WorldWideScience

Sample records for atlas pixel detector

  1. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  2. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  3. Operational experience of the ATLAS Pixel detector

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  4. Operational experience of the ATLAS Pixel Detector

    CERN Document Server

    Marcisovsky, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  5. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2017-01-01

    Run 2 of the LHC collider sets new challenges to track and vertex reconstruction because of its higher energy, pileup and luminosity. The ATLAS tracking performance relies critically on the Pixel Detector. Therefore, in view of Run 2, the ATLAS collaboration has constructed the first 4-layer pixel detector in Particle Physics by installing a new pixel layer, called Insertable B-Layer (IBL). Operational experience and performance of the 4-layer Pixel Detector during Run 2 are presented.

  6. Operational experience with the ATLAS Pixel Detector

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost element of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  7. Commissioning of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Golling, Tobias

    2008-01-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented

  8. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  9. SLHC upgrade plans for the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Sicho, Petr

    2009-01-01

    The ATLAS pixel detector is an 80 million channels silicon tracking system designed to detect charged tracks and secondary vertices with very high precision. An upgrade of the ATLAS pixel detector is presently being considered, enabling to cope with higher luminosity at Super Large Hadron Collider (SLHC). The increased luminosity leads to extremely high radiation doses in the innermost region of the ATLAS tracker. Options considered for a new detector are discussed, as well as some important R and D activities, such as investigations towards novel detector geometries and novel processes.

  10. Upgrade of ATLAS ITk Pixel Detector

    CERN Document Server

    Huegging, Fabian; The ATLAS collaboration

    2017-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenges to the ATLAS tracker. The current inner detector will be replaced with an entirely-silicon inner tracker (ITk) which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation levels are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors and low mass global and local support structures. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the ITk ATLAS Pixel detector developments as well as different layout options will be reviewed.

  11. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Djama, Fares; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction imposed by the higher collision energy, pileup and luminosity that are being delivered. The ATLAS tracking performance relies critically on the Pixel Detector, therefore, in view of Run-2 of LHC, the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and an additional optical link per module was added to overcome in some layers the readout bandwidth limitation when LHC will exceed the nominal peak luminosity by almost a factor of 3. The key features and challenges met during the IBL project will be presented, as well as its operational experience and Pixel Detector performance in LHC.

  12. Operational Experience with the ATLAS Pixel Detector at LHC

    CERN Document Server

    Keil, M

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus crucial for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via front-end chips bump-bonded to 1744 n-on-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, detector performance and measurements of radiation damage. The detector performance is excellent: more than 95% of the pixels are operational, noise occupancy and hit efficiency exceed the des...

  13. Monitoring radiation damage in the ATLAS pixel detector

    CERN Document Server

    Schorlemmer, André Lukas; Quadt, Arnulf; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  14. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit efficiency e...

  15. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  16. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Hirschbuehl, D; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.7% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  17. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  18. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lapoire, C; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as B-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures and detector performance. The detector performance is excellent: 96.2% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification.

  19. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Keil, M

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper results from the successful operation of the Pixel Detector at the LHC will be presented, including calibration procedures, timing optimization and detector performance. The detector performance is excellent: approximately 97% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  20. Operational experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Ince, T; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.8% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  1. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this paper, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5\\% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, ...

  2. Operational Experience with the ATLAS Pixel Detector at the LHC

    CERN Document Server

    Lange, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump- bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, a...

  3. Operational experience with the ATLAS Pixel detector at the LHC

    CERN Document Server

    Deluca, C; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 97,5% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  4. ATLAS rewards two pixel detector suppliers

    CERN Multimedia

    2007-01-01

    Peter Jenni, ATLAS spokesperson, presented the ATLAS supplier award to Herbert Reichl, IZM director, and to Simonetta Di Gioia, from the SELEX company.Two of ATLAS’ suppliers were awarded prizes at a ceremony on Wednesday 13 June attended by representatives of the experiment’s management and of CERN. The prizes went to the Fraunhofer Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin and the company SELEX Sistemi Integrati in Rome for the manufacture of modules for the ATLAS pixel detector. SELEX supplied 1500 of the modules for the tracker, while IZM produced a further 1300. The modules, each made up of 46080 channels, form the active part of the ATLAS pixel detector. IZM and SELEX received the awards for the excellent quality of their work: the average number of faulty channels per module was less than 2.10-3. They also stayed within budget and on schedule. The difficulty they faced was designing modules based on electronic components and sensor...

  5. ATLAS Pixel Detector Upgrade

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2009-01-01

    The first upgrade for higher luminosity at LHC for the ATLAS pixel detector is the insertion of a forth layer, the IBL. The talk gives an overview about what the IBL is and how it will be set up, as well as to give a status of the research and develoment work.

  6. Construction and Tests of Modules for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2068490

    2003-01-01

    The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the pixel detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The pre-production phase of such pixel modules has nearly finished, yielding fully functional modules. Results are presented of tests with these modules.

  7. Results from the commissioning of the ATLAS Pixel Detector

    CERN Document Server

    Masetti, L

    2008-01-01

    The Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It is an 80 million channel silicon tracking system designed to detect charged tracks and secondary vertices with very high precision. After connection of cooling and services and verification of their operation, the ATLAS Pixel Detector is now in the final stage of its commissioning phase. Calibration of optical connections, verification of the analog performance and special DAQ runs for noise studies have been performed and the first tracks in combined operation with the other subdetectors of the ATLAS Inner Detector were observed. The results from calibration tests on the whole detector and from cosmic muon data are presented.

  8. Vertex measurement at a hadron collider. The ATLAS pixel detector

    International Nuclear Information System (INIS)

    Grosse-Knetter, J.

    2008-03-01

    The ATLAS Pixel Detector is the innermost layer of the ATLAS tracking system and will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the Pixel Detector near the interaction point requires excellent radiation hardness, fast read-out, mechanical and thermal robustness, good long-term stability, all combined with a low material budget. The new design concepts used to meet the challenging requirements are discussed with their realisation in the Pixel Detector, followed by a description of a refined and extensive set of measurements to assess the detector performance during and after its construction. (orig.)

  9. Developments of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Andreazza, Attilio

    2004-01-01

    The ATLAS silicon pixel detector is the innermost tracking device of the ATLAS experiment at the Large Hardon Collider, consisting of more than 1700 modules for a total sensitive area of about 1.7m2 and over 80 million pixel cells. The concept is a hybrid of front-end chips bump bonded to the pixel sensor. The elementary pixel cell has 50μmx400μm size, providing pulse height information via the time over threshold technique. Prototype devices with oxygenated silicon sensor and rad-hard electronics built in the IBM 0.25μm process have been tested and maintain good resolution, efficiency and timing performances even after receiving the design radiation damage of 1015neq/cm2

  10. Operational Experience with the ATLAS Pixel Detector

    CERN Document Server

    Lantzsch, Kerstin; The ATLAS collaboration

    2016-01-01

    Run 2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). In addition the Pixel detector was refurbished with new service quarter panels to recover about 3% of defective modules lost during run 1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning, operation and performance of the 4-layer Pixel Detector will be presented.

  11. Results from the Commissioning of the ATLAS Pixel Detector

    CERN Document Server

    Strandberg, S

    2009-01-01

    The ATLAS pixel detector is a high resolution, silicon based, tracking detector with its innermost layer located only 5 cm away from the ATLAS interaction point. It is designed to provide good hit resolution and low noise, both important qualities for pattern recognition and for finding secondary vertices originating from decays of long-lived particles. The pixel detector has 80 million readout channels and is built up of three barrel layers and six disks, three on each side of the barrel. The detector was installed in the center of ATLAS in June 2007 and is currently being calibrated and commissioned. Details from the installation, commissioning and calibration are presented together with the current status.

  12. Optical data links for the ATLAS SCT and Pixel Detector

    International Nuclear Information System (INIS)

    Gregor, I.M.; Weidberg, A.R.; Lee, S.C.; Chu, M.L.; Teng, P.K.

    2001-01-01

    ATLAS (The ATLAS Technical Proposal, CERN/LHCC 94-33) is one of the large electronic particle detectors at LHC (The LHC Conceptual Design, Report- The Yellow Book, CERN/AC/95-05(LHC)) which will become operational in 2005. It is planned to use radiation tolerant optical links for the data transfer from the SemiConductor Tracker (SCT) (ATLAS Inner Detector Technical Proposal, CERN/LHCC 97-16 and CERN/LHCC 97-17). and Pixel Detector (ATLAS Pixel Detector Technical Proposal, CERN/LHCC 98-13) systems to the acquisition electronics over a distance up to 140m. The overall architecture and the performance of these optical data links are described. One of the three candidate designs for an on-detector Opto-Package is presented

  13. The ATLAS Pixel Detector operation and performance

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately $80 imes 10^6$~electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region. The complete Pixel Detector has been taking part in cosmic-ray data-taking since 2008. Since November 2009 it has been operated with LHC colliding beams at $sqrt{s}=900$~GeV, 2.36~TeV and 7 TeV. The detector operated with an active fraction of 97.2% at a threshold of 3500~$e$, showing a noise occupancy rate better than $10^{-9}$~hit/pixel/BC and a track association efficiency of 99%. The Lorentz angle for electrons in silicon is measured to be $ heta_mathrm{L}=12.11^circ pm 0.09^circ$ and its temperature dependence has been verified. The pulse height information from the time-over-threshold technique allows to improve the point resolution using charge sharing and to perform parti...

  14. Initial Measurements on Pixel Detector Modules for the ATLAS Upgrades

    CERN Document Server

    Gallrapp, C; The ATLAS collaboration

    2011-01-01

    Delicate conditions in terms of peak and integrated luminosity in the Large Hadron Collider (LHC) will raise the ATLAS Pixel Detector to its performance limits. Silicon planar, silicon 3D and diamond pixel sensors are three possible sensor technologies which could be implemented in the upcoming Pixel Detector upgrades of the ATLAS experiment. Measurements of the IV-behavior and measurements with radioactive Americium-241 and Strontium-90 are used to characterize the sensor properties and to understand the interaction between the ATLAS FE-I4 front-end chip and the sensor. Comparisons of results from before and after irradiation for silicon planar and 3D pixel sensors, which give a first impression on the charge collection properties of the different sensor technologies, are presented.

  15. Status and future of the ATLAS Pixel Detector at the LHC

    International Nuclear Information System (INIS)

    Rozanov, Alexandre

    2013-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. The detector provides hermetic coverage with three cylindrical layers and three layers of disks in each forward end-cap. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-on-n silicon substrates. Intensive calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. The record breaking instantaneous luminosities of 7.7×10 33 cm −2 s −1 recently surpassed at the LHC generated a rapidly increasing particle fluence in the ATLAS Pixel Detector. As the radiation dose accumulated, the first effects of radiation damage became observable in the silicon sensors as an increase in the silicon leakage current and the change of the voltage required to fully deplete the sensor. A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014) together with the replacement of pixel services. A letter of intent was submitted for a completely new Pixel Detector after 2023, capable to take data with extremely high leveled luminosities of 5×10 34 cm −2 s −1 at the high luminosity LHC. -- Highlights: •The ATLAS Pixel Detector provides hermetic coverage with three layers with 80 million pixels. •Calibration, tuning, timing optimization and monitoring resulted in the successful five years of operation with good detector performance. •First effects of radiation damage became observable in the silicon sensors. •A fourth pixel layer at a radius of 3.3 cm will be added during the long shutdown (2013–2014). •Replacement of pixel services in 2013–2014. •A letter of intent was submitted for new Pixel Detector after 2023 for high luminosity LHC

  16. Operational Experience and Performance with the ATLAS Pixel detector

    CERN Document Server

    Martin, Christopher Blake; The ATLAS collaboration

    2018-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of $1.3\\times10^{34}\\text{cm}^{{-2}}\\text{s}^{{-1}}$ recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarized, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described, with special emphasis to radiation damage experience.

  17. Operational Experience and Performance with the ATLAS Pixel detector

    CERN Document Server

    Martin, Christopher Blake; The ATLAS collaboration

    2018-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of 1.3 x 10^34 cm-2 s-1 recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described, with special emphasis to radiation damage experience.

  18. Online calibrations and performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M; The ATLAS collaboration

    2010-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 M electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. The talk will give an overview of the calibration and performance of both the detector and its optical readout. The most basic parameter to be tuned and calibrated for the detector electronics is the readout threshold of the individual pixel channels. These need to be carefully tuned to optimise position resolution a...

  19. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    International Nuclear Information System (INIS)

    Mathes, Markus

    2008-12-01

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10 16 particles per cm 2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 μm 2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm 2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm 2 ). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  20. Results from the Commissioning of the ATLAS Pixel Detector

    CERN Document Server

    Ibragimov, I

    2008-01-01

    The ATLAS pixel detector is the innermost tracking detector of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. It has a total active area of 1.7 m2 of silicon read out by approximately 80 million electronic channels, which will detect particle tracks and decay vertices with a very high precision. After more than 10 years of development and construction it is the first time ever the whole detector has been operated together. The paper will illustrate the detector performance and give first results from the combined ATLAS cosmics runs.

  1. Initial Measurements On Pixel Detector Modules For The ATLAS Upgrades

    CERN Document Server

    Gallrapp, C; The ATLAS collaboration

    2011-01-01

    Sophisticated conditions in terms of peak and integrated luminosity in the Large Hadron Collider (LHC) will raise the ATLAS Pixel detector to its performance limits. Silicon planar, silicon 3D and diamond pixel sensors are three possible sensor technologies which could be implemented in the upcoming pixel detector upgrades of the ATLAS experiment. Measurements of the IV-behavior and measurements with radioactive Americium-241 and Strontium-90 are used to characterize the sensor properties and to understand the interaction between the ATLAS FE-I4 front-end chip and the sensor. Comparisons of results from before and after irradiation, which give a first impression on the charge collection properties of the different sensor technologies are presented.

  2. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  3. Operational experience of ATLAS SCT and Pixel Detector

    CERN Document Server

    Kocian, Martin; The ATLAS collaboration

    2017-01-01

    The ATLAS Inner Detector based on silicon sensors is consisting of a strip detector (SCT) and a pixel detector. It is the crucial component for vertexing and tracking in the ATLAS experiment. With the excellent performance of the LHC well beyond the original specification the silicon tracking detectors are facing substantial challenges in terms of data acquisition, radiation damage to the sensors, and SEUs in the readout ASICs. The approaches on how the detector systems cope with the demands of high luminosity operation while maintaining excellent performance through hardware upgrades, software and firmware algorithms, and operational settings, are presented.

  4. Radiation damage monitoring in the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Seidel, Sally

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to an integrated luminosity 5.6 fb −1 is presented along with a comparison to a model. -- Highlights: ► Radiation damage monitoring via silicon leakage current is implemented in the ATLAS (LHC) pixel detector. ► Leakage currents measured are consistent with the Hamburg/Dortmund model. ► This information can be used to validate the ATLAS simulation model.

  5. Development and Characterization of Diamond and 3D-Silicon Pixel Detectors with ATLAS-Pixel Readout Electronics

    CERN Document Server

    Mathes, Markus

    2008-01-01

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10^16 particles per cm^2 per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 × 50 um^2 have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm^2 and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 × 6 cm^2). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection ...

  6. Development and characterization of diamond and 3D-silicon pixel detectors with ATLAS-pixel readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mathes, Markus

    2008-12-15

    Hybrid pixel detectors are used for particle tracking in the innermost layers of current high energy experiments like ATLAS. After the proposed luminosity upgrade of the LHC, they will have to survive very high radiation fluences of up to 10{sup 16} particles per cm{sup 2} per life time. New sensor concepts and materials are required, which promise to be more radiation tolerant than the currently used planar silicon sensors. Most prominent candidates are so-called 3D-silicon and single crystal or poly-crystalline diamond sensors. Using the ATLAS pixel electronics different detector prototypes with a pixel geometry of 400 x 50 {mu}m{sup 2} have been built. In particular three devices have been studied in detail: a 3D-silicon and a single crystal diamond detector with an active area of about 1 cm{sup 2} and a poly-crystalline diamond detector of the same size as a current ATLAS pixel detector module (2 x 6 cm{sup 2}). To characterize the devices regarding their particle detection efficiency and spatial resolution, the charge collection inside a pixel cell as well as the charge sharing between adjacent pixels was studied using a high energy particle beam. (orig.)

  7. Iterative local Chi2 alignment algorithm for the ATLAS Pixel detector

    CERN Document Server

    Göttfert, Tobias

    The existing local chi2 alignment approach for the ATLAS SCT detector was extended to the alignment of the ATLAS Pixel detector. This approach is linear, aligns modules separately, and uses distance of closest approach residuals and iterations. The derivation and underlying concepts of the approach are presented. To show the feasibility of the approach for Pixel modules, a simplified, stand-alone track simulation, together with the alignment algorithm, was developed with the ROOT analysis software package. The Pixel alignment software was integrated into Athena, the ATLAS software framework. First results and the achievable accuracy for this approach with a simulated dataset are presented.

  8. A MCM-D-type module for the ATLAS pixel detector

    CERN Document Server

    Becks, K H; Ehrmann, O; Gerlach, P; Gregor, I M; Pieters, P; Topper, M; Truzzi, C; Wolf, J

    1999-01-01

    For the ATLAS experiment at the planned Large Hadron Collider LHC at CERN hybrid pixel detectors are being built as innermost layers of the inner tracking detector system. Modules are the basic building blocks of the ATLAS pixel $9 detector. A module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 read out IC's, each serving 24*160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and $9 power distribution busses. The dies are attached by flip-chip assembly to the sensor diodes and the local busses. In the following a module based on MCM-D technology will be discussed and prototype results will be presented.

  9. Online Calibration and Performance of the ATLAS Pixel Detector

    CERN Document Server

    Keil, M

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN. It consists of 1744 silicon sensors equipped with approximately 80 million electronic channels, providing typically three measurement points with high resolution for particles emerging from the beam-interaction region, thus allowing measuring particle tracks and secondary vertices with very high precision. The readout system of the Pixel Detector is based on a bi-directional optical data transmission system between the detector and the data acquisition system with an individual link for each of the 1744 modules. Signal conversion components are located on both ends, approximately 80 m apart. This paper describes the tuning and calibration of the optical links and the detector modules, including measurements of threshold, noise, charge measurement, timing performance and the sensor leakage current.

  10. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  11. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  12. Fabrication of ATLAS pixel detector prototypes at IRST

    International Nuclear Information System (INIS)

    Boscardin, M.; Betta, G.-F. Dalla; Gregori, P.; Zen, M.; Zorzi, N.

    2001-01-01

    We report on the development of a fabrication technology for n-on-n silicon pixel detectors oriented to the ATLAS experiment at LHC. The main processing issues and some selected results from the electrical characterization of detector prototypes and related test structures are presented and discussed

  13. ATLAS Pixel Detector Design For HL-LHC

    CERN Document Server

    Smart, Ben; The ATLAS collaboration

    2016-01-01

    The ATLAS Inner Detector will be replaced for the High-Luminosity LHC (HL-LHC) running in 2026. The new Inner Detector will be called the Inner Tracker (ITk). The ITk will cover an extended eta-range: at least to |eta|<3.2, and likely up to |eta|<4.0. The ITk will be an all-Silicon based detector, consisting of a Silicon strip detector outside of a radius of 362mm, and a Silicon pixel detector inside of this radius. Several novel designs are being considered for the ITk pixel detector, to cope with high-eta charged particle tracks. These designs are grouped into 'extended' and 'inclined' design-types. Extended designs have long pixel staves with sensors parallel to the beamline. High-eta particles will therefore hit these sensors at shallow angles, leaving elongated charge clusters. The length of such a charge cluster can be used to estimate the angle of the passing particle. This information can then be used in track reconstruction to improve tracking efficiency and reduce fake rates. Inclined designs ...

  14. MCC: the Module Controller Chip for the ATLAS Pixel Detector

    International Nuclear Information System (INIS)

    Beccherle, R.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Musico, P.; Osculati, B.; Oppizzi, P.; Pratolongo, F.; Ruscino, E.; Schiavi, C.; Vernocchi, F.; Blanquart, L.; Einsweiler, K.; Meddeler, G.; Richardson, J.; Comes, G.; Fischer, P.; Calvet, D.; Boyd, R.; Sicho, P.

    2002-01-01

    In this article we describe the architecture of the Module Controller Chip for the ATLAS Pixel Detector. The project started in 1997 with the definition of the system specifications. A first fully-working rad-soft prototype was designed in 1998, while a radiation hard version was submitted in 2000. The 1998 version was used to build pixel detector modules. Results from those modules and from the simulated performance in ATLAS are reported. In the article we also describe the hardware/software tools developed to test the MCC performance at the LHC event rate

  15. Modeling radiation damage to pixel sensors in the ATLAS detector

    Science.gov (United States)

    Ducourthial, A.

    2018-03-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

  16. Status of the ATLAS Pixel Detector and its performance after three years of operation

    CERN Document Server

    Favareto, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is very important for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, and a good alignment allows high quality track resolution

  17. Status of the ATLAS Pixel Detector and its performance after three years of operation

    CERN Document Server

    Favareto, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is very important for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. The detector performance is excellent: ~96% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, and a good alignment allows high quality track resolution.

  18. Radiation Damage Modeling for 3D Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  19. Survey of the ATLAS Pixel Detector Components

    International Nuclear Information System (INIS)

    Andreazza, A.; Kostyukhim, V.; Madaras, R.

    2008-01-01

    This document provides a description of the survey performed on different components of the ATLAS Pixel Detector at different stages of its assembly. During the production of the ATLAS pixel detector great care was put in the geometrical survey of the location of the sensitive area of modules. This had a double purpose: (1) to provide a check of the quality of the assembly procedure and assure tolerances in the geometrical assembly were met; and (2) to provide an initial point for the alignment (the so called 'as-built detector'), better than the ideal geometry. Since direct access to the sensitive area becomes more and more difficult with the progress of the assembly, the survey needed to be performed at different stages: after module loading on the local supports (sectors and staves) and after assembly of the local supports in disks or halfshells. Different techniques were used, including both optical 2D and 3D surveys and mechanical survey. This document summarizes the survey procedures, the analysis done on the collected data and how survey data are stored in case they will need to be accessed in the future

  20. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Boscardin, Maurizio; Darbo, Giovanni; Gemme, Claudia; La Rosa, Alessandro; Pernegger, Heinz; Piemonte, Claudio; Povoli, Marco; Ronchin, Sabina; Zoboli, Andrea; Zorzi, Nicola

    2011-01-01

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  1. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Boscardin, Maurizio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Darbo, Giovanni; Gemme, Claudia [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); La Rosa, Alessandro; Pernegger, Heinz [CERN-PH, CH-1211 Geneve 23 (Switzerland); Piemonte, Claudio [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Povoli, Marco [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Ronchin, Sabina [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy); Zoboli, Andrea [INFN, Sezione di Padova (Gruppo Collegato di Trento), and DISI, Universita di Trento, Via Sommarive 14, 38123 Povo di Trento (Italy); Zorzi, Nicola [Fondazione Bruno Kessler (FBK-irst), Via Sommarive 18, 38123 Povo di Trento (Italy)

    2011-04-21

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are discussed here.

  2. Development of 3D-DDTC pixel detectors for the ATLAS upgrade

    CERN Document Server

    Betta, G -F Dalla; Darbo, G; Gemme, C; La Rosa, A; Pernegger, H; Piemonte, C; Povoli, M; Ronchin, S; Zoboli, A; Zorzi, N

    2011-01-01

    We report on the development of n-on-p, 3D Double-Side Double Type Column (3D-DDTC) pixel detectors fabricated at FBK-irst (Trento, Italy) and oriented to the ATLAS upgrade. The considered fabrication technology is simpler than that required for full 3D detectors with active edge, but the detector efficiency and radiation hardness critically depend on the columnar electrode overlap and should be carefully evaluated. The first assemblies of these sensors (featuring 2, 3, or 4 columns per pixel) with the ATLAS FEI3 read-out chip have been tested in laboratory. Selected results from the electrical and functional characterization with radioactive sources are here discussed.

  3. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High- Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for basic...

  4. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372086; The ATLAS collaboration

    2016-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  5. The hardware of the ATLAS Pixel Detector Control System

    International Nuclear Information System (INIS)

    Henss, T; Andreani, A; Boek, J; Boyd, G; Citterio, M; Einsweiler, K; Kersten, S; Kind, P; Lantzsch, K; Latorre, S; Maettig, P; Meroni, C; Sabatini, F; Schultes, J

    2007-01-01

    The innermost part of the ATLAS (A Toroidal LHC ApparatuS) experiment, which is currently under construction at the LHC (Large Hadron Collider), will be a silicon pixel detector comprised of 1744 individual detector modules. To operate these modules, the readout electronics, and other detector components, a complex power supply and control system is necessary. The specific powering and control requirements, as well as the custom made components of our power supply and control systems, are described. These include remotely programmable regulator stations, the power supply system for the optical transceivers, several monitoring units, and the Interlock System. In total, this comprises the Pixel Detector Control System (DCS)

  6. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Giugliarelli, Gilberto; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  7. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10$^{15}$ n$_\\mathrm{eq}$/cm$^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This work presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS detector.

  8. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, M., E-mail: malte.backhaus@cern.ch

    2016-09-21

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO{sub 2} based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  9. Neural network based cluster creation in the ATLAS silicon pixel detector

    CERN Document Server

    Selbach, K E; The ATLAS collaboration

    2012-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS pixel detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  10. Neural network based cluster creation in the ATLAS silicon Pixel Detector

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2013-01-01

    The read-out from individual pixels on planar semi-conductor sensors are grouped into clusters to reconstruct the location where a charged particle passed through the sensor. The resolution given by individual pixel sizes is significantly improved by using the information from the charge sharing between pixels. Such analog cluster creation techniques have been used by the ATLAS experiment for many years to obtain an excellent performance. However, in dense environments, such as those inside high-energy jets, clusters have an increased probability of merging the charge deposited by multiple particles. Recently, a neural network based algorithm which estimates both the cluster position and whether a cluster should be split has been developed for the ATLAS Pixel Detector. The algorithm significantly reduces ambiguities in the assignment of pixel detector measurement to tracks within jets and improves the position accuracy with respect to standard interpolation techniques by taking into account the 2-dimensional ...

  11. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm^2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for b...

  12. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2

    CERN Document Server

    Ferrere, Didier; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  13. Status of the ATLAS Pixel Detector at the LHC and its performance after three years of operation

    CERN Document Server

    Andreazza, A; The ATLAS collaboration

    2012-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC and its status after three years of operation will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: ~96 % of the pixels are operational, noise occupancy and hit ...

  14. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Giugliarelli, Gilberto; The ATLAS collaboration

    2018-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment. They constitute the part of ATLAS closest to the interaction point and for this reason they will be exposed – over their lifetime – to a significant amount of radiation: prior to the HL-LHC, the innermost layers will receive a fluence of 10^15 neq/cm2 and their HL–LHC upgrades will have to cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  15. Development of a serial powering scheme and a versatile characterization system for the ATLAS pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, Viacheslav

    2017-08-15

    In order to increase the probability of new discoveries the LHC will be upgraded to the HL-LHC. The upgrade of the ATLAS detector is an essential part of this program. The entire ATLAS tracking system will be replaced by an all-silicon detector called Inner Tracker (ITk) which should be able to withstand the increased luminosity of 5 x 10{sup 34} cm{sup -2}s{sup -1}. The work presented in this thesis is focused on the ATLAS ITk pixel detector upgrade. Advanced silicon pixel detectors will be an essential part of the ITk pixel detector where they will be used for tracking and vertexing. Characterization of the pixel detectors is one of the required tasks for a successful ATLAS tracker upgrade. Therefore, the work presented in this thesis includes the development of a versatile and modular test system for advanced silicon pixel detectors for the HL-LHC. The performance of the system is verified. Single and quad FE-I4 modules functionalities are characterized with the developed system. The reduction of the material budget of the ATLAS ITk pixel detector is essential for a successful operation at high luminosity. Therefore, a low mass, efficient power distribution scheme to power detector modules (serial powering scheme) is investigated as well in the framework of this thesis. A serially powered pixel detector prototype is built with all the components that are needed for current distribution, data transmission, sensor biasing, bypassing and redundancy in order to prove the feasibility of implementing the serial powering scheme in the ITk. Detailed investigations of the electrical performance of the detector prototype equipped with FE-I4 quad modules are made with the help of the developed readout system.

  16. Development of a serial powering scheme and a versatile characterization system for the ATLAS pixel detector upgrade

    International Nuclear Information System (INIS)

    Filimonov, Viacheslav

    2017-08-01

    In order to increase the probability of new discoveries the LHC will be upgraded to the HL-LHC. The upgrade of the ATLAS detector is an essential part of this program. The entire ATLAS tracking system will be replaced by an all-silicon detector called Inner Tracker (ITk) which should be able to withstand the increased luminosity of 5 x 10 34 cm -2 s -1 . The work presented in this thesis is focused on the ATLAS ITk pixel detector upgrade. Advanced silicon pixel detectors will be an essential part of the ITk pixel detector where they will be used for tracking and vertexing. Characterization of the pixel detectors is one of the required tasks for a successful ATLAS tracker upgrade. Therefore, the work presented in this thesis includes the development of a versatile and modular test system for advanced silicon pixel detectors for the HL-LHC. The performance of the system is verified. Single and quad FE-I4 modules functionalities are characterized with the developed system. The reduction of the material budget of the ATLAS ITk pixel detector is essential for a successful operation at high luminosity. Therefore, a low mass, efficient power distribution scheme to power detector modules (serial powering scheme) is investigated as well in the framework of this thesis. A serially powered pixel detector prototype is built with all the components that are needed for current distribution, data transmission, sensor biasing, bypassing and redundancy in order to prove the feasibility of implementing the serial powering scheme in the ITk. Detailed investigations of the electrical performance of the detector prototype equipped with FE-I4 quad modules are made with the help of the developed readout system.

  17. Operational Experience of the ATLAS SemiConductor Tracker and Pixel Detector

    CERN Document Server

    Robinson, Dave; The ATLAS collaboration

    2016-01-01

    The tracking performance of the ATLAS detector relies critically on the silicon and gaseous tracking subsystems that form the ATLAS Inner Detector. Those subsystems have undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the LHC during Run2. The key status and performance metrics of the Pixel Detector and the Semi Conductor Tracker are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency are described.

  18. Studies for the detector control system of the ATLAS pixel at the HL-LHC

    International Nuclear Information System (INIS)

    Püllen, L; Becker, K; Boek, J; Kersten, S; Kind, P; Mättig, P; Zeitnitz, C

    2012-01-01

    In the context of the LHC upgrade to the HL-LHC the inner detector of the ATLAS experiment will be replaced completely. As part of this redesign there will also be a new pixel detector. This new pixel detector requires a control system which meets the strict space requirements for electronics in the ATLAS experiment. To accomplish this goal we propose a DCS (Detector Control System) network with the smallest form factor currently available. This network consists of a DCS chip located in close proximity to the interaction point and a DCS controller located in the outer regions of the ATLAS detector. These two types of chips form a star shaped network with several DCS chips being controlled by one DCS controller. Both chips are manufactured in deep sub-micron technology. We present prototypes with emphasis on studies concerning single event upsets.

  19. ATLAS SemiConductor Tracker and Pixel Detector: Status and Performance

    CERN Document Server

    Reeves, K; The ATLAS collaboration

    2012-01-01

    The Semi-Conductor Tracker (SCT) and the Pixel Detector are the key precision tracking devices in the Inner Detector of the ATLAS experiment at CERN LHC. The SCT is a silicon strip detector and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. The Pixel Detector consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In the talk the current status of the SCT and Pixel Detector will be reviewed. We will report on the operation of the detectors including an overview of the issues we encountered and the observation of significant increases in leakage currents (as expected) from bulk ...

  20. Operational Experience and Performance with the ATLAS Pixel detector

    CERN Document Server

    Yang, Hongtao; The ATLAS collaboration

    2018-01-01

    In this presentation, I will discuss the operation of ATLAS Pixel Detector during Run 2 proton-proton data-taking at √s=13 TeV in 2017. The topics to be covered include 1) the bandwidth issue and how it is mitigated through readout upgrade and threshold adjustment; 2) the auto-corrective actions; 3) monitoring of radiation effects.

  1. Monitoring the Radiation Damage of the ATLAS Pixel Detector

    CERN Document Server

    Cooke, M; The ATLAS collaboration

    2012-01-01

    The Pixel Detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5x10^{33} cm^{-2} s^{-1}, results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented.

  2. Monitoring the radiation damage of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Cooke, M.

    2013-01-01

    The pixel detector is the innermost charged particle tracking component employed by the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instantaneous luminosity delivered by the LHC, now routinely in excess of 5×10 33 cm −2 s −1 , results in a rapidly increasing accumulated radiation dose to the detector. Methods based on the sensor depletion properties and leakage current are used to monitor the evolution of the radiation damage, and results from the 2011 run are presented

  3. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viel, Simon, E-mail: sviel@lbl.gov [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Banerjee, Swagato [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States); Pranko, Aliaksandr [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Rieger, Julia [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); II Physikalisches Institut, Georg-August-Universität, Göttingen (Germany); Wolf, Julian [Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States of America (United States); Wu, Sau Lan; Yang, Hongtao [Department of Physics, University of Wisconsin, Madison, WI, United States of America (United States)

    2016-09-21

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  4. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    International Nuclear Information System (INIS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-01-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN. - Highlights: • Extended inner pixel barrel layers are proposed for the ATLAS ITk upgrade. • Test beam results at small track incidence angles validate this ATLAS ITk design. • Long pixel clusters are reconstructed with high efficiency at low threshold values. • Excellent angular resolution is achieved using pixel cluster length information.

  5. Optical readout in a multi-module system test for the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Nderitu Kirichu, Simon; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector, which is presently under construction. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. It consists of detector modules, optoboards, optical fibres, Back of Crate cards, Readout Drivers, and control computers. In this paper, the system test setup and the operation of the readout chain are described. Also, some results of tests using the final pixel detector readout chain are given

  6. High bandwidth pixel detector modules for the ATLAS Insertable B-Layer

    International Nuclear Information System (INIS)

    Backhaus, Malte

    2014-01-01

    The investigation of the nature of the recently discovered electro-weak symmetry breaking mechanism of the standard model of particle physics as well as the search for physics beyond the standard model with the LHC require to collect even more data. To achieve this goal, the luminosity of the LHC will be increased in two steps. The increased luminosity results in serious challenges for the inner tracking systems of the experiments at the LHC. The ATLAS pixel detector will also be upgraded in a two stage program. During the shutdown in 2013 and 2014 a fourth hybrid pixel detector layer, the socalled Insertable B-Layer (IBL) is inserted inside the existing pixel detector. This thesis focuses on the characterization, performance measurement, and production quality assurance of the central sensitive elements of the IBL, the modules. This includes a full characterization of the readout chip (FE-I4) and of the assembled modules. A completely new inner tracking system is mandatory in ATLAS after the second luminosity increase in the shutdown of 2022 and 2023. The final chapter of this thesis introduces a new module concept that uses an industrial high voltage CMOS technology as sensor layer, which is capacitively coupled to the FE-I4 readout chip.

  7. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Püllen, Lukas; Boek, Jennifer; Kersten, Susanne; Kind, Peter; Mättig, Peter; Zeitnitz, Christian

    2013-01-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerator's instantaneous luminosity by a factor of 5 and the integrated luminosity by a factor of 10. In the context of this upgrade, the inner detector (including the pixel detector) of the ATLAS experiment will be replaced. This new pixel detector requires a specific control system which complies with strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4×4 DCS chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub-micron technology. We present results from reliability measurements under irradiation from new prototypes of components for the DCS network.

  8. Prototypes for components of a control system for the ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Boek, J; Kersten, S; Kind, P; Mättig, P; Püllen, L; Zeitnitz, C

    2013-01-01

    In the years around 2020 an upgrade of the LHC to the HL-LHC is scheduled, which will increase the accelerators luminosity by a factor of 10. In the context of this upgrade, the inner detector of the ATLAS experiment will be replaced entirely including the pixel detector. This new pixel detector requires a specific control system which complies with the strict requirements in terms of radiation hardness, material budget and space for the electronics in the ATLAS experiment. The University of Wuppertal is developing a concept for a DCS (Detector Control System) network consisting of two kinds of ASICs. The first ASIC is the DCS Chip which is located on the pixel detector, very close to the interaction point. The second ASIC is the DCS Controller which is controlling 4x4 DCS Chips from the outer regions of ATLAS via differential data lines. Both ASICs are manufactured in 130 nm deep sub micron technology. We present results from measurements from new prototypes of components for the DCS network.

  9. MCC:the Module Controller Chip for the ATLAS Pixel Detector

    Czech Academy of Sciences Publication Activity Database

    Beccherle, R.; Darbo, G.; Gagliardi, G.; Šícho, Petr

    2002-01-01

    Roč. 492, 1-2 (2002), s. 117-133 ISSN 0168-9002 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : ASIC * radiation hardness * silicon pixel detectors * ATLAS * LHC Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.167, year: 2002

  10. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gallrapp, Christian

    2015-07-01

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  11. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    International Nuclear Information System (INIS)

    Gallrapp, Christian

    2015-01-01

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ATLAS Pixel Detector as well as for applications in the ATLAS Experiment at HL-LHC conditions. The sensors considered in this work include various designs based on silicon and diamond as sensor material. The investigated designs include a planar silicon pixel design currently used in the ATLAS Experiment as well as a 3D pixel design which uses electrodes penetrating the entire sensor material. The diamond designs implement electrodes similar to the design used by the planar technology with diamond sensors made out of single- and poly-crystalline material. To investigate the sensor properties characterization tests are performed before and after irradiation with protons or neutrons. The measurements are used to determine the interaction between the read-out electronics and the sensors to ensure the signal transfer after irradiation. Further tests focus on the sensor performance itself which includes the analysis of the leakage current behavior and the charge

  12. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  13. The Upgraded Pixel Detector of the ATLAS Experiment for Run-2 at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00084948; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130 nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented using collision data.

  14. Radiationhard components for the control system of a future ATLAS pixel detector

    International Nuclear Information System (INIS)

    Becker, K; Boek, J; Kersten, S; Kind, P; Maettig, P; Puellen, L; Zeitnitz, C

    2011-01-01

    The upgrade of the ATLAS experiment for the High Luminosity LHC (HL-LHC) will include a new pixel detector. A completely new detector control system (DCS) for this pixel detector will be required in order to cope with the substantial increase in radiation at the HL-LHC. The DCS has to have a very high reliability and all components installed within the detector volume have to be radiationhard. This will ensure a safe operation of the pixel detector and the experiment. A further design constraint is the minimization of the used material and cables in order to limit the impact on the tracking performance to a minimum. To meet these requirements we propose a DCS network which consists of a DCS chip and a DCS controller. In the following we present the development of the first prototypes for the DCS chip and the DCS controller with a special focus on the communication interface, radiation hardness and robustness against single event upsets.

  15. System test and noise performance studies at the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Weingarten, J.

    2007-09-01

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  16. System test and noise performance studies at the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Weingarten, J.

    2007-09-15

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  17. Design studies on sensors for the ATLAS Pixel Detector

    CERN Document Server

    Hügging, F G

    2002-01-01

    For the ATLAS Pixel Detector, prototype sensors have been successfully developed. For the sensors design, attention was given to survivability of the harsh LHC radiation environment leading to the need to operate them at several hundreds of volts, while maintaining a good charge collection efficiency, small cell size and minimal multiple scattering. For a cost effective mass production, a bias grid is implemented to test the sensors before assembly under full bias. (6 refs).

  18. Design of readout drivers for ATLAS pixel detectors using field programmable gate arrays

    CERN Document Server

    Sivasubramaniyan, Sriram

    Microstrip detectors are an integral patt of high energy physics research . Special protocols are used to transmit the data from these detectors . To readout the data from such detectors specialized instrumentation have to be designed . To achieve this task, creative and innovative high speed algorithms were designed simulated and implemented in Field Programmable gate arrays, using CAD/CAE tools. The simulation results indicated that these algorithms would be able to perform all the required tasks quickly and efficiently. This thesis describes the design of data acquisition system called the Readout Drivers (ROD) . It focuses on the ROD data path for ATLAS Pixel detectors. The data path will be an integrated part of Readout Drivers setup to decode the data from the silicon micro strip detectors and pixel detectors. This research also includes the design of Readout Driver controller. This Module is used to control the operation of the ROD. This module is responsible for the operation of the Pixel decoders bas...

  19. Ongoing studies for the control system of a serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Kersten, S.; Püllen, L.; Zeitnitz, C.

    2016-01-01

    In terms of the phase-2 upgrade of the ATLAS detector, the entire inner tracker (ITk) of ATLAS will be replaced. This includes the pixel detector and the corresponding detector control system (DCS). The current baseline is a serial powering scheme of the detector modules. Therefore a new detector control system is being developed with emphasis on the supervision of serially powered modules. Previous chips had been designed to test the radiation hardness of the technology and the implementation of the modified I2C as well as the implementation of the logic of the CAN protocol. This included tests with triple redundant registers. The described chip is focusing on the implementation in a serial powering scheme. It was designed for laboratory tests, aiming for the proof of principle. The concept of the DCS for ATLAS pixel after the phase-2 upgrade is presented as well as the status of development including tests with the prototype ASIC

  20. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric,I et al.

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 1015 neq=cm2 , nearly 100% detection efficiency and a spatial resolution of about 3 μm were demonstrated. Since 2011 the HV detectors have first applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process.

  1. A neural network clustering algorithm for the ATLAS silicon pixel detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moraes, Arthur; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-09-15

    A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.

  2. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Macchiolo, Anna; The ATLAS collaboration

    2018-01-01

    The new ATLAS ITk pixel system will be installed during the LHC Phase-II shutdown, to better take advantage of the increased luminosity of the HL-LHC. The detector will consist of 5 layers of stave-like support structures in the most central region and ring-shaped supports in the endcap regions, covering up to |η| < 4. While the outer 3 layers of the Pixel Detector are designed to operate for the full HL-LHC data taking period, the innermost 2 layers of the detector will be replaced around half of the lifetime. The ITk pixel detector will be instrumented with new sensors and readout electronics to provide improved tracking performance and radiation hardness compared to the current detector. Sensors will be read out by new ASICs based on the chip developed by the RD53 Collaboration. The pixel off-detector readout electronics will be implemented in the framework of the general ATLAS trigger and DAQ system with a readout speed of up to 5 Gb/s per data link for the innermost layers. Results of extensive tests...

  3. The upgraded Pixel Detector of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    Giordani, MarioPaolo; The ATLAS collaboration

    2016-01-01

    Run-2 of the LHC is providing new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. In addition the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. The commissioning and performance of the 4-layer Pixel Detector, in particular the IBL, will be presented, using collision data.

  4. Operational Experience and Performance with the ATLAS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Grummer, Aidan; The ATLAS collaboration

    2018-01-01

    The tracking performance of the ATLAS detector relies critically on its 4-layer Pixel Detector, that has undergone significant hardware and software upgrades to meet the challenges imposed by the higher collision energy, pileup and luminosity that are being delivered by the Large Hadron Collider, with record breaking instantaneous luminosities of 2 x 10^34 cm-2 s-1 recently surpassed. The key status and performance metrics of the ATLAS Pixel Detector are summarised, and the operational experience and requirements to ensure optimum data quality and data taking efficiency will be described, with special emphasis to radiation damage experience. In particular, radiation damage effects will be showed and signs of degradation which are visible but which are not impacting yet the tracking performance (but will): dE/dX, occupancy reduction with integrated luminosity, under-depletion effects with IBL in 2016, effects of annealing that is not insignificant for the inner-most layers. Therefore the offline software strat...

  5. Planar slim-edge pixel sensors for the ATLAS upgrades

    International Nuclear Information System (INIS)

    Altenheiner, S; Goessling, C; Jentzsch, J; Klingenberg, R; Lapsien, T; Rummler, A; Troska, G; Wittig, T; Muenstermann, D

    2012-01-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n + -implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  6. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    International Nuclear Information System (INIS)

    Bergmann, B.; Caicedo, I.; Pospisil, S.; Vykydal, Z.; Leroy, C.

    2016-01-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  7. Study of run time errors of the ATLAS Pixel Detector in the 2012 data taking period

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00339072

    2013-05-16

    The high resolution silicon Pixel detector is critical in event vertex reconstruction and in particle track reconstruction in the ATLAS detector. During the pixel data taking operation, some modules (Silicon Pixel sensor +Front End Chip+ Module Control Chip (MCC)) go to an auto-disable state, where the Modules don’t send the data for storage. Modules become operational again after reconfiguration. The source of the problem is not fully understood. One possible source of the problem is traced to the occurrence of single event upset (SEU) in the MCC. Such a module goes to either a Timeout or Busy state. This report is the study of different types and rates of errors occurring in the Pixel data taking operation. Also, the study includes the error rate dependency on Pixel detector geometry.

  8. Study of planar pixel sensors hardener to radiations for the upgrade of the ATLAS vertex detector

    International Nuclear Information System (INIS)

    Benoit, M.

    2011-05-01

    In this work, we present a study, using TCAD (Technology Computer-Assisted Design) simulation, of the possible methods of designing planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure, a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain the high charge collection observed in highly irradiated devices. A simple planar pixel sensor digitization model to be used in test beam and full detector system is detailed. It allows for easy comparison between experimental data and prediction by the various radiation damage models available. The digitizer has been validated using test beam data for unirradiated sensors and can be used to produce the first full scale simulation of the ATLAS detector with the IBL that include sensor effects such as slim edge and thinning of the sensor. (author)

  9. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric, Ivan; Backhaus, Malte; Barbero, Marlon; Benoit, Mathieu; Berger, Niklaus; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Dannheim, Dominik; Dierlamm, Alexander; Feigl, Simon; Fischer, Peter; Fougeron, Denis; Garcia-Sciveres, Maurice; Heim, Timon; Hügging, Fabian; Kiehn, Moritz; Kreidl, Christian; Krüger, Hans; La Rosa, Alessandro; Liu, Jian; Lütticke, Florian; Mariñas, Carlos; Meng, Lingxin; Miucci, Antonio; Münstermann, Daniel; Nguyen, Hong Hanh; Obermann, Theresa; Pangaud, Patrick; Perrevoort, Ann-Kathrin; Rozanov, Alexandre; Schöning, André; Schwenker, Benjamin; Wiedner, Dirk

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 10 15 n eq = cm 2 , nearly 100% detection ef fi ciency and a spatial resolution of about 3 μ m were demonstrated. Since 2011 the HV detectors have fi rst applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process

  10. 2011 ATLAS Detector Performance - ID and Forward detectors

    CERN Document Server

    Davies‎, E; The ATLAS collaboration; Abdel Khalek, S

    2012-01-01

    This poster describes the performance of 2 parts of ATLAS: - The Inner Detector which consists of 3 subdetectors: the Pixel detector, the SemiConductor Tracker (or SCT) and the Transition Radiation Tracker (or TRT). Here, we report on Pixel detector and SCT performance over 2011. - ALFA detector which will determine the absolute luminosity of the CERN LHC at the ATLAS Interaction Point (IP), and the total proton-proton cross section, by tracking elastically scattered protons at very small angles in the limit of the Coulomb Nuclear interference region.

  11. Tracking and b-tagging with pixel vertex detector in ATLAS experiment at LHC

    International Nuclear Information System (INIS)

    Vacavant, L.

    1997-06-01

    The capability of the ATLAS detector to tag b-jets is studied, using the impact parameter of charged tracks. High b-tagging performance is needed at LHC, especially during the first years of running, in order to see evidence of the Higgs boson if its mass lies between 80 and 120 GeV/c 2 . A pattern-recognition algorithm has been developed for this purpose, using a detailed simulation of the ATLAS inner detector. Track-finding starts from the pixel detector layers. A 'hyper-plane' concept allows the use of a simple tracking algorithm though the complex geometry. High track-finding efficiency and reconstruction quality ensure the discrimination of b-jets from other kinds of jets. After full simulation and reconstruction of H → bb-bar, H → gg, H → uu-bar, H → ss-bar and H → cc-bar events (m H = 100 GeV/c 2 ), the mean rejections achieved against non-b-jets for a 50% b-jet tagging efficiency are as follows: R g =39±5 R u = 60 ± 9 R s = 38 ± 5 R c = 9 ± 1 The analysis of data from the first radiation-hard pixel detector prototypes justifies the potential of these detectors for track-finding and high-precision impact parameter measurement at LHC. (author)

  12. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    Science.gov (United States)

    Vigani, L.; Bortoletto, D.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-02-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  13. Study of prototypes of LFoundry active CMOS pixels sensors for the ATLAS detector

    CERN Document Server

    Vigani, L.; Ambroz, L.; Plackett, R.; Hemperek, T.; Rymaszewski, P.; Wang, T.; Krueger, H.; Hirono, T.; Caicedo Sierra, I.; Wermes, N.; Barbero, M.; Bhat, S.; Breugnon, P.; Chen, Z.; Godiot, S.; Pangaud, P.; Rozanov, A.

    2018-01-01

    Current high energy particle physics experiments at the LHC use hybrid silicon detectors, in both pixel and strip configurations, for their inner trackers. These detectors have proven to be very reliable and performant. Nevertheless, there is great interest in depleted CMOS silicon detectors, which could achieve a similar performance at lower cost of production. We present recent developments of this technology in the framework of the ATLAS CMOS demonstrator project. In particular, studies of two active sensors from LFoundry, CCPD_LF and LFCPIX, are shown.

  14. Performance and operation experience of the Atlas Semiconductor Tracker and Pixel Detector at the LHC.

    CERN Document Server

    Stanecka, E; The ATLAS collaboration

    2013-01-01

    After more than 3 years of successful operation at the LHC, we report on the operation and performance of the ATLAS Pixel Detector and Semi-Conductor Tracker (SCT) functioning in a high luminosity, high radiation environment.

  15. ATLAS ITk and new pixel sensors technologies

    CERN Document Server

    Gaudiello, A

    2016-01-01

    During the 2023–2024 shutdown, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×10$^{34}$ cm$^{−2}$s$^{−1}$. This upgrade of the accelerator is called High-Luminosity LHC (HL-LHC). The ATLAS detector will be changed to meet the challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing, and an integrated luminosity of 3000 fb $^{−1}$ over ten years. The HL-LHC luminosity conditions are too extreme for the current silicon (pixel and strip) detectors and straw tube transition radiation tracker (TRT) of the current ATLAS tracking system. Therefore the ATLAS inner tracker is being completely rebuilt for data-taking and the new system is called Inner Tracker (ITk). During this upgrade the TRT will be removed in favor of an all-new all-silicon tracker composed only by strip and pixel detectors. An overview of new layouts in study will be reported and the new pixel sensor technologies in development will be explained.

  16. Robustness of the Artificial Neural Networks Used for Clustering in the ATLAS Pixel Detector

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    A study of the robustness of the ATLAS pixel neural network clustering algorithm is presented. The sensitivity to variations to its input is evaluated. These variations are motivated by potential discrepancies between data and simulation due to uncertainties in the modelling of pixel clusters in simulation, as well as uncertainties from the detector calibration. Within reasonable variation magnitudes, the neural networks prove to be robust to most variations. The neural network used to identify pixel clusters created by multiple charged particles, is most sensitive to variations affecting the total amount of charge collected in the cluster. Modifying the read-out threshold has the biggest effect on the clustering's ability to estimate the position of the particle's intersection with the detector.

  17. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Gabrielli, Alessandro; The ATLAS collaboration; Balbi, Gabriele; Bindi, Marcello; Chen, Shaw-pin; Falchieri, Davide; Flick, Tobias; Hauck, Scott Alan; Hsu, Shih-Chieh; Kretz, Moritz; Kugel, Andreas; Lama, Luca; Travaglini, Riccardo; Wensing, Marius; ATLAS Pixel Collaboration

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data pat...

  18. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    CERN Document Server

    Balbi, G; The ATLAS collaboration; Gabrielli, A; Lama, L; Travaglini, R; Backhaus, M; Bindi, M; Chen, S-P; Flick, T; Kretz, M; Kugel, A; Wensing, M

    2014-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL’s off-detector DAQ system. The strategy for IBLROD firmware development was three-fold: keeping as much of the PixelROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBLDAQ testbench using realistic frontend chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBLROD data path im...

  19. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407702

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  20. Commissioning of the Atlas pixel detector and search of the Higgs boson in the tt-H, H → bb- channel with the Atlas experiment at the LHC

    International Nuclear Information System (INIS)

    Aad, G.

    2009-09-01

    The global fit of Higgs boson quantum contributions to the electroweak experimental observables, computed within the Standard Model, favors a light Higgs boson with a mass of m H = 90 -27 +36 GeV, on the edge of the 95% Confidence Level region excluded by LEP. Finding a light Higgs boson at LHC is experimentally difficult and several channels with various signatures will be sought for. The associated production of the Higgs boson with a pair of top quarks, with the subsequent decay of the Higgs boson into b-quark pairs (dominant for m H <135 GeV), is one of the channels considered. This channel opens the possibility of measuring the top and b-quark Yukawa couplings. The potential of the ATLAS detector to observe this channel is described. Several ingredients are crucial: the reconstruction of the top-anti-top system with a high-purity, excellent b-tagging capabilities and good knowledge of the tt-bar+jets background. The pixel detector is the most important ATLAS sub-detectors for tagging b -jets. The ATLAS detector was commissioned with cosmic muon rays in autumn 2008. The pixel detector dead channels, calibration constants and slow control informations are described for this period. A detailed study about pixel noise determination and suppression is presented. Finally, the pixel detection efficiency is measured using cosmic muon rays. (author)

  1. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    International Nuclear Information System (INIS)

    Lange, J.; Cavallaro, E.; Grinstein, S.; Paz, I. López

    2015-01-01

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2–3 mm). This implies the need of slim edges of about 100–200 μm width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 μm width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 10 15 n eq /cm 2 with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al masks. The efficiency in the irradiated region is found to be similar to the one in the non-irradiated region and exceeds 97% in case of favourable chip-parameter settings. Only in a narrow transition area at the edge of the hole in the Al mask, a significantly lower efficiency is seen. A follow-up study of this effect using arrays of small pad diodes for position-resolved dosimetry via the leakage current is carried out

  2. The ATLAS Insertable B-Layer Detector (IBL)

    CERN Document Server

    Huegging, F; The ATLAS collaboration

    2010-01-01

    The upgrade for the ATLAS detector will undergo different phases towards SLHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during a longer shutdown of the LHC machine, the so-called Phase I Upgrade. The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of about 3.2 cm. The IBL requires the development of several new technologies to cope with the increase of radiation and pixel occupancy as well as to improve the physics performance of the existing pixel detector. In order to achieve these goals the pixel size is reduced and the material budget is minimized by using new lightweight mechanical support materials and a CO2 based cooling system. Main component of the module development for the IBL is the new ATLAS pixel readout chip, FE-I4, designed in 130 nm technology which features an array of 80 by 336 pixels with a pixel size of 50x250 µ...

  3. The upgraded Pixel detector and the commissioning of the Inner Detector tracking of the ATLAS experiment for Run-2 at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00019188; The ATLAS collaboration

    2016-01-01

    Run-2 of the Large Hadron Collider (LHC) will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. Therefore the ATLAS experiment has constructed the first 4-layer Pixel detector in HEP, installing a new Pixel layer, also called Insertable B-Layer (IBL). The IBL is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with the high radiation and expected occupancy, is the first large scale application of 3D detectors and CMOS 130~nm technology. In addition, the Pixel detector was refurbished with a new service quarter panel to recover about 3% of defective modules lost during Run-1 and a new optical readout system to readout the data at higher speed while reducing the occupancy when running with increased luminosity. Complementing detector improvements, many improvements to Inner Detector track and vertex reconstr...

  4. Firmware development and testing of the ATLAS Pixel Detector / IBL ROD card

    International Nuclear Information System (INIS)

    Gabrielli, A.; Balbi, G.; Falchieri, D.; Lama, L.; Travaglini, R.; Backhaus, M.; Bindi, M.; Chen, S.P.; Hauck, S.; Hsu, S.C.; Flick, T.; Wensing, M.; Kretz, M.; Kugel, A.

    2015-01-01

    The ATLAS Experiment is reworking and upgrading systems during the current LHC shut down. In particular, the Pixel detector has inserted an additional inner layer called the Insertable B-Layer (IBL). The Readout-Driver card (ROD), the Back-of-Crate card (BOC), and the S-Link together form the essential frontend data path of the IBL's off-detector DAQ system. The strategy for IBL ROD firmware development was three-fold: keeping as much of the Pixel ROD datapath firmware logic as possible, employing a complete new scheme of steering and calibration firmware, and designing the overall system to prepare for a future unified code version integrating IBL and Pixel layers. Essential features such as data formatting, frontend-specific error handling, and calibration are added to the ROD data path. An IBL DAQ test bench using a realistic front-end chip model was created to serve as an initial framework for full offline electronic system simulation. In this document, major firmware achievements concerning the IBL ROD data path implementation, test on the test bench and ROD prototypes, will be reported. Recent Pixel collaboration efforts focus on finalizing hardware and firmware tests for the IBL. The plan is to approach a complete IBL DAQ hardware-software installation by the end of 2014

  5. First experiences with the ATLAS pixel detector control system at the combined test beam 2004

    International Nuclear Information System (INIS)

    Imhaeuser, Martin; Becks, Karl-Heinz; Henss, Tobias; Kersten, Susanne; Maettig, Peter; Schultes, Joachim

    2006-01-01

    Detector control systems (DCS) include the readout, control and supervision of hardware devices as well as the monitoring of external systems like cooling system and the processing of control data. The implementation of such a system in the final experiment also has to provide the communication with the trigger and data acquisition system (TDAQ). In addition, conditions data which describe the status of the pixel detector modules and their environment must be logged and stored in a common LHC wide database system. At the combined test beam all ATLAS subdetectors were operated together for the first time over a longer period. To ensure the functionality of the pixel detector, a control system was set up. We describe the architecture chosen for the pixel DCS, the interfaces to hardware devices, the interfaces to the users and the performance of our system. The embedding of the DCS in the common infrastructure of the combined test beam and also its communication with surrounding systems will be discussed in some detail

  6. ATLAS Pixel IBL: Stave Quality Assurance

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    For Run 2 of the LHC a fourth innermost Pixel Detector layer on a smaller radius beam pipe has been installed in the ATLAS Detector to add redundancy against radiation damage of the current Pixel Detector and to ensure a high quality tracking and b-tagging performance of the Inner Detector over the coming years until the High Luminosity Upgrade. State of the art components have been produced and assembled onto support structures known as staves over the last two years. In total, 20 staves have been built and qualified in a designated Quality Assurance setup at CERN of which 14 have been integrated onto the beam pipe. Results from the testing are presented.

  7. Thin and edgeless sensors for ATLAS pixel detector upgrade

    Science.gov (United States)

    Ducourthial, A.; Bomben, M.; Calderini, G.; Marchiori, G.; D'Eramo, L.; Luise, I.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Darbo, G.; Dalla Betta, G.-F.; Giacomini, G.; Meschini, M.; Messineo, A.; Ronchin, S.; Zorzi, N.

    2017-12-01

    To cope with the harsh environment foreseen at the high luminosity conditions of HL-LHC, the ATLAS pixel detector has to be upgraded to be fully efficient with a good granularity, a maximized geometrical acceptance and an high read out rate. LPNHE, FBK and INFN are involved in the development of thin and edgeless planar pixel sensors in which the insensitive area at the border of the sensor is minimized thanks to the active edge technology. In this paper we report on two productions, a first one consisting of 200 μm thick n-on-p sensors with active edge, a second one composed of 100 and 130 μm thick n-on-p sensors. Those sensors have been tested on beam, both at CERN-SPS and at DESY. In terms of hit-efficiency, the first production reaches 99 % before irradiation and the second one reaches 96.3% after a fluence in excess of 1× 1016neq/cm2. The performances of those two productions before and after irradiation will be presented in details.

  8. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Puellen, Lukas

    2015-02-10

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  9. Development of a detector control system for the serially powered ATLAS pixel detector at the HL-LHC

    International Nuclear Information System (INIS)

    Puellen, Lukas

    2015-01-01

    In the years around 2020 the LHC will be upgraded to the HL-LHC. In terms of this upgrade, the ATLAS detector will also be upgraded. This also includes the pixel detector, the innermost of the sub-detectors in ATLAS. Thereby the powering concept of the pixel detector will be changed to reduce the material budget of the detector. From individual powering of each detector module, the concept changes to serial powering, where all modules of a powering group are connected in series. This change makes the development of a new detector control system (DCS) mandatory. Therefore, a new concept for the ATLAS pixel DCS is being developed at the University of Wuppertal. This concept is split into three paths: a safety path, a control path, and a diagnostics path. The safety path is a hard wired interlock system. The concept of this system will not differ significantly, compared to the interlock system of the current detector. The diagnostics path is embedded into the optical data read-out of the detector and will be used for detector tuning with high precision and granularity. The control path supervises the detector and provides a user interface to the hardware components. A concept for this path, including a prototype and proof-of-principle studies, has been developed in terms of this thesis. The control path consists of the DCS network, a read-out and controlling topology created by two types of ASICs: the DCS controller and the DCS chip. These ASICs measure and control all values, necessary for a safe detector operation in situ. This reduces the number of required cables and hence the material budget of the system. For the communication between these ASICs, two very fault tolerant bus protocols have been chosen: CAN bus carries data from the DCS computers, outside of the detector, to the DCS controllers at the edge of the pixel detector. For the communication between the DCS controller and the DCS chip, which is located close to each detector module, an enhanced I2C

  10. Dynamic Efficiency Measurements for Irradiated ATLAS Pixel Single Chip Modules

    CERN Document Server

    Pfaff, Mike; Grosse-Knetter, Jorn

    2011-01-01

    The ATLAS pixel detector is the innermost subdetector of the ATLAS experiment. Due to this, the pixel detector has to be particularly radiation hard. In this diploma thesis effects on the sensor and the electronics which are caused by irradiation are examined. It is shown how the behaviour changes between an unirradiated sample and a irradiated sample, which was treated with the same radiation dose that is expected at the end of the lifetime of ATLAS. For this study a laser system, which is used for dynamic efficiency measurements was constructed. Furthermore, the behaviour of the noise during the detection of a particle was evaluated studied.

  11. Performance of n-in-p pixel detectors irradiated at fluences up to $5x10^{15} n_{eq}/cm^{2}$ for the future ATLAS upgrades

    CERN Document Server

    INSPIRE-00219560; La Rosa, A.; Nisius, R.; Pernegger, H.; Richter, R.H.; Weigell, P.

    We present the results of the characterization of novel n-in-p planar pixel detectors, designed for the future upgrades of the ATLAS pixel system. N-in-p silicon devices are a promising candidate to replace the n-in-n sensors thanks to their radiation hardness and cost effectiveness, that allow for enlarging the area instrumented with pixel detectors. The n-in-p modules presented here are composed of pixel sensors produced by CiS connected by bump-bonding to the ATLAS readout chip FE-I3. The characterization of these devices has been performed with the ATLAS pixel read-out systems, TurboDAQ and USBPIX, before and after irradiation with 25 MeV protons and neutrons up to a fluence of 5x10**15 neq /cm2. The charge collection measurements carried out with radioactive sources have proven the feasibility of employing this kind of detectors up to these particle fluences. The collected charge has been measured to be for any fluence in excess of twice the value of the FE-I3 threshold, tuned to 3200 e. The first result...

  12. Radiation Damage Observations in the ATLAS Pixel Detector Using the High Voltage Delivery System

    CERN Document Server

    Toms, K

    2011-01-01

    We describe the implementation of radiation damage monitoring using leakage current measurement of the silicon pixel sensors provided by the circuits of the ATLAS Pixel Detector high voltage delivery (HVPP4) system. The dependence of the leakage current upon the integrated luminosity for several temperature scenarios is presented. Based on the analysis we have determined the sensitivity specifications for a Current Measurement System. The status of the system and the first measurement of the radiation damage corresponding to 2--4 fb$^{-1}$ of integrated luminosity are presented, as well as the comparison with the theoretical model.

  13. Prototyping of larger structures for the Phase-II upgrade of the pixel detector of the ATLAS experiment

    CERN Document Server

    Alvarez Feito, Diego; The ATLAS collaboration

    2017-01-01

    For the high luminosity era of the Large Hadron Collider (HL-LHC) it is forseen to replace the current inner tracker of the ATLAS experiment with a new detector to cope with the occuring increase in occupancy, bandwidth and radiation damage. It will consist of an inner pixel and outer strip detector aiming to provide tracking coverage up to |η|<4. The layout of the pixel detector is foreseen to consist of five layers of pixel silicon sensor modules in the central region and several ring-shaped layers in the forward region. It results in up to 14 m² of silicon depending on the selected layout. Beside the challenge of radiation hardness and high-rate capable silicon sensors and readout electronics many system aspects have to be considered for a fully functional detector. Both stable and low mass mechanical structures and services are important. Within the collaboration a large effort is started to prototype larger detector structures for both the central and forward region of the detector. The aspect of sy...

  14. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R and D project

    International Nuclear Information System (INIS)

    Casse, G

    2014-01-01

    The ATLAS upgrade Planar Pixel Sensors (PPS) project aims to prove the suitability of silicon detectors processed with planar technology to equip all layers of the pixel vertex detector proposed for the upgrade of the ATLAS experiment for the future High Luminosity LHC at CERN (HL-LHC). The detectors need to be radiation tolerant to the extreme fluences expected to be received during the experimental lifetime, with optimised geometry for full coverage and high granularity and affordable in term of cost, due to the relatively large area of the upgraded ATLAS detector system. Here several solutions for the detector geometry and results with radiation hard technologies (n-in-n, n-in-p) are discussed

  15. Operational Experience with and Performance of the ATLAS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Grummer, Aidan; The ATLAS collaboration

    2018-01-01

    The operational experience and requirements to ensure optimum data quality and data taking efficiency with the 4-layer ATLAS Pixel Detector are discussed. The detector has undergone significant hardware and software upgrades to meet the challenges imposed by the fact that the Large Hadron Collider is exceeding expectations for instantaneous luminosity by more than a factor of two (more than $2 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$). Emphasizing radiation damage effects, the key status and performance metrics are described.

  16. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    International Nuclear Information System (INIS)

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented. -- Highlights: ► The ATLAS inner tracker will be extended with a so called Insertable B-Layer (IBL). ► The IBL modules are required to withstand irradiation up to 5×10 15 n eq /cm 2 . ► Two types of silicon pixel detector technologies (Planar and 3D) were tested in beam. ► The irradiated sensor efficiency exceeds 97% both with and without magnetic field. ► The leakage current, power dissipation, module active area ratio requirements are met.

  17. submitter Development of the readout for the IBL upgrade project of the ATLAS Pixel Detector

    CERN Document Server

    Krieger, Nina

    The LHC luminosity is upgraded in several phases until 2022. The resulting higher occupancy degrades the detector performance of the current Pixel Detector. To provide a good performance during the LHC luminosity upgrade, a fourth pixel layer is inserted into the existing ATLAS Pixel Detector. A new FE-I4 readout chip and a new data acquisition chain are required to cope with the higher track rate and the resulting increased bandwidth. Among others, this includes a new readout board: the IBL ROD. One component of this board is the DSP which creates commands for the FE-I4 chip and has to be upgraded as well. In this thesis, the first tests of the IBL ROD prototype are presented. A correct communication of the DSP to its external memory is verified. Moreover, the implementations for an IBL DSP code are described and tested. This includes the first configuration of the FE-I4 with an IBL ROD. In addition, a working communication with the Histogrammer SDRAM and the Input FIFO on the IBL ROD are demonstrated.

  18. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Rossi, Leonardo Paolo; The ATLAS collaboration

    2018-01-01

    The upgrade of the ATLAS experiment for the operation at the High Luminosity Large Hadron Collider requires a new and more performant inner tracker, the ITk. The innermost part of this tracker will be built using silicon pixel detectors. This paper describes the ITk pixel project, which, after few years of design and test e ort, is now defined in detail.

  19. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Nellist, Clara; The ATLAS collaboration

    2016-01-01

    Summary ATLAS is preparing for an extensive modification of its detector in the course of the planned HL‐ LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all‐silicon detector (Inner Tracker, ITk). A revised trigger and data taking system is foreseen with triggers expected at lowest level at an average rate of 1 MHz. The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL‐LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice that is expected to take place in early 2017. A new on‐detector readout chip is designed in the context of the RD53 collaboration in 65 nm CMOS technology. This paper will present the on‐going R&D within the ATLAS ITK project towards the new pixel modules and the off‐detector electronics. Pla...

  20. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Munoz Sanchez, Francisca Javiela; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is preparing for an extensive modification of its detectors in the course of the planned HL-LHC accelerator upgrade around 2025. The ATLAS upgrade includes the replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will be a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in 2017. In this paper an overview of the ongoing R\\&D activities on modules and electronics for the ATLAS ITk is given including the main developments and achievements in silicon planar and 3D sensor technologies, readout and power challenges.

  1. Qualification measurements of the voltage supply system as well as conceptionation of a state machine for the detector control of the ATLAS pixel detector; Qualifizierungsmessungen des Spannungsversorgungssystems sowie Konzeptionierung einer Zustandsmaschine fuer die Detektorkontrolle des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Joachim

    2007-02-15

    The supply system and the control system of the ATLAS pixel detector represent important building blocks of the pixel detector. Corresponding studies of the supply system, which were performed within a comprehensive test system, the so-called system test, with nearly all final components and the effects on the pixel detector are object of this thesis. A further point of this thesis is the coordination and further development of the detector-control-system software under regardment of the different partial systems. A main topic represents thereby the conceptionation of the required state machine as interface for the users and the connection to the data acquisition system.

  2. Transfer Function and Fluorescence Measurements on New CMOS Pixel Sensor for ATLAS

    CERN Document Server

    Kaemingk, Michael

    2017-01-01

    A new generation of pixel sensors is being designed for the phase II upgrade of the ATLAS Inner Tracker (ITk). These pixel sensors are being tested to ensure that they meet the demands of the ATLAS detector. As a summer student, I was involved in some of the measurements taken for this purpose.

  3. 3D silicon pixel detectors for the High-Luminosity LHC

    CERN Document Server

    Lange, J.

    2016-01-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50x250 um2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12--15 mW/cm2 at a fluence of about 1e16 neq/cm2, measured at -25 degree C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50x50 and 25x100 um2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1--2V before irradiation.

  4. Module and electronics developments for the ATLAS ITK pixel system

    CERN Document Server

    Munoz Sanchez, Francisca Javiela; The ATLAS collaboration

    2017-01-01

    ATLAS is preparing for an extensive modification of its detector in the course of the planned HL-LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m2, depending on the final layout choice that is expected to take place in 2017. A new on-detector readout chip is designed in the context of the RD53 collaboration in 65 nm CMOS technology. This paper will present the on-going R&D within the ATLAS ITK project towards the new pixel modules and the off-detector electronics. Planar and 3D sensors are being re-designed with cell sizes of 50x50 or 25x100 μm2, compatible with the RD53 chip. A sensor thickness equal or less th...

  5. Upgrade of the BOC for the ATLAS Pixel Insertable B-Layer

    CERN Document Server

    Dopke, J; Heima, T; Kugel, A; Mattig, P; Schroer, N; Zeitnitz, C

    2009-01-01

    The phase 1 upgrade of the ATLAS [1] pixel detector will be done by inserting a fourth pixel layer together with a new beampipe into the recent three layer detector. This new detector, the Insertable B-Layer (IBL) should be integrated into the recent pixel system with as few changes in services as possible, but deliver some advantages over the recent system. One of those advantages will be a new data transmission link from the detector modules to the off-detector electronics, requiring a re-design of the electro-optical converters on the off-detector side. First ideas of how to implement those, together with some ideas to reduce cost by increasing the systems throughput are discussed.

  6. The ATLAS Inner Detector operation,data quality and tracking performance.

    CERN Document Server

    Stanecka, E; The ATLAS collaboration

    2012-01-01

    The ATLAS Inner Detector comprises silicon and gas based detectors. The Semi-Conductor Tracker (SCT) and the Pixel Detector are the key precision tracking silicon devices in the Inner Detector of the ATLAS experiment at CERN LHC. And the the Transition Radiation Tracker (TRT), the outermost of the three subsystems of the ATLAS Inner Detector is made of thin-walled proportional-mode drift tubes (straws). The Pixel Detector consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. The SCT is a silicon strip detector and is constructed of 4088 silicon detector modules for a total of 6.3 million strips. Each module is designed, constructed and tested to operate as a stand-alone unit, mechanically, electrically, optically and thermally. The SCT silicon micro-strip sensors are processed in the planar p-in-n technology. The signals from the strips are processed in the front-end ASICS ABCD3TA, working in the binary readout mode. The TRT is made...

  7. An Introduction to ATLAS Pixel Detector DAQ and Calibration Software Based on a Year's Work at CERN for the Upgrade from 8 to 13 TeV

    CERN Document Server

    AUTHOR|(CDS)2094561

    An overview is presented of the ATLAS pixel detector Data Acquisition (DAQ) system obtained by the author during a year-long opportunity to work on calibration software for the 2015-16 Layer‑2 upgrade. It is hoped the document will function more generally as an easy entry point for future work on ATLAS pixel detector calibration systems. To begin with, the overall place of ATLAS pixel DAQ within the CERN Large Hadron Collider (LHC), the purpose of the Layer-2 upgrade and the fundamentals of pixel calibration are outlined. This is followed by a brief look at the high level structure and key features of the calibration software. The paper concludes by discussing some difficulties encountered in the upgrade project and how these led to unforeseen alternative enhancements, such as development of calibration “simulation” software allowing the soundness of the ongoing upgrade work to be verified while not all of the actual readout hardware was available for the most comprehensive testing.

  8. ATLAS Fact Sheet : To raise awareness of the ATLAS detector and collaboration on the LHC

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    Facts on the Detector, Calorimeters, Muon System, Inner Detector, Pixel Detector, Semiconductor Tracker, Transition Radiation Tracker,, Surface hall, Cavern, Detector, Magnet system, Solenoid, Toroid, Event rates, Physics processes, Supersymmetric particles, Comparing LHC with Cosmic rays, Heavy ion collisions, Trigger and Data Acquisition TDAQ, Computing, the LHC and the ATLAS collaboration. This fact sheet also contains images of ATLAS and the collaboration as well as a short list of videos on ATLAS available for viewing.

  9. Simulation of the depletion voltage evolution of the ATLAS Pixel Detector

    CERN Document Server

    Beyer, Julien-christopher; The ATLAS collaboration

    2017-01-01

    The ATLAS Pixel detector has been operating since 2010 and consists of hybrid pixel modules where the sensitive elements are planar n-in-n sensors. In order to investigate and predict the evolution of the depletion voltage and of the leakage current in the different layers, a fully analytical implementation of the Hamburg model was derived. The parameters of the model, describing the dependence of the depletion voltage (U_depl) on fluence, temperature and time were tuned with a fit to the available measurements of Udepl in the last years of operation. A particular emphasis is put on the B-Layer, where the highest fluence has been accumulated up to now. A precise input of temperature and radiation dose is generated from the on-module temperature monitoring and the luminosity data. The analysis is then also extended to the Insertable B-Layer (IBL), installed at the end of Run-1, where we expect the fastest evolution of the radiation damage with luminosity, due to its closer position to the interaction point. Di...

  10. Radiation Damage Monitoring in the ATLAS Pixel Detector

    CERN Document Server

    Seidel, S

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to integrated luminosity 5.6 fb$^{-1}$ is presented along with a comparison to the theoretical model.

  11. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    International Nuclear Information System (INIS)

    Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.

    2015-01-01

    The LHC accelerator complex will be upgraded between 2020–2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented

  12. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    CERN Document Server

    INSPIRE-00304438; Gkougkousis, E.; Lounis, A.

    2015-01-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  13. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    International Nuclear Information System (INIS)

    Bouchami, J; Dallaire, F; Gutierrez, A; Idarraga, J; Leroy, C; Picard, S; Scallon, O; Kral, V; PospIsil, S; Solc, J; Suk, M; Turecek, D; Vykydal, Z; Zemlieka, J

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6 LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) - based on the ROOT application - allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons ( 252 Cf and 241 AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  14. Effets de rayonnement sur les detecteurs au silicium a pixels du detecteur ATLAS

    CERN Document Server

    Lebel, Celine

    2007-01-01

    Two detection systems are using pixel silicon detectors in the ATLAS detector: the Pixel, which is the subdetector closest to the interaction point, and the MPX network. The activation of the materials present in the Pixel produced by radiation has been measured in two experiments which we performed at CERF (CERN) and NPI-ASCR (Czech Republic). These experimental studies of activation are com- pared with GEANT4 simulations. The results of these comparisons show that the simulation can predict the activities with a precision of an order of magnitude. They also show that GEANT4 fails to produce certain radioisotopes seen in the experimental activation studies. The contribution to background and the resid- ual doses due to the desintegration of the radioisotopes produced by fast neutrons (category in which falls the expected average neutron energy of 1 MeV in ATLAS) are extrapolated to ATLAS conditions. It is found that this background in the AT- LAS Pixel subdetector will be negligible and that the doses are we...

  15. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  16. Diamond and silicon pixel detectors in high radiation environments

    International Nuclear Information System (INIS)

    Tsung, Jieh-Wen

    2012-10-01

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10 16 particles per cm 2 , which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10 15 particles per cm 2 .

  17. The ATLAS Inner Detector

    CERN Document Server

    Gray, HM; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC is equipped with a charged particle tracking system, the Inner Detector, built on three subdetectors, which provide high precision measurements made from a fine detector granularity. The Pixel and microstrip (SCT) subdetectors, which use the silicon technology, are complemented with the Transition Radiation Tracker. Since the LHC startup in 2009, the ATLAS inner tracker has played a central role in many ATLAS physics analyses. Rapid improvements in the calibration and alignment of the detector allowed it to reach nearly the nominal performance in the timespan of a few months. The tracking performance proved to be stable as the LHC luminosity increased by five orders of magnitude during the 2010 proton run, New developments in the offline reconstruction for the 2011 run will improve the tracking performance in high pile-up conditions as well as in highly boosted jets will be discussed.

  18. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    Energy Technology Data Exchange (ETDEWEB)

    Bouchami, J; Dallaire, F; Gutierrez, A; Idarraga, J; Leroy, C; Picard, S; Scallon, O [Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Kral, V; PospIsil, S; Solc, J; Suk, M; Turecek, D; Vykydal, Z; Zemlieka, J, E-mail: scallon@lps.umontreal.ca [Institute of Experimental and Applied Physics of the CTU in Prague, Horska 3a/22, CZ-12800 Praha2 - Albertov (Czech Republic)

    2011-01-15

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of {sup 6}LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) - based on the ROOT application - allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons ({sup 252}Cf and {sup 241}AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  19. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    Science.gov (United States)

    Bouchami, J.; Dallaire, F.; Gutiérrez, A.; Idarraga, J.; Král, V.; Leroy, C.; Picard, S.; Pospíšil, S.; Scallon, O.; Solc, J.; Suk, M.; Turecek, D.; Vykydal, Z.; Žemlièka, J.

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) — based on the ROOT application — allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons (252Cf and 241AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  20. FE-I4 Chip Development for Upgraded ATLAS Pixel Detector at LHC

    CERN Document Server

    Barbero, M; The ATLAS collaboration

    2010-01-01

    A new ATLAS pixel chip FE-I4 has been developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25 μm CMOS technology used for the current ATLAS pixel IC, FE-I3. FE-I4 architecture is based on an array of 80×336 pixels, each 50×250 μm2, consisting of analog and digital sections. The analog pixel section is designed for low power consumption and compatibility to several sensor candidates. It is based on a two-stage architecture with a pre-amp AC-coupled to a second stage of amplification. It features leakage current compensation circuitry, local 4-bit pre-amp feedback tuning and a discriminator locally adjusted through 5 configuration bits. The digital architecture is based on a 4-pixel unit called Pixel Digital Region (PDR) allowing for local storage of hits in 5-deep data buffers at pixel level for the duratio...

  1. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  2. The ATLAS Inner Detector commissioning and calibration

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Colijn, A.P.; de Jong, P.; Doxiadis, A.; Garitaonandia, H.; Gosselink, M.; Kayl, M.S.; Koffeman, E.; Lee, H.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Rijpstra, M.; Ruckstuhl, N.; Tsiakiris, M.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Vermeulen, J.C.; Vreeswijk, M.

    2010-01-01

    The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation,

  3. The ATLAS Planar Pixel Sensor R and D project

    International Nuclear Information System (INIS)

    Beimforde, M.

    2011-01-01

    Within the R and D project on Planar Pixel Sensor Technology for the ATLAS inner detector upgrade, the use of planar pixel sensors for highest fluences as well as large area silicon detectors is investigated. The main research goals are optimizing the signal size after irradiations, reducing the inactive sensor edges, adjusting the readout electronics to the radiation induced decrease of the signal sizes, and reducing the production costs. Planar n-in-p sensors have been irradiated with neutrons and protons up to fluences of 2x10 16 n eq /cm 2 and 1x10 16 n eq /cm 2 , respectively, to study the collected charge as a function of the irradiation dose received. Furthermore comparisons of irradiated standard 300μm and thin 140μm sensors will be presented showing an increase of signal sizes after irradiation in thin sensors. Tuning studies of the present ATLAS front end electronics show possibilities to decrease the discriminator threshold of the present FE-I3 read out chips to less than 1500 electrons. In the present pixel detector upgrade scenarios a flat stave design for the innermost layers requires reduced inactive areas at the sensor edges to ensure low geometric inefficiencies. Investigations towards achieving slim edges presented here show possibilities to reduce the width of the inactive area to less than 500μm. Furthermore, a brief overview of present simulation activities within the Planar Pixel R and D project is given.

  4. First MCM-D modules for the b-physics layer of the ATLAS Pixel Detector

    CERN Document Server

    Basken, O; Ehrmann, O; Gerlach, P; Grah, C; Gregor, I M; Linder, C; Meuser, S; Richardson, J; Topper, M; Wolf, J

    2000-01-01

    The innermost layer (b-physics layer) of the ATLAS Pixel Detector will consist of modules based on MCM-D technology. Such a module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 read out ICs, each serving 24* 160 pixel unit cells, a module controller chip (MCC), an optical transceiver and the local signal interconnection and power distribution busses. We show a prototype of such a module with additional test pads on both sides. The outer dimensions of the final module will be 21.4 mm*67.8 mm. The extremely high wiring density, which is necessary to interconnect the read-out chips, was achieved using a thin film copper/photo-BCB process on the pixel array. The bumping of the read out chips was done using electroplating PbSn. All dice are then attached by flip-chip assembly to the sensor diodes and the local busses. The focus of this paper is the description of the first results of such MCM-D-type modules. (11 refs).

  5. Angular resolution of the gaseous micro-pixel detector Gossip

    Science.gov (United States)

    Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-06-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  6. Angular resolution of the gaseous micro-pixel detector Gossip

    Energy Technology Data Exchange (ETDEWEB)

    Bilevych, Y.; Blanco Carballo, V.; Dijk, M. van; Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S. [Nikhef, P.O. Box 41882, 1009 DB Amsterdam (Netherlands); Rogers, M. [Radboud University, P.O. Box 9102, 6500HC Nijmegen (Netherlands); Romaniouk, A.; Veenhof, R. [CERN, CH-1211, Geneve 23 (Switzerland)

    2011-06-15

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO{sub 2} 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  7. Angular resolution of the gaseous micro-pixel detector Gossip

    International Nuclear Information System (INIS)

    Bilevych, Y.; Blanco Carballo, V.; Dijk, M. van; Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-01-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  8. Application of a new interconnection technology for the ATLAS pixel upgrade at SLHC

    CERN Document Server

    Macchiolo, A; Beimforde, M; Moser, H G; Nisius, R; Richter, R H

    2009-01-01

    We present an R&D activity aiming towards a new detector concept in the framework of the ATLAS pixel detector upgrade exploiting a vertical integration technology developed at the Fraunhofer Institute IZMMunich. The Solid-Liquid InterDiffusion (SLID) technique is investigated as an alternative to the bump-bonding process. We also investigate the extraction of the signals from the back of the read-out chip through Inter-Chip-Vias to achieve a higher fraction of active area with respect to the present ATLAS pixel module. We will present the layout and the first results obtained with a production of test-structures designed to investigate the SLID interconnection efficiency as a function of different parameters, i.e. the pixel size and pitch, as well as the planarity of the underlying layers.

  9. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  10. Beam tests of an integrated prototype of the ATLAS Forward Proton detector

    CERN Document Server

    INSPIRE-00397348

    2016-09-19

    The ATLAS Forward Proton (AFP) detector is intended to measure protons scattered at small angles from the ATLAS interaction point. To this end, a combination of 3D Silicon pixel tracking modules and Quartz-Cherenkov time-of-flight (ToF) detectors is installed 210m away from the interaction point at both sides of ATLAS. Beam tests with an AFP prototype detector combining tracking and timing sub-detectors and a common readout have been performed at the CERN-SPS test-beam facility in November 2014 and September 2015 to complete the system integration and to study the detector performance. The successful tracking-timing integration was demonstrated. Good tracker hit efficiencies above 99.9% at a sensor tilt of 14{\\deg}, as foreseen for AFP, were observed. Spatial resolutions in the short pixel direction with 50 {\\mu}m pitch of 5.5 +/- 0.5 {\\mu}m per pixel plane and of 2.8 +/- 0.5 {\\mu}m for the full four-plane tracker at 14{\\deg} were found, largely surpassing the AFP requirement of 10 {\\mu}m. The timing detector...

  11. Evaluation of testing strategies for the radiation tolerant ATLAS n **+-in-n pixel sensor

    CERN Document Server

    Klaiber Lodewigs, Jonas M

    2003-01-01

    The development of particle tracker systems for high fluence environments in new high-energy physics experiments raises new challenges for the development, manufacturing and reliable testing of radiation tolerant components. The ATLAS pixel detector for use at the LHC, CERN, is designed to cover an active sensor area of 1.8 m**2 with 1.1 multiplied by 10 **8 read-out channels usable for a particle fluence up to 10 **1**5 cm**-**2 (1 MeV neutron equivalent) and an ionization dose up to 500 kGy of mainly charged hadron radiation. To cope with such a harsh environment the ATLAS Pixel Collaboration has developed a radiation hard n **+-in-n silicon pixel cell design with a standard cell size of 50 multiplied by 400 mum**2. Using this design on an oxygenated silicon substrate, sensor production has started in 2001. This contribution describes results gained during the development of testing procedures of the ATLAS pixel sensor and evaluates quality assurance procedures regarding their relevance for detector operati...

  12. Studies of the ATLAS Inner Detector material using $\\sqrt{s}=$13 TeV $pp$ collision data

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    The ATLAS Inner Detector comprises three different technologies: the Pixel detector (Pixel), the silicon strip tracker (SCT), and the transition radiation drift tube tracker (TRT). The material in the ATLAS Inner Detector is studied with several methods, using the $pp$ collision sample collected at $\\sqrt{s}=$13 TeV in 2015. The material within the innermost barrel regions of the ATLAS Inner Detector is studied using reconstructed hadronic interaction and photon conversion vertices from samples of minimum bias events. It was found that the description of the Insertable B-Layer, which is the new, innermost Pixel layer installed in 2014, in the geometry model was missing some material components. After updating the model, data and simulation show good agreement at the barrel region. The Pixel services (cables, cooling pipes, support trays) were modified between the Pixel and SCT detectors in 2014. The material in this region is also studied by investigating the efficiency with which tracks reconstructed only in...

  13. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Tetsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2016-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges arising from the increased hit rate will have to be solved by designing faster and more complex readout electronics that will also have to withstand unprecedented radiation doses. Developing such integrated circuit requires a significant R and D effort and resources, therefore a joint development project between several institutes (including ours) was started. This collaboration, named RD53, aims to develop a pixel readout chip suitable for ATLAS' and CMS' upgrades using a 65nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology are discussed. Most of the talk is allocated to presenting some of the circuits designed by our group (focusing on developments connected to RD53 collaboration), along with their performance measurement results.

  14. Studies on MCM-D pixel-detector-modules

    CERN Document Server

    Flick, T; Gerlach, P; Grah, C; Mättig, P; Rohe, T

    2003-01-01

    In the context of the development of the ATLAS-pixel-detector, a technology for building up the high density interconnects has been studied, the MCM-D (multichip module deposited) technology. Results of building up first assemblies have been reported. MCM-D technology allows to build up assemblies with uniformly segmented sensors. Especially the use of 'equal-sized(-bricked)' sensor geometry has been studied.

  15. High-voltage pixel sensors for ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Perić, I., E-mail: ivan.peric@ziti.uni-heidelberg.de [Heidelberg University, Institute of Computer Engineering, Mannheim (Germany); Kreidl, C.; Fischer, P. [Heidelberg University, Institute of Computer Engineering, Mannheim (Germany); Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M. [CPPM, Marseille (France); Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B. [CERN, Geneve (Switzerland); Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A. [University of Geneve (Switzerland); and others

    2014-11-21

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  16. Pixel-Cluster Counting Luminosity Measurement in ATLAS

    CERN Document Server

    McCormack, William Patrick; The ATLAS collaboration

    2016-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measurements of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster-counting method are ...

  17. Pixel-Cluster Counting Luminosity Measurement In ATLAS

    CERN Document Server

    AUTHOR|(SzGeCERN)782710; The ATLAS collaboration

    2017-01-01

    A precision measurement of the delivered luminosity is a key component of the ATLAS physics program at the Large Hadron Collider (LHC). A fundamental ingredient of the strategy to control the systematic uncertainties affecting the absolute luminosity has been to compare the measure- ments of several luminometers, most of which use more than one counting technique. The level of consistency across the various methods provides valuable cross-checks as well as an estimate of the detector-related systematic uncertainties. This poster describes the development of a luminosity algorithm based on pixel-cluster counting in the recently installed ATLAS inner b-layer (IBL), using data recorded during the 2015 pp run at the LHC. The noise and background contamination of the luminosity-associated cluster count is minimized by a multi-component fit to the measured cluster-size distribution in the forward pixel modules of the IBL. The linearity, long-term stability and statistical precision of the cluster- counting method a...

  18. CMOS pixel development for the ATLAS experiment at HL-LHC

    CERN Document Server

    Rimoldi, Marco; The ATLAS collaboration

    2017-01-01

    To cope with the rate and radiation environment expected at the HL-LHC new approaches are being developed on CMOS pixel detectors, providing charge collection in a depleted layer. They are based on: HV enabling technologies that allow to use high depletion voltages, high resistivity wafers for large depletion depths; radiation hard processed with multiple nested wells to allow CMOS electronics embedded with sufficient shielding into the sensor substrate and backside processing and thinning for material minimization and backside voltage application. Since 2014, members of more than 20 groups in the ATLAS experiment are actively pursuing CMOS pixel R$\\&$D in an ATLAS Demonstrator program pursuing sensor design and characterizations. The goal of this program is to demonstrate that depleted CMOS pixels are suited for high rate, fast timing and high radiation operation at LHC. For this a number of technologies have been explored and characterized. In this presentation the challenges for the usage of CMOS pixel...

  19. Optimization of the thermal performances of the Alpine Pixel Detector

    CERN Document Server

    Zhang, Zhan; Di Ciaccio, Lucia

    The ATLAS (A Toroidal LHC ApparatuS) detector is the largest detector of the Large Hadron Collider (LHC). One of the most important goals of ATLAS was to search for the missing piece of the Standard Model, the Higgs boson that had been found in 2012. In order to keep looking for the unknowns, it is planned to upgrade the LHC. The High Luminosity LHC (HL-LHC) is a novel configuration of the accelerator, aiming at increasing the luminosity by a factor five or more above the nominal LHC design. In parallel with the accelerator upgrade also the ATLAS will be upgraded to cope with detector aging and to achieve the same or better performance under increased event rate and radiation dose expected at the HL-LHC. This thesis discusses a novel design for the ATLAS Pixel Detector called the "Alpine" layout for the HL-LHC. To support this design, a local support structure is proposed, optimized and tested with an advanced CO2 evaporative cooling system. A numerical program called “CoBra” simulating the twophase heat ...

  20. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. The algorithms depend heavily on accurate estimation of the position of particles as they traverse the inner detector elements. An artificial neural network algorithm is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The method recovers otherwise lost tracks in dense environments where particles are separated by distances comparable to the size of the detector read-out elements. Such environments are highly relevant for LHC run 2, e.g. in searches for heavy resonances. Within the scope of run 2 track reconstruction performance and upgrades, the robustness of the neural network algorithm will be presented. The robustness has been studied by evaluating the stability of the algorithm’s performance under a range of variations in the pixel detector conditions.

  1. The phase-II ATLAS pixel tracker upgrade: layout and mechanics.

    CERN Document Server

    Sharma, Abhishek; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment will upgrade its tracking detector during the Phase-II LHC shutdown, to better take advantage of the increased luminosity of the HL-LHC. The upgraded tracker will consist of silicon-strip modules surrounding a pixel detector, and will likely cover an extended eta range, perhaps as far as |eta|<4.0. A number of layout and supporting-structure options are being considered for the pixel detector, with the final choice expected to be made in early 2017. The proposed supporting structures are based on lightweight, highly-thermally-conductive carbon-based materials and are cooled by evaporative carbon dioxide. The various layouts will be described and a description of the supporting structures will be presented, along with results from testing of prototypes.

  2. Diamond Pixel Detectors and 3D Diamond Devices

    International Nuclear Information System (INIS)

    Venturi, N.

    2016-01-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  3. Development of the MCM-D technique for pixel detector modules

    CERN Document Server

    Grah, Christian

    2005-01-01

    This thesis treats a copper--polymer based thin film technology, the MCM-D technique and its application when building hybrid pixel detector modules. The ATLAS experiment at the LHC will be equipped with a pixel detector system. The basic mechanical units of the pixel detector are multi chip modules. The main components of these modules are: 16 electronic chips, a controller chip and a large sensor tile, featuring more than 46000 sensor cells. MCM-D is a superior technique to build the necessary signal bus system and the power distribution system directly on the active sensor tile. In collaboration with the Fraunhofer Institute for Reliability and Microintegration, IZM, the thin film process is reviewed and enhanced. The multi layer system was designed and optimized for the interconnection system as well as for the 46000 pixel contacts. Laboratory measurements on prototypes prove that complex routing schemes for geometrically optimized single chips are suitable and have negligible influence on the front--end ...

  4. Module and Electronics Developments for the ATLAS ITK Pixel System

    CERN Document Server

    Rummler, Andr{e}; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown around 2025 by an all-silicon detector (Inner Tracker, ITk). The pixel detector will be composed by the five innermost layers, instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m^2, depending on the final layout choice that is expected to take place in early 2017. Different designs of planar, 3D, CMOS sensors are being investigated to identify the optimal technology for the different pixel layers. In parallel sensor-chip interconnection options are evaluated in collaboration with industrial partners to identify reliable technologies when employing 100-150 μm thin chips. While the new read-out chip is being developed by the RD53 Collaboration, the pixel off detector read-out electronics will be implemented in the frame...

  5. Module and Electronics Developments for the ATLAS ITK Pixel System

    CERN Document Server

    Nellist, Clara; The ATLAS collaboration

    2016-01-01

    ATLAS is preparing for an extensive modification of its detector in the course of the planned HL-LHC accelerator upgrade around 2025 which includes a replacement of the entire tracking system by an all-silicon detector (Inner Tracker, ITk). The five innermost layers of ITk will comprise of a pixel detector built of new sensor and readout electronics technologies to improve the tracking performance and cope with the severe HL-LHC environment in terms of occupancy and radiation. The total area of the new pixel system could measure up to 14 m$^{2}$, depending on the final layout choice that is expected to take place in early 2017. An intense R\\&D activity is taking place in the field of planar, 3D, CMOS sensors to identify the optimal technology for the different pixel layers. In parallel various sensor-chip interconnection options are explored to identify reliable technologies when employing 100-150~$\\mu$m thin chips. While the new read-out chip is being developed by the RD53 Collaboration, the pixel off de...

  6. Serial powering optimization for CMS and ATLAS pixel detectors within RD53 collaboration for HL-LHC: system level simulations and testing

    CERN Document Server

    Orfanelli, Stella; Hamer, Matthias; Hinterkeuser, F; Karagounis, M; Pradas Luengo, Alvaro; Marconi, Sara; Ruini, Daniele

    2017-01-01

    Serial powering is the baseline choice for low mass power distribution for the CMS and ATLAS HL-LHC pixel detectors. Two 2.0 A Shunt-LDO regulators are integrated in a prototype pixel chip implemented in 65-nm CMOS technology and used to provide constant supply voltages to its power domains from a constant input current. Performance results from testing prototype Shunt-LDO regulators are shown, including their behaviour after x-ray irradiation. The system level simulation studies, which had been performed with a detailed regulator design in a serially powered topology, have been validated.

  7. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Heller, C; The ATLAS collaboration

    2011-01-01

    ATLAS is one of the multipurpose experiments that records the products of the LHC proton-proton and heavy ion collisions. In order to reconstruct trajectories of charged particles produced in these collisions, ATLAS is equipped with a tracking system built using two different technologies, silicon planar sensors (pixel and microstrips) and drift-tube based detectors. Together they constitute the ATLAS Inner Detector, which is embedded in a 2 T axial field. Efficiently reconstructing tracks from charged particles traversing the detector, and precisely measure their momenta is of crucial importance for physics analyses. In order to achieve its scientific goals, an alignment of the ATLAS Inner Detector is required to accurately determine its more than 700,000 degrees of freedom. The goal of the alignment is set such that the limited knowledge of the sensor locations should not deteriorate the resolution of track parameters by more than 20% with respect to the intrinsic tracker resolution. The implementation of t...

  8. Characterization and Performance of Silicon n-in-p Pixel Detectors for the ATLAS Upgrades

    CERN Document Server

    Weigell, Philipp; Gallrapp, Christian; La Rosa, Alessandro; Macchiolo, Anna; Nisius, Richard; Pernegger, Heinz; Richter, Rainer

    2011-01-01

    The existing ATLAS Tracker will be at its functional limit for particle fluences of 10^15 neq/cm^2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. N-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 \\mu m thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current the ATLAS read-out chip FE-I3. The characterisation has been performed with the ATL...

  9. Development of a counting pixel detector for 'Digitales Roentgen'

    International Nuclear Information System (INIS)

    Lindner, M.

    2001-08-01

    The development of a single photon counting X-ray imaging detector for medical applications using hybrid pixel detectors is reported. The electronics development from the first prototype derived from detector development for particle physics experiments (ATLAS) to the imaging chip MPEC (multi picture element counters) for medical applications is described. This chip consists of 32 x 32 pixels of 200 μm x 200 μm size, each containing the complete read out electronics, i.e. an amplifier, two discriminators with adjustable thresholds and two 18-bit linear feedback shift-counters allowing energy windowing for contrast increase. Results on electronics performance are shown as well as measurements with several semiconductor materials (Si, GaAs, CdTe). Important aspects like detection efficiency, sensor homogeneity, linearity and spatial resolution are discussed. (orig.)

  10. CMOS pixel sensor development for the ATLAS experiment at the High Luminosity-LHC

    CERN Document Server

    Rimoldi, Marco; The ATLAS collaboration

    2017-01-01

    The current ATLAS Inner Detector will be replaced with a fully silicon based detector called Inner Tracker (ITk) before the start of the High Luminosity-LHC project (HL-LHC) in 2026. To cope with the harsh environment expected at the HL-LHC, new approaches are being developed for pixel detector based on CMOS pixel techology. Such detectors provide charge collection, analog and digital amplification in the same silicon bulk. The radiation hardness is obtained with multiple nested wells that have embedded the CMOS electronics with sufficient shielding. The goal of this programme is to demonstrate that depleted CMOS pixels are suitable for high rate, fast timing and high radiation operation at the LHC. A number of alternative solutions have been explored and characterised, and are presented in this document.

  11. Silicon Strip Detectors for the ATLAS sLHC Upgrade

    CERN Document Server

    Miñano, M; The ATLAS collaboration

    2011-01-01

    While the Large Hadron Collider (LHC) at CERN is continuing to deliver an ever-increasing luminosity to the experiments, plans for an upgraded machine called Super-LHC (sLHC) are progressing. The upgrade is foreseen to increase the LHC design luminosity by a factor ten. The ATLAS experiment will need to build a new tracker for sLHC operation, which needs to be suited to the harsh sLHC conditions in terms of particle rates. In order to cope with the increase in pile-up backgrounds at the higher luminosity, an all silicon detector is being designed. To successfully face the increased radiation dose, a new generation of extremely radiation hard silicon detectors is being designed. The left part of figure 1 shows the simulated layout for the ATLAS tracker upgrade to be installed in the volume taken up by the current ATLAS pixel, strip and transition radiation detectors. Silicon sensors with sufficient radiation hardness are the subject of an international R&D programme, working on pixel and strip sensors. The...

  12. Quality control on planar n-in-n pixel sensors — Recent progress of ATLAS planar pixel sensors

    International Nuclear Information System (INIS)

    Klingenberg, R.

    2013-01-01

    To extend the physics reach of the Large Hadron Collider (LHC), upgrades to the accelerator are planned which will increase the peak luminosity by a factor 5–10. To cope with the increased occupancy and radiation damage, the ATLAS experiment plans to introduce an all-silicon inner tracker with the high luminosity upgrade (HL-LHC). To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Upgrade Planar Pixel Sensor (PPS) R and D Project was established. Main areas of research are the performance of planar pixel sensors at highest fluences, the exploration of possibilities for cost reduction to enable the instrumentation of large areas, the achievement of slim or active edges to provide low geometric inefficiencies without the need for shingling of modules and the investigation of the operation of highly irradiated sensors at low thresholds to increase the efficiency. The Insertable b-layer (IBL) is the first upgrade project within the ATLAS experiment and will employ a new detector layer consisting of silicon pixel sensors, which were improved and prototyped in the framework of the planar pixel sensor R and D project. A special focus of this paper is the status of the development and testing of planar n-in-n pixel sensors including the quality control of the on-going series production and postprocessing of sensor wafers. A high yield of produced planar sensor wafers and FE-I4 double chip sensors after first steps of post-processing including under bump metallization and dicing is observed. -- Highlights: ► Prototypes of irradiated planar n-in-n sensors have been successfully tested under laboratory conditions. ► A quality assurance programme on the series production of planar sensors for the IBL has started. ► A high yield of double chip sensors during the series production is observed which are compatible to the specifications to this detector component.

  13. ATLAS pixel IBL modules construction experience and developments for future upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gaudiello, A.

    2015-10-01

    The first upgrade of the ATLAS Pixel Detector is the Insertable B-Layer (IBL), installed in May 2014 in the core of ATLAS. Two different silicon sensor technologies, planar n-in-n and 3D, are used. Sensors are connected with the new generation 130 nm IBM CMOS FE-I4 read-out chip via solder bump-bonds. Production quality control tests were set up to verify and rate the performance of the modules before integration into staves. An overview of module design and construction, the quality control results and production yield will be discussed, as well as future developments foreseen for future detector upgrades.

  14. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    International Nuclear Information System (INIS)

    Lehmann, N.; Kersten, S.; Zeitnitz, C.; Karagounis, M.

    2016-01-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  15. Optical Links for the ATLAS Pixel Detector

    CERN Document Server

    Gregor, Ingrid-Maria

    In der vorliegenden Dissertation wird eine strahlentolerante optische Datenstrecke mit hoher Datenrate für den Einsatz in dem Hochenergiephysikexperiment Atlas am Lhc Beschleuniger entwickelt. Da die Lhc-Experimente extremen Strahlenbelastungen ausgesetzt sind, müssen die Komponenten spezielle Ansprüche hinsichtlich der Strahlentoleranz erfüllen. Die Qualifikation der einzelnen Bauteile wurde im Rahmen dieser Arbeit durchgeführt. Die zu erwartenden Fluenzen im Atlas Inner Detector für Silizium und Gallium Arsenid (GaAs) wurden berechnet. Siliziumbauteile werden einer Fluenz von bis zu 1.1.1015neq /cm2 in 1 MeV äquivalenten Neutronen ausgesetzt sein, wohingegen GaAs Bauteile bis zu 7.8.1015neq /cm2 ausgesetzt sein werden. Die Strahlentoleranz der einzelnen benötigten Komponenten wie z.B. der Laserdioden sowie der jeweiligen Treiberchips wurde untersucht. Sowohl die Photo- als auch die Laserdioden haben sich als strahlentolerant für die Fluenzen an dem vorgesehenen Radius erwiesen. Aus de...

  16. CMOS pixel development for the ATLAS experiment at HL-LHC

    CERN Document Server

    Risti{c}, Branislav; The ATLAS collaboration

    2017-01-01

    To cope with the rate and radiation environment expected at the HL-LHC new approaches are being developed on CMOS pixel detectors, providing charge collection in a depleted layer. They are based on: HV enabling technologies that allow to use high depletion voltages (HV-MAPS), high resistivity wafers for large depletion depths (HR-MAPS); radiation hard processed with multiple nested wells to allow CMOS electronics embedded with sufficient shielding into the sensor substrate and backside processing and thinning for material minimization and backside voltage application. Since 2014, members of more than 20 groups in the ATLAS experiment are actively pursuing CMOS pixel R&D in an ATLAS Demonstrator program pursuing sensor design and characterizations. The goal of this program is to demonstrate that depleted CMOS pixels, with monolithic or hybrid designs, are suited for high rate, fast timing and high radiation operation at LHC. For this a number of technologies have been explored and characterized. In this pr...

  17. SLID-ICV Vertical Integration Technology for the ATLAS Pixel Upgrades

    CERN Document Server

    INSPIRE-00219560; Moser, H.G.; Nisius, R.; Richter, R.H.; Weigell, P.

    We present the results of the characterization of pixel modules composed of 75 μm thick n-in-p sensors and ATLAS FE-I3 chips, interconnected with the SLID (Solid Liquid Inter-Diffusion) technology. This technique, developed at Fraunhofer-EMFT, is explored as an alternative to the bump-bonding process. These modules have been designed to demonstrate the feasibility of a very compact detector to be employed in the future ATLAS pixel upgrades, making use of vertical integration technologies. This module concept also envisages Inter-Chip-Vias (ICV) to extract the signals from the backside of the chips, thereby achieving a higher fraction of active area with respect to the present pixel module design. In the case of the demonstrator module, ICVs are etched over the original wire bonding pads of the FE-I3 chip. In the modules with ICVs the FE-I3 chips will be thinned down to 50 um. The status of the ICV preparation is presented.

  18. CMOS Pixel Development for the ATLAS Experiment at HL-LHC

    CERN Document Server

    Gaudiello, Andrea; The ATLAS collaboration

    2017-01-01

    To cope with the rate and radiation environment expected at the HL-LHC new approaches are being developed on CMOS pixel detectors, providing charge collection in a depleted layer. They are based on: HV enabling technologies that allow to use high depletion voltages (HV-MAPS), high resistivity wafers for large depletion depths (HR-MAPS); radiation hard processed with multiple nested wells to allow CMOS electronics embedded with sufficient shielding into the sensor substrate and backside processing and thinning for material minimization and backside voltage application. Since 2014, members of more than 20 groups in the ATLAS experiment are actively pursuing CMOS pixel R&D in an ATLAS Demonstrator program pursuing sensor design and characterizations. The goal of this program is to demonstrate that depleted CMOS pixels, with monolithic or hybrid designs, are suited for high rate, fast timing and high radiation operation at LHC. For this a number of technologies have been explored and characterized. In this pr...

  19. Development of a Micro Pixel Chamber for the ATLAS Upgrade

    CERN Document Server

    Ochi, Atsuhiko; Komai, Hidetoshi; Edo, Yuki; Yamaguchi, Takahiro

    2012-01-01

    The Micro Pixel Chamber (μ-PIC) is being developed a sacandidate for the muon system of the ATLAS detector for upgrading in LHC experiments. The μ-PIC is a micro-pattern gaseous detector that doesn’t have floating structure such as wires, mesh, or foil. This detector can be made by printed-circuit-board (PCB) technology, which is commercially available and suited for mass production. Operation tests have been performed under high flux neutrons under similar conditions to the ATLAS cavern. Spark rates are measured using several gas mixtures under 7 MeV neutron irradiation, and good properties were observed using neon, ethane, and CF4 mixture of gases.Using resistive materials as electrodes, we are also developing a new μ-PIC, which is not expected to damage the electrodes in the case of discharge sparks.

  20. Slim edge studies, design and quality control of planar ATLAS IBL pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Tobias

    2013-05-08

    One of the four large experiments at the LHC at CERN is the ATLAS detector, a multi purpose detector. Its pixel detector, composed of three layers, is the innermost part of the tracker. As it is closest to the interaction point, it represents a basic part of the track reconstruction. Besides the requested high resolution one main requirement is the radiation hardness. In the coming years the radiation damage will cause deteriorations of the detector performance. With the planned increase of the luminosity, especially after the upgrade to the High Luminosity LHC, this radiation damage will be even intensified. This circumstance necessitates a new pixel detector featuring improved radiation hard sensors and read-out chips. The present shutdown of the LHC is already utilized to insert an additional b-layer (IBL) into the existing ATLAS pixel detector. The current n-in-n pixel sensor design had to be adapted to the new read-out chip and the module specifications. The new stave geometry requests a reduction of the inactive sensor edge. In a prototype wafer production all modifications have been implemented. The sensor quality control was supervised which led to the decision of the final sensor thickness. In order to evaluate the performance of the sensor chip assemblies with an innovative slim edge design, they have been operated in test beam setups before and after irradiation. Furthermore, the quality control of the planar IBL sensor wafer production was supervised from the stage of wafer delivery to that before the flip chip process to ensure a sufficient amount of functional sensors for the module production.

  1. ATLAS Phase-II upgrade pixel data transmission development

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00111400; The ATLAS collaboration

    2017-01-01

    The current tracking system of the ATLAS experiment will be replaced by an all-silicon detector (ITk) in the course of the planned HL-LHC accelerator upgrade around 2025. The readout of the ITk pixel system will be most challenging in terms of data rate and readout speed. Simulation of the on-detector electronics indicates that the planned trigger rate of 1 MHz will require readout speeds up to 5.12 Gb/s per data link. The high-radiation environment precludes optical data transmission, so the first part of the data transmission has to be implemented electrically, over a 6-m distance between the pixel modules and the optical transceivers. Several high-speed electrical data transmission solutions involving small-gauge wire cables or flexible circuits have been prototyped and characterized. A combination of carefully-selected physical layers and aggressive signal conditioning are required to achieve the proposed specifications.

  2. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura

    2013-10-15

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  3. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    International Nuclear Information System (INIS)

    Gonella, Laura

    2013-10-01

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  4. Realisation of serial powering of ATLAS pixel modules

    CERN Document Server

    Stockmanns, Tobias; Fischer, P; Hügging, Fabian Georg; Peric, Ivan; Runólfsson, Ogmundur; Wermes, Norbert

    2004-01-01

    Modern hybrid pixel detectors as they will be used for the next generation of high energy collider experiments like LHC avail deep sub micron technology for the readout electronics. To operate chips in this technology low supply voltages of 2.0 V to 2.5 V and high currents to achieve the desired performance are needed. Due to the long and low mass supply cables this high current leads to a significant voltage drop so that voltage fluctuations at the chip result, when the supply current changes. Therefore the parallel connection of the readout electronics with the power supplies imposes severe constraints on a detector with respect to voltage fluctuations and cable mass. To bypass this problem a new concept of serially connecting modules in a supply chain was developed. The basic idea of the concept, the potential risk and ways to minimize these risks are presented. In addition, studies of the implementation of this technology as an alternative for a possible upgrade of the ATLAS pixel detector are shown. In p...

  5. Test Beam Results of Geometry Optimized Hybrid Pixel Detectors

    CERN Document Server

    Becks, K H; Grah, C; Mättig, P; Rohe, T

    2006-01-01

    The Multi-Chip-Module-Deposited (MCM-D) technique has been used to build hybrid pixel detector assemblies. This paper summarises the results of an analysis of data obtained in a test beam campaign at CERN. Here, single chip hybrids made of ATLAS pixel prototype read-out electronics and special sensor tiles were used. They were prepared by the Fraunhofer Institut fuer Zuverlaessigkeit und Mikrointegration, IZM, Berlin, Germany. The sensors feature an optimized sensor geometry called equal sized bricked. This design enhances the spatial resolution for double hits in the long direction of the sensor cells.

  6. Track parameter resolution study of a pixel only detector for LHC geometry and future high rate experiments

    Energy Technology Data Exchange (ETDEWEB)

    Blago, Michele Piero; Kar, Tamasi Rameshchandra; Schoening, Andre [Physikalisches Institut, Universitaet Heidelberg (Germany)

    2016-07-01

    Recent progress in pixel detector technology, for example using High Voltage-Monolithic Pixel Sensors (HV-MAPS), makes it feasible to construct an all-silicon pixel detector for large scale particle experiments like ATLAS and CMS or other future collider experiments. Preliminary studies have shown that nine layers of pixel sensors are sufficient to reliably reconstruct particle trajectories. The performance of such an all-pixel detector is studied based on a full GEANT simulation for high luminosity conditions at the upgraded LHC. Furthermore, the ability of an all-pixel detector to form trigger decisions using a special triplet pixel layer design is studied. Such a design could be used to reconstruct all tracks originating from the proton-proton interaction at the first hardware level at 40 MHz collision frequency.

  7. Ultra-light and stable composite structure to support and cool the ATLAS pixel detector barrel electronics modules

    International Nuclear Information System (INIS)

    Olcese, M.; Caso, C.; Castiglioni, G.; Cereseto, R.; Cuneo, S.; Dameri, M.; Gemme, C.; Glitza, K.-W.; Lenzen, G.; Mora, F.; Netchaeva, P.; Ockenfels, W.; Piano, E.; Pizzorno, C.; Puppo, R.; Rebora, A.; Rossi, L.; Thadome, J.; Vernocchi, F.; Vigeolas, E.; Vinci, A.

    2004-01-01

    The design of an ultra light structure, the so-called 'stave', to support and cool the sensitive elements of the Barrel Pixel detector, the innermost part of the ATLAS detector to be installed on the new Large Hadron Collider at CERN (Geneva), is presented. Very high-dimensional stability, minimization of the material and ability of operating 10 years in a high radiation environment are the key design requirements. The proposed solution consists of a combination of different carbon-based materials (impregnated carbon-carbon, ultra high modulus carbon fibre composites) coupled to a thin aluminum tube to form a very light support with an integrated cooling channel. Our design has proven to successfully fulfil the requirements. The extensive prototyping and testing program to fully qualify the design and release the production are discussed

  8. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    Cormier, Kyle James Read; The ATLAS collaboration

    2016-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  9. The ATLAS tracker strip detector for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00512833; The ATLAS collaboration

    2017-01-01

    As part of the ATLAS upgrades for the High Luminsotiy LHC (HL-LHC) the current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk). The ITk will consist of two main components: semi-conductor pixels at the innermost radii, and silicon strips covering larger radii out as far as the ATLAS solenoid magnet including the volume currently occupied by the ATLAS Transition Radiation Tracker (TRT). The primary challenges faced by the ITk are the higher planned read out rate of ATLAS, the high density of charged particles in HL-LHC conditions for which tracks need to be resolved, and the corresponding high radiation doses that the detector and electronics will receive. The ITk strips community is currently working on designing and testing all aspects of the sensors, readout, mechanics, cooling and integration to meet these goals and a Technical Design Report is being prepared. This talk is an overview of the strip detector component of the ITk, highlighting the current status and the road ahead.

  10. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Henss, Tobias

    2008-12-01

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts

  11. The Phase II ATLAS ITk Pixel Upgrade

    CERN Document Server

    Terzo, Stefano; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the "ITk" (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and and ring-shaped supports in the endcap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m$^2$ , depending on the final layout choice, which is expected to take place in early 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel-endcap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as $|\\eta| < 4$. Supporting structures will be ...

  12. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to |eta| < 3.2 and two to |eta| < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions...

  13. The Phase-II ATLAS ITk Pixel Upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349918; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase~2 shutdown (foreseen to take place around 2025) by an all-silicon detector called the ``ITk'' (Inner Tracker). The innermost portion of ITk will consist of a pixel detector with five layers in the barrel region and ring-shaped supports in the end-cap regions. It will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation levels. The new pixel system could include up to 14 $\\mathrm{m^2}$ of silicon, depending on the final layout, which is expected to be decided in 2017. Several layout options are being investigated at the moment, including some with novel inclined support structures in the barrel end-cap overlap region and others with very long innermost barrel layers. Forward coverage could be as high as |eta| $<4$. Supporting structures will be based on low mass, highly stabl...

  14. The radiation environment in the ATLAS inner detector

    CERN Document Server

    Dawson, I

    2000-01-01

    The radiation environment in the inner detector has been simulated using the particle transport program FLUKA with a recent description of the ATLAS experiment. Given in this paper are particle fluences and doses at positions relevant to the three inner detector subsystems; the Pixel, SCT and TRT detectors. In addition, studies are reported on in which (1) information concerning the optimization of the inner detector neutron-moderators is obtained and (2) the impact of including additional vacuum-equipment material is assessed. (19 refs).

  15. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Benoit, Mathieu; The ATLAS collaboration

    2017-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the “ITk” (Inner Tracker). The innermost portion of the ITk will consist of a pixel detector with stave-like support structures in the most central region and ring-shaped supports in the endcap regions; there may also be novel inclined support structures in the barrel-endcap overlap regions. The new detector could have as much as 14 m2 of sensitive silicon. Support structures will be based on low mass, highly stable and highly thermally conductive carbon-based materials cooled by evaporative carbon dioxide. The ITk will be instrumented with new sensors and readout electronics to provide improved tracking performance compared to the current detector. All the module components must be performant enough and robust enough to cope with the expected high particle multiplicity and severe radiation background of the High-Luminosity LHC. Readout...

  16. A review of advances in pixel detectors for experiments with high rate and radiation

    Science.gov (United States)

    Garcia-Sciveres, Maurice; Wermes, Norbert

    2018-06-01

    The large Hadron collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the high luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.

  17. A new strips tracker for the upgraded ATLAS ITk detector

    CERN Document Server

    David, Claire; The ATLAS collaboration

    2017-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  18. Pre- and post-irradiation performance of FBK 3D silicon pixel detectors for CMS

    International Nuclear Information System (INIS)

    Krzywda, A.; Alagoz, E.; Bubna, M.; Obertino, M.; Solano, A.; Arndt, K.; Uplegger, L.; Betta, G.F. Dalla; Boscardin, M.; Ngadiuba, J.; Rivera, R.; Menasce, D.; Moroni, L.; Terzo, S.; Bortoletto, D.; Prosser, A.; Adreson, J.; Kwan, S.; Osipenkov, I.; Bolla, G.

    2014-01-01

    In preparation for the tenfold luminosity upgrade of the Large Hadron Collider (the HL-LHC) around 2020, three-dimensional (3D) silicon pixel sensors are being developed as a radiation-hard candidate to replace the planar ones currently being used in the CMS pixel detector. This study examines an early batch of FBK sensors (named ATLAS08) of three 3D pixel geometries: 1E, 2E, and 4E, which respectively contain one, two, and four readout electrodes for each pixel, passing completely through the bulk. We present electrical characteristics and beam test performance results for each detector before and after irradiation. The maximum fluence applied is 3.5×10 15 n eq /cm 2

  19. Study of FPGA and GPU based pixel calibration for ATLAS IBL

    CERN Document Server

    Dopke, J; The ATLAS collaboration; Flick, T; Gabrielli, A; Grosse-Knetter, J; Krieger, N; Kugel, A; Polini, A; Schroer, N

    2010-01-01

    The insertable B-layer (IBL) is a new stage of the ATLAS pixel detector to be installed around 2014. 12 million pixel are attached to new FE-I4 readout ASICs, each controlling 26680 pixel. Compared to the existing FE-I3 based detector the new system features higher readout speed of 160Mbit/s per ASIC and simplified control. For calibration defined charges are applied to all pixels and the resulting time-over-threshold values are evaluated. In the present system multiple sets of two custom VME cards which employ a combination of FPGA and DSP technology are used for I/O interfacing, formatting and processing. The execution time of 51s to perform a threshold scan on a FE-I3 module of 46080 pixel is composed of 8s control, 29s transfer, 7.5s histogramming and 7s analysis. Extrapolating to FE-I4 the times per module of 53760 pixels are 12ms, 5.8s, 9.4s and 8.3s, a total of 23.5s. We present a proposal for a novel approach to the dominant tasks for FE-I4: histogramming and ananlysis. An FPGA-based histogramming uni...

  20. Implementation and performance of the ATLAS pixel clustering neural networks

    CERN Document Server

    Gagnon, Louis-Guillaume; The ATLAS collaboration

    2018-01-01

    The high particle densities produced by the Large Hadron Collider (LHC) mean that in the ATLAS pixel detector the clusters of deposited charge start to merge. A neural network-based approach is used to estimate the number of particles contributing to each cluster, and to accurately estimate the hit positions even in the presence of multiple particles. This talk thoroughly describes the algorithm and its implementation as well as present a set of benchmark performance measurements. The problem is most acute in the core of high-momentum jets where the average separation between particles becomes comparable to the detector granularity. This is further complicated by the high number of interactions per bunch crossing. Both these issues will become worse as the Run 3 and HL-LHC programme require analysis of higher and higher pT jets, while the interaction multiplicity rises. Future prospects in the context of LHC Run 3 and the upcoming ATLAS inner detector upgrade are also discussed.

  1. Pixel detector modules using MCM-D technology

    CERN Document Server

    Grah, C

    2001-01-01

    For the upcoming ATLAS-experiment at CERN it is planned to build a large area pixel detector, providing more than 100*10/sup 6/ sensor cells. For the innermost layer, the B-physics layer, it is planned to use MCM-D technology to perform the signal interconnections and power distribution on the modules. Focus of this paper is to give an introduction to this technology and present measurements on single chip MCM-D assemblies and a full scale MCM-D module prototype. (10 refs).

  2. Optical readout and control interface for the BTeV pixel vertex detector

    CERN Document Server

    Vergara-Limon, S; Sheaff, M; Vargas, M A

    2002-01-01

    Optical links will be used for sending data back and forth from the counting room to the detector in the data acquisition systems for future high energy physics experiments, including ATLAS and CMS in the LHC at CERN (Switzerland) and BTeV at Fermilab (USA). This is because they can be ultra-high speed and are relatively immune to electro-magnetic interference (EMI). The baseline design for the BTeV Pixel Vertex Detector includes two types of optical link, one to control and monitor and the other to read out the hit data from the multi-chip modules on each half-plane of the detector. The design and performance of the first prototype of the Optical Readout and Control Interface for the BTeV Pixel Vertex Detector is described.

  3. Development of the MCM-D technique for pixel detector modules

    International Nuclear Information System (INIS)

    Grah, C.

    2005-03-01

    This thesis treats a copper--polymer based thin film technology, the MCM-D technique and its application when building hybrid pixel detector modules. The ATLAS experiment at the LHC will be equipped with a pixel detector system. The basic mechanical units of the pixel detector are multi chip modules. The main components of these modules are: 16 electronic chips, a controller chip and a large sensor tile, featuring more than 46000 sensor cells. MCM-D is a superior technique to build the necessary signal bus system and the power distribution system directly on the active sensor tile. In collaboration with the Fraunhofer Institute for Reliability and Microintegration, IZM, the thin film process is reviewed and enhanced. The multi layer system was designed and optimized for the interconnection system as well as for the 46000 pixel contacts. Laboratory measurements on prototypes prove that complex routing schemes for geometrically optimized single chips are suitable and have negligible influence on the front--end chips performance. A full scale MCM-D module has been built and it is shown that the technology is suitable to build pixel detector modules. Further tests include the investigation of the impact of hadronic irradiation on the thin film layers. Single chip assemblies have been operated in a test beam environment and the feasibility of the optimization of the sensors could be shown. A review on the potential as well as the perspective for the MCM-D technique in future experiments is given

  4. Performance of irradiated thin n-in-p planar pixel sensors for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Savić, N.; Beyer, J.; Hiti, B.; Kramberger, G.; La Rosa, A.; Macchiolo, A.; Mandić, I.; Nisius, R.; Petek, M.

    2017-12-01

    The ATLAS collaboration will replace its tracking detector with new all silicon pixel and strip systems. This will allow to cope with the higher radiation and occupancy levels expected after the 5-fold increase in the luminosity of the LHC accelerator complex (HL-LHC). In the new tracking detector (ITk) pixel modules with increased granularity will implement to maintain the occupancy with a higher track density. In addition, both sensors and read-out chips composing the hybrid modules will be produced employing more radiation hard technologies with respect to the present pixel detector. Due to their outstanding performance in terms of radiation hardness, thin n-in-p sensors are promising candidates to instrument a section of the new pixel system. Recently produced and developed sensors of new designs will be presented. To test the sensors before interconnection to chips, a punch-through biasing structure was implemented. Its design was optimized to decrease the possible tracking efficiency losses observed. After irradiation, they were caused by the punch-through biasing structure. A sensor compatible with the ATLAS FE-I4 chip with a pixel size of 50×250 μm2, subdivided into smaller pixel implants of 30×30 μm2 size was designed to investigate the performance of the 50×50 μm2 pixel cells foreseen for the HL-LHC. Results on sensor performance of 50×250 and 50×50 μm2 pixel cells in terms of efficiency, charge collection and electric field properties are obtained with beam tests and the Transient Current Technique.

  5. Pixel electronics for the ATLAS experiment

    International Nuclear Information System (INIS)

    Fischer, P.

    2001-01-01

    The ATLAS experiment at LHC will use 3 barrel layers and 2x5 disks of silicon pixel detectors as the innermost elements of the semiconductor tracker. The basic building blocks are pixel modules with an active area of 16.4 mmx60.8 mm which include an n + on n-type silicon sensor and 16 VLSI front-end (FE) chips. Every FE chip contains a low power, high speed charge sensitive preamplifier, a fast discriminator, and a readout system which operates at the 40 MHz rate of LHC. The addresses of hit pixels (as well as a low resolution pulse height information) are stored on the FE chips until arrival of a level 1 trigger signal. Hits are then transferred to a module controller chip (MCC) which collects the data of all 16 FE chips, builds complete events and sends the data through two optical links to the data acquisition system. The MCC receives clock and data through an additional optical link and provides timing and configuration information for the FE chips. Two additional chips are used to amplify and decode the pin diode signal and to drive the VCSEL laser diodes of the optical links

  6. Detector control system of the ATLAS insertable B-Layer

    International Nuclear Information System (INIS)

    Kersten, S.; Kind, P.; Lantzsch, K.; Maettig, P.; Zeitnitz, C.; Gensolen, F.; Citterio, M.; Meroni, C.; Verlaat, B.; Kovalenko, S.

    2012-01-01

    To improve tracking robustness and precision of the ATLAS inner tracker, an additional, fourth pixel layer is foreseen, called Insertable B-Layer (IBL). It will be installed between the innermost present Pixel layer and a new, smaller beam pipe and is presently under construction. As, once installed into the experiment, no access is possible, a highly reliable control system is required. It has to supply the detector with all entities required for operation and protect it at all times. Design constraints are the high power density inside the detector volume, the sensitivity of the sensors against heat-ups, and the protection of the front end electronics against transients. We present the architecture of the control system with an emphasis on the CO 2 cooling system, the power supply system, and protection strategies. As we aim for a common operation of Pixel and IBL detector, the integration of the IBL control system into the Pixel control system will also be discussed. (authors)

  7. The status of the ATLAS inner detector

    CERN Document Server

    Moser, H G

    2004-01-01

    The ATLAS inner detector uses three subdetectors for tracking of charged particles from r = 5 cm to r = 107 cm inside a solenoid magnet of 2 T. The innermost detector is a high resolution silicon pixel detector. It provides precise 3D tracking information close to the interaction point allowing secondary vertex reconstruction and hence b identification. It is followed by the SCT, a large area tracking device based on silicon strip detectors. The TRT, based on straw tubes, provides continuous tracking and improves electron identification due to its ability to detect transition radiation. These detectors are presently under construction. This report presents a brief report on the design, construction status and expected performance of the inner detector.

  8. Semiconductor tracker final integration and commissioning in the ATLAS detector

    International Nuclear Information System (INIS)

    Robichaud-Veronneau, Andree

    2008-01-01

    The SemiConductor Tracker (SCT) is part of the Inner Detector of the ATLAS experiment at the LHC. It is located between the Pixel detector and the Transition Radiation Tracker (TRT). During 2006 and 2007, the SCT was installed in its final position inside the ATLAS detector. The SCT barrel was lowered in 2006 and was tested for connectivity and noise. Common tests with the TRT to look for pick-up noise and grounding issues were also performed. The SCT end-caps were installed during summer 2007 and will undergo similar checks. The results from the various tests done before and after installation will be presented here.

  9. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bomben, M., E-mail: marco.bomben@cern.ch [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); Bosisio, L. [Università di Trieste, Dipartimento di Fisica and INFN, Trieste (Italy); Calderini, G. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa (Italy); INFN Sez. di Pisa, Pisa (Italy); Chauveau, J. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Université de Genève, Genève (Switzerland); Marchiori, G. [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy)

    2013-12-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.

  10. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Bomben, M.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2013-01-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown

  11. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Science.gov (United States)

    Da Via, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Chris; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Vianello, Elisa; Zorzi, Nicola

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ˜4 μm. Since 2009 four industrial partners of the 3D ATLAS R&D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ˜4 cm2. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  12. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Da Via, Cinzia [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Boscardin, Maurizio [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy); Dalla Betta, Gian-Franco, E-mail: dallabe@disi.unitn.it [DISI, Universita degli Studi di Trento and INFN, Via Sommarive 14, I-38123 Trento (Italy); Darbo, Giovanni [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Fleta, Celeste [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Gemme, Claudia [INFN Sezione di Genova, Via Dodecaneso 33, I-14146 Genova (Italy); Grenier, Philippe [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Grinstein, Sebastian [Institut de Fisica d' Altes Energies (IFAE) and ICREA, Universitat Autonoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona (Spain); Hansen, Thor-Erik [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Hasi, Jasmine; Kenney, Chris [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kok, Angela [SINTEF MiNaLab, Blindern, N-0314 Oslo (Norway); Parker, Sherwood [University of Hawaii, c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Pellegrini, Giulio [Centro Nacional de Microelectronica, CNM-IMB (CSIC), Barcelona E-08193 (Spain); Vianello, Elisa; Zorzi, Nicola [Fondazione Bruno Kessler, FBK-CMM, Via Sommarive 18, I-38123 Trento (Italy)

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as {approx}4 {mu}m. Since 2009 four industrial partners of the 3D ATLAS R and D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of {approx}4 cm{sup 2}. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  13. Test-beam activities and results for the ATLAS ITk pixel detector

    Science.gov (United States)

    Bisanz, T.

    2017-12-01

    The Phase-II upgrade of the LHC aims at an increase of the instantaneous luminosity up to about 5×1034 cm-2 s-1. To cope with the resulting challenges the current Inner Detector will be replaced by an all-silicon Inner Tracker (ITk) system. The Pixel Detector will have to deal with occupancies of about 300 hits/FE/s as well as a fluence of around 2×1016 neq cm-2. Various sensor layouts are under development, aiming at providing a high performance, cost effective pixel instrumentation to cover an active area of about 10 m2. These range from thin planar silicon, 3D silicon, to active CMOS sensors. After extensive characterization of the sensors in the lab, their charge collection properties and hit efficiency are measured in common testbeam campaigns, which provide valuable feedback for improvements of the layout. Testbeam measurements of the final prototypes will be used for the decision of which sensor types will be installed in ITk. The setups used in the ITk Pixel testbeam campaigns will be presented, including the common track reconstruction and analysis software. Results from the latest measurements will be shown, highlighting some of the developments and challenges for the ITk Pixel sensors.

  14. CMOS pixel sensor development for the ATLAS experiment at the High Luminosity-LHC

    Science.gov (United States)

    Rimoldi, M.

    2017-12-01

    The current ATLAS Inner Detector will be replaced with a fully silicon based detector called Inner Tracker (ITk) before the start of the High Luminosity-LHC project (HL-LHC) in 2026. To cope with the harsh environment expected at the HL-LHC, new approaches are being developed for pixel detectors based on CMOS technology. Such detectors can provide charge collection, analog amplification and digital processing in the same silicon wafer. The radiation hardness is improved thanks to multiple nested wells which give the embedded CMOS electronics sufficient shielding. The goal of this programme is to demonstrate that depleted CMOS pixels are suitable for high rate, fast timing and high radiation operation at the LHC . A number of alternative solutions have been explored and characterised. In this document, test results of the sensors fabricated in different CMOS processes are reported.

  15. Test-beam activities and results for the ATLAS ITk pixel detector

    CERN Document Server

    Bisanz, Tobias; The ATLAS collaboration

    2017-01-01

    The Phase-II upgrade of the LHC will result in an increase of the instantaneous luminosity up to about 5×1034 cm−2s−1. To cope with the challenges the current Inner Detector will be replaced by an all-silicon Inner Tracker (ITk) system. The Pixel Detector will have to deal with occupancies of about 300~hits/FE/s as well as a fluence of 2×1016neqcm−2. Various sensor layouts are under development, aiming at providing a high performance, cost effective pixel instrumentation to cover an active area of about 10~m2. These range from thin planar silicon, over 3D silicon, to active CMOS sensors. After extensive characterization of the sensors in the lab, their charge collection properties and hit efficiency are measured in common testbeam campaigns, which provide valuable feedback for improvements of the layout. Testbeam measurements of the final prototypes will be used for the decision of which sensor types will be installed in ITk. The setups used in the ITk Pixel testbeam campaigns will be presented, inclu...

  16. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    CERN Document Server

    Beimforde, Michael

    To extend the discovery potential of the experiments at the LHC accelerator a luminosity upgrade towards the super LHC (sLHC) with an up to ten-fold peak luminosity is planned. Within this thesis a new module concept was developed and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector.

  17. Tracking and vertexing with the ATLAS detector at the LHC

    International Nuclear Information System (INIS)

    Hirsch, F.

    2011-01-01

    The Inner Detector of the ATLAS experiment at the Large Hadron Collider at CERN contains three tracking systems: The silicon Pixel Detector, the Silicon Microstrip Tracker and the Transition Radiation Tracker. In combination these detectors provide excellent track and vertex reconstruction efficiencies and resolutions. This paper describes studies which show the performance of track and vertex reconstruction on data collected at 7 TeV center-of-mass energy.

  18. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  19. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  20. Radiation hardness and timing studies of a monolithic TowerJazz pixel design for the new ATLAS Inner Tracker

    Science.gov (United States)

    Riegel, C.; Backhaus, M.; Van Hoorne, J. W.; Kugathasan, T.; Musa, L.; Pernegger, H.; Riedler, P.; Schaefer, D.; Snoeys, W.; Wagner, W.

    2017-01-01

    A part of the upcoming HL-LHC upgrade of the ATLAS Detector is the construction of a new Inner Tracker. This upgrade opens new possibilities, but also presents challenges in terms of occupancy and radiation tolerance. For the pixel detector inside the inner tracker, hybrid modules containing passive silicon sensors and connected readout chips are presently used, but require expensive assembly techniques like fine-pitch bump bonding. Silicon devices fabricated in standard commercial CMOS technologies, which include part or all of the readout chain, are also investigated offering a reduced cost as they are cheaper per unit area than traditional silicon detectors. If they contain the full readout chain, as for a fully monolithic approach, there is no need for the expensive flip-chip assembly, resulting in a further cost reduction and material savings. In the outer pixel layers of the ATLAS Inner Tracker, the pixel sensors must withstand non-ionising energy losses of up to 1015 n/cm2 and offer a timing resolution of 25 ns or less. This paper presents test results obtained on a monolithic test chip, the TowerJazz 180nm Investigator, towards these specifications. The presented program of radiation hardness and timing studies has been launched to investigate this technology's potential for the new ATLAS Inner Tracker.

  1. The CMS Pixel Detector Upgrade and R\\&D for the High Luminosity LHC

    CERN Document Server

    Viliani, Lorenzo

    2017-01-01

    The High Luminosity Large Hadron Collider (HL-LHC) at CERN is expected to collide protons at a centre-of-mass energy of 14\\,TeV and to reach an unprecedented peak instantaneous luminosity of $5 \\times 10^{34}\\,{\\rm cm}^{-2} {\\rm s}^{-1}$ with an average number of pileup events of 140. This will allow the ATLAS and CMS experiments to collect integrated luminosities of up to $3000\\,{\\rm fb}^{-1}$ during the project lifetime. To cope with this extreme scenario the CMS detector will be substantially upgraded before starting the HL-LHC, a plan known as CMS Phase-2 Upgrade. In the upgrade the entire CMS silicon pixel detector will be replaced and the new detector will feature increased radiation hardness, higher granularity and capability to handle higher data rate and longer trigger latency. In this report the Phase-2 Upgrade of the CMS silicon pixel detector will be reviewed, focusing on the features of the detector layout and on the development of new pixel devices.

  2. Dead-time free pixel readout architecture for ATLAS front-end IC

    CERN Document Server

    Einsweiler, Kevin F; Kleinfelder, S A; Luo, L; Marchesini, R; Milgrome, O; Pengg, F X

    1999-01-01

    A low power sparse scan readout architecture has been developed for the ATLAS pixel front-end IC. The architecture supports a dual discriminator and extracts the time over threshold (TOT) information along with a 2-D spatial address $9 of the hits associating them with a unique 7-bit beam crossing number. The IC implements level-1 trigger filtering along with event building (grouping together all hits in a beam crossing) in the end of column (EOC) buffer. The $9 events are transmitted over a 40 MHz serial data link with the protocol supporting buffer overflow handling by appending error flags to events. This mixed-mode full custom IC is implemented in 0.8 mu HP process to meet the $9 requirements for the pixel readout in the ATLAS inner detector. The circuits have been tested and the IC provides dead-time-less ambiguity free readout at 40 MHz data rate.

  3. A 3D photograph with 92 million pixels for tagging particles

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    Where was a given particle born? How can we tag it precisely enough to be able to then follow it along its track and through its decays? This is the job of the pixel detector installed at the heart of the ATLAS detector, only centimeters away from the LHC collisions. In order to improve its identification and tagging capabilities, the ATLAS collaboration has recently taken a big step towards the completion of the upgrade of its Pixel detector, which will include the insertion of a brand-new layer of 12 million pixels.   The 7 metre long beryllium beam pipe inserted in the carbon-fibre positioning tool is being prepared ready for the new innermost layer of the Pixel detector to be mounted. Photo: ATLAS Collaboration. With its three layers and 80 million channels concentrated in 2.2 square metres, the ATLAS pixel detector was already the world’s largest pixel-based system used in particle physics. Its excellent performance was instrumental in the discovery of the Higgs boson in July ...

  4. Design and development of the IBL-BOC firmware for the ATLAS Pixel IBL optical datalink system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268

    The Insertable $b$-Layer (IBL) is the first upgrade of the ATLAS Pixel detector at the LHC. It will be installed in the Pixel detector in 2013. The IBL will use a new sensor and readout technology, therefore the readout components of the current Pixel detector are redesigned for the readout of the IBL. In this diploma thesis the design and development of the firmware for the new IBL Back-of-Crate card (IBL-BOC) are described. The IBL-BOC is located on the off-detector side of the readout and performs the optical-electrical conversion and vice versa for the optical connection to and from the detector. To process the data transmitted to and received from the detector, the IBL-BOC uses multiple Field Programmable Gate Arrays (FPGA). The transmitted signal is a 40~Mb/s BiPhase Mark (BPM) encoded data stream, providing the timing, trigger and control to the detector. The received signal is a 160~Mb/s 8b10b encoded data stream, containing data from the detector. The IBL-BOC encodes and decodes these data streams. T...

  5. Novel time-dependent alignment of the ATLAS Inner Detector in the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration

    2016-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require an unbiased and high resolution measurement of the charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of the alignment of its components. For the LHC Run 2, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). ATLAS Inner Detector alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-detectors. In particular, a mechanical distortion of the IBL staves up to 20 μm and a vertical displacement of the Pixel detector of ~6 μm have been observed during data-taking. The techniques used to correct for these effects and to match the required Inner Detector performance will be presented.

  6. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Beimforde, Michael

    2010-07-19

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 10{sup 35}/cm{sup 2}s{sup 1} is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).10{sup 16} 1-MeV-neutrons per square centimeter (n{sub eq}/cm{sup 2}). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 {mu}m and 150 {mu}m proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive

  7. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    Beimforde, Michael

    2010-01-01

    To extend the discovery potential of the experiments at the LHC accelerator a two phase luminosity upgrade towards the super LHC (sLHC) with a maximum instantaneous luminosity of 10 35 /cm 2 s 1 is planned. Retaining the reconstruction efficiency and spatial resolution of the ATLAS tracking detector at the sLHC, new pixel modules have to be developed that have a higher granularity, can be placed closer to the interaction point, and allow for a cost-efficient coverage of a larger pixel detector volume compared to the present one. The reduced distance to the interaction point calls for more compact modules that have to be radiation hard to supply a sufficient charge collection efficiency up to an integrated particle fluence equivalent to that of (1-2).10 16 1-MeV-neutrons per square centimeter (n eq /cm 2 ). Within this thesis a new module concept was partially realised and evaluated for the operation within an ATLAS pixel detector at the sLHC. This module concept utilizes a novel thin sensor production process for thin n-in-p silicon sensors which potentially allow for a higher radiation hardness at a reduced cost. Furthermore, the new 3D-integration technology ICV-SLID is explored which will allow for increasing the active area of the modules from 71% to about 90% and hence, for employing the modules in the innermost layer of the upgraded ATLAS pixel detector. A semiconductor simulation and measurements of irradiated test sensors are used to optimize the implantation parameters for the inter-pixel isolation of the thin sensors. These reduce the crosstalk between the pixel channels and should allow for operating the sensors during the whole runtime of the experiment without causing junction breakdowns. The characterization of the first production of sensors with active thicknesses of 75 μm and 150 μm proved that thin pixel sensors can be successfully produced with the new process technology. Thin pad sensors with a reduced inactive edge demonstrate that the active

  8. FE-I2 a front-end readout chip designed in a commercial 025- mu m process for the ATLAS pixel detector at LHC

    CERN Document Server

    Blanquart, L; Einsweiler, Kevin F; Fischer, P; Mandelli, E; Meddeler, G; Peric, I

    2004-01-01

    A new front-end chip (FE-I2) has been developed for the ATLAS pixel detector at the future Large Hadron Collider (LHC) accelerator facility of the European Laboratory for Particle Physics (CERN). This chip has been submitted in a commercial 0.25- mu m CMOS process using special layout techniques for radiation tolerance. It comprises 2880 pixels arranged into 18 columns of 160 channels. Each pixel element of dimension 50 mu m * 400 mu m is composed of a charge- sensitive amplifier followed by a fast discriminator with a detection threshold adjustable within a range of 0-6000 electrons and slow control logic incorporating a wired-hit-Or, preamplifier-kill, readout mask, and automatic threshold tuning circuitry. There are two single-event- upset (SEU)-tolerant DACs for reducing threshold (7-b) and recovery- time (3-b) mismatches from pixel to pixel along with digital hit emulation and a differential readout circuit aimed at transporting time-stamped data from each pixel to buffers at the bottom of the chip. In c...

  9. An EUDET/AIDA Pixel Beam Telescope for Detector Development

    CERN Document Server

    Perrey, Hanno

    2013-01-01

    A high resolution ($\\sigma 2 \\sim \\mu$) beam telescope based on monolithic active pixel sensors (MAPS) was developed within the EUDET collaboration. The telescope consists of six sensor planes using Mimosa26 MAPS with a pixel pitch of $18.4 \\mu$ and thinned down to $50 \\mu$. The excellent resolution, readout rate and DAQ integration capabilities made the telescope a primary test beam tool for many groups including several CERN based experiments. Within the new European detector infrastructure project AIDA the test beam telescope will be further extended in terms of cooling infrastructure, readout speed and precision. In order to provide a system optimized for the different requirements by the user community, a combination of various pixel technologies is foreseen. In this report the design of this even more flexible telescope with three different pixel technologies (TimePix, Mimosa, ATLAS FE-I4) will be presented. First test beam results with the HitOR signal provided by the FE-I4 integrated into the trigger...

  10. Mesure des champs de radiation dans le detecteur ATLAS et sa caverne avec les detecteurs au silicium a pixels ATLAS-MPX

    Science.gov (United States)

    Bouchami, Jihene

    The LHC proton-proton collisions create a hard radiation environment in the ATLAS detector. In order to quantify the effects of this environment on the detector performance and human safety, several Monte Carlo simulations have been performed. However, direct measurement is indispensable to monitor radiation levels in ATLAS and also to verify the simulation predictions. For this purpose, sixteen ATLAS-MPX devices have been installed at various positions in the ATLAS experimental and technical areas. They are composed of a pixelated silicon detector called MPX whose active surface is partially covered with converter layers for the detection of thermal, slow and fast neutrons. The ATLAS-MPX devices perform real-time measurement of radiation fields by recording the detected particle tracks as raster images. The analysis of the acquired images allows the identification of the detected particle types by the shapes of their tracks. For this aim, a pattern recognition software called MAFalda has been conceived. Since the tracks of strongly ionizing particles are influenced by charge sharing between adjacent pixels, a semi-empirical model describing this effect has been developed. Using this model, the energy of strongly ionizing particles can be estimated from the size of their tracks. The converter layers covering each ATLAS-MPX device form six different regions. The efficiency of each region to detect thermal, slow and fast neutrons has been determined by calibration measurements with known sources. The study of the ATLAS-MPX devices response to the radiation produced by proton-proton collisions at a center of mass energy of 7 TeV has demonstrated that the number of recorded tracks is proportional to the LHC luminosity. This result allows the ATLAS-MPX devices to be employed as luminosity monitors. To perform an absolute luminosity measurement and calibration with these devices, the van der Meer method based on the LHC beam parameters has been proposed. Since the ATLAS

  11. Active Pixel Sensors in ams H18/H35 HV-CMOS Technology for the ATLAS HL-LHC Upgrade

    CERN Document Server

    Ristic, Branislav

    2016-09-21

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement amplifier and discriminator stages directly in insulating deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150V leading to a depletion depth of several 10um. Prototype sensors in the ams H18 180nm and H35 350nm HV-CMOS processes have been manufactured, acting as a potential drop-in replacement for the current ATLAS Pixel sensors, thus leaving higher level processing such as trigger handling to dedicated read-out chips. Sensors were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiation with X-rays and protons revealed a tolerance to ionizing doses o...

  12. ATLAS Forward Proton (AFP) time-of-flight (ToF) detector: construction & existing experiences

    CERN Document Server

    Sykora, Tomas; The ATLAS collaboration

    2018-01-01

    In 2017 the ATLAS collaboration successfully completed the installation of the ATLAS Forward Proton (AFP) detector to measure diffractive protons leaving under very small angles (hundreds of micro radians) the ATLAS proton-proton interaction point. The AFP tags and measures forward protons scattered in single diffraction or hard central diffraction, where two protons are emitted and a central system is created. In addition, the AFP has a potential to measure two-photon exchange processes, and to be sensitive to eventual anomalous quartic couplings of Vector Bosons: γγW+W−, γγZZ, and γγγγ. Such measurements at high luminosities will be possible only due the combination of high resolution tracking (semi-edgeless 3D Silicon pixel) detectors and ultra-high precision ToF (Quartz-Cherenkov) detectors at both sides of the ATLAS detector. The ToF detector construction and experiences with its operation represent the subject of the talk.

  13. New Technique for Luminosity Measurement Using 3D Pixel Modules in the ATLAS IBL Detector

    CERN Document Server

    Liu, Peilian; The ATLAS collaboration

    2017-01-01

    The Insertable b-Layer ( IBL ) is the innermost layer of the ATLAS tracking system. It consists of planar pixel modules in the central region and 3D modules at two extremities. We use the cluster length distributions in 3D sensor modules of the IBL to determine the number of primary charged particles per event and suppress backgrounds. This Pixel Cluster Counting ( PCC ) algorithm provides a bunch-by-bunch luminosity measurement. An accurate luminosity measurement is a key component for precision measurements at the Large Hadron Collider and one of the largest uncertainties on the luminosity determination in ATLAS arises from the long-term stability of the measurement technique. The comparison of the PCC algorithm with other existing algorithms provides key insights in assessing and reducing such uncertainty.

  14. Radiation hardness and timing studies of a monolithic TowerJazz pixel design for the new ATLAS Inner Tracker

    International Nuclear Information System (INIS)

    Riegel, C.; Backhaus, M.; Hoorne, J.W. Van; Kugathasan, T.; Musa, L.; Pernegger, H.; Riedler, P.; Schaefer, D.; Snoeys, W.; Wagner, W.

    2017-01-01

    A part of the upcoming HL-LHC upgrade of the ATLAS Detector is the construction of a new Inner Tracker. This upgrade opens new possibilities, but also presents challenges in terms of occupancy and radiation tolerance. For the pixel detector inside the inner tracker, hybrid modules containing passive silicon sensors and connected readout chips are presently used, but require expensive assembly techniques like fine-pitch bump bonding. Silicon devices fabricated in standard commercial CMOS technologies, which include part or all of the readout chain, are also investigated offering a reduced cost as they are cheaper per unit area than traditional silicon detectors. If they contain the full readout chain, as for a fully monolithic approach, there is no need for the expensive flip-chip assembly, resulting in a further cost reduction and material savings. In the outer pixel layers of the ATLAS Inner Tracker, the pixel sensors must withstand non-ionising energy losses of up to 10 15 n/cm 2 and offer a timing resolution of 25 ns or less. This paper presents test results obtained on a monolithic test chip, the TowerJazz 180nm Investigator, towards these specifications. The presented program of radiation hardness and timing studies has been launched to investigate this technology's potential for the new ATLAS Inner Tracker.

  15. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. ...

  16. A Parallel FPGA Implementation for Real-Time 2D Pixel Clustering for the ATLAS Fast TracKer Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Annovi, A; Beretta, M; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. T...

  17. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to 7.5E34 per second and cm2 corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of 3000/fb and hadron fluencies over 1E16 1 MeV neutron equivalent per cm2, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six discs on each side of the barrel, has resulted in the ATLAS ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the ...

  18. ATLAS ITk Strip Detector for High-Luminosity LHC

    CERN Document Server

    Kroll, Jiri; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High-Luminosity LHC that is scheduled for 2026. The expected peak instantaneous luminosity up to $7.5\\times10^{34}\\;\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$ corresponding to approximately 200 inelastic proton-proton interactions per beam crossing, radiation damage at an integrated luminosity of $3000\\;\\mathrm{fb}^{-1}$ and hadron fluencies over $2\\times10^{16}\\;\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^{2}$, as well as fast hardware tracking capability that will bring Level-0 trigger rate of a few MHz down to a Level-1 trigger rate below 1 MHz require a replacement of existing Inner Detector by an all-silicon Inner Tracker with a pixel detector surrounded by a strip detector. The current prototyping phase, that is working with ITk Strip Detector consisting of a four-layer barrel and a forward region composed of six disks on each side of the barrel, has resulted in the ATLAS Inner Tracker Strip Detector Technical Design R...

  19. Electrical characterization of thin edgeless N-on-p planar pixel sensors for ATLAS upgrades

    International Nuclear Information System (INIS)

    Bomben, M; Calderini, G; Chauveau, J; Marchiori, G; Bagolini, A; Boscardin, M; Giacomini, G; Zorzi, N; Bosisio, L; Rosa, A La

    2014-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology is a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, and presenting some sensors' simulation results, a complete overview of the electrical characterization of the produced devices will be given

  20. Overview of the CMS Pixel Detector

    CERN Document Server

    Cerati, Giuseppe B

    2008-01-01

    The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2009. It will investigate the proton-proton collisions at $14~TeV$. A robust tracking combined with a precise vertex reconstruction is crucial to address the physics challenge of proton collisions at this energy. To this extent an all-silicon tracking system with very fine granularity has been built and now is in the final commissioning phase. It represents the largest silicon tracking detector ever built. The system is composed by an outer part, made of micro-strip detectors, and an inner one, made of pixel detectors. The pixel detector consists of three pixel barrel layers and two forward disks at each side of the interaction region. Each pixel sensor, both for the barrel and forward detectors, has $100 \\times 150$ $\\mu m^2$ cells for a total of 66 million pixels covering a total area of about $1~m^2$. The pixel detector will play a crucial role in the pattern recognition and the track reconstruction both...

  1. A new strips tracker for the upgraded ATLAS ITk detector

    Science.gov (United States)

    David, C.

    2018-01-01

    The ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the fluences and radiation levels will be higher by as much as a factor of ten. The new sub-detectors must thus be faster, of larger area, more segmented and more radiation hard while the amount of inactive material should be minimized and the power supply to the front-end systems should be increased. For those reasons, the current inner tracker of the ATLAS detector will be fully replaced by an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large area strip tracker surrounding it. This document gives an overview of the design of the strip inner tracker (Strip ITk) and summarises the intensive R&D activities performed over the last years by the numerous institutes within the Strips ITk collaboration. These studies are accompanied with a strong prototyping effort to contribute to the optimisation of the Strip ITk's structure and components. This effort culminated recently in the release of the ATLAS Strips ITk Technical Design Report (TDR).

  2. Performance of the Insertable B-Layer for the ATLAS Pixel Detector during Quality Assurance and a Novel Pixel Detector Readout Concept based on PCIe

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268; Pernegger, Heinz

    2016-07-27

    During the first long shutdown of the LHC the Pixel detector has been upgraded with a new 4th innermost layer, the Insertable B-Layer (IBL). The IBL will increase the tracking performance and help with higher than nominal luminosity the LHC will produce. The IBL is made up of 14 staves and in total 20 staves have been produced for the IBL. This thesis presents the results of the final quality tests performed on these staves in an detector-like environment, in order to select the 14 best of the 20 staves for integration onto the detector. The test setup as well as the testing procedure is introduced and typical results of each testing stage are shown and discussed. The overall performance of all staves is presented in regards to: tuning performance, radioactive source measurements, and number of failing pixels. Other measurement, which did not directly impact the selection of staves, but will be important for the operation of the detector or production of a future detector, are included. Based on the experienc...

  3. The LHC Luminosity Upgrade and Related ATLAS Detector Plans

    CERN Document Server

    Hartjes, F; The ATLAS collaboration

    2009-01-01

    3rd draft of the proposed talk about Atlas Upgrade for MPGD2009 (Instrumentation conference on gaseous pixel detectors) on Friday June 12, 2009. I concentrated my presentation on the upgrade plans and schedule of the LHC and on detector technologies for the new Inner Tracker, putting less emphasis on other subdetectors. Compared to the 2nd draft I modified and clarified a few items about trigger, muon detection and calorimetry and did a number of cosmetic adaptions.

  4. Tuning of the silicon microstrip detector (SCT) digitization parameters at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Vishwakarma, Akanksha [Humboldt University, Unter den Linden 6, 10099 Berlin (Germany)

    2016-07-01

    The increased luminosity of LHC in RUN-2 causes high radiation exposure of the ATLAS detector. This might bring about changes in the detector responses, especially of the pixel and the silicon strip detector. To study this, several digitization parameters are varied in the simulation and are analysed by comparing with data. In particular, the impact on the reconstructed cluster and track is considered. This investigation is used to optimize data-Monte Carlo agreement.

  5. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    CERN Document Server

    INSPIRE-00407830; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid M.; Jones, T; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2016-05-24

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigatio...

  6. Construction of the new silicon microstrips tracker for the Phase-II ATLAS detector

    CERN Document Server

    Liang, Zhijun; The ATLAS collaboration

    2018-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of silicon microstrip sensors. This paper will focus on the latest research and development act...

  7. A passive CMOS pixel sensor for the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    The high luminosity upgrade for the Large Hadron Collider at CERN requires a new inner tracking detector for the ATLAS experiment. About 200 m{sup 2} of silicon detectors are needed demanding new, low cost hybridization- and sensor technologies. One promising approach is to use commercial CMOS technologies to produce the passive sensor for a hybrid pixel detector design. In this talk a fully functional prototype of a 300 μm thick, backside biased CMOS pixel sensor in 150 nm LFoundry technology is presented. The sensor is bump bonded to the ATLAS FE-I4 with AC and DC coupled pixels. Results like leakage current, noise performance, and charge collection efficiency are presented and compared to the actual ATLAS pixel sensor design.

  8. Pixelated CdZnTe drift detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2005-01-01

    A technique, the so-called Drift Strip Method (DSM), for improving the CdZnTe detector energy response to hard X-rays and gamma-rays was applied as a pixel geometry. First tests have confirmed that this detector type provides excellent energy resolution and imaging performance. We specifically...... report on the performance of 3 mm thick prototype CZT drift pixel detectors fabricated using material from eV-products. We discuss issues associated with detector module performance. Characterization results obtained from several prototype drift pixel detectors are presented. Results of position...

  9. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    OpenAIRE

    Poley, Luise; Bloch, Ingo; Edwards, Sam; Friedrich, Conrad; Gregor, Ingrid-Maria; Jones, Tim; Lacker, Heiko; Pyatt, Simon; Rehnisch, Laura; Sperlich, Dennis; Wilson, John

    2015-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy gl...

  10. Test su fascio di prototipi del rivelatore a pixel per l'esperimento ATLAS

    CERN Document Server

    Matera, Andrea; Andreazza, A

    2005-01-01

    Silicon pixel detectors, developed to meet LHC requirements, were tested within the ATLAS collaboration in the H8 beam at CERN. Different sensor designs were studied using various versions of front end electronics developed during the R&D process. In this thesis a detailed experimental study of the overall performance of both irradiated and unirradiated detectors is presented, with special enphasis on efficiency, charge collection and spatial resolution. For the first time their dependence on timewalk is carefully investigated. Possible solutions to avoid spatial resolution deterioration due to timewalk are presented and discussed.

  11. The Phase II ATLAS Pixel Upgrade: The Inner Tracker (ITk)

    CERN Document Server

    Flick, Tobias; The ATLAS collaboration

    2016-01-01

    The entire tracking system of the ATLAS experiment will be replaced during the LHC Phase II shutdown (foreseen to take place around 2025) by an all-silicon detector called the ITk (Inner Tracker). The pixel detector will comprise the five innermost layers, and will be instrumented with new sensor and readout electronics technologies to improve the tracking performance and cope with the HL-LHC environment, which will be severe in terms of occupancy and radiation. The total surface area of silicon in the new pixel system could measure up to 14 m^2, depending on the final layout choice, which is expected to take place in early 2017. Four layout options are being investigated at the moment, two with forward coverage to eta < 3.2 and two to eta < 4. For each coverage option, a layout with long barrel staves and a layout with novel inclined support structures in the barrel-endcap overlap region are considered. All potential layouts include modules mounted on ring-shaped supports in the endcap regions. Support...

  12. The silicon strips Inner Tracker (ITk) of the ATLAS Phase-II upgrade detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220523; The ATLAS collaboration

    2018-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The inner detector of the current detector will be replaced by the Inner Tracker (ITk). It consists of an innermost pixel detector and an outer strips tracker. This contribution focuses on the strips tracker. The basic detection unit of the ...

  13. R&D for the local support structure and cooling channel for the ATLAS PIXEL Detector Insertable B-Layer (IBL)

    CERN Document Server

    Coelli, S; The ATLAS collaboration

    2010-01-01

    ABSTRACT: The scope of the present R&D is to develop an innovative support, with an integrated cooling and based on carbon composites, for the electronic sensors of the Silicon Pixel Tracker, to be installed into the ATLAS Experiment on the Large Hadron Collider at CERN. The inner layer of the detector is installed immediately outside the Beryllium beam pipe at a distance of 50 mm from the Interaction Point, where the high energy protons collide: the intense radiation field induce a radiation damage on the sensors so that a cooling system is necessary to remove the electrical power dissipated as heat, maintaining the sensor temperature sufficiently low. The task of the support system is to hold the detector modules in positions with high accuracy, minimizing the deformation induced by the cooling; this must be done with the lower possible mass because there are tight requirements in terms of material budget. An evaporative boiling system to remove the power dissipated by the sensors is incorporated in the...

  14. Test-beam activities and results for the ATLAS ITk pixel detector

    CERN Document Server

    Bisanz, Tobias; The ATLAS collaboration

    2017-01-01

    The Phase-II upgrade of the LHC will result in an increase of the instantaneous luminosity up to about $5\\times10^{34}~\\text{cm}^{-2}\\text{s}^{-1}$. To cope with the resulting challenges the current Inner Detector will be replaced by an all-silicon Inner Tracker (ITk) system. The Pixel Detector will have to deal with occupancies of about 300~hits/FE/s as well as a fluence of $2\\times10^{16}~\\text{n}_\\text{eq}\\text{cm}^{-2}$. Various sensor layouts are under development, aiming at providing a high performance, cost effective pixel instrumentation to cover an active area of about $10~\\text{m}^2$. These range from thin planar silicon, over 3D silicon, to active CMOS sensors.\\par After extensive characterization of the sensors in the lab, their charge collection properties and hit efficiency are measured in common testbeam campaigns, which provide valuable feedback for improvements of the layout. Testbeam measurements of the final prototypes will be used for the decision of which sensor types will be installed in...

  15. Two ATLAS suppliers honoured

    CERN Multimedia

    2007-01-01

    The ATLAS experiment has recognised the outstanding contribution of two firms to the pixel detector. Recipients of the supplier award with Peter Jenni, ATLAS spokesperson, and Maximilian Metzger, CERN Secretary-General.At a ceremony held at CERN on 28 November, the ATLAS collaboration presented awards to two of its suppliers that had produced sensor wafers for the pixel detector. The CiS Institut für Mikrosensorik of Erfurt in Germany has supplied 655 sensor wafers containing a total of 1652 sensor tiles and the firm ON Semiconductor has supplied 515 sensor wafers (1177 sensor tiles) from its foundry at Roznov in the Czech Republic. Both firms have successfully met the very demanding requirements. ATLAS’s huge pixel detector is very complicated, requiring expertise in highly specialised integrated microelectronics and precision mechanics. Pixel detector project leader Kevin Einsweiler admits that when the project was first propo...

  16. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237783; The ATLAS collaboration; Zwalinski, L.; Bortolin, C.; Vogt, S.; Godlewski, J.; Crespo-Lopez, O.; Van Overbeek, M.; Blaszcyk, T.

    2017-01-01

    The ATLAS Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity.

  17. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector; Entwurf und Implementation eines Expertensystems fuer das Detektorkontrollsystem des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Henss, Tobias

    2008-12-15

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts.

  18. Advanced Alignment of the ATLAS Inner Detector

    CERN Document Server

    Stahlman, JM; The ATLAS collaboration

    2012-01-01

    The primary goal of the ATLAS Inner Detector (ID) is to measure the trajectories of charged particles in the high particle density environment of the Large Hadron Collider (LHC) collisions. This is achieved using a combination of different technologies, including silicon pixels, silicon microstrips, and gaseous drift-tubes, all immersed in a 2 Tesla magnetic field. With over one million alignable degrees of freedom, it is crucial that an accurate model of the detector positions be produced using an automated and robust algorithm in order to achieve good tracking performance. This has been accomplished using a variety of alignment techniques resulting in near optimal hit and momentum resolutions.

  19. Gas pixel detectors

    International Nuclear Information System (INIS)

    Bellazzini, R.; Baldini, L.; Brez, A.; Cavalca, F.; Latronico, L.; Massai, M.M.; Minuti, M.; Omodei, N.; Pesce-Rollins, M.; Sgro, C.; Spandre, G.; Costa, E.; Soffitta, P.

    2007-01-01

    With the Gas Pixel Detector (GPD), the class of micro-pattern gas detectors has reached a complete integration between the gas amplification structure and the read-out electronics. To obtain this goal, three generations of application-specific integrated circuit of increased complexity and improved functionality has been designed and fabricated in deep sub-micron CMOS technology. This implementation has allowed manufacturing a monolithic device, which realizes, at the same time, the pixelized charge-collecting electrode and the amplifying, shaping and charge measuring front-end electronics of a GPD. A big step forward in terms of size and performances has been obtained in the last version of the 0.18 μm CMOS analog chip, where over a large active area of 15x15 mm 2 a very high channel density (470 pixels/mm 2 ) has been reached. On the top metal layer of the chip, 105,600 hexagonal pixels at 50 μm pitch have been patterned. The chip has customable self-trigger capability and includes a signal pre-processing function for the automatic localization of the event coordinates. In this way, by limiting the output signal to only those pixels belonging to the region of interest, it is possible to reduce significantly the read-out time and data volume. In-depth tests performed on a GPD built up by coupling this device to a fine pitch (50 μm) gas electron multiplier are reported. Matching of the gas amplification and read-out pitch has let to obtain optimal results. A possible application of this detector for X-ray polarimetry of astronomical sources is discussed

  20. ATLAS silicon microstrip detector system (SCT)

    International Nuclear Information System (INIS)

    Unno, Y.

    2003-01-01

    The S CT together with the pixel and the transition radiation tracker systems and with a central solenoid forms the central tracking system of the ATLAS detector at LHC. Series production of SCT Silicon microstrip sensors is near completion. The sensors have been shown to be robust against high voltage operation to the 500 V required after fluences of 3x10 14 protons/cm 2 . SCT barrel modules are in series production. A low-noise CCD camera has been used to debug the onset of leakage currents

  1. Strip detector for the ATLAS detector upgrade for the High-Luminosity LHC

    CERN Document Server

    Veloce, Laurelle Maria; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment is currently preparing for an upgrade of the tracking system in the course of the High Luminosity LHC, scheduled for 2025. The expected radiation damage at an integrated luminosity of 3000fb-1 will require the tracking detectors to withstand hadron fluencies to over 1x1016 1 MeV neutron equivalent per cm2. With the addition of increased readout rates, the existing Inner Detector will have to be replaced by an all-silicon Inner Tracker (ITk) with a pixel detector surrounded by a strip detector. The ITk strip detector consists of a four-layer barrel and a forward region composed of six discs on each side of the barrel. The current prototyping phase has resulted in the ITk Strip Detector Technical Design Report (TDR), which starts the pre-production readiness phase at the involved institutes. In this contribution we present the design of the ITk Strip Detector and current status of R&D of various detector components.

  2. The ATLAS Pixel detector and its use in a Search for Metastable Heavy Charged Particles

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00399154

    The discovery of the Higgs boson, the missing piece in the Standard Model puzzle, at the electroweak scale in 2012 by the ATLAS and CMS experiments, closed an important season of particle physics and a search lasted 50 years. Even though the discovery of the Higgs boson is a great achievement, the Standard Model is incomplete, since it does not include the gravitational field and can not explain some experimental measurements such as the dark matter observed in galaxy studies and the matter and anti-matter asymmetry observed in the universe. The experiments at LHC have the exciting goal to give answers to the SM open questions and make available the hint or the evidence that may allow to proceed beyond it. An introduction on the Standard Model and the LHC is provided in Chapter 1 where the ATLAS detector is also described. ATLAS is the largest of the detectors placed along the LHC ring and is able to detect products from pp and heavy ion collisions. The detector has a cylindrical geometry around the interac...

  3. Multi-Chip-Modul-Entwicklung fuer den ATLAS-Pixeldetektor

    CERN Document Server

    Stockmanns, Tobias

    2004-01-01

    Abstract: The innermost layer of the ATLAS tracking system is a silicon pixel detector. The use of radiation tolerant components is mandatory due to the harsh radiation environment. The smallest independent component of the pixel detector is a hybride pixel module consisting of a large oxygen enriched silicon sensor and 16 specifically developed ASICs. To achieve the necessary radiation tolerance the ASICs are produced in a 0.25 µm technology in combination with special design techniques. The measurements of the readout electronics during all stages of production of a full module are presented and the performance of the modules is compared with the strict requirements of the ATLAS pixel detector. Furthermore a new powering scheme for pixel detectors is presented, aiming at reducing the total power consumption, the material for the electrical services and the amount of power cables. The advantages and disadvantages of this concept are discussed on the example of the ATLAS pixel detector with pixel modules mo...

  4. Design and implementation of an expert system for the detector control systems of the ATLAS pixel detector; Entwurf und Implementation eines Expertensystems fuer das Detektorkontrollsystem des ATLAS-Pixeldetektors

    Energy Technology Data Exchange (ETDEWEB)

    Henss, Tobias

    2008-12-15

    In the framework of this thesis an expert system ''Pixel-Advisor'' for the control system of the pixel detector was designed and implemented. This supports the operational personnel in the diagnosis and removal of possible problems, which are in connection with the detector control system and unburdens the few available DCS experts.

  5. Three Generations of FPGA DAQ Development for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2091916; Hsu, Shih-Chieh; Hauck, Scott Alan

    The Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) tracks a schedule of long physics runs, followed by periods of inactivity known as Long Shutdowns (LS). During these LS phases both the LHC, and the experiments around its ring, undergo maintenance and upgrades. For the LHC these upgrades improve their ability to create data for physicists; the more data the LHC can create the more opportunities there are for rare events to appear that physicists will be interested in. The experiments upgrade so they can record the data and ensure the event won’t be missed. Currently the LHC is in Run 2 having completed the first LS of three. This thesis focuses on the development of Field-Programmable Gate Array (FPGA)-based readout systems that span across three major tasks of the ATLAS Pixel data acquisition (DAQ) system. The evolution of Pixel DAQ’s Readout Driver (ROD) card is presented. Starting from improvements made to the new Insertable B-Layer (IBL) ROD design, which was part of t...

  6. CMS Pixel Detector Upgrade

    CERN Document Server

    INSPIRE-00038772

    2011-01-01

    The present Compact Muon Solenoid silicon pixel tracking system has been designed for a peak luminosity of 1034cm-2s-1 and total dose corresponding to two years of the Large Hadron Collider (LHC) operation. With the steady increase of the luminosity expected at the LHC, a new pixel detector with four barrel layers and three endcap disks is being designed. We will present the key points of the design: the new geometry, which minimizes the material budget and increases the tracking points, and the development of a fast digital readout architecture, which ensures readout efficiency even at high rate. The expected performances for tracking and vertexing of the new pixel detector are also addressed.

  7. Charged-Particle Distributions and Material Measurements in $\\sqrt{s}$ = 13 TeV $pp$ collisions with the ATLAS Inner Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00403090; Schioppa, Marco

    The Run 2 of the Large Hadron Collider, which began in Spring 2015, offers new challenges to the Experiments with its unprecedented energy scale and high luminosity regime. To cope with the new experimental conditions, the ATLAS Experiment was upgraded during the first long shutdown of the collider, in the period 2013-2014. The most relevant change which occurred in the ATLAS Inner Detector was the installation of a fourth pixel layer, the Insertable B-Layer, at a radius of 33 mm together with a new thinner beam pipe. The pixel services, located between the pixel detector and the semiconductor strip tracker, were also modified. Owing to the radically modified Inner Detector layout, many aspects of the track reconstruction programs had to be re-optimised. In this thesis, the improvements to the tracking algorithms and the studies of the material distribution in the Inner Detector are described in detail, together with the improvements introduced in the geometry model description in simulation as well as the re...

  8. The ALICE Silicon Pixel Detector System (SPD)

    CERN Document Server

    Kluge, A; Antinori, Federico; Burns, M; Cali, I A; Campbell, M; Caselle, M; Ceresa, S; Dima, R; Elias, D; Fabris, D; Krivda, Marian; Librizzi, F; Manzari, Vito; Morel, M; Moretto, Sandra; Osmic, F; Pappalardo, G S; Pepato, Adriano; Pulvirenti, A; Riedler, P; Riggi, F; Santoro, R; Stefanini, G; Torcato De Matos, C; Turrisi, R; Tydesjo, H; Viesti, G; PH-EP

    2007-01-01

    The ALICE silicon pixel detector (SPD) comprises the two innermost layers of the ALICE inner tracker system. The SPD includes 120 detector modules (half-staves) each consisting of 10 ALICE pixel chips bump bonded to two silicon sensors and one multi-chip read-out module. Each pixel chip contains 8192 active cells, so that the total number of pixel cells in the SPD is ≈ 107. The on-detector read-out is based on a multi-chip-module containing 4 ASICs and an optical transceiver module. The constraints on material budget and detector module dimensions are very demanding.

  9. Applying Statistical Mechanics to pixel detectors

    International Nuclear Information System (INIS)

    Pindo, Massimiliano

    2002-01-01

    Pixel detectors, being made of a large number of active cells of the same kind, can be considered as significant sets to which Statistical Mechanics variables and methods can be applied. By properly redefining well known statistical parameters in order to let them match the ones that actually characterize pixel detectors, an analysis of the way they work can be performed in a totally new perspective. A deeper understanding of pixel detectors is attained, helping in the evaluation and comparison of their intrinsic characteristics and performance

  10. A 65 nm CMOS analog processor with zero dead time for future pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gaioni, L., E-mail: luigi.gaioni@unibg.it [Università di Bergamo, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, I-27100 Pavia (Italy); Braga, D.; Christian, D.C.; Deptuch, G.; Fahim, F. [Fermi National Accelerator Laboratory, Batavia IL (United States); Nodari, B. [Università di Bergamo, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, I-27100 Pavia (Italy); Centre National de Recherche Scientifique, APC/IN2P3, Paris (France); Ratti, L. [Università di Pavia, I-27100 Pavia (Italy); INFN, Sezione di Pavia, I-27100 Pavia (Italy); Re, V. [Università di Bergamo, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, I-27100 Pavia (Italy); Zimmerman, T. [Fermi National Accelerator Laboratory, Batavia IL (United States)

    2017-02-11

    Next generation pixel chips at the High-Luminosity (HL) LHC will be exposed to extremely high levels of radiation and particle rates. In the so-called Phase II upgrade, ATLAS and CMS will need a completely new tracker detector, complying with the very demanding operating conditions and the delivered luminosity (up to 5×10{sup 34} cm{sup −2} s{sup −1} in the next decade). This work is concerned with the design of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier featuring a detector leakage compensation circuit, and a compact, single ended comparator that guarantees very good performance in terms of channel-to-channel dispersion of threshold without needing any pixel-level trimming. A flash ADC is exploited for digital conversion immediately after the charge amplifier. A thorough discussion on the design of the charge amplifier and the comparator is provided along with an exhaustive set of simulation results.

  11. The Phase-2 ATLAS ITk Pixel Upgrade

    CERN Document Server

    Rossi, Leonardo Paolo; The ATLAS collaboration

    2018-01-01

    The entire tracking system of the ATLAS experiment will be replaced in 2025 during the LHC Phase-II shutdown by an all-silicon detector called the “ITk” (Inner Tracker). The innermost part of ITk will be a pixel detector containing about 12.5m2 of sensitive silicon. The silicon modules are arranged on 5 layers of stave-like support structures in the most central region and ring-shaped supports in the endcap regions covering out to |η| < 4; a mid-eta region (~1 < |η| < ~2) will be occupied by novel inclined support structures which keep the angle of incidence of high-momentum tracks more closely normal to the sensitive silicon. All supports will be based on low mass, highly stable and highly thermally-conductive carbon-based materials cooled by evaporative carbon dioxide flowing in thin-walled titanium pipes. An extensive prototyping programme, including thermal, mechanical and electrical studies, is being carried out on all the types of support structures. The HL-LHC is expected to deliver up t...

  12. Commissioning and Performance of the ATLAS Inner Detector with proton-proton Collisions at the LHC

    CERN Document Server

    Limosani, A; The ATLAS collaboration

    2010-01-01

    The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector has taken part in datataking with colliding LHC beams. Utilising collision data we present studies of the individual sub-systems, which include measurements of the Lorentz angle, timing, noise characteristics and cluster reconstruction efficiency. We also report results of the post collision alignment of the detector geometry and probe the agreement between data and simulation in the early stages of track reconstruction at ATLAS.

  13. CMS Barrel Pixel Detector Overview

    CERN Document Server

    Kästli, H C; Erdmann, W; Gabathuler, K; Hörmann, C; Horisberger, Roland Paul; König, S; Kotlinski, D; Meier, B; Robmann, P; Rohe, T; Streuli, S

    2007-01-01

    The pixel detector is the innermost tracking device of the CMS experiment at the LHC. It is built from two independent sub devices, the pixel barrel and the end disks. The barrel consists of three concentric layers around the beam pipe with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview of the pixel barrel detector, its mechanical support structure, electronics components, services and its expected performance.

  14. Small Pixel Hybrid CMOS X-ray Detectors

    Science.gov (United States)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  15. Study of the Material within the Run-2 ATLAS Inner Detector

    CERN Document Server

    Cairo, Valentina; The ATLAS collaboration

    2017-01-01

    The material in the ATLAS Inner Detector (ID) is studied with several methods, using a sample of \\sqrt{s}=13 TeV pp collisions collected in 2015 during Run II of the LHC. The material within the innermost barrel regions of the ID is studied using reconstructed secondary vertices from hadronic interactions and photon conversions. The layout of the cables, cooling p ipes and support structures (services) associated with the Pixel detector, in the region in front of the Silicon Microstrip detector (SCT), was modified in 2014. The material in this region was studied by measuring the efficiency with which tracks reconstructed only in the Pixel detector can be matched to tracks reconstructed in the full ID (track extension efficiency). The results of these studies are presented together with a comparison to previous measurements and a description of their impact on physics analyses and Monte Carlo simulation.

  16. The pin pixel detector--neutron imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Rhodes, N J; Schooneveld, E M; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a neutron gas pixel detector intended for application in neutron diffraction studies is reported. Using standard electrical connector pins as point anodes, the detector is based on a commercial 100 pin connector block. A prototype detector of aperture 25.4 mmx25.4 mm has been fabricated, giving a pixel size of 2.54 mm which matches well to the spatial resolution typically required in a neutron diffractometer. A 2-Dimensional resistive divide readout system has been adapted to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics. The timing properties of the device match well to the requirements of the ISIS-pulsed neutron source.

  17. ATLAS inner detector: the Run 1 to Run 2 transition, and first experience from Run 2

    CERN Document Server

    Dobos, Daniel; The ATLAS collaboration

    2015-01-01

    The ATLAS experiment is equipped with a tracking system, the Inner Detector, built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded; taking advantage of the long showdown, the Pixel Detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL), a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm from the beam axis. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point and the increase of Luminosity that LHC will face in Run-2, a new read-out chip within CMOS 130nm and two different silicon sensor pixel technologies (planar and 3D) have been developed. SCT and TRT systems consolidation was also carri...

  18. Commissioning and performance of the ATLAS Inner Detector with the first beam and cosmic data

    Energy Technology Data Exchange (ETDEWEB)

    Andreazza, A., E-mail: attilio.andreazza@mi.infn.i [Universita degli Studi di Milano and I.N.F.N., Milano (Italy)

    2010-05-21

    The ATLAS experiment at the CERN Large Hadron Collider (LHC) started data-taking in Autumn 2008 with the inauguration of the LHC. The Inner Detector is a tracking system for charged particles based on three technologies: silicon pixels, silicon micro-strips and drift tubes. The detector was commissioned and calibrated in the ATLAS cavern. Cosmic muons data are used for timing the different components of the system, measuring detector performance on particles and cross-checking the calibration results. Cosmic ray data serve also to align the detector prior to the LHC start up, exercising the alignment procedure to be repeated during the accelerator's operation. Tracking performance after this early alignment is suitable for initial LHC collisions.

  19. Atlas pixel opto-board production and analysis and optolink simulation studies

    International Nuclear Information System (INIS)

    Nderitu, Simon Kirichu

    2007-01-01

    At CERN, a Large collider will collide protons at high energies. There are four experiments being built to study the particle properties from the collision. The ATLAS experiment is the largest. It has many sub detectors among which is the Pixel detector which is the innermost part. The Pixel detector has eighty million channels that have to be read out. An optical link is utilized for the read out. It has optical to electronic interfaces both on the detector and off the detector at the counting room. The component on the detector in called the opto-board. This work discusses the production testing of the opto-boards to be installed on the detector. A total of 300 opto-boards including spares have been produced. The production was done in three laboratories among which is the laboratory at the University of Wuppertal which had the responsibility of Post production testing of all the one third of the total opto-boards. The results are discussed in this work. The analysis of the results from the total production process has been done in the scope of this work as well. In addition to the production, a study by simulation of the communication links optical signal has been done. This has enabled an assessment of the sufficiency of the optical signal against the transmission attenuation and irradiation degradation. A System Test set up has been put up at Wuppertal to enhance general studies for better understanding of the Pixel read out system. Among other studies is the study of the timing parameters behavior of the System which has been done in this work and enhanced by a simulation. These parameters are namely the mark to space ratio and the fine delay and their relatedness during the optolink tuning. A bit error rate test based on the System has also been done which enabled assessment of the transmission quality utilizing the tools inbuilt in the System Test. These results have been presented in this work. (orig.)

  20. Strip detector for the ATLAS detector upgrade for the high-luminosity LHC

    CERN Document Server

    Madaffari, Daniele; The ATLAS collaboration

    2017-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x10$^{35}$ cm$^{-2}$s$^{-1}$ after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000 fb$^{-1}$, requiring the tracking detectors to withstand hadron fluencies to over 1x10$^{16}$ 1 MeV neutron equivalent per cm$^2$. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  1. The ATLAS IBL CO2 Cooling System

    CERN Document Server

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  2. Studio di Rivelatori a Pixel di nuova generazione per il Sistema di Tracciamento di ATLAS.

    CERN Document Server

    Gaudiello, Andrea; Schiavi, Carlo

    In 2013 the LHC will undergo a long shutdown (Phase 0) in preparation for a an energy and luminosity upgrade. During this period the ATLAS Pixel Detector (that is the tracking detector closest to the beamline) will be upgraded. The new detector, called Insertable B-Layer (IBL), will be installed between the existing pixel detector and a new beam-pipe of smaller radius in order to ensure and maintain excellent performance of tracking, vertexing and jet flavor tagging. To satisfy the new requirements a new electronic front- end (FE-I4) and 2 sensor technologies have been developed: Planar and 3D. Genova is one of two sites dedicated to the assembly of the modules of IBL. The work is then carried out in two parallel directions: on one hand the production and its optimization; on the other the comparison and testing of these new technologies. Chapter 1 gives an overview of the theoretical framework needed to understand the importance and the goals of the experiments operating at the Large Hadron Collider (LHC), w...

  3. Radiation hardness and timing studies of a monolithic TowerJazz pixel design for the new ATLAS Inner Tracker

    OpenAIRE

    Riegel, C; Backhaus, M; Hoorne, J W Van; Kugathasan, T; Musa, L; Pernegger, H; Riedler, P; Schaefer, D; Snoeys, W; Wagner, W

    2017-01-01

    A part of the upcoming HL-LHC upgrade of the ATLAS Detector is the construction of a new Inner Tracker. This upgrade opens new possibilities, but also presents challenges in terms of occupancy and radiation tolerance. For the pixel detector inside the inner tracker, hybrid modules containing passive silicon sensors and connected readout chips are presently used, but require expensive assembly techniques like fine-pitch bump bonding. Silicon devices fabricated in standard commercial CMOS techn...

  4. The ATLAS Inner Detector commissioning and calibration

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos, F.Santos Pedrosa; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Guimara, J.Barreiro; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Urban, S.Cabrera; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernadez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El, R.Moursli; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Muino, P.Conde; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro, P.E.Faria Salgado; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira, M.Branco; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Vale, M.A.B.do; Do Valle, A.Wemans; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Navarro, J.E.Garcia; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Plante, I.Jen-La; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook, A.Cheong; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Dit Latour, B.Martin; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llacer, M.Moreno; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.E.M.; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos, D.Santos; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M.A.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schonig, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R.D.St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires, F.J.Viegas; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Pastor, E.Torro; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; della Porta, G.Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.

    2010-01-01

    The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 {\\mu}m and a relative momentum resolution {\\sigma}p/p = (4.83+/-0.16)...

  5. The ITk strips tracker for the phase-II upgrade of the ATLAS detector of the HL-LHC

    CERN Document Server

    Koutoulaki, Afroditi; The ATLAS collaboration

    2016-01-01

    The inner detector of the present ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the particle densities and radiation levels will be higher by as much as a factor of ten. The new detectors must be faster, they need to be more highly segmented, and covering more area. They also need to be more resistant to radiation, and they require much greater power delivery to the front-end systems. At the same time, they cannot introduce excess material which could undermine performance. For those reasons, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of s...

  6. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  7. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    International Nuclear Information System (INIS)

    Poley, Luise; Bloch, Ingo; Edwards, Sam

    2016-04-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  8. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS inner detector

    Energy Technology Data Exchange (ETDEWEB)

    Poley, Luise [DESY, Zeuthen (Germany); Humboldt Univ. Berlin (Germany); Bloch, Ingo [DESY, Zeuthen (Germany); Edwards, Sam [Birmingham Univ. (United Kingdom); and others

    2016-04-15

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.

  9. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    Science.gov (United States)

    Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.

    2016-05-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  10. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    International Nuclear Information System (INIS)

    Poley, L.; Bloch, I.; Friedrich, C.; Gregor, I.-M.; Edwards, S.; Pyatt, S.; Wilson, J.; Jones, T.; Lacker, H.; Rehnisch, L.; Sperlich, D.

    2016-01-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  11. Performance of thin pixel sensors irradiated up to a fluence of 1016neqcm-2 and development of a new interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    Macchiolo, A.; Andricek, L.; Beimforde, M.; Moser, H.-G.; Nisius, R.; Richter, R.H.; Weigell, P.

    2011-01-01

    A new pixel module concept is presented, where thin sensors and a novel vertical integration technique are combined. This R and D activity is carried out in view of the ATLAS pixel detector upgrades. A first set of n-in-p pixel sensors with active thicknesses of 75 and 150μm has been produced using a thinning technique developed at the Max-Planck-Institut Halbleiterlabor (HLL). Charge Collection Efficiency measurements have been performed, yielding a higher CCE than expected from the present radiation damage models. The interconnection of thin n-in-p pixels to the FE-I3 ATLAS electronics is under way, exploiting the Solid Liquid Interdiffusion (SLID) technique developed by the Fraunhofer Institut EMFT. In addition, preliminary studies aimed at Inter-Chip-Vias (ICV) etching into the FE-I3 electronics are reported. ICVs will be used to route the signals vertically through the read-out chip, to newly created pads on the backside. This should serve as a proof of principle for future four-side tileable pixel assemblies, avoiding the cantilever presently needed in the chip for the wire bonding.

  12. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    AUTHOR|(INSPIRE)INSPIRE-00714258

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  13. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  14. Submission of the First Full Scale Prototype Chip for Upgraded ATLAS Pixel Detector at LHC, FE-I4A

    CERN Document Server

    Barbero, M; The ATLAS collaboration; Beccherle, R; Darbo, G; Dube, S; Elledge, D; Fleury, J; Fougeron, D; Garcia-Sciveres, M; Gensolen, F; Gnani, D; Gromov, V; Jensen, F; Hemperek, T; Karagounis, M; Kluit, R; Kruth, A; Mekkaoui, A; Menouni, M; Schipper, JD; Wermes, N; Zivkovic, V

    2010-01-01

    A new ATLAS pixel chip FE-I4 is being developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer (IBL) upgrade. FE-I4 is designed in a 130nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 250nm CMOS technology used for the current ATLAS pixel IC, FE-I3. The FE-I4 architecture is based on an array of 80x336 pixels, each 50x250um^2, consisting of analog and digital sections. In the summer 2010, a first full scale prototype FE-I4A was submitted for an engineering run. This IC features the full scale pixel array as well as the complex periphery of the future full-size FE-I4. The FE-I4A contains also various extra test features which should prove very useful for the chip characterization, but deviate from the needs for standard operation of the final FE-I4 for IBL. In this paper, focus will be brought to the various features implemented in the FE-I4A submission, while also underlining the main differences b...

  15. A low mass pixel detector upgrade for CMS

    CERN Document Server

    Kästli, H C

    2010-01-01

    The CMS pixel detector has been designed for a peak luminosity of 10^34cm-2s-1 and a total dose corresponding to 2 years of LHC operation at a radius of 4 cm from the interaction region. Parts of the pixel detector will have to be replaced until 2015. The detector performance will be degraded for two reasons: radiation damage of the innermost layers and the planned increase of the LHC peak luminosity by a factor of 2-3. Based on the experience in planning, constructing and commissioning of the present pixel detector, we intend to upgrade the whole pixel detector in 2015. The main focus is on lowering the material budget and adding more tracking points. We will present the design of a new low mass pixel system consisting of 4 barrel layers and 3 end cap disks on each side. The design comprises of thin detector modules and a lightweight mechanical support structure using CO2 cooling. In addition, large efforts have been made to move material from the services out of the tracking region.

  16. Fluorocarbon evaporative cooling developments for the ATLAS pixel and semiconductor tracking detectors

    CERN Document Server

    Anderssen, E; Berry, S; Bonneau, P; Bosteels, Michel; Bouvier, P; Cragg, D; English, R; Godlewski, J; Górski, B; Grohmann, S; Hallewell, G D; Hayler, T; Ilie, S; Jones, T; Kadlec, J; Lindsay, S; Miller, W; Niinikoski, T O; Olcese, M; Olszowska, J; Payne, B; Pilling, A; Perrin, E; Sandaker, H; Seytre, J F; Thadome, J; Vacek, V

    1999-01-01

    Heat transfer coefficients 2-5.103 Wm-2K-1 have been measured in a 3.6 mm I.D. heated tube dissipating 100 Watts - close to the full equivalent power (~110 W) of a barrel SCT detector "stave" - over a range of power dissipations and mass flows in the above fluids. Aspects of full-scale evaporative cooling circulator design for the ATLAS experiment are discussed, together with plans for future development.

  17. Étude des détecteurs planaires pixels durcis aux radiations pour la mise à jour du détecteur de vertex d'ATLAS

    CERN Document Server

    Benoit, Mathieu

    In this work, is presented a study, using TCAD simulation, of the possible methods of designing of a planar pixel sensors by reducing their inactive area and improving their radiation hardness for use in the Insertable B-Layer (IBL) project and for SLHC upgrade phase for the ATLAS experiment. Different physical models available have been studied to develop a coherent model of radiation damage in silicon that can be used to predict silicon pixel sensor behavior after exposure to radiation. The Multi-Guard Ring Structure,a protection structure used in pixel sensor design was studied to obtain guidelines for the reduction of inactive edges detrimental to detector operation while keeping a good sensor behavior through its lifetime in the ATLAS detector. A campaign of measurement of the sensor's process parameters and electrical behavior to validate and calibrate the TCAD simulation models and results are also presented. A model for diode charge collection in highly irradiated environment was developed to explain ...

  18. Digital Architecture of the New ATLAS Pixel Chip FE-I4

    CERN Document Server

    "Barbero, M; The ATLAS collaboration

    2009-01-01

    With the high hit rate foreseen for the innermost layers at an upgraded LHC, the current ATLAS Front-End pixel chip FE-I3 would start being inefficient. The main source of inefficiency comes from the copying mechanism of the pixel hits from the pixel array to the end of column buffers. A new ATLAS pixel chip FE-I4 is being developed in a 130 nm technology for use both in the framework of the Insertable B-Layer (IBL) project and for the outer layers of Super-LHC. FE-I4 is 80×336 pixels wide and features a reduced pixel size of 50×250 μm2. In the current design, a new digital architecture is introduced in which hit memories are distributed across the entire chip and the pixels organized in regions. Additional features include neighbor hit checking which allows a timewalk-less hit recording.

  19. Challenges of small-pixel infrared detectors: a review.

    Science.gov (United States)

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated.

  20. Development of n-in-p pixel modules for the ATLAS Upgrade at HL-LHC

    CERN Document Server

    Macchiolo, Anna; Savic, Natascha; Terzo, Stefano

    2016-09-21

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 $\\mu$m thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of $14\\times10^{15}$ n$_{eq}$/cm$^2$. The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50x50 and 25x100 $\\mu$m$^2$) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region...

  1. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  2. Depleted fully monolithic CMOS pixel detectors using a column based readout architecture for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.

    2018-03-01

    Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.

  3. Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade

    CERN Document Server

    Savic, Natascha

    2016-01-01

    In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), planned to start around 2023-2025, the ATLAS experiment will undergo a replacement of the Inner Detector. A higher luminosity will imply higher irradiation levels and hence will demand more ra- diation hardness especially in the inner layers of the pixel system. The n-in-p silicon technology is a promising candidate to instrument this region, also thanks to its cost-effectiveness because it only requires a single sided processing in contrast to the n-in-n pixel technology presently employed in the LHC experiments. In addition, thin sensors were found to ensure radiation hardness at high fluences. An overview is given of recent results obtained with not irradiated and irradiated n-in-p planar pixel modules. The focus will be on n-in-p planar pixel sensors with an active thickness of 100 and 150 {\\mu}m recently produced at ADVACAM. To maximize the active area of the sensors, slim and active edges are implemented. The performance of th...

  4. Detector performance of the ALICE silicon pixel detector

    CERN Document Server

    Cavicchioli, C

    2011-01-01

    The ALICE Silicon Pixel Detector (SPD) forms the two innermost layers of the ALICE Inner Tracking System (ITS). It consists of two barrel layers of hybrid silicon pixel detectors at radii of 39 and 76 mm. The physics targets of the ALICE experiment require that the material budget of the SPD is kept within approximate to 1\\%X(0) per layer. This has set some stringent constraints on the design and construction of the SPD. A unique feature of the ALICE SPD is that it is capable of providing a prompt trigger signal, called Fast-OR, which contributes to the L0 trigger decision. The pixel trigger system allows to apply a set of algorithms for the trigger selection, and its output is sent to the Central Trigger Processor (CTP). The detector has been installed in the experiment in summer 2007. During the first injection tests in June 2008 the SPD was able to record the very first sign of life of the LHC by registering secondary particles from the beam dumped upstream the ALICE experiment. In the following months the...

  5. Studies on irradiated pixel detectors for the ATLAS IBL and HL-LHC upgrade

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371978; Gößling, Claus; Pernegger, Heinz

    The constant demand for higher luminosity in high energy physics is the reason for the continuous effort to adapt the accelerators and the experiments. The upgrade program for the experiments and the accelerators at CERN already includes several expansion stages of the Large Hadron Collider (LHC) which will increase the luminosity and the energy of the accelerator. Simultaneously the LHC experiments prepare the individual sub-detectors for the increasing demands in the coming years. Especially the tracking detectors have to cope with fluence levels unprecedented for high energy physics experiments. Correspondingly to the fluence increases the impact of the radiation damage which reduces the life time of the detectors by decreasing the detector performance and efficiency. To cope with this effect new and more radiation hard detector concepts become necessary to extend the life time. This work concentrates on the impact of radiation damage on the pixel sensor technologies to be used in the next upgrade of the ...

  6. Digital column readout architecture for the ATLAS pixel 025 mum front end IC

    CERN Document Server

    Mandelli, E; Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Marchesini, R; Meddeler, G; Peric, I

    2002-01-01

    A fast low noise, limited power, radiation-hard front-end chip was developed for reading out the Atlas Pixel Silicon Detector. As in the past prototypes, every chip is used to digitize and read out charge and time information from hits on each one of its 2880 inputs. The basic column readout architecture idea was adopted and modified to allow a safe transition to quarter micron technology. Each pixel cell, organized in a 160 multiplied by 18 matrix, can be independently enabled and configured in order to optimize the analog signal response and to prevent defective pixels from saturating the readout. The digital readout organizes hit data coming from each column, with respect to time, and output them on a low-level serial interface. A considerable effort was made to design state machines free of undefined states, where single-point defects and charge deposited by heavy ions in the silicon could have led to unpredicted forbidden states. 7 Refs.

  7. Rework of flip chip bonded radiation pixel detectors

    International Nuclear Information System (INIS)

    Vaehaenen, S.; Heikkinen, H.; Pohjonen, H.; Salonen, J.; Savolainen-Pulli, S.

    2008-01-01

    In this paper, some practical aspects of reworking flip chip hybridized pixel detectors are discussed. As flip chip technology has been advancing in terms of placement accuracy and reliability, large-area hybrid pixel detectors have been developed. The area requirements are usually fulfilled by placing several readout chips (ROCs) on single sensor chip. However, as the number of ROCs increases, the probability of failure in the hybridization process and the ROC operation also increases. Because high accuracy flip chip bonding takes time, a significant part of the price of a pixel detector comes from the flip chip assembly process itself. As large-area detector substrates are expensive, and many flip chip placements are required, the price of an assembled detector can become very high. In a typical case, there is just one bad ROC (out of several) on a faulty detector to be replaced. Considering the high price of pixel detectors and the fact that reworking faulty ROCs does not take much longer than the original placement, it is worthwhile to investigate the feasibility of a rework process

  8. Rework of flip chip bonded radiation pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vaehaenen, S. [VTT MEMS and Micropackaging, Espoo 02150 (Finland)], E-mail: sami.vahanen@vtt.fi; Heikkinen, H.; Pohjonen, H.; Salonen, J.; Savolainen-Pulli, S. [VTT MEMS and Micropackaging, Espoo 02150 (Finland)

    2008-06-11

    In this paper, some practical aspects of reworking flip chip hybridized pixel detectors are discussed. As flip chip technology has been advancing in terms of placement accuracy and reliability, large-area hybrid pixel detectors have been developed. The area requirements are usually fulfilled by placing several readout chips (ROCs) on single sensor chip. However, as the number of ROCs increases, the probability of failure in the hybridization process and the ROC operation also increases. Because high accuracy flip chip bonding takes time, a significant part of the price of a pixel detector comes from the flip chip assembly process itself. As large-area detector substrates are expensive, and many flip chip placements are required, the price of an assembled detector can become very high. In a typical case, there is just one bad ROC (out of several) on a faulty detector to be replaced. Considering the high price of pixel detectors and the fact that reworking faulty ROCs does not take much longer than the original placement, it is worthwhile to investigate the feasibility of a rework process.

  9. Silicon sensor technologies for ATLAS IBL upgrade

    CERN Document Server

    Grenier, P; The ATLAS collaboration

    2011-01-01

    New pixel sensors are currently under development for ATLAS Upgrades. The first upgrade stage will consist in the construction of a new pixel layer that will be installed in the detector during the 2013 LHC shutdown. The new layer (Insertable-B-Layer, IBL) will be inserted between the inner most layer of the current pixel detector and the beam pipe at a radius of 3.2cm. The expected high radiation levels require the use of radiation hard technology for both the front-end chip and the sensor. Two different pixel sensor technologies are envisaged for the IBL. The sensor choice will occur in July 2011. One option is developed by the ATLAS Planar Pixel Sensor (PPS) Collaboration and is based on classical n-in-n planar silicon sensors which have been used for the ATLAS Pixel detector. For the IBL, two changes were required: The thickness was reduced from 250 um to 200 um to improve the radiation hardness. In addition, so-called "slim edges" were designed to reduce the inactive edge of the sensors from 1100 um to o...

  10. TRACKING AND VERTEXING WITH THE ATLAS INNER DETECTOR IN THE LHC RUN2 AND BEYOND

    CERN Document Server

    Choi, Kyungeon; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  11. Tracking and Vertexing with the ATLAS Inner Detector in the LHC Run2 and Beyond

    CERN Document Server

    Swift, Stewart Patrick; The ATLAS collaboration

    2017-01-01

    Run-2 of the LHC has provided new challenges to track and vertex reconstruction with higher centre-of-mass energies and luminosity leading to increasingly high-multiplicity environments, boosted, and highly-collimated physics objects. To achieve this goal, ATLAS is equipped with the Inner Detector tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which was inserted at the centre of ATLAS during the first long shutdown of the LHC. An overview of the use of each of these subdetectors in track and vertex reconstruction, as well as the algorithmic approaches taken to the specific tasks of pattern recognition and track fitting, is given. The performance of the Inner Detector tracking and vertexing will be summarised. These include a factor of three reduction in the reconstruction time, optimisation for the expected conditions, ...

  12. Integration of the CMS Phase 1 Pixel Detector

    CERN Document Server

    Kornmayer, Andreas

    2018-01-01

    During the extended year-end technical stop 2016/17 the CMS Pixel Detector has been replaced. The new Phase 1 Pixel Detector is designed for a luminosity that could exceed $\\text{L} = 2x10^{34} cm^{−2}s^{−1}$. With one additional layer in the barrel and the forward region of the new detector, combined with the higher hit rates as the LHC luminosity increases, these conditions called for an upgrade of the data acquisition system, which was realised based on the $\\mu$TCA standard. This contribution focuses on the experiences with integration of the new detector readout and control system and reports on the operational performance of the CMS Pixel detector.

  13. Semiconductor Pixel detectors and their applications in life sciences

    International Nuclear Information System (INIS)

    Jakubek, J

    2009-01-01

    Recent advances in semiconductor technology allow construction of highly efficient and low noise pixel detectors of ionizing radiation. Steadily improving quality of front end electronics enables fast digital signal processing in each pixel which offers recording of more complete information about each detected quantum (energy, time, number of particles). All these features improve an extend applicability of pixel technology in different fields. Some applications of this technology especially for imaging in life sciences will be shown (energy and phase sensitive X-ray radiography and tomography, radiography with heavy charged particles, neutron radiography, etc). On the other hand a number of obstacles can limit the detector performance if not handled. The pixel detector is in fact an array of individual detectors (pixels), each of them has its own efficiency, energy calibration and also noise. The common effort is to make all these parameters uniform for all pixels. However an ideal uniformity can be never reached. Moreover, it is often seen that the signal in one pixel can affect the neighbouring pixels due to various reasons (e.g. charge sharing). All such effects have to be taken into account during data processing to avoid false data interpretation. A brief view into the future of pixel detectors and their applications including also spectroscopy, tracking and dosimetry is given too. Special attention is paid to the problem of detector segmentation in context of the charge sharing effect.

  14. Performance of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    CERN Document Server

    INSPIRE-00052711; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Ducourthial, Audrey; Giacomini, Gabriele; Marchiori, Giovanni; Zorzi, Nicola

    2016-01-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The paper reports on the performance of novel n-on-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology an overview of the first beam test results will be given.

  15. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Beccherle, R. [Istituto Nazionale di Fisica Nucleare, Sez. di Pisa (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste (Italy); INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2016-09-21

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  16. LISe pixel detector for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Elan; Hamm, Daniel [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Wiggins, Brenden [Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Milburn, Rob [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Burger, Arnold [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Department of Life and Physical Sciences, Fisk University, Nashville, TN (United States); Bilheux, Hassina [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Santodonato, Louis [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chvala, Ondrej [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Stowe, Ashley [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Technology Development, Y-12 National Security Complex, Oak Ridge, TN (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Lukosi, Eric, E-mail: elukosi@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States)

    2016-10-11

    Semiconducting lithium indium diselenide, {sup 6}LiInSe{sub 2} or LISe, has promising characteristics for neutron detection applications. The 95% isotopic enrichment of {sup 6}Li results in a highly efficient thermal neutron-sensitive material. In this study, we report on a proof-of-principle investigation of a semiconducting LISe pixel detector to demonstrate its potential as an efficient neutron imager. The LISe pixel detector had a 4×4 of pixels with a 550 µm pitch on a 5×5×0.56 mm{sup 3} LISe substrate. An experimentally verified spatial resolution of 300 µm was observed utilizing a super-sampling technique.

  17. Status of the CMS Phase I pixel detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Spannagel, S., E-mail: simon.spannagel@desy.de

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  18. Status of the CMS Phase I Pixel Detector Upgrade

    CERN Document Server

    Spannagel, Simon

    2016-09-21

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase~I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  19. The FE-I4 Pixel Readout Chip and the IBL Module

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Marlon; Arutinov, David; Backhaus, Malte; Fang, Xiao-Chao; Gonella, Laura; Hemperek, Tomasz; Karagounis, Michael; Hans, Kruger; Kruth, Andre; Wermes, Norbert; /Bonn U.; Breugnon, Patrick; Fougeron, Denis; Gensolen, Fabrice; Menouni, Mohsine; Rozanov, Alexander; /Marseille, CPPM; Beccherle, Roberto; Darbo, Giovanni; /INFN, Genoa; Caminada, Lea; Dube, Sourabh; Fleury, Julien; Gnani, Dario; /LBL, Berkeley /NIKHEF, Amsterdam /Gottingen U. /SLAC

    2012-05-01

    FE-I4 is the new ATLAS pixel readout chip for the upgraded ATLAS pixel detector. Designed in a CMOS 130 nm feature size process, the IC is able to withstand higher radiation levels compared to the present generation of ATLAS pixel Front-End FE-I3, and can also cope with higher hit rate. It is thus suitable for intermediate radii pixel detector layers in the High Luminosity LHC environment, but also for the inserted layer at 3.3 cm known as the 'Insertable B-Layer' project (IBL), at a shorter timescale. In this paper, an introduction to the FE-I4 will be given, focusing on test results from the first full size FE-I4A prototype which has been available since fall 2010. The IBL project will be introduced, with particular emphasis on the FE-I4-based module concept.

  20. Characterization of the CMS Pixel Detectors

    CERN Document Server

    Gu, Weihua

    2002-01-01

    In 2005 the Large Hadron Collider (LHC) will start the pp collisions at a high luminosity and at a center of mass energy of 14 TeV. The primary goal of the experimental programme is the search of the Higgs boson(s) and the supersymmetric particles. The programme is also proposed to detect a range of diverse signatures in order to provide guidance for future physics. The pixel detector system makes up the innermost part of the CMS experiment, which is one of the two general purpose detectors at the LHC. The main tasks of the system are vertex detection and flavor tagging. The high luminosity and the high particle multiplicity as well as the small bunch spacing at the LHC impose great challenges on the pixel detectors: radiation hardness of sensors and electronics, fast signal processing and a high granularity are the essential requirements. This thesis concentrates on the study of the suitability of two test stands, which are implemented to characterize the CMS pixel detectors: one is con-cerned with test puls...

  1. The Detector Control System of the ATLAS SemiCondutor Tracker during Macro-Assembly and Integration

    CERN Document Server

    Abdesselam, A; Basiladze, S; Bates, R L; Bell, P; Bingefors, N; Böhm, J; Brenner, R; Chamizo-Llatas, M; Clark, A; Codispoti, G; Colijn, A P; D'Auria, S; Dorholt, O; Doherty, F; Ferrari, P; Ferrère, D; Górnicki, E; Koperny, S; Lefèvre, R; Lindquist, L-E; Malecki, P; Mikulec, B; Mohn, B; Pater, J; Pernegger, H; Phillips, P; Robichaud-Véronneau, A; Robinson, D; Roe, S; Sandaker, H; Sfyrla, A; Stanecka, E; Stastny, J; Viehhauser, G; Vossebeld, J; Wells, P

    2008-01-01

    The ATLAS SemiConductor Tracker (SCT) is one of the largest existing semiconductor detectors. It is situated between the Pixel detector and the Transition Radiation Tracker at one of the four interaction points of the Large Hadron Collider (LHC). During 2006-2007 the detector was lowered into the ATLAS cavern and installed in its final position. For the assembly, integration and commissioning phase, a complete Detector Control System (DCS) was developed to ensure the safe operation of the tracker. This included control of the individual powering of the silicon modules, a bi-phase cooling system and various types of sensors monitoring the SCT environment and the surrounding test enclosure. The DCS software architecture, performance and operational experience will be presented in the view of a validation of the DCS for the final SCT installation and operation phase.

  2. First large DEPFET pixel modules for the Belle II Pixel Detector

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Felix; Avella, Paola; Kiesling, Christian; Koffmane, Christian; Moser, Hans-Guenther; Valentan, Manfred [Max-Planck-Institut fuer Physik, Muenchen (Germany); Andricek, Ladislav; Richter, Rainer [Halbleiterlabor der Max-Planck-Gesellschaft, Muenchen (Germany); Collaboration: Belle II-Collaboration

    2016-07-01

    DEPFET pixel detectors offer excellent signal to noise ratio, resolution and low power consumption with a low material budget. They will be used at Belle II and are a candidate for an ILC vertex detector. The pixels are integrated in a monolithic piece of silicon which also acts as PCB providing the signal and control routings for the ASICs on top. The first prototype DEPFET sensor modules for Belle II have been produced. The modules have 192000 pixels and are equipped with SMD components and three different kinds of ASICs to control and readout the pixels. The entire readout chain has to be studied; the metal layer interconnectivity and routings need to be verified. The modules are fully characterized, and the operation voltages and control sequences of the ASICs are investigated. An overview of the DEPFET concept and first characterization results is presented.

  3. CVD diamond pixel detectors for LHC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  4. CVD diamond pixel detectors for LHC experiments

    International Nuclear Information System (INIS)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A.M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J.C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described

  5. The pin pixel detector--X-ray imaging

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Marsh, A S; Simmons, J E; Stephenson, R

    2002-01-01

    The development and testing of a soft X-ray gas pixel detector, which uses connector pins for the anodes is reported. Based on a commercial 100 pin connector block, a prototype detector of aperture 25.4 mm centre dot 25.4 mm can be economically fabricated. The individual pin anodes all show the expected characteristics of small gas detectors capable of counting rates reaching 1 MHz per pin. A 2-dimensional resistive divide readout system has been developed to permit the imaging properties of the detector to be explored in advance of true pixel readout electronics.

  6. A parallel FPGA implementation for real-time 2D pixel clustering for the ATLAS Fast Tracker Processor

    International Nuclear Information System (INIS)

    Sotiropoulou, C L; Gkaitatzis, S; Kordas, K; Nikolaidis, S; Petridou, C; Annovi, A; Beretta, M; Volpi, G

    2014-01-01

    The parallel 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors from inner ATLAS read out drivers (RODs) at full rate, for total of 760Gbs, as sent by the RODs after level-1 triggers. Clustering serves two purposes, the first is to reduce the high rate of the received data before further processing, the second is to determine the cluster centroid to obtain the best spatial measurement. For the pixel detectors the clustering is implemented by using a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The cluster detection window size can be adjusted for optimizing the cluster identification process. Additionally, the implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. This flexibility makes the implementation suitable for a variety of demanding image processing applications. The implementation is robust against bit errors in the input data stream and drops all data that cannot be identified. In the unlikely event of missing control words, the implementation will ensure stable data processing by inserting the missing control words in the data stream. The 2D pixel clustering implementation is developed and tested in both single flow and parallel versions. The first parallel version with 16 parallel cluster identification engines is presented. The input data from the RODs are received through S-Links and the processing units that follow the clustering implementation also require a single data stream, therefore data parallelizing (demultiplexing) and serializing (multiplexing) modules are introduced in order to accommodate the parallelized version and restore the data stream afterwards. The results of the first hardware tests of

  7. CVD diamond pixel detectors for LHC experiments

    CERN Document Server

    Wedenig, R; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Runólfsson, O; Russ, J; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R J; Trawick, M L; Trischuk, W; Vittone, E; Wagner, A; Walsh, A M; Weilhammer, Peter; White, C; Zeuner, W; Ziock, H J; Zöller, M

    1999-01-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described. (9 refs).

  8. Small-Scale Readout System Prototype for the STAR PIXEL Detector

    International Nuclear Information System (INIS)

    Szelezniak, Michal; Anderssen, Eric; Greiner, Leo; Matis, Howard; Ritter, Hans Georg; Stezelberger, Thorsten; Sun, Xiangming; Thomas, James; Vu, Chinh; Wieman, Howard

    2008-01-01

    Development and prototyping efforts directed towards construction of a new vertex detector for the STAR experiment at the RHIC accelerator at BNL are presented. This new detector will extend the physics range of STAR by allowing for precision measurements of yields and spectra of particles containing heavy quarks. The innermost central part of the new detector is a high resolution pixel-type detector (PIXEL). PIXEL requirements are discussed as well as a conceptual mechanical design, a sensor development path, and a detector readout architecture. Selected progress with sensor prototypes dedicated to the PIXEL detector is summarized and the approach chosen for the readout system architecture validated in tests of hardware prototypes is discussed

  9. Charge sharing in silicon pixel detectors

    CERN Document Server

    Mathieson, K; Seller, P; Prydderch, M L; O'Shea, V; Bates, R L; Smith, K M; Rahman, M

    2002-01-01

    We used a pixellated hybrid silicon X-ray detector to study the effect of the sharing of generated charge between neighbouring pixels over a range of incident X-ray energies, 13-36 keV. The system is a room temperature, energy resolving detector with a Gaussian FWHM of 265 eV at 5.9 keV. Each pixel is 300 mu m square, 300 mu m deep and is bump bonded to matching read out electronics. The modelling packages MEDICI and MCNP were used to model the complete X-ray interaction and the subsequent charge transport. Using this software a model is developed which reproduces well the experimental results. The simulations are then altered to explore smaller pixel sizes and different X-ray energies. Charge sharing was observed experimentally to be 2% at 13 keV rising to 4.5% at 36 keV, for an energy threshold of 4 keV. The models predict that up to 50% of charge may be lost to the neighbouring pixels, for an X-ray energy of 36 keV, when the pixel size is reduced to 55 mu m.

  10. Precision tracking with a single gaseous pixel detector

    NARCIS (Netherlands)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N.P.; de Jong, P.; Kluit, R.

    2015-01-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips.

  11. New pixelized Micromegas detector for the COMPASS experiment

    International Nuclear Information System (INIS)

    Neyret, D; Anfreville, M; Bedfer, Y; Burtin, E; D'Hose, N; Giganon, A; Kunne, F; Magnon, A; Marchand, C; Paul, B; Platchkov, S; Vandenbroucke, M; Ketzer, B; Konorov, I

    2009-01-01

    New Micromegas (Micro-mesh gaseous detectors) are being developed in view of the future physics projects planned by the COMPASS collaboration at CERN. Several major upgrades compared to present detectors are being studied: detectors standing five times higher luminosity with hadron beams, detection of beam particles (flux up to a few hundred of kHz/mm 2 , 10 times larger than for the present detectors) with pixelized read-out in the central part, light and integrated electronics, and improved robustness. Studies were done with the present detectors moved in the beam, and two first pixelized prototypes are being tested with muon and hadron beams in real conditions at COMPASS. We present here this new project and report on two series of tests, with old detectors moved into the beam and with pixelized prototypes operated in real data taking condition with both muon and hadron beams.

  12. Performance of the CMS Phase 1 Pixel Detector

    CERN Document Server

    Akgun, Bora

    2018-01-01

    It is anticipated that the LHC accelerator will reach and exceed the luminosity of L = 2$\\times$10$^{34}$cm$^{-2}$s$^{-1}$ during the LHC Run 2 period until 2023. At this higher luminosity and increased hit occupancies the CMS phase-0 pixel detector would have been subjected to severe dead time and inefficiencies introduced by limited buffers in the analog read-out chip and effects of radiation damage in the sensors. Therefore a new pixel detector has been built and replaced the phase-0 detector in the 2016/17 LHC extended year-end technical stop. The CMS phase-1 pixel detector features four central barrel layers and three end-cap disks in forward and backward direction for robust tracking performance, and a significantly reduced overall material budget including new cooling and powering schemes. The design of the new front-end readout chip comprises larger data buffers, an increased transmission bandwidth, and low-threshold comparators. These improvements allow the new pixel detector to sustain and improve t...

  13. Development of a custom on-line ultrasonic vapour analyzer and flow meter for the ATLAS inner detector, with application to Cherenkov and gaseous charged particle detectors

    Science.gov (United States)

    Alhroob, M.; Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Bozza, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; DiGirolamo, B.; Doubek, M.; Favre, G.; Godlewski, J.; Hallewell, G.; Hasib, A.; Katunin, S.; Langevin, N.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Strauss, M.; Vacek, V.; Zwalinski, L.

    2015-03-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom microcontroller-based electronics, currently used in the ATLAS Detector Control System, with numerous potential applications. Three instruments monitor C3F8 and CO2 coolant leak rates into the nitrogen envelopes of the ATLAS silicon microstrip and Pixel detectors. Two further instruments will aid operation of the new thermosiphon coolant recirculator: one of these will monitor air leaks into the low pressure condenser while the other will measure return vapour flow along with C3F8/C2F6 blend composition, should blend operation be necessary to protect the ATLAS silicon tracker under increasing LHC luminosity. We describe these instruments and their electronics.

  14. Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade

    International Nuclear Information System (INIS)

    Savic, N.; Beyer, J.; Rosa, A. La; Macchiolo, A.; Nisius, R.

    2016-01-01

    In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), planned to start around 2023–2025, the ATLAS experiment will undergo a replacement of the Inner Detector. A higher luminosity will imply higher irradiation levels and hence will demand more radiation hardness especially in the inner layers of the pixel system. The n-in-p silicon technology is a promising candidate to instrument this region, also thanks to its cost-effectiveness because it only requires a single sided processing in contrast to the n-in-n pixel technology presently employed in the LHC experiments. In addition, thin sensors were found to ensure radiation hardness at high fluences. An overview is given of recent results obtained with not irradiated and irradiated n-in-p planar pixel modules. The focus will be on n-in-p planar pixel sensors with an active thickness of 100 and 150 μm recently produced at ADVACAM. To maximize the active area of the sensors, slim and active edges are implemented. The performance of these modules is investigated at beam tests and the results on edge efficiency will be shown.

  15. Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Ahmad, A.; Andreazza, A.; Atkinson, T.; Baines, J.; Barr, A.J.; Beccherle, R.; Bell, P.J.; Bernabeu, J.; Broklova, Z.; Bruckman de Renstrom, P.A.; Cauz, D.; Chevalier, L.; Chouridou, S.; Citterio, M.; Clark, A.; Cobal, M.; Cornelissen, T.; Correard, S.; Costa, M.J.; Costanzo, D.; Cuneo, S.; Dameri, M.; Darbo, G.; de Vivie, J.B.; Di Girolamo, B.; Dobos, D.; Drasal, Z.; Drohan, J.; Einsweiler, K.; Elsing, M.; Emelyanov, D.; Escobar, C.; Facius, K.; Ferrari, P.; Fergusson, D.; Ferrere, D.; Flick,, T.; Froidevaux, D.; Gagliardi, G.; Gallas, M.; Gallop, B.J.; Gan, K.K.; Garcia, C.; Gavrilenko, I.L.; Gemme, C.; Gerlach, P.; Golling, T.; Gonzalez-Sevilla, S.; Goodrick, M.J.; Gorfine, G.; Gottfert, T.; Grosse-Knetter, J.; Hansen, P.H.; Hara, K.; Hartel, R.; Harvey, A.; Hawkings, R.J.; Heinemann, F.E.W.; Henss, T.; Hill, J.C.; Huegging, F.; Jansen, E.; Joseph, J.; Unel, M. Karagoz; Kataoka, M.; Kersten, S.; Khomich, A.; Klingenberg, R.; Kodys, P.; Koffas, T.; Konstantinidis, N.; Kostyukhin, V.; Lacasta, C.; Lari, T.; Latorre, S.; Lester, C.G.; Liebig, W.; Lipniacka, A.; Lourerio, K.F.; Mangin-Brinet, M.; Marti i Garcia, S.; Mathes, M.; Meroni, C.; Mikulec, B.; Mindur, B.; Moed, S.; Moorhead, G.; Morettini, P.; Moyse, E.W.J.; Nakamura, K.; Nechaeva, P.; Nikolaev, K.; Parodi, F.; Parzhitskiy, S.; Pater, J.; Petti, R.; Phillips, P.W.; Pinto, B.; Poppleton, A.; Reeves, K.; Reisinger, I.; Reznicek, P.; Risso, P.; Robinson, D.; Roe, S.; Rozanov, A.; Salzburger, A.; Sandaker, H.; Santi, L.; Schiavi, C.; Schieck, J.; Schultes, J.; Sfyrla, A.; Shaw, C.; Tegenfeldt, F.; Timmermans, C.J.W.P.; Toczek, B.; Troncon, C.; Tyndel, M.; Vernocchi, F.; Virzi, J.; Anh, T. Vu; Warren, M.; Weber, J.; Weber, M.; Weidberg, A.R.; Weingarten, J.; Wellsf, P.S.; Zhelezkow, A.

    2008-06-02

    A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained in the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.

  16. Operational Experience with the CMS Pixel Detector

    CERN Document Server

    INSPIRE-00205212

    2015-05-15

    In the first LHC running period the CMS-pixel detector had to face various operational challenges and had to adapt to the rapidly changing beam conditions. In order to maximize the physics potential and the quality of the data, online and offline calibrations were performed on a regular basis. The detector performed excellently with an average hit efficiency above 99\\% for all layers and disks. In this contribution the operational challenges of the silicon pixel detector in the first LHC run and the current long shutdown are summarized and the expectations for 2015 are discussed.

  17. The FE-I4 pixel readout integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sciveres, M., E-mail: mgarcia-sciveres@bl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Arutinov, D.; Barbero, M. [University of Bonn, Bonn (Germany); Beccherle, R. [Istituto Nazionale di Fisica Nucleare Sezione di Genova, Genova (Italy); Dube, S.; Elledge, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Fleury, J. [Laboratoire de l' Accelerateur Lineaire, Orsay (France); Fougeron, D.; Gensolen, F. [Centre de Physique des Particules de Marseille, Marseille (France); Gnani, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gromov, V. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Hemperek, T.; Karagounis, M. [University of Bonn, Bonn (Germany); Kluit, R. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands); Kruth, A. [University of Bonn, Bonn (Germany); Mekkaoui, A. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Menouni, M. [Centre de Physique des Particules de Marseille, Marseille (France); Schipper, J.-D. [Nationaal Instituut voor Subatomaire Fysica, Amsterdam (Netherlands)

    2011-04-21

    A new pixel readout integrated circuit denominated FE-I4 is being designed to meet the requirements of ATLAS experiment upgrades. It will be the largest readout IC produced to date for particle physics applications, filling the maximum allowed reticle area. This will significantly reduce the cost of future hybrid pixel detectors. In addition, FE-I4 will have smaller pixels and higher rate capability than the present generation of LHC pixel detectors. Design features are described along with simulation and test results, including low power and high rate readout architecture, mixed signal design strategy, and yield hardening.

  18. Production and integration of the ATLAS Insertable B-Layer

    Science.gov (United States)

    Abbott, B.; Albert, J.; Alberti, F.; Alex, M.; Alimonti, G.; Alkire, S.; Allport, P.; Altenheiner, S.; Ancu, L. S.; Anderssen, E.; Andreani, A.; Andreazza, A.; Axen, B.; Arguin, J.; Backhaus, M.; Balbi, G.; Ballansat, J.; Barbero, M.; Barbier, G.; Bassalat, A.; Bates, R.; Baudin, P.; Battaglia, M.; Beau, T.; Beccherle, R.; Bell, A.; Benoit, M.; Bermgan, A.; Bertsche, C.; Bertsche, D.; Bilbao de Mendizabal, J.; Bindi, F.; Bomben, M.; Borri, M.; Bortolin, C.; Bousson, N.; Boyd, R. G.; Breugnon, P.; Bruni, G.; Brossamer, J.; Bruschi, M.; Buchholz, P.; Budun, E.; Buttar, C.; Cadoux, F.; Calderini, G.; Caminada, L.; Capeans, M.; Carney, R.; Casse, G.; Catinaccio, A.; Cavalli-Sforza, M.; Červ, M.; Cervelli, A.; Chau, C. C.; Chauveau, J.; Chen, S. P.; Chu, M.; Ciapetti, M.; Cindro, V.; Citterio, M.; Clark, A.; Cobal, M.; Coelli, S.; Collot, J.; Crespo-Lopez, O.; Dalla Betta, G. F.; Daly, C.; D'Amen, G.; Dann, N.; Dao, V.; Darbo, G.; DaVia, C.; David, P.; Debieux, S.; Delebecque, P.; De Lorenzi, F.; de Oliveira, R.; Dette, K.; Dietsche, W.; Di Girolamo, B.; Dinu, N.; Dittus, F.; Diyakov, D.; Djama, F.; Dobos, D.; Dondero, P.; Doonan, K.; Dopke, J.; Dorholt, O.; Dube, S.; Dzahini, D.; Egorov, K.; Ehrmann, O.; Einsweiler, K.; Elles, S.; Elsing, M.; Eraud, L.; Ereditato, A.; Eyring, A.; Falchieri, D.; Falou, A.; Fausten, C.; Favareto, A.; Favre, Y.; Feigl, S.; Fernandez Perez, S.; Ferrere, D.; Fleury, J.; Flick, T.; Forshaw, D.; Fougeron, D.; Franconi, L.; Gabrielli, A.; Gaglione, R.; Gallrapp, C.; Gan, K. K.; Garcia-Sciveres, M.; Gariano, G.; Gastaldi, T.; Gavrilenko, I.; Gaudiello, A.; Geffroy, N.; Gemme, C.; Gensolen, F.; George, M.; Ghislain, P.; Giangiacomi, N.; Gibson, S.; Giordani, M. P.; Giugni, D.; Gjersdal, H.; Glitza, K. W.; Gnani, D.; Godlewski, J.; Gonella, L.; Gonzalez-Sevilla, S.; Gorelov, I.; Gorišek, A.; Gössling, C.; Grancagnolo, S.; Gray, H.; Gregor, I.; Grenier, P.; Grinstein, S.; Gris, A.; Gromov, V.; Grondin, D.; Grosse-Knetter, J.; Guescini, F.; Guido, E.; Gutierrez, P.; Hallewell, G.; Hartman, N.; Hauck, S.; Hasi, J.; Hasib, A.; Hegner, F.; Heidbrink, S.; Heim, T.; Heinemann, B.; Hemperek, T.; Hessey, N. P.; Hetmánek, M.; Hinman, R. R.; Hoeferkamp, M.; Holmes, T.; Hostachy, J.; Hsu, S. C.; Hügging, F.; Husi, C.; Iacobucci, G.; Ibragimov, I.; Idarraga, J.; Ikegami, Y.; Ince, T.; Ishmukhametov, R.; Izen, J. M.; Janoška, Z.; Janssen, J.; Jansen, L.; Jeanty, L.; Jensen, F.; Jentzsch, J.; Jezequel, S.; Joseph, J.; Kagan, H.; Kagan, M.; Karagounis, M.; Kass, R.; Kastanas, A.; Kenney, C.; Kersten, S.; Kind, P.; Klein, M.; Klingenberg, R.; Kluit, R.; Kocian, M.; Koffeman, E.; Korchak, O.; Korolkov, I.; Kostyukhina-Visoven, I.; Kovalenko, S.; Kretz, M.; Krieger, N.; Krüger, H.; Kruth, A.; Kugel, A.; Kuykendall, W.; La Rosa, A.; Lai, C.; Lantzsch, K.; Lapoire, C.; Laporte, D.; Lari, T.; Latorre, S.; Leyton, M.; Lindquist, B.; Looper, K.; Lopez, I.; Lounis, A.; Lu, Y.; Lubatti, H. J.; Maeland, S.; Maier, A.; Mallik, U.; Manca, F.; Mandelli, B.; Mandić, I.; Marchand, D.; Marchiori, G.; Marx, M.; Massol, N.; Mättig, P.; Mayer, J.; McGoldrick, G.; Mekkaoui, A.; Menouni, M.; Menu, J.; Meroni, C.; Mesa, J.; Michal, S.; Miglioranzi, S.; Mikuž, M.; Miucci, A.; Mochizuki, K.; Monti, M.; Moore, J.; Morettini, P.; Morley, A.; Moss, J.; Muenstermann, D.; Murray, P.; Nakamura, K.; Nellist, C.; Nelson, D.; Nessi, M.; Nisius, R.; Nordberg, M.; Nuiry, F.; Obermann, T.; Ockenfels, W.; Oide, H.; Oriunno, M.; Ould-Saada, F.; Padilla, C.; Pangaud, P.; Parker, S.; Pelleriti, G.; Pernegger, H.; Piacquadio, G.; Picazio, A.; Pohl, D.; Polini, A.; Pons, X.; Popule, J.; Portell Bueso, X.; Potamianos, K.; Povoli, M.; Puldon, D.; Pylypchenko, Y.; Quadt, A.; Quayle, B.; Rarbi, F.; Ragusa, F.; Rambure, T.; Richards, E.; Riegel, C.; Ristic, B.; Rivière, F.; Rizatdinova, F.; RØhne, O.; Rossi, C.; Rossi, L. P.; Rovani, A.; Rozanov, A.; Rubinskiy, I.; Rudolph, M. S.; Rummler, A.; Ruscino, E.; Sabatini, F.; Salek, D.; Salzburger, A.; Sandaker, H.; Sannino, M.; Sanny, B.; Scanlon, T.; Schipper, J.; Schmidt, U.; Schneider, B.; Schorlemmer, A.; Schroer, N.; Schwemling, P.; Sciuccati, A.; Seidel, S.; Seiden, A.; Šícho, P.; Skubic, P.; Sloboda, M.; Smith, D. S.; Smith, M.; Sood, A.; Spencer, E.; Stramaglia, M.; Strauss, M.; Stucci, S.; Stugu, B.; Stupak, J.; Styles, N.; Su, D.; Takubo, Y.; Tassan, J.; Teng, P.; Teixeira, A.; Terzo, S.; Therry, X.; Todorov, T.; Tomášek, M.; Toms, K.; Travaglini, R.; Trischuk, W.; Troncon, C.; Troska, G.; Tsiskaridze, S.; Tsurin, I.; Tsybychev, D.; Unno, Y.; Vacavant, L.; Verlaat, B.; Vigeolas, E.; Vogt, M.; Vrba, V.; Vuillermet, R.; Wagner, W.; Walkowiak, W.; Wang, R.; Watts, S.; Weber, M. S.; Weber, M.; Weingarten, J.; Welch, S.; Wenig, S.; Wensing, M.; Wermes, N.; Wittig, T.; Wittgen, M.; Yildizkaya, T.; Yang, Y.; Yao, W.; Yi, Y.; Zaman, A.; Zaidan, R.; Zeitnitz, C.; Ziolkowski, M.; Zivkovic, V.; Zoccoli, A.; Zwalinski, L.

    2018-05-01

    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.

  19. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Document Server

    Garcia-Sciveres, M; CERN. Geneva. The LHC experiments Committee; LHCC

    2013-01-01

    Letter of Intent for RD Collaboration Proposal focused on development of a next generation pixel readout integrated circuits needed for high luminosity LHC detector upgrades. Brings together ATLAS and CMS pixel chip design communities.

  20. The FPGA Pixel Array Detector

    International Nuclear Information System (INIS)

    Hromalik, Marianne S.; Green, Katherine S.; Philipp, Hugh T.; Tate, Mark W.; Gruner, Sol M.

    2013-01-01

    A proposed design for a reconfigurable x-ray Pixel Array Detector (PAD) is described. It operates by integrating a high-end commercial field programmable gate array (FPGA) into a 3-layer device along with a high-resistivity diode detection layer and a custom, application-specific integrated circuit (ASIC) layer. The ASIC layer contains an energy-discriminating photon-counting front end with photon hits streamed directly to the FPGA via a massively parallel, high-speed data connection. FPGA resources can be allocated to perform user defined tasks on the pixel data streams, including the implementation of a direct time autocorrelation function (ACF) with time resolution down to 100 ns. Using the FPGA at the front end to calculate the ACF reduces the required data transfer rate by several orders of magnitude when compared to a fast framing detector. The FPGA-ASIC high-speed interface, as well as the in-FPGA implementation of a real-time ACF for x-ray photon correlation spectroscopy experiments has been designed and simulated. A 16×16 pixel prototype of the ASIC has been fabricated and is being tested. -- Highlights: ► We describe the novelty and need for the FPGA Pixel Array Detector. ► We describe the specifications and design of the Diode, ASIC and FPGA layers. ► We highlight the Autocorrelation Function (ACF) for speckle as an example application. ► Simulated FPGA output calculates the ACF for different input bitstreams to 100 ns. ► Reduced data transfer rate by 640× and sped up real-time ACF by 100× other methods.

  1. Sensor development for the CMS pixel detector

    CERN Document Server

    Bölla, G; Horisberger, R P; Kaufmann, R; Rohe, T; Roy, A

    2002-01-01

    The CMS experiment which is currently under construction at the Large Hadron Collider (LHC) at CERN (Geneva, Switzerland) will contain a pixel detector which provides in its final configuration three space points per track close to the interaction point of the colliding beams. Because of the harsh radiation environment of the LHC, the technical realization of the pixel detector is extremely challenging. The readout chip as the most damageable part of the system is believed to survive a particle fluence of 6x10 sup 1 sup 4 n sub e sub q /cm sup 2 (All fluences are normalized to 1 MeV neutrons and therefore all components of the hybrid pixel detector have to perform well up to at least this fluence. As this requires a partially depleted operation of the silicon sensors after irradiation-induced type inversion of the substrate, an ''n in n'' concept has been chosen. In order to perform IV-tests on wafer level and to hold accidentally unconnected pixels close to ground potential, a resistive path between the pixe...

  2. Insertable B-Layer integration in the ATLAS experiment and development of future 3D silicon pixel sensors

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00371528; Røhne, Ole

    This work has two distinct objectives: the development of software for the integration of the Insertable B-Layer (IBL) in the ATLAS offline software framework and the study of the performance of 3D silicon sensors produced by SINTEF for future silicon pixel detectors. The former task consists in the implementation of the IBL byte stream converter. This offline tool performs the decoding of the binary-formatted data coming from the detector into information (e.g. hit position and Time over Threshold) that is stored in a format used in the reconstruction data flow. It also encodes the information extracted from simulations into a simulated IBL byte stream. The tool has been successfully used since the beginning of the LHC Run II data taking. The experimental work on SINTEF 3D sensors was performed in the framework of the development of pixel sensors for the next generation of tracking detectors. Preliminary tests on SINTEF 3D sensors showed that the majority of these devices suffers from high leakage currents, ...

  3. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  4. The ATLAS Insertable B-Layer: from construction to operation

    CERN Document Server

    La Rosa, Alessandro; The ATLAS collaboration

    2016-01-01

    The ATLAS Insertable B-Layer (IBL) is a fourth layer of pixel detectors, and has been installed in May 2014 at a radius of 3.3 cm between the existing Pixel Detector and a new smaller radius beam-pipe. The new detector, built to cope with high radiation and occupancy, is the first large scale application of 3D detectors and CMOS 130nm technology. The IBL detector construction was achieved within about two years starting from mid-2012 to the May 2014 installation in ATLAS, a very tight schedule to meet the ATLAS installation and detector closure before starting the Run2 in Spring 2015. The key features and challenges met during the IBL project will be presented, as well as its commissioning and operational experience in LHC.

  5. The forward Detectors of the ATLAS experiment

    CERN Document Server

    Vittori, Camilla; The ATLAS collaboration

    2017-01-01

    In this poster, a review of the ATLAS forward detectors operating in the 2015-2016 data taking is given. This includes a description of LUCID, the preferred ATLAS luminosity provider; of the ALFA detector, aimed to measure elastically scattered protons at small angle for the total proton-proton cross section measurement; of the ATLAS Forward Proton project AFP, which was partially installed and took the first data in 2015, and of the Zero Degree Calorimeter ZDC built for the ATLAS Heavy Ions physics program. The near future plans for these detectors will also be addressed.

  6. Electron imaging with Medipix2 hybrid pixel detector

    CERN Document Server

    McMullan, G; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μm×55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach 35% of that expected for a perfect detector (4/π2). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected v...

  7. Heavy ion collisions with the ATLAS detector

    International Nuclear Information System (INIS)

    Nevski, Pavel

    2004-01-01

    The ATLAS detector is designed to study high-p T physics in proton-proton collisions at the LHC design luminosity. The detector capabilities for heavy-ion physics are now being evaluated. This paper reports on a preliminary assessment of the baseline ATLAS detector potential for heavy-ion physics. The ATLAS sensitivity to some of the expected signatures from the quark-gluon plasma (e.g. jet quenching, Υ suppression) is discussed. (orig.)

  8. Technical Design Report for the ATLAS Inner Tracker Strip Detector

    CERN Document Server

    Collaboration, ATLAS

    2017-01-01

    This is the first of two Technical Design Report documents that describe the upgrade of the central tracking system for the ATLAS experiment for the operation at the High Luminosity LHC (HL-LHC) starting in the middle of 2026. At this time the LHC will have been upgraded to reach a peak instantaneous luminosity of 7.5x10^34 cm^[-2]s^[-1], which corresponds to approximately 200 inelastic proton-proton collisions per beam crossing. The new Inner Tracker (ITk) will be operational for more than ten years, during which ATLAS aims to accumulate a total data set of 3,000 fb^[-1]. Meeting these requirements presents a unique challenge for the design of an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large-area strip tracking detector surrounding it. This document presents in detail the requirements of the new tracker, its layout and expected performance including the results of several benchmark physics studies at the highest numbers of collisions per beam...

  9. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  10. The atlas detector

    International Nuclear Information System (INIS)

    Perrodo, P.

    2001-01-01

    The ATLAS detector, one of the two multi-purpose detectors at the Large Hadron Collider at CERN, is currently being built in order to meet the first proton-proton collisions in time. A description of the detector components will be given, corresponding to the most up to date design and status of construction, completed with test beam results and performances of the first serial modules. (author)

  11. Performance of thin pixel sensors irradiated up to a fluence of 10{sup 16}n{sub eq}cm{sup -2} and development of a new interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Andricek, L. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 Muenchen (Germany); Beimforde, M. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Moser, H.-G. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 Muenchen (Germany); Nisius, R. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Richter, R.H. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany); Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, D-81739 Muenchen (Germany); Weigell, P. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany)

    2011-09-11

    A new pixel module concept is presented, where thin sensors and a novel vertical integration technique are combined. This R and D activity is carried out in view of the ATLAS pixel detector upgrades. A first set of n-in-p pixel sensors with active thicknesses of 75 and 150{mu}m has been produced using a thinning technique developed at the Max-Planck-Institut Halbleiterlabor (HLL). Charge Collection Efficiency measurements have been performed, yielding a higher CCE than expected from the present radiation damage models. The interconnection of thin n-in-p pixels to the FE-I3 ATLAS electronics is under way, exploiting the Solid Liquid Interdiffusion (SLID) technique developed by the Fraunhofer Institut EMFT. In addition, preliminary studies aimed at Inter-Chip-Vias (ICV) etching into the FE-I3 electronics are reported. ICVs will be used to route the signals vertically through the read-out chip, to newly created pads on the backside. This should serve as a proof of principle for future four-side tileable pixel assemblies, avoiding the cantilever presently needed in the chip for the wire bonding.

  12. Development of the ATLAS FE-I4 pixel readout IC for b-layer Upgrade and Super-LHC

    CERN Document Server

    Karagounis, M

    2008-01-01

    Motivated by the upcoming upgrade of the ATLAS hybrid pixel detector, a new Front-End (FE) IC is being developed in a 130nm technology to face the tightened requirements of the upgraded pixel system. The main design goals are the reduction of material and a decrease in power consumption combined with the capability to handle the higher hit rates that will result from the upgraded machine. New technology features like the higher integration density for digital circuits, better radiation tolerance and Triple-Well transistors are used for optimization and the implementation of new concepts. A description of the ongoing design work is given, focusing more on the analog part and peripheral design blocks.

  13. Analog front-end cell designed in a commercial 025 mu m process for the ATLAS pixel detector at LHC

    CERN Document Server

    Blanquart, L; Comes, G; Denes, P; Einsweiler, Kevin F; Fischer, P; Mandelli, E; Meddeler, G; Peric, I; Richardson, J

    2002-01-01

    A new analog pixel front-end cell has been developed for the ATLAS detector at the future Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN). This analog cell has been submitted in two commercial 0.25 mu m CMOS processes (in an analog test chip format), using special layout techniques for radiation hardness purposes. It is composed of two cascaded amplifiers followed by a fast discriminator featuring a detection threshold within the range of 1000 to 10000 electrons. The first preamplifier has the principal role of providing a large bandwidth, low input impedance, and fast rise time in order to enhance the time-walk and crosstalk performance, whereas the second fully differential amplifier is aimed at delivering a sufficiently high-voltage gain for optimum comparison. A new do feedback concept renders the cell tolerant of sensor leakage current up to 300 nA and provides monitoring of this current. Two 5-bit digital-to-analog converters tolerant to single- event upset have been i...

  14. Luminosity Monitoring in ATLAS with MPX Detectors

    CERN Document Server

    AUTHOR|(CDS)2086061

    2013-01-01

    The ATLAS-MPX detectors are based on the Medipix2 silicon devices designed by CERN for the detection of multiple types of radiation. Sixteen such detectors were successfully operated in the ATLAS detector at the LHC and collected data independently of the ATLAS data-recording chain from 2008 to 2013. Each ATLAS-MPX detector provides separate measurements of the bunch-integrated LHC luminosity. An internal consistency for luminosity monitoring of about 2% was demonstrated. In addition, the MPX devices close to the beam are sensitive enough to provide relative-luminosity measurements during van der Meer calibration scans, in a low-luminosity regime that lies below the sensitivity of the ATLAS calorimeter-based bunch-integrating luminometers. Preliminary results from these luminosity studies are presented for 2012 data taken at $\\sqrt{s}=8$ TeV proton-proton collisions.

  15. A High Performance Multi-Core FPGA Implementation for 2D Pixel Clustering for the ATLAS Fast TracKer (FTK) Processor

    CERN Document Server

    Sotiropoulou, C-L; The ATLAS collaboration; Beretta, M; Gkaitatzis, S; Kordas, K; Nikolaidis, S; Petridou, C; Volpi, G

    2014-01-01

    The high performance multi-core 2D pixel clustering FPGA implementation used for the input system of the ATLAS Fast TracKer (FTK) processor is presented. The input system for the FTK processor will receive data from the Pixel and micro-strip detectors read out drivers (RODs) at 760Gbps, the full rate of level 1 triggers. Clustering is required as a method to reduce the high rate of the received data before further processing, as well as to determine the cluster centroid for obtaining obtain the best spatial measurement. Our implementation targets the pixel detectors and uses a 2D-clustering algorithm that takes advantage of a moving window technique to minimize the logic required for cluster identification. The design is fully generic and the cluster detection window size can be adjusted for optimizing the cluster identification process. Τhe implementation can be parallelized by instantiating multiple cores to identify different clusters independently thus exploiting more FPGA resources. This flexibility mak...

  16. System architecture of Detector Control and safety for the ATLAS Inner Detector Upgrade

    International Nuclear Information System (INIS)

    Ferrere, D.; Kersten, S.

    2011-01-01

    In the current ATLAS Upgrade plan a new Inner Detector (ID) based upon silicon sensor technology is being considered. The operational monitoring and control of the ID will be very demanding. The Detector Control System (DCS) is a common tool that is essential for the operational safety of a system. Even at this early stage the DCS system architecture has to be defined such that it is well integrated and optimized for its later implementation and use. For example the DCS diagnostics for the front-end (FE) chips is a serious option being considered that needs an early requirement and specification definition. In addition one of the main constraints is the service reuse between the service patch panels of the ATLAS ID and the counting room that limits the number of electrical lines to be reused. Conceptual differences in terms of readout architecture and layout have been identified between the strip and the pixel detector that lead to two distinct architectures. Nevertheless, the limitation of available electrical lines going to the counting room as well as the low material budget requirements inside the ID volume are two major constraints that lead the ID to consider an on-detector radiation hard integrated circuitry for the slow control. At this stage of the project, the definitions of the logical actions and protocol for the ADCs of such a chip are still being specified. In addition the experience gained from the current ID will be essential for the guidance of tuning the future DCS architecture in the coming years.

  17. FE-I4 Firmware Development and Integration with FELIX for the Pixel Detector

    CERN Document Server

    Yadav, Amitabh; Sharma, Abhishek; CERN. Geneva. EP Department

    2017-01-01

    CERN has planned a series of upgrades for the LHC. The last in this current series of planned upgrades is designated the HL-LHC. At the same time, the ATLAS Experiment will be extensively changed to meet the challenges of this upgrade (termed as the “Phase-II” upgrade). The Inner Detector will be completely rebuilt for the phase-II. The TRT, SCT and Pixel will be replaced by the all-silicon tracker, termed as the Inner Tracker (ITk). The read-out of this future ITk detector is an engineering challenge for the routing of services and quality of the data. This document describes the FPGA firmware development that integrates the GBT, Elink and Rx-Tx Cores for communication between the FE-I4 modules and the FELIX read-out system.

  18. Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment

    Science.gov (United States)

    Berdalovic, I.; Bates, R.; Buttar, C.; Cardella, R.; Egidos Plaja, N.; Hemperek, T.; Hiti, B.; van Hoorne, J. W.; Kugathasan, T.; Mandic, I.; Maneuski, D.; Marin Tobon, C. A.; Moustakas, K.; Musa, L.; Pernegger, H.; Riedler, P.; Riegel, C.; Schaefer, D.; Schioppa, E. J.; Sharma, A.; Snoeys, W.; Solans Sanchez, C.; Wang, T.; Wermes, N.

    2018-01-01

    The upgrade of the ATLAS tracking detector (ITk) for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. Latest developments in CMOS sensor processing offer the possibility of combining high-resistivity substrates with on-chip high-voltage biasing to achieve a large depleted active sensor volume. We have characterised depleted monolithic active pixel sensors (DMAPS), which were produced in a novel modified imaging process implemented in the TowerJazz 180 nm CMOS process in the framework of the monolithic sensor development for the ALICE experiment. Sensors fabricated in this modified process feature full depletion of the sensitive layer, a sensor capacitance of only a few fF and radiation tolerance up to 1015 neq/cm2. This paper summarises the measurements of charge collection properties in beam tests and in the laboratory using radioactive sources and edge TCT. The results of these measurements show significantly improved radiation hardness obtained for sensors manufactured using the modified process. This has opened the way to the design of two large scale demonstrators for the ATLAS ITk. To achieve a design compatible with the requirements of the outer pixel layers of the tracker, a charge sensitive front-end taking 500 nA from a 1.8 V supply is combined with a fast digital readout architecture. The low-power front-end with a 25 ns time resolution exploits the low sensor capacitance to reduce noise and analogue power, while the implemented readout architectures minimise power by reducing the digital activity.

  19. X-CSIT: a toolkit for simulating 2D pixel detectors

    Science.gov (United States)

    Joy, A.; Wing, M.; Hauf, S.; Kuster, M.; Rüter, T.

    2015-04-01

    A new, modular toolkit for creating simulations of 2D X-ray pixel detectors, X-CSIT (X-ray Camera SImulation Toolkit), is being developed. The toolkit uses three sequential simulations of detector processes which model photon interactions, electron charge cloud spreading with a high charge density plasma model and common electronic components used in detector readout. In addition, because of the wide variety in pixel detector design, X-CSIT has been designed as a modular platform so that existing functions can be modified or additional functionality added if the specific design of a detector demands it. X-CSIT will be used to create simulations of the detectors at the European XFEL, including three bespoke 2D detectors: the Adaptive Gain Integrating Pixel Detector (AGIPD), Large Pixel Detector (LPD) and DePFET Sensor with Signal Compression (DSSC). These simulations will be used by the detector group at the European XFEL for detector characterisation and calibration. For this purpose, X-CSIT has been integrated into the European XFEL's software framework, Karabo. This will further make it available to users to aid with the planning of experiments and analysis of data. In addition, X-CSIT will be released as a standalone, open source version for other users, collaborations and groups intending to create simulations of their own detectors.

  20. Development of radiation hard CMOS active pixel sensors for HL-LHC

    International Nuclear Information System (INIS)

    Pernegger, Heinz

    2016-01-01

    New pixel detectors, based on commercial high voltage and/or high resistivity full CMOS processes, hold promise as next-generation active pixel sensors for inner and intermediate layers of the upgraded ATLAS tracker. The use of commercial CMOS processes allow cost-effective detector construction and simpler hybridisation techniques. The paper gives an overview of the results obtained on AMS-produced CMOS sensors coupled to the ATLAS Pixel FE-I4 readout chips. The SOI (silicon-on-insulator) produced sensors by XFAB hold great promise as radiation hard SOI-CMOS sensors due to their combination of partially depleted SOI transistors reducing back-gate effects. The test results include pre-/post-irradiation comparison, measurements of charge collection regions as well as test beam results.

  1. Pixel array detector for X-ray free electron laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Hromalik, Marianne [Electrical and Computer Engineering, SUNY Oswego, Oswego, NY 13126 (United States); Tate, Mark; Koerner, Lucas [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Wilson Laboratory, Cornell University, CHESS, Ithaca, NY 14853 (United States)

    2011-09-01

    X-ray free electron lasers (XFELs) promise to revolutionize X-ray science with extremely high peak brilliances and femtosecond X-ray pulses. This will require novel detectors to fully realize the potential of these new sources. There are many current detector development projects aimed at the many challenges of meeting the XFEL requirements . This paper describes a pixel array detector (PAD) that has been developed for the Coherent X-ray Imaging experiment at the Linac Coherent Light Source (LCLS) at the SLAC National Laboratory . The detector features 14-bit in-pixel digitization; a 2-level in-pixel gain setting that can be used to make an arbitrary 2-D gain pattern that is adaptable to a particular experiment; the ability to handle instantaneous X-ray flux rates of 10{sup 17} photons per second; and continuous frames rates in excess of 120 Hz. The detector uses direct detection of X-rays in a silicon diode. The charge produced by the diode is integrated in a pixilated application specific integrated circuit (ASIC) which digitizes collected holes with single X-ray photon capability. Each ASIC is 194x185 pixels, each pixel is 110{mu}mx110{mu}m on a side. Each pixel can detect up to 2500 X-rays per frame in low-gain mode, yet easily detects single photons at high-gain. Cooled, single-chip detectors have been built and meet all the required specifications. SLAC National Laboratory is engaged in constructing a tiled, multi-chip 1516x1516 pixel detector.

  2. Luminosity Measurements with the ATLAS Detector

    CERN Document Server

    Maettig, Stefan; Pauly, T

    For almost all measurements performed at the Large Hadron Collider (LHC) one crucial ingredient is the precise knowledge about the integrated luminosity. The determination and precision on the integrated luminosity has direct implications on any cross-section measurement, and its instantaneous measurement gives important feedback on the conditions at the experimental insertions and on the accelerator performance. ATLAS is one of the main experiments at the LHC. In order to provide an accurate and reliable luminosity determination, ATLAS uses a variety of different sub-detectors and algorithms that measure the luminosity simultaneously. One of these sub-detectors are the Beam Condition Monitors (BCM) that were designed to protect the ATLAS detector from potentially dangerous beam losses. Due to its fast readout and very clean signals this diamond detector is providing in addition since May 2011 the official ATLAS luminosity. This thesis describes the calibration and performance of the BCM as a luminosity detec...

  3. The Belle II DEPFET pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Hans-Günther, E-mail: moser@mpp.mpg.de

    2016-09-21

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55–60) μm in the first layer and between 50 μm×(70–85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the ‘internal gate’ modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X{sub 0}). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO{sub 2} system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  4. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    Energy Technology Data Exchange (ETDEWEB)

    Andricek, L. [Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, 81739 Muenchen (Germany); Beimforde, M., E-mail: mibei@mpp.mpg.de [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Macchiolo, A. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Moser, H.-G. [Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, 81739 Muenchen (Germany); Nisius, R. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Richter, R.H. [Max-Planck-Institut Halbleiterlabor, Otto Hahn Ring 6, 81739 Muenchen (Germany)

    2011-04-21

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150{mu}m has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut fuer Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 10{sup 15} n{sub eq} cm{sup -2} have been carried out and their impact on the electrical properties of thin sensors has been studied. The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  5. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    International Nuclear Information System (INIS)

    Andricek, L.; Beimforde, M.; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R.H.

    2011-01-01

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150μm has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut fuer Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 10 15 n eq cm -2 have been carried out and their impact on the electrical properties of thin sensors has been studied. The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  6. Status of the digital pixel array detector for protein crystallography

    CERN Document Server

    Datte, P; Beuville, E; Endres, N; Druillole, F; Luo, L; Millaud, J E; Xuong, N H

    1999-01-01

    A two-dimensional photon counting digital pixel array detector is being designed for static and time resolved protein crystallography. The room temperature detector will significantly enhance monochromatic and polychromatic protein crystallographic through-put data rates by more than three orders of magnitude. The detector has an almost infinite photon counting dynamic range and exhibits superior spatial resolution when compared to present crystallographic phosphor imaging plates or phosphor coupled CCD detectors. The detector is a high resistivity N-type Si with a pixel pitch of 150x150 mu m, and a thickness of 300 mu m, and is bump bonded to an application specific integrated circuit. The event driven readout of the detector is based on the column architecture and allows an independent pixel hit rate above 1 million photons/s/pixel. The device provides energy discrimination and sparse data readout which yields minimal dead-time. This type of architecture allows a continuous (frameless) data acquisition, a f...

  7. Charge Pump Clock Generation PLL for the Data Output Block of the Upgraded ATLAS Pixel Front-End in 130 nm CMOS

    CERN Document Server

    Kruth, A; Arutinov, D; Barbero, M; Gronewald, M; Hemperek, T; Karagounis, M; Krueger, H; Wermes, N; Fougeron, D; Menouni, M; Beccherle, R; Dube, S; Ellege, D; Garcia-Sciveres, M; Gnani, D; Mekkaoui, A; Gromov, V; Kluit, R; Schipper, J

    2009-01-01

    FE-I4 is the 130 nm ATLAS pixel IC currently under development for upgraded Large Hadron Collider (LHC) luminosities. FE-I4 is based on a low-power analog pixel array and digital architecture concepts tuned to higher hit rates [1]. An integrated Phase Locked Loop (PLL) has been developed that locally generates a clock signal for the 160 Mbit/s output data stream from the 40 MHz bunch crossing reference clock. This block is designed for low power, low area consumption and recovers quickly from loss of lock related to single-event transients in the high radiation environment of the ATLAS pixel detector. After a general introduction to the new FE-I4 pixel front-end chip, this work focuses on the FE-I4 output blocks and on a first PLL prototype test chip submitted in early 2009. The PLL is nominally operated from a 1.2V supply and consumes 3.84mW of DC power. Under nominal operating conditions, the control voltage settles to within 2% of its nominal value in less than 700 ns. The nominal operating frequency for t...

  8. arXiv Production and Integration of the ATLAS Insertable B-Layer

    CERN Document Server

    Abbott, B.; Alberti, F.; Alex, M.; Alimonti, G.; Alkire, S.; Allport, P.; Altenheiner, S.; Ancu, L.S.; Anderssen, E.; Andreani, A.; Andreazza, A.; Axen, B.; Arguin, J.; Backhaus, M.; Balbi, G.; Ballansat, J.; Barbero, M.; Barbier, G.; Bassalat, A.; Bates, R.; Baudin, P.; Battaglia, M.; Beau, T.; Beccherle, R.; Bell, A.; Benoit, M.; Bermgan, A.; Bertsche, C.; Bertsche, D.; Bilbao de Mendizabal, J.; Bindi, F.; Bomben, M.; Borri, M.; Bortolin, C.; Bousson, N.; Boyd, R.G.; Breugnon, P.; Bruni, G.; Brossamer, J.; Bruschi, M.; Buchholz, P.; Budun, E.; Buttar, C.; Cadoux, F.; Calderini, G.; Caminada, L.; Capeans, M.; Carney, R.; Casse, G.; Catinaccio, A.; Cavalli-Sforza, M.; Červ, M.; Cervelli, A.; Chau, C.C.; Chauveau, J.; Chen, S.P.; Chu, M.; Ciapetti, M.; Cindro, V.; Citterio, M.; Clark, A.; Cobal, M.; Coelli, S.; Collot, J.; Crespo-Lopez, O.; Dalla Betta, G.F.; Daly, C.; D'Amen, G.; Dann, N.; Dao, V.; Darbo, G.; DaVia, C.; David, P.; Debieux, S.; Delebecque, P.; De Lorenzi, F.; de Oliveira, R.; Dette, K.; Dietsche, W.; Di Girolamo, B.; Dinu, N.; Dittus, F.; Diyakov, D.; Djama, F.; Dobos, D.; Dondero, P.; Doonan, K.; Dopke, J.; Dorholt, O.; Dube, S.; Dzahini, D.; Egorov, K.; Ehrmann, O.; Einsweiler, K.; Elles, S.; Elsing, M.; Eraud, L.; Ereditato, A.; Eyring, A.; Falchieri, D.; Falou, A.; Fausten, C.; Favareto, A.; Favre, Y.; Feigl, S.; Fernandez Perez, S.; Ferrere, D.; Fleury, J.; Flick, T.; Forshaw, D.; Fougeron, D.; Franconi, L.; Gabrielli, A.; Gaglione, R.; Gallrapp, C.; Gan, K.K.; Garcia-Sciveres, M.; Gariano, G.; Gastaldi, T.; Gavrilenko, I.; Gaudiello, A.; Geffroy, N.; Gemme, C.; Gensolen, F.; George, M.; Ghislain, P.; Giangiacomi, N.; Gibson, S.; Giordani, M.P.; Giugni, D.; Gjersdal, H.; Glitza, K.W.; Gnani, D.; Godlewski, J.; Gonella, L.; Gonzalez-Sevilla, S.; Gorelov, I.; Gorišek, A.; Gössling, C.; Grancagnolo, S.; Gray, H.; Gregor, I.; Grenier, P.; Grinstein, S.; Gris, A.; Gromov, V.; Grondin, D.; Grosse-Knetter, J.; Guescini, F.; Guido, E.; Gutierrez, P.; Hallewell, G.; Hartman, N.; Hauck, S.; Hasi, J.; Hasib, A.; Hegner, F.; Heidbrink, S.; Heim, T.; Heinemann, B.; Hemperek, T.; Hessey, N.P.; Hetmánek, M.; Hinman, R.R.; Hoeferkamp, M.; Holmes, T.; Hostachy, J.; Hsu, S.C.; Hügging, F.; Husi, C.; Iacobucci, G.; Ibragimov, I.; Idarraga, J.; Ikegami, Y.; Ince, T.; Ishmukhametov, R.; Izen, J.M.; Janoška, Z.; Janssen, J.; Jansen, L.; Jeanty, L.; Jensen, F.; Jentzsch, J.; Jezequel, S.; Joseph, J.; Kagan, H.; Kagan, M.; Karagounis, M.; Kass, R.; Kastanas, A.; Kenney, C.; Kersten, S.; Kind, P.; Klein, M.; Klingenberg, R.; Kluit, R.; Kocian, M.; Koffeman, E.; Korchak, O.; Korolkov, I.; Kostyukhina-Visoven, I.; Kovalenko, S.; Kretz, M.; Krieger, N.; Krüger, H.; Kruth, A.; Kugel, A.; Kuykendall, W.; La Rosa, A.; Lai, C.; Lantzsch, K.; Lapoire, C.; Laporte, D.; Lari, T.; Latorre, S.; Leyton, M.; Lindquist, B.; Looper, K.; Lopez, I.; Lounis, A.; Lu, Y.; Lubatti, H.J.; Maeland, S.; Maier, A.; Mallik, U.; Manca, F.; Mandelli, B.; Mandić, I.; Marchand, D.; Marchiori, G.; Marx, M.; Massol, N.; Mättig, P.; Mayer, J.; Mc Goldrick, G.; Mekkaoui, A.; Menouni, M.; Menu, J.; Meroni, C.; Mesa, J.; Michal, S.; Miglioranzi, S.; Mikuž, M.; Miucci, A.; Mochizuki, K.; Monti, M.; Moore, J.; Morettini, P.; Morley, A.; Moss, J.; Muenstermann, D.; Murray, P.; Nakamura, K.; Nellist, C.; Nelson, D.; Nessi, M.; Nisius, R.; Nordberg, M.; Nuiry, F.; Obermann, T.; Ockenfels, W.; Oide, H.; Oriunno, M.; Ould-Saada, F.; Padilla, C.; Pangaud, P.; Parker, S.; Pelleriti, G.; Pernegger, H.; Piacquadio, G.; Picazio, A.; Pohl, D.; Polini, A.; Pons, X.; Popule, J.; Portell Bueso, X.; Potamianos, K.; Povoli, M.; Puldon, D.; Pylypchenko, Y.; Quadt, A.; Quayle, B.; Rarbi, F.; Ragusa, F.; Rambure, T.; Richards, E.; Riegel, C.; Ristic, B.; Rivière, F.; Rizatdinova, F.; Rø hne, O.; Rossi, C.; Rossi, L.P.; Rovani, A.; Rozanov, A.; Rubinskiy, I.; Rudolph, M.S.; Rummier, A.; Ruscino, E.; Sabatini, F.; Salek, D.; Salzburger, A.; Sandaker, H.; Sannino, M.; Sanny, B.; Scanlon, T.; Schipper, J.; Schmidt, U.; Schneider, B.; Schorlemmer, A.; Schroer, N.; Schwemling, P.; Sciuccati, A.; Seidel, S.; Seiden, A.; Šícho, P.; Skubic, P.; Sloboda, M.; Smith, D.S.; Smith, M.; Sood, A.; Spencer, E.; Stramaglia, M.; Strauss, M.; Stucci, S.; Stugu, B.; Stupak, J.; Styles, N.; Su, D.; Takubo, Y.; Tassan, J.; Teng, P.; Teixeira, A.; Terzo, S.; Therry, X.; Todorov, T.; Tomášek, M.; Toms, K.; Travaglini, R.; Trischuk, W.; Troncon, C.; Troska, G.; Tsiskaridze, S.; Tsurin, I.; Tsybychev, D.; Unno, Y.; Vacavant, L.; Verlaat, B.; Vigeolas, E.; Vogt, M.; Vrba, V.; Vuillermet, R.; Wagner, W.; Walkowiak, W.; Wang, R.; Watts, S.; Weber, M.S.; Weber, M.; Weingarten, J.; Welch, S.; Wenig, S.; Wensing, M.; Wermes, N.; Wittig, T.; Wittgen, M.; Yildizkaya, T.; Yang, Y.; Yao, W.; Yi, Y.; Zaman, A.; Zaidan, R.; Zeitnitz, C.; Ziolkowski, M.; Zivkovic, V.; Zoccoli, A.; Zwalinski, L.

    2018-05-16

    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.

  9. Wafer-scale pixelated detector system

    Science.gov (United States)

    Fahim, Farah; Deptuch, Grzegorz; Zimmerman, Tom

    2017-10-17

    A large area, gapless, detection system comprises at least one sensor; an interposer operably connected to the at least one sensor; and at least one application specific integrated circuit operably connected to the sensor via the interposer wherein the detection system provides high dynamic range while maintaining small pixel area and low power dissipation. Thereby the invention provides methods and systems for a wafer-scale gapless and seamless detector systems with small pixels, which have both high dynamic range and low power dissipation.

  10. Preliminary Results of 3D-DDTC Pixel Detectors for the ATLAS Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    La Rosa, Alessandro; /CERN; Boscardin, M.; /Fond. Bruno Kessler, Povo; Dalla Betta, G.-F.; /Trento U. /INFN, Trento; Darbo, G.; Gemme, C.; /INFN, Genoa; Pernegger, H.; /CERN; Piemonte, C.; /Fond. Bruno Kessler, Povo; Povoli, M.; /Trento U. /INFN, Trento; Ronchin, S.; /Fond. Bruno Kessler, Povo; Zoboli, A.; /Trento U. /INFN, Trento; Zorzi, N.; /Fond. Bruno Kessler, Povo; Bolle, E.; /Oslo U.; Borri, M.; /INFN, Turin /Turin U.; Da Via, C.; /Manchester U.; Dong, S.; /SLAC; Fazio, S.; /Calabria U.; Grenier, P.; /SLAC; Grinstein, S.; /Barcelona, IFAE; Gjersdal, H.; /Oslo U.; Hansson, P.; /SLAC; Huegging, F.; /Bonn U. /SLAC /INFN, Turin /Turin U. /Oslo U. /Bergen U. /Oslo U. /Prague, Tech. U. /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

    2012-04-04

    3D Silicon sensors fabricated at FBK-irst with the Double-side Double Type Column (DDTC) approach and columnar electrodes only partially etched through p-type substrates were tested in laboratory and in a 1.35 Tesla magnetic field with a 180 GeV pion beam at CERN SPS. The substrate thickness of the sensors is about 200 {mu}m, and different column depths are available, with overlaps between junction columns (etched from the front side) and ohmic columns (etched from the back side) in the range from 110 {mu}m to 150 {mu}m. The devices under test were bump bonded to the ATLAS Pixel readout chip (FEI3) at SELEX SI (Rome, Italy). We report leakage current and noise measurements, results of functional tests with Am{sup 241} {gamma}-ray sources, charge collection tests with Sr90 {beta}-source and an overview of preliminary results from the CERN beam test.

  11. Development of edgeless silicon pixel sensors on p-type substrate for the ATLAS high-luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Calderini, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Dipartimento di Fisica E. Fermi, Universitá di Pisa, Pisa (Italy); Bagolini, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bomben, M. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); Bosisio, L. [Università degli studi di Trieste and INFN-Trieste (Italy); Chauveau, J. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy); La Rosa, A. [Section de Physique (DPNC), Universitè de Geneve, Geneve (Switzerland); Marchiori, G. [Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE), Paris (France); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Povo di Trento (Italy)

    2014-11-21

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R and D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  12. Electron imaging with Medipix2 hybrid pixel detector

    International Nuclear Information System (INIS)

    McMullan, G.; Cattermole, D.M.; Chen, S.; Henderson, R.; Llopart, X.; Summerfield, C.; Tlustos, L.; Faruqi, A.R.

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 μmx55 μm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 μm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach ∼85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach ∼35% of that expected for a perfect detector (4/π 2 ). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/π). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses

  13. Electron imaging with Medipix2 hybrid pixel detector.

    Science.gov (United States)

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  14. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  15. Algorithms for spectral calibration of energy-resolving small-pixel detectors

    International Nuclear Information System (INIS)

    Scuffham, J; Veale, M C; Wilson, M D; Seller, P

    2013-01-01

    Small pixel Cd(Zn)Te detectors often suffer from inter-pixel variations in gain, resulting in shifts in the individual energy spectra. These gain variations are mainly caused by inclusions and defects within the crystal structure, which affect the charge transport within the material causing a decrease in the signal pulse height. In imaging applications, spectra are commonly integrated over a particular peak of interest. This means that the individual pixels must be accurately calibrated to ensure that the same portion of the spectrum is integrated in every pixel. The development of large-area detectors with fine pixel pitch necessitates automated algorithms for this spectral calibration, due to the very large number of pixels. Algorithms for automatic spectral calibration require accurate determination of characteristic x-ray or photopeak positions on a pixelwise basis. In this study, we compare two peak searching spectral calibration algorithms for a small-pixel CdTe detector in gamma spectroscopic imaging. The first algorithm uses rigid search ranges to identify peaks in each pixel spectrum, based on the average peak positions across all pixels. The second algorithm scales the search ranges on the basis of the position of the highest-energy peak relative to the average across all pixels. In test spectra acquired with Tc-99m, we found that the rigid search algorithm failed to correctly identify the target calibraton peaks in up to 4% of pixels. In contrast, the scaled search algorithm failed in only 0.16% of pixels. Failures in the scaled search algorithm were attributed to the presence of noise events above the main photopeak, and possible non-linearities in the spectral response in a small number of pixels. We conclude that a peak searching algorithm based on scaling known peak spacings is simple to implement and performs well for the spectral calibration of pixellated radiation detectors

  16. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R and D Project

    International Nuclear Information System (INIS)

    George, M

    2014-01-01

    After the foreseen upgrade of the LHC towards the HL-LHC, coming along with higher beam energies and increased peak luminosities, the experiments have to upgrade their detector systems to cope with the expected higher occupancies and radiation damages. In case of the ATLAS experiment a new Inner Tracker will be installed in this context. The ATLAS Planar Pixel Sensor R and D Project (PPS) is investigating the possibilities to cope with these new requirements, using planar pixel silicon sensors, working in a collaboration of 17 institutions and more than 80 scientists. Since the new Inner Tracker is supposed to have an active area on the order of 8 m 2 on the one side and has to withstand extreme irradiation on the other side, the PPS community is working on several approaches to reduce production costs, while increasing the radiation tolerance of the sensors. Another challenge is to produce sensors in such large quantities. During the production of the Insertable b-Layer (IBL) modules, the PPS community has proven to be able to produce a large scale production of planar silicon sensors with a high yield. For cost reduction reasons, it is desirable to produce larger sensors. There the PPS community is working on so called quad- and hex-modules, which have a size of four, respectively six FE-I4 readout chips. To cope with smaller radii and strict material budget requirements for the new pixel layers, developments towards sensors with small inactive areas are in the focus of research. Different production techniques, which even allow the production of sensors with active edges, have been investigated and the designs were qualified using lab and testbeam measurements. The short distance between the new innermost pixel layers and the interaction point, combined with the increase in luminosity, requires designs which are more radiation tolerant. Since charge collection on the one hand decreases with irradiation and on the other hand is not uniform within the pixel cells

  17. Fully integrated CMOS pixel detector for high energy particles

    International Nuclear Information System (INIS)

    Vanstraelen, G.; Debusschere, I.; Claeys, C.; Declerck, G.

    1989-01-01

    A novel type of position and energy sensitive, monolithic pixel array with integrated readout electronics is proposed. Special features of the design are a reduction of the number of output channels and of the amount of output data, and the use of transistors on the high resistivity silicon. The number of output channels for the detector array is reduced by handling in parallel a number of pixels, chosen as a function of the time resolution required for the system, and by the use of an address decoder. A further reduction of data is achieved by reading out only those pixels which have been activated. The pixel detector circuit will be realized in a 3 μm p-well CMOS process, which is optimized for the full integration of readout electronics and detector diodes on high resistivity Si. A retrograde well is formed by means of a high energy implantation, followed by the appropriate temperature steps. The optimization of the well shape takes into account the high substrate bias applied during the detector operation. The design is largely based on the use of MOS transistors on the high resistivity silicon itself. These have proven to perform as well as transistors on standard doped substrate. The basic building elements as well as the design strategy of the integrated pixel detector are presented in detail. (orig.)

  18. The one-armed ATLAS Forward Proton detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372192; Lange, Joern

    The ATLAS experiment at the European Laboratory for Particle Physics (CERN), Geneva, has been taking data successfully since the Large Hadron Collider (LHC) accelerator started operations in 2010. Since then, it has been generating proton-proton collisions to study the frontiers of particle physics, at a centre of mass energy of 7-8 TeV first and, more recently, 13 TeV. However, the experiment is in constant evolution: detectors ageing due to radiation damage, increasing collision rates and pile-up, and new scientific objectives often require upgrades of the ATLAS detectors. These ever-growing challenges motivate the continued research and development of new detector technologies. To enhance the physics search of the experiment the ATLAS collaboration recently added a forward detector to identify intact protons that emerge from LHC collisions at very shallow angles. The ATLAS Forward Proton (AFP) detector enables the identification of diffractive processes and, ultimately, of central exclusive events, thus al...

  19. Thermal Characterization and Optimization of the Pixel Module Support Structure for the Phase-1 Upgrade of the CMS Pixel Detector

    CERN Document Server

    AUTHOR|(CDS)2094386; Feld, Lutz Werner

    2015-01-01

    The CMS (Compact Muon Solenoid) pixel detector is used in CMS for the vertex reconstruction of events in high-energy proton-proton collisions produced by the Large Hadron Collider (LHC). It is planned for the future years that the LHC will deliver significantly higher instantaneous and integrated luminosities. Therefore, also the demands and requirements for the participating detectors rise. Thus the current CMS pixel detector will be replaced by the CMS Phase-1 Upgrade Pixel Detector in the extended year-end technical stop in winter 2016/2017. As a vertex detector, the pixel detector is the innermost detector component and it is located at a short distance to the proton-proton interaction point. Therefore it has to cope with high particle hit rates and high irradiation. The heat produced due to power consumption has to be removed while using a low-mass detector design. The low-mass design of the Phase-1 Upgrade Pixel Detector will be implemented by utilizing a new two-phase CO2 cooling concept and an ultra l...

  20. New results on diamond pixel sensors using ATLAS frontend electronics

    International Nuclear Information System (INIS)

    Keil, M.; Adam, W.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K.K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Riester, J.L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2003-01-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented

  1. New results on diamond pixel sensors using ATLAS frontend electronics

    CERN Document Server

    Keil, Markus; Berdermann, E; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W

    2003-01-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  2. New results on diamond pixel sensors using ATLAS frontend electronics

    Energy Technology Data Exchange (ETDEWEB)

    Keil, M. E-mail: markus.keil@cern.ch; Adam, W.; Berdermann, E.; Bergonzo, P.; Boer, W. de; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; Eijk, B. van; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K.K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knoepfle, K.T.; Koeth, T.; Krammer, M.; Logiudice, A.; Mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Riester, J.L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M

    2003-03-21

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  3. New results on diamond pixel sensors using ATLAS frontend electronics

    Science.gov (United States)

    Keil, M.; Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Dulinski, W.; Doroshenko, J.; Doucet, M.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Kania, D.; Gan, K. K.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Kass, R.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Riester, J. L.; Roe, S.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Trischuk, W.; Tromson, D.; Vittone, E.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.

    2003-03-01

    Diamond is a promising sensor material for future collider experiments due to its radiation hardness. Diamond pixel sensors have been bump bonded to an ATLAS pixel readout chip using PbSn solder bumps. Single chip devices have been characterised by lab measurements and in a high-energy pion beam at CERN. Results on charge collection, spatial resolution, efficiency and the charge carrier lifetime are presented.

  4. X-ray imaging with photon counting hybrid semiconductor pixel detectors

    CERN Document Server

    Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C

    1999-01-01

    Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)

  5. Integration and installation of the CMS pixel barrel detector

    CERN Document Server

    Kastli, Hans-Christian

    2008-01-01

    A 66 million pixel detector has been installed in 2008 into the CMS experiment at CERN. The development and construction time took more than 10 years. In this paper the assembly of the barrel detector is described. A simple but effective method to accomplish a survey of the module positions during assembly is discussed. Furthermore the insertion and commissioning of the CMS pixel barrel detector which took place in July 2008 is illustrated.

  6. ATLAS end-cap detector

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Three scientists from the Institute of Nuclear Phyiscs at Novossibirsk with one of the end-caps of the ATLAS detector. The end-caps will be used to detect particles produced in the proton-proton collisions at the heart of the ATLAS experiment that are travelling close to the axis of the two beams.

  7. 14C autoradiography with an energy-sensitive silicon pixel detector.

    Science.gov (United States)

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  8. Characterisation of novel thin n-in-p planar pixel modules for the ATLAS Inner Tracker upgrade

    Science.gov (United States)

    Beyer, J.-C.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Savic, N.; Taibah, R.

    2018-01-01

    In view of the high luminosity phase of the LHC (HL-LHC) to start operation around 2026, a major upgrade of the tracker system for the ATLAS experiment is in preparation. The expected neutron equivalent fluence of up to 2.4×1016 1 MeV neq./cm2 at the innermost layer of the pixel detector poses the most severe challenge. Thanks to their low material budget and high charge collection efficiency after irradiation, modules made of thin planar pixel sensors are promising candidates to instrument these layers. To optimise the sensor layout for the decreased pixel cell size of 50×50 μm2, TCAD device simulations are being performed to investigate the charge collection efficiency before and after irradiation. In addition, sensors of 100-150 μm thickness, interconnected to FE-I4 read-out chips featuring the previous generation pixel cell size of 50×250 μm2, are characterised with testbeams at the CERN-SPS and DESY facilities. The performance of sensors with various designs, irradiated up to a fluence of 1×1016 neq./cm2, is compared in terms of charge collection and hit efficiency. A replacement of the two innermost pixel layers is foreseen during the lifetime of HL-LHC . The replacement will require several months of intervention, during which the remaining detector modules cannot be cooled. They are kept at room temperature, thus inducing an annealing. The performance of irradiated modules will be investigated with testbeam campaigns and the method of accelerated annealing at higher temperatures.

  9. Modeling of Pixelated Detector in SPECT Pinhole Reconstruction.

    Science.gov (United States)

    Feng, Bing; Zeng, Gengsheng L

    2014-04-10

    A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO 2 ) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts.

  10. ATLAS Forward Proton Detector

    CERN Document Server

    Grieco, Chiara; The ATLAS collaboration

    2018-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The full two-arm setup was installed during the 2016/2017 EYETS. This allows measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. In 2017, AFP participated in the ATLAS high-luminosity data taking on the day-by-day basis. In addition, several special runs with reduced luminosity were taken. The poster will present the AFP detectors and the lessons learned from the last year operation and some performance from 2016 and 2017.

  11. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    International Nuclear Information System (INIS)

    Barbier, G; Cadoux, F; Clark, A; Favre, Y; Ferrere, D; Gonzalez-Sevilla, S; Iacobucci, G; Marra, D La; Perrin, E; Seez, W; Endo, M; Hanagaki, K; Hara, K; Ikegami, Y; Nakamura, K; Takubo, Y; Terada, S; Jinnouchi, O; Nishimura, R; Takashima, R

    2014-01-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 10 34  cm −2  s −1 . For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described

  12. Alignment of the ATLAS Inner Detector Tracking System

    CERN Document Server

    Moles-Valls, R

    2008-01-01

    The ATLAS experiment is equipped with a tracking system for c harged particles built on two technologies: silicon and drift tube base detectors. These kind of detectors compose the ATLAS Inner Detector (ID). The Alignment of the ATLAS ID tracking s ystem requires the determination of almost 36000 degrees of freedom. From the tracking point o f view, the alignment parameters should be know to a few microns precision. This permits to att ain optimal measurements of the parameters of the charged particles trajectories, thus ena bling ATLAS to achieve its physics goals. The implementation of the alignment software, its framewor k and the data flow will be discussed. Special attention will be paid to the recent challenges wher e large scale computing simulation of the ATLAS detector has been performed, mimicking the ATLAS o peration, which is going to be very important for the LHC startup scenario. The alignment r esult for several challenges (real cosmic ray data taking and computing system commissioning) will be...

  13. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    International Nuclear Information System (INIS)

    Terzo, S; Macchiolo, A; Nisius, R; Paschen, B

    2014-01-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 10 16 n eq /cm 2

  14. Search for Physics beyond the Standard Model with the ATLAS detector and the development of radiation detectors

    CERN Document Server

    Silver, Yiftah

    We are investigating a radiation detector based on plasma display panel technology, the principal component of plasma television displays. This Plasma Panel Sensor (PPS) technology is a variant of micro-pattern gas radiation detectors. Based on the properties of existing plasma display panels, we expect eventually to be able to build a sealed array of plasma discharge gas cells to detect ionizing radiation with fast rise time of less than 10ns and high spatial resolution using a pixel pitch of less than 100 micrometer. In this thesis I shall describe our program of testing plasma display panels as detectors, including simulations, design and the first laboratory and beam studies that demonstrate the detection of cosmic ray muons, beta rays and medium energy protons. The ATLAS detector is used to search for high-mass resonances, in particular heavy neutral gauge bosons (Z') and excited states of Kaluza-Klein γ/Z bosons decaying to an electron-positron pair or a muon-antimuon pair. Results are presented based ...

  15. Technological aspects of gaseous pixel detectors fabrication

    NARCIS (Netherlands)

    Blanco Carballo, V.M.; Salm, Cora; Smits, Sander M.; Schmitz, Jurriaan; Melai, J.; Chefdeville, M.A.; van der Graaf, H.

    2007-01-01

    Integrated gaseous pixel detectors consisting of a metal punctured foil suspended in the order of 50μm over a pixel readout chip by means by SU-8 insulating pillars have been fabricated. SU-8 is used as sacrificial layer but metallization over uncrosslinked SU-8 presents adhesion and stress

  16. Design and Implementation of the ATLAS Detector Control System

    CERN Document Server

    Boterenbrood, H; Cook, J; Filimonov, V; Hallgren, B I; Heubers, W P J; Khomoutnikov, V; Ryabov, Yu; Varela, F

    2004-01-01

    The overall dimensions of the ATLAS experiment and its harsh environment, due to radiation and magnetic field, represent new challenges for the implementation of the Detector Control System. It supervises all hardware of the ATLAS detector, monitors the infrastructure of the experiment, and provides information exchange with the LHC accelerator. The system must allow for the operation of the different ATLAS sub-detectors in stand-alone mode, as required for calibration and debugging, as well as the coherent and integrated operation of all sub-detectors for physics data taking. For this reason, the Detector Control System is logically arranged to map the hierarchical organization of the ATLAS detector. Special requirements are placed onto the ATLAS Detector Control System because of the large number of distributed I/O channels and of the inaccessibility of the equipment during operation. Standardization is a crucial issue for the design and implementation of the control system because of the large variety of e...

  17. Overview of the ATLAS Insertable B-Layer (IBL) Project

    International Nuclear Information System (INIS)

    Røhne, O.

    2013-01-01

    The upgrades for the ATLAS Pixel Detector will be staged in preparation for high luminosity LHC. The first upgrade for the Pixel Detector is the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine, in 2013–2014. The new detector, called the Insertable B-Layer (IBL), will be installed between the existing Pixel Detector and a new, smaller radius beam-pipe at a radius of 3.3 cm. The IBL has required the development of several new technologies to cope with increased radiation and pixel occupancy and also to improve the physics performance through reduction of the pixel size and a more stringent material budget. The IBL presents several changes to the design of the present ATLAS Pixel Detector: two different and promising silicon sensor technologies, planar n-in-n and 3D, will be used for the IBL. A new read-out chip FE-I4 has been designed in 130 nm technology, the material budget is minimized by using new lightweight mechanical support materials and a CO 2 based cooling system has been developed. An overview of the IBL project, of the module design and the qualification for these sensor technologies with particular emphasis on irradiation and beam tests will be presented

  18. The Pixels system: last but not late!

    CERN Multimedia

    Kevin Einsweiler

    The Pixel Detector for ATLAS is one of the smallest, but most challenging components of the experiment. It lives in the dangerous territory directly outside the beampipe, where the radiation environment is particularly fierce, and it must be roughly one million times more radiation-hard than its human designers. Starting at a radius of just 5cm from the interaction point where the proton beams collide, it occupies a volume of slightly more than one meter in length and a half meter in diameter. In this compact region, there are eighty million channels of electronics (most of the electronics channels in ATLAS!), each capable of measuring the charge deposited by a track in a silicon pixel measuring only 50 microns by 400 microns in size (a volume of 0.005 cubic millimeters). A total cooling capacity of 15 KWatts is available to keep it operating comfortably at -5C. This detector is built around, and provides the support for, the central beampipe of ATLAS. It is supported on carbon fiber rails inside of the Pix...

  19. Topics in the Measurement of Top Quark Events with ATLAS Pixel Detector Optoelectronics, Track Impact Parameter Calibration, Acceptance Correction Methods

    CERN Document Server

    Sandvoss, Stephan Alexander

    2009-01-01

    This thesis presents methods, which can be applied especially to the measurement of top quark events with the ATLAS detector at the Large Hadron Collider (LHC) of CERN. Contributions to three fields were made: installation of the detector and its commissioning, data calibration and first physical analysis.

  20. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    International Nuclear Information System (INIS)

    Giacomini, G; Bagolini, A; Boscardin, M; Zorzi, N; Bomben, M; Calderini, G; Chauveau, J; Marchiori, G; Bosisio, L; Rosa, A La

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch

  1. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    CERN Document Server

    Giacomini, Gabriele; Bomben, Marco; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch.

  2. Detector Control System for the AFP detector in ATLAS experiment at CERN

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211068; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Oleiro Seabra, Luis Filipe; Sicho, Petr

    2017-01-01

    The ATLAS Forward Proton (AFP) detector consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of the det...

  3. Low-cost bump-bonding processes for high energy physics pixel detectors

    CERN Document Server

    AUTHOR|(CDS)2069357; Blank, Thomas; Colombo, Fabio; Dierlamm, Alexander Hermann; Husemann, Ulrich; Kudella, Simon; Weber, M

    2016-01-01

    In the next generation of collider experiments detectors will be challenged by unprecedented particle fluxes. Thus large detector arrays of highly pixelated detectors with minimal dead area will be required at reasonable costs. Bump-bonding of pixel detectors has been shown to be a major cost-driver. KIT is one of five production centers of the CMS barrel pixel detector for the Phase I Upgrade. In this contribution the SnPb bump-bonding process and the production yield is reported. In parallel to the production of the new CMS pixel detector, several alternatives to the expensive photolithography electroplating/electroless metal deposition technologies are developing. Recent progress and challenges faced in the development of bump-bonding technology based on gold-stud bonding by thin (15 μm) gold wire is presented. This technique allows producing metal bumps with diameters down to 30 μm without using photolithography processes, which are typically required to provide suitable under bump metallization. The sh...

  4. Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Jakoubek, Tomáš; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav

    2013-01-01

    Roč. 8, Jul (2013), s. 1-58 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : background * induced * semiconductor detector * pixel * muon * spectrometer * jet * single production * ATLAS * calorimeter * new physics * beam Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.526, year: 2013

  5. The ATLAS detector control system

    International Nuclear Information System (INIS)

    Schlenker, S.; Arfaoui, S.; Franz, S.

    2012-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of more that 130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 10 6 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. First, this contribution describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years and the LHC high luminosity upgrades are outlined. (authors)

  6. The ATLAS Detector Control System

    CERN Document Server

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  7. Detector Modules for the CMS Pixel Phase 1 Upgrade

    CERN Document Server

    Zhu, De Hua; Berger, Pirmin; Meinhard, Maren Tabea; Starodumov, Andrey; Tavolaro, Vittorio Raoul

    2017-01-01

    The CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important part of the production is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average $0.55 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\, \\pm \\, 0.01 \\mathrm{ {}^{0\\!}\\!/\\!_{00} }\\,$ defective pixels and that all performance parameters stay within their specifications.

  8. Detector Control System for the AFP detector in ATLAS experiment at CERN

    Science.gov (United States)

    Banaś, E.; Caforio, D.; Czekierda, S.; Hajduk, Z.; Olszowska, J.; Seabra, L.; Šícho, P.

    2017-10-01

    The ATLAS Forward Proton (AFP) detector consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of the detector status. Parameters, important for the detector safety, are used for alert generation and interlock mechanisms.

  9. Spectroscopic measurements with the ATLAS FE-I4 pixel readout chip

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, David-Leon; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Wermes, Norbert [Physikalisches Institut der Univeristaet Bonn (Germany)

    2015-07-01

    The ATLAS FE-I4 pixel readout chip is a large (2 x 2 cm{sup 2}) state of the art ASIC used in high energy physics experiments as well as for research and development purposes. While the FE-I4 is optimized for high hit rates it provides very limited charge resolution. Therefore two methods were developed to obtain high resolution single pixel charge spectra with the ATLAS FE-I4. The first method relies on the ability to change the detection threshold in small steps while counting hits from a particle source and has a resolution limited by electronic noise only. The other method uses a FPGA based time-to-digital-converter to digitize the analog charge signal with high precision. The feasibility, performance and challenges of these methods are discussed. First results of sensor characterizations from radioactive sources and test beams with the ATLAS FE-I4 in view of the charge collection efficiency after irradiation are presented.

  10. Synchrotron applications of pixel and strip detectors at Diamond Light Source

    International Nuclear Information System (INIS)

    Marchal, J.; Tartoni, N.; Nave, C.

    2009-01-01

    A wide range of position-sensitive X-ray detectors have been commissioned on the synchrotron X-ray beamlines operating at the Diamond Light Source in UK. In addition to mature technologies such as image-plates, CCD-based detectors, multi-wire and micro-strip gas detectors, more recent detectors based on semiconductor pixel or strip sensors coupled to CMOS read-out chips are also in use for routine synchrotron X-ray diffraction and scattering experiments. The performance of several commercial and developmental pixel/strip detectors for synchrotron studies are discussed with emphasis on the image quality achieved with these devices. Examples of pixel or strip detector applications at Diamond Light Source as well as the status of the commissioning of these detectors on the beamlines are presented. Finally, priorities and ideas for future developments are discussed.

  11. The ALICE silicon pixel detector front-end and read-out electronics

    CERN Document Server

    Kluge, A

    2006-01-01

    The ALICE silicon pixel detector (SPD) comprises the two innermost barrel layers of the ALICE inner tracker system. The SPD includes 120 half staves each of which consists of a linear array of 10 ALICE pixel chips bump bonded to two silicon sensors. Each pixel chip contains 8192 active cells, so the total number of pixel cells in the SPD is ≈107. The tight material budget and the limitation in physical dimensions required by the detector design introduce new challenges for the integration of the on-detector electronics. An essential part of the half stave is a low-mass multi-layer flex that carries power, ground, and signals to the pixel chips. Each half stave is read out using a multi-chip module (MCM). The MCM contains three radiation hard ASICs and an 800 Mbit/s custom developed optical link for the data transfer between the detector and the control room. The detector components are less than 3 mm thick. The production of the half-staves and MCMs is currently under way. Test results as well as on overvie...

  12. Charge collection and absorption-limited x-ray sensitivity of pixellated x-ray detectors

    International Nuclear Information System (INIS)

    Kabir, M. Zahangir; Kasap, S.O.

    2004-01-01

    The charge collection and absorption-limited x-ray sensitivity of a direct conversion pixellated x-ray detector operating in the presence of deep trapping of charge carriers is calculated using the Shockley-Ramo theorem and the weighting potential of the individual pixel. The sensitivity of a pixellated x-ray detector is analyzed in terms of normalized parameters; (a) the normalized x-ray absorption depth (absorption depth/photoconductor thickness), (b) normalized pixel width (pixel size/thickness), and (c) normalized carrier schubwegs (schubweg/thickness). The charge collection and absorption-limited sensitivity of pixellated x-ray detectors mainly depends on the transport properties (mobility and lifetime) of the charges that move towards the pixel electrodes and the extent of dependence increases with decreasing normalized pixel width. The x-ray sensitivity of smaller pixels may be higher or lower than that of larger pixels depending on the rate of electron and hole trapping and the bias polarity. The sensitivity of pixellated detectors can be improved by ensuring that the carrier with the higher mobility-lifetime product is drifted towards the pixel electrodes

  13. The Detector Safety System of the ATLAS experiment

    International Nuclear Information System (INIS)

    Beltramello, O; Burckhart, H J; Franz, S; Jaekel, M; Jeckel, M; Lueders, S; Morpurgo, G; Santos Pedrosa, F dos; Pommes, K; Sandaker, H

    2009-01-01

    The ATLAS detector at the Large Hadron Collider at CERN is one of the most advanced detectors for High Energy Physics experiments ever built. It consists of the order of ten functionally independent sub-detectors, which all have dedicated services like power, cooling, gas supply. A Detector Safety System has been built to detect possible operational problems and abnormal and potentially dangerous situations at an early stage and, if needed, to bring the relevant part of ATLAS automatically into a safe state. The procedures and the configuration specific to ATLAS are described in detail and first operational experience is given.

  14. Discovery of the B_{c}(2S) Meson and Development of Pixel Detectors for Future Particle Collider Experiments

    CERN Document Server

    Wang, Rui

    This work involves an analysis of data recorded at the Large Hadron Collider combined with a program to develop detectors for future collider experiments. Using the full 4.9 fb$^{-1}$ of 7 \\TeV~data collected in 2011 and the 19.2 fb$^{-1}$ of 8 \\TeV~data collected in 2012, the $\\Bc(2S)$ meson has been observed with the ATLAS detector in the hadronic decay mode $\\Bc(2S)\\rightarrow \\Bc\\pi^{+}\\pi^{-}$, $\\Bc\\rightarrow J/\\psi\\pi$. This new state has been found in the mass difference distribution with invariant mass $6842 \\pm 7_{stat.} \\pm 4_{syst.}$ \\MeV. To prepare for the high radiation environment at the High Luminosity LHC, diamond sensors are being developed. Their leakage current and resistivity are measured at fluences and temperatures relevant to the ATLAS upgrade. No evidence of dependence of the resistivity on fluence or temperature has been observed for the ranges [-10 $^\\circ$C, +20 $^\\circ$C] and [0, $1.0\\times10^{16} \\rm{n_{eq}/cm^2}$]. To study the radiation damage of the sensors in the ATLAS Pixel...

  15. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    International Nuclear Information System (INIS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-01-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ''high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ''continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan

  16. Studies on a 300 k pixel detector telescope

    Science.gov (United States)

    Middelkamp, Peter; Antinori, F.; Barberis, D.; Becks, K. H.; Beker, H.; Beusch, W.; Burger, P.; Campbell, M.; Cantatore, E.; Catanesi, M. G.; Chesi, E.; Darbo, G.; D'Auria, S.; Davia, C.; di Bari, D.; di Liberto, S.; Elia, D.; Gys, T.; Heijne, E. H. M.; Helstrup, H.; Jacholkowski, A.; Jæger, J. J.; Jakubek, J.; Jarron, P.; Klempt, W.; Krummenacher, F.; Knudson, K.; Kralik, I.; Kubasta, J.; Lasalle, J. C.; Leitner, R.; Lemeilleur, F.; Lenti, V.; Letheren, M.; Lopez, L.; Loukas, D.; Luptak, M.; Martinengo, P.; Meddeler, G.; Meddi, F.; Morando, M.; Munns, A.; Pellegrini, F.; Pengg, F.; Pospisil, S.; Quercigh, E.; Ridky, J.; Rossi, L.; Safarik, K.; Scharfetter, L.; Segato, G.; Simone, S.; Smith, K.; Snoeys, W.; Vrba, V.

    1996-02-01

    Four silicon pixel detector planes are combined to form a tracking telescope in the lead ion experiment WA97 at CERN with 290 304 sensitive elements each of 75 μm by 500 μm area. An electronic pulse processing circuit is associated with each individual sensing element and the response for ionizing particles is binary with an adjustable threshold. The noise rate for a threshold of 6000 e- has been measured to be less than 10-10. The inefficient area due to malfunctioning pixels is 2.8% of the 120 cm2. Detector overlaps within one plane have been used to determine the alignment of the components of the plane itself, without need for track reconstruction using external detectors. It is the first time that such a big surface covered with active pixels has been used in a physics experiment. Some aspects concerning inclined particle tracks and time walk have been measured separately in a beam test at the CERN SPS H6 beam.

  17. Studies on a 300 k pixel detector telescope

    International Nuclear Information System (INIS)

    Middelkamp, P.; Antinori, F.; Barberis, D.

    1996-01-01

    Four silicon pixel detector planes are combined to form a tracking telescope in the lead ion experiment WA97 at CERN with 290 304 sensitive elements each of 75 μm by 500 μm area. An electronic pulse processing circuit is associated with each individual sensing element and the response for ionizing particles is binary with an adjustable threshold. The noise rate for a threshold of 6000 e - has been measured to be less than 10 -10 . The inefficient area due to malfunctioning pixels is 2.8% of the 120 cm 2 . Detector overlaps within one plane have been used to determine the alignment of the components of the plane itself, without need for track reconstruction using external detectors. It is the first time that such a big surface covered with active pixels has been used in a physics experiment. Some aspects concerning inclined particle tracks and time walk have been measured separately in a beam test at the CERN SPS H6 beam. (orig.)

  18. Gamma Spectroscopy with Pixellated CdZnTe Gamma Detectors

    International Nuclear Information System (INIS)

    Shor, A.; Mardor, I.; Eisen, Y.

    2002-01-01

    Pixellated CdZnTe detectors are good candidates for room temperature gamma detection requiring spectroscopic performance with imaging capabilities. The CdZnTe materials possess high resistivity and good electron charge transport properties. The poor charge transport for the holes inherent in the CdZnTe material can be circumvented by fabricating the electrodes in any one of a number of structures designed for unipolar charge detection[1]. Recent interest in efficient gamma detection at relatively higher gamma energies has imposed more stringent demands on the CdZnTe material and on detector design and optimization. We developed at Soreq a technique where signals from all pixels and from the common electrode are processed, and then a correction is applied for improving the energy resolution and the photopeak efficiency. For illumination with an un-collimated 133 Ba source , we obtain a combined detector energy resolution of 5.0 % FWHM for the 81 keV peak, and 1.5 % FWHM for the 356 keV peak. We discuss the importance of detector material with high electron (μτ) e for thick Pixellated detectors

  19. Geneva University: Pixel Detectors – trends and options for the future

    CERN Multimedia

    Geneva University

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 25 April 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE Science III, Auditoire 1S081 30Science III, Auditoire 1S081 30 Pixel Detectors – trends and options for the future Prof. Norbert Wermes - University of Bonn  Pixel detectors have been invented in the early 90s with the advancement of micro technologies. With the advent of the LHC, big vertex detectors have demonstrated that the pixel detector type is holding many of the promises it had made before. Meanwhile new, different or just improved variants of the pixel technology are being studied for their suitability for future experiments or experiment upgrades. The talk will address the various pro's and con's comparing hybrid and monolithic pixel technologies and their su...

  20. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    Science.gov (United States)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  1. The Pixels find their way to the heart of ATLAS

    CERN Multimedia

    Kevin Einsweiler

    Since the last e-news article on the Pixel Detector in December 2006, there has been much progress. At that time, we were just about to receive the Beryllium beampipe, and to integrate the innermost layer of the Pixel Detector around it. This innermost layer is referred to as the B-layer because of the powerful role it plays in finding the secondary vertices that are the key signature for the presence of b-quarks, and with somewhat greater difficulty, c-quarks and tau leptons. The integration of the central 7m long beampipe into the Pixel Detector was completed in December, and the B-layer was successfully integrated around it. In January this year, we had largely completed the central 1.5m long detector, including the three barrel layers and the three disk layers on each end of the barrel. Although this region contains all of the 80 million readout channels, it cannot be integrated into the Inner Detector without additional services and infrastructure. Therefore, the next step was to add the Service Panels...

  2. Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector

    Energy Technology Data Exchange (ETDEWEB)

    Menasce, D.; et al.

    2013-06-01

    We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was about 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke$-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.

  3. A study of the material in the ATLAS inner detector using secondary hadronic interactions

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Hruška, I.; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lipinský, L.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav; Zeman, Martin

    2012-01-01

    Roč. 7, Jan (2012), s. 1-39 ISSN 1748-0221 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : transverse momentum * missing-energy * ATLAS * CERN LHC * trigger * tracks * p p scattering * pixel detector * microstrip * transition radiation Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/7/01/P01013/pdf/1748-0221_7_01_P01013.pdf

  4. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    Science.gov (United States)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  5. LUCID: the ATLAS Luminosity Detector

    CERN Document Server

    Fabbri, Laura; The ATLAS collaboration

    2018-01-01

    A precise measurement of luminosity is a key component of the ATLAS program: its uncertainty is a systematics for all cross-section measurements, from Standard Model processes to new discoveries, and for some precise measurements it can be dominant. To be predictive a precision compatible with PDF uncertainty ( 1-2%) is desired. LUCID (LUminosity Cherenkov Integrating Detector) is sensitive to charged particles generated by the pp collisions. It is the only ATLAS dedicated detector for this purpose and the referred one during the second run of LHC data taking.

  6. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Testsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany); Havranek, Miroslav [University of Bonn, Bonn (Germany); Institute of Physics of the Academy of Sciences, Prague (Czech Republic)

    2015-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges coming from the higher hit rate will have to be solved by designing faster and more complex circuits, while at the same time keeping in mind very high radiation hardness requirements. Therefore matching the specification set by the high luminosity upgrade requires a large R and D effort. Our group is participating in such a joint development * namely the RD53 collaboration * which goal is to design a new pixel chip using an advanced 65 nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology will be shown together with a comparison with older technologies (130 nm, 250 nm). Most of the talk is allocated to presenting some of the circuits designed by our group, along with their performance measurement results.

  7. 3D track reconstruction capability of a silicon hybrid active pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri [Czech Technical University in Prague, Institute of Experimental and Applied Physics, Praha (Czech Republic); Burian, Petr; Broulim, Pavel [Czech Technical University in Prague, Institute of Experimental and Applied Physics, Praha (Czech Republic); University of West Bohemia, Faculty of Electrical Engineering, Pilsen (Czech Republic); Jakubek, Jan [Advacam s.r.o., Praha (Czech Republic)

    2017-06-15

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 x 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for ''4D'' particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation (x,y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm. (orig.)

  8. 3D track reconstruction capability of a silicon hybrid active pixel detector

    Science.gov (United States)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.

  9. Si and gaas pixel detectors for medical imaging applications

    International Nuclear Information System (INIS)

    Bisogni, M. G.

    2001-01-01

    As the use of digital radiographic equipment in the morphological imaging field is becoming the more and more diffuse, the research of new and more performing devices from public institutions and industrial companies is in constant progress. Most of these devices are based on solid-state detectors as X-ray sensors. Semiconductor pixel detectors, originally developed in the high energy physics environment, have been then proposed as digital detector for medical imaging applications. In this paper a digital single photon counting device, based on silicon and GaAs pixel detector, is presented. The detector is a thin slab of semiconductor crystal where an array of 64 by 64 square pixels, 170- m side, has been built on one side. The data read-out is performed by a VLSI integrated circuit named Photon Counting Chip (PCC), developed within the MEDIPIX collaboration. Each chip cell geometrically matches the sensor pixel. It contains a charge preamplifier, a threshold comparator and a 15 bits pseudo-random counter and it is coupled to the detector by means of bump bonding. Most important advantages of such system, with respect to a traditional X-rays film/screen device, are the wider linear dynamic range (3x104) and the higher performance in terms of MTF and DQE. Besides the single photon counting architecture allows to detect image contrasts lower than 3%. Electronics read-out performance as well as imaging capabilities of the digital device will be presented. Images of mammographic phantoms acquired with a standard Mammographic tube will be compared with radiographs obtained with traditional film/screen systems

  10. A silicon pixel detector with routing for external VLSI read-out

    International Nuclear Information System (INIS)

    Thomas, S.L.; Seller, P.

    1988-07-01

    A silicon pixel detector with an array of 32 by 16 hexagonal pixels has been designed and is being built on high resistivity silicon. The detector elements are reverse biased diodes consisting of p-implants in an n-type substrate and are fully depleted from the front to the back of the wafer. They are intended to measure high energy ionising particles traversing the detector. The detailed design of the pixels, their layout and method of read-out are discussed. A number of test structures have been incorporated onto the wafer to enable measurements to be made on individual pixels together with a variety of active devices. The results will give a better understanding of the operation of the pixel array, and will allow testing of computer simulations of more elaborate structures for the future. (author)

  11. Modelling of the small pixel effect in gallium arsenide X-ray imaging detectors

    CERN Document Server

    Sellin, P J

    1999-01-01

    A Monte Carlo simulation has been carried out to investigate the small pixel effect in highly pixellated X-ray imaging detectors fabricated from semi-insulating gallium arsenide. The presence of highly non-uniform weighting fields in detectors with a small pixel geometry causes the majority of the induced signal to be generated when the moving charges are close to the pixellated contacts. The response of GaAs X-ray imaging detectors is further complicated by the presence of charge trapping, particularly of electrons. In this work detectors are modelled with a pixel pitch of 40 and 150 mu m, and with thicknesses of 300 and 500 mu m. Pulses induced in devices with 40 mu m pixels are due almost totally to the movement of the lightly-trapped holes and can exhibit significantly higher charge collection efficiencies than detectors with large electrodes, in which electron trapping is significant. Details of the charge collection efficiencies as a function of interaction depth in the detector and of the incident phot...

  12. PROTON RADIOGRAPHY WITH THE PIXEL DETECTOR TIMEPIX

    Directory of Open Access Journals (Sweden)

    Václav Olšanský

    2016-12-01

    Full Text Available This article presents the processing of radiographic data acquired using the position-sensitive hybrid semiconductor pixel detector Timepix. Measurements were made on thin samples at the medical ion-synchrotron HIT [1] in Heidelberg (Germany with a 221 MeV proton beam. The charge is energy by the particles crossing the sample is registered for generation of image contrast. Experimental data from the detector were processed for derivation of the energy loss of each proton using calibration matrices. The interaction point of the protons on the detector were determined with subpixel resolution by model fitting of the individual signals in the pixelated matrix. Three methods were used for calculation of these coordinates: Hough transformation, 2D Gaussian fitting and estimate the 2D mean. Parameters of calculation accuracy and calculation time are compared for each method. The final image was created by method with best parameters.

  13. Silicon Sensors for the Upgrades of the CMS Pixel Detector

    CERN Document Server

    Centis Vignali, Matteo; Schleper, Peter

    2015-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accel- erator and its injection chain. Two major upgrades will take place in the next years. The rst upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2 10 34 cm-2 s-1 A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5 10 34 cm-2 s1. As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The rst upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout elec- tronics that allow ecient data taking up to a luminosity of 2 10 34 cm-2s-1,twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at dierent institutes. Ham...

  14. Fabrication of a high-density MCM-D for a pixel detector system using a BCB/Cu technology

    CERN Document Server

    Topper, M; Engelmann, G; Fehlberg, S; Gerlach, P; Wolf, J; Ehrmann, O; Becks, K H; Reichl, H

    1999-01-01

    The MCM-D which is described here is a prototype for a pixel detector system for the planned Large Hadron Collider (LHC) at CERN, Geneva. The project is within the ATLAS experiment. The module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 readout chips, each serving 24*160 pixel unit cells, a module controller chip, an optical transceiver and the local signal interconnection and power distribution buses. The extremely high wiring density which is necessary to interconnect the readout chips was achieved using a thin film copper/photo-BCB process above the pixel array. The bumping of the readout chips was done by PbSn electroplating. All dice are then attached by flip-chip assembly to the sensor diodes and the local buses. The focus of this paper is a detailed description of the technologies for the fabrication of this advanced MCM-D. (10 refs).

  15. Leakage current measurements on pixelated CdZnTe detectors

    International Nuclear Information System (INIS)

    Dirks, B.P.F.; Blondel, C.; Daly, F.; Gevin, O.; Limousin, O.; Lugiez, F.

    2006-01-01

    In the field of the R and D of a new generation hard X-ray cameras for space applications we focus on the use of pixelated CdTe or CdZnTe semiconductor detectors. They are covered with 64 (0.9x0.9 mm 2 ) or 256 (0.5x0.5 mm 2 ) pixels, surrounded by a guard ring and operate in the energy ranging from several keV to 1 MeV, at temperatures between -20 and +20 o C. A critical parameter in the characterisation of these detectors is the leakage current per pixel under polarisation (∼50-500 V/mm). In operation mode each pixel will be read-out by an integrated spectroscopy channel of the multi-channel IDeF-X ASIC currently developed in our lab. The design and functionality of the ASIC depends directly on the direction and value of the current. A dedicated and highly insulating electronics circuit is designed to automatically measure the current in each individual pixel, which is in the order of tens of pico-amperes. Leakage current maps of different CdZnTe detectors of 2 and 6 mm thick and at various temperatures are presented and discussed. Defect density diagnostics have been performed by calculation of the activation energy of the material

  16. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Talla, Patrick Takoukam

    2011-04-07

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  17. Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging

    International Nuclear Information System (INIS)

    Talla, Patrick Takoukam

    2011-01-01

    The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 μm. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is

  18. Development of pixel readout integrated circuits for extreme rate and radiation

    CERN Multimedia

    Liberali, V; Rizzi, A; Re, V; Minuti, M; Pangaud, P; Barbero, M B; Pacher, L; Kluit, R; Hinchliffe, I; Manghisoni, M; Giubilato, P; Faccio, F; Pernegger, H; Krueger, H; Gensolen, F D; Bilei, G M; Da rocha rolo, M D; Prydderch, M L; Fanucci, L; Grillo, A A; Bellazzini, R; Palomo pinto, F R; Michelis, S; Huegging, F G; Kishishita, T; Marchiori, G; Christian, D C; Kaestli, H C; Meier, B; Andreazza, A; Key-charriere, M; Linssen, L; Dannheim, D; Conti, E; Hemperek, T; Menouni, M; Fougeron, D; Genat, J; Bomben, M; Marzocca, C; Demaria, N; Mazza, G; Van bakel, N A; Palla, F; Grippo, M T; Magazzu, G; Ratti, L; Abbaneo, D; Crescioli, F; Deptuch, G W; Neue, G; De robertis, G; Passeri, D; Placidi, P; Gromov, V; Morsani, F; Paccagnella, A; Christiansen, J; Dho, E; Wermes, N; Rymaszewski, P; Rozanov, A; Wang, A; Lipton, R J; Havranek, M; Neviani, A; Marconi, S; Karagounis, M; Godiot, S; Calderini, G; Seidel, S C; Horisberger, R P; Garcia-sciveres, M A; Stabile, A; Beccherle, R; Bacchetta, N

    The present hybrid pixel detectors in operation at the LHC represent a major achievement. They deployed a new technology on an unprecedented scale and their success firmly established pixel tracking as indispensable for future HEP experiments. However, extrapolation of hybrid pixel technology to the HL-LHC presents major challenges on several fronts. We propose a new RD collaboration specifically focused on the development of pixel readout Integrated Circuits (IC). The IC challenges include: smaller pixels to resolve tracks in boosted jets, much higher hit rates (1-2 GHz/cm$^{2}$), unprecedented radiation tolerance (10 MGy), much higher output bandwidth, and large IC format with low power consumption in order to instrument large areas while keeping the material budget low. We propose a collaboration to design the next generation of hybrid pixel readout chips to enable the ATLAS and CMS Phase 2 pixel upgrades. This does not imply that ATLAS and CMS must use the same exact pixel readout chip, as most of the dev...

  19. Measurement of charm and beauty-production in deep inelastic scattering at HERA and test beam studies of ATLAS pixel sensors

    International Nuclear Information System (INIS)

    Libov, Vladyslav

    2013-08-01

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb -1 . The kinematic region of the measurement is given by 5 2 2 and 0.02 2 is the photon virtuality and y is the inelasticity. A lifetime technique is used to tag the production of charm and beauty quarks. Secondary vertices due to decays of charm and beauty hadrons are reconstructed, in association with jets. The jet kinematics is defined by E jet T >4.2(5) GeV for charm (beauty) and -1.6 jet jet T and η jet are the transverse energy and pseudorapidity of the jet, respectively. The significance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Differential cross sections of jet production in charm and beauty events as a function of Q 2 , y, E jet T and η jet are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the fixed flavour number scheme. Good agreement between data and theory is observed. Contributions of the charm and beauty production to the inclusive proton structure function, F cbar c 2 and F b anti b 2 , are determined by extrapolating the double differential cross sections using NLO QCD predictions. Contributions to the test beam program for the Insertable B-Layer upgrade project of the ATLAS pixel detector are discussed. The test beam data analysis software package EUTelescope was extended, which allowed an efficient analysis of ATLAS pixel sensors. The USBPix DAQ system was integrated into the EUDET telescope allowing test beam measurements with the front end chip FE-I4. Planar and 3D ATLAS pixel sensors were studied at the first IBL test beam at the CERN SPS.

  20. Development of edgeless n-on-p planar pixel sensors for future ATLAS upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Bomben, Marco, E-mail: marco.bomben@cern.ch [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Bagolini, Alvise; Boscardin, Maurizio [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); Bosisio, Luciano [Università di Trieste, Dipartimento di Fisica and INFN, Trieste (Italy); Calderini, Giovanni [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Dipartimento di Fisica E. Fermi, Università di Pisa, and INFN Sez. di Pisa, Pisa (Italy); Chauveau, Jacques [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Giacomini, Gabriele [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy); La Rosa, Alessandro [Section de Physique (DPNC), Université de Genève, Genève (Switzerland); Marchiori, Giovanni [Laboratoire de Physique Nucleaire et de Hautes Énergies (LPNHE) Paris (France); Zorzi, Nicola [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM) Povo di Trento (Italy)

    2013-06-01

    The development of n-on-p “edgeless” planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the “active edge” technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×10{sup 15}n{sub eq}/cm{sup 2} comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb{sup −1}) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach. -- Highlights: ► We conceive n-on-p edgeless planar silicon sensors. ► These sensors are aimed at the Phase-II of the ATLAS experiment. ► Simulations show sensors can be operated well in overdepletion. ► Simulations show the sensor capability to collect charge at the periphery. ► Simulations prove the above statements to be true even after irradiation.

  1. Geometry simulation and physics with the CMS forward pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, N [Purdue University Calumet, Hammond, Indiana (United States)], E-mail: Neeti@fnal.gov

    2008-06-15

    The Forward Pixel Detector of CMS is an integral part of the Tracking system, which will play a key role in addressing the full physics potential of the collected data. It has a very complex geometry that encompasses multilayer structure of its detector modules. This presentation describes the development of geometry simulation for the Forward Pixel Detector. A new geometry package has been developed, which uses the detector description database (DDD) interface for the XML (eXtensive Markup Language) to GEANT simulation. This is necessary for digitization and GEANT4 reconstruction software for tracking. The expected physics performance is also discussed.

  2. Geometry simulation and physics with the CMS forward pixel detector

    International Nuclear Information System (INIS)

    Parashar, N

    2008-01-01

    The Forward Pixel Detector of CMS is an integral part of the Tracking system, which will play a key role in addressing the full physics potential of the collected data. It has a very complex geometry that encompasses multilayer structure of its detector modules. This presentation describes the development of geometry simulation for the Forward Pixel Detector. A new geometry package has been developed, which uses the detector description database (DDD) interface for the XML (eXtensive Markup Language) to GEANT simulation. This is necessary for digitization and GEANT4 reconstruction software for tracking. The expected physics performance is also discussed

  3. STAR PIXEL detector mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Wieman, H H; Anderssen, E; Greiner, L; Matis, H S; Ritter, H G; Sun, X; Szelezniak, M [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: hhwieman@lbl.gov

    2009-05-15

    A high resolution pixel detector is being designed for the STAR [1] experiment at RHIC. This device will use MAPS as the detector element and will have a pointing accuracy of {approx}25 microns. We will be reporting on the mechanical design required to support this resolution. The radiation length of the first layer ({approx}0.3% X{sub 0}) and its distance from the interaction point (2.5 cm) determines the resolution. The design makes use of air cooling and thin carbon composite structures to limit the radiation length. The mechanics are being developed to achieve spatial calibrations and stability to 20 microns and to permit rapid detector replacement in event of radiation damage or other potential failures from operation near the beam.

  4. Commissioning and first results from the CMS phase-1 upgrade pixel detector

    CERN Document Server

    Sonneveld, Jorine Mirjam

    2017-01-01

    The phase~1 upgrade of the CMS pixel detector has been designed to maintain the tracking performance at instantaneous luminosities of $2 \\times 10^{34} \\mathrm{~cm}^{-2} \\mathrm{~s}^{-1}$. Both barrel and endcap disk systems now feature one extra layer (4 barrel layers and 3 endcap disks), and a digital readout that provides a large enough bandwidth to read out its 124M pixel channels (87.7 percent more pixels compared to the previous system). The backend control and readout systems have been upgraded accordingly from VME-based to micro-TCA-based ones. The detector is now also fitted with a bi-phase CO$_2$ cooling system that reduces the material budget in the tracking region. The detector has been installed inside CMS at the start of 2017 and is now taking data. These proceedings discuss experiences in the commissioning and operation of the CMS phase~1 pixel detector. The first results from the CMS phase~1 pixel detector with this year's LHC proton-proton collision data are presented. ...

  5. Optimization of detector pixel size for stent visualization in x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Jiang Yuhao; Wilson, David L.

    2006-01-01

    Pixel size is of great interest in the flat-panel detector design because of its potential impact on image quality. In the particular case of angiographic x-ray fluoroscopy, small pixels are required in order to adequately visualize interventional devices such as guidewires and stents which have wire diameters as small as 200 and 50 μm, respectively. We used quantitative experimental and modeling techniques to investigate the optimal pixel size for imaging stents. Image quality was evaluated by the ability of subjects to perform two tasks: detect the presence of a stent and discriminate a partially deployed stent from a fully deployed one in synthetic images. With measurements at 50, 100, 200, and 300 μm, the 100 μm pixel size gave the maximum contrast sensitivity for the detection experiment with the idealized direct detector. For an idealized indirect detector with a scintillating layer, an optimal pixel size was obtained at 200 μm pixel size. A channelized human observer model predicted a peak at 150 and 170 μm, for the idealized direct and indirect detectors, respectively. With regard to the stent deployment task for both detector types, smaller pixel sizes are favored and there is a steep drop in performance with larger pixels. In general, with the increasing exposures, the model and measurements give the enhanced contrast sensitivities and a smaller optimal pixel size. The effects of electronic noise and fill factor were investigated using the model. We believe that the experimental results and human observer model predications can help guide the flat-panel detector design. In addition, the human observer model should work on the similar images and be applicable to the future model and actual flat-panel implementations

  6. Test-beam results of a SOI pixel detector prototype

    CERN Document Server

    Bugiel, Roma; Dannheim, Dominik; Fiergolski, Adrian; Hynds, Daniel; Idzik, Marek; Kapusta, P; Kucewicz, Wojciech; Munker, Ruth Magdalena; Nurnberg, Andreas Matthias

    2018-01-01

    This paper presents the test-beam results of a monolithic pixel-detector prototype fabricated in 200 nm Silicon-On-Insulator (SOI) CMOS technology. The SOI detector was tested at the CERN SPS H6 beam line. The detector is fabricated on a 500 μm thick high-resistivity float- zone n-type (FZ-n) wafer. The pixel size is 30 μm × 30 μm and its readout uses a source- follower configuration. The test-beam data are analysed in order to compute the spatial resolution and detector efficiency. The analysis chain includes pedestal and noise calculation, cluster reconstruction, as well as alignment and η-correction for non-linear charge sharing. The results show a spatial resolution of about 4.3 μm.

  7. Primary Numbers Database for ATLAS Detector Description Parameters

    CERN Document Server

    Vaniachine, A; Malon, D; Nevski, P; Wenaus, T

    2003-01-01

    We present the design and the status of the database for detector description parameters in ATLAS experiment. The ATLAS Primary Numbers are the parameters defining the detector geometry and digitization in simulations, as well as certain reconstruction parameters. Since the detailed ATLAS detector description needs more than 10,000 such parameters, a preferred solution is to have a single verified source for all these data. The database stores the data dictionary for each parameter collection object, providing schema evolution support for object-based retrieval of parameters. The same Primary Numbers are served to many different clients accessing the database: the ATLAS software framework Athena, the Geant3 heritage framework Atlsim, the Geant4 developers framework FADS/Goofy, the generator of XML output for detector description, and several end-user clients for interactive data navigation, including web-based browsers and ROOT. The choice of the MySQL database product for the implementation provides addition...

  8. Alignment of the upgraded CMS pixel detector

    CERN Document Server

    Schroder, Matthias

    2018-01-01

    The all-silicon tracking system of the CMS experiment provides excellent resolution for charged tracks and an efficient tagging of heavy-flavour jets. After a new pixel detector has been installed during the LHC technical stop at the beginning of 2017, the positions, orientations, and surface curvatures of the sensors needed to be determined with a precision at the order of a few micrometres to ensure the required physics performance. This is far beyond the mechanical mounting precision but can be achieved using a track-based alignment procedure that minimises the track-hit residuals of reconstructed tracks. The results are carefully validated with data-driven methods. In this article, results of the CMS tracker alignment in 2017 from the early detector-commissioning phase and the later operation are presented, that were derived using several million reconstructed tracks in pp-collision and cosmic-ray data. Special emphasis is put on the alignment of the new pixel detector.

  9. Detector development for ATLAS and supersymmetry physics studies

    International Nuclear Information System (INIS)

    Grewal, A.S.

    1999-01-01

    The Large Hadron Collider at CERN promises to offer an exciting opportunity to study particle physics at energies of up to 14 TeV. In order to exploit the potential of the LHC, the ATLAS collaboration intends to build a complex general-purpose detector. The detector must have the ability to study known physics to a higher accuracy as well as be capable of studying as yet unknown physical phenomenon. This thesis is concerned with the development of certain key components of the ATLAS inner detector as well as the ability of the detector to study certain aspects of Supersymmetry. The ATLAS Semi-Conductor Tracker is an enormously complex sub-detector with over six million channels. A scheme using pulse height modulation to transmit clock and control information to the detector is developed. Furthermore, in order to facilitate the readout of these channels as efficiently as possible with a bunch crossing frequency of 40 MHz three different readout architectures were investigated by the ATLAS collaboration - analogue, digital and binary. Work in this thesis contributed to the decision by ATLAS to adopt the binary readout architecture after it was successfully tested in test-beam and bench-top studies. The physics studies to be performed at ATLAS impose stringent requirements on the precision with which the various trackers of the detector must measure the position of track points created by charged particles as they traverse the detector. The tracking resolutions achievable with these detectors are dependent on, among other things, the precision with which positions of detector elements are known during data taking. An optical metrology system known as frequency scanning interferometry (FSI) is shown in this thesis to be capable of providing real time detector alignment information. Finally, B-quark tagging is expected to play a major role in studying a large fraction of interesting physics signatures at the LHC. This thesis studies the degradation to b

  10. Pixel front-end development in 65 nm CMOS technology

    International Nuclear Information System (INIS)

    Havránek, M; Hemperek, T; Kishishita, T; Krüger, H; Wermes, N

    2014-01-01

    Luminosity upgrade of the LHC (HL-LHC) imposes severe constraints on the detector tracking systems in terms of radiation hardness and capability to cope with higher hit rates. One possible way of keeping track with increasing luminosity is the usage of more advanced technologies. Ultra deep sub-micron CMOS technologies allow a design of complex and high speed electronics with high integration density. In addition, these technologies are inherently radiation hard. We present a prototype of analog pixel front-end integrated circuit designed in 65 nm CMOS technology with applications oriented towards the ATLAS Pixel Detector upgrade. The aspects of ultra deep sub-micron design and performance of the analog pixel front-end circuits will be discussed

  11. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  12. Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, T. E-mail: tosiyuki@smail.tohtech.ac.jp; Hitomi, K.; Shoji, T.; Hiratate, Y

    2004-06-01

    Recently, pixellated semiconductor detectors exhibit high-energy resolution, which have been studied actively and fabricated from CdTe, CZT and HgI{sub 2}. Thallium bromide (TlBr) is a compound semiconductor characterized with its high atomic numbers (Tl=81, Br=35) and high density (7.56 g/cm{sup 3}). Thus, TlBr exhibits higher photon stopping power than other semiconductor materials used for radiation detector fabrication such as CdTe, CZT and HgI{sub 2}. The wide band gap of TlBr (2.68 eV) permits the detectors low-noise operation at around room temperature. Our studies made an effort to fabricate pixellated TlBr detectors had sufficient detection efficiency and good charge collection efficiency. In this study, pixellated TlBr detectors were fabricated from the crystals purified by the multipass zone-refining method and grown by the horizontal traveling molten zone (TMZ) method. The TlBr detector has a continuous cathode over one crystal surface and 3x3 pixellated anodes (0.57x0.57 mm{sup 2} each) surrounded by a guard ring on the opposite surface. The electrodes were realized by vacuum evaporation of palladium through a shadow mask. Typical thickness of the detector was 2 mm. Spectrometric performance of the TlBr detectors was tested by irradiating them with {sup 241}Am (59.5 keV), {sup 57}Co (122 keV) and {sup 137}Cs (662 keV) gamma-ray sources at temperature of -20 deg. C. Energy resolutions (FWHM) were measured to be 4.0, 6.0 and 9.7 keV for 59.5, 122 and 662 keV gamma-rays, respectively.

  13. Gas filled prototype of a CdZnTe pixel detector

    International Nuclear Information System (INIS)

    Ramsey, B.; Sharma, D.; Sipila, H.; Gostilo, V.; Loupilov, A.

    2001-01-01

    CdZnTe pixel structures are currently the most promising detectors for the focal planes of hard X-ray telescopes, for astronomical observation in the range 5-100 keV. In Sharma et al. (Proc. SPIE 3765 (1999) 822) and Ramsey et al. (Nucl. Instrum. Methods A 458 (2001) 55) we presented preliminary results on the development of prototype 4x4 CdZnTe imaging detectors operated under vacuum. These pixel detectors were installed inside vacuum chambers on three-stage Peltier coolers providing detector temperatures down to -40 deg. C. A miniature sputter ion pump inside each chamber maintained the necessary vacuum of 10 -5 Torr. At a temperature of -20 deg. C we achieved an FWHM energy resolution of between 2% and 3% at 60 keV and ∼15% at 5.9 keV; however, the dependency on temperature was weak and at +20 deg. C the respective resolutions were 3% and 20%. As the detectors could be operated at room temperature without loss of their good characteristics it was possible to exclude the sputter ion pump and fill the chamber with dry nitrogen instead. We have tested a nitrogen-filled CdZnTe (5x5x1 mm 3 ) prototype having 0.65x0.65 mm 2 readout pads on a 0.75 mm pitch. The interpixel resistance at an applied voltage of 10 V was higher than 50 GΩ and the pixel leakage currents at room temperature with a bias of 200 V between each pad and the common electrode did not exceed 0.8 nA. The pixel detector inside the microassembly, which also contained the input stages of the preamplifiers, was installed on a Peltier cooler to maintain the detector temperature at +20 deg. C. To define real leakage currents of the pixels in their switched-on state we have checked the voltage on the preamplifiers feedback resistors. The resulting currents were 10-50 pA at a detector bias of 500 V. Under test, the typical energy resolution per pixel at +20 deg. C was ∼3% at energy 59.6 keV and ∼20% at energy 5.9 keV, which are similar to the values obtained in the vacuum prototype at room temperature

  14. Physics potential of ATLAS detector with high luminosity

    International Nuclear Information System (INIS)

    Zhou, Bing

    2004-01-01

    The ATLAS detector is designed to exploit the full physics potential in the TeV energy region opened up by the Large Hadron Collider at a center of mass energy of 14 TeV with very high luminosities. The physics performance of the ATLAS detector on Higgs, extra-dimension and strong symmetry breaking scenario is summarized in this note. ATLAS experiment has great discovery potential for these new phenomena with high luminosity. Triple gauge couplings are very sensitive for probing new physics at TeV scale. We show that ATLAS can measure these couplings very precisely with high luminosity. (orig.)

  15. arXiv Performance verification of the CMS Phase-1 Upgrade Pixel detector

    CERN Document Server

    Veszpremi, Viktor

    2017-12-04

    The CMS tracker consists of two tracking systems utilizing semiconductor technology: the inner pixel and the outer strip detectors. The tracker detectors occupy the volume around the beam interaction region between 3 cm and 110 cm in radius and up to 280 cm along the beam axis. The pixel detector consists of 124 million pixels, corresponding to about 2 m 2 total area. It plays a vital role in the seeding of the track reconstruction algorithms and in the reconstruction of primary interactions and secondary decay vertices. It is surrounded by the strip tracker with 10 million read-out channels, corresponding to 200 m 2 total area. The tracker is operated in a high-occupancy and high-radiation environment established by particle collisions in the LHC . The current strip detector continues to perform very well. The pixel detector that has been used in Run 1 and in the first half of Run 2 was, however, replaced with the so-called Phase-1 Upgrade detector. The new system is better suited to match the increased inst...

  16. The construction of the phase 1 upgrade of the CMS pixel detector

    CERN Document Server

    Weber, Hannsjorg Artur

    2017-01-01

    The innermost layers of the original CMS tracker were built out of pixel detectors arranged in three barrel layers and two forward disks in each endcap. The original CMS detector was designed for the nominal instantaneous LHC luminosity of $1\\times10^{34}\\,\\text{cm}^{-2}\\text{s}^{-1}$. Under the conditions expected in the coming years, which will see an increase of a factor two of the instantaneous luminosity, the CMS pixel detector would have seen a dynamic inefficiency caused by data losses due to buffer overflows. For this reason the CMS collaboration has installed during the recent extended end of year shutdown a replacement pixel detector. The phase-1 upgrade of the CMS pixel detector will operate at high efficiency at an instantaneous luminosity of $2\\times10^{34}\\,\\text{cm}^{-2}\\text{s}^{-1}$ with increased detector acceptance and additional redundancy for the tracking, while at the same time reducing the material budget. These goals are achieved using a new read-out chip and modified powering and rea...

  17. Subpixel mapping and test beam studies with a HV2FEI4v2 CMOS-Sensor-Hybrid Module for the ATLAS inner detector upgrade

    Science.gov (United States)

    Bisanz, T.; Große-Knetter, J.; Quadt, A.; Rieger, J.; Weingarten, J.

    2017-08-01

    The upgrade to the High Luminosity Large Hadron Collider will increase the instantaneous luminosity by more than a factor of 5, thus creating significant challenges to the tracking systems of all experiments. Recent advancement of active pixel detectors designed in CMOS processes provide attractive alternatives to the well-established hybrid design using passive sensors since they allow for smaller pixel sizes and cost effective production. This article presents studies of a high-voltage CMOS active pixel sensor designed for the ATLAS tracker upgrade. The sensor is glued to the read-out chip of the Insertable B-Layer, forming a capacitively coupled pixel detector. The pixel pitch of the device under test is 33× 125 μm2, while the pixels of the read-out chip have a pitch of 50× 250 μm2. Three pixels of the CMOS device are connected to one read-out pixel, the information of which of these subpixels is hit is encoded in the amplitude of the output signal (subpixel encoding). Test beam measurements are presented that demonstrate the usability of this subpixel encoding scheme.

  18. Design and Performance of the CMS Pixel Detector Readout Chip

    CERN Document Server

    Kästli, H C; Erdmann, W; Hörmann, C; Horisberger, R P; Kotlinski, D; Meier, B; Hoermann, Ch.

    2006-01-01

    The readout chip for the CMS pixel detector has to deal with an enormous data rate. On-chip zero suppression is inevitable and hit data must be buffered locally during the latency of the first level trigger. Dead-time must be kept at a minimum. It is dominated by contributions coming from the readout. To keep it low an analog readout scheme has been adopted where pixel addresses are analog coded. We present the architecture of the final CMS pixel detector readout chip with special emphasis on the analog readout chain. Measurements of its performance are discussed.

  19. ATLAS's inner detector installed in the heart of the experiment

    CERN Multimedia

    2006-01-01

    The ATLAS collaboration recently celebrated a major engineering milestone, namely the transport and installation of the central part of the inner detector (ID-barrel) into the ATLAS detector. Right: Engineers and technicians work to carefully align and install the inner detector in the centre of ATLAS.Left: The crane used in the carefully coordinated effort by the ATLAS collaboration to lower down the fragile inner detector 100 metres underground to its new home. Many members of the collaboration gathered to witness this moment at Point 1. After years of design, construction and commissioning, the two outer detectors (TRT and SCT) of the inner detector barrel (ID-barrel) were moved from the SR1 cleanroom to the ATLAS cavern. The barrel was moved across the car park from Building 2175 to SX1. Although only a journey of about 100 metres, this required weeks of planning and some degree of luck as far as the weather was concerned. Special measures were in place to minimize shock and vibration during transportati...

  20. Mechanical design and material budget of the CMS barrel pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Amsler, C; Boesiger, K; Chiochia, V; Maier, R; Meyer, Hp; Robmann, P; Scherr, S; Schmidt, A; Steiner, S [Universitaet Zuerich, Physik-Institut, Winterthurerstr. 190, CH-8057 Zuerich (Switzerland); Erdmann, W; Gabathuler, K; Horisberger, R; Koenig, S; Kotlinski, D; Meier, B; Streuli, S [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Rizzi, A [ETH Zuerich, Institute for Particle Physics, CH-8093 Zuerich (Switzerland)], E-mail: Alexander.Schmidt@cern.ch

    2009-05-15

    The Compact Muon Solenoid experiment at the Large Hadron Collider at CERN includes a silicon pixel detector as its innermost component. Its main task is the precise reconstruction of charged particles close to the primary interaction vertex. This paper gives an overview of the mechanical requirements and design choices for the barrel pixel detector. The distribution of material in the detector as well as its description in the Monte Carlo simulation are discussed in detail.

  1. Mechanical Design and Material Budget of the CMS Barrel Pixel Detector

    CERN Document Server

    Amsler, C; Chiochia, V; Erdmann, W; Gabathuler, K; Horisberger, R; König, S; Kotlinski, D; Maier, R; Meyer, H; Meier, B; Meyer, Hp; Rizzi, A; Robmann, P; Scherr, S; Schmidt, A; Steiner, S; Erdmann, W; Gabathuler, K; Horisberger, R; König, S; Kotlinski, D; Meier, B; Streuli, S; Rizzi, A

    2009-01-01

    The Compact Muon Solenoid experiment at the Large Hadron Collider at CERN includes a silicon pixel detector as its innermost component. Its main task is the precise reconstruction of charged particles close to the primary interaction vertex. This paper gives an overview of the mechanical requirements and design choices for the barrel pixel detector. The distribution of material in the detector as well as its description in the Monte Carlo simulation are discussed in detail.

  2. TCT and TFM measurements for ATLAS ITK

    CERN Document Server

    Dungs, Sascha

    2016-01-01

    The ATLAS ITK Pixel detector for the Phase-II upgrade of LHC is in a prototyping phase. The CERN ATLAS Pixel group is involved in different activities. One activity is the characterization of pixel sensors with an infrared Laser using a transient current technique (TCT) to measure the depletion depth and charge collection properties and compare it to effective field theory simulations. Another activity is the measurement of the Thermal Figure of Merit (TFM) of different stave prototypes using silicon heaters and an evaporative CO2 cooling system. This document describes the contributions to each of the two activities.

  3. Studies of mono-crystalline CVD diamond pixel detectors

    CERN Document Server

    Bartz, E; Atramentov, O; Yang, Z; Hall-Wilton, R; Schnetzer, S; Patel, R; Bugg, W; Hebda, P; Halyo, V; Hunt, A; Marlow, D; Steininger, H; Ryjov, V; Hits, D; Spanier, S; Pernicka, M; Johns, W; Doroshenko, J; Hollingsworth, M; Harrop, B; Farrow, C; Stone, R

    2011-01-01

    The Pixel Luminosity Telescope (PLT) is a dedicated luminosity monitor, presently under construction, for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It measures the particle flux in several three layered pixel diamond detectors that are aligned precisely with respect to each other and the beam direction. At a lower rate it also performs particle track position measurements. The PLTs mono-crystalline CVD diamonds are bump-bonded to the same readout chip used in the silicon pixel system in CMS. Mono-crystalline diamond detectors have many attributes that make them desirable for use in charged particle tracking in radiation hostile environments such as the LHC. In order to further characterize the applicability of diamond technology to charged particle tracking we performed several tests with particle beams that included a measurement of the intrinsic spatial resolution with a high resolution beam telescope. Published by Elsevier B.V.

  4. Studies of mono-crystalline CVD diamond pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bugg, W. [University of Tennessee, Knoxville (United States); Hollingsworth, M., E-mail: mhollin3@utk.edu [University of Tennessee, Knoxville (United States); Spanier, S.; Yang, Z. [University of Tennessee, Knoxville (United States); Bartz, E.; Doroshenko, J.; Hits, D.; Schnetzer, S.; Stone, R.; Atramentov, O.; Patel, R.; Barker, A. [Rutgers University, Piscataway (United States); Hall-Wilton, R.; Ryjov, V.; Farrow, C. [CERN, Geneva (Switzerland); Pernicka, M.; Steininger, H. [HEPHY, Vienna (Austria); Johns, W. [Vanderbilt University, Nashville (United States); Halyo, V.; Harrop, B. [Princeton University, Princeton (United States); and others

    2011-09-11

    The Pixel Luminosity Telescope (PLT) is a dedicated luminosity monitor, presently under construction, for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). It measures the particle flux in several three layered pixel diamond detectors that are aligned precisely with respect to each other and the beam direction. At a lower rate it also performs particle track position measurements. The PLT's mono-crystalline CVD diamonds are bump-bonded to the same readout chip used in the silicon pixel system in CMS. Mono-crystalline diamond detectors have many attributes that make them desirable for use in charged particle tracking in radiation hostile environments such as the LHC. In order to further characterize the applicability of diamond technology to charged particle tracking we performed several tests with particle beams that included a measurement of the intrinsic spatial resolution with a high resolution beam telescope.

  5. Silicon sensors for the upgrades of the CMS pixel detector

    International Nuclear Information System (INIS)

    Centis Vignali, Matteo

    2015-12-01

    The Compact Muon Solenoid (CMS) is a general purpose detector at the Large Hadron Collider (LHC). The LHC luminosity is constantly increased through upgrades of the accelerator and its injection chain. Two major upgrades will take place in the next years. The first upgrade involves the LHC injector chain and allows the collider to achieve a luminosity of about 2.10 34 cm -2 s -1 . A further upgrade of the LHC foreseen for 2025 will boost its luminosity to 5.10 34 cm -2 s -1 . As a consequence of the increased luminosity, the detectors need to be upgraded. In particular, the CMS pixel detector will undergo two upgrades in the next years. The first upgrade (phase I) consists in the substitution of the current pixel detector in winter 2016/2017. The upgraded pixel detector will implement new readout electronics that allow efficient data taking up to a luminosity of 2.10 34 cm -2 s -1 , twice as much as the LHC design luminosity. The modules that will constitute the upgraded detector are being produced at different institutes. Hamburg (University and DESY) is responsible for the production of 350 pixel modules. The second upgrade (phase II) of the pixel detector is foreseen for 2025. The innermost pixel layer of the upgraded detector will accumulate a radiation damage corresponding to an equivalent fluence of Φ eq =2.10 16 cm -2 and a dose of ∼10 MGy after an integrated luminosity of 3000 fb -1 . Several groups are investigating sensor designs and configurations able to withstand such high doses and fluences. This work is divided into two parts related to important aspects of the upgrades of the CMS pixel detector. For the phase I upgrade, a setup has been developed to provide an absolute energy calibration of the pixel modules that will constitute the detector. The calibration is obtained using monochromatic X-rays. The same setup is used to test the buffering capabilities of the modules' readout chip. The maximum rate experienced by the modules produced in

  6. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.

    Science.gov (United States)

    Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M

    2016-03-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  7. Performance verification of the CMS Phase-1 Upgrade Pixel detector

    Science.gov (United States)

    Veszpremi, V.

    2017-12-01

    The CMS tracker consists of two tracking systems utilizing semiconductor technology: the inner pixel and the outer strip detectors. The tracker detectors occupy the volume around the beam interaction region between 3 cm and 110 cm in radius and up to 280 cm along the beam axis. The pixel detector consists of 124 million pixels, corresponding to about 2 m 2 total area. It plays a vital role in the seeding of the track reconstruction algorithms and in the reconstruction of primary interactions and secondary decay vertices. It is surrounded by the strip tracker with 10 million read-out channels, corresponding to 200 m 2 total area. The tracker is operated in a high-occupancy and high-radiation environment established by particle collisions in the LHC . The current strip detector continues to perform very well. The pixel detector that has been used in Run 1 and in the first half of Run 2 was, however, replaced with the so-called Phase-1 Upgrade detector. The new system is better suited to match the increased instantaneous luminosity the LHC would reach before 2023. It was built to operate at an instantaneous luminosity of around 2×1034 cm-2s-1. The detector's new layout has an additional inner layer with respect to the previous one; it allows for more efficient tracking with smaller fake rate at higher event pile-up. The paper focuses on the first results obtained during the commissioning of the new detector. It also includes challenges faced during the first data taking to reach the optimal measurement efficiency. Details will be given on the performance at high occupancy with respect to observables such as data-rate, hit reconstruction efficiency, and resolution.

  8. Development of thin pixel sensors and a novel interconnection technology for the SLHC

    International Nuclear Information System (INIS)

    Macchiolo, A.; Andricek, L.; Beimforde, M.; Dubbert, J.; Ghodbane, N.; Kortner, O.; Kroha, H.; Moser, H.G.; Nisius, R.; Richter, R.H.

    2008-01-01

    We present an R and D activity aiming to develop a new detector concept in the framework of the ATLAS pixel detector upgrade in view of the Super-LHC. The new devices combine 75-150 μm thick pixels sensors with a vertical integration technology. A new production of thin pixel sensors on n- and p-type material is under way at the MPI Semiconductor Laboratory. These devices will be connected to the ATLAS read-out electronics with the new Solid-Liquid InterDiffusion technique as an alternative to the bump-bonding process. We also plan for the signals to be extracted from the back of the electronics wafer through Inter-Chip-Vias. The compatibility of the Solid-Liquid InterDiffusion process with the silicon sensor functionality has already been demonstrated by measurements on two wafers hosting diodes with an active thickness of 50 μm

  9. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    Science.gov (United States)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a

  10. The simulation of charge sharing in semiconductor X-ray pixel detectors

    CERN Document Server

    Mathieson, K; O'Shea, V; Passmore, M S; Rahman, M; Smith, K M; Watt, J; Whitehill, C

    2002-01-01

    Two simulation packages were used to model the sharing of charge, due to the scattering and diffusion of carriers, between adjacent pixel elements in semiconductors X-ray detectors. The X-ray interaction and the consequent multiple scattering was modelled with the aid of the Monte Carlo package, MCNP. The resultant deposited charge distribution was then used to create the charge cloud profile in the finite element semiconductor simulation code MEDICI. The analysis of the current pulses induced on pixel electrodes for varying photon energies was performed for a GaAs pixel detector. For a pixel pitch of 25 mu m, the charge lost to a neighbouring pixel was observed to be constant, at 0.6%, through the energies simulated. Ultimately, a fundamental limit on the pixel element size for imaging and spectroscopic devices may be set due to these key physical principles.

  11. Development of a super B-factory monolithic active pixel detector-the Continuous Acquisition Pixel (CAP) prototypes

    International Nuclear Information System (INIS)

    Varner, G.; Barbero, M.; Bozek, A.; Browder, T.; Fang, F.; Hazumi, M.; Igarashi, A.; Iwaida, S.; Kennedy, J.; Kent, N.; Olsen, S.; Palka, H.; Rosen, M.; Ruckman, L.; Stanic, S.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.

    2005-01-01

    Over the last few years great progress has been made in the technological development of Monolithic Active Pixel Sensors (MAPS) such that upgrades to existing vertex detectors using this technology are now actively being considered. Future vertex detection at an upgraded KEK-B factory, already the highest luminosity collider in the world, will require a detector technology capable of withstanding the increased track densities and larger radiation exposures. Near the beam pipe the current silicon strip detectors have projected occupancies in excess of 100%. Deep sub-micron MAPS look very promising to address this problem. In the context of an upgrade to the Belle vertex detector, the major obstacles to realizing such a device have been concerns about radiation hardness and readout speed. Two prototypes implemented in the TSMC 0.35 μm process have been developed to address these issues. Denoted the Continuous Acquisition Pixel, or CAP, the two variants of this architecture are distinguished in that CAP2 includes an 8-deep sampling pipeline within each 22.5 μm 2 pixel. Preliminary test results and remaining R and D issues are presented

  12. The INFN-FBK pixel R&D program for HL-LHC

    Science.gov (United States)

    Meschini, M.; Dalla Betta, G. F.; Boscardin, M.; Calderini, G.; Darbo, G.; Giacomini, G.; Messineo, A.; Ronchin, S.

    2016-09-01

    We report on the ATLAS and CMS joint research activity, which is aiming at the development of new, thin silicon pixel detectors for the Large Hadron Collider Phase-2 detector upgrades. This R&D is performed under special agreement between Istituto Nazionale di Fisica Nucleare and FBK foundation (Trento, Italy). New generations of 3D and planar pixel sensors with active edges are being developed in the R&D project, and will be fabricated at FBK. A first planar pixel batch, which was produced by the end of year 2014, will be described in this paper. First clean room measurement results on planar sensors obtained before and after neutron irradiation will be presented.

  13. The INFN-FBK pixel R&D program for HL-LHC

    International Nuclear Information System (INIS)

    Meschini, M.; Dalla Betta, G.F.; Boscardin, M.; Calderini, G.; Darbo, G.; Giacomini, G.; Messineo, A.; Ronchin, S.

    2016-01-01

    We report on the ATLAS and CMS joint research activity, which is aiming at the development of new, thin silicon pixel detectors for the Large Hadron Collider Phase-2 detector upgrades. This R&D is performed under special agreement between Istituto Nazionale di Fisica Nucleare and FBK foundation (Trento, Italy). New generations of 3D and planar pixel sensors with active edges are being developed in the R&D project, and will be fabricated at FBK. A first planar pixel batch, which was produced by the end of year 2014, will be described in this paper. First clean room measurement results on planar sensors obtained before and after neutron irradiation will be presented.

  14. Semiconductor pixel detectors for digital mammography

    International Nuclear Information System (INIS)

    Novelli, M.; Amendolia, S.R.; Bisogni, M.G.; Boscardin, M.; Dalla Betta, G.F.; Delogu, P.; Fantacci, M.E.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Venturelli, L.; Zucca, S.

    2003-01-01

    We present some results obtained with silicon and gallium arsenide pixel detectors to be applied in the field of digital mammography. Even though GaAs is suitable for medical imaging applications thanks to its atomic number, which allows a very good detection efficiency, it often contains an high concentrations of traps which decrease the charge collection efficiency (CCE). So we have analysed both electrical and spectroscopic performance of different SI GaAs diodes as a function of concentrations of dopants in the substrate, in order to find a material by which we can obtain a CCE allowing the detection of all the photons that interact in the detector. Nevertheless to be able to detect low contrast details, efficiency and CCE are not the only parameters to be optimized; also the stability of the detection system is fundamental. In the past we have worked with Si pixel detectors; even if its atomic number does not allow a good detection efficiency at standard thickness, it has a very high stability. So keeping in mind the need to increase the Silicon detection efficiency we performed simulations to study the behaviour of the electrical potential in order to find a geometry to avoid the risk of electrical breakdown

  15. Semiconductor pixel detectors for digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, M. E-mail: marzia.novelli@pi.infn.it; Amendolia, S.R.; Bisogni, M.G.; Boscardin, M.; Dalla Betta, G.F.; Delogu, P.; Fantacci, M.E.; Quattrocchi, M.; Rosso, V.; Stefanini, A.; Venturelli, L.; Zucca, S

    2003-08-21

    We present some results obtained with silicon and gallium arsenide pixel detectors to be applied in the field of digital mammography. Even though GaAs is suitable for medical imaging applications thanks to its atomic number, which allows a very good detection efficiency, it often contains an high concentrations of traps which decrease the charge collection efficiency (CCE). So we have analysed both electrical and spectroscopic performance of different SI GaAs diodes as a function of concentrations of dopants in the substrate, in order to find a material by which we can obtain a CCE allowing the detection of all the photons that interact in the detector. Nevertheless to be able to detect low contrast details, efficiency and CCE are not the only parameters to be optimized; also the stability of the detection system is fundamental. In the past we have worked with Si pixel detectors; even if its atomic number does not allow a good detection efficiency at standard thickness, it has a very high stability. So keeping in mind the need to increase the Silicon detection efficiency we performed simulations to study the behaviour of the electrical potential in order to find a geometry to avoid the risk of electrical breakdown.

  16. The ATLAS Detector Safety System

    CERN Multimedia

    Helfried Burckhart; Kathy Pommes; Heidi Sandaker

    The ATLAS Detector Safety System (DSS) has the mandate to put the detector in a safe state in case an abnormal situation arises which could be potentially dangerous for the detector. It covers the CERN alarm severity levels 1 and 2, which address serious risks for the equipment. The highest level 3, which also includes danger for persons, is the responsibility of the CERN-wide system CSAM, which always triggers an intervention by the CERN fire brigade. DSS works independently from and hence complements the Detector Control System, which is the tool to operate the experiment. The DSS is organized in a Front- End (FE), which fulfills autonomously the safety functions and a Back-End (BE) for interaction and configuration. The overall layout is shown in the picture below. ATLAS DSS configuration The FE implementation is based on a redundant Programmable Logical Crate (PLC) system which is used also in industry for such safety applications. Each of the two PLCs alone, one located underground and one at the s...

  17. Defective pixel map creation based on wavelet analysis in digital radiography detectors

    International Nuclear Information System (INIS)

    Park, Chun Joo; Lee, Hyoung Koo; Song, William Y.; Achterkirchen, Thorsten Graeve; Kim, Ho Kyung

    2011-01-01

    The application of digital radiography detectors has attracted increasing attention in both medicine and industry. Since the imaging detectors are fabricated by semiconductor manufacturing process over large areas, defective pixels in the detectors are unavoidable. Moreover, the radiation damage due to the routine use of the detectors progressively increases the density of defective pixels. In this study, we present a method of identifying defective pixels in digital radiography detectors based on wavelet analysis. Artifacts generated due to wavelet transformations have been prevented by an additional local threshold method. The proposed method was applied to a sample digital radiography and the result was promising. The proposed method uses a single pair of dark and white images and does not require them to be corrected in gain-and-offset properties. This method will be helpful for the reliable use of digital radiography detectors through the working lifetime.

  18. Performance Studies of Pixel Hybrid Photon Detectors for the LHCb RICH Counters

    CERN Document Server

    Aglieri Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2004-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  19. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  20. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    International Nuclear Information System (INIS)

    Thil, Ch.; Baron, A.Q.R.; Fajardo, P.; Fischer, P.; Graafsma, H.; Rueffer, R.

    2011-01-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm 2 active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280μmx280μm size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.