in uranium and thorium mines and associated processing industries. (M.G.B.)

  19. Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols

    Directory of Open Access Journals (Sweden)

    N. Hodas

    2016-10-01

    Full Text Available Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic–inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. However, uncertainty remains regarding the factors that contribute to observations of low hygroscopic growth below water saturation but enhanced cloud condensation nuclei (CCN activity for a given aerosol population. Utilizing laboratory surrogates for oligomers in atmospheric aerosols, we explore the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors. Measurements of hygroscopic growth under subsaturated conditions and the CCN activity of aerosols comprised of polyethylene glycol (PEG with average molecular masses ranging from 200 to 10 000 g mol−1 and mixtures of PEG with ammonium sulfate (AS were conducted. Experimental results are compared to calculations of hygroscopic growth at thermodynamic equilibrium conducted with the Aerosol Inorganic Organic Mixtures Functional groups Activity Coefficients (AIOMFAC model, and the potential influence of kinetic limitations on observed water uptake was further explored through estimations of water diffusivity in the PEG oligomers. Particle-phase behavior, including the prevalence of liquid–liquid phase separation (LLPS, was also modeled with AIOMFAC. Under subsaturated relative humidity (RH conditions, we observed little variability in hygroscopic growth across PEG systems with different molecular masses; however, an increase in CCN activity with increasing PEG molecular mass was observed. This effect is most pronounced for PEG–AS mixtures, and, in fact, an enhancement in CCN activity was observed for the PEG10000–AS mixture as compared to pure AS, as evidenced by a 15 % reduction in critical activation diameter at a

  20. Visibility degradation and light scattering/absorption due to aerosol particles in urban/suburban atmosphere of Irbid, Jordan

    International Nuclear Information System (INIS)

    Hamasha, K. M.; University of Tabuk, Tabuk

    2010-01-01

    Visible light scattering and absorption patterns were measured using a photoacoustic instrument at different locations in Irbid city. Measurments were perfoemed during the intervals 1-9 August 2007 and 7-13 October 2007 at the city center site (Palestine street) and the southern site (University Circle), respectively. The city center site is impacted by local urban and regional aerosols. The southern site is dominated by regional aerosols. Data from both sampling sites showed variety of diurnal light absorption and scattering patterns. During most of the measurement days, the highest light absorption peaks appeared in the morning, 7:00 - 9:30 AM, whereas the highest light scattering peaks appeared later, 9:30 - 11:00 AM. The earlier light absorption peaks are likely attributed to the elevated black carbon vehicular emission during the heavy traffic hours (rush hours) whereas, the later light scattering peaks are attributed to secondary aerosols generted in the atmosphere through photochmical reactions. The southern site (University Circle) exhibited a higher light scattering and a lower light absorption contribution to the light extinction, leading to a better visibility compared to the City Center site. The visibility is averaged at 44 km and 115 km at the city center site and southern site, respectively. (author).