WorldWideScience

Sample records for atlas analysis model

  1. The ATLAS Analysis Model

    CERN Multimedia

    Amir Farbin

    The ATLAS Analysis Model is a continually developing vision of how to reconcile physics analysis requirements with the ATLAS offline software and computing model constraints. In the past year this vision has influenced the evolution of the ATLAS Event Data Model, the Athena software framework, and physics analysis tools. These developments, along with the October Analysis Model Workshop and the planning for CSC analyses have led to a rapid refinement of the ATLAS Analysis Model in the past few months. This article introduces some of the relevant issues and presents the current vision of the future ATLAS Analysis Model. Event Data Model The ATLAS Event Data Model (EDM) consists of several levels of details, each targeted for a specific set of tasks. For example the Event Summary Data (ESD) stores calorimeter cells and tracking system hits thereby permitting many calibration and alignment tasks, but will be only accessible at particular computing sites with potentially large latency. In contrast, the Analysis...

  2. Automated Loads Analysis System (ATLAS)

    Science.gov (United States)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  3. Advanced Technology Lifecycle Analysis System (ATLAS)

    Science.gov (United States)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  4. The ATLAS distributed analysis system

    OpenAIRE

    Legger, F.

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During...

  5. The ATLAS Distributed Analysis System

    CERN Document Server

    Legger, F; The ATLAS collaboration; Pacheco Pages, A; Stradling, A

    2013-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...

  6. The ATLAS Distributed Analysis System

    CERN Document Server

    Legger, F; The ATLAS collaboration

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters ...

  7. The ATLAS Analysis Architecture

    International Nuclear Information System (INIS)

    Cranmer, K.S.

    2008-01-01

    We present an overview of the ATLAS analysis architecture including the relevant aspects of the computing model and the major architectural aspects of the Athena framework. Emphasis will be given to the interplay between the analysis use cases and the technical aspects of the architecture including the design of the event data model, transient-persistent separation, data reduction strategies, analysis tools, and ROOT interoperability

  8. The ATLAS distributed analysis system

    International Nuclear Information System (INIS)

    Legger, F

    2014-01-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  9. The ATLAS distributed analysis system

    Science.gov (United States)

    Legger, F.; Atlas Collaboration

    2014-06-01

    In the LHC operations era, analysis of the multi-petabyte ATLAS data sample by globally distributed physicists is a challenging task. To attain the required scale the ATLAS Computing Model was designed around the concept of Grid computing, realized in the Worldwide LHC Computing Grid (WLCG), the largest distributed computational resource existing in the sciences. The ATLAS experiment currently stores over 140 PB of data and runs about 140,000 concurrent jobs continuously at WLCG sites. During the first run of the LHC, the ATLAS Distributed Analysis (DA) service has operated stably and scaled as planned. More than 1600 users submitted jobs in 2012, with 2 million or more analysis jobs per week, peaking at about a million jobs per day. The system dynamically distributes popular data to expedite processing and maximally utilize resources. The reliability of the DA service is high and steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. Both the user support techniques and the direct feedback of users have been effective in improving the success rate and user experience when utilizing the distributed computing environment. In this contribution a description of the main components, activities and achievements of ATLAS distributed analysis is given. Several future improvements being undertaken will be described.

  10. ATLAS Distributed Analysis Tools

    CERN Document Server

    Gonzalez de la Hoz, Santiago; Liko, Dietrich

    2008-01-01

    The ATLAS production system has been successfully used to run production of simulation data at an unprecedented scale. Up to 10000 jobs were processed in one day. The experiences obtained operating the system on several grid flavours was essential to perform a user analysis using grid resources. First tests of the distributed analysis system were then performed. In the preparation phase data was registered in the LHC File Catalog (LFC) and replicated in external sites. For the main test, few resources were used. All these tests are only a first step towards the validation of the computing model. The ATLAS management computing board decided to integrate the collaboration efforts in distributed analysis in only one project, GANGA. The goal is to test the reconstruction and analysis software in a large scale Data production using Grid flavors in several sites. GANGA allows trivial switching between running test jobs on a local batch system and running large-scale analyses on the Grid; it provides job splitting a...

  11. The Run 2 ATLAS Analysis Event Data Model

    CERN Document Server

    SNYDER, S; The ATLAS collaboration; NOWAK, M; EIFERT, T; BUCKLEY, A; ELSING, M; GILLBERG, D; MOYSE, E; KOENEKE, K; KRASZNAHORKAY, A

    2014-01-01

    During the LHC's first Long Shutdown (LS1) ATLAS set out to establish a new analysis model, based on the experience gained during Run 1. A key component of this is a new Event Data Model (EDM), called the xAOD. This format, which is now in production, provides the following features: A separation of the EDM into interface classes that the user code directly interacts with, and data storage classes that hold the payload data. The user sees an Array of Structs (AoS) interface, while the data is stored in a Struct of Arrays (SoA) format in memory, thus making it possible to efficiently auto-vectorise reconstruction code. A simple way of augmenting and reducing the information saved for different data objects. This makes it possible to easily decorate objects with new properties during data analysis, and to remove properties that the analysis does not need. A persistent file format that can be explored directly with ROOT, either with or without loading any additional libraries. This allows fast interactive naviga...

  12. Distributed analysis in ATLAS using GANGA

    International Nuclear Information System (INIS)

    Elmsheuser, Johannes; Brochu, Frederic; Egede, Ulrik; Reece, Will; Williams, Michael; Gaidioz, Benjamin; Maier, Andrew; Moscicki, Jakub; Vanderster, Daniel; Lee, Hurng-Chun; Pajchel, Katarina; Samset, Bjorn; Slater, Mark; Soroko, Alexander; Cowan, Greig

    2010-01-01

    Distributed data analysis using Grid resources is one of the fundamental applications in high energy physics to be addressed and realized before the start of LHC data taking. The needs to manage the resources are very high. In every experiment up to a thousand physicists will be submitting analysis jobs to the Grid. Appropriate user interfaces and helper applications have to be made available to assure that all users can use the Grid without expertise in Grid technology. These tools enlarge the number of Grid users from a few production administrators to potentially all participating physicists. The GANGA job management system (http://cern.ch/ganga), developed as a common project between the ATLAS and LHCb experiments, provides and integrates these kind of tools. GANGA provides a simple and consistent way of preparing, organizing and executing analysis tasks within the experiment analysis framework, implemented through a plug-in system. It allows trivial switching between running test jobs on a local batch system and running large-scale analyzes on the Grid, hiding Grid technicalities. We will be reporting on the plug-ins and our experiences of distributed data analysis using GANGA within the ATLAS experiment. Support for all Grids presently used by ATLAS, namely the LCG/EGEE, NDGF/NorduGrid, and OSG/PanDA is provided. The integration and interaction with the ATLAS data management system DQ2 into GANGA is a key functionality. An intelligent job brokering is set up by using the job splitting mechanism together with data-set and file location knowledge. The brokering is aided by an automated system that regularly processes test analysis jobs at all ATLAS DQ2 supported sites. Large numbers of analysis jobs can be sent to the locations of data following the ATLAS computing model. GANGA supports amongst other things tasks of user analysis with reconstructed data and small scale production of Monte Carlo data.

  13. Analysis facility infrastructure (Tier-3) for ATLAS experiment

    International Nuclear Information System (INIS)

    Gonzalez de la Hoz, S.; March, L.; Ros, E.; Sanchez, J.; Amoros, G.; Fassi, F.; Fernandez, A.; Kaci, M.; Lamas, A.; Salt, J.

    2008-01-01

    In the ATLAS computing model the tiered hierarchy ranged from the Tier-0 (CERN) down to desktops or workstations (Tier-3). The focus on defining the roles of each tiered component has evolved with the initial emphasis on the Tier-0 and Tier-1 definition and roles. The various LHC (Large Hadron Collider) projects, including ATLAS, then evolved the tiered hierarchy to include Tier-2's (Regional centers) as part of their projects. Tier-3 centres, on the other hand, have been defined as whatever an institution could construct to support their Physics goals using institutional and otherwise leveraged resources and therefore have not been considered to be part of the official ATLAS computing resources. However, Tier-3 centres are going to exist and will have implications on how the computing model should support ATLAS physicists. Tier-3 users will want to access LHC data and simulations and will want to enable their resources to support their analysis and simulation work. This document will define how IFIC (Instituto de Fisica Corpuscular de Valencia), after discussing with the ATLAS Tier-3 task force, should interact with the ATLAS computing model, detail the conditions under which Tier-3 centres can expect some level of support and set reasonable expectations for the scope and support of ATLAS Tier-3 sites. (orig.)

  14. Development of Nuclear Plant Specific Analysis Simulators with ATLAS

    International Nuclear Information System (INIS)

    Jakubowski, Z.; Draeger, P.; Horche, W.; Pointner, W.

    2006-01-01

    The simulation software ATLAS, based on the best-estimate code ATHLET, has been developed by the GRS for a range of applications in the field of nuclear plant safety analysis. Through application of versatile simulation tools and graphical interfaces the user should be able to analyse with ATLAS all essential accident scenarios. Detailed analysis simulators for several German and Russian NPPs are being constructed on the basis of ATLAS. An overview of the ATLAS is presented in the paper, describing its configuration, functions performed by main components and relationships among them. A significant part of any power plant simulator are the balance-of-plant (BOP) models, not only because all the plant transients and non-LOCA accidents can be initiated by operation of BOP systems, but also because the response of the plant to transients or accidents is strongly influenced by the automatic operation of BOP systems. Modelling aspects of BOP systems are shown in detail, also the interface between the process model and BOP systems. Special emphasis has been put on the BOP model builder based on the methodology developed in the GRS. The BOP modeler called GCSM-Generator is an object oriented tool which runs on the online expert system G2. It is equipped with utilities to edit the BOP models, to verification them and to generate a GCSM code, specific for the ATLAS. The communication system of ATLAS presents graphically the results of the simulation and allows interactively influencing the execution of the simulation process (malfunctions, manual control). Displays for communications with simulated processes and presentation of calculations results are also presented. In the framework of the verification of simulation models different tools are used e.g. the PC-codes MATHCAD for the calculation and documentation, ATLET-Input-Graphic for control of geometry data and the expert system G2 for development of BOP-Models. The validation procedure and selected analyses results

  15. Distributed analysis challenges in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Duckeck, Guenter; Legger, Federica; Mitterer, Christoph Anton; Walker, Rodney [Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2016-07-01

    The ATLAS computing model has undergone massive changes to meet the high luminosity challenge of the second run of the Large Hadron Collider (LHC) at CERN. The production system and distributed data management have been redesigned, a new data format and event model for analysis have been introduced, and common reduction and derivation frameworks have been developed. We report on the impact these changes have on the distributed analysis system, study the various patterns of grid usage for user analysis, focusing on the differences between the first and th e second LHC runs, and measure performances of user jobs.

  16. Dual-use tools and systematics-aware analysis workflows in the ATLAS Run-II analysis model

    CERN Document Server

    FARRELL, Steven; The ATLAS collaboration

    2015-01-01

    The ATLAS analysis model has been overhauled for the upcoming run of data collection in 2015 at 13 TeV. One key component of this upgrade was the Event Data Model (EDM), which now allows for greater flexibility in the choice of analysis software framework and provides powerful new features that can be exploited by analysis software tools. A second key component of the upgrade is the introduction of a dual-use tool technology, which provides abstract interfaces for analysis software tools to run in either the Athena framework or a ROOT-based framework. The tool interfaces, including a new interface for handling systematic uncertainties, have been standardized for the development of improved analysis workflows and consolidation of high-level analysis tools. This presentation will cover the details of the dual-use tool functionality, the systematics interface, and how these features fit into a centrally supported analysis environment.

  17. Dual-use tools and systematics-aware analysis workflows in the ATLAS Run-2 analysis model

    CERN Document Server

    FARRELL, Steven; The ATLAS collaboration; Calafiura, Paolo; Delsart, Pierre-Antoine; Elsing, Markus; Koeneke, Karsten; Krasznahorkay, Attila; Krumnack, Nils; Lancon, Eric; Lavrijsen, Wim; Laycock, Paul; Lei, Xiaowen; Strandberg, Sara Kristina; Verkerke, Wouter; Vivarelli, Iacopo; Woudstra, Martin

    2015-01-01

    The ATLAS analysis model has been overhauled for the upcoming run of data collection in 2015 at 13 TeV. One key component of this upgrade was the Event Data Model (EDM), which now allows for greater flexibility in the choice of analysis software framework and provides powerful new features that can be exploited by analysis software tools. A second key component of the upgrade is the introduction of a dual-use tool technology, which provides abstract interfaces for analysis software tools to run in either the Athena framework or a ROOT-based framework. The tool interfaces, including a new interface for handling systematic uncertainties, have been standardized for the development of improved analysis workflows and consolidation of high-level analysis tools. This paper will cover the details of the dual-use tool functionality, the systematics interface, and how these features fit into a centrally supported analysis environment.

  18. ATLAS Tier-3 within IFIC-Valencia analysis facility

    CERN Document Server

    Villaplana, M; The ATLAS collaboration; Fernández, A; Salt, J; Lamas, A; Fassi, F; Kaci, M; Oliver, E; Sánchez, J; Sánchez-Martínez, V

    2012-01-01

    The ATLAS Tier-3 at IFIC-Valencia is attached to a Tier-2 that has 50% of the Spanish Federated Tier-2 resources. In its design, the Tier-3 includes a GRID-aware part that shares some of the features of IFIC Tier-2 such as using Lustre as a file system. ATLAS users, 70% of IFIC users, also have the possibility of analysing data with a PROOF farm and storing them locally. In this contribution we discuss the design of the analysis facility as well as the monitoring tools we use to control and improve its performance. We also comment on how the recent changes in the ATLAS computing GRID model affect IFIC. Finally, how this complex system can coexist with the other scientific applications running at IFIC (non-ATLAS users) is presented.

  19. Evolution of User Analysis on the Grid in ATLAS

    CERN Document Server

    Legger, Federica; The ATLAS collaboration

    2016-01-01

    More than one thousand physicists analyse data collected by the ATLAS experiment at the Large Hadron Collider (LHC) at CERN through 150 computing facilities around the world. Efficient distributed analysis requires optimal resource usage and the interplay of several factors: robust grid and software infrastructures, system capability to adapt to different workloads. The continuous automatic validation of grid sites and the user support provided by a dedicated team of expert shifters have been proven to provide a solid distributed analysis system for ATLAS users. Based on the experience from the first run of the LHC, substantial improvements to the ATLAS computing system have been made to optimize both production and analysis workflows. These include the re-design of the production and data management systems, a new analysis data format and event model, and the development of common reduction and analysis frameworks. The impact of such changes on the distributed analysis system is evaluated. More than 100 mill...

  20. The 3rd ATLAS Domestic Standard Problem for Improvement of Safety Analysis Technology

    International Nuclear Information System (INIS)

    Choi, Ki-Yong; Kang, Kyoung-Ho; Park, Yusun; Kim, Jongrok; Bae, Byoung-Uhn; Choi, Nam-Hyun

    2014-01-01

    The third ATLAS DSP (domestic standard problem exercise) was launched at the end of 2012 in response to the strong need for continuation of the ATLAS DSP. A guillotine break of a main steam line without LOOP at a zero power condition was selected as a target scenario, and it was successfully completed in the beginning of 2014. In the 3 rd ATLAS DSP, comprehensive utilization of the integral effect test data was made by dividing analysis with three topics; 1. scale-up where extrapolation of ATLAS IET data was investigated 2. 3D analysis where how much improvement can be obtained by 3D modeling was studied 3. 1D sensitivity analysis where the key phenomena affecting the SLB simulation were identified and the best modeling guideline was achieved. Through such DSP exercises, it has been possible to effectively utilize high-quality ATLAS experimental data of to enhance thermal-hydraulic understanding and to validate the safety analysis codes. A strong human network and technical expertise sharing among the various nuclear experts are also important outcomes from this program

  1. Analysis facility infrastructure (Tier-3) for ATLAS experiment

    CERN Document Server

    González de la Hoza, S; Ros, E; Sánchez, J; Amorós, G; Fassi, F; Fernández, A; Kaci, M; Lamas, A; Salt, J

    2008-01-01

    In the ATLAS computing model the tiered hierarchy ranged from the Tier-0 (CERN) down to desktops or workstations (Tier-3). The focus on defining the roles of each tiered component has evolved with the initial emphasis on the Tier-0 and Tier-1 definition and roles. The various LHC (Large Hadron Collider) projects, including ATLAS, then evolved the tiered hierarchy to include Tier-2’s (Regional centers) as part of their projects. Tier-3 centres, on the other hand, have been defined as whatever an institution could construct to support their Physics goals using institutional and otherwise leveraged resources and therefore have not been considered to be part of the official ATLAS computing resources. However, Tier-3 centres are going to exist and will have implications on how the computing model should support ATLAS physicists. Tier-3 users will want to access LHC data and simulations and will want to enable their resources to support their analysis and simulation work. This document will define how IFIC (Insti...

  2. System Architecture Modeling for Technology Portfolio Management using ATLAS

    Science.gov (United States)

    Thompson, Robert W.; O'Neil, Daniel A.

    2006-01-01

    Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.

  3. HiggsToFourLeptonsEV in the ATLAS EventView Analysis Framework

    CERN Document Server

    Lagouri, T; Del Peso, J

    2008-01-01

    ATLAS is one of the four experiments at the Large Hadron Collider (LHC) at CERN. This experiment has been designed to study a large range of physics topics, including searches for previously unobserved phenomena such as the Higgs Boson and super-symmetry. The physics analysis package HiggsToFourLeptonsEV for the Standard Model (SM) Higgs to four leptons channel with ATLAS is presented. The physics goal is to investigate with the ATLAS detector, the SM Higgs boson discovery potential through its observation in the four-lepton (electron and muon) final state. HiggsToFourLeptonsEV is based on the official ATLAS software ATHENA and the EventView (EV) analysis framework. EventView is a highly flexible and modular analysis framework in ATHENA and it is one of several analysis schemes for ATLAS physics user analysis. At the core of the EventView is the representative "view" of an event, which defines the contents of event data suitable for event-level physics analysis. The HiggsToFourLeptonsEV package, presented in ...

  4. TopView - ATLAS top physics analysis package

    CERN Document Server

    Shibata, A

    2007-01-01

    TopView is a common analysis package which is widely used in the ATLAS top physics working group. The package is fully based on the official ATLAS software Athena and EventView and playing a central role in the collaborative analysis model. It is a functional package which accounts for a broad range issues in implementing physics analysis. As well as being a modular framework suitable as a common workplace for collaborators, TopView implements numerous analysis tools including a complete top-antitop reconstruction and single top reconstruction. The package is currently used to produce common ntuple from Monte Carlo production and future use cases are under rapid development. In this paper, the design and ideas behind TopView and the performance of the analyses implemented in the package are presented with detailed documentation of the contents and instruction for using the package.

  5. Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)

    Science.gov (United States)

    Patel, Deepak

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.

  6. Mechanical behavior of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Acerbi, E; Alessandria, F; Berthier, R; Broggi, F; Daël, A; Dudarev, A; Mayri, C; Miele, P; Reytier, M; Rossi, L; Sorbi, M; Sun, Z; ten Kate, H H J; Vanenkov, I; Volpini, G

    2002-01-01

    The ATLAS B0 model coil has been developed and constructed to verify the design parameters and the manufacture techniques of the Barrel Toroid coils (BT) that are under construction for the ATLAS Detector. Essential for successful operation is the mechanical behavior of the superconducting coil and its support structure. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce in the model coil the electromagnetic forces of the BT coils when assembled in the final Barrel Toroid magnet system. The model coil is extensively equipped with mechanical instrumentation to monitor stresses and force levels as well as contraction during a cooling down and excitation up to nominal current. The installed set up of strain gauges, position sensors and capacitive force transducers is presented. Moreover the first mechanical results in terms of expected main stress, strain and deformation values are presented based on detailed mechanical analysis of the design. (7 refs).

  7. The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet.

    Science.gov (United States)

    Nowinski, Wieslaw L; Belov, Dmitry

    2003-09-01

    The article introduces an atlas-assisted method and a tool called the Cerefy Neuroradiology Atlas (CNA), available over the Internet for neuroradiology and human brain mapping. The CNA contains an enhanced, extended, and fully segmented and labeled electronic version of the Talairach-Tournoux brain atlas, including parcelated gyri and Brodmann's areas. To our best knowledge, this is the first online, publicly available application with the Talairach-Tournoux atlas. The process of atlas-assisted neuroimage analysis is done in five steps: image data loading, Talairach landmark setting, atlas normalization, image data exploration and analysis, and result saving. Neuroimage analysis is supported by a near-real-time, atlas-to-data warping based on the Talairach transformation. The CNA runs on multiple platforms; is able to process simultaneously multiple anatomical and functional data sets; and provides functions for a rapid atlas-to-data registration, interactive structure labeling and annotating, and mensuration. It is also empowered with several unique features, including interactive atlas warping facilitating fine tuning of atlas-to-data fit, navigation on the triplanar formed by the image data and the atlas, multiple-images-in-one display with interactive atlas-anatomy-function blending, multiple label display, and saving of labeled and annotated image data. The CNA is useful for fast atlas-assisted analysis of neuroimage data sets. It increases accuracy and reduces time in localization analysis of activation regions; facilitates to communicate the information on the interpreted scans from the neuroradiologist to other clinicians and medical students; increases the neuroradiologist's confidence in terms of anatomy and spatial relationships; and serves as a user-friendly, public domain tool for neuroeducation. At present, more than 700 users from five continents have subscribed to the CNA.

  8. TU-CD-BRA-05: Atlas Selection for Multi-Atlas-Based Image Segmentation Using Surrogate Modeling

    International Nuclear Information System (INIS)

    Zhao, T; Ruan, D

    2015-01-01

    Purpose: The growing size and heterogeneity in training atlas necessitates sophisticated schemes to identify only the most relevant atlases for the specific multi-atlas-based image segmentation problem. This study aims to develop a model to infer the inaccessible oracle geometric relevance metric from surrogate image similarity metrics, and based on such model, provide guidance to atlas selection in multi-atlas-based image segmentation. Methods: We relate the oracle geometric relevance metric in label space to the surrogate metric in image space, by a monotonically non-decreasing function with additive random perturbations. Subsequently, a surrogate’s ability to prognosticate the oracle order for atlas subset selection is quantified probabilistically. Finally, important insights and guidance are provided for the design of fusion set size, balancing the competing demands to include the most relevant atlases and to exclude the most irrelevant ones. A systematic solution is derived based on an optimization framework. Model verification and performance assessment is performed based on clinical prostate MR images. Results: The proposed surrogate model was exemplified by a linear map with normally distributed perturbation, and verified with several commonly-used surrogates, including MSD, NCC and (N)MI. The derived behaviors of different surrogates in atlas selection and their corresponding performance in ultimate label estimate were validated. The performance of NCC and (N)MI was similarly superior to MSD, with a 10% higher atlas selection probability and a segmentation performance increase in DSC by 0.10 with the first and third quartiles of (0.83, 0.89), compared to (0.81, 0.89). The derived optimal fusion set size, valued at 7/8/8/7 for MSD/NCC/MI/NMI, agreed well with the appropriate range [4, 9] from empirical observation. Conclusion: This work has developed an efficacious probabilistic model to characterize the image-based surrogate metric on atlas selection

  9. The physics analysis tools project for the ATLAS experiment

    International Nuclear Information System (INIS)

    Lenzi, Bruno

    2012-01-01

    The Large Hadron Collider is expected to start colliding proton beams in 2009. The enormous amount of data produced by the ATLAS experiment (≅1 PB per year) will be used in searches for the Higgs boson and Physics beyond the standard model. In order to meet this challenge, a suite of common Physics Analysis Tools has been developed as part of the Physics Analysis software project. These tools run within the ATLAS software framework, ATHENA, covering a wide range of applications. There are tools responsible for event selection based on analysed data and detector quality information, tools responsible for specific physics analysis operations including data quality monitoring and physics validation, and complete analysis tool-kits (frameworks) with the goal to aid the physicist to perform his analysis hiding the details of the ATHENA framework. (authors)

  10. Analysis Streamlining in ATLAS

    CERN Document Server

    Heinrich, Lukas; The ATLAS collaboration

    2018-01-01

    We present recent work within the ATLAS collaboration centrally provide tools to facilitate analysis management and highly automated container-based analysis execution in order to both enable non-experts to benefit from these best practices as well as the collaboration to track and re-execute analyses indpendently, e.g. during their review phase. Through integration with the ATLAS GLANCE system, users can request a pre-configured, but customizable version control setup, including continuous integration for automated build and testing as well as continuous Linux Container image building for software preservation purposes. As analyses typically require many individual steps, analysis workflow pipelines can then be defined using such images and the yadage workflow description language. The integration into the workflow exection service REANA allows the interactive or automated reproduction of the main analysis results by orchestrating a large number of container jobs using the Kubernetes. For long-term archival,...

  11. Analysis of empty ATLAS pilot jobs

    CERN Document Server

    Love, Peter; The ATLAS collaboration

    2016-01-01

    The pilot model used by the ATLAS production system has been in use for many years. The model has proven to be a success with many advantages over push models. However one of the negative side-effects of using a pilot model is the presence of 'empty pilots' running on sites which consume a small amount of walltime and not running a useful payload job. The impact on a site can be significant with previous studies showing a total 0.5% walltime usage with no benefit to either the site or to ATLAS. Another impact is the number of empty pilots being processed by a site's Compute Element and batch system which can be 5% of the total number of pilots being handled. In this paper we review the latest statistics using both ATLAS and site data and highlight edge cases where the number of empty pilots dominate. We also study the effect of tuning the pilot factories to reduce the number of empty pilots.

  12. Danish heat atlas as a support tool for energy system models

    International Nuclear Information System (INIS)

    Petrovic, Stefan N.; Karlsson, Kenneth B.

    2014-01-01

    Highlights: • The GIS method for calculating costs of district heating expansion is presented. • High socio-economic potential for district heating is identified within urban areas. • The method for coupling a heat atlas and TIMES optimization model is proposed. • Presented methods can be used for any geographical region worldwide. - Abstract: In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive infrastructure investments, such as the expansion of district heating networks and the introduction of significant heat saving measures require highly detailed decision-support tool. A Danish heat atlas provides highly detailed database with extensive information about more than 2.5 million buildings in Denmark. Energy system analysis tools incorporate environmental, economic, energy and engineering analysis of future energy systems and are considered crucial for the quantitative assessment of transitional scenarios towards future milestones, such as EU 2020 goals and Denmark’s goal of achieving fossil free society after 2050. The present paper shows how a Danish heat atlas can be used for providing inputs to energy system models, especially related to the analysis of heat saving measures within building stock and expansion of district heating networks. As a result, marginal cost curves are created, approximated and prepared for the use in optimization energy system model. Moreover, it is concluded that heat atlas can contribute as a tool for data storage and visualisation of results

  13. The German National Analysis Facility as a tool for ATLAS analyses

    International Nuclear Information System (INIS)

    Ehrenfeld, W; Leffhalm, K; Mehlhase, S

    2011-01-01

    In 2008 the German National Analysis Facility (NAF) at DESY was established. It is attached to and builds on top of DESY Grid infrastructure. The facility is designed to provide the best possible analysis infrastructure for high energy particle physics of the ATLAS, CMS, LHCb and ILC experiments. The Grid and local infrastructure of the NAF is reviewed with a focus on the ATLAS part. Both parts include large scale storage and a batch system. Emphasis is put on ATLAS specific customisation and utilisation of the NAF. This refers not only to the NAF components but also to the different components of the ATLAS analysis framework. Experience from operating and supporting ATLAS users on the NAF is presented in this paper. The ATLAS usage of the different components are shown including some typical use cases of user analysis. Finally, the question is addressed, if the design of the NAF meets the ATLAS expectations for efficient data analysis in the era of LHC data taking.

  14. Multi-dimensional Analysis for SLB Transient in ATLAS Facility as Activity of DSP (Domestic Standard Problem)

    International Nuclear Information System (INIS)

    Bae, B. U.; Park, Y. S.; Kim, J. R.; Kang, K. H.; Choi, K. Y.; Sung, H. J.; Hwang, M. J.; Kang, D. H.; Lim, S. G.; Jun, S. S.

    2015-01-01

    Participants of DSP-03 were divided in three groups and each group has focused on the specific subject related to the enhancement of the code analysis. The group A tried to investigate scaling capability of ATLAS test data by comparing to the code analysis for a prototype, and the group C studied to investigate effect of various models in the one-dimensional codes. This paper briefly summarizes the code analysis result from the group B participants in the DSP-03 of the ATLAS test facility. The code analysis by Group B focuses highly on investigating the multi-dimensional thermal hydraulic phenomena in the ATLAS facility during the SLB transient. Even though the one-dimensional system analysis code cannot simulate the whole system of the ATLAS facility with a nodalization of the CFD (Computational Fluid Dynamics) scale, a reactor pressure vessel can be considered with multi-dimensional components to reflect the thermal mixing phenomena inside a downcomer and a core. Also, the CFD could give useful information for understanding complex phenomena in specific components such as the reactor pressure vessel. From the analysis activity of Group B in ATLAS DSP-03, participants adopted a multi-dimensional approach to the code analysis for the SLB transient in the ATLAS test facility. The main purpose of the analysis was to investigate prediction capability of multi-dimensional analysis tools for the SLB experiment result. In particular, the asymmetric cooling and thermal mixing phenomena in the reactor pressure vessel could be significantly focused for modeling the multi-dimensional components

  15. Distributed Analysis Experience using Ganga on an ATLAS Tier2 infrastructure

    International Nuclear Information System (INIS)

    Fassi, F.; Cabrera, S.; Vives, R.; Fernandez, A.; Gonzalez de la Hoz, S.; Sanchez, J.; March, L.; Salt, J.; Kaci, M.; Lamas, A.; Amoros, G.

    2007-01-01

    The ATLAS detector will explore the high-energy frontier of Particle Physics collecting the proton-proton collisions delivered by the LHC (Large Hadron Collider). Starting in spring 2008, the LHC will produce more than 10 Peta bytes of data per year. The adapted tiered hierarchy for computing model at the LHC is: Tier-0 (CERN), Tiers-1 and Tiers-2 centres distributed around the word. The ATLAS Distributed Analysis (DA) system has the goal of enabling physicists to perform Grid-based analysis on distributed data using distributed computing resources. IFIC Tier-2 facility is participating in several aspects of DA. In support of the ATLAS DA activities a prototype is being tested, deployed and integrated. The analysis data processing applications are based on the Athena framework. GANGA, developed by LHCb and ATLAS experiments, allows simple switching between testing on a local batch system and large-scale processing on the Grid, hiding Grid complexities. GANGA deals with providing physicists an integrated environment for job preparation, bookkeeping and archiving, job splitting and merging. The experience with the deployment, configuration and operation of the DA prototype will be presented. Experiences gained of using DA system and GANGA in the Top physics analysis will be described. (Author)

  16. Meso- and Micro-scale Modelling in China: Wind atlas analysis for 12 meteorological stations in NE China (Dongbei)

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Yang, Z.; Hansen, Jens Carsten

    As part of the “Meso-Scale and Micro-Scale Modelling in China” project, also known as the CMA component of the Sino-Danish Wind Energy Development Programme (WED), microscale modelling and analyses have been carried out for 12 meteorological stations in NE China. Wind speed and direction data from...... the twelve 70-m masts have been analysed using the Wind Atlas Analysis and Application Program (WAsP 10). The wind-climatological inputs are the observed wind climates derived from the WAsP Climate Analyst. Topographical inputs are elevation maps constructed from SRTM 3 data and roughness length maps...... constructed from Google Earth satellite imagery. The maps have been compared to Chinese topographical maps and adjusted accordingly. Summaries are given of the data measured at the 12 masts for the reference period 2009. The main result of the microscale modelling is an observational wind atlas for NE China...

  17. Physics analysis tools for beauty physics in ATLAS

    International Nuclear Information System (INIS)

    Anastopoulos, C; Bouhova-Thacker, E; Catmore, J; Mora, L de; Dallison, S; Derue, F; Epp, B; Jussel, P; Kaczmarska, A; Radziewski, H v; Stahl, T; Reznicek, P

    2008-01-01

    The Large Hadron Collider experiments will search for physics phenomena beyond the Standard Model. Highly sensitive tests of beauty hadrons will represent an alternative approach to this research. The analysis of complex decay chains of the beauty hadrons have to efficiently extract the detector tracks made by these reactions and reject other events in order to make sufficiently precise measurement. This places severe demands on the software used to analyze the B-physics data. The ATLAS B-physics group has written a series of tools and algorithms for performing these tasks, to be run within the ATLAS offline software framework Athena. This paper describes this analysis suite, paying particular attention to mechanisms for handling combinatorics, interfaces to secondary vertex fitting packages, B-flavor tagging tools and finally Monte Carlo true information association to pursue simulation data in process of the software validations which is an important part of the development of the physics analysis tools

  18. Achievements of the ATLAS Distributed Analysis during the first run period

    CERN Document Server

    Farida, Fassi; The ATLAS collaboration

    2013-01-01

    Summary : In the LHC operations era analyzing the large data by the distributed physicists becomes a challenging task. The Computing Model of the ATLAS experiment at the LHC at CERN was designed around the concepts of grid computing. Large data volumes from the detectors and simulations require a large number of CPUs and storage space for data processing. To cope with these challenges a global network known as the Worlwide LHC Computing Grid (WLCG) was built. This is the most sophisticated data taking and analysis system ever built. Since the start of data-taking, the ATLAS Distributed Analysis (ADA) service has been running stably with the huge amount of data. The reliability of the ADA service is high but steadily improving; grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. The ATLAS Grid Computing Model is reviewed in this talk. Emphasis is given to ADA system. Description : The ce...

  19. Analysis Facility infrastructure (TIER3) for ATLAS High Energy physics experiment

    International Nuclear Information System (INIS)

    Gonzalez de la Hoz, S.; March, L.; Ros, E.; Sanchez, J.; Amoros, G.; Fassi, F.; Fernandez, A.; Kaci, M.; Lamas, A.; Salt, J.

    2007-01-01

    ATLAS project has been asked to define the scope and role of Tier-3 resources (facilities or centres) within the existing ATLAS computing model, activities and facilities. This document attempts to address these questions by describing Tier-3 resources generally, and their relationship to the ATLAS Software and Computing Project. Originally the tiered computing model came out of MONARC (see http://monarc.web.cern.ch/MONARC/) work and was predicated upon the network being a scarce resource. In this model the tiered hierarchy ranged from the Tier-0 (CERN) down to the desktop or workstation (Tier 3). The focus on defining the roles of each tiered component has evolved with the initial emphasis on the Tier-0 (CERN) and Tier-1 (National centres) definition and roles. The various LHC projects, including ATLAS, then evolved the tiered hierarchy to include Tier-2s (Regional centers) as part of their projects. Tier-3s, on the other hand, have (implicitly and sometime explicitly) been defined as whatever an institution could construct to support their Physics goals using institutional and otherwise leveraged resources and therefore have not been considered to be part of the official ATLAS Research Program computing resources nor under their control, meaning there is no formal MOU process to designate sites as Tier-3s and no formal control of the program over the Tier-3 resources. Tier-3s are the responsibility of individual institutions to define, fund, deploy and support. However, having noted this, we must also recognize that Tier-3s must exist and will have implications for how our computing model should support ATLAS physicists. Tier-3 users will want to access data and simulations and will want to enable their Tier-3 resources to support their analysis and simulation work. Tiers 3s are an important resource for physicists to analyze LHC (Large Hadron Collider) data. This document will define how Tier-3s should best interact with the ATLAS computing model, detail the

  20. First experience and adaptation of existing tools to ATLAS distributed analysis

    International Nuclear Information System (INIS)

    De La Hoz, S.G.; Ruiz, L.M.; Liko, D.

    2008-01-01

    The ATLAS production system has been successfully used to run production of simulation data at an unprecedented scale in ATLAS. Up to 10000 jobs were processed on about 100 sites in one day. The experiences obtained operating the system on several grid flavours was essential to perform a user analysis using grid resources. First tests of the distributed analysis system were then performed. In the preparation phase data was registered in the LHC file catalog (LFC) and replicated in external sites. For the main test, few resources were used. All these tests are only a first step towards the validation of the computing model. The ATLAS management computing board decided to integrate the collaboration efforts in distributed analysis in only one project, GANGA. The goal is to test the reconstruction and analysis software in a large scale Data production using grid flavors in several sites. GANGA allows trivial switching between running test jobs on a local batch system and running large-scale analyses on the grid; it provides job splitting and merging, and includes automated job monitoring and output retrieval. (orig.)

  1. The Next Generation ARC Middleware and ATLAS Computing Model

    CERN Document Server

    Filipcic, A; The ATLAS collaboration; Smirnova, O; Konstantinov, A; Karpenko, D

    2012-01-01

    The distributed NDGF Tier-1 and associated Nordugrid clusters are well integrated into the ATLAS computing model but follow a slightly different paradigm than other ATLAS resources. The current strategy does not divide the sites as in the commonly used hierarchical model, but rather treats them as a single storage endpoint and a pool of distributed computing nodes. The next generation ARC middleware with its several new technologies provides new possibilities in development of the ATLAS computing model, such as pilot jobs with pre-cached input files, automatic job migration between the sites, integration of remote sites without connected storage elements, and automatic brokering for jobs with non-standard resource requirements. ARC's data transfer model provides an automatic way for the computing sites to participate in ATLAS' global task management system without requiring centralised brokering or data transfer services. The powerful API combined with Python and Java bindings can easily be used to build new ...

  2. Analysis of ATLAS LTC-04R Test for Loop Seal Reformation Phenomena using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang-Gyu; Kim, Dae-Hun; Kim, Han-Gon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The loop seal reformation issue was selected to be the analysis topic of the DSP-04 based on the technical discussion between the participants and the operating agencies (KAERI and KINS) and domestic experts meetings. After that, KAERI performed LTC-04R test which is 4 inch top-slot cold-leg break test using ATLAS facility in December 27, 2015. KHNP CRI, as a participant of the DSP-04, performed the blind calculation and open calculation using RELAP5/Mod3.3 patch 3. This paper deals with the results of open calculation for ATLAS LTC-04R test. The results of several sensitivity analyses such as the critical flow modeling sensitivity and break flow system modeling sensitivity will be discussed. Several possible factors in the loop seal reformation behavior are examined in the sensitivity analysis. Heat loss modeling, fine break system modeling, fine loop seal nodalization and off-take modeling are not significant factor in the loop seal reformation. Still critical flow model and discharge coefficient are dominant factors. Based on the ATLAS LTC-04R, Ransom-Trapp model shows better prediction in the break flow than the Henry-Fauske model.

  3. The evolving role of Tier2s in ATLAS with the new Computing and Data Distribution model

    International Nuclear Information System (INIS)

    González de la Hoz, S

    2012-01-01

    Originally the ATLAS Computing and Data Distribution model assumed that the Tier-2s should keep on disk collectively at least one copy of all “active” AOD and DPD datasets. Evolution of ATLAS Computing and Data model requires changes in ATLAS Tier-2s policy for the data replication, dynamic data caching and remote data access. Tier-2 operations take place completely asynchronously with respect to data taking. Tier-2s do simulation and user analysis. Large-scale reprocessing jobs on real data are at first taking place mostly at Tier-1s but will progressively be shared with Tier-2s as well. The availability of disk space at Tier-2s is extremely important in the ATLAS Computing model as it allows more data to be readily accessible for analysis jobs to all users, independently of their geographical location. The Tier-2s disk space has been reserved for real, simulated, calibration and alignment, group, and user data. A buffer disk space is needed for input and output data for simulations jobs. Tier-2s are going to be used more efficiently. In this way Tier-1s and Tier-2s are becoming more equivalent for the network and the hierarchy of Tier-1, 2 is less strict. This paper presents the usage of Tier-2s resources in different Grid activities, caching of data at Tier-2s, and their role in the analysis in the new ATLAS Computing and Data model.

  4. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    Science.gov (United States)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  5. Explicit state representation and the ATLAS event data model: theory and practice

    International Nuclear Information System (INIS)

    Nowak, M; Snyder, S; Cranmer, K; Malon, D; Gemmeren, P v; Schaffer, A; Binet, S

    2008-01-01

    In anticipation of data taking, ATLAS has undertaken a program of work to develop an explicit state representation of the experiment's complex transient event data model. This effort has provided both an opportunity to consider explicitly the structure, organization, and content of the ATLAS persistent event store before writing tens of petabytes of data (replacing simple streaming, which uses the persistent store as a core dump of transient memory), and a locus for support of event data model evolution, including significant refactoring, beyond the automatic schema evolution capabilities of underlying persistence technologies. ATLAS has encountered the need for such non-trivial schema evolution on several occasions already. This paper describes the state representation strategy (transient/persistent separation) and its implementation, including both the payoffs that ATLAS has seen (significant and sometimes surprising space and performance improvements, the extra layer notwithstanding, and extremely general schema evolution support) and the costs (additional and relatively pervasive additional infrastructure development and maintenance). The paper further discusses how these costs are mitigated, and how ATLAS is able to implement this strategy without losing the ability to take advantage of the (improving!) automatic schema evolution capabilities of underlying technology layers when appropriate. Implications of state representations for direct ROOT browsability, and current strategies for associating physics analysis views with such state representations, are also described

  6. Evolution of the Atlas data and computing model for a Tier-2 in the EGI infrastructure

    CERN Document Server

    Fernandez, A; The ATLAS collaboration; AMOROS, G; VILLAPLANA, M; FASSI, F; KACI, M; LAMAS, A; OLIVER, E; SALT, J; SANCHEZ, J; SANCHEZ, V

    2012-01-01

    ABSTRAC ISCG 2012 Evolution of the Atlas data and computing model for a Tier2 in the EGI infrastructure During last years the Atlas computing model has moved from a more strict design, where every Tier2 had a liaison and a network dependence from a Tier1, to a more meshed approach where every cloud could be connected. Evolution of ATLAS data models requires changes in ATLAS Tier2s policy for the data replication, dynamic data caching and remote data access. It also requires rethinking the network infrastructure to enable any Tier2 and associated Tier3 to easily connect to any Tier1 or Tier2. Tier2s are becoming more and more important in the ATLAS computing model as it allows more data to be readily accessible for analysis jobs to all users, independently of their geographical location. The Tier2s disk space has been reserved for real, simulated, calibration and alignment, group, and user data. A buffer disk space is needed for input and output data for simulations jobs. Tier2s are going to be used more effic...

  7. A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion.

    Science.gov (United States)

    Bai, Wenjia; Shi, Wenzhe; de Marvao, Antonio; Dawes, Timothy J W; O'Regan, Declan P; Cook, Stuart A; Rueckert, Daniel

    2015-12-01

    Atlases encode valuable anatomical and functional information from a population. In this work, a bi-ventricular cardiac atlas was built from a unique data set, which consists of high resolution cardiac MR images of 1000+ normal subjects. Based on the atlas, statistical methods were used to study the variation of cardiac shapes and the distribution of cardiac motion across the spatio-temporal domain. We have shown how statistical parametric mapping (SPM) can be combined with a general linear model to study the impact of gender and age on regional myocardial wall thickness. Finally, we have also investigated the influence of the population size on atlas construction and atlas-based analysis. The high resolution atlas, the statistical models and the SPM method will benefit more studies on cardiac anatomy and function analysis in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Atlas2 Cloud: a framework for personal genome analysis in the cloud.

    Science.gov (United States)

    Evani, Uday S; Challis, Danny; Yu, Jin; Jackson, Andrew R; Paithankar, Sameer; Bainbridge, Matthew N; Jakkamsetti, Adinarayana; Pham, Peter; Coarfa, Cristian; Milosavljevic, Aleksandar; Yu, Fuli

    2012-01-01

    Until recently, sequencing has primarily been carried out in large genome centers which have invested heavily in developing the computational infrastructure that enables genomic sequence analysis. The recent advancements in next generation sequencing (NGS) have led to a wide dissemination of sequencing technologies and data, to highly diverse research groups. It is expected that clinical sequencing will become part of diagnostic routines shortly. However, limited accessibility to computational infrastructure and high quality bioinformatic tools, and the demand for personnel skilled in data analysis and interpretation remains a serious bottleneck. To this end, the cloud computing and Software-as-a-Service (SaaS) technologies can help address these issues. We successfully enabled the Atlas2 Cloud pipeline for personal genome analysis on two different cloud service platforms: a community cloud via the Genboree Workbench, and a commercial cloud via the Amazon Web Services using Software-as-a-Service model. We report a case study of personal genome analysis using our Atlas2 Genboree pipeline. We also outline a detailed cost structure for running Atlas2 Amazon on whole exome capture data, providing cost projections in terms of storage, compute and I/O when running Atlas2 Amazon on a large data set. We find that providing a web interface and an optimized pipeline clearly facilitates usage of cloud computing for personal genome analysis, but for it to be routinely used for large scale projects there needs to be a paradigm shift in the way we develop tools, in standard operating procedures, and in funding mechanisms.

  9. Analysis list - ChIP-Atlas | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...://ftp.biosciencedbc.jp/archive/chip-atlas/LATEST/chip_atlas_analysis_list.zip File size: 44.8 KB Simple sea...e class. About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Analysis list - ChIP-Atlas | LSDB Archive ...

  10. ATLAS & Google - The Data Ocean Project

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration

    2018-01-01

    With the LHC High Luminosity upgrade the workload and data management systems are facing new major challenges. To address those challenges ATLAS and Google agreed to cooperate on a project to connect Google Cloud Storage and Compute Engine to the ATLAS computing environment. The idea is to allow ATLAS to explore the use of different computing models, to allow ATLAS user analysis to benefit from the Google infrastructure, and to give Google real science use cases to improve their cloud platform. Making the output of a distributed analysis from the grid quickly available to the analyst is a difficult problem. Redirecting the analysis output to Google Cloud Storage can provide an alternative, faster solution for the analyst. First, Google's Cloud Storage will be connected to the ATLAS Data Management System Rucio. The second part aims to let jobs run on Google Compute Engine, accessing data from either ATLAS storage or Google Cloud Storage. The third part involves Google implementing a global redirection between...

  11. ATLAS MDT neutron sensitivity measurement and modeling

    International Nuclear Information System (INIS)

    Ahlen, S.; Hu, G.; Osborne, D.; Schulz, A.; Shank, J.; Xu, Q.; Zhou, B.

    2003-01-01

    The sensitivity of the ATLAS precision muon detector element, the Monitored Drift Tube (MDT), to fast neutrons has been measured using a 5.5 MeV Van de Graaff accelerator. The major mechanism of neutron-induced signals in the drift tubes is the elastic collisions between the neutrons and the gas nuclei. The recoil nuclei lose kinetic energy in the gas and produce the signals. By measuring the ATLAS drift tube neutron-induced signal rate and the total neutron flux, the MDT neutron signal sensitivities were determined for different drift gas mixtures and for different neutron beam energies. We also developed a sophisticated simulation model to calculate the neutron-induced signal rate and signal spectrum for ATLAS MDT operation configurations. The calculations agree with the measurements very well. This model can be used to calculate the neutron sensitivities for different gaseous detectors and for neutron energies above those available to this experiment

  12. The geosystems of complex geographical atlases

    Directory of Open Access Journals (Sweden)

    Jovanović Jasmina

    2012-01-01

    Full Text Available Complex geographical atlases represent geosystems of different hierarchical rank, complexity and diversity, scale and connection. They represent a set of large number of different pieces of information about geospace. Also, they contain systematized, correlative and in the apparent form represented pieces of information about space. The degree of information revealed in the atlas is precisely explained by its content structure and the form of presentation. The quality of atlas depends on the method of visualization of data and the quality of geodata. Cartographic visualization represents cognitive process. The analysis converts geospatial data into knowledge. A complex geographical atlas represents information complex of spatial - temporal coordinated database on geosystems of different complexity and territorial scope. Each geographical atlas defines a concrete geosystem. Systemic organization (structural and contextual determines its complexity and concreteness. In complex atlases, the attributes of geosystems are modeled and pieces of information are given in systematized, graphically unique form. The atlas can be considered as a database. In composing a database, semantic analysis of data is important. The result of semantic modeling is expressed in structuring of data information, in emphasizing logic connections between phenomena and processes and in defining their classes according to the degree of similarity. Accordingly, the efficiency of research of needed pieces of information in the process of the database use is enabled. An atlas map has a special power to integrate sets of geodata and present information contents in user - friendly and understandable visual and tactile way using its visual ability. Composing an atlas by systemic cartography requires the pieces of information on concrete - defined geosystems of different hierarchical level, the application of scientific methods and making of adequate number of analytical, synthetic

  13. A model-independent "General Search" for new physics with the ATLAS detector at LHC

    CERN Document Server

    Bianchi, Riccardo Maria

    2014-06-02

    The LHC particle collider accelerates bunches of colliding protons at an energy never reached before, and a completely new landscape of new physics has been opened. In this scenario the number of possible physics processes and signatures becomes virtually infinite, making the setup of dedicated analyses impossible. Moreover it is important being able to reveal new physics signals even in regions of the phase-space where it is less lucky to be found, or where suitable theoretical models are missing. In this Thesis a new model-independent “General Search” for the ATLAS experiment has been conceived. In fact, at the time this project started, no model-independent search was set for ATLAS. In the end the new analysis has been run over the first data at 7 TeV collected by the ATLAS experiment, and the results presented. The data have shown a very good agreement with the Standard Model expectation, and no evidence of new physics has been observed. But the strategy and methodology of the new model-independent Ge...

  14. The Evolving role of Tier2s in ATLAS with the new Computing and Data Distribution Model

    CERN Document Server

    Gonzalez de la Hoz, S; The ATLAS collaboration

    2012-01-01

    Originally the ATLAS computing model assumed that the Tier2s of each of the 10 clouds should keep on disk collectively at least one copy of all "active" AOD and DPD datasets. Evolution of ATLAS computing and data models requires changes in ATLAS Tier2s policy for the data replication, dynamic data caching and remote data access. Tier2 operations take place completely asynchronously with respect to data taking. Tier2s do simulation and user analysis. Large-scale reprocessing jobs on real data are at first taking place mostly at Tier1s but will progressively move to Tier2s as well. The availability of disk space at Tier2s is extremely important in the ATLAS computing model as it allows more data to be readily accessible for analysis jobs to all users, independently of their geographical location. The Tier2s disk space has been reserved for real, simulated, calibration and alignment, group, and user data. A buffer disk space is needed for input and output data for simulations jobs. Tier2s are going to be used mo...

  15. The evolving role of Tier2s in ATLAS with the new Computing and Data Distribution model

    CERN Document Server

    Gonzalez de la Hoz, S

    2012-01-01

    Originally the ATLAS computing model assumed that the Tier2s of each of the 10 clouds should keep on disk collectively at least one copy of all "active" AOD and DPD datasets. Evolution of ATLAS computing and data models requires changes in ATLAS Tier2s policy for the data replication, dynamic data caching and remote data access. Tier2 operations take place completely asynchronously with respect to data taking. Tier2s do simulation and user analysis. Large-scale reprocessing jobs on real data are at first taking place mostly at Tier1s but will progressively move to Tier2s as well. The availability of disk space at Tier2s is extremely important in the ATLAS computing model as it allows more data to be readily accessible for analysis jobs to all users, independently of their geographical location. The Tier2s disk space has been reserved for real, simulated, calibration and alignment, group, and user data. A buffer disk space is needed for input and output data for simulations jobs. Tier2s are going to be used mo...

  16. NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box

    Science.gov (United States)

    ONeil, D. A.; Craig, D. A.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The objective of this Technical Interchange Meeting was to increase the quantity and quality of technical, cost, and programmatic data used to model the impact of investing in different technologies. The focus of this meeting was the Technology Tool Box (TTB), a database of performance, operations, and programmatic parameters provided by technologists and used by systems engineers. The TTB is the data repository used by a system of models known as the Advanced Technology Lifecycle Analysis System (ATLAS). This report describes the result of the November meeting, and also provides background information on ATLAS and the TTB.

  17. ATLAS Open Data project

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    The current ATLAS model of Open Access to recorded and simulated data offers the opportunity to access datasets with a focus on education, training and outreach. This mandate supports the creation of platforms, projects, software, and educational products used all over the planet. We describe the overall status of ATLAS Open Data (http://opendata.atlas.cern) activities, from core ATLAS activities and releases to individual and group efforts, as well as educational programs, and final web or software-based (and hard-copy) products that have been produced or are under development. The relatively large number and heterogeneous use cases currently documented is driving an upcoming release of more data and resources for the ATLAS Community and anyone interested to explore the world of experimental particle physics and the computer sciences through data analysis.

  18. Thermal and Alignment Analysis of the Instrument-Level ATLAS Thermal Vacuum Test

    Science.gov (United States)

    Bradshaw, Heather

    2012-01-01

    This paper describes the thermal analysis and test design performed in preparation for the ATLAS thermal vacuum test. NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be flown as the sole instrument aboard the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). It will be used to take measurements of topography and ice thickness for Arctic and Antarctic regions, providing crucial data used to predict future changes in worldwide sea levels. Due to the precise measurements ATLAS is taking, the laser altimeter has very tight pointing requirements. Therefore, the instrument is very sensitive to temperature-induced thermal distortions. For this reason, it is necessary to perform a Structural, Thermal, Optical Performance (STOP) analysis not only for flight, but also to ensure performance requirements can be operationally met during instrument-level thermal vacuum testing. This paper describes the thermal model created for the chamber setup, which was used to generate inputs for the environmental STOP analysis. This paper also presents the results of the STOP analysis, which indicate that the test predictions adequately replicate the thermal distortions predicted for flight. This is a new application of an existing process, as STOP analyses are generally performed to predict flight behavior only. Another novel aspect of this test is that it presents the opportunity to verify pointing results of a STOP model, which is not generally done. It is possible in this case, however, because the actual pointing will be measured using flight hardware during thermal vacuum testing and can be compared to STOP predictions.

  19. Real time physics analysis with the ATLAS tau trigger system

    International Nuclear Information System (INIS)

    Casado Lechuga, M. P.

    2009-01-01

    The scope of the ATLAS tau trigger system at the LHC is most ambitious. It aims at reconstructing in real time, a matter of seconds, a detailed picture of the high energy proton proton collisions at the LHC. Such system is mandatory in order to select efficiently data needed for discovery of new physics in a proton proton collision environment where the rates of jets observed in the detector are high and the tau identification is difficult. New physics scenarios targeted specifically by the the ATLAS tau trigger system are Standard Model or Supersymmetric Higgs production, and production of new exotic resonances. This contribution will detail how the analysis techniques developed offline for efficient data analysis have been implemented in the algorithms which run online at the trigger. In particular, the focus will be on how to satisfy the requirements imposed by the physics goals while addressing the limitations from the overall event rate and latency allowed. The prospects for early running during the first LHC collisions and trigger evolution from first collisions to stable running will be also summarized, following change of trigger goals from commissioning of detector to measurement of Standard Model physics and discoveries. (author)

  20. A Probabilistic Analysis of Data Popularity in ATLAS Data Caching

    CERN Document Server

    Titov, M; The ATLAS collaboration; Záruba, G; De, K

    2012-01-01

    Efficient distribution of physics data over ATLAS grid sites is one of the most important tasks for user data processing. ATLAS' initial static data distribution model over-replicated some unpopular data and under-replicated popular data, creating heavy disk space loads while underutilizing some processing resources due to low data availability. Thus, a new data distribution mechanism was implemented, PD2P (PanDA Dynamic Data Placement) within the production and distributed analysis system PanDA that dynamically reacts to user data needs, basing dataset distribution principally on user demand. Data deletion is also demand driven, reducing replica counts for unpopular data. This dynamic model has led to substantial improvements in efficient utilization of storage and processing resources. Based on this experience, in this work we seek to further improve data placement policy by investigating in detail how data popularity is calculated. For this it is necessary to precisely define what data popularity means, wh...

  1. Hidden Valley Search at ATLAS

    CERN Document Server

    Verducci, M

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models and describe analysis strategies and limits on the production of such long-lived particles. A first estimation of the Hidden Valley trigger rates has been evaluated with 6 pb-1 of data collected at ATLAS during the data taking of 2010.

  2. Pre-Test Analysis of Major Scenarios for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Euh, Dong-Jin; Choi, Ki-Yong; Park, Hyun-Sik; Kwon, Tae-Soon

    2007-02-15

    A thermal-hydraulic integral effect test facility, ATLAS was constructed at the Korea Atomic Energy Research Institute (KAERI). The ATLAS is a 1/2 reduced height and 1/288 volume scaled test facility based on the design features of the APR1400. The simulation capability of the ATLAS for major design basis accidents (DBAs), including a large-break loss-of-coolant (LBLOCA), DVI line break and main steam line break (MSLB) accidents, is evaluated by the best-estimate system code, MARS, with the same control logics, transient scenarios and nodalization scheme. The validity of the applied scaling law and the thermal-hydraulic similarity between the ATLAS and the APR1400 for the major design basis accidents are assessed. It is confirmed that the ATLAS has a capability of maintaining an overall similarity with the reference plant APR1400 for the major design basis accidents considered in the present study. However, depending on the accident scenarios, there are some inconsistencies in certain thermal hydraulic parameters. It is found that the inconsistencies are mainly due to the reduced power effect and the increased stored energy in the structure. The present similarity analysis was successful in obtaining a greater insight into the unique design features of the ATLAS and would be used for developing the optimized experimental procedures and control logics.

  3. Pre-Test Analysis of Major Scenarios for ATLAS

    International Nuclear Information System (INIS)

    Euh, Dong-Jin; Choi, Ki-Yong; Park, Hyun-Sik; Kwon, Tae-Soon

    2007-02-01

    A thermal-hydraulic integral effect test facility, ATLAS was constructed at the Korea Atomic Energy Research Institute (KAERI). The ATLAS is a 1/2 reduced height and 1/288 volume scaled test facility based on the design features of the APR1400. The simulation capability of the ATLAS for major design basis accidents (DBAs), including a large-break loss-of-coolant (LBLOCA), DVI line break and main steam line break (MSLB) accidents, is evaluated by the best-estimate system code, MARS, with the same control logics, transient scenarios and nodalization scheme. The validity of the applied scaling law and the thermal-hydraulic similarity between the ATLAS and the APR1400 for the major design basis accidents are assessed. It is confirmed that the ATLAS has a capability of maintaining an overall similarity with the reference plant APR1400 for the major design basis accidents considered in the present study. However, depending on the accident scenarios, there are some inconsistencies in certain thermal hydraulic parameters. It is found that the inconsistencies are mainly due to the reduced power effect and the increased stored energy in the structure. The present similarity analysis was successful in obtaining a greater insight into the unique design features of the ATLAS and would be used for developing the optimized experimental procedures and control logics

  4. Distributed Data Analysis in ATLAS

    CERN Document Server

    Nilsson, P; The ATLAS collaboration

    2012-01-01

    Data analysis using grid resources is one of the fundamental challenges to be addressed before the start of LHC data taking. The ATLAS detector will produce petabytes of data per year, and roughly one thousand users will need to run physics analyses on this data. Appropriate user interfaces and helper applications have been made available to ensure that the grid resources can be used without requiring expertise in grid technology. These tools enlarge the number of grid users from a few production administrators to potentially all participating physicists. ATLAS makes use of three grid infrastructures for the distributed analysis: the EGEE sites, the Open Science Grid, and NorduGrid. These grids are managed by the gLite workload management system, the PanDA workload management system, and ARC middleware; many sites can be accessed via both the gLite WMS and PanDA. Users can choose between two front-end tools to access the distributed resources. Ganga is a tool co-developed with LHCb to provide a common interfa...

  5. Automated analysis of small animal PET studies through deformable registration to an atlas

    NARCIS (Netherlands)

    Gutierrez, Daniel F.; Zaidi, Habib

    This work aims to develop a methodology for automated atlas-guided analysis of small animal positron emission tomography (PET) data through deformable registration to an anatomical mouse model. A non-rigid registration technique is used to put into correspondence relevant anatomical regions of

  6. Distributed processing and analysis of ATLAS experimental data

    CERN Document Server

    Barberis, D; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is taking data steadily since Autumn 2009, collecting close to 1 fb-1 of data (several petabytes of raw and reconstructed data per year of data-taking). Data are calibrated, reconstructed, distributed and analysed at over 100 different sites using the World-wide LHC Computing Grid and the tools produced by the ATLAS Distributed Computing project. In addition to event data, ATLAS produces a wealth of information on detector status, luminosity, calibrations, alignments, and data processing conditions. This information is stored in relational databases, online and offline, and made transparently available to analysers of ATLAS data world-wide through an infrastructure consisting of distributed database replicas and web servers that exploit caching technologies. This paper reports on the experience of using this distributed computing infrastructure with real data and in real time, on the evolution of the computing model driven by this experience, and on the system performance during the first...

  7. Distributed processing and analysis of ATLAS experimental data

    CERN Document Server

    Barberis, D; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is taking data steadily since Autumn 2009, and collected so far over 5 fb-1 of data (several petabytes of raw and reconstructed data per year of data-taking). Data are calibrated, reconstructed, distributed and analysed at over 100 different sites using the World-wide LHC Computing Grid and the tools produced by the ATLAS Distributed Computing project. In addition to event data, ATLAS produces a wealth of information on detector status, luminosity, calibrations, alignments, and data processing conditions. This information is stored in relational databases, online and offline, and made transparently available to analysers of ATLAS data world-wide through an infrastructure consisting of distributed database replicas and web servers that exploit caching technologies. This paper reports on the experience of using this distributed computing infrastructure with real data and in real time, on the evolution of the computing model driven by this experience, and on the system performance during the...

  8. Glance Information System for ATLAS Management

    International Nuclear Information System (INIS)

    Grael, F F; Maidantchik, C; Évora, L H R A; Karam, K; Moraes, L O F; Cirilli, M; Nessi, M; Pommès, K

    2011-01-01

    ATLAS Experiment is an international collaboration where more than 37 countries, 172 institutes and laboratories, 2900 physicists, engineers, and computer scientists plus 700 students participate. The management of this teamwork involves several aspects such as institute contribution, employment records, members' appointment, authors' list, preparation and publication of papers and speakers nomination. Previously, most of the information was accessible by a limited group and developers had to face problems such as different terminology, diverse data modeling, heterogeneous databases and unlike users needs. Moreover, the systems were not designed to handle new requirements. The maintenance has to be an easy task due to the long lifetime experiment and professionals turnover. The Glance system, a generic mechanism for accessing any database, acts as an intermediate layer isolating the user from the particularities of each database. It retrieves, inserts and updates the database independently of its technology and modeling. Relying on Glance, a group of systems were built to support the ATLAS management and operation aspects: ATLAS Membership, ATLAS Appointments, ATLAS Speakers, ATLAS Analysis Follow-Up, ATLAS Conference Notes, ATLAS Thesis, ATLAS Traceability and DSS Alarms Viewer. This paper presents the overview of the Glance information framework and describes the privilege mechanism developed to grant different level of access for each member and system.

  9. Glance Information System for ATLAS Management

    Science.gov (United States)

    Grael, F. F.; Maidantchik, C.; Évora, L. H. R. A.; Karam, K.; Moraes, L. O. F.; Cirilli, M.; Nessi, M.; Pommès, K.; ATLAS Collaboration

    2011-12-01

    ATLAS Experiment is an international collaboration where more than 37 countries, 172 institutes and laboratories, 2900 physicists, engineers, and computer scientists plus 700 students participate. The management of this teamwork involves several aspects such as institute contribution, employment records, members' appointment, authors' list, preparation and publication of papers and speakers nomination. Previously, most of the information was accessible by a limited group and developers had to face problems such as different terminology, diverse data modeling, heterogeneous databases and unlike users needs. Moreover, the systems were not designed to handle new requirements. The maintenance has to be an easy task due to the long lifetime experiment and professionals turnover. The Glance system, a generic mechanism for accessing any database, acts as an intermediate layer isolating the user from the particularities of each database. It retrieves, inserts and updates the database independently of its technology and modeling. Relying on Glance, a group of systems were built to support the ATLAS management and operation aspects: ATLAS Membership, ATLAS Appointments, ATLAS Speakers, ATLAS Analysis Follow-Up, ATLAS Conference Notes, ATLAS Thesis, ATLAS Traceability and DSS Alarms Viewer. This paper presents the overview of the Glance information framework and describes the privilege mechanism developed to grant different level of access for each member and system.

  10. Analysis and predictive modeling of the performance of the ATLAS TDAQ network

    CERN Document Server

    Leahu, Lucian; Buzuloiu, V; Martin, B

    After almost twenty years of research, development and installation, the Large Hadron Collider (LHC) accelerator at CERN produced its first collisions in 2008, planning to run until the end of 2012. ATLAS (A Torroidal LHC ApparatuS) is the biggest exper- iment built and operated on the LHC ring. Being a general purpose detector, it studies a wide range of physics aspects, out of which the search for the “God particle” - Higgs boson - is its most significant mission. In 2012 ATLAS already recorded collisions data, called events, which were, with a big probability, candidates for proving the ex- istence of this particle. Capturing this type of “interesting” events is the task of the ATLAS detector, however filtering them from the huge amount of data being generated is the purpose of the Trigger and Data Acquisition system (TDAQ). ATLAS TDAQ is implemented as a three layer filter, reducing in real-time the rates of the events (1.6 Mbytes big) down to a level which can be written to mass storage: from 40 ...

  11. ATLAS: Applications experiences and further developments

    International Nuclear Information System (INIS)

    Beraha, D.; Pointner, W.; Voggenberger, T.

    1999-01-01

    An overview of the plant analyzer ATLAS is given, describing its configuration, the process models and the supplementary modules which enhance the functionality of ATLAS for a range of applications in reactor safety analysis. These modules include the Reliability Advisory System, which supports the user by information from probabilistic safety analysis, the Procedure Analysis for development and test of emergency operating procedures, and a diagnostic system for steam-generator tube rupture. The development of plant specific analysers for various power plants is described, and the user experience related. Finally, the intended further development directions are discussed, centering on a tracking simulator, the migration of the visualisation system to Windows NT, and the construction of the Analysis Center as a multimedia environment for the operation of ATLAS. (author)

  12. Evolution of the ATLAS data and computing model for a Tier2 in the EGI infrastructure

    CERN Document Server

    Fernández Casaní, A; The ATLAS collaboration; González de la Hoz, S; Salt Cairols, J; Fassi, F; Kaci, M; Lamas, A; Oliver, E; Sánchez, J; Sánchez, V

    2012-01-01

    Since the start of the LHC pp collisions in 2010, the ATLAS computing model has moved from a more strict design, where every Tier2 had a liaison and a network dependence from a Tier1, to a more meshed approach where every cloud could be connected. Evolution of ATLAS data models requires changes in ATLAS Tier2s policy for the data replication, dynamic data caching and remote data access. It also requires rethinking the network infrastructure to enable any Tier2 and associated Tier3 to easily connect to any Tier1 or Tier2. Tier2s are becoming more and more important in the ATLAS computing model as it allows more data to be readily accessible for analysis jobs to all users, independently of their geographical location. The Tier2s disk space has been reserved for real, simulated, calibration and alignment, group, and user data. A buffer disk space is needed for input and output data for simulations jobs. Tier2s are going to be used more efficiently. In this way Tier1s and Tier2s are becoming more equivalent for t...

  13. Job optimization in ATLAS TAG-based distributed analysis

    Science.gov (United States)

    Mambelli, M.; Cranshaw, J.; Gardner, R.; Maeno, T.; Malon, D.; Novak, M.

    2010-04-01

    The ATLAS experiment is projected to collect over one billion events/year during the first few years of operation. The efficient selection of events for various physics analyses across all appropriate samples presents a significant technical challenge. ATLAS computing infrastructure leverages the Grid to tackle the analysis across large samples by organizing data into a hierarchical structure and exploiting distributed computing to churn through the computations. This includes events at different stages of processing: RAW, ESD (Event Summary Data), AOD (Analysis Object Data), DPD (Derived Physics Data). Event Level Metadata Tags (TAGs) contain information about each event stored using multiple technologies accessible by POOL and various web services. This allows users to apply selection cuts on quantities of interest across the entire sample to compile a subset of events that are appropriate for their analysis. This paper describes new methods for organizing jobs using the TAGs criteria to analyze ATLAS data. It further compares different access patterns to the event data and explores ways to partition the workload for event selection and analysis. Here analysis is defined as a broader set of event processing tasks including event selection and reduction operations ("skimming", "slimming" and "thinning") as well as DPD making. Specifically it compares analysis with direct access to the events (AOD and ESD data) to access mediated by different TAG-based event selections. We then compare different ways of splitting the processing to maximize performance.

  14. Beyond Standard Model searches in B decays with ATLAS

    CERN Document Server

    Turchikhin, Semen; The ATLAS collaboration

    2018-01-01

    The proceeding contribution presents recent results of the ATLAS experiment at the LHC on heavy flavour measurements sensitive to possible contributions of the new physics. Two measurements are overviewed: the angular analysis of $B^0\\to\\mu^+\\mu^- K^{*0}$ decay and measurement of relative width difference of the $B^0$-$\\bar{B}^0$ system. The first one uses a data sample with an integrated luminosity of 20.3 fb$^{-1}$ collected by ATLAS at a centre of mass energy $\\sqrt{s} = 8$ TeV, and the second one benefits from the full ATLAS Run-1 dataset with additional 4.9 fb$^{-1}$ collected at $\\sqrt{s} = 7$ TeV.

  15. Hidden Valley Search at ATLAS

    CERN Document Server

    Verducci, M; The ATLAS collaboration

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models. and describe analysis strategies and limits on the production of such long-lived particles that can be achieved with the first 100 pb-1.

  16. Distributed analysis with PROOF in ATLAS collaboration

    International Nuclear Information System (INIS)

    Panitkin, S Y; Ernst, M; Ito, H; Maeno, T; Majewski, S; Rind, O; Tarrade, F; Wenaus, T; Ye, S; Benjamin, D; Montoya, G Carillo; Guan, W; Mellado, B; Xu, N; Cranmer, K; Shibata, A

    2010-01-01

    The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF can be configured to work with centralized storage systems, but it is especially effective together with distributed local storage systems - like Xrootd, when data are distributed over computing nodes. It works efficiently on different types of hardware and scales well from a multi-core laptop to large computing farms. From that point of view it is well suited for both large central analysis facilities and Tier 3 type analysis farms. PROOF can be used in interactive or batch like regimes. The interactive regime allows the user to work with typically distributed data from the ROOT command prompt and get a real time feedback on analysis progress and intermediate results. We will discuss our experience with PROOF in the context of ATLAS Collaboration distributed analysis. In particular we will discuss PROOF performance in various analysis scenarios and in multi-user, multi-session environments. We will also describe PROOF integration with the ATLAS distributed data management system and prospects of running PROOF on geographically distributed analysis farms.

  17. Distributed analysis with PROOF in ATLAS collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Panitkin, S Y; Ernst, M; Ito, H; Maeno, T; Majewski, S; Rind, O; Tarrade, F; Wenaus, T; Ye, S [Brookhaven National Laboratory, Upton, NY 11973 (United States); Benjamin, D [Duke University, Durham, NC 27708 (United States); Montoya, G Carillo; Guan, W; Mellado, B; Xu, N [University of Wisconsin-Madison, Madison, WI 53706 (United States); Cranmer, K; Shibata, A [New York University, New York, NY 10003 (United States)

    2010-04-01

    The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF can be configured to work with centralized storage systems, but it is especially effective together with distributed local storage systems - like Xrootd, when data are distributed over computing nodes. It works efficiently on different types of hardware and scales well from a multi-core laptop to large computing farms. From that point of view it is well suited for both large central analysis facilities and Tier 3 type analysis farms. PROOF can be used in interactive or batch like regimes. The interactive regime allows the user to work with typically distributed data from the ROOT command prompt and get a real time feedback on analysis progress and intermediate results. We will discuss our experience with PROOF in the context of ATLAS Collaboration distributed analysis. In particular we will discuss PROOF performance in various analysis scenarios and in multi-user, multi-session environments. We will also describe PROOF integration with the ATLAS distributed data management system and prospects of running PROOF on geographically distributed analysis farms.

  18. ATLAS discovery potential of the Standard Model Higgs boson

    CERN Document Server

    Weiser, C; The ATLAS collaboration

    2009-01-01

    The Standard Model of elementary particles is remarkably succesful in describing experimental data. The Higgs mechanism as the origin of electroweak symmetry breaking and mass generation, however, has not yet been confirmed experimentally. The search for the Higgs boson is thus one of the most important tasks of the ATLAS experiment at the Large Hadron Collider (LHC). This talk will present an overview of the potential of the ATLAS detector for the discovery of the Standard Model Higgs boson. Different production processes and decay channels -to cover a wide mass range- will be discussed.

  19. ATLAS Discovery Potential of the Standard Model Higgs Boson

    CERN Document Server

    Weiser, C; The ATLAS collaboration

    2010-01-01

    The Standard Model of elementary particles is remarkably succesful in describing experimental data. The Higgs mechanism as the origin of electroweak symmetry breaking and mass generation, however, has not yet been confirmed experimentally. The search for the Higgs boson is thus one of the most important tasks of the ATLAS experiment at the Large Hadron Collider (LHC). This talk will present an overview of the potential of the ATLAS detector for the discovery of the Standard Model Higgs boson. Different production processes and decay channels -to cover a wide mass range- will be discussed.

  20. Multiple brain atlas database and atlas-based neuroimaging system.

    Science.gov (United States)

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  1. The Normal Zone Propagation in ATLAS B00 Model Coil

    NARCIS (Netherlands)

    Boxman, E.W.; Dudarev, A.V.; ten Kate, Herman H.J.

    2002-01-01

    The B00 model coil has been successfully tested in the ATLAS Magnet Test Facility at CERN. The coil consists of two double pancakes wound with aluminum stabilized cables of the barrel- and end-cap toroids conductors for the ATLAS detector. The magnet current is applied up to 24 kA and quenches are

  2. Main steam line break accident simulation of APR1400 using the model of ATLAS facility

    Science.gov (United States)

    Ekariansyah, A. S.; Deswandri; Sunaryo, Geni R.

    2018-02-01

    A main steam line break simulation for APR1400 as an advanced design of PWR has been performed using the RELAP5 code. The simulation was conducted in a model of thermal-hydraulic test facility called as ATLAS, which represents a scaled down facility of the APR1400 design. The main steam line break event is described in a open-access safety report document, in which initial conditions and assumptionsfor the analysis were utilized in performing the simulation and analysis of the selected parameter. The objective of this work was to conduct a benchmark activities by comparing the simulation results of the CESEC-III code as a conservative approach code with the results of RELAP5 as a best-estimate code. Based on the simulation results, a general similarity in the behavior of selected parameters was observed between the two codes. However the degree of accuracy still needs further research an analysis by comparing with the other best-estimate code. Uncertainties arising from the ATLAS model should be minimized by taking into account much more specific data in developing the APR1400 model.

  3. Evolution of user analysis on the grid in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00218990; The ATLAS collaboration; Dewhurst, Alastair

    2017-01-01

    More than one thousand physicists analyse data collected by the ATLAS experiment at the Large Hadron Collider (LHC) at CERN through 150 computing facilities around the world. Efficient distributed analysis requires optimal resource usage and the interplay of several factors: robust grid and software infrastructures, and system capability to adapt to different workloads. The continuous automatic validation of grid sites and the user support provided by a dedicated team of expert shifters have been proven to provide a solid distributed analysis system for ATLAS users. Typical user workflows on the grid, and their associated metrics, are discussed. Measurements of user job performance and typical requirements are also shown.

  4. A High-resolution Atlas and Statistical Model of the Vocal Tract from Structural MRI.

    Science.gov (United States)

    Woo, Jonghye; Lee, Junghoon; Murano, Emi Z; Xing, Fangxu; Al-Talib, Meena; Stone, Maureen; Prince, Jerry L

    Magnetic resonance imaging (MRI) is an essential tool in the study of muscle anatomy and functional activity in the tongue. Objective assessment of similarities and differences in tongue structure and function has been performed using unnormalized data, but this is biased by the differences in size, shape, and orientation of the structures. To remedy this, we propose a methodology to build a 3D vocal tract atlas based on structural MRI volumes from twenty normal subjects. We first constructed high-resolution volumes from three orthogonal stacks. We then removed extraneous data so that all 3D volumes contained the same anatomy. We used an unbiased diffeomorphic groupwise registration using a cross-correlation similarity metric. Principal component analysis was applied to the deformation fields to create a statistical model from the atlas. Various evaluations and applications were carried out to show the behaviour and utility of the atlas.

  5. Continuous software quality analysis for the ATLAS experiment

    CERN Document Server

    Washbrook, Andrew; The ATLAS collaboration

    2017-01-01

    The software for the ATLAS experiment on the Large Hadron Collider at CERN has evolved over many years to meet the demands of Monte Carlo simulation, particle detector reconstruction and data analysis. At present over 3.8 million lines of C++ code (and close to 6 million total lines of code) are maintained by an active worldwide developer community. In order to run the experiment software efficiently at hundreds of computing centres it is essential to maintain a high level of software quality standards. The methods proposed to improve software quality practices by incorporating checks into the new ATLAS software build infrastructure.

  6. Finessing atlas data for species distribution models

    NARCIS (Netherlands)

    Niamir, A.; Skidmore, A.K.; Toxopeus, A.G.; Munoz, A.R.; Real, R.

    2011-01-01

    Aim The spatial resolution of species atlases and therefore resulting model predictions are often too coarse for local applications. Collecting distribution data at a finer resolution for large numbers of species requires a comprehensive sampling effort, making it impractical and expensive. This

  7. The Next Generation ARC Middleware and ATLAS Computing Model

    International Nuclear Information System (INIS)

    Filipčič, Andrej; Cameron, David; Konstantinov, Aleksandr; Karpenko, Dmytro; Smirnova, Oxana

    2012-01-01

    The distributed NDGF Tier-1 and associated NorduGrid clusters are well integrated into the ATLAS computing environment but follow a slightly different paradigm than other ATLAS resources. The current paradigm does not divide the sites as in the commonly used hierarchical model, but rather treats them as a single storage endpoint and a pool of distributed computing nodes. The next generation ARC middleware with its several new technologies provides new possibilities in development of the ATLAS computing model, such as pilot jobs with pre-cached input files, automatic job migration between the sites, integration of remote sites without connected storage elements, and automatic brokering for jobs with non-standard resource requirements. ARC's data transfer model provides an automatic way for the computing sites to participate in ATLAS’ global task management system without requiring centralised brokering or data transfer services. The powerful API combined with Python and Java bindings can easily be used to build new services for job control and data transfer. Integration of the ARC core into the EMI middleware provides a natural way to implement the new services using the ARC components

  8. HTR fuel modelling with the ATLAS code. Thermal mechanical behaviour and fission product release assessment

    International Nuclear Information System (INIS)

    Guillermier, Pierre; Daniel, Lucile; Gauthier, Laurent

    2009-01-01

    To support AREVA NP in its design on HTR reactor and its HTR fuel R and D program, the Commissariat a l'Energie Atomique developed the ATLAS code (Advanced Thermal mechanicaL Analysis Software) with the objectives: - to quantify, with a statistical approach, the failed particle fraction and fission product release of a HTR fuel core under normal and accidental conditions (compact or pebble design). - to simulate irradiation tests or benchmark in order to compare measurements or others code results with ATLAS evaluation. These two objectives aim at qualifying the code in order to predict fuel behaviour and to design fuel according to core performance and safety requirements. A statistical calculation uses numerous deterministic calculations. The finite element method is used for these deterministic calculations, in order to be able to choose among three types of meshes, depending on what must be simulated: - One-dimensional calculation of one single particle, for intact particles or particles with fully debonded layers. - Two-dimensional calculations of one single particle, in the case of particles which are cracked, partially debonded or shaped in various ways. - Three-dimensional calculations of a whole compact slice, in order to simulate the interactions between the particles, the thermal gradient and the transport of fission products up to the coolant. - Some calculations of a whole pebble, using homogenization methods are being studied. The temperatures, displacements, stresses, strains and fission product concentrations are calculated on each mesh of the model. Statistical calculations are done using these results, taking into account ceramic failure mode, but also fabrication tolerances and material property uncertainties, variations of the loads (fluence, temperature, burn-up) and core data parameters. The statistical method used in ATLAS is the importance sampling. The model of migration of long-lived fission products in the coated particle and more

  9. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes are presented, including a study of tunes for various PDFs.

  10. Reliability engineering analysis of ATLAS data reprocessing campaigns

    International Nuclear Information System (INIS)

    Vaniachine, A; Golubkov, D; Karpenko, D

    2014-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability Engineering approach supported continuous improvements in data reprocessing throughput during LHC data taking. The throughput doubled in 2011 vs. 2010 reprocessing, then quadrupled in 2012 vs. 2011 reprocessing. We present the Reliability Engineering analysis of ATLAS data reprocessing campaigns providing the foundation needed to scale up the Big Data processing technologies beyond the petascale.

  11. Taus at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Demers, Sarah M. [Yale Univ., New Haven, CT (United States). Dept. of Physics

    2017-12-06

    The grant "Taus at ATLAS" supported the group of Sarah Demers at Yale University over a period of 8.5 months, bridging the time between her Early Career Award and her inclusion on Yale's grant cycle within the Department of Energy's Office of Science. The work supported the functioning of the ATLAS Experiment at CERN's Large Hadron Collider and the analysis of ATLAS data. The work included searching for the Higgs Boson in a particular mode of its production (with a W or Z boson) and decay (to a pair of tau leptons.) This was part of a broad program of characterizing the Higgs boson as we try to understand this recently discovered particle, and whether or not it matches our expectations within the current standard model of particle physics. In addition, group members worked with simulation to understand the physics reach of planned upgrades to the ATLAS experiment. Supported group members include postdoctoral researcher Lotte Thomsen and graduate student Mariel Pettee.

  12. Discrete Event Modeling and Simulation-Driven Engineering for the ATLAS Data Acquisition Network

    CERN Document Server

    Bonaventura, Matias Alejandro; The ATLAS collaboration; Castro, Rodrigo Daniel

    2016-01-01

    We present an iterative and incremental development methodology for simulation models in network engineering projects. Driven by the DEVS (Discrete Event Systems Specification) formal framework for modeling and simulation we assist network design, test, analysis and optimization processes. A practical application of the methodology is presented for a case study in the ATLAS particle physics detector, the largest scientific experiment built by man where scientists around the globe search for answers about the origins of the universe. The ATLAS data network convey real-time information produced by physics detectors as beams of particles collide. The produced sub-atomic evidences must be filtered and recorded for further offline scrutiny. Due to the criticality of the transported data, networks and applications undergo careful engineering processes with stringent quality of service requirements. A tight project schedule imposes time pressure on design decisions, while rapid technology evolution widens the palett...

  13. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation.

    Directory of Open Access Journals (Sweden)

    Kishan Andre Liyanage

    Full Text Available Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap to 1 (complete overlap. For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.

  14. Modeling Radiation Effects on a Triple Junction Solar Cell using Silvaco ATLAS

    OpenAIRE

    Schiavo, Daniel

    2012-01-01

    In this research, Silvaco ATLAS, an advanced virtual wafer fabrication tool, was used to model the effects of radiation on a triple junction InGaP/GaAs/Ge solar cell. A Silvaco ATLAS model of a triple junction InGaP/GaAs/Ge cell was created by first creating individual models for solar cells composed of each material. Realistic doping levels were used and thicknesses were varied to produce the design parameters and create reasonably efficient solar cell models for testing. After the individua...

  15. A model-independent ''general search'' for new physics with the ATLAS detector at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Riccardo Maria

    2014-03-18

    The LHC particle collider accelerates bunches of protons at energies never reached before, thus opening a completely new landscape of new physics. In this scenario the number of possible physics processes and signatures becomes virtually infinite, making the setup of dedicated analyses impossible. Moreover there are regions of the phase-space where signals of new physics are not very likely to be found, or where suitable theoretical models are missing, and it is important to be able to reveal new processes from such regions as well. At the time this Thesis was started, no model-independent analysis had been set for the ATLAS experiment at LHC. The goal of this work was then to conceive and develop a new model-independent ''General Search'' for ATLAS, and to explore its possibilities. The new analysis has been then implemented and run over the first data which have been collected by the ATLAS experiment at a centre-of-mass energy of 7 TeV. This work presents the motivation of the data analysis, describes its implementation and shows the results. The data have shown a very good agreement with the Standard Model expectation and no evidence of new physics has been observed. Nevertheless, an efficient strategy and methodology for a new model-independent ''General Search'' have been defined and they are ready to be used in a next version of this analysis, over a larger set of experimental data. During this work, a new innovative software framework has been also conceived and developed to ease the implementation of physics analysis code using Computer-Aided- Software-Engineering (CASE) principles. The framework has been successfully used to analyze the very first LHC data, and then it has been transformed into an open-source modular framework for HEP data analysis, and presented at Physics and Computer Science international conferences.

  16. Analysis of ATLAS FLB-EC6 Experiment using SPACE Code

    International Nuclear Information System (INIS)

    Lee, Donghyuk; Kim, Yohan; Kim, Seyun

    2013-01-01

    The new code is named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). As a part of code validation effort, simulation of ATLAS FLB(Feedwater Line Break) experiment using SPACE code has been performed. The FLB-EC6 experiment is economizer break of a main feedwater line. The calculated results using the SPACE code are compared with those from the experiment. The ATLAS FLB-EC6 experiment, which is economizer feedwater line break, was simulated using the SPACE code. The calculated results were compared with those from the experiment. The comparisons of break flow rate and steam generator water level show good agreement with the experiment. The SPACE code is capable of predicting physical phenomena occurring during ATLAS FLB-EC6 experiment

  17. The ATLAS Monte Carlo tuning system

    CERN Document Server

    Wahrmund, S

    2012-01-01

    The ATLAS experiment moved the tuning of the underlying event and minimum bias event shape modeling, previously done in a manual fashion, to the automated Professor tuning tool, employed in connection with the Rivet analysis framework, when the first corresponding experimental analysis from LHC became available. The tuning effort for the Pythia 8 generator, which includes improved models for diffraction, has been started in this automated way in ATLAS, with the aim of getting a good description of the pile-up generated by multiple minimum bias interactions. The first results for these Pythia 8 tunes, as well as Pythia 6 shower tunes are presented, including a study of tunes for various PDFs.

  18. NEW ATLAS9 AND MARCS MODEL ATMOSPHERE GRIDS FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT (APOGEE)

    International Nuclear Information System (INIS)

    Mészáros, Sz.; Allende Prieto, C.; De Vicente, A.; Edvardsson, B.; Gustafsson, B.; Castelli, F.; García Pérez, A. E.; Majewski, S. R.; Plez, B.; Schiavon, R.; Shetrone, M.

    2012-01-01

    We present a new grid of model photospheres for the SDSS-III/APOGEE survey of stellar populations of the Galaxy, calculated using the ATLAS9 and MARCS codes. New opacity distribution functions were generated to calculate ATLAS9 model photospheres. MARCS models were calculated based on opacity sampling techniques. The metallicity ([M/H]) spans from –5 to 1.5 for ATLAS and –2.5 to 0.5 for MARCS models. There are three main differences with respect to previous ATLAS9 model grids: a new corrected H 2 O line list, a wide range of carbon ([C/M]) and α element [α/M] variations, and solar reference abundances from Asplund et al. The added range of varying carbon and α-element abundances also extends the previously calculated MARCS model grids. Altogether, 1980 chemical compositions were used for the ATLAS9 grid and 175 for the MARCS grid. Over 808,000 ATLAS9 models were computed spanning temperatures from 3500 K to 30,000 K and log g from 0 to 5, where larger temperatures only have high gravities. The MARCS models span from 3500 K to 5500 K, and log g from 0 to 5. All model atmospheres are publicly available online.

  19. A detailed and verified wind resource atlas for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, N G; Landberg, L; Rathmann, O; Nielsen, M N [Risoe National Lab., Roskilde (Denmark); Nielsen, P [Energy and Environmental Data, Aalberg (Denmark)

    1999-03-01

    A detailed and reliable wind resource atlas covering the entire land area of Denmark has been established. Key words of the methodology are wind atlas analysis, interpolation of wind atlas data sets, automated generation of digital terrain descriptions and modelling of local wind climates. The atlas contains wind speed and direction distributions, as well as mean energy densities of the wind, for 12 sectors and four heights above ground level: 25, 45, 70 and 100 m. The spatial resolution is 200 meters in the horizontal. The atlas has been verified by comparison with actual wind turbine power productions from over 1200 turbines. More than 80% of these turbines were predicted to within 10%. The atlas will become available on CD-ROM and on the Internet. (au)

  20. Automated analysis of small animal PET studies through deformable registration to an atlas

    International Nuclear Information System (INIS)

    Gutierrez, Daniel F.; Zaidi, Habib

    2012-01-01

    This work aims to develop a methodology for automated atlas-guided analysis of small animal positron emission tomography (PET) data through deformable registration to an anatomical mouse model. A non-rigid registration technique is used to put into correspondence relevant anatomical regions of rodent CT images from combined PET/CT studies to corresponding CT images of the Digimouse anatomical mouse model. The latter provides a pre-segmented atlas consisting of 21 anatomical regions suitable for automated quantitative analysis. Image registration is performed using a package based on the Insight Toolkit allowing the implementation of various image registration algorithms. The optimal parameters obtained for deformable registration were applied to simulated and experimental mouse PET/CT studies. The accuracy of the image registration procedure was assessed by segmenting mouse CT images into seven regions: brain, lungs, heart, kidneys, bladder, skeleton and the rest of the body. This was accomplished prior to image registration using a semi-automated algorithm. Each mouse segmentation was transformed using the parameters obtained during CT to CT image registration. The resulting segmentation was compared with the original Digimouse atlas to quantify image registration accuracy using established metrics such as the Dice coefficient and Hausdorff distance. PET images were then transformed using the same technique and automated quantitative analysis of tracer uptake performed. The Dice coefficient and Hausdorff distance show fair to excellent agreement and a mean registration mismatch distance of about 6 mm. The results demonstrate good quantification accuracy in most of the regions, especially the brain, but not in the bladder, as expected. Normalized mean activity estimates were preserved between the reference and automated quantification techniques with relative errors below 10 % in most of the organs considered. The proposed automated quantification technique is

  1. Computational and mathematical methods in brain atlasing.

    Science.gov (United States)

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  2. European Wind Atlas and Wind Resource Research in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling

    to estimate the actual wind climate at any specific site and height within this region. The Danish and European Wind Atlases are examples of how the wind atlas methodology can be employed to estimate the wind resource potential for a country or a sub-continent. Recently, the methodology has also been used...... - from wind measurements at prospective sites to wind tunnel simulations and advanced flow modelling. Among these approaches, the wind atlas methodology - developed at Ris0 National Laboratory over the last 25 years - has gained widespread recognition and is presently considered by many as the industry......-standard tool for wind resource assessment and siting of wind turbines. The PC-implementation of the methodology, the Wind Atlas Analysis and Application Program (WAsP), has been applied in more than 70 countries and territories world-wide. The wind atlas methodology is based on physical descriptions and models...

  3. Overview of the Standard Model Measurements with the ATLAS Detector

    CERN Document Server

    Liu, Yanwen; The ATLAS collaboration

    2017-01-01

    The ATLAS Collaboration is engaged in precision measurement of fundamental Standard Model parameters, such as the W boson mass, the weak-mixing angle or the strong coupling constant. In addition, the production cross-sections of a large variety of final states involving high energetic jets, photons as well as single and multi vector bosons are measured multi differentially at several center of mass energies. This allows to test perturbative QCD calculations to highest precision. In addition, these measurements allow also to test models beyond the SM, e.g. those leading to anomalous gauge couplings. In this talk, we give a broad overview of the Standard Model measurement campaign of the ATLAS collaboration, where selected topics will be discussed in more detail.

  4. PROOF-based analysis on the ATLAS grid facilities: first experience with the PoD/PanDa plugin

    International Nuclear Information System (INIS)

    Vilucchi, E; Nardo, R Di; Mancini, G; Pineda, A R Sanchez; Salvo, A De; Donato, C Di; Doria, A; Ganis, G; Manafov, A; Mazza, S; Preltz, F; Rebatto, D; Salvucci, A

    2014-01-01

    In the ATLAS computing model Grid resources are managed by PanDA, the system designed for production and distributed analysis, and data are stored under various formats in ROOT files. End-user physicists have the choice to use either the ATHENA framework or directly ROOT, that provides users the possibility to use PROOF to exploit the computing power of multi-core machines or to dynamically manage analysis facilities. Since analysis facilities are, in general, not dedicated to PROOF only, PROOF-on-Demand (PoD) is used to enable PROOF on top of an existing resource management system. In a previous work we investigated the usage of PoD to enable PROOF-based analysis on Tier-2 facilities using the PoD/gLite plug-in interface. In this paper we present the status of our investigations using the recently developed PoD/PanDA plug-in to enable PROOF and a real end-user ATLAS physics analysis as payload. For this work, data were accessed using two different protocols: XRootD and file protocol. The former in the site where the SRM interface is Disk Pool Manager (DPM) and the latter where the SRM interface is StoRM with GPFS file system. We will first describe the results of some benchmark tests we run on the ATLAS Italian Tier-1 and Tier-2s sites and at CERN. Then, we will compare the results of different types of analysis, comparing performances accessing data in relation to different types of SRM interfaces and accessing data with XRootD in the LAN and in the WAN using the ATLAS XROOTD storage federation infrastructure.

  5. Implementation of the ATLAS Run 2 event data model

    Science.gov (United States)

    Buckley, A.; Eifert, T.; Elsing, M.; Gillberg, D.; Koeneke, K.; Krasznahorkay, A.; Moyse, E.; Nowak, M.; Snyder, S.; van Gemmeren, P.

    2015-12-01

    During the 2013-2014 shutdown of the Large Hadron Collider, ATLAS switched to a new event data model for analysis, called the xAOD. A key feature of this model is the separation of the object data from the objects themselves (the ‘auxiliary store’). Rather than being stored as member variables of the analysis classes, all object data are stored separately, as vectors of simple values. Thus, the data are stored in a ‘structure of arrays’ format, while the user still can access it as an ‘array of structures’. This organization allows for on-demand partial reading of objects, the selective removal of object properties, and the addition of arbitrary user- defined properties in a uniform manner. It also improves performance by increasing the locality of memory references in typical analysis code. The resulting data structures can be written to ROOT files with data properties represented as simple ROOT tree branches. This paper focuses on the design and implementation of the auxiliary store and its interaction with ROOT.

  6. Implementation of the ATLAS Run 2 event data model

    CERN Document Server

    Buckley, Andrew; Elsing, Markus; Gillberg, Dag Ingemar; Koeneke, Karsten; Krasznahorkay, Attila; Moyse, Edward; Nowak, Marcin; Snyder, Scott; van Gemmeren, Peter

    2015-01-01

    During the 2013--2014 shutdown of the Large Hadron Collider, ATLAS switched to a new event data model for analysis, called the xAOD. A key feature of this model is the separation of the object data from the objects themselves (the `auxiliary store'). Rather being stored as member variables of the analysis classes, all object data are stored separately, as vectors of simple values. Thus, the data are stored in a `structure of arrays' format, while the user still can access it as an `array of structures'. This organization allows for on-demand partial reading of objects, the selective removal of object properties, and the addition of arbitrary user-defined properties in a uniform manner. It also improves performance by increasing the locality of memory references in typical analysis code. The resulting data structures can be written to ROOT files with data properties represented as simple ROOT tree branches. This talk will focus on the design and implementation of the auxiliary store and its interaction with RO...

  7. ATLAS tile calorimeter cesium calibration control and analysis software

    International Nuclear Information System (INIS)

    Solovyanov, O; Solodkov, A; Starchenko, E; Karyukhin, A; Isaev, A; Shalanda, N

    2008-01-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented

  8. ATLAS tile calorimeter cesium calibration control and analysis software

    Energy Technology Data Exchange (ETDEWEB)

    Solovyanov, O; Solodkov, A; Starchenko, E; Karyukhin, A; Isaev, A; Shalanda, N [Institute for High Energy Physics, Protvino 142281 (Russian Federation)], E-mail: Oleg.Solovyanov@ihep.ru

    2008-07-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented.

  9. Integration of the ATLAS tag database with data management and analysis components

    Energy Technology Data Exchange (ETDEWEB)

    Cranshaw, J; Malon, D [Argonne National Laboratory, Argonne, IL 60439 (United States); Doyle, A T; Kenyon, M J; McGlone, H; Nicholson, C [Department of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland (United Kingdom)], E-mail: c.nicholson@physics.gla.ac.uk

    2008-07-15

    The ATLAS Tag Database is an event-level metadata system, designed to allow efficient identification and selection of interesting events for user analysis. By making first-level cuts using queries on a relational database, the size of an analysis input sample could be greatly reduced and thus the time taken for the analysis reduced. Deployment of such a Tag database is underway, but to be most useful it needs to be integrated with the distributed data management (DDM) and distributed analysis (DA) components. This means addressing the issue that the DDM system at ATLAS groups files into datasets for scalability and usability, whereas the Tag Database points to events in files. It also means setting up a system which could prepare a list of input events and use both the DDM and DA systems to run a set of jobs. The ATLAS Tag Navigator Tool (TNT) has been developed to address these issues in an integrated way and provide a tool that the average physicist can use. Here, the current status of this work is presented and areas of future work are highlighted.

  10. Integration of the ATLAS tag database with data management and analysis components

    International Nuclear Information System (INIS)

    Cranshaw, J; Malon, D; Doyle, A T; Kenyon, M J; McGlone, H; Nicholson, C

    2008-01-01

    The ATLAS Tag Database is an event-level metadata system, designed to allow efficient identification and selection of interesting events for user analysis. By making first-level cuts using queries on a relational database, the size of an analysis input sample could be greatly reduced and thus the time taken for the analysis reduced. Deployment of such a Tag database is underway, but to be most useful it needs to be integrated with the distributed data management (DDM) and distributed analysis (DA) components. This means addressing the issue that the DDM system at ATLAS groups files into datasets for scalability and usability, whereas the Tag Database points to events in files. It also means setting up a system which could prepare a list of input events and use both the DDM and DA systems to run a set of jobs. The ATLAS Tag Navigator Tool (TNT) has been developed to address these issues in an integrated way and provide a tool that the average physicist can use. Here, the current status of this work is presented and areas of future work are highlighted

  11. Analysis of $B^{0}_{d} \\to K^{*0}\\mu^{+}\\mu^{-}$ Decay with the ATLAS Experiment

    CERN Document Server

    Usanova, Anna

    ATLAS is a general-purpose experiment at the Large Hadron Collider. Beside other goals, it also aims at the study of B -hadrons. B -physics offers a large number of channels that can provide information about some fundamental properties of our universe. Among them, the B 0 d ! K 0 + - decay is sensitive to the potential presence of particles that are not predicted by the Standard Model. Such ”new physics” effects can be observed indirectly by studying angular distributions of the B 0 d ! K 0 + - decay products. This thesis describes the analysis of 4.9 fb - 1 of data produced in the proton-proton collisions at the centre-of-mass energy p s = 7 TeV at the LHC in the year 2011 and recorded by the ATLAS detector. The main steps of analysis are described, such as the selection of the signal events, the data fit procedure and the estimation of uncertainties. The obtained results are compared with other experiments and with the Standard Model prediction.

  12. Analysis of ATLAS Cold Leg SBLOCA Using SPACE Code

    International Nuclear Information System (INIS)

    Kang, Doo Hyuk; Suh, Jae Seung; Kim, Se Yun

    2012-01-01

    SPACE Code has been developed to predict the thermal-hydraulic responses of nuclear steam supply system to the anticipated transients and postulated accidents and adopted advanced physical modeling of two-phase flows, mainly two-fluid, three-field models that comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or non-structured meshes. In this paper, a cold-leg SBLOCA which is the experiment, SB-CL-09, of the ATLAS integral effect test facility during the second domestic stand problem (DSP-02) was analyzed. The results were compared with those of MARS-KS code simulations. The SPACE code with a 1.0 version was released by KHNP in 2012. The analysis has been performed in a desktop PC with Windows 7 environment

  13. Standard Model measurements with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Hassani Samira

    2015-01-01

    Full Text Available Various Standard Model measurements have been performed in proton-proton collisions at a centre-of-mass energy of √s = 7 and 8 TeV using the ATLAS detector at the Large Hadron Collider. A review of a selection of the latest results of electroweak measurements, W/Z production in association with jets, jet physics and soft QCD is given. Measurements are in general found to be well described by the Standard Model predictions.

  14. Energy Frontier Research With ATLAS: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Butler, John [Boston Univ., MA (United States); Black, Kevin [Boston Univ., MA (United States); Ahlen, Steve [Boston Univ., MA (United States)

    2016-06-14

    The Boston University (BU) group is playing key roles across the ATLAS experiment: in detector operations, the online trigger, the upgrade, computing, and physics analysis. Our team has been critical to the maintenance and operations of the muon system since its installation. During Run 1 we led the muon trigger group and that responsibility continues into Run 2. BU maintains and operates the ATLAS Northeast Tier 2 computing center. We are actively engaged in the analysis of ATLAS data from Run 1 and Run 2. Physics analyses we have contributed to include Standard Model measurements (W and Z cross sections, t\\bar{t} differential cross sections, WWW^* production), evidence for the Higgs decaying to \\tau^+\\tau^-, and searches for new phenomena (technicolor, Z' and W', vector-like quarks, dark matter).

  15. The B00 model coil in the ATLAS Magnet Test Facility

    CERN Document Server

    Dudarev, A; ten Kate, H H J; Anashkin, O P; Keilin, V E; Lysenko, V V

    2001-01-01

    A 1-m size model coil has been developed to investigate the transport properties of the three aluminum-stabilized superconductors used in the ATLAS magnets. The coil, named B00, is also used for debugging the cryogenic, power and control systems of the ATLAS Magnet Test Facility. The coil comprises two double pancakes made of the barrel toroid and end-cap toroid conductors and a single pancake made of the central solenoid conductor. The pancakes are placed inside an aluminum coil casing. The coil construction and cooling conditions are quite similar to the final design of the ATLAS magnets. The B00 coil is well equipped with various sensors to measure thermal and electrodynamic properties of the conductor inside the coils. Special attention has been paid to the study of the current diffusion process and the normal zone propagation in the ATLAS conductors and windings. Special pick-up coils have been made to measure the diffusion at different currents and magnetic field values. (6 refs).

  16. Wind Atlas for South Africa (WASA) Observational wind atlas for 10 met. stations in Northern, Western and Eastern Cape provinces

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Hansen, Jens Carsten; Kelly, Mark C.

    As part of the “Wind Atlas for South Africa” project, microscale modelling has been carried out for 10 meteorological stations in Northern, Western and Eastern Cape provinces. Wind speed and direction data from the ten 60-m masts have been analysed using the Wind Atlas Analysis and Application...... Program (WAsP 11). The windclimatological inputs are the observed wind climates derived from the WAsP Climate Analyst. Topographical inputs are elevation maps constructed from SRTM 3 data and rough-ness length maps constructed from SWBD data and Google Earth satellite imagery. Summaries are given...... of the data measured at the 10 masts, mainly for a 3-year reference period from October 2010 to September 2013. The main result of the microscale modelling is observational wind atlas data sets, which can be used for verification of the mesoscale modelling. In addition, the microscale modelling itself has...

  17. Wind Atlas for South Africa (WASA) Observational wind atlas for 10 met. stations in Northern, Western and Eastern Cape provinces

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Hansen, Jens Carsten; Kelly, Mark C.

    As part of the “Wind Atlas for South Africa” project, microscale modelling has been carried out for 10 meteorological stations in Northern, Western and Eastern Cape provinces. Wind speed and direction data from the ten 60-m masts have been analysed using the Wind Atlas Analysis and Application...... Program (WAsP 11). The wind-climatological inputs are the observed wind climates derived from the WAsP Climate Analyst. Topographical inputs are elevation maps constructed from SRTM 3 data and roughness length maps constructed from SWBD data and Google Earth satellite imagery. Summaries are given...... of the data measured at the 10 masts, mainly for a 3-year reference period from October 2010 to September 2013. The main result of the microscale modelling is observational wind atlas data sets, which can be used for verification of the mesoscale modelling. In addition, the microscale modelling itself has...

  18. Atlas : A library for numerical weather prediction and climate modelling

    Science.gov (United States)

    Deconinck, Willem; Bauer, Peter; Diamantakis, Michail; Hamrud, Mats; Kühnlein, Christian; Maciel, Pedro; Mengaldo, Gianmarco; Quintino, Tiago; Raoult, Baudouin; Smolarkiewicz, Piotr K.; Wedi, Nils P.

    2017-11-01

    The algorithms underlying numerical weather prediction (NWP) and climate models that have been developed in the past few decades face an increasing challenge caused by the paradigm shift imposed by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path to exascale High Performance Computing (HPC), applications become increasingly restricted by energy consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on the programming models traditionally used in NWP software, triggering a rethink of design choices for future massively parallel software frameworks. In this paper, we present Atlas, a new software library that is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF), with the scope of handling data structures required for NWP applications in a flexible and massively parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate applications on emerging HPC architectures. The applications range from full Earth system models, to specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a step towards affordable exascale high-performance simulations by providing the necessary abstractions that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP algorithms with the underlying hardware.

  19. Illustrative Example of Distributed Analysis in ATLAS Spanish Tier-2 and Tier-3 centers

    CERN Document Server

    Oliver, E; The ATLAS collaboration; González de la Hoz, S; Kaci, M; Lamas, A; Salt, J; Sánchez, J; Villaplana, M

    2011-01-01

    Data taking in ATLAS has been going on for more than one year. The necessity of a computing infrastructure for data storage, access for thousands of users and process of hundreds of million of events has been confirmed in this period. Fortunately, this task has been managed by the GRID infrastructure and the manpower that also has been developing specific GRID tools for the ATLAS community. An example of a physics analysis, searches for the decay of a heavy resonance into a ttbar pair, using this infrastructure is shown. Concretely using the ATLAS Spanish Tier-2 and the IFIC Tier-3. In this moment, the ATLAS Distributed Computing group is working to improve the connectivity among centers in order to be ready for the foreseen increase on the ATLAS activity in the next years.

  20. Danish heat atlas as a support tool for energy system models

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2014-01-01

    In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive infrastru......In the past four decades following the global oil crisis in 1973, Denmark has implemented remarkable changes in its energy sector, mainly due to the energy conservation measures on the demand side and the energy efficiency improvements on the supply side. Nowadays, the capital intensive...... infrastructure investments, such as the expansion of district heating networks and the introduction of significant heat saving measures require highly detailed decision-support tool. A Danish heat atlas provides highly detailed database with extensive information about more than 2.5 million buildings in Denmark...... society after 2050. The present paper shows how a Danish heat atlas can be used for providing inputs to energy system models, especially related to the analysis of heat saving measures within building stock and expansion of district heating networks. As a result, marginal cost curves are created...

  1. Evolution of the ATLAS PanDA Production and Distributed Analysis System

    International Nuclear Information System (INIS)

    Maeno, T; Wenaus, T; Fine, V; Potekhin, M; Panitkin, S; De, K; Nilsson, P; Stradling, A; Walker, R; Compostella, G

    2012-01-01

    The PanDA (Production and Distributed Analysis) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at LHC data processing scale. PanDA has performed well with high reliability and robustness during the two years of LHC data-taking, while being actively evolved to meet the rapidly changing requirements for analysis use cases. We will present an overview of system evolution including automatic rebrokerage and reattempt for analysis jobs, adaptation for the CernVM File System, support for the multi-cloud model through which Tier-2 sites act as members of multiple clouds, pledged resource management and preferential brokerage, and monitoring improvements. We will also describe results from the analysis of two years of PanDA usage statistics, current issues, and plans for the future.

  2. Standard Model Higgs boson searches with the ATLAS detector

    Indian Academy of Sciences (India)

    The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at s = 7 TeV recorded by the ATLAS detector are presented and discussed. No significant excess of events is found with respect to the expectations from Standard Model processes, and the production ...

  3. Search for the Standard Model Higgs boson produced in association with top quarks and decaying into bb in the ATLAS detector

    CERN Document Server

    Honda, Shunsuke; The ATLAS collaboration

    2017-01-01

    The Standard Model Higgs boson produced in association with a top-quark pair(ttbar) can permit direct measurement of the top Yukawa coupling. This poster is focused on the Higgs->bb channel with ttbar decaying into one or two electrons or muons. The analysis used pp collision data at the center of mass energy of 13 TeV, collected with the LHC-ATLAS detector in 2015-2016. The search is already limited by systematic uncertainties mostly in background modeling. In order to improve the sensitivity of the analysis, events are categorized according to their jet multiplicities and b-tagging properties. We present the latest result from the ATLAS experiment with improved techniques to discriminate signal from background dominated by ttbar+jets production.

  4. ATLAS, an integrated structural analysis and design system. Volume 4: Random access file catalog

    Science.gov (United States)

    Gray, F. P., Jr. (Editor)

    1979-01-01

    A complete catalog is presented for the random access files used by the ATLAS integrated structural analysis and design system. ATLAS consists of several technical computation modules which output data matrices to corresponding random access file. A description of the matrices written on these files is contained herein.

  5. Connecting imaging mass spectrometry and magnetic resonance imaging-based anatomical atlases for automated anatomical interpretation and differential analysis.

    Science.gov (United States)

    Verbeeck, Nico; Spraggins, Jeffrey M; Murphy, Monika J M; Wang, Hui-Dong; Deutch, Ariel Y; Caprioli, Richard M; Van de Plas, Raf

    2017-07-01

    Imaging mass spectrometry (IMS) is a molecular imaging technology that can measure thousands of biomolecules concurrently without prior tagging, making it particularly suitable for exploratory research. However, the data size and dimensionality often makes thorough extraction of relevant information impractical. To help guide and accelerate IMS data analysis, we recently developed a framework that integrates IMS measurements with anatomical atlases, opening up opportunities for anatomy-driven exploration of IMS data. One example is the automated anatomical interpretation of ion images, where empirically measured ion distributions are automatically decomposed into their underlying anatomical structures. While offering significant potential, IMS-atlas integration has thus far been restricted to the Allen Mouse Brain Atlas (AMBA) and mouse brain samples. Here, we expand the applicability of this framework by extending towards new animal species and a new set of anatomical atlases retrieved from the Scalable Brain Atlas (SBA). Furthermore, as many SBA atlases are based on magnetic resonance imaging (MRI) data, a new registration pipeline was developed that enables direct non-rigid IMS-to-MRI registration. These developments are demonstrated on protein-focused FTICR IMS measurements from coronal brain sections of a Parkinson's disease (PD) rat model. The measurements are integrated with an MRI-based rat brain atlas from the SBA. The new rat-focused IMS-atlas integration is used to perform automated anatomical interpretation and to find differential ions between healthy and diseased tissue. IMS-atlas integration can serve as an important accelerator in IMS data exploration, and with these new developments it can now be applied to a wider variety of animal species and modalities. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2017. Published by Elsevier B.V.

  6. ATLAS operations in the GridKa T1/T2 Cloud

    International Nuclear Information System (INIS)

    Duckeck, G; Serfon, C; Walker, R; Harenberg, T; Kalinin, S; Schultes, J; Kawamura, G; Leffhalm, K; Meyer, J; Nderitu, S; Olszewski, A; Petzold, A; Sundermann, J E

    2011-01-01

    The ATLAS GridKa cloud consists of the GridKa Tier1 centre and 12 Tier2 sites from five countries associated to it. Over the last years a well defined and tested operation model evolved. Several core cloud services need to be operated and closely monitored: distributed data management, involving data replication, deletion and consistency checks; support for ATLAS production activities, which includes Monte Carlo simulation, reprocessing and pilot factory operation; continuous checks of data availability and performance for user analysis; software installation and database setup. Of crucial importance is good communication between sites, operations team and ATLAS as well as efficient cloud level monitoring tools. The paper gives an overview of the operations model and ATLAS services within the cloud.

  7. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S

    2005-01-01

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Software Week Plenary 6-10 December 2004 North American ATLAS Physics Workshop (Tucson) 20-21 December 2004 (17 talks) Physics Analysis Tools Tutorial (Tucson) 19 December 2004 Full Chain Tutorial 21 September 2004 ATLAS Plenary Sessions, 17-18 February 2005 (17 talks) Coming soon: ATLAS Tutorial on Electroweak Physics, 14 Feb. 2005 Software Workshop, 21-22 February 2005 Click here to browse WLAP for all ATLAS lectures.

  8. Exploiting Virtualization and Cloud Computing in ATLAS

    International Nuclear Information System (INIS)

    Harald Barreiro Megino, Fernando; Van der Ster, Daniel; Benjamin, Doug; De, Kaushik; Gable, Ian; Paterson, Michael; Taylor, Ryan; Hendrix, Val; Vitillo, Roberto A; Panitkin, Sergey; De Silva, Asoka; Walker, Rod

    2012-01-01

    The ATLAS Computing Model was designed around the concept of grid computing; since the start of data-taking, this model has proven very successful in the federated operation of more than one hundred Worldwide LHC Computing Grid (WLCG) sites for offline data distribution, storage, processing and analysis. However, new paradigms in computing, namely virtualization and cloud computing, present improved strategies for managing and provisioning IT resources that could allow ATLAS to more flexibly adapt and scale its storage and processing workloads on varied underlying resources. In particular, ATLAS is developing a “grid-of-clouds” infrastructure in order to utilize WLCG sites that make resources available via a cloud API. This work will present the current status of the Virtualization and Cloud Computing R and D project in ATLAS Distributed Computing. First, strategies for deploying PanDA queues on cloud sites will be discussed, including the introduction of a “cloud factory” for managing cloud VM instances. Next, performance results when running on virtualized/cloud resources at CERN LxCloud, StratusLab, and elsewhere will be presented. Finally, we will present the ATLAS strategies for exploiting cloud-based storage, including remote XROOTD access to input data, management of EC2-based files, and the deployment of cloud-resident LCG storage elements.

  9. ATLAS Standard Model Measurements Using Jet Grooming and Substructure

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2017-01-01

    Boosted topologies allow to explore Standard Model processes in kinematical regimes never tested before. In such LHC challenging environments, standard reconstruction techniques quickly hit the wall. Targeting hadronic final states means to properly reconstruct energy and multiplicity of the jets in the event. In order to be able to identify the decay product of boosted objects, i.e. W bosons, $t\\bar{t}$ pairs or Higgs produced in association with $t\\bar{t}$ pairs, ATLAS experiment is currently exploiting several algorithms using jet grooming and jet substructure. This contribution will mainly cover the following ATLAS measurements: $t\\bar{t}$ differential cross section production and jet mass using the soft drop procedure. Standard Model measurements offer the perfect field to test the performances of new jet tagging techniques which will become even more important in the search for new physics in highly boosted topologies.”

  10. Production of the Finnish Wind Atlas

    DEFF Research Database (Denmark)

    Tammelin, Bengt; Vihma, Timo; Atlaskin, Evgeny

    2013-01-01

    ) the parameterization method for gust factor was extended to be applicable at higher altitudes; and (vii) the dissemination of the Wind Atlas was based on new technical solutions. The AROME results were calculated for the heights of 50, 75, 100, 125, 150, 200, 300 and 400 m, and the WAsP results for the heights of 50......, 75, 100, 125 and 150 m. In addition to the wind speed, the results included the values of the Weibull distribution parameters, the gust factor, wind power content and the potential power production, which was calculated for three turbine sizes. The Wind Atlas data are available for each grid point......The Finnish Wind Atlas was prepared applying the mesoscale model AROME with 2.5 km horizontal resolution and the diagnostic downscaling method Wind Atlas Analysis and Application Programme (WAsP) with 250 m resolution. The latter was applied for areas most favourable for wind power production: a 30...

  11. Searches for squarks and gluinos with ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00394440; The ATLAS collaboration

    2017-01-01

    One of the most versatile and attractive extensions to the successful yet incomplete Standard Model of particle physics is Supersymmetry - a theory the ATLAS experiment at the Large Hadron Collider is looking for in its recorded data. Due to the nature of proton-proton collisions, the recorded physics events are mainly produced via the strong force. This fact makes searches for the superpartners of the gluon and the quarks particularly promising. This document provides an overview of searches for squarks and gluinos using the ATLAS experiment and describes two of the major analyses in detail. The analysis strategies are outlined, the results discussed and interpreted. Finally, an outlook onto other searches for strongly produced Supersymmetry with ATLAS is given.

  12. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  13. ATLAS Cloud R&D

    Science.gov (United States)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  14. ATLAS

    CERN Multimedia

    Akhnazarov, V; Canepa, A; Bremer, J; Burckhart, H; Cattai, A; Voss, R; Hervas, L; Kaplon, J; Nessi, M; Werner, P; Ten kate, H; Tyrvainen, H; Vandelli, W; Krasznahorkay, A; Gray, H; Alvarez gonzalez, B; Eifert, T F; Rolando, G; Oide, H; Barak, L; Glatzer, J; Backhaus, M; Schaefer, D M; Maciejewski, J P; Milic, A; Jin, S; Von torne, E; Limbach, C; Medinnis, M J; Gregor, I; Levonian, S; Schmitt, S; Waananen, A; Monnier, E; Muanza, S G; Pralavorio, P; Talby, M; Tiouchichine, E; Tocut, V M; Rybkin, G; Wang, S; Lacour, D; Laforge, B; Ocariz, J H; Bertoli, W; Malaescu, B; Sbarra, C; Yamamoto, A; Sasaki, O; Koriki, T; Hara, K; Da silva gomes, A; Carvalho maneira, J; Marcalo da palma, A; Chekulaev, S; Tikhomirov, V; Snesarev, A; Buzykaev, A; Maslennikov, A; Peleganchuk, S; Sukharev, A; Kaplan, B E; Swiatlowski, M J; Nef, P D; Schnoor, U; Oakham, G F; Ueno, R; Orr, R S; Abouzeid, O; Haug, S; Peng, H; Kus, V; Vitek, M; Temming, K K; Dang, N P; Meier, K; Schultz-coulon, H; Geisler, M P; Sander, H; Schaefer, U; Ellinghaus, F; Rieke, S; Nussbaumer, A; Liu, Y; Richter, R; Kortner, S; Fernandez-bosman, M; Ullan comes, M; Espinal curull, J; Chiriotti alvarez, S; Caubet serrabou, M; Valladolid gallego, E; Kaci, M; Carrasco vela, N; Lancon, E C; Besson, N E; Gautard, V; Bracinik, J; Bartsch, V C; Potter, C J; Lester, C G; Moeller, V A; Rosten, J; Crooks, D; Mathieson, K; Houston, S C; Wright, M; Jones, T W; Harris, O B; Byatt, T J; Dobson, E; Hodgson, P; Hodgkinson, M C; Dris, M; Karakostas, K; Ntekas, K; Oren, D; Duchovni, E; Etzion, E; Oren, Y; Ferrer, L M; Testa, M; Doria, A; Merola, L; Sekhniaidze, G; Giordano, R; Ricciardi, S; Milazzo, A; Falciano, S; De pedis, D; Dionisi, C; Veneziano, S; Cardarelli, R; Verzegnassi, C; Soualah, R; Ochi, A; Ohshima, T; Kishiki, S; Linde, F L; Vreeswijk, M; Werneke, P; Muijs, A; Vankov, P H; Jansweijer, P P M; Dale, O; Lund, E; Bruckman de renstrom, P; Dabrowski, W; Adamek, J D; Wolters, H; Micu, L; Pantea, D; Tudorache, V; Mjoernmark, J; Klimek, P J; Ferrari, A; Abdinov, O; Akhoundov, A; Hashimov, R; Shelkov, G; Khubua, J; Ladygin, E; Lazarev, A; Glagolev, V; Dedovich, D; Lykasov, G; Zhemchugov, A; Zolnikov, Y; Ryabenko, M; Sivoklokov, S; Vasilyev, I; Shalimov, A; Lobanov, M; Paramoshkina, E; Mosidze, M; Bingul, A; Nodulman, L J; Guarino, V J; Yoshida, R; Drake, G R; Calafiura, P; Haber, C; Quarrie, D R; Alonso, J R; Anderson, C; Evans, H; Lammers, S W; Baubock, M; Anderson, K; Petti, R; Suhr, C A; Linnemann, J T; Richards, R A; Tollefson, K A; Holzbauer, J L; Stoker, D P; Pier, S; Nelson, A J; Isakov, V; Martin, A J; Adelman, J A; Paganini, M; Gutierrez, P; Snow, J M; Pearson, B L; Cleland, W E; Savinov, V; Wong, W; Goodson, J J; Li, H; Lacey, R A; Gordeev, A; Gordon, H; Lanni, F; Nevski, P; Rescia, S; Kierstead, J A; Liu, Z; Yu, W W H; Bensinger, J; Hashemi, K S; Bogavac, D; Cindro, V; Hoeferkamp, M R; Coelli, S; Iodice, M; Piegaia, R N; Alonso, F; Wahlberg, H P; Barberio, E L; Limosani, A; Rodd, N L; Jennens, D T; Hill, E C; Pospisil, S; Smolek, K; Schaile, D A; Rauscher, F G; Adomeit, S; Mattig, P M; Wahlen, H; Volkmer, F; Calvente lopez, S; Sanchis peris, E J; Pallin, D; Podlyski, F; Says, L; Boumediene, D E; Scott, W; Phillips, P W; Greenall, A; Turner, P; Gwilliam, C B; Kluge, T; Wrona, B; Sellers, G J; Millward, G; Adragna, P; Hartin, A; Alpigiani, C; Piccaro, E; Bret cano, M; Hughes jones, R E; Mercer, D; Oh, A; Chavda, V S; Carminati, L; Cavasinni, V; Fedin, O; Patrichev, S; Ryabov, Y; Nesterov, S; Grebenyuk, O; Sasso, J; Mahmood, H; Polsdofer, E; Dai, T; Ferretti, C; Liu, H; Hegazy, K H; Benjamin, D P; Zobernig, G; Ban, J; Brooijmans, G H; Keener, P; Williams, H H; Le geyt, B C; Hines, E J; Fadeyev, V; Schumm, B A; Law, A T; Kuhl, A D; Neubauer, M S; Shang, R; Gagliardi, G; Calabro, D; Conta, C; Zinna, M; Jones, G; Li, J; Stradling, A R; Hadavand, H K; Mcguigan, P; Chiu, P; Baldelomar, E; Stroynowski, R A; Kehoe, R L; De groot, N; Timmermans, C; Lach-heb, F; Addy, T N; Nakano, I; Moreno lopez, D; Grosse-knetter, J; Tyson, B; Rude, G D; Tafirout, R; Benoit, P; Danielsson, H O; Elsing, M; Fassnacht, P; Froidevaux, D; Ganis, G; Gorini, B; Lasseur, C; Lehmann miotto, G; Kollar, D; Aleksa, M; Sfyrla, A; Duehrssen-debling, K; Fressard-batraneanu, S; Van der ster, D C; Bortolin, C; Schumacher, J; Mentink, M; Geich-gimbel, C; Yau wong, K H; Lafaye, R; Crepe-renaudin, S; Albrand, S; Hoffmann, D; Pangaud, P; Meessen, C; Hrivnac, J; Vernay, E; Perus, A; Henrot versille, S L; Le dortz, O; Derue, F; Piccinini, M; Polini, A; Terada, S; Arai, Y; Ikeno, M; Fujii, H; Nagano, K; Ukegawa, F; Aguilar saavedra, J A; Conde muino, P; Castro, N F; Eremin, V; Kopytine, M; Sulin, V; Tsukerman, I; Korol, A; Nemethy, P; Bartoldus, R; Glatte, A; Chelsky, S; Van nieuwkoop, J; Bellerive, A; Sinervo, J K; Battaglia, A; Barbier, G J; Pohl, M; Rosselet, L; Alexandre, G B; Prokoshin, F; Pezoa rivera, R A; Batkova, L; Kladiva, E; Stastny, J; Kubes, T; Vidlakova, Z; Esch, H; Homann, M; Herten, L G; Zimmermann, S U; Pfeifer, B; Stenzel, H; Andrei, G V; Wessels, M; Buescher, V; Kleinknecht, K; Fiedler, F M; Schroeder, C D; Fernandez, E; Mir martinez, L; Vorwerk, V; Bernabeu verdu, J; Salt, J; Civera navarrete, J V; Bernard, R; Berriaud, C P; Chevalier, L P; Hubbard, R; Schune, P; Nikolopoulos, K; Batley, J R; Brochu, F M; Phillips, A W; Teixeira-dias, P J; Rose, M B D; Buttar, C; Buckley, A G; Nurse, E L; Larner, A B; Boddy, C; Henderson, J; Costanzo, D; Tarem, S; Maccarrone, G; Laurelli, P F; Alviggi, M; Chiaramonte, R; Izzo, V; Palumbo, V; Fraternali, M; Crosetti, G; Marchese, F; Yamaguchi, Y; Hessey, N P; Mechnich, J M; Liebig, W; Kastanas, K A; Sjursen, T B; Zalieckas, J; Cameron, D G; Banka, P; Kowalewska, A B; Dwuznik, M; Mindur, B; Boldea, V; Hedberg, V; Smirnova, O; Sellden, B; Allahverdiyev, T; Gornushkin, Y; Koultchitski, I; Tokmenin, V; Chizhov, M; Gongadze, A; Khramov, E; Sadykov, R; Krasnoslobodtsev, I; Smirnova, L; Kramarenko, V; Minaenko, A; Zenin, O; Beddall, A J; Ozcan, E V; Hou, S; Wang, S; Moyse, E; Willocq, S; Chekanov, S; Le compte, T J; Love, J R; Ciocio, A; Hinchliffe, I; Tsulaia, V; Gomez, A; Luehring, F; Zieminska, D; Huth, J E; Gonski, J L; Oreglia, M; Tang, F; Shochet, M J; Costin, T; Mcleod, A; Uzunyan, S; Martin, S P; Pope, B G; Schwienhorst, R H; Brau, J E; Ptacek, E S; Milburn, R H; Sabancilar, E; Lauer, R; Saleem, M; Mohamed meera lebbai, M R; Lou, X; Reeves, K B; Rijssenbeek, M; Novakova, P N; Rahm, D; Steinberg, P A; Wenaus, T J; Paige, F; Ye, S; Kotcher, J R; Assamagan, K A; Oliveira damazio, D; Maeno, T; Henry, A; Dushkin, A; Costa, G; Meroni, C; Resconi, S; Lari, T; Biglietti, M; Lohse, T; Gonzalez silva, M L; Monticelli, F G; Saavedra, A F; Patel, N D; Ciodaro xavier, T; Asevedo nepomuceno, A; Lefebvre, M; Albert, J E; Kubik, P; Faltova, J; Turecek, D; Solc, J; Schaile, O; Ebke, J; Losel, P J; Zeitnitz, C; Sturm, P D; Barreiro alonso, F; Modesto alapont, P; Soret medel, J; Garzon alama, E J; Gee, C N; Mccubbin, N A; Sankey, D; Emeliyanov, D; Dewhurst, A L; Houlden, M A; Klein, M; Burdin, S; Lehan, A K; Eisenhandler, E; Lloyd, S; Traynor, D P; Ibbotson, M; Marshall, R; Pater, J; Freestone, J; Masik, J; Haughton, I; Manousakis katsikakis, A; Sampsonidis, D; Krepouri, A; Roda, C; Sarri, F; Fukunaga, C; Nadtochiy, A; Kara, S O; Timm, S; Alam, S M; Rashid, T; Goldfarb, S; Espahbodi, S; Marley, D E; Rau, A W; Dos anjos, A R; Haque, S; Grau, N C; Havener, L B; Thomson, E J; Newcomer, F M; Hansl-kozanecki, G; Deberg, H A; Takeshita, T; Goggi, V; Ennis, J S; Olness, F I; Kama, S; Ordonez sanz, G; Koetsveld, F; Elamri, M; Mansoor-ul-islam, S; Lemmer, B; Kawamura, G; Bindi, M; Schulte, S; Kugel, A; Kretz, M P; Kurchaninov, L; Blanchot, G; Chromek-burckhart, D; Di girolamo, B; Francis, D; Gianotti, F; Nordberg, M Y; Pernegger, H; Roe, S; Boyd, J; Wilkens, H G; Pauly, T; Fabre, C; Tricoli, A; Bertet, D; Ruiz martinez, M A; Arnaez, O L; Lenzi, B; Boveia, A J; Gillberg, D I; Davies, J M; Zimmermann, R; Uhlenbrock, M; Kraus, J K; Narayan, R T; John, A; Dam, M; Padilla aranda, C; Bellachia, F; Le flour chollet, F M; Jezequel, S; Dumont dayot, N; Fede, E; Mathieu, M; Gensolen, F D; Alio, L; Arnault, C; Bouchel, M; Ducorps, A; Kado, M M; Lounis, A; Zhang, Z P; De vivie de regie, J; Beau, T; Bruni, A; Bruni, G; Grafstrom, P; Romano, M; Lasagni manghi, F; Massa, L; Shaw, K; Ikegami, Y; Tsuno, S; Kawanishi, Y; Benincasa, G; Blagov, M; Fedorchuk, R; Shatalov, P; Romaniouk, A; Belotskiy, K; Timoshenko, S; Hooft van huysduynen, L; Lewis, G H; Wittgen, M M; Mader, W F; Rudolph, C J; Gumpert, C; Mamuzic, J; Rudolph, G; Schmid, P; Corriveau, F; Belanger-champagne, C; Yarkoni, S; Leroy, C; Koffas, T; Harack, B D; Weber, M S; Beck, H; Leger, A; Gonzalez sevilla, S; Zhu, Y; Gao, J; Zhang, X; Blazek, T; Rames, J; Sicho, P; Kouba, T; Sluka, T; Lysak, R; Ristic, B; Kompatscher, A E; Von radziewski, H; Groll, M; Meyer, C P; Oberlack, H; Stonjek, S M; Cortiana, G; Werthenbach, U; Ibragimov, I; Czirr, H S; Cavalli-sforza, M; Puigdengoles olive, C; Tallada crespi, P; Marti i garcia, S; Gonzalez de la hoz, S; Guyot, C; Meyer, J; Schoeffel, L O; Garvey, J; Hawkes, C; Hillier, S J; Staley, R J; Salvatore, P F; Santoyo castillo, I; Carter, J; Yusuff, I B; Barlow, N R; Berry, T S; Savage, G; Wraight, K G; Steele, G E; Hughes, G; Walder, J W; Love, P A; Crone, G J; Waugh, B M; Boeser, S; Sarkar, A M; Holmes, A; Massey, R; Pinder, A; Nicholson, R; Korolkova, E; Katsoufis, I; Maltezos, S; Tsipolitis, G; Leontsinis, S; Levinson, L J; Shoa, M; Abramowicz, H E; Bella, G; Gershon, A; Urkovsky, E; Taiblum, N; Gatti, C; Della pietra, M; Lanza, A; Negri, A; Flaminio, V; Lacava, F; Petrolo, E; Pontecorvo, L; Rosati, S; Zanello, L; Pasqualucci, E; Di ciaccio, A; Giordani, M; Yamazaki, Y; Jinno, T; Nomachi, M; De jong, P J; Ferrari, P; Homma, J; Van der graaf, H; Igonkina, O B; Stugu, B S; Buanes, T; Pedersen, M; Turala, M; Olszewski, A J; Koperny, S Z; Onofre, A; Castro nunes fiolhais, M; Alexa, C; Cuciuc, C M; Akesson, T P A; Hellman, S L; Milstead, D A; Bondyakov, A; Pushnova, V; Budagov, Y; Minashvili, I; Romanov, V; Sniatkov, V; Tskhadadze, E; Kalinovskaya, L; Shalyugin, A; Tavkhelidze, A; Rumyantsev, L; Karpov, S; Soloshenko, A; Vostrikov, A; Borissov, E; Solodkov, A; Vorob'ev, A; Sidorov, S; Malyaev, V; Lee, S; Grudzinski, J J; Virzi, J S; Vahsen, S E; Lys, J; Penwell, J W; Yan, Z; Bernard, C S; Barreiro guimaraes da costa, J P; Oliver, J N; Merritt, F S; Brubaker, E M; Kapliy, A; Kim, J; Zutshi, V V; Burghgrave, B O; Abolins, M A; Arabidze, G; Caughron, S A; Frey, R E; Radloff, P T; Schernau, M; Murillo garcia, R; Porter, R A; Mccormick, C A; Karn, P J; Sliwa, K J; Demers konezny, S M; Strauss, M G; Mueller, J A; Izen, J M; Klimentov, A; Lynn, D; Polychronakos, V; Radeka, V; Sondericker, J I I I; Bathe, S; Duffin, S; Chen, H; De castro faria salgado, P E; Kersevan, B P; Lacker, H M; Schulz, H; Kubota, T; Tan, K G; Yabsley, B D; Nunes de moura junior, N; Pinfold, J; Soluk, R A; Ouellette, E A; Leitner, R; Sykora, T; Solar, M; Sartisohn, G; Hirschbuehl, D; Huning, D; Fischer, J; Terron cuadrado, J; Glasman kuguel, C B; Lacasta llacer, C; Lopez-amengual, J; Calvet, D; Chevaleyre, J; Daudon, F; Montarou, G; Guicheney, C; Calvet, S P J; Tyndel, M; Dervan, P J; Maxfield, S J; Hayward, H S; Beck, G; Cox, B; Da via, C; Paschalias, P; Manolopoulou, M; Ragusa, F; Cimino, D; Ezzi, M; Fiuza de barros, N F; Yildiz, H; Ciftci, A K; Turkoz, S; Zain, S B; Tegenfeldt, F; Chapman, J W; Panikashvili, N; Bocci, A; Altheimer, A D; Martin, F F; Fratina, S; Jackson, B D; Grillo, A A; Seiden, A; Watts, G T; Mangiameli, S; Johns, K A; O'grady, F T; Errede, D R; Darbo, G; Ferretto parodi, A; Leahu, M C; Farbin, A; Ye, J; Liu, T; Wijnen, T A; Naito, D; Takashima, R; Sandoval usme, C E; Zinonos, Z; Moreno llacer, M; Agricola, J B; Mcgovern, S A; Sakurai, Y; Trigger, I M; Qing, D; De silva, A S; Butin, F; Dell'acqua, A; Hawkings, R J; Lamanna, M; Mapelli, L; Passardi, G; Rembser, C; Tremblet, L; Andreazza, W; Dobos, D A; Koblitz, B; Bianco, M; Dimitrov, G V; Schlenker, S; Armbruster, A J; Rammensee, M C; Romao rodrigues, L F; Peters, K; Pozo astigarraga, M E; Yi, Y; Desch, K K; Huegging, F G; Muller, K K; Stillings, J A; Schaetzel, S; Xella, S; Hansen, J D; Colas, J; Daguin, G; Wingerter, I; Ionescu, G D; Ledroit, F; Lucotte, A; Clement, B E; Stark, J; Clemens, J; Djama, F; Knoops, E; Coadou, Y; Vigeolas-choury, E; Feligioni, L; Iconomidou-fayard, L; Imbert, P; Schaffer, A C; Nikolic, I; Trincaz-duvoid, S; Warin, P; Camard, A F; Ridel, M; Pires, S; Giacobbe, B; Spighi, R; Villa, M; Negrini, M; Sato, K; Gavrilenko, I; Akimov, A; Khovanskiy, V; Talyshev, A; Voronkov, A; Hakobyan, H; Mallik, U; Shibata, A; Konoplich, R; Barklow, T L; Koi, T; Straessner, A; Stelzer, B; Robertson, S H; Vachon, B; Stoebe, M; Keyes, R A; Wang, K; Billoud, T R V; Strickland, V; Batygov, M; Krieger, P; Palacino caviedes, G D; Gay, C W; Jiang, Y; Han, L; Liu, M; Zenis, T; Lokajicek, M; Staroba, P; Tasevsky, M; Popule, J; Svatos, M; Seifert, F; Landgraf, U; Lai, S T; Schmitt, K H; Achenbach, R; Schuh, N; Kiesling, C; Macchiolo, A; Nisius, R; Schacht, P; Von der schmitt, J G; Kortner, O; Atlay, N B; Segura sole, E; Grinstein, S; Neissner, C; Bruckner, D M; Oliver garcia, E; Boonekamp, M; Perrin, P; Gaillot, F M; Wilson, J A; Thomas, J P; Thompson, P D; Palmer, J D; Falk, I E; Chavez barajas, C A; Sutton, M R; Robinson, D; Kaneti, S A; Wu, T; Robson, A; Shaw, C; Buzatu, A; Qin, G; Jones, R; Bouhova-thacker, E V; Viehhauser, G; Weidberg, A R; Gilbert, L; Johansson, P D C; Orphanides, M; Vlachos, S; Behar harpaz, S; Papish, O; Lellouch, D J H; Turgeman, D; Benary, O; La rotonda, L; Vena, R; Tarasio, A; Marzano, F; Gabrielli, A; Di stante, L; Liberti, B; Aielli, G; Oda, S; Nozaki, M; Takeda, H; Hayakawa, T; Miyazaki, K; Maeda, J; Sugimoto, T; Pettersson, N E; Bentvelsen, S; Groenstege, H L; Lipniacka, A; Vahabi, M; Ould-saada, F; Chwastowski, J J; Hajduk, Z; Kaczmarska, A; Olszowska, J B; Trzupek, A; Staszewski, R P; Palka, M; Constantinescu, S; Jarlskog, G; Lundberg, B L A; Pearce, M; Ellert, M F; Bannikov, A; Fechtchenko, A; Iambourenko, V; Kukhtin, V; Pozdniakov, V; Topilin, N; Vorozhtsov, S; Khassanov, A; Fliaguine, V; Kharchenko, D; Nikolaev, K; Kotenov, K; Kozhin, A; Zenin, A; Ivashin, A; Golubkov, D; Beddall, A; Su, D; Dallapiccola, C J; Cranshaw, J M; Price, L; Stanek, R W; Gieraltowski, G; Zhang, J; Gilchriese, M; Shapiro, M; Ahlen, S; Morii, M; Taylor, F E; Miller, R J; Phillips, F H; Torrence, E C; Wheeler, S J; Benedict, B H; Napier, A; Hamilton, S F; Petrescu, T A; Boyd, G R J; Jayasinghe, A L; Smith, J M; Mc carthy, R L; Adams, D L; Le vine, M J; Zhao, X; Patwa, A M; Baker, M; Kirsch, L; Krstic, J; Simic, L; Filipcic, A; Seidel, S C; Cantore-cavalli, D; Baroncelli, A; Kind, O M; Scarcella, M J; Maidantchik, C L L; Seixas, J; Balabram filho, L E; Vorobel, V; Spousta, M; Strachota, P; Vokac, P; Slavicek, T; Bergmann, B L; Biebel, O; Kersten, S; Srinivasan, M; Trefzger, T; Vazeille, F; Insa, C; Kirk, J; Middleton, R; Burke, S; Klein, U; Morris, J D; Ellis, K V; Millward, L R; Giokaris, N; Ioannou, P; Angelidakis, S; Bouzakis, K; Andreazza, A; Perini, L; Chtcheguelski, V; Spiridenkov, E; Yilmaz, M; Kaya, U; Ernst, J; Mahmood, A; Saland, J; Kutnink, T; Holler, J; Kagan, H P; Wang, C; Pan, Y; Xu, N; Ji, H; Willis, W J; Tuts, P M; Litke, A; Wilder, M; Rothberg, J; Twomey, M S; Rizatdinova, F; Loch, P; Rutherfoord, J P; Varnes, E W; Barberis, D; Osculati-becchi, B; Brandt, A G; Turvey, A J; Benchekroun, D; Nagasaka, Y; Thanakornworakij, T; Quadt, A; Nadal serrano, J; Magradze, E; Nackenhorst, O; Musheghyan, H; Kareem, M; Chytka, L; Perez codina, E; Stelzer-chilton, O; Brunel, B; Henriques correia, A M; Dittus, F; Hatch, M; Haug, F; Hauschild, M; Huhtinen, M; Lichard, P; Schuh-erhard, S; Spigo, G; Avolio, G; Tsarouchas, C; Ahmad, I; Backes, M P; Barisits, M; Gadatsch, S; Cerv, M; Sicoe, A D; Nattamai sekar, L P; Fazio, D; Shan, L; Sun, X; Gaycken, G F; Hemperek, T; Petersen, T C; Alonso diaz, A; Moynot, M; Werlen, M; Hryn'ova, T; Gallin-martel, M; Wu, M; Touchard, F; Menouni, M; Fougeron, D; Le guirriec, E; Chollet, J C; Veillet, J; Barrillon, P; Prat, S; Krasny, M W; Roos, L; Boudarham, G; Lefebvre, G; Boscherini, D; Valentinetti, S; Acharya, B S; Miglioranzi, S; Kanzaki, J; Unno, Y; Yasu, Y; Iwasaki, H; Tokushuku, K; Maio, A; Rodrigues fernandes, B J; Pinto figueiredo raimundo ribeiro, N M; Bot, A; Shmeleva, A; Zaidan, R; Djilkibaev, R; Mincer, A I; Salnikov, A; Aracena, I A; Schwartzman, A G; Silverstein, D J; Fulsom, B G; Anulli, F; Kuhn, D; White, M J; Vetterli, M J; Stockton, M C; Mantifel, R L; Azuelos, G; Shoaleh saadi, D; Savard, P; Clark, A; Ferrere, D; Gaumer, O P; Diaz gutierrez, M A; Liu, Y; Dubnickova, A; Sykora, I; Strizenec, P; Weichert, J; Zitek, K; Naumann, T; Goessling, C; Klingenberg, R; Jakobs, K; Rurikova, Z; Werner, M W; Arnold, H R; Buscher, D; Hanke, P; Stamen, R; Dietzsch, T A; Kiryunin, A; Salihagic, D; Buchholz, P; Pacheco pages, A; Sushkov, S; Porto fernandez, M D C; Cruz josa, R; Vos, M A; Schwindling, J; Ponsot, P; Charignon, C; Kivernyk, O; Goodrick, M J; Hill, J C; Green, B J; Quarman, C V; Bates, R L; Allwood-spiers, S E; Quilty, D; Chilingarov, A; Long, R E; Barton, A E; Konstantinidis, N; Simmons, B; Davison, A R; Christodoulou, V; Wastie, R L; Gallas, E J; Cox, J; Dehchar, M; Behr, J K; Pickering, M A; Filippas, A; Panagoulias, I; Tenenbaum katan, Y D; Roth, I; Pitt, M; Citron, Z H; Benhammou, Y; Amram, N Y N; Soffer, A; Gorodeisky, R; Antonelli, M; Chiarella, V; Curatolo, M; Esposito, B; Nicoletti, G; Martini, A; Sansoni, A; Carlino, G; Del prete, T; Bini, C; Vari, R; Kuna, M; Pinamonti, M; Itoh, Y; Colijn, A P; Klous, S; Garitaonandia elejabarrieta, H; Rosendahl, P L; Taga, A V; Malecki, P; Malecki, P; Wolter, M W; Kowalski, T; Korcyl, G M; Caprini, M; Caprini, I; Dita, P; Olariu, A; Tudorache, A; Lytken, E; Hidvegi, A; Aliyev, M; Alexeev, G; Bardin, D; Kakurin, S; Lebedev, A; Golubykh, S; Chepurnov, V; Gostkin, M; Kolesnikov, V; Karpova, Z; Davkov, K I; Yeletskikh, I; Grishkevich, Y; Rud, V; Myagkov, A; Nikolaenko, V; Starchenko, E; Zaytsev, A; Fakhrutdinov, R; Cheine, I; Istin, S; Sahin, S; Teng, P; Chu, M L; Trilling, G H; Heinemann, B; Richoz, N; Degeorge, C; Youssef, S; Pilcher, J; Cheng, Y; Purohit, M V; Kravchenko, A; Calkins, R E; Blazey, G; Hauser, R; Koll, J D; Reinsch, A; Brost, E C; Allen, B W; Lankford, A J; Ciobotaru, M D; Slagle, K J; Haffa, B; Mann, A; Loginov, A; Cummings, J T; Loyal, J D; Skubic, P L; Boudreau, J F; Lee, B E; Redlinger, G; Wlodek, T; Carcassi, G; Sexton, K A; Yu, D; Deng, W; Metcalfe, J E; Panitkin, S; Sijacki, D; Mikuz, M; Kramberger, G; Tartarelli, G F; Farilla, A; Stanescu, C; Herrberg, R; Alconada verzini, M J; Brennan, A J; Varvell, K; Marroquim, F; Gomes, A A; Do amaral coutinho, Y; Gingrich, D; Moore, R W; Dolejsi, J; Valkar, S; Broz, J; Jindra, T; Kohout, Z; Kral, V; Mann, A W; Calfayan, P P; Langer, T; Hamacher, K; Sanny, B; Wagner, W; Flick, T; Redelbach, A R; Ke, Y; Higon-rodriguez, E; Donini, J N; Lafarguette, P; Adye, T J; Baines, J; Barnett, B; Wickens, F J; Martin, V J; Jackson, J N; Prichard, P; Kretzschmar, J; Martin, A J; Walker, C J; Potter, K M; Kourkoumelis, C; Tzamarias, S; Houiris, A G; Iliadis, D; Fanti, M; Bertolucci, F; Maleev, V; Sultanov, S; Rosenberg, E I; Krumnack, N E; Bieganek, C; Diehl, E B; Mc kee, S P; Eppig, A P; Harper, D R; Liu, C; Schwarz, T A; Mazor, B; Looper, K A; Wiedenmann, W; Huang, P; Stahlman, J M; Battaglia, M; Nielsen, J A; Zhao, T; Khanov, A; Kaushik, V S; Vichou, E; Liss, A M; Gemme, C; Morettini, P; Parodi, F; Passaggio, S; Rossi, L; Kuzhir, P; Ignatenko, A; Ferrari, R; Spairani, M; Pianori, E; Sekula, S J; Firan, A I; Cao, T; Hetherly, J W; Gouighri, M; Vassilakopoulos, V; Long, M C; Shimojima, M; Sawyer, L H; Brummett, R E; Losada, M A; Schorlemmer, A L; Mantoani, M; Bawa, H S; Mornacchi, G; Nicquevert, B; Palestini, S; Stapnes, S; Veness, R; Kotamaki, M J; Sorde, C; Iengo, P; Campana, S; Goossens, L; Zajacova, Z; Pribyl, L; Poveda torres, J; Marzin, A; Conti, G; Carrillo montoya, G D; Kroseberg, J; Gonella, L; Velz, T; Schmitt, S; Lobodzinska, E M; Lovschall-jensen, A E; Galster, G; Perrot, G; Cailles, M; Berger, N; Barnovska, Z; Delsart, P; Lleres, A; Tisserant, S; Grivaz, J; Matricon, P; Bellagamba, L; Bertin, A; Bruschi, M; De castro, S; Semprini cesari, N; Fabbri, L; Rinaldi, L; Quayle, W B; Truong, T N L; Kondo, T; Haruyama, T; Ng, C; Do valle wemans, A; Almeida veloso, F M; Konovalov, S; Ziegler, J M; Su, D; Lukas, W; Prince, S; Ortega urrego, E J; Teuscher, R J; Knecht, N; Pretzl, K; Borer, C; Gadomski, S; Koch, B; Kuleshov, S; Brooks, W K; Antos, J; Kulkova, I; Chudoba, J; Chyla, J; Tomasek, L; Bazalova, M; Messmer, I; Tobias, J; Sundermann, J E; Kuehn, S S; Kluge, E; Scharf, V L; Barillari, T; Kluth, S; Menke, S; Weigell, P; Schwegler, P; Ziolkowski, M; Casado lechuga, P M; Garcia, C; Sanchez, J; Costa mezquita, M J; Valero biot, J A; Laporte, J; Nikolaidou, R; Virchaux, M; Nguyen, V T H; Charlton, D; Harrison, K; Slater, M W; Newman, P R; Parker, A M; Ward, P; Mcgarvie, S A; Kilvington, G J; D'auria, S; O'shea, V; Mcglone, H M; Fox, H; Henderson, R; Kartvelishvili, V; Davies, B; Sherwood, P; Fraser, J T; Lancaster, M A; Tseng, J C; Hays, C P; Apolle, R; Dixon, S D; Parker, K A; Gazis, E; Papadopoulou, T; Panagiotopoulou, E; Karastathis, N; Hershenhorn, A D; Milov, A; Groth-jensen, J; Bilokon, H; Miscetti, S; Canale, V; Rebuzzi, D M; Capua, M; Bagnaia, P; De salvo, A; Gentile, S; Safai tehrani, F; Solfaroli camillocci, E; Sasao, N; Tsunada, K; Massaro, G; Magrath, C A; Van kesteren, Z; Beker, M G; Van den wollenberg, W; Bugge, L; Buran, T; Read, A L; Gjelsten, B K; Banas, E A; Turnau, J; Derendarz, D K; Kisielewska, D; Chesneanu, D; Rotaru, M; Maurer, J B; Wong, M L; Lund-jensen, B; Asman, B; Jon-and, K B; Silverstein, S B; Johansen, M; Alexandrov, I; Iatsounenko, I; Krumshteyn, Z; Peshekhonov, V; Rybaltchenko, K; Samoylov, V; Cheplakov, A; Kekelidze, G; Lyablin, M; Teterine, V; Bednyakov, V; Kruchonak, U; Shiyakova, M M; Demichev, M; Denisov, S P; Fenyuk, A; Djobava, T; Salukvadze, G; Cetin, S A; Brau, B P; Pais, P R; Proudfoot, J; Van gemmeren, P; Zhang, Q; Beringer, J A; Ely, R; Leggett, C; Pengg, F X; Barnett, M R; Quick, R E; Williams, S; Gardner jr, R W; Huston, J; Brock, R; Wanotayaroj, C; Unel, G N; Taffard, A C; Frate, M; Baker, K O; Tipton, P L; Hutchison, A; Walsh, B J; Norberg, S R; Su, J; Tsybyshev, D; Caballero bejar, J; Ernst, M U; Wellenstein, H; Vudragovic, D; Vidic, I; Gorelov, I V; Toms, K; Alimonti, G; Petrucci, F; Kolanoski, H; Smith, J; Jeng, G; Watson, I J; Guimaraes ferreira, F; Miranda vieira xavier, F; Araujo pereira, R; Poffenberger, P; Sopko, V; Elmsheuser, J; Wittkowski, J; Glitza, K; Gorfine, G W; Ferrer soria, A; Fuster verdu, J A; Sanchis lozano, A; Reinmuth, G; Busato, E; Haywood, S J; Mcmahon, S J; Qian, W; Villani, E G; Laycock, P J; Poll, A J; Rizvi, E S; Foster, J M; Loebinger, F; Forti, A; Plano, W G; Brown, G J A; Kordas, K; Vegni, G; Ohsugi, T; Iwata, Y; Cherkaoui el moursli, R; Sahin, M; Akyazi, E; Carlsen, A; Kanwal, B; Cochran jr, J H; Aronnax, M V; Lockner, M J; Zhou, B; Levin, D S; Weaverdyck, C J; Grom, G F; Rudge, A; Ebenstein, W L; Jia, B; Yamaoka, J; Jared, R C; Wu, S L; Banerjee, S; Lu, Q; Hughes, E W; Alkire, S P; Degenhardt, J D; Lipeles, E D; Spencer, E N; Savine, A; Cheu, E C; Lampl, W; Veatch, J R; Roberts, K; Atkinson, M J; Odino, G A; Polesello, G; Martin, T; White, A P; Stephens, R; Grinbaum sarkisyan, E; Vartapetian, A; Yu, J; Sosebee, M; Thilagar, P A; Spurlock, B; Bonde, R; Filthaut, F; Klok, P; Hoummada, A; Ouchrif, M; Pellegrini, G; Rafi tatjer, J M; Navarro, G A; Blumenschein, U; Weingarten, J C; Mueller, D; Graber, L; Gao, Y; Bode, A; Capeans garrido, M D M; Carli, T; Wells, P; Beltramello, O; Vuillermet, R; Dudarev, A; Salzburger, A; Torchiani, C I; Serfon, C L G; Sloper, J E; Duperrier, G; Lilova, P T; Knecht, M O; Lassnig, M; Anders, G; Deviveiros, P; Young, C; Sforza, F; Shaochen, C; Lu, F; Wermes, N; Wienemann, P; Schwindt, T; Hansen, P H; Hansen, J B; Pingel, A M; Massol, N; Elles, S L; Hallewell, G D; Rozanov, A; Vacavant, L; Fournier, D A; Poggioli, L; Puzo, P M; Tanaka, R; Escalier, M A; Makovec, N; Rezynkina, K; De cecco, S; Cavalleri, P G; Massa, I; Zoccoli, A; Tanaka, S; Odaka, S; Mitsui, S; Tomasio pina, J A; Santos, H F; Satsounkevitch, I; Harkusha, S; Baranov, S; Nechaeva, P; Kayumov, F; Kazanin, V; Asai, M; Mount, R P; Nelson, T K; Smith, D; Kenney, C J; Malone, C M; Kobel, M; Friedrich, F; Grohs, J P; Jais, W J; O'neil, D C; Warburton, A T; Vincter, M; Mccarthy, T G; Groer, L S; Pham, Q T; Taylor, W J; La marra, D; Perrin, E; Wu, X; Bell, W H; Delitzsch, C M; Feng, C; Zhu, C; Tokar, S; Bruncko, D; Kupco, A; Marcisovsky, M; Jakoubek, T; Bruneliere, R; Aktas, A; Narrias villar, D I; Tapprogge, S; Mattmann, J; Kroha, H; Crespo, J; Korolkov, I; Cavallaro, E; Cabrera urban, S; Mitsou, V; Kozanecki, W; Mansoulie, B; Pabot, Y; Etienvre, A; Bauer, F; Chevallier, F; Bouty, A R; Watkins, P; Watson, A; Faulkner, P J W; Curtis, C J; Murillo quijada, J A; Grout, Z J; Chapman, J D; Cowan, G D; George, S; Boisvert, V; Mcmahon, T R; Doyle, A T; Thompson, S A; Britton, D; Smizanska, M; Campanelli, M; Butterworth, J M; Loken, J; Renton, P; Barr, A J; Issever, C; Short, D; Crispin ortuzar, M; Tovey, D R; French, R; Rozen, Y; Alexander, G; Kreisel, A; Conventi, F; Raulo, A; Schioppa, M; Susinno, G; Tassi, E; Giagu, S; Luci, C; Nisati, A; Cobal, M; Ishikawa, A; Jinnouchi, O; Bos, K; Verkerke, W; Vermeulen, J; Van vulpen, I B; Kieft, G; Mora, K D; Olsen, F; Rohne, O M; Pajchel, K; Nilsen, J K; Wosiek, B K; Wozniak, K W; Badescu, E; Jinaru, A; Bohm, C; Johansson, E K; Sjoelin, J B R; Clement, C; Buszello, C P; Huseynova, D; Boyko, I; Popov, B; Poukhov, O; Vinogradov, V; Tsiareshka, P; Skvorodnev, N; Soldatov, A; Chuguev, A; Gushchin, V; Yazici, E; Lutz, M S; Malon, D; Vanyashin, A; Lavrijsen, W; Spieler, H; Biesiada, J L; Bahr, M; Kong, J; Tatarkhanov, M; Ogren, H; Van kooten, R J; Cwetanski, P; Butler, J M; Shank, J T; Chakraborty, D; Ermoline, I; Sinev, N; Whiteson, D O; Corso radu, A; Huang, J; Werth, M P; Kastoryano, M; Meirose da silva costa, B; Namasivayam, H; Hobbs, J D; Schamberger jr, R D; Guo, F; Potekhin, M; Popovic, D; Gorisek, A; Sokhrannyi, G; Hofsajer, I W; Mandelli, L; Ceradini, F; Graziani, E; Giorgi, F; Zur nedden, M E G; Grancagnolo, S; Volpi, M; Nunes hanninger, G; Rados, P K; Milesi, M; Cuthbert, C J; Black, C W; Fink grael, F; Fincke-keeler, M; Keeler, R; Kowalewski, R V; Berghaus, F O; Qi, M; Davidek, T; Tas, P; Jakubek, J; Duckeck, G; Walker, R; Mitterer, C A; Harenberg, T; Sandvoss, S A; Del peso, J; Llorente merino, J; Gonzalez millan, V; Irles quiles, A; Crouau, M; Gris, P L Y; Liauzu, S; Romano saez, S M; Gallop, B J; Jones, T J; Austin, N C; Morris, J; Duerdoth, I; Thompson, R J; Kelly, M P; Leisos, A; Garas, A; Pizio, C; Venda pinto, B A; Kudin, L; Qian, J; Wilson, A W; Mietlicki, D; Long, J D; Sang, Z; Arms, K E; Rahimi, A M; Moss, J J; Oh, S H; Parker, S I; Parsons, J; Cunitz, H; Vanguri, R S; Sadrozinski, H; Lockman, W S; Martinez-mc kinney, G; Goussiou, A; Jones, A; Lie, K; Hasegawa, Y; Olcese, M; Gilewsky, V; Harrison, P F; Janus, M; Spangenberg, M; De, K; Ozturk, N; Pal, A K; Darmora, S; Bullock, D J; Oviawe, O; Derkaoui, J E; Rahal, G; Sircar, A; Frey, A S; Stolte, P; Rosien, N; Zoch, K; Li, L; Schouten, D W; Catinaccio, A; Ciapetti, M; Delruelle, N; Ellis, N; Farthouat, P; Hoecker, A; Klioutchnikova, T; Macina, D; Malyukov, S; Spiwoks, R D; Unal, G P; Vandoni, G; Petersen, B A; Pommes, K; Nairz, A M; Wengler, T; Mladenov, D; Solans sanchez, C A; Lantzsch, K; Schmieden, K; Jakobsen, S; Ritsch, E; Sciuccati, A; Alves dos santos, A M; Ouyang, Q; Zhou, M; Brock, I C; Janssen, J; Katzy, J; Anders, C F; Nilsson, B S; Bazan, A; Di ciaccio, L; Yildizkaya, T; Collot, J; Malek, F; Trocme, B S; Breugnon, P; Godiot, S; Adam bourdarios, C; Coulon, J; Duflot, L; Petroff, P G; Zerwas, D; Lieuvin, M; Calderini, G; Laporte, D; Ocariz, J; Gabrielli, A; Ohska, T K; Kurochkin, Y; Kantserov, V; Vasilyeva, L; Speransky, M; Smirnov, S; Antonov, A; Bulekov, O; Tikhonov, Y; Sargsyan, L; Vardanyan, G; Budick, B; Kocian, M L; Luitz, S; Young, C C; Grenier, P J; Kelsey, M; Black, J E; Kneringer, E; Jussel, P; Horton, A J; Beaudry, J; Chandra, A; Ereditato, A; Topfel, C M; Mathieu, R; Bucci, F; Muenstermann, D; White, R M; He, M; Urban, J; Straka, M; Vrba, V; Schumacher, M; Parzefall, U; Mahboubi, K; Sommer, P O; Koepke, L H; Bethke, S; Moser, H; Wiesmann, M; Walkowiak, W A; Fleck, I J; Martinez-perez, M; Sanchez sanchez, C A; Jorgensen roca, S; Accion garcia, E; Sainz ruiz, C A; Valls ferrer, J A; Amoros vicente, G; Vives torrescasana, R; Ouraou, A; Formica, A; Hassani, S; Watson, M F; Cottin buracchio, G F; Bussey, P J; Saxon, D; Ferrando, J E; Collins-tooth, C L; Hall, D C; Cuhadar donszelmann, T; Dawson, I; Duxfield, R; Argyropoulos, T; Brodet, E; Livneh, R; Shougaev, K; Reinherz, E I; Guttman, N; Beretta, M M; Vilucchi, E; Aloisio, A; Patricelli, S; Caprio, M; Cevenini, F; De vecchi, C; Livan, M; Rimoldi, A; Vercesi, V; Ayad, R; Mastroberardino, A; Ciapetti, G; Luminari, L; Rescigno, M; Santonico, R; Salamon, A; Del papa, C; Kurashige, H; Homma, Y; Tomoto, M; Horii, Y; Sugaya, Y; Hanagaki, K; Bobbink, G; Kluit, P M; Koffeman, E N; Van eijk, B; Lee, H; Eigen, G; Dorholt, O; Strandlie, A; Strzempek, P B; Dita, S; Stoicea, G; Chitan, A; Leven, S S; Moa, T; Brenner, R; Ekelof, T J C; Olshevskiy, A; Roumiantsev, V; Chlachidze, G; Zimine, N; Gusakov, Y; Grigalashvili, N; Mineev, M; Potrap, I; Barashkou, A; Shoukavy, D; Shaykhatdenov, B; Pikelner, A; Gladilin, L; Ammosov, V; Abramov, A; Arik, M; Sahinsoy, M; Uysal, Z; Azizi, K; Hotinli, S C; Zhou, S; Berger, E; Blair, R; Underwood, D G; Einsweiler, K; Garcia-sciveres, M A; Siegrist, J L; Kipnis, I; Dahl, O; Holland, S; Barbaro galtieri, A; Smith, P T; Parua, N; Franklin, M; Mercurio, K M; Tong, B; Pod, E; Cole, S G; Hopkins, W H; Guest, D H; Severini, H; Marsicano, J J; Abbott, B K; Wang, Q; Lissauer, D; Ma, H; Takai, H; Rajagopalan, S; Protopopescu, S D; Snyder, S S; Undrus, A; Popescu, R N; Begel, M A; Blocker, C A; Amelung, C; Mandic, I; Macek, B; Tucker, B H; Citterio, M; Troncon, C; Orestano, D; Taccini, C; Romeo, G L; Dova, M T; Taylor, G N; Gesualdi manhaes, A; Mcpherson, R A; Sobie, R; Taylor, R P; Dolezal, Z; Kodys, P; Slovak, R; Sopko, B; Vacek, V; Sanders, M P; Hertenberger, R; Meineck, C; Becks, K; Kind, P; Sandhoff, M; Cantero garcia, J; De la torre perez, H; Castillo gimenez, V; Ros, E; Hernandez jimenez, Y; Chadelas, R; Santoni, C; Washbrook, A J; O'brien, B J; Wynne, B M; Mehta, A; Vossebeld, J H; Landon, M; Teixeira dias castanheira, M; Cerrito, L; Keates, J R; Fassouliotis, D; Chardalas, M; Manousos, A; Grachev, V; Seliverstov, D; Sedykh, E; Cakir, O; Ciftci, R; Edson, W; Prell, S A; Rosati, M; Stroman, T; Jiang, H; Neal, H A; Li, X; Gan, K K; Smith, D S; Kruse, M C; Ko, B R; Leung fook cheong, A M; Cole, B; Angerami, A R; Greene, Z S; Kroll, J I; Van berg, R P; Forbush, D A; Lubatti, H; Raisher, J; Shupe, M A; Wolin, S; Oshita, H; Gaudio, G; Das, R; Konig, A C; Croft, V A; Harvey, A; Maaroufi, F; Melo, I; Greenwood jr, Z D; Shabalina, E; Mchedlidze, G; Drechsler, E; Rieger, J K; Blackston, M; Colombo, T

    2002-01-01

    % ATLAS \\\\ \\\\ ATLAS is a general-purpose experiment for recording proton-proton collisions at LHC. The ATLAS collaboration consists of 144 participating institutions (June 1998) with more than 1750~physicists and engineers (700 from non-Member States). The detector design has been optimized to cover the largest possible range of LHC physics: searches for Higgs bosons and alternative schemes for the spontaneous symmetry-breaking mechanism; searches for supersymmetric particles, new gauge bosons, leptoquarks, and quark and lepton compositeness indicating extensions to the Standard Model and new physics beyond it; studies of the origin of CP violation via high-precision measurements of CP-violating B-decays; high-precision measurements of the third quark family such as the top-quark mass and decay properties, rare decays of B-hadrons, spectroscopy of rare B-hadrons, and $ B ^0 _{s} $-mixing. \\\\ \\\\The ATLAS dectector, shown in the Figure includes an inner tracking detector inside a 2~T~solenoid providing an axial...

  15. Integration of ROOT Notebooks as a Web-based ATLAS Analysis tool for Public Data Releases and Outreach

    CERN Document Server

    Abah, Anthony

    2016-01-01

    The project worked on the development of a physics analysis and its software under ROOT framework and Jupyter notebooks for the the ATLAS Outreach and the Naples teams. This analysis is created in the context of the release of data and Monte Carlo samples by the ATLAS collaboration. The project focuses on the enhancement of the recent opendata.atlas.cern web platform to be used as educational resources for university students and new researches. The generated analysis structure and tutorials will be used to extend the participation of students from other locations around the World. We conclude the project with the creation of a complete notebook representing the so-called W analysis in C + + language for the mentioned platform.

  16. AGIS: The ATLAS Grid Information System

    CERN Document Server

    Anisenkov, A; The ATLAS collaboration; Klimentov, A; Senchenko, A

    2012-01-01

    The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  17. ATLAS: Exceeding all expectations

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    “One year ago it would have been impossible for us to guess that the machine and the experiments could achieve so much so quickly”, says Fabiola Gianotti, ATLAS spokesperson. The whole chain – from collision to data analysis – has worked remarkably well in ATLAS.   The first LHC proton run undoubtedly exceeded expectations for the ATLAS experiment. “ATLAS has worked very well since the beginning. Its overall data-taking efficiency is greater than 90%”, says Fabiola Gianotti. “The quality and maturity of the reconstruction and simulation software turned out to be better than we expected for this initial stage of the experiment. The Grid is a great success, and right from the beginning it has allowed members of the collaboration all over the world to participate in the data analysis in an effective and timely manner, and to deliver physics results very quickly”. In just a few months of data taking, ATLAS has observed t...

  18. Recent ATLAS Articles on WLAP

    CERN Multimedia

    Goldfarb, S.

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: June ATLAS Plenary Meeting Tutorial on Physics EDM and Tools (June) Freiburg Overview Week Ketevi Assamagan's Tutorial on Analysis Tools Click here to browse WLAP for all ATLAS lectures.

  19. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Giugliarelli, Gilberto; The ATLAS collaboration

    2018-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment. They constitute the part of ATLAS closest to the interaction point and for this reason they will be exposed – over their lifetime – to a significant amount of radiation: prior to the HL-LHC, the innermost layers will receive a fluence of 10^15 neq/cm2 and their HL–LHC upgrades will have to cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  20. ATLAS Distributed Computing Shift Operation in the first 2 full years of LHC data taking

    CERN Document Server

    Schovancová, J; The ATLAS collaboration; Elmsheuser, J; Jézéquel, S; Negri, G; Ozturk, N; Sakamoto, H; Slater, M; Smirnov, Y; Ueda, I; Van Der Ster, D C

    2012-01-01

    ATLAS Distributed Computing organized 3 teams to support data processing at Tier-0 facility at CERN, data reprocessing, data management operations, Monte Carlo simulation production, and physics analysis at the ATLAS computing centers located world-wide. In this paper we describe how these teams ensure that the ATLAS experiment data is delivered to the ATLAS physicists in a timely manner in the glamorous era of the LHC data taking. We describe experience with ways how to improve degraded service performance, we detail on the Distributed Analysis support over the exciting period of the computing model evolution.

  1. ATLAS Cloud R&D

    CERN Document Server

    Panitkin, S; The ATLAS collaboration; Caballero Bejar, J; Benjamin, D; DiGirolamo, A; Gable, I; Hendrix, V; Hover, J; Kucharczuk, K; Medrano LLamas, R; Love, P; Ohman, H; Paterson, M; Sobie, R; Taylor, R; Walker, R; Zaytsev, A

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained...

  2. Searches for Physics Beyond Standard Model at LHC with ATLAS

    CERN Document Server

    Soni, N; The ATLAS collaboration

    2013-01-01

    This contribution summarises some of the recent results on the searches for physics beyond the Standard Model using the pp-collision data collected at Large Hadron Collider (LHC) with ATLAS detector at centre-of-mass energy of sqrt{s} = 8 TeV. The search for supersymmetry (SUSY) is carried out in a large variety of production modes such as strong production of squarks and gluinos, weak production of sleptons and gauginos os production of massive long-lived particles through R-parity violation. No excess above the Standard Model background expectation is observed and exclusion limits are derived on the production of new physics. The results are interpreted as lower limits on sparticle masses in SUSY breaking scenarios. Searches for new exotic phenomena such as dark matter, large extra dimensions and black holes are also performed at ATLAS. As in the case of SUSY searches, no new exotic phenomena is observed and results are presented as upper limits on event yields from non-Standard-Model processes in a model i...

  3. Unbiased group-wise image registration: applications in brain fiber tract atlas construction and functional connectivity analysis.

    Science.gov (United States)

    Geng, Xiujuan; Gu, Hong; Shin, Wanyong; Ross, Thomas J; Yang, Yihong

    2011-10-01

    We propose an unbiased implicit-reference group-wise (IRG) image registration method and demonstrate its applications in the construction of a brain white matter fiber tract atlas and the analysis of resting-state functional MRI (fMRI) connectivity. Most image registration techniques pair-wise align images to a selected reference image and group analyses are performed in the reference space, which may produce bias. The proposed method jointly estimates transformations, with an elastic deformation model, registering all images to an implicit reference corresponding to the group average. The unbiased registration is applied to build a fiber tract atlas by registering a group of diffusion tensor images. Compared to reference-based registration, the IRG registration improves the fiber track overlap within the group. After applying the method in the fMRI connectivity analysis, results suggest a general improvement in functional connectivity maps at a group level in terms of larger cluster size and higher average t-scores.

  4. Searches for Beyond Standard Model Physics with ATLAS and CMS

    CERN Document Server

    Rompotis, Nikolaos; The ATLAS collaboration

    2017-01-01

    The exploration of the high energy frontier with ATLAS and CMS experiments provides one of the best opportunities to look for physics beyond the Standard Model. In this talk, I review the motivation, the strategy and some recent results related to beyond Standard Model physics from these experiments. The review will cover beyond Standard Model Higgs boson searches, supersymmetry and searches for exotic particles.

  5. Exploring little Higgs models with ATLAS at the LHC

    International Nuclear Information System (INIS)

    Azuelos, G.; Benslama, K.; Costanzo, D.; Couture, G.; Garcia, J.E.; Hinchliffe, I.G.; Kanaya, N.; Lechowski, M.; Mehdiyev, R.; Polesello, G.; Ros, E.; Rousseau, D.

    2004-01-01

    We discuss possible searches for the new particles predicted by Little Higgs Models at the LHC. By using a simulation of the ATLAS detector, we demonstrate how the predicted quark, gauge bosons and additional Higgs bosons can be found and estimate the mass range over which their properties can be constrained

  6. Overview of the Higgs and Standard Model physics at ATLAS

    CERN Document Server

    Vazquez Schroeder, Tamara; The ATLAS collaboration

    2018-01-01

    This talk presents selected aspects of recent physics results from the ATLAS collaboration in the Standard Model and Higgs sectors, with a focus on the recent evidence for the associated production of the Higgs boson and a top quark pair.

  7. Monitoring the injured brain: registered, patient specific atlas models to improve accuracy of recovered brain saturation values

    Science.gov (United States)

    Clancy, Michael; Belli, Antonio; Davies, David; Lucas, Samuel J. E.; Su, Zhangjie; Dehghani, Hamid

    2015-07-01

    The subject of superficial contamination and signal origins remains a widely debated topic in the field of Near Infrared Spectroscopy (NIRS), yet the concept of using the technology to monitor an injured brain, in a clinical setting, poses additional challenges concerning the quantitative accuracy of recovered parameters. Using high density diffuse optical tomography probes, quantitatively accurate parameters from different layers (skin, bone and brain) can be recovered from subject specific reconstruction models. This study assesses the use of registered atlas models for situations where subject specific models are not available. Data simulated from subject specific models were reconstructed using the 8 registered atlas models implementing a regional (layered) parameter recovery in NIRFAST. A 3-region recovery based on the atlas model yielded recovered brain saturation values which were accurate to within 4.6% (percentage error) of the simulated values, validating the technique. The recovered saturations in the superficial regions were not quantitatively accurate. These findings highlight differences in superficial (skin and bone) layer thickness between the subject and atlas models. This layer thickness mismatch was propagated through the reconstruction process decreasing the parameter accuracy.

  8. Analysis of WWγ production with the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Djuvsland, Julia Isabell

    2016-07-28

    In this thesis, triboson final states containing two W bosons and a photon are studied using proton-proton collisions. The data set was recorded with the ATLAS detector at a centre-of-mass energy of √(s)=8 TeV and corresponds to an integrated luminosity of 20.3 fb{sup -1}. The fiducial cross-section of the process WWγ→eνμνγ is measured for the first time in hadron collisions and corresponds to σ{sup eμγ}{sub fid.}=(1.89±0.93(stat.)±0.41(syst.)±0.05(lumi. )) fb. It is in good agreement with the Standard Model prediction at next-to-leading order in the strong coupling constant. As no deviation from the Standard Model expectation is observed, frequentist limits at 95 % confidence level are computed to exclude contributions from anomalous quartic gauge couplings. This analysis is sensitive to fourteen coupling parameters of mass dimension eight and the limits are derived for all parameters with and without unitarisation.

  9. Hunting New Physics with ATLAS

    CERN Document Server

    Mitsou, Vasiliki A.; The ATLAS collaboration

    2017-01-01

    Highlights from recent new physics searches with the ATLAS detector at the CERN LHC will be presented. They include searches for supersymmetry, extra-dimension models, compositeness, new gauge bosons, leptoquarks, among others. Results are based on analysis of pp collision data recorded at a centre-of-mass energy of 13 TeV.

  10. Continuous Software Quality analysis for the ATLAS experiment

    CERN Document Server

    Washbrook, Andrew; The ATLAS collaboration

    2017-01-01

    The regular application of software quality tools in large collaborative projects is required to reduce code defects to an acceptable level. If left unchecked the accumulation of defects invariably results in performance degradation at scale and problems with the long-term maintainability of the code. Although software quality tools are effective for identification there remains a non-trivial sociological challenge to resolve defects in a timely manner. This is a ongoing concern for the ATLAS software which has evolved over many years to meet the demands of Monte Carlo simulation, detector reconstruction and data analysis. At present over 3.8 million lines of C++ code (and close to 6 million total lines of code) are maintained by a community of hundreds of developers worldwide. It is therefore preferable to address code defects before they are introduced into a widely used software release. Recent wholesale changes to the ATLAS software infrastructure have provided an ideal opportunity to apply software quali...

  11. AGIS: The ATLAS Grid Information System

    CERN Document Server

    Anisenkov, Alexey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander

    2012-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  12. ATLAS Grid Workflow Performance Optimization

    CERN Document Server

    Elmsheuser, Johannes; The ATLAS collaboration

    2018-01-01

    The CERN ATLAS experiment grid workflow system manages routinely 250 to 500 thousand concurrently running production and analysis jobs to process simulation and detector data. In total more than 300 PB of data is distributed over more than 150 sites in the WLCG. At this scale small improvements in the software and computing performance and workflows can lead to significant resource usage gains. ATLAS is reviewing together with CERN IT experts several typical simulation and data processing workloads for potential performance improvements in terms of memory and CPU usage, disk and network I/O. All ATLAS production and analysis grid jobs are instrumented to collect many performance metrics for detailed statistical studies using modern data analytics tools like ElasticSearch and Kibana. This presentation will review and explain the performance gains of several ATLAS simulation and data processing workflows and present analytics studies of the ATLAS grid workflows.

  13. ATLAS Z Excess in Minimal Supersymmetric Standard Model

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Terada, Takahiro

    2015-06-01

    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.

  14. ATLAS Distributed Computing

    CERN Document Server

    Schovancova, J; The ATLAS collaboration

    2011-01-01

    The poster details the different aspects of the ATLAS Distributed Computing experience after the first year of LHC data taking. We describe the performance of the ATLAS distributed computing system and the lessons learned during the 2010 run, pointing out parts of the system which were in a good shape, and also spotting areas which required improvements. Improvements ranged from hardware upgrade on the ATLAS Tier-0 computing pools to improve data distribution rates, tuning of FTS channels between CERN and Tier-1s, and studying data access patterns for Grid analysis to improve the global processing rate. We show recent software development driven by operational needs with emphasis on data management and job execution in the ATLAS production system.

  15. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.

    Science.gov (United States)

    Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P

    2014-01-15

    Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available

  16. GOODBYE TO PAPER, HIGHLIGHTERS, SCISSORS AND GLUE: INNOVATING THE CONTENT ANALYSIS PROCESS THROUGH ATLAS.TI

    Directory of Open Access Journals (Sweden)

    Silvana Anita Walter

    2015-06-01

    Full Text Available Atlas.ti software comprises a tool for the analysis of qualitative data that can facilitate its management and interpretation. However, the use of this software has been much less frequent in strategy, despite the increasing use of content analysis in this area.This study aimed to demonstrate, through an example, the applicability of Atlas.ti software in conducting thematic content analysis in the strategy area. The example used was a survey conducted on two accounting firms in Curitiba, Paraná (PR, and applied to the firm’s directors, as a data collection instrument, through semi-structured interviews. With the help of Atlas.ti 5.0 software, thematic content analysis was undertaken and brought to light that the two offices have a similar trajectory; they are characterized as family members; they hold or held centralization of power; made innovations; do not have formalized plans; and, most of their strategies are emerging. The example used allowed for the demonstration of: the encoding process; the writing of research notes and comments; the establishment of relationships between the elements analyzed; and, the grouping and management of such elements. It is hoped that this study contributes to stimulating the use of Atlas.ti software and assists in improving the consistency and betterment of qualitative research through the ease of empirical verification.

  17. The Irish Wind Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R [Univ. College Dublin, Dept. of Electronic and Electrical Engineering, Dublin (Ireland); Landberg, L [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)

    1999-03-01

    The development work on the Irish Wind Atlas is nearing completion. The Irish Wind Atlas is an updated improved version of the Irish section of the European Wind Atlas. A map of the irish wind resource based on a WA{sup s}P analysis of the measured data and station description of 27 measuring stations is presented. The results of previously presented WA{sup s}P/KAMM runs show good agreement with these results. (au)

  18. The Numerical Wind Atlas - the KAMM/WAsP Method

    Energy Technology Data Exchange (ETDEWEB)

    Frank, H P; Rathmann, O; Mortensen, N G; Landberg, L

    2001-06-01

    The method of combining the Karlsruhe Atmospheric Mesoscale Model, KAMM, with the Wind Atlas Analysis and Application Program, WAsP, to make local predictions of the wind resource is presented. It combines the advantages of meso-scale modeling - overview over a big region and use of global data bases - with the local prediction capacity of the small-scale model WAsP. Results are presented for Denmark, Ireland, Northern Portugal and Galicia, and the Faroe Islands. Wind atlas files were calculated from wind data simulated with the meso-scale model using model grids with a resolution of 2.5, 5, and 10 km. Using these wind atlas files in WAsP the local prediction of the mean wind does not depend on the grid resolution of the meso-scale model. The local predictions combining KAMM and WAsP are much better than simple interpolation of the wind simulated by KAMM. In addition an investigation was made on the dependence of wind atlas data on the size of WAsP-maps. It is recommended that a topographic map around a site should extend 10 km out from it. If there is a major roughness change like a coast line further away in a frequent wind direction this should be included at even greater distances, perhaps up to 20 km away.

  19. Probabilistic liver atlas construction.

    Science.gov (United States)

    Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E

    2017-01-13

    Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.

  20. Calculation of extreme wind atlases using mesoscale modeling. Final report

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Badger, Jake

    This is the final report of the project PSO-10240 "Calculation of extreme wind atlases using mesoscale modeling". The overall objective is to improve the estimation of extreme winds by developing and applying new methodologies to confront the many weaknesses in the current methodologies as explai...

  1. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...

  2. Modeling radiation damage to pixel sensors in the ATLAS detector

    CERN Document Server

    Ducourthial, Audrey; The ATLAS collaboration

    2017-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...

  3. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High- Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for basic...

  4. Overview of ATLAS PanDA Workload Management

    Science.gov (United States)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G. A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  5. Overview of ATLAS PanDA Workload Management

    International Nuclear Information System (INIS)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G.A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.

    2011-01-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  6. Atlas-based analysis of cardiac shape and function: correction of regional shape bias due to imaging protocol for population studies.

    Science.gov (United States)

    Medrano-Gracia, Pau; Cowan, Brett R; Bluemke, David A; Finn, J Paul; Kadish, Alan H; Lee, Daniel C; Lima, Joao A C; Suinesiaputra, Avan; Young, Alistair A

    2013-09-13

    Cardiovascular imaging studies generate a wealth of data which is typically used only for individual study endpoints. By pooling data from multiple sources, quantitative comparisons can be made of regional wall motion abnormalities between different cohorts, enabling reuse of valuable data. Atlas-based analysis provides precise quantification of shape and motion differences between disease groups and normal subjects. However, subtle shape differences may arise due to differences in imaging protocol between studies. A mathematical model describing regional wall motion and shape was used to establish a coordinate system registered to the cardiac anatomy. The atlas was applied to data contributed to the Cardiac Atlas Project from two independent studies which used different imaging protocols: steady state free precession (SSFP) and gradient recalled echo (GRE) cardiovascular magnetic resonance (CMR). Shape bias due to imaging protocol was corrected using an atlas-based transformation which was generated from a set of 46 volunteers who were imaged with both protocols. Shape bias between GRE and SSFP was regionally variable, and was effectively removed using the atlas-based transformation. Global mass and volume bias was also corrected by this method. Regional shape differences between cohorts were more statistically significant after removing regional artifacts due to imaging protocol bias. Bias arising from imaging protocol can be both global and regional in nature, and is effectively corrected using an atlas-based transformation, enabling direct comparison of regional wall motion abnormalities between cohorts acquired in separate studies.

  7. Hidden Valley Searches at ATLAS

    CERN Document Server

    Ventura, D; The ATLAS collaboration

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models.

  8. An Atlas of annotations of Hydra vulgaris transcriptome.

    Science.gov (United States)

    Evangelista, Daniela; Tripathi, Kumar Parijat; Guarracino, Mario Rosario

    2016-09-22

    RNA sequencing takes advantage of the Next Generation Sequencing (NGS) technologies for analyzing RNA transcript counts with an excellent accuracy. Trying to interpret this huge amount of data in biological information is still a key issue, reason for which the creation of web-resources useful for their analysis is highly desiderable. Starting from a previous work, Transcriptator, we present the Atlas of Hydra's vulgaris, an extensible web tool in which its complete transcriptome is annotated. In order to provide to the users an advantageous resource that include the whole functional annotated transcriptome of Hydra vulgaris water polyp, we implemented the Atlas web-tool contains 31.988 accesible and downloadable transcripts of this non-reference model organism. Atlas, as a freely available resource, can be considered a valuable tool to rapidly retrieve functional annotation for transcripts differentially expressed in Hydra vulgaris exposed to the distinct experimental treatments. WEB RESOURCE URL: http://www-labgtp.na.icar.cnr.it/Atlas .

  9. Studies of b-associated production and muonic decays of neutral Higgs bosons at the ATLAS experiment within the Minimal Supersymmetric Standard Model

    International Nuclear Information System (INIS)

    Warsinsky, Markus

    2008-01-01

    This thesis presents a Monte Carlo study of neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) decaying into muons at the ATLAS experiment at the CERN Large Hadron Collider. Signal and background processes are simulated using novel Monte Carlo generators that incorporate parts of higher order corrections and are expected to give a more accurate prediction than previous programs. The SHERPA Monte Carlo generator is validated for its use in the analysis and compared to results obtained with other programs. Where possible, the Monte Carlo event samples are normalized to higher order calculations. To increase the available Monte Carlo statistics, this study is based on the ATLAS fast detector simulation ATLFAST. Differences between ATLFAST and the detailed detector simulation of ATLAS are examined, and, where possible, correction procedures are devised. A cut based analysis is performed assuming an integrated luminosity of 30 fb -1 , and optimized with respect to the discovery potential for MSSM Higgs bosons. The systematic uncertainties of the event selection and the Monte Carlo predictions are estimated. A method that can be used to estimate the background from data is presented and evaluated. Last, the discovery potential of the ATLAS experiment in the CP conserving benchmark scenarios of the MSSM is evaluated. One or more of the neutral Higgs bosons of the MSSM can be discovered in the muonic decay mode using 30 fb -1 of data for low masses of the pseudoscalar boson A 0 , if the model parameter tan β is at least 20. For higher masses of the A 0 , tan β would need to be significantly higher to ensure a discovery in the studied decay channel. The sensitivity of ATLAS to MSSM Higgs bosons is multiple times larger than the one of previous and currently running experiments. (orig.)

  10. Studies of b-associated production and muonic decays of neutral Higgs bosons at the ATLAS experiment within the Minimal Supersymmetric Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Warsinsky, Markus

    2008-09-15

    This thesis presents a Monte Carlo study of neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) decaying into muons at the ATLAS experiment at the CERN Large Hadron Collider. Signal and background processes are simulated using novel Monte Carlo generators that incorporate parts of higher order corrections and are expected to give a more accurate prediction than previous programs. The SHERPA Monte Carlo generator is validated for its use in the analysis and compared to results obtained with other programs. Where possible, the Monte Carlo event samples are normalized to higher order calculations. To increase the available Monte Carlo statistics, this study is based on the ATLAS fast detector simulation ATLFAST. Differences between ATLFAST and the detailed detector simulation of ATLAS are examined, and, where possible, correction procedures are devised. A cut based analysis is performed assuming an integrated luminosity of 30 fb{sup -1}, and optimized with respect to the discovery potential for MSSM Higgs bosons. The systematic uncertainties of the event selection and the Monte Carlo predictions are estimated. A method that can be used to estimate the background from data is presented and evaluated. Last, the discovery potential of the ATLAS experiment in the CP conserving benchmark scenarios of the MSSM is evaluated. One or more of the neutral Higgs bosons of the MSSM can be discovered in the muonic decay mode using 30 fb{sup -1} of data for low masses of the pseudoscalar boson A{sup 0}, if the model parameter tan {beta} is at least 20. For higher masses of the A{sup 0}, tan {beta} would need to be significantly higher to ensure a discovery in the studied decay channel. The sensitivity of ATLAS to MSSM Higgs bosons is multiple times larger than the one of previous and currently running experiments. (orig.)

  11. ATLAS cloud R and D

    International Nuclear Information System (INIS)

    Panitkin, Sergey; Bejar, Jose Caballero; Hover, John; Zaytsev, Alexander; Megino, Fernando Barreiro; Girolamo, Alessandro Di; Kucharczyk, Katarzyna; Llamas, Ramon Medrano; Benjamin, Doug; Gable, Ian; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Hendrix, Val; Love, Peter; Ohman, Henrik; Walker, Rodney

    2014-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R and D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R and D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R and D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R and D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  12. AGIS: The ATLAS Grid Information System

    Science.gov (United States)

    Anisenkov, A.; Di Girolamo, A.; Klimentov, A.; Oleynik, D.; Petrosyan, A.; Atlas Collaboration

    2014-06-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produced petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we describe the ATLAS Grid Information System (AGIS), designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  13. Exotics searches in ATLAS

    CERN Document Server

    Wang, Renjie; The ATLAS collaboration

    2017-01-01

    Many theories beyond the Standard Model predict new physics accessible by the LHC. The ATLAS experiment all have rigorous search programs ongoing with the aim to find indications for new physics involving state of the art analysis techniques. This talk reports on new results obtained using the pp collision data sample collected in 2015 and 2016 at the LHC with a centre-of-mass energy of 13 TeV.

  14. Building Analysis for Urban Energy Planning Using Key Indicators on Virtual 3d City Models - the Energy Atlas of Berlin

    Science.gov (United States)

    Krüger, A.; Kolbe, T. H.

    2012-07-01

    In the context of increasing greenhouse gas emission and global demographic change with the simultaneous trend to urbanization, it is a big challenge for cities around the world to perform modifications in energy supply chain and building characteristics resulting in reduced energy consumption and carbon dioxide mitigation. Sound knowledge of energy resource demand and supply including its spatial distribution within urban areas is of great importance for planning strategies addressing greater energy efficiency. The understanding of the city as a complex energy system affects several areas of the urban living, e.g. energy supply, urban texture, human lifestyle, and climate protection. With the growing availability of 3D city models around the world based on the standard language and format CityGML, energy system modelling, analysis and simulation can be incorporated into these models. Both domains will profit from that interaction by bringing together official and accurate building models including building geometries, semantics and locations forming a realistic image of the urban structure with systemic energy simulation models. A holistic view on the impacts of energy planning scenarios can be modelled and analyzed including side effects on urban texture and human lifestyle. This paper focuses on the identification, classification, and integration of energy-related key indicators of buildings and neighbourhoods within 3D building models. Consequent application of 3D city models conforming to CityGML serves the purpose of deriving indicators for this topic. These will be set into the context of urban energy planning within the Energy Atlas Berlin. The generation of indicator objects covering the indicator values and related processing information will be presented on the sample scenario estimation of heating energy consumption in buildings and neighbourhoods. In their entirety the key indicators will form an adequate image of the local energy situation for

  15. The Offshore New European Wind Atlas

    Science.gov (United States)

    Karagali, I.; Hahmann, A. N.; Badger, M.; Hasager, C.; Mann, J.

    2017-12-01

    The New European Wind Atlas (NEWA) is a joint effort of research agencies from eight European countries, co-funded under the ERANET Plus Program. The project is structured around two areas of work: development of dynamical downscaling methodologies and measurement campaigns to validate these methodologies, leading to the creation and publication of a European wind atlas in electronic form. This atlas will contain an offshore component extending 100 km from the European coasts. To achieve this, mesoscale models along with various observational datasets are utilised. Scanning lidars located at the coastline were used to compare the coastal wind gradient reproduced by the meso-scale model. Currently, an experimental campaign is occurring in the Baltic Sea, with a lidar located in a commercial ship sailing from Germany to Lithuania, thus covering the entire span of the south Baltic basin. In addition, satellite wind retrievals from scatterometers and Synthetic Aperture Radar (SAR) instruments were used to generate mean wind field maps and validate offshore modelled wind fields and identify the optimal model set-up parameters.The aim of this study is to compare the initial outputs from the offshore wind atlas produced by the Weather & Research Forecasting (WRF) model, still in pre-operational phase, and the METOP-A/B Advanced Scatterometer (ASCAT) wind fields, reprocessed to stress equivalent winds at 10m. Different experiments were set-up to evaluate the model sensitivity for the various domains covered by the NEWA offshore atlas. ASCAT winds were utilised to assess the performance of the WRF offshore atlases. In addition, ASCAT winds were used to create an offshore atlas covering the years 2007 to 2016, capturing the signature of various spatial wind features, such as channelling and lee effects from complex coastal topographical elements.

  16. AGIS: The ATLAS Grid Information System

    OpenAIRE

    Anisenkov, Alexey; Belov, Sergey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander

    2012-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configurat...

  17. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  18. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  19. ATLAS Distributed Computing: Experience and Evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb-1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centers around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics program including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2014 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  20. ATLAS distributed computing: experience and evolution

    CERN Document Server

    Nairz, A; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25/fb of data. The total volume of beam and simulated data products exceeds 100~PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...

  1. Distributed Data Analysis in the ATLAS Experiment: Challenges and Solutions

    International Nuclear Information System (INIS)

    Elmsheuser, Johannes; Van der Ster, Daniel

    2012-01-01

    The ATLAS experiment at the LHC at CERN is recording and simulating several 10's of PetaBytes of data per year. To analyse these data the ATLAS experiment has developed and operates a mature and stable distributed analysis (DA) service on the Worldwide LHC Computing Grid. The service is actively used: more than 1400 users have submitted jobs in the year 2011 and a total of more 1 million jobs run every week. Users are provided with a suite of tools to submit Athena, ROOT or generic jobs to the Grid, and the PanDA workload management system is responsible for their execution. The reliability of the DA service is high but steadily improving; Grid sites are continually validated against a set of standard tests, and a dedicated team of expert shifters provides user support and communicates user problems to the sites. This paper will review the state of the DA tools and services, summarize the past year of distributed analysis activity, and present the directions for future improvements to the system.

  2. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00444174; The ATLAS collaboration

    2015-01-01

    Some recent searches for the Higgs boson in the context of beyond the Standard Model, performed by the ATLAS experiment are presented: high mass Higgs boson searches, lepton flavour violating Higgs decay, NMSSM, con- straint from the search for three photons. The interpretation based on the measurements of Higgs couplings are shown, along with the constraint on the Higgs boson invisible decays. Except the latter has some part using both full √s = 7 TeV and √s = 8 TeV data, the rest are performed with the √s = 8 TeV data of proton-proton collisions collected by the ATLAS experiment. No sig- nificant excess of data over the predicted background is observed in all those searches. Limits are placed in certain quantities depending on the searches.

  3. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.

  4. Iberian ATLAS Cloud response during the first LHC collisions

    CERN Document Server

    Villaplana, M; The ATLAS collaboration; Borges, G; Borrego, C; Carvalho, J; David, M; Espinal, X; Fernández, A; Gomes, J; González de la Hoz, S; Kaci, M; Lamas, A; Nadal, J; Oliveira, M; Oliver, E; Osuna, C; Pacheco, A; Pardo, JJ; del Peso, J; Salt, J; Sánchez, J; Wolters, H

    2011-01-01

    The computing model of the ATLAS experiment at the LHC (Large Hadron Collider) is based on a tiered hierarchy that ranges from Tier0 (CERN) down to end-user's own resources (Tier3). According to the same computing model, the role of the Tier2s is to provide computing resources for event simulation processing and distributed data analysis. Tier3 centers, on the other hand, are the responsibility of individual institutions to define, fund, deploy and support. In this contribution we report on the operations of the ATLAS Iberian Cloud centers facing data taking and we describe some of the Tier3 facilities currently deployed at the Cloud.

  5. Standard model physics with the ATLAS early data

    CERN Document Server

    Bruckman de Renstrom, Pawel

    2006-01-01

    The Standard Model, despite its open questions, has proved its consistency and predictive power to very high accuracy within the currently available energy reach. LHC, with its high CM energy and luminosity, will give us insight into new processes, possibly showing evidence of “new physics”. Excellent understanding of the SM processes will also be a key to discriminate against any new phenomena. Prospects of selected SM measurements with the ATLAS detector using early LHC luminosity are presented.

  6. Support system for ATLAS distributed computing operations

    CERN Document Server

    Kishimoto, Tomoe; The ATLAS collaboration

    2018-01-01

    The ATLAS distributed computing system has allowed the experiment to successfully meet the challenges of LHC Run 2. In order for distributed computing to operate smoothly and efficiently, several support teams are organized in the ATLAS experiment. The ADCoS (ATLAS Distributed Computing Operation Shifts) is a dedicated group of shifters who follow and report failing jobs, failing data transfers between sites, degradation of ATLAS central computing services, and more. The DAST (Distributed Analysis Support Team) provides user support to resolve issues related to running distributed analysis on the grid. The CRC (Computing Run Coordinator) maintains a global view of the day-to-day operations. In this presentation, the status and operational experience of the support system for ATLAS distributed computing in LHC Run 2 will be reported. This report also includes operations experience from the grid site point of view, and an analysis of the errors that create the biggest waste of wallclock time. The report of oper...

  7. Contribution to the ATLAS B-field 3D model

    International Nuclear Information System (INIS)

    Vorozhtsov, S.B.; Titkova, I.V.; Nessi, M.

    1996-01-01

    The results from the simplified Tile-Cal B-field models calculations are presented. The effects of glue gaps, end plates, front plates, laminated iron layer near girder, 2 mm iron layers between tiles have been estimated. An interpretation of the existing field measurements of the TileCal segments is fulfilled. Some proposals for the general ATLAS B-field map calculation are given. 12 refs., 10 figs

  8. SU-E-J-128: Two-Stage Atlas Selection in Multi-Atlas-Based Image Segmentation

    International Nuclear Information System (INIS)

    Zhao, T; Ruan, D

    2015-01-01

    Purpose: In the new era of big data, multi-atlas-based image segmentation is challenged by heterogeneous atlas quality and high computation burden from extensive atlas collection, demanding efficient identification of the most relevant atlases. This study aims to develop a two-stage atlas selection scheme to achieve computational economy with performance guarantee. Methods: We develop a low-cost fusion set selection scheme by introducing a preliminary selection to trim full atlas collection into an augmented subset, alleviating the need for extensive full-fledged registrations. More specifically, fusion set selection is performed in two successive steps: preliminary selection and refinement. An augmented subset is first roughly selected from the whole atlas collection with a simple registration scheme and the corresponding preliminary relevance metric; the augmented subset is further refined into the desired fusion set size, using full-fledged registration and the associated relevance metric. The main novelty of this work is the introduction of an inference model to relate the preliminary and refined relevance metrics, based on which the augmented subset size is rigorously derived to ensure the desired atlases survive the preliminary selection with high probability. Results: The performance and complexity of the proposed two-stage atlas selection method were assessed using a collection of 30 prostate MR images. It achieved comparable segmentation accuracy as the conventional one-stage method with full-fledged registration, but significantly reduced computation time to 1/3 (from 30.82 to 11.04 min per segmentation). Compared with alternative one-stage cost-saving approach, the proposed scheme yielded superior performance with mean and medium DSC of (0.83, 0.85) compared to (0.74, 0.78). Conclusion: This work has developed a model-guided two-stage atlas selection scheme to achieve significant cost reduction while guaranteeing high segmentation accuracy. The benefit

  9. An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling

    Science.gov (United States)

    Allen, T.I.; Wald, D.J.; Earle, P.S.; Marano, K.D.; Hotovec, A.J.; Lin, K.; Hearne, M.G.

    2009-01-01

    We present an Atlas of ShakeMaps and a catalog of human population exposures to moderate-to-strong ground shaking (EXPO-CAT) for recent historical earthquakes (1973-2007). The common purpose of the Atlas and exposure catalog is to calibrate earthquake loss models to be used in the US Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER). The full ShakeMap Atlas currently comprises over 5,600 earthquakes from January 1973 through December 2007, with almost 500 of these maps constrained-to varying degrees-by instrumental ground motions, macroseismic intensity data, community internet intensity observations, and published earthquake rupture models. The catalog of human exposures is derived using current PAGER methodologies. Exposure to discrete levels of shaking intensity is obtained by correlating Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data, such as PAGER-CAT, provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. We illustrate two example uses for EXPO-CAT; (1) simple objective ranking of country vulnerability to earthquakes, and; (2) the influence of time-of-day on earthquake mortality. In general, we observe that countries in similar geographic regions with similar construction practices tend to cluster spatially in terms of relative vulnerability. We also find little quantitative evidence to suggest that time-of-day is a significant factor in earthquake mortality. Moreover, earthquake mortality appears to be more systematically linked to the population exposed to severe ground shaking (Modified Mercalli Intensity VIII+). Finally, equipped with the full Atlas of ShakeMaps, we merge each of these maps and find the maximum estimated peak ground acceleration at any grid point in the world for the past 35 years. We subsequently compare this "composite ShakeMap" with existing global

  10. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Madsen, Alexander; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the latest results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  11. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Vanadia, Marco; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the latest Run 1 results from the ATLAS Experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in wellmotivated BSM Higgs frameworks, including the two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  12. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Scutti, Federico; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are summarized. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  13. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Nagata, Kazuki; The ATLAS collaboration

    2014-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  14. Beyond-the-Standard Model Higgs physics using the ATLAS experiment

    CERN Document Server

    Ernis, G; The ATLAS collaboration

    2014-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well-motivated BSM Higgs frameworks, such as two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  15. Searches for beyond the Standard Model physics with boosted topologies in the ATLAS experiment using the Grid-based Tier-3 facility at IFIC-Valencia

    CERN Document Server

    Villaplana Pérez, Miguel; Vos, Marcel

    Both the LHC and ATLAS have been performing well beyond expectation since the start of the data taking by the end of 2009. Since then, several thousands of millions of collision events have been recorded by the ATLAS experiment. With a data taking efficiency higher than 95% and more than 99% of its channels working, ATLAS supplies data with an unmatched quality. In order to analyse the data, the ATLAS Collaboration has designed a distributed computing model based on GRID technologies. The ATLAS computing model and its evolution since the start of the LHC is discussed in section 3.1. The ATLAS computing model groups the different types of computing centers of the ATLAS Collaboration in a tiered hierarchy that ranges from Tier-0 at CERN, down to the 11 Tier-1 centers and the nearly 80 Tier-2 centres distributed world wide. The Spanish Tier-2 activities during the first years of data taking are described in section 3.2. Tier-3 are institution-level non-ATLAS funded or controlled centres that participate presuma...

  16. The ATLAS hadronic tau trigger

    CERN Document Server

    Black, C; The ATLAS collaboration

    2012-01-01

    With the high luminosities of proton-proton collisions achieved at the LHC, the strategies for triggering have become more important than ever for physics analysis. The naive inclusive single tau lepton triggers now suffer from severe rate limitations. To allow for a large program of physics analyses with taus, the development of topological triggers that combine tau signatures with other measured quantities in the event is required. These combined triggers open many opportunities to study new physics beyond the Standard Model and to search for the Standard Model Higgs. We present the status and performance of the hadronic tau trigger in ATLAS. We demonstrate that the ATLAS tau trigger ran remarkably well over 2011, and how the lessons learned from 2011 led to numerous improvements in the preparation of the 2012 run. These improvements include the introduction of tau selection criteria that are robust against varying pileup scenarios, and the implementation of multivariate selection techniques in the tau trig...

  17. The ATLAS hadronic tau trigger

    CERN Document Server

    Black, C; The ATLAS collaboration

    2012-01-01

    With the high luminosities of proton-proton collisions achieved at the LHC, the strategies for triggering have become more important than ever for physics analysis. The naïve inclusive single tau lepton triggers now suffer from severe rate limitations. To allow for a large program of physics analyses with taus, the development of topological triggers that combine tau signatures with other measured quantities in the event is required. These combined triggers open many opportunities to study new physics beyond the Standard Model and to search for the Standard Model Higgs. We present the status and performance of the hadronic tau trigger in ATLAS. We demonstrate that the ATLAS tau trigger ran remarkably well over 2011, and how the lessons learned from 2011 led to numerous improvements in the preparation of the 2012 run. These improvements include the introduction of tau selection criteria that are robust against varying pileup scenarios, and the implementation of multivariate selection techniques in the tau tri...

  18. Calibration of the electromagnetic calorimeter of the Atlas detector: reconstruction of events with non-pointing photons in the frame of a GMSB supersymmetric model; Etalonnage du calorimetre electromagnetique du detecteur Atlas: reconstruction des evenements avec des photons non pointants das le cadre d'un modele supersymetrique GMSB

    Energy Technology Data Exchange (ETDEWEB)

    Prieur, D

    2005-04-15

    The analysis of test-beam data is focused on the calibration of the ATLAS electromagnetic calorimeter. An electrical model has been developed to predict the shape of the physics pulse out of the calibration signal in order to produce optimal filtering coefficients. They are used to compute energy while minimizing electronic noise and getting rid of any possible time shift. Using these coefficients, the uniformity response is 0.6%, in agreement with the 0.7% global constant term required for the whole calorimeter. The study of non pointing photon is driven by the detection of long lived neutralinos predicted by GMSB SUSY models. A systematic study with a detailed simulation of the ATLAS detector was performed to determine the electromagnetic calorimeter angular resolution for such photons. Results were used to parametrized the detector response and to reconstruct SUSY events from this model. (author)

  19. Analytics Platform for ATLAS Computing Services

    CERN Document Server

    Vukotic, Ilija; The ATLAS collaboration; Bryant, Lincoln

    2016-01-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Log file data and database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data so as to simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of machine learning tools like Spark, Jupyter, R, S...

  20. Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Rossini, Lorenzo; The ATLAS collaboration

    2018-01-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm^2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for b...

  1. Modeling radiation damage to pixel sensors in the ATLAS detector

    Science.gov (United States)

    Ducourthial, A.

    2018-03-01

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

  2. Computing infrastructure for ATLAS data analysis in the Italian Grid cloud

    International Nuclear Information System (INIS)

    Andreazza, A; Annovi, A; Martini, A; Barberis, D; Brunengo, A; Corosu, M; Campana, S; Girolamo, A Di; Carlino, G; Doria, A; Merola, L; Musto, E; Ciocca, C; Jha, M K; Cobal, M; Pascolo, F; Salvo, A De; Luminari, L; Sanctis, U De; Galeazzi, F

    2011-01-01

    ATLAS data are distributed centrally to Tier-1 and Tier-2 sites. The first stages of data selection and analysis take place mainly at Tier-2 centres, with the final, iterative and interactive, stages taking place mostly at Tier-3 clusters. The Italian ATLAS cloud consists of a Tier-1, four Tier-2s, and Tier-3 sites at each institute. Tier-3s that are grid-enabled are used to test code that will then be run on a larger scale at Tier-2s. All Tier-3s offer interactive data access to their users and the possibility to run PROOF. This paper describes the hardware and software infrastructure choices taken, the operational experience after 10 months of LHC data, and discusses site performances.

  3. ATLAS@Home looks for CERN volunteers

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    ATLAS@Home is a CERN volunteer computing project that runs simulated ATLAS events. As the project ramps up, the project team is looking for CERN volunteers to test the system before planning a bigger promotion for the public.   The ATLAS@home outreach website. ATLAS@Home is a large-scale research project that runs ATLAS experiment simulation software inside virtual machines hosted by volunteer computers. “People from all over the world offer up their computers’ idle time to run simulation programmes to help physicists extract information from the large amount of data collected by the detector,” explains Claire Adam Bourdarios of the ATLAS@Home project. “The ATLAS@Home project aims to extrapolate the Standard Model at a higher energy and explore what new physics may look like. Everything we’re currently running is preparation for next year's run.” ATLAS@Home became an official BOINC (Berkeley Open Infrastructure for Network ...

  4. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    CERN Document Server

    Sanchez, Arturo; The ATLAS collaboration

    2015-01-01

    We explore the potentialities of current web applications to create online interfaces that allow the visualization, interaction and real physics cut-based analysis and monitoring of processes trough a web browser. The project consists in the initial development of web-based and cloud computing services to allow students and researches to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte-Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based $H \\rightarrow ZZ \\rightarrow llqq$ analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.

  5. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    CERN Document Server

    Pineda, A S

    2015-01-01

    We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.

  6. Transition Radiation Tracker calibration, searches beyond the Standard Model and multiparticle correlations in ATLAS

    CERN Document Server

    Alonso, Alejandro; Torsten, Akesson

    This thesis contains two different aspects of my research work towards physics in proton-proton collisions in the ATLAS experiment at the LHC. The first part is focused on the understanding and developing of a calibration system to obtain the best possible charged particle reconstruction in the Transition Radiation Tracker. The method explained in this thesis is the current calibration technique used in the TRT and it is applied to all the data collected by ATLAS. Thanks to the method developed, the detector design resolution is achieved, and even improved in the central region of the TRT. In the second part, three different analyses are presented. Due to my interest in tracking and thanks to the new energy range available at the LHC, the first analysis is the study of multiparticle correlations at 900 GeV and 7 TeV. This analysis is performed with the first ATLAS data collected during 2010. Two different aspects are studied: the high order moments and an attempt to measure the normalized factorial moments ...

  7. Application of three-dimensional reconstruction technology in establishment of atlas space model and sex determination

    International Nuclear Information System (INIS)

    Zhou Jianying; Tian Yong; He Qing; Li Youqiong; Han Qing; Cheng Kailiang

    2013-01-01

    Objective: To establish the method of using the atlas morphological indexes for sex determination in Jilin province and to evaluate its effect. Methods: The clinic neck CT images were used to reconstruct the 3D image of atlas. A total of 27 linear measurement on 8 aspects of the atlas were measured and the ratios were calculated. The 14 items were selected. Results: Of the total 27 linear measurements, 14 were sexually dimorphic (P<0.05), and the accuracies of sex determination of 27 indexes were 52.0% -89.3% . The highest accuracy was width of vertebral body (86.7% ). A function with variables predicting sex with 96.8% accuracy was derived by using stepwise method of discriminant function analysis: Y=1.308W - 0.409CDF - 0.469LTPSD - 0.849LUACD + 0.478RUACD + 0.332RDACD + 0.363ATH - 0.334PTH - 0.236PAL. Conclusion: The method of using atlas traits for sex determination in Jilin province is practicable. (authors)

  8. Modelling of performance of the ATLAS SCT detector

    International Nuclear Information System (INIS)

    Kazi, S.

    2000-01-01

    Full text: The ATLAS detector being built at LHC will use the SCT (semiconductor tracking) module for particle tracking in the inner core of the detector. An analytical/numerical model of the discriminator threshold dependence and the temperature dependence of the SCT module was derived. Measurements were conducted on the performance of the SCT module versus temperature and these results were compared with the predictions made by the model. The affect of radiation damage of the SCT detector was also investigated. The detector will operate for approximately 10 years so a study was carried out on the effects of the 10 years of radiation exposure to the SCT

  9. Radiation Damage Modeling for 3D Pixel Sensors in the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  10. The normal zone propagation in ATLAS B00 model coil

    CERN Document Server

    Boxman, E W; ten Kate, H H J

    2002-01-01

    The B00 model coil has been successfully tested in the ATLAS Magnet Test Facility at CERN. The coil consists of two double pancakes wound with aluminum stabilized cables of the barrel- and end-cap toroids conductors for the ATLAS detector. The magnet current is applied up to 24 kA and quenches are induced by firing point heaters. The normal zone velocity is measured over a wide range of currents by using pickup coils, voltage taps and superconducting quench detectors. The signals coming from various sensors are presented and analyzed. The results extracted from the various detection methods are in good agreement. It is found that the characteristic velocities vary from 5 to 20 m/s at 15 and 24 kA respectively. In addition, the minimum quench energies at different applied magnet currents are presented. (6 refs).

  11. ATLAS distributed computing: experience and evolution

    International Nuclear Information System (INIS)

    Nairz, A

    2014-01-01

    The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb −1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, energies and event complexities. An essential requirement will be the efficient utilisation of current and future processor technologies as well as a broad range of computing platforms, including supercomputing and cloud resources. We will report on experience gained thus far and our progress in preparing ATLAS computing for the future

  12. Top quark properties at ATLAS

    CERN Document Server

    Dilip, Jana

    2008-01-01

    The ATLAS potential for the study of the top quark properties and physics beyond the Standard Model in the top quark sector, is described. The measurements of the top quark charge, the spin and spin correlations, the Standard Model decay (t-> bW), rare top quark decays associated to flavour changing neutral currents (t-> qX with X = gluon, Z, photon) and ttbar resonances are discussed. The sensitivity of the ATLAS experiment is estimated for an expected luminosity of 1fb-1 at the LHC. The full simulation of the ATLAS detector is used. For the Standard Model measurements the expected precision is presented. For the tests of physics beyond the Standard Model, the 5 sigma discovery potential (in the presence of a signal) and the 95% Confidence Level (CL) limit (in the absence of a signal) are given.

  13. ATLAS Cloud Computing R&D project

    CERN Document Server

    Panitkin, S; The ATLAS collaboration; Caballero Bejar, J; Benjamin, D; DiGirolamo, A; Gable, I; Hendrix, V; Hover, J; Kucharczuk, K; Medrano LLamas, R; Ohman, H; Paterson, M; Sobie, R; Taylor, R; Walker, R; Zaytsev, A

    2013-01-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained...

  14. Complex terrain experiments in the New European Wind Atlas

    DEFF Research Database (Denmark)

    Mann, Jakob; Angelou, Nikolas; Arnqvist, Johan

    2017-01-01

    The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiment...

  15. A Lego version of ATLAS

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    There's nothing very unusual about a small child making simple objects out of Lego. But wouldn't you be surprised to learn that one six-year old has just made a life-like model of the ATLAS detector?   Bastian with his Lego ATLAS detector. © Photo provided by Kai Nicklas, Bastian's father. It all began a month ago when the boy's father was watching a video about the construction of the ATLAS detector on the Internet. He hadn't noticed that his son was watching it over his shoulder. The small boy was fascinated by what he was seeing on the computer screen and his first reaction was to exclaim: "Wow! That's a terrific machine! I think the people who built it must be really clever." The detector must have really fired his imagination because, after asking his father a few questions, he decided to make a Lego model of it. Look at the photo and you will see how closely the model he produced resembles the actual ATLAS detector. Is the little boy in question, Bastia...

  16. Mesure des champs de radiation dans le detecteur ATLAS et sa caverne avec les detecteurs au silicium a pixels ATLAS-MPX

    Science.gov (United States)

    Bouchami, Jihene

    The LHC proton-proton collisions create a hard radiation environment in the ATLAS detector. In order to quantify the effects of this environment on the detector performance and human safety, several Monte Carlo simulations have been performed. However, direct measurement is indispensable to monitor radiation levels in ATLAS and also to verify the simulation predictions. For this purpose, sixteen ATLAS-MPX devices have been installed at various positions in the ATLAS experimental and technical areas. They are composed of a pixelated silicon detector called MPX whose active surface is partially covered with converter layers for the detection of thermal, slow and fast neutrons. The ATLAS-MPX devices perform real-time measurement of radiation fields by recording the detected particle tracks as raster images. The analysis of the acquired images allows the identification of the detected particle types by the shapes of their tracks. For this aim, a pattern recognition software called MAFalda has been conceived. Since the tracks of strongly ionizing particles are influenced by charge sharing between adjacent pixels, a semi-empirical model describing this effect has been developed. Using this model, the energy of strongly ionizing particles can be estimated from the size of their tracks. The converter layers covering each ATLAS-MPX device form six different regions. The efficiency of each region to detect thermal, slow and fast neutrons has been determined by calibration measurements with known sources. The study of the ATLAS-MPX devices response to the radiation produced by proton-proton collisions at a center of mass energy of 7 TeV has demonstrated that the number of recorded tracks is proportional to the LHC luminosity. This result allows the ATLAS-MPX devices to be employed as luminosity monitors. To perform an absolute luminosity measurement and calibration with these devices, the van der Meer method based on the LHC beam parameters has been proposed. Since the ATLAS

  17. Hot upwelling conduit beneath the Atlas Mountains, Morocco

    Science.gov (United States)

    Sun, Daoyuan; Miller, Meghan S.; Holt, Adam F.; Becker, Thorsten W.

    2014-11-01

    The Atlas Mountains of Morocco display high topography, no deep crustal root, and regions of localized Cenozoic alkaline volcanism. Previous seismic imaging and geophysical studies have implied a hot mantle upwelling as the source of the volcanism and high elevation. However, the existence, shape, and physical properties of an associated mantle anomaly are debated. Here we use seismic waveform analysis from a broadband deployment and geodynamic modeling to define the physical properties and morphology of the anomaly. The imaged low-velocity structure extends to ~200 km beneath the Atlas and appears ~350 K hotter than the ambient mantle with possible partial melting. It includes a lateral conduit, which suggests that the Quaternary volcanism arises from the upper mantle. Moreover, the shape and temperature of the imaged anomaly indicate that the unusually high topography of the Atlas Mountains is due to active mantle support.

  18. ATLAS computing activities and developments in the Italian Grid cloud

    International Nuclear Information System (INIS)

    Rinaldi, L; Ciocca, C; K, M; Annovi, A; Antonelli, M; Martini, A; Barberis, D; Brunengo, A; Corosu, M; Barberis, S; Carminati, L; Campana, S; Di, A; Capone, V; Carlino, G; Doria, A; Esposito, R; Merola, L; De, A; Luminari, L

    2012-01-01

    The large amount of data produced by the ATLAS experiment needs new computing paradigms for data processing and analysis, which involve many computing centres spread around the world. The computing workload is managed by regional federations, called “clouds”. The Italian cloud consists of a main (Tier-1) center, located in Bologna, four secondary (Tier-2) centers, and a few smaller (Tier-3) sites. In this contribution we describe the Italian cloud facilities and the activities of data processing, analysis, simulation and software development performed within the cloud, and we discuss the tests of the new computing technologies contributing to evolution of the ATLAS Computing Model.

  19. Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Vanadia, Marco; The ATLAS collaboration

    2015-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV/$\\rm{c^2}$ has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this report, the latest Run 1 results from the ATLAS Experiment on Beyond-the-Standard Model (BSM) Higgs searches are outlined. Searches for additional Higgs bosons are presented and interpreted in well motivated BSM Higgs frameworks, including the two-Higgs-doublet Models and the Minimal and Next to Minimal Supersymmetric Standard Model.

  20. Mesoscale modeling for the Wind Atlas of South Africa (WASA) project

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Lennard, Chris; Badger, Jake

    This document reports on the methods used to create and the results of the two numerical wind atlases developed for the Wind Atlas for South Africa (WASA) project. The wind atlases were created using the KAMM-WAsP method and from the output of climate-type simulations of the Weather, Research...

  1. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    CERN Document Server

    Sanchez, Arturo; The ATLAS collaboration

    2015-01-01

    We explore the potentialities of current web applications to create online interfaces that allow the visualization, interaction and real physics cut-based analysis and monitoring of processes trough a web browser. The project consists in the initial development of web-based and cloud computing services to allow students and researches to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte-Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H->ZZ->llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online; this presentation describes the tests and plans and future upgrades.

  2. Monte Carlo modeling of Standard Model multi-boson production processes for $\\sqrt{s} = 13$ TeV ATLAS analyses

    CERN Document Server

    Li, Shu; The ATLAS collaboration

    2017-01-01

    Proceeding for the poster presentation at LHCP2017, Shanghai, China on the topic of "Monte Carlo modeling of Standard Model multi-boson production processes for $\\sqrt{s} = 13$ TeV ATLAS analyses" (ATL-PHYS-SLIDE-2017-265 https://cds.cern.ch/record/2265389) Deadline: 01/09/2017

  3. R-Hadron Search at ATLAS

    DEFF Research Database (Denmark)

    Heisterkamp, Simon Johann Franz

    In this thesis I motivate and present a search for long lived massive R-hadrons using the data collected by the ATLAS detector in 2011. Both ionisation- and time-of-ight-based methods are described. Since no signal was found, a lower limit on the mass of such particles is set. The analysis was also...... published by the ATLAS collboration in Phys.Lett.B. titled `Searches for heavy long-lived sleptons and R-Hadrons with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV'....

  4. The ATLAS Electron and Photon Trigger

    CERN Document Server

    Jones, Samuel David; The ATLAS collaboration

    2017-01-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs boson. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based Level-1 trigger and a software-based high-level trigger, both of which were upgraded during the LHC shutdown in preparation for Run-2 operation. To cope with the increasing luminosity and more challenging pile-up conditions at a center-of-mass energy of 13 TeV, the trigger selections at each level are optimized to control the rates and keep efficiencies high. To achieve this goal multivariate analysis techniques are used. The ATLAS electron and photon triggers and their performance with Run 2 dat...

  5. The ATLAS Electron and Photon Trigger

    CERN Document Server

    Jones, Samuel David; The ATLAS collaboration

    2018-01-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs boson. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based Level-1 trigger and a software-based high-level trigger, both of which were upgraded during the LHC shutdown in preparation for Run-2 operation. To cope with the increasing luminosity and more challenging pile-up conditions at a center-of-mass energy of 13 TeV, the trigger selections at each level are optimized to control the rates and keep efficiencies high. To achieve this goal multivariate analysis techniques are used. The ATLAS electron and photon triggers and their performance with Run 2 dat...

  6. Measurement of the Standard Model W+W- production cross-section using the ATLAS experiment on the LHC

    International Nuclear Information System (INIS)

    Zeman, Martin

    2014-01-01

    Measurements of di-boson production cross-sections are an important part of the physics programme at the CERN Large Hadron Collider. These physics analyses provide the opportunity to probe the electroweak sector of the Standard Model at the TeV scale and could also indicate the existence of new particles or probe beyond the Standard Model physics. The excellent performance of the LHC through years 2011 and 2012 allowed for very competitive measurements. This thesis provides a comprehensive overview of the experimental considerations and methods used in the measurement of the W + W - production cross-section in proton-proton collisions at √s = 7 TeV and 8 TeV. The treatise covers the material in great detail, starting with the introduction of the theoretical framework of the Standard Model and follows with an extensive discussion of the methods implemented in recording and reconstructing physics events in an experiment of this magnitude. The associated online and offline software tools are included in the discussion. The relevant experiments are covered, including a very detailed section about the ATLAS detector. The final chapter of this thesis contains a detailed description of the analysis of the W-pair production in the leptonic decay channels using the datasets recorded by the ATLAS experiment during 2011 and 2012 (Run I). The analyses use 4.60 fb -1 recorded at √s = 7 TeV and 20.28 fb -1 recorded at 8 TeV. The experimentally measured cross section for the production of W bosons at the ATLAS experiment is consistently enhanced compared to the predictions of the Standard Model at centre-of-mass energies of 7 TeV and 8 TeV. The thesis concludes with the presentation of differential cross-section measurement results. (author) [fr

  7. Non-local statistical label fusion for multi-atlas segmentation.

    Science.gov (United States)

    Asman, Andrew J; Landman, Bennett A

    2013-02-01

    Multi-atlas segmentation provides a general purpose, fully-automated approach for transferring spatial information from an existing dataset ("atlases") to a previously unseen context ("target") through image registration. The method to resolve voxelwise label conflicts between the registered atlases ("label fusion") has a substantial impact on segmentation quality. Ideally, statistical fusion algorithms (e.g., STAPLE) would result in accurate segmentations as they provide a framework to elegantly integrate models of rater performance. The accuracy of statistical fusion hinges upon accurately modeling the underlying process of how raters err. Despite success on human raters, current approaches inaccurately model multi-atlas behavior as they fail to seamlessly incorporate exogenous intensity information into the estimation process. As a result, locally weighted voting algorithms represent the de facto standard fusion approach in clinical applications. Moreover, regardless of the approach, fusion algorithms are generally dependent upon large atlas sets and highly accurate registration as they implicitly assume that the registered atlases form a collectively unbiased representation of the target. Herein, we propose a novel statistical fusion algorithm, Non-Local STAPLE (NLS). NLS reformulates the STAPLE framework from a non-local means perspective in order to learn what label an atlas would have observed, given perfect correspondence. Through this reformulation, NLS (1) seamlessly integrates intensity into the estimation process, (2) provides a theoretically consistent model of multi-atlas observation error, and (3) largely diminishes the need for large atlas sets and very high-quality registrations. We assess the sensitivity and optimality of the approach and demonstrate significant improvement in two empirical multi-atlas experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Bone age assessment in Hispanic children: digital hand atlas compared with the Greulich and Pyle (G&P) atlas

    Science.gov (United States)

    Fernandez, James Reza; Zhang, Aifeng; Vachon, Linda; Tsao, Sinchai

    2008-03-01

    Bone age assessment is most commonly performed with the use of the Greulich and Pyle (G&P) book atlas, which was developed in the 1950s. The population of theUnited States is not as homogenous as the Caucasian population in the Greulich and Pyle in the 1950s, especially in the Los Angeles, California area. A digital hand atlas (DHA) based on 1,390 hand images of children of different racial backgrounds (Caucasian, African American, Hispanic, and Asian) aged 0-18 years was collected from Children's Hospital Los Angeles. Statistical analysis discovered significant discrepancies exist between Hispanic and the G&P atlas standard. To validate the usage of DHA as a clinical standard, diagnostic radiologists performed reads on Hispanic pediatric hand and wrist computed radiography images using either the G&P pediatric radiographic atlas or the Children's Hospital Los Angeles Digital Hand Atlas (DHA) as reference. The order in which the atlas is used (G&P followed by DHA or vice versa) for each image was prepared before actual reading begins. Statistical analysis of the results was then performed to determine if a discrepancy exists between the two readings.

  9. ATLAS Distributed Computing Operations: Experience and improvements after 2 full years of data-taking

    International Nuclear Information System (INIS)

    Jézéquel, S; Stewart, G

    2012-01-01

    This paper summarizes operational experience and improvements in ATLAS computing infrastructure in 2010 and 2011. ATLAS has had 2 periods of data taking, with many more events recorded in 2011 than in 2010. It ran 3 major reprocessing campaigns. The activity in 2011 was similar to 2010, but scalability issues had to be addressed due to the increase in luminosity and trigger rate. Based on improved monitoring of ATLAS Grid computing, the evolution of computing activities (data/group production, their distribution and grid analysis) over time is presented. The main changes in the implementation of the computing model that will be shown are: the optimization of data distribution over the Grid, according to effective transfer rate and site readiness for analysis; the progressive dismantling of the cloud model, for data distribution and data processing; software installation migration to cvmfs; changing database access to a Frontier/squid infrastructure.

  10. NATIONAL ATLAS OF THE ARCTIC

    Directory of Open Access Journals (Sweden)

    Nikolay S. Kasimov

    2018-01-01

    Full Text Available The National Atlas of the Arctic is a set of spatio-temporal information about the geographic, ecological, economic, historical-ethnographic, cultural, and social features of theArcticcompiled as a cartographic model of the territory. The Atlas is intended for use in a wide range of scientific, management, economic, defense, educational, and public activities. The state policy of theRussian Federationin the Arctic for the period until 2020 and beyond, states that the Arctic is of strategic importance forRussiain the 21st century. A detailed description of all sections of the Atlas is given. The Atlas can be used as an information-reference and educational resource or as a gift edition.

  11. ATLAS Distributed Computing in LHC Run2

    CERN Document Server

    Campana, Simone; The ATLAS collaboration

    2015-01-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run2. An increased data rate and computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (ProdSys2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward the flexible computing model. The flexible computing utilization exploring the opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model, the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover a new data management strategy, based on defined lifetime for each dataset, has been defin...

  12. Two-stage atlas subset selection in multi-atlas based image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu [The Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-06-15

    Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors

  13. Two-stage atlas subset selection in multi-atlas based image segmentation.

    Science.gov (United States)

    Zhao, Tingting; Ruan, Dan

    2015-06-01

    Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. The authors have developed a novel two-stage atlas

  14. Two-stage atlas subset selection in multi-atlas based image segmentation

    International Nuclear Information System (INIS)

    Zhao, Tingting; Ruan, Dan

    2015-01-01

    Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors

  15. ATLAS diboson excesses from the stealth doublet model

    Directory of Open Access Journals (Sweden)

    Wei Chao

    2016-02-01

    Full Text Available The ATLAS Collaboration has reported excesses in diboson invariant mass searches of new resonances around 2 TeV, which might be a prediction of new physics around that mass range. We interpret these results in the context of a modified stealth doublet model where the extra Higgs doublet has a Yukawa interaction with the first generation quarks, and show that the heavy CP-even Higgs boson can naturally explain the excesses in the WW and ZZ channels with a small Yukawa coupling, ξ∼0.15, and a tiny mixing angle with the SM Higgs boson, α∼0.05. Furthermore, the model satisfies constraints from colliders and electroweak precision measurements.

  16. Interactive microbial distribution analysis using BioAtlas

    DEFF Research Database (Denmark)

    Lund, Jesper; List, Markus; Baumbach, Jan

    2017-01-01

    body maps and (iii) user-defined maps. It further allows for (iv) uploading of own sample data, which can be placed on existing maps to (v) browse the distribution of the associated taxonomies. Finally, BioAtlas enables users to (vi) contribute custom maps (e.g. for plants or animals) and to map...... to analyze microbial distribution in a location-specific context. BioAtlas is an interactive web application that closes this gap between sequence databases, taxonomy profiling and geo/body-location information. It enables users to browse taxonomically annotated sequences across (i) the world map, (ii) human...

  17. Virtual Machine Logbook - Enabling virtualization for ATLAS

    International Nuclear Information System (INIS)

    Yao Yushu; Calafiura, Paolo; Leggett, Charles; Poffet, Julien; Cavalli, Andrea; Frederic, Bapst

    2010-01-01

    ATLAS software has been developed mostly on CERN linux cluster lxplus or on similar facilities at the experiment Tier 1 centers. The fast rise of virtualization technology has the potential to change this model, turning every laptop or desktop into an ATLAS analysis platform. In the context of the CernVM project we are developing a suite of tools and CernVM plug-in extensions to promote the use of virtualization for ATLAS analysis and software development. The Virtual Machine Logbook (VML), in particular, is an application to organize work of physicists on multiple projects, logging their progress, and speeding up ''context switches'' from one project to another. An important feature of VML is the ability to share with a single 'click' the status of a given project with other colleagues. VML builds upon the save and restore capabilities of mainstream virtualization software like VMware, and provides a technology-independent client interface to them. A lot of emphasis in the design and implementation has gone into optimizing the save and restore process to makepractical to store many VML entries on a typical laptop disk or to share a VML entry over the network. At the same time, taking advantage of CernVM's plugin capabilities, we are extending the CernVM platform to help increase the usability of ATLAS software. For example, we added the ability to start the ATLAS event display on any computer running CernVM simply by clicking a button in a web browser. We want to integrate seamlessly VML with CernVM unique file system design to distribute efficiently ATLAS software on every physicist computer. The CernVM File System (CVMFS) download files on-demand via HTTP, and cache it locally for future use. This reduces by one order of magnitude the download sizes, making practical for a developer to work with multiple software releases on a virtual machine.

  18. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    International Nuclear Information System (INIS)

    Bouchami, J; Dallaire, F; Gutierrez, A; Idarraga, J; Leroy, C; Picard, S; Scallon, O; Kral, V; PospIsil, S; Solc, J; Suk, M; Turecek, D; Vykydal, Z; Zemlieka, J

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6 LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) - based on the ROOT application - allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons ( 252 Cf and 241 AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  19. PanDA: distributed production and distributed analysis system for ATLAS

    International Nuclear Information System (INIS)

    Maeno, T

    2008-01-01

    A new distributed software system was developed in the fall of 2005 for the ATLAS experiment at the LHC. This system, called PANDA, provides an integrated service architecture with late binding of jobs, maximal automation through layered services, tight binding with ATLAS Distributed Data Management system [1], advanced error discovery and recovery procedures, and other features. In this talk, we will describe the PANDA software system. Special emphasis will be placed on the evolution of PANDA based on one and half year of real experience in carrying out Computer System Commissioning data production [2] for ATLAS. The architecture of PANDA is well suited for the computing needs of the ATLAS experiment, which is expected to be one of the first HEP experiments to operate at the petabyte scale

  20. Use of Danish Heat Atlas and energy system models for exploring renewable energy scenarios

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2013-01-01

    networks in relation with significant heat saving measures that are capital intensive infrastructure investments require highly detailed decision - support tools. The Heat Atlas for Denmark provides a highly detailed database and includes heat demand and possible heat savings for about 2.5 million...... buildings with associated costs included. Energy systems modelling tools that incorporate economic, environmental, energy and engineering analysis of future energy systems are considered crucial for quantitative assessment of transitional scenarios towards future milestones, such as (i) EU 2020 goals...... of reducing greenhouse gas emissions, increasing share of renewable energy and improving energy efficiency and (ii) Denmark’s 2050 goals of covering entire energy supply by renewable energy. Optimization and simulation energy system models are currently used in Denmark. The present paper tends to provide...

  1. Rat brain digital stereotaxic white matter atlas with fine tract delineation in Paxinos space and its automated applications in DTI data analysis.

    Science.gov (United States)

    Liang, Shengxiang; Wu, Shang; Huang, Qi; Duan, Shaofeng; Liu, Hua; Li, Yuxiao; Zhao, Shujun; Nie, Binbin; Shan, Baoci

    2017-11-01

    To automatically analyze diffusion tensor images of the rat brain via both voxel-based and ROI-based approaches, we constructed a new white matter atlas of the rat brain with fine tracts delineation in the Paxinos and Watson space. Unlike in previous studies, we constructed a digital atlas image from the latest edition of the Paxinos and Watson. This atlas contains 111 carefully delineated white matter fibers. A white matter network of rat brain based on anatomy was constructed by locating the intersection of all these tracts and recording the nuclei on the pathway of each white matter tract. Moreover, a compatible rat brain template from DTI images was created and standardized into the atlas space. To evaluate the automated application of the atlas in DTI data analysis, a group of rats with right-side middle cerebral artery occlusion (MCAO) and those without were enrolled in this study. The voxel-based analysis result shows that the brain region showing significant declines in signal in the MCAO rats was consistent with the occlusion position. We constructed a stereotaxic white matter atlas of the rat brain with fine tract delineation and a compatible template for the data analysis of DTI images of the rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Development and deployment of an inner detector minimum bias trigger and analysis of minimum bias data of the ATLAS experiment at the large hadron collider

    International Nuclear Information System (INIS)

    Kwee, Regina Esther

    2012-01-01

    Soft inelastic QCD processes are the dominant proton-proton interaction type at the LHC. More than 20 of such collisions pile up within a single bunch-crossing at ATLAS, when the LHC is operated at design luminosity of L=10 34 cm -2 s -1 colliding proton bunches with an energy of √(s)=14 TeV. Inelastic interactions are characterised by a small transverse momentum transfer and can only be approximated by phenomenological models that need experimental data as input. The initial phase of LHC beam operation in 2009, with luminosities ranging from L=10 27 to 10 31 cm -2 s -1 , offered an ideal period to select single proton-proton interactions and study general aspects of their properties. As first part of this thesis, a Minimum Bias trigger was developed and used for data-taking in ATLAS. This trigger, mbSpTrk, processes signals of the silicon tracking detectors of ATLAS and was designed to fulfill efficiently reject empty events, while possible biases in the selection of proton-proton collisions is reduced to a minimum. The trigger is flexible enough to cope also with changing background conditions allowing to retain low-p T events while machine background is highly suppressed. As second part, measurements of inelastic charged particles were performed in two phase-space regions. Centrally produced charged particles were considered with a pseudorapidity smaller than 0.8 and a transverse momentum of at least 0.5 or 1 GeV. Four characteristic distributions were measured at two centre-of-mass energies of √(s)=0.9 and 7 TeV. The results are presented with minimal model dependency to compare them to predictions of different Monte Carlo models for soft particle production. This analysis represents also the ATLAS contribution for the first common LHC analysis to which the ATLAS, CMS and ALICE collaborations agreed. The pseudorapidity distributions for both energies and phase-space regions are compared to the respective results of ALICE and CMS.

  3. Development and deployment of an inner detector minimum bias trigger and analysis of minimum bias data of the ATLAS experiment at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Kwee, Regina Esther

    2012-01-13

    Soft inelastic QCD processes are the dominant proton-proton interaction type at the LHC. More than 20 of such collisions pile up within a single bunch-crossing at ATLAS, when the LHC is operated at design luminosity of L=10{sup 34} cm{sup -2}s{sup -1} colliding proton bunches with an energy of {radical}(s)=14 TeV. Inelastic interactions are characterised by a small transverse momentum transfer and can only be approximated by phenomenological models that need experimental data as input. The initial phase of LHC beam operation in 2009, with luminosities ranging from L=10{sup 27} to 10{sup 31} cm{sup -2}s{sup -1}, offered an ideal period to select single proton-proton interactions and study general aspects of their properties. As first part of this thesis, a Minimum Bias trigger was developed and used for data-taking in ATLAS. This trigger, mbSpTrk, processes signals of the silicon tracking detectors of ATLAS and was designed to fulfill efficiently reject empty events, while possible biases in the selection of proton-proton collisions is reduced to a minimum. The trigger is flexible enough to cope also with changing background conditions allowing to retain low-p{sub T} events while machine background is highly suppressed. As second part, measurements of inelastic charged particles were performed in two phase-space regions. Centrally produced charged particles were considered with a pseudorapidity smaller than 0.8 and a transverse momentum of at least 0.5 or 1 GeV. Four characteristic distributions were measured at two centre-of-mass energies of {radical}(s)=0.9 and 7 TeV. The results are presented with minimal model dependency to compare them to predictions of different Monte Carlo models for soft particle production. This analysis represents also the ATLAS contribution for the first common LHC analysis to which the ATLAS, CMS and ALICE collaborations agreed. The pseudorapidity distributions for both energies and phase-space regions are compared to the respective

  4. Beyond the Standard Model Higgs boson searches using the ATLAS Experiment

    CERN Document Server

    Tsukerman, Ilya; The ATLAS collaboration

    2014-01-01

    The discovery of a Higgs boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, the current results from the ATLAS experiment on Beyond the Standard Model (BSM) Higgs boson searches are outlined. The results are interpreted in well-motivated BSM Higgs frameworks.

  5. TransAtlasDB: an integrated database connecting expression data, metadata and variants

    Science.gov (United States)

    Adetunji, Modupeore O; Lamont, Susan J; Schmidt, Carl J

    2018-01-01

    Abstract High-throughput transcriptome sequencing (RNAseq) is the universally applied method for target-free transcript identification and gene expression quantification, generating huge amounts of data. The constraint of accessing such data and interpreting results can be a major impediment in postulating suitable hypothesis, thus an innovative storage solution that addresses these limitations, such as hard disk storage requirements, efficiency and reproducibility are paramount. By offering a uniform data storage and retrieval mechanism, various data can be compared and easily investigated. We present a sophisticated system, TransAtlasDB, which incorporates a hybrid architecture of both relational and NoSQL databases for fast and efficient data storage, processing and querying of large datasets from transcript expression analysis with corresponding metadata, as well as gene-associated variants (such as SNPs) and their predicted gene effects. TransAtlasDB provides the data model of accurate storage of the large amount of data derived from RNAseq analysis and also methods of interacting with the database, either via the command-line data management workflows, written in Perl, with useful functionalities that simplifies the complexity of data storage and possibly manipulation of the massive amounts of data generated from RNAseq analysis or through the web interface. The database application is currently modeled to handle analyses data from agricultural species, and will be expanded to include more species groups. Overall TransAtlasDB aims to serve as an accessible repository for the large complex results data files derived from RNAseq gene expression profiling and variant analysis. Database URL: https://modupeore.github.io/TransAtlasDB/ PMID:29688361

  6. Optimisation of searches for Supersymmetry with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Zvolsky, Milan

    2012-01-15

    The ATLAS experiment is one of the four large experiments at the Large Hadron Collider which is specifically designed to search for the Higgs boson and physics beyond the Standard Model. The aim of this thesis is the optimisation of searches for Supersymmetry in decays with two leptons and missing transverse energy in the final state. Two different optimisation studies have been performed for two important analysis aspects: The final signal region selection and the choice of the trigger selection. In the first part of the analysis, a cut-based optimisation of signal regions is performed, maximising the signal for a minimal background contamination. By this, the signal yield can in parts be more than doubled. The second approach is to introduce di-lepton triggers which allow to lower the lepton transverse momentum threshold, thus enhancing the number of selected signal events significantly. The signal region optimisation was considered for the choice of the final event selection in the ATLAS di-lepton analyses. The trigger study contributed to the incorporation of di-lepton triggers to the ATLAS trigger menu. (orig.)

  7. In vivo quantitative whole-brain diffusion tensor imaging analysis of APP/PS1 transgenic mice using voxel-based and atlas-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuan-Yuan [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Tongji Medical College, Wuhan (China); The Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Li, Mu-Wei; Oishi, Kenichi [The Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Zhang, Shun; Zhang, Yan; Zhao, Ling-Yun; Zhu, Wen-Zhen [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Tongji Medical College, Wuhan (China); Lei, Hao [Chinese Academy of Sciences, Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China)

    2013-08-15

    Diffusion tensor imaging (DTI) has been applied to characterize the pathological features of Alzheimer's disease (AD) in a mouse model, although little is known about whether these features are structure specific. Voxel-based analysis (VBA) and atlas-based analysis (ABA) are good complementary tools for whole-brain DTI analysis. The purpose of this study was to identify the spatial localization of disease-related pathology in an AD mouse model. VBA and ABA quantification were used for the whole-brain DTI analysis of nine APP/PS1 mice and wild-type (WT) controls. Multiple scalar measurements, including fractional anisotropy (FA), trace, axial diffusivity (DA), and radial diffusivity (DR), were investigated to capture the various types of pathology. The accuracy of the image transformation applied for VBA and ABA was evaluated by comparing manual and atlas-based structure delineation using kappa statistics. Following the MR examination, the brains of the animals were analyzed for microscopy. Extensive anatomical alterations were identified in APP/PS1 mice, in both the gray matter areas (neocortex, hippocampus, caudate putamen, thalamus, hypothalamus, claustrum, amygdala, and piriform cortex) and the white matter areas (corpus callosum/external capsule, cingulum, septum, internal capsule, fimbria, and optic tract), evidenced by an increase in FA or DA, or both, compared to WT mice (p < 0.05, corrected). The average kappa value between manual and atlas-based structure delineation was approximately 0.8, and there was no significant difference between APP/PS1 and WT mice (p > 0.05). The histopathological changes in the gray matter areas were confirmed by microscopy studies. DTI did, however, demonstrate significant changes in white matter areas, where the difference was not apparent by qualitative observation of a single-slice histological specimen. This study demonstrated the structure-specific nature of pathological changes in APP/PS1 mouse, and also showed the

  8. ATLAS program for advanced thermal-hydraulic safety research

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Choi, Ki-Yong; Kang, Kyoung-Ho

    2015-01-01

    Highlights: • Major achievements of the ATLAS program are highlighted in conjunction with both developing advanced light water reactor technologies and enhancing the nuclear safety. • The ATLAS data was shown to be useful for the development and licensing of new reactors and safety analysis codes, and also for nuclear safety enhancement through domestic and international cooperative programs. • A future plan for the ATLAS testing is introduced, covering recently emerging safety issues and some generic thermal-hydraulic concerns. - Abstract: This paper highlights the major achievements of the ATLAS program, which is an integral effect test program for both developing advanced light water reactor technologies and contributing to enhancing nuclear safety. The ATLAS program is closely related with the development of the APR1400 and APR"+ reactors, and the SPACE code, which is a best-estimate system-scale code for a safety analysis of nuclear reactors. The multiple roles of ATLAS testing are emphasized in very close conjunction with the development, licensing, and commercial deployment of these reactors and their safety analysis codes. The role of ATLAS for nuclear safety enhancement is also introduced by taking some examples of its contributions to voluntarily lead to multi-body cooperative programs such as domestic and international standard problems. Finally, a future plan for the utilization of ATLAS testing is introduced, which aims at tackling recently emerging safety issues such as a prolonged station blackout accident and medium-size break LOCA, and some generic thermal-hydraulic concerns as to how to figure out multi-dimensional phenomena and the scaling issue.

  9. A Meta-analysis of the 8 TeV ATLAS and CMS SUSY Searches

    CERN Document Server

    Nachman, Benjamin

    2015-01-01

    Between the ATLAS and CMS collaborations at the LHC, hundreds of individual event selections have been measured in the data to look for evidence of supersymmetry at a center of mass energy of 8 TeV. While there is currently no significant evidence for any particular model of supersymmetry, the large number of searches should have produced some large statistical fluctuations. By analyzing the distribution of p-values from the various searches, we determine that the number of excesses is consistent with the Standard Model only hypothesis. However, we do find a significant shortage of signal regions with far fewer observed events than expected in both the ATLAS and CMS datasets. While not as compelling as a surplus of excesses, the lack of deficits could be a hint of new physics already in the 8 TeV datasets.

  10. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Giugliarelli, Gilberto; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This poster presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS Detector.

  11. Modeling Radiation Damage Effects in 3D Pixel Digitization for the ATLAS Detector

    CERN Document Server

    Wallangen, Veronica; The ATLAS collaboration

    2017-01-01

    Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 10$^{15}$ n$_\\mathrm{eq}$/cm$^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This work presents the details of a new digitization model that includes radiation damage effects to the 3D Pixel sensors for the ATLAS detector.

  12. ATLAS note ATL-COM-PHYS-2009

    International Nuclear Information System (INIS)

    Chekanov, S.; Boomsma, J.

    2009-01-01

    The program InvMass has been developed to perform a general model-independent search for new particles using the ATLAS detector at the Large Hadron Collider (LHC), a proton-proton collider at CERN. The search is performed by examining statistically significant variations from the Standard Model predictions in exclusive event classes classified according to the number of identified objects. The program, called InvMass, finds all relevant particle groups identified with the ATLAS detector and analyzes their production rates, invariant masses and the total transverse momenta. The generic code of InvMass can easily be adapted for any particle types identified with the ATLAS detector. Several benchmark tests are presented.

  13. Reconstructing ATLAS SU3 in the CMSSM and relaxed phenomenological supersymmetry models

    CERN Document Server

    Fowlie, Andrew

    2011-01-01

    Assuming that the LHC makes a positive end-point measurement indicative of low-energy supersymmetry, we examine the prospects of reconstructing the parameter values of a typical low-mass point in the framework of the Constrained MSSM and in several other supersymmetry models that have more free parameters and fewer assumptions than the CMSSM. As a case study, we consider the ATLAS SU3 benchmark point with a Bayesian approach and with a Gaussian approximation to the likelihood for the measured masses and mass differences. First we investigate the impact of the hypothetical ATLAS measurement alone and show that it significantly narrows the confidence intervals of relevant, otherwise fairly unrestricted, model parameters. Next we add information about the relic density of neutralino dark matter to the likelihood and show that this further narrows the confidence intervals. We confirm that the CMSSM has the best prospects for parameter reconstruction; its results had little dependence on our choice of prior, in co...

  14. Renewable Energy Atlas of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, J. [Environmental Science Division; Hlava, K. [Environmental Science Division; Greenwood, H. [Environmentall Science Division; Carr, A. [Environmental Science Division

    2013-12-13

    The Renewable Energy Atlas (Atlas) of the United States is a compilation of geospatial data focused on renewable energy resources, federal land ownership, and base map reference information. This report explains how to add the Atlas to your computer and install the associated software. The report also includes: A description of each of the components of the Atlas; Lists of the Geographic Information System (GIS) database content and sources; and A brief introduction to the major renewable energy technologies. The Atlas includes the following: A GIS database organized as a set of Environmental Systems Research Institute (ESRI) ArcGIS Personal GeoDatabases, and ESRI ArcReader and ArcGIS project files providing an interactive map visualization and analysis interface.

  15. Measurement of Standard Model VBS/VBF production with the ATLAS and CMS detectors

    CERN Document Server

    Li, Shu; The ATLAS collaboration

    2017-01-01

    Proceeding for the poster presentation at Blois2017, France on the topic of "Measurements of Standard Model VBS/VBF productions with ATLAS+CMS detectors" (ATL-PHYS-SLIDE-2017-333 https://cds.cern.ch/record/2267458) Deadline: 15/10/2017

  16. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    Energy Technology Data Exchange (ETDEWEB)

    Bouchami, J; Dallaire, F; Gutierrez, A; Idarraga, J; Leroy, C; Picard, S; Scallon, O [Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Kral, V; PospIsil, S; Solc, J; Suk, M; Turecek, D; Vykydal, Z; Zemlieka, J, E-mail: scallon@lps.umontreal.ca [Institute of Experimental and Applied Physics of the CTU in Prague, Horska 3a/22, CZ-12800 Praha2 - Albertov (Czech Republic)

    2011-01-15

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of {sup 6}LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) - based on the ROOT application - allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons ({sup 252}Cf and {sup 241}AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  17. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    Science.gov (United States)

    Bouchami, J.; Dallaire, F.; Gutiérrez, A.; Idarraga, J.; Král, V.; Leroy, C.; Picard, S.; Pospíšil, S.; Scallon, O.; Solc, J.; Suk, M.; Turecek, D.; Vykydal, Z.; Žemlièka, J.

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) — based on the ROOT application — allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons (252Cf and 241AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  18. Iran atlas of offshore renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour, M.; Rahimi, R. [Sharif University of Technology, School of Mechanical engineering, Azadi Ave., Tehran (Iran)

    2011-01-15

    The aim of the present study is to provide an Atlas of IRAN Offshore Renewable Energy Resources (hereafter called 'the Atlas') to map out wave and tidal resources at a national scale, extending over the area of the Persian Gulf and Sea of Oman. Such an Atlas can provide necessary tools to identify the areas with greatest resource potential and within reach of present technology development. To estimate available tidal energy resources at the site, a two-dimensional tidally driven hydrodynamic numerical model of Persian Gulf was developed using the hydrodynamic model in the MIKE 21 Flow Model (MIKE 21HD), with validation using tidal elevation measurements and tidal stream diamonds from Admiralty charts. The results of the model were used to produce a time series of the tidal stream velocity over the simulation period. Moreover, to assess the potential of the wave energy in this site, a model was developed based on six-hourly data from a third generation ocean wave model (ISWM-Iranian Sea Wave Model) covering the period 1992-2003. To ensure the information provided to the Atlas is managed and maintained most effectively, all the derived marine resource parameters have been captured in a structured database, within a Geographical Information System (GIS), so enabling effective data management, presentation and interrogation. (author)

  19. The ATLAS detector simulation application

    International Nuclear Information System (INIS)

    Rimoldi, A.

    2007-01-01

    The simulation program for the ATLAS experiment at CERN is currently in a full operational mode and integrated into the ATLAS common analysis framework, Athena. The OO approach, based on GEANT4, has been interfaced within Athena and to GEANT4 using the LCG dictionaries and Python scripting. The robustness of the application was proved during the test productions since 2004. The Python interface has added the flexibility, modularity and interactivity that the simulation tool requires in order to be able to provide a common implementation of different full ATLAS simulation setups, test beams and cosmic ray applications. Generation, simulation and digitization steps were exercised for performance and robustness tests. The comparison with real data has been possible in the context of the ATLAS Combined Test Beam (2004-2005) and cosmic ray studies (2006)

  20. Reliability Engineering Analysis of ATLAS Data Reprocessing Campaigns

    CERN Document Server

    Vaniachine, A; The ATLAS collaboration; Karpenko, D

    2013-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability...

  1. Reliability Engineering Analysis of ATLAS Data Reprocessing Campaigns

    CERN Document Server

    Vaniachine, A; The ATLAS collaboration; Karpenko, D

    2014-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability...

  2. Recent Tests of QCD with the ATLAS Detector

    CERN Document Server

    Callea, Giuseppe; The ATLAS collaboration

    2018-01-01

    The ATLAS Collaboration has a large program to study various aspects of Quantum Chromodynamics starting from non-perturbative effects over diffractive physics to high precision perturbative calculations. In this talk, we review the latest results on Bose-Einstein correlations measured with the ATLAS detector along with an analysis of the momentum difference between charged hadrons in high–energy proton–proton collisions. The latter allows the investigation of observables sensitive to the predictions of the quantized string model. Going to higher energy scales, we present first measurements of jet substructure quantities at a hadron collider, calculated at next-to-next-to-leading-logarithm accuracy. In particular, the soft drop mass is measured in dijet events with the ATLAS detector at 13 TeV, unfolded to particle-level and compared to Monte Carlo simulations. Perturbative QCD at highest energies can be precisely tested with the measurement of particle jet production of which we present the latest results...

  3. Search for exotic physics with ATLAS

    CERN Document Server

    Delsart, Pierre-Antoine

    2006-01-01

    At the LHC, the program of research in particle physics beyond the Standard Model is extremely rich. With the ATLAS detector, besides SUSY mainstream studies, many exotic theoretical models will be investigated. They range from compositeness of fundamental fermions to extra dimension scenarii through GUT models and include many variants. I shall review some selected typical studies by the ATLAS collaboration on exotic physics, highlighting the discovery prospects and the recent analyses using the latest full detector simulations.

  4. Lessons learned from the ATLAS performance studies of the Iberian Cloud for the first LHC running period

    International Nuclear Information System (INIS)

    Sánchez-Martínez, V; Hoz, S González de la; Salt, J; Villaplana, M; Borges, G; Gomes, J; Borrego, C; Pages, A Pacheco; Sedov, A; Peso, J del; Delfino, M; Wolters, H

    2014-01-01

    In this contribution we describe the performance of the Iberian (Spain and Portugal) ATLAS cloud during the first LHC running period (March 2010-January 2013) in the context of the GRID Computing and Data Distribution Model. The evolution of the resources for CPU, disk and tape in the Iberian Tier-1 and Tier-2s is summarized. The data distribution over all ATLAS destinations is shown, focusing on the number of files transferred and the size of the data. The status and distribution of simulation and analysis jobs within the cloud are discussed. The Distributed Analysis tools used to perform physics analysis are explained as well. Cloud performance in terms of the availability and reliability of its sites is discussed. The effect of the changes in the ATLAS Computing Model on the cloud is analyzed. Finally, the readiness of the Iberian Cloud towards the first Long Shutdown (LS1) is evaluated and an outline of the foreseen actions to take in the coming years is given. The shutdown will be a good opportunity to improve and evolve the ATLAS Distributed Computing system to prepare for the future challenges of the LHC operation.

  5. The Latest from ATLAS

    CERN Multimedia

    2009-01-01

    Since November 2008, ATLAS has undertaken detailed maintenance, consolidation and repair work on the detector (see Bulletin of 20 July 2009). Today, the fraction of the detector that is operational has increased compared to last year: less than 1% of dead channels for most of the sub-systems. "We are going to start taking data this year with a detector which is even more efficient than it was last year," agrees ATLAS Spokesperson, Fabiola Gianotti. By mid-September the detector was fully closed again, and the cavern sealed. The magnet system has been operated at nominal current for extensive periods over recent months. Once the cavern was sealed, ATLAS began two weeks of combined running. Right now, subsystems are joining the run incrementally until the point where the whole detector is integrated and running as one. In the words of ATLAS Technical Coordinator, Marzio Nessi: "Now we really start physics." In parallel, the analysis ...

  6. ATLAS Distributed Computing experience and performance during the LHC Run-2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00081160; The ATLAS collaboration

    2017-01-01

    ATLAS Distributed Computing during LHC Run-1 was challenged by steadily increasing computing, storage and network requirements. In addition, the complexity of processing task workflows and their associated data management requirements led to a new paradigm in the ATLAS computing model for Run-2, accompanied by extensive evolution and redesign of the workflow and data management systems. The new systems were put into production at the end of 2014, and gained robustness and maturity during 2015 data taking. ProdSys2, the new request and task interface; JEDI, the dynamic job execution engine developed as an extension to PanDA; and Rucio, the new data management system, form the core of Run-2 ATLAS distributed computing engine. One of the big changes for Run-2 was the adoption of the Derivation Framework, which moves the chaotic CPU and data intensive part of the user analysis into the centrally organized train production, delivering derived AOD datasets to user groups for final analysis. The effectiveness of the...

  7. ATLAS Distributed Computing experience and performance during the LHC Run-2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00081160; The ATLAS collaboration

    2016-01-01

    ATLAS Distributed Computing during LHC Run-1 was challenged by steadily increasing computing, storage and network requirements. In addition, the complexity of processing task workflows and their associated data management requirements led to a new paradigm in the ATLAS computing model for Run-2, accompanied by extensive evolution and redesign of the workflow and data management systems. The new systems were put into production at the end of 2014, and gained robustness and maturity during 2015 data taking. ProdSys2, the new request and task interface; JEDI, the dynamic job execution engine developed as an extension to PanDA; and Rucio, the new data management system, form the core of the Run-2 ATLAS distributed computing engine. One of the big changes for Run-2 was the adoption of the Derivation Framework, which moves the chaotic CPU and data intensive part of the user analysis into the centrally organized train production, delivering derived AOD datasets to user groups for final analysis. The effectiveness of...

  8. Web systems to support the elaboration and publication of the ATLAS data analysis papers

    International Nuclear Information System (INIS)

    Maidantchik, Carmen; Moraes, Laura O.F.; Karam, K.; Grael, Felipe F.; Evora, Luiz Henrique R.A.

    2011-01-01

    Full text: In 2010, the LHC experiment produced 7 TeV and heavy-ions collisions continually. It allowed ATLAS to collect and analyze a huge amount of data and perform several studies. Physicists are now publishing papers and conference notes announcing results and achievements. During the past year, 37 papers were published and for 2011 there are already 39 papers in preparation. A paper publication management involves several aspects, such as keep track of the analysis results status, follow the procedure step-by-step, promote the communication among collaborators, improve the paper initial version, and make an interaction between the Authorship Committee and the Publication Committee to produce a final authors list. The UFRJ group developed the Glance system, a retrieval mechanism to perform data manipulation and operation in distinct and geographically spread repositories. Using Glance as the main application to access data, the Analysis Follow-Up and Analysis CONF Notes systems allow users to manage and update information related to all ATLAS papers and conference notes. Both systems support the process of revision, approval and publication of the analysis outcome. The first step to publish a paper or note is to define an Editorial Board, which main responsibility is to improve the initial versions. The whole process is supervised by the Publication Committee, which will sign-off the final decisions and submit the paper for publishing. Presentations and papers versions are elaborated by the Conveners of the different ATLAS physics groups. The systems also support the registration of meetings, tracking the paper through the official references (like CDS, arXiv, DOI and the published Journal) and insertion of comments about the successive versions. As all steps are traced, automatic e-mails warn the responsible of the next step to take an action. A search engine allows any user to follow an analysis publication stage. The access privileges are based on

  9. The North American Drought Atlas: Tree-Ring Reconstructions of Drought Variability for Climate Modeling and Assessment

    Science.gov (United States)

    Cook, E. R.

    2007-05-01

    The North American Drought Atlas describes a detailed reconstruction of drought variability from tree rings over most of North America for the past 500-1000 years. The first version of it, produced over three years ago, was based on a network of 835 tree-ring chronologies and a 286-point grid of instrumental Palmer Drought Severity Indices (PDSI). These gridded PDSI reconstructions have been used in numerous published studies now that range from modeling fire in the American West, to the impact of drought on palaeo-Indian societies, and to the determination of the primary causes of drought over North America through climate modeling experiments. Some examples of these applications will be described to illustrate the scientific value of these large-scale reconstructions of drought. Since the development and free public release of Version 1 of the North American Drought Atlas (see http:iridl.ldeo.columbia.edu/SOURCES/.LDEO/.TRL/.NADA2004/.pdsi-atlas.html), great improvements have been made in the critical tree-ring network used to reconstruct PDSI at each grid point. This network has now been enlarged to 1743 annual tree-ring chronologies, which greatly improves the density of tree-ring records in certain parts of the grid, especially in Canada and Mexico. In addition, the number of tree-ring records that extend back before AD 1400 has been substantially increased. These developments justify the creation of Version 2 of the North American Drought Atlas. In this talk I will describe this new version of the drought atlas and some of its properties that make it a significant improvement over the previous version. The new product provides enhanced resolution of the spatial and temporal variability of prolonged drought such as the late 16th century event that impacted regions of both Mexico and the United States. I will also argue for the North American Drought Atlas being used as a template for the development of large-scale drought reconstructions in other land areas of

  10. Radiation damage monitoring in the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Seidel, Sally

    2013-01-01

    We describe the implementation of radiation damage monitoring using measurement of leakage current in the ATLAS silicon pixel sensors. The dependence of the leakage current upon the integrated luminosity is presented. The measurement of the radiation damage corresponding to an integrated luminosity 5.6 fb −1 is presented along with a comparison to a model. -- Highlights: ► Radiation damage monitoring via silicon leakage current is implemented in the ATLAS (LHC) pixel detector. ► Leakage currents measured are consistent with the Hamburg/Dortmund model. ► This information can be used to validate the ATLAS simulation model.

  11. Evolution of the ATLAS Distributed Computing during the LHC long shutdown

    CERN Document Server

    Campana, S; The ATLAS collaboration

    2013-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the WLCG distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileu...

  12. ProstAtlas: A digital morphologic atlas of the prostate

    International Nuclear Information System (INIS)

    Betrouni, N.; Iancu, A.; Puech, P.; Mordon, S.; Makni, N.

    2012-01-01

    Computer-aided medical interventions and medical robotics for prostate cancer have known an increasing interest and research activity. However before the routine deployment of these procedures in clinical practice becomes a reality, in vivo and in silico validations must be undertaken. In this study, we developed a digital morphologic atlas of the prostate. We were interested by the gland, the peripheral zone and the central gland. Starting from an image base collected from 30 selected patients, a mean shape and most important deformations for each structure were deduced using principal component analysis. The usefulness of this atlas was highlighted in two applications: image simulation and physical phantom design

  13. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases.

    Science.gov (United States)

    Zaslavsky, Ilya; Baldock, Richard A; Boline, Jyl

    2014-01-01

    Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today's data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF) initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI). A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS), a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML): XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POI)s, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems (SRSs) and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas Project.

  14. Cyberinfrastructure for the digital brain: spatial standards for integrating rodent brain atlases

    Directory of Open Access Journals (Sweden)

    Ilya eZaslavsky

    2014-09-01

    Full Text Available Biomedical research entails capture and analysis of massive data volumes and new discoveries arise from data-integration and mining. This is only possible if data can be mapped onto a common framework such as the genome for genomic data. In neuroscience, the framework is intrinsically spatial and based on a number of paper atlases. This cannot meet today’s data-intensive analysis and integration challenges. A scalable and extensible software infrastructure that is standards based but open for novel data and resources, is required for integrating information such as signal distributions, gene-expression, neuronal connectivity, electrophysiology, anatomy, and developmental processes. Therefore, the International Neuroinformatics Coordinating Facility (INCF initiated the development of a spatial framework for neuroscience data integration with an associated Digital Atlasing Infrastructure (DAI. A prototype implementation of this infrastructure for the rodent brain is reported here. The infrastructure is based on a collection of reference spaces to which data is mapped at the required resolution, such as the Waxholm Space (WHS, a 3D reconstruction of the brain generated using high-resolution, multi-channel microMRI. The core standards of the digital atlasing service-oriented infrastructure include Waxholm Markup Language (WaxML: XML schema expressing a uniform information model for key elements such as coordinate systems, transformations, points of interest (POIs, labels, and annotations; and Atlas Web Services: interfaces for querying and updating atlas data. The services return WaxML-encoded documents with information about capabilities, spatial reference systems and structures, and execute coordinate transformations and POI-based requests. Key elements of INCF-DAI cyberinfrastructure have been prototyped for both mouse and rat brain atlas sources, including the Allen Mouse Brain Atlas, UCSD Cell-Centered Database, and Edinburgh Mouse Atlas

  15. Women of ATLAS - International Women's Day 2016

    CERN Multimedia

    Biondi, Silvia

    2016-01-01

    Women play key roles in the ATLAS Experiment: from young physicists at the start of their careers to analysis group leaders and spokespersons of the collaboration. Celebrate International Women's Day by meeting a few of these inspiring ATLAS researchers.

  16. Search for vector-like quarks at ATLAS

    CERN Document Server

    Ellinghaus, Frank; The ATLAS collaboration

    2017-01-01

    Vector like quarks appear in many theories beyond the Standard Model as a way to cancel the mass divergence for the Higgs boson. The current status of the ATLAS searches for the production of vector-like quarks will be reviewed for proton-proton collisions at 13 TeV. This presentation will address the analysis techniques, in particular, the selection criteria, the background modelling and the related experimental uncertainties. The phenomenological implications of the obtained results will also be discussed.

  17. The Hatfield SCT lunar atlas photographic atlas for Meade, Celestron, and other SCT telescopes

    CERN Document Server

    2014-01-01

    In a major publishing event for lunar observers, the justly famous Hatfield atlas is updated in even more usable form. This version of Hatfield’s classic atlas solves the problem of mirror images, making identification of left-right reversed imaged lunar features both quick and easy. SCT and Maksutov telescopes – which of course include the best-selling models from Meade and Celestron – reverse the visual image left to right. Thus it is extremely difficult to identify lunar features at the eyepiece of one of the instruments using a conventional Moon atlas, as the human brain does not cope well when trying to compare the real thing with a map that is a mirror image of it. Now this issue has at last been solved.   In this atlas the Moon’s surface is shown at various sun angles, and inset keys show the effects of optical librations. Smaller non-mirrored reference images are also included to make it simple to compare the mirrored SCT plates and maps with those that appear in other atlases. This edition s...

  18. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum

    CERN Document Server

    Abercrombie, Daniel; Akilli, Ece; Alcaraz Maestre, Juan; Allen, Brandon; Alvarez Gonzalez, Barbara; Andrea, Jeremy; Arbey, Alexandre; Azuelos, Georges; Azzi, Patrizia; Backovic, Mihailo; Bai, Yang; Banerjee, Swagato; Beacham, James; Belyaev, Alexander; Boveia, Antonio; Brennan, Amelia Jean; Buchmueller, Oliver; Buckley, Matthew R.; Busoni, Giorgio; Buttignol, Michael; Cacciapaglia, Giacomo; Caputo, Regina; Carpenter, Linda; Filipe Castro, Nuno; Gomez Ceballos, Guillelmo; Cheng, Yangyang; Chou, John Paul; Cortes Gonzalez, Arely; Cowden, Chris; D'Eramo, Francesco; De Cosa, Annapaola; De Gruttola, Michele; De Roeck, Albert; De Simone, Andrea; Deandrea, Aldo; Demiragli, Zeynep; DiFranzo, Anthony; Doglioni, Caterina; du Pree, Tristan; Erbacher, Robin; Erdmann, Johannes; Fischer, Cora; Flaecher, Henning; Fox, Patrick J.; Fuks, Benjamin; Genest, Marie-Helene; Gomber, Bhawna; Goudelis, Andreas; Gramling, Johanna; Gunion, John; Hahn, Kristian; Haisch, Ulrich; Harnik, Roni; Harris, Philip C.; Hoepfner, Kerstin; Hoh, Siew Yan; Hsu, Dylan George; Hsu, Shih-Chieh; Iiyama, Yutaro; Ippolito, Valerio; Jacques, Thomas; Ju, Xiangyang; Kahlhoefer, Felix; Kalogeropoulos, Alexis; Kaplan, Laser Seymour; Kashif, Lashkar; Khoze, Valentin V.; Khurana, Raman; Kotov, Khristian; Kovalskyi, Dmytro; Kulkarni, Suchita; Kunori, Shuichi; Kutzner, Viktor; Lee, Hyun Min; Lee, Sung-Won; Liew, Seng Pei; Lin, Tongyan; Lowette, Steven; Madar, Romain; Malik, Sarah; Maltoni, Fabio; Martinez Perez, Mario; Mattelaer, Olivier; Mawatari, Kentarou; McCabe, Christopher; Megy, Theo; Morgante, Enrico; Mrenna, Stephen; Narayanan, Siddharth M.; Nelson, Andy; Novaes, Sergio F.; Padeken, Klaas Ole; Pani, Priscilla; Papucci, Michele; Paulini, Manfred; Paus, Christoph; Pazzini, Jacopo; Penning, Bjorn; Peskin, Michael E.; Pinna, Deborah; Procura, Massimiliano; Qazi, Shamona F.; Racco, Davide; Re, Emanuele; Riotto, Antonio; Rizzo, Thomas G.; Roehrig, Rainer; Salek, David; Sanchez Pineda, Arturo; Sarkar, Subir; Schmidt, Alexander; Schramm, Steven Randolph; Shepherd, William; Singh, Gurpreet; Soffi, Livia; Srimanobhas, Norraphat; Sung, Kevin; Tait, Tim M.P.; Theveneaux-Pelzer, Timothee; Thomas, Marc; Tosi, Mia; Trocino, Daniele; Undleeb, Sonaina; Vichi, Alessandro; Wang, Fuquan; Wang, Lian-Tao; Wang, Ren-Jie; Whallon, Nikola; Worm, Steven; Wu, Mengqing; Wu, Sau Lan; Yang, Hongtao; Yang, Yong; Yu, Shin-Shan; Zaldivar, Bryan; Zanetti, Marco; Zhang, Zhiqing; Zucchetta, Alberto

    2015-01-01

    This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations.

  19. Big Data Tools as Applied to ATLAS Event Data

    Science.gov (United States)

    Vukotic, I.; Gardner, R. W.; Bryant, L. A.

    2017-10-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Logfiles, database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and associated analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data. Such modes would simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of machine learning environments and tools like Spark, Jupyter, R, SciPy, Caffe, TensorFlow, etc. Machine learning challenges such as the Higgs Boson Machine Learning Challenge, the Tracking challenge, Event viewers (VP1, ATLANTIS, ATLASrift), and still to be developed educational and outreach tools would be able to access the data through a simple REST API. In this preliminary investigation we focus on derived xAOD data sets. These are much smaller than the primary xAODs having containers, variables, and events of interest to a particular analysis. Being encouraged with the performance of Elasticsearch for the ADC analytics platform, we developed an algorithm for indexing derived xAOD event data. We have made an appropriate document mapping and have imported a full set of standard model W/Z datasets. We compare the disk space efficiency of this approach to that of standard ROOT files, the performance in simple cut flow type of data analysis, and will present preliminary results on its scaling

  20. Atlas – a data warehouse for integrative bioinformatics

    Directory of Open Access Journals (Sweden)

    Yuen Macaire MS

    2005-02-01

    Full Text Available Abstract Background We present a biological data warehouse called Atlas that locally stores and integrates biological sequences, molecular interactions, homology information, functional annotations of genes, and biological ontologies. The goal of the system is to provide data, as well as a software infrastructure for bioinformatics research and development. Description The Atlas system is based on relational data models that we developed for each of the source data types. Data stored within these relational models are managed through Structured Query Language (SQL calls that are implemented in a set of Application Programming Interfaces (APIs. The APIs include three languages: C++, Java, and Perl. The methods in these API libraries are used to construct a set of loader applications, which parse and load the source datasets into the Atlas database, and a set of toolbox applications which facilitate data retrieval. Atlas stores and integrates local instances of GenBank, RefSeq, UniProt, Human Protein Reference Database (HPRD, Biomolecular Interaction Network Database (BIND, Database of Interacting Proteins (DIP, Molecular Interactions Database (MINT, IntAct, NCBI Taxonomy, Gene Ontology (GO, Online Mendelian Inheritance in Man (OMIM, LocusLink, Entrez Gene and HomoloGene. The retrieval APIs and toolbox applications are critical components that offer end-users flexible, easy, integrated access to this data. We present use cases that use Atlas to integrate these sources for genome annotation, inference of molecular interactions across species, and gene-disease associations. Conclusion The Atlas biological data warehouse serves as data infrastructure for bioinformatics research and development. It forms the backbone of the research activities in our laboratory and facilitates the integration of disparate, heterogeneous biological sources of data enabling new scientific inferences. Atlas achieves integration of diverse data sets at two levels. First

  1. Aging Analysis of Micromegas Detectors for ATLAS New Small Wheel

    CERN Document Server

    Quinnan, Melissa

    2015-01-01

    In preparation for the coming High Luminosity Large Hadron Collider (HL-LHC) upgrade, the New Small Wheel (NSW) will replace the Small Wheel of the ATLAS Muon Spectrometer as part of the 2018 ATLAS Phase-I upgrade. Micromegas (MM) detectors will serve as one component of the NSW. These gaseous micro-mesh detectors will accommodate the higher luminosity and trigger rate of the future HL-LHC.In order to predict performance of MM after several years in the HL-LHC, radiation aging tests were conducted in the Gamma Irradiation Facility (GIF++) using a Cs 137 source. Two small MM prototype "T" chambers were irradiated and studied over the course of several months to accelerate the aging process and characterize chamber behavior. This report outlines a record of the aging process thus far and demonstrates techniques used to describe aging effects, namely measurements of average current, integrated charge, and gain. These will be used in the ongoing aging analysis of the T chambers and in future aging studies of the ...

  2. Studying radiative B decays with the Atlas detector; Etude des desintegrations radiatives des mesons B dans le detecteur ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Viret, S

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b {yields} s{gamma}), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/{radical}B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  3. Studying radiative B decays with the Atlas detector; Etude des desintegrations radiatives des mesons B dans le detecteur ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Viret, S

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b {yields} s{gamma}), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/{radical}B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  4. Status and prospects of measurements of exclusive and diffractive processes with the ATLAS detector

    CERN Document Server

    Foster, Andrew Geoffrey; The ATLAS collaboration

    2018-01-01

    Fiducial and differential cross-sections are presented for the exclusive production of pairs of leptons and W bosons, measured across a range of centre-of-mass energies by the ATLAS Collaboration at the LHC. All measurements are compatible with Standard Model predictions. A measurement of the dijet production cross-section is presented differentially in variables which distinguish between diffractive and non-diffractive scattering. The first analysis utilising the new AFP detectors at ATLAS is detailed.

  5. ATLAS Distributed Computing Experience and Performance During the LHC Run-2

    Science.gov (United States)

    Filipčič, A.; ATLAS Collaboration

    2017-10-01

    ATLAS Distributed Computing during LHC Run-1 was challenged by steadily increasing computing, storage and network requirements. In addition, the complexity of processing task workflows and their associated data management requirements led to a new paradigm in the ATLAS computing model for Run-2, accompanied by extensive evolution and redesign of the workflow and data management systems. The new systems were put into production at the end of 2014, and gained robustness and maturity during 2015 data taking. ProdSys2, the new request and task interface; JEDI, the dynamic job execution engine developed as an extension to PanDA; and Rucio, the new data management system, form the core of Run-2 ATLAS distributed computing engine. One of the big changes for Run-2 was the adoption of the Derivation Framework, which moves the chaotic CPU and data intensive part of the user analysis into the centrally organized train production, delivering derived AOD datasets to user groups for final analysis. The effectiveness of the new model was demonstrated through the delivery of analysis datasets to users just one week after data taking, by completing the calibration loop, Tier-0 processing and train production steps promptly. The great flexibility of the new system also makes it possible to execute part of the Tier-0 processing on the grid when Tier-0 resources experience a backlog during high data-taking periods. The introduction of the data lifetime model, where each dataset is assigned a finite lifetime (with extensions possible for frequently accessed data), was made possible by Rucio. Thanks to this the storage crises experienced in Run-1 have not reappeared during Run-2. In addition, the distinction between Tier-1 and Tier-2 disk storage, now largely artificial given the quality of Tier-2 resources and their networking, has been removed through the introduction of dynamic ATLAS clouds that group the storage endpoint nucleus and its close-by execution satellite sites. All stable

  6. Minimum Bias Trigger in ATLAS

    International Nuclear Information System (INIS)

    Kwee, Regina

    2010-01-01

    Since the restart of the LHC in November 2009, ATLAS has collected inelastic pp collisions to perform first measurements on charged particle densities. These measurements will help to constrain various models describing phenomenologically soft parton interactions. Understanding the trigger efficiencies for different event types are therefore crucial to minimize any possible bias in the event selection. ATLAS uses two main minimum bias triggers, featuring complementary detector components and trigger levels. While a hardware based first trigger level situated in the forward regions with 2.2 < |η| < 3.8 has been proven to select pp-collisions very efficiently, the Inner Detector based minimum bias trigger uses a random seed on filled bunches and central tracking detectors for the event selection. Both triggers were essential for the analysis of kinematic spectra of charged particles. Their performance and trigger efficiency measurements as well as studies on possible bias sources will be presented. We also highlight the advantage of these triggers for particle correlation analyses. (author)

  7. Build Your Own Particle Detector. Education and outreach through ATLAS LEGO models and events

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220289; The ATLAS collaboration

    2016-01-01

    To support the outreach activities of ATLAS institutes and to grasp people’s attention in science exhibitions and during public events, a very detailed model of the experiment built entirely out of LEGO bricks as well as an outreach programme using LEGO bricks to get people to think about particle detectors and involve them into a conversation about particle physics in general have been created. A large LEGO model, consisting of about 9500 pieces, has been exported to more than 55 ATLAS institutes and has been used in numerous exhibitions to explain the proportion and composition of the experiment to the public. As part of the Build Your Own Particle Detector programme (byopd.org) more than 15 events have been conducted, either involving a competition to design and build the best particle detector from a random pile of pieces or to take part in the construction of one of the large models, as part of a full day outreach event. Recently, miniature models of all four main LHC experiments, that will be used at ...

  8. Calibration Analysis Software for the ATLAS Pixel Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372086; The ATLAS collaboration

    2016-01-01

    The calibration of the ATLAS Pixel detector at LHC fulfils two main purposes: to tune the front-end configuration parameters for establishing the best operational settings and to measure the tuning performance through a subset of scans. An analysis framework has been set up in order to take actions on the detector given the outcome of a calibration scan (e.g. to create a mask for disabling noisy pixels). The software framework to control all aspects of the Pixel detector scans and analyses is called Calibration Console. The introduction of a new layer, equipped with new Front End-I4 Chips, required an update the Console architecture. It now handles scans and scans analyses applied together to chips with different characteristics. An overview of the newly developed Calibration Analysis Software will be presented, together with some preliminary result.

  9. White matter atlas of the human spinal cord with estimation of partial volume effect.

    Science.gov (United States)

    Lévy, S; Benhamou, M; Naaman, C; Rainville, P; Callot, V; Cohen-Adad, J

    2015-10-01

    Template-based analysis has proven to be an efficient, objective and reproducible way of extracting relevant information from multi-parametric MRI data. Using common atlases, it is possible to quantify MRI metrics within specific regions without the need for manual segmentation. This method is therefore free from user-bias and amenable to group studies. While template-based analysis is common procedure for the brain, there is currently no atlas of the white matter (WM) spinal pathways. The goals of this study were: (i) to create an atlas of the white matter tracts compatible with the MNI-Poly-AMU template and (ii) to propose methods to quantify metrics within the atlas that account for partial volume effect. The WM atlas was generated by: (i) digitalizing an existing WM atlas from a well-known source (Gray's Anatomy), (ii) registering this atlas to the MNI-Poly-AMU template at the corresponding slice (C4 vertebral level), (iii) propagating the atlas throughout all slices of the template (C1 to T6) using regularized diffeomorphic transformations and (iv) computing partial volume values for each voxel and each tract. Several approaches were implemented and validated to quantify metrics within the atlas, including weighted-average and Gaussian mixture models. Proof-of-concept application was done in five subjects for quantifying magnetization transfer ratio (MTR) in each tract of the atlas. The resulting WM atlas showed consistent topological organization and smooth transitions along the rostro-caudal axis. The median MTR across tracts was 26.2. Significant differences were detected across tracts, vertebral levels and subjects, but not across laterality (right-left). Among the different tested approaches to extract metrics, the maximum a posteriori showed highest performance with respect to noise, inter-tract variability, tract size and partial volume effect. This new WM atlas of the human spinal cord overcomes the biases associated with manual delineation and partial

  10. Optimization studies for the H → τ{sub lep}τ{sub had} decay channel with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Liebal, Jessica; Schwindt, Thomas; Kraus, Jana; Kroseberg, Juergen; Wermes, Norbert [Universitaet Bonn (Germany)

    2016-07-01

    At the beginning of 2015 the ATLAS collaboration published an evidence for the Higgs boson decay into a pair of τ leptons consistent with the Standard Model expectation. The observed excess at m{sub H}=125 GeV corresponds to 4.5 standard deviations. The analysis was based on a combination of data samples collected in 2011 and 2012 with ATLAS at √(s) = 7 TeV and √(s) = 8 TeV corresponding to an overall integrated luminosity of 24.9 fb{sup -1}. A preliminary combination of ATLAS and CMS Run1 results yielded an observation with a measured (observed) significance of 5.5. This talk highlights selected aspects of the Run1 ATLAS H → ττ analysis focussing on the H → τ{sub lep}τ{sub had} decay process in which one tau decays leptonically and the other one hadronically. Options to improve the analysis as well as channel-specific challenges for Run2 are discussed.

  11. Evolution of the ATLAS Distributed Computing system during the LHC Long shutdown

    CERN Document Server

    Campana, S; The ATLAS collaboration

    2014-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the WLCG distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileu...

  12. AGIS: Integration of new technologies used in ATLAS Distributed Computing

    Science.gov (United States)

    Anisenkov, Alexey; Di Girolamo, Alessandro; Alandes Pradillo, Maria

    2017-10-01

    The variety of the ATLAS Distributed Computing infrastructure requires a central information system to define the topology of computing resources and to store different parameters and configuration data which are needed by various ATLAS software components. The ATLAS Grid Information System (AGIS) is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services. Being an intermediate middleware system between clients and external information sources (like central BDII, GOCDB, MyOSG), AGIS defines the relations between experiment specific used resources and physical distributed computing capabilities. Being in production during LHC Runl AGIS became the central information system for Distributed Computing in ATLAS and it is continuously evolving to fulfil new user requests, enable enhanced operations and follow the extension of the ATLAS Computing model. The ATLAS Computing model and data structures used by Distributed Computing applications and services are continuously evolving and trend to fit newer requirements from ADC community. In this note, we describe the evolution and the recent developments of AGIS functionalities, related to integration of new technologies recently become widely used in ATLAS Computing, like flexible computing utilization of opportunistic Cloud and HPC resources, ObjectStore services integration for Distributed Data Management (Rucio) and ATLAS workload management (PanDA) systems, unified storage protocols declaration required for PandDA Pilot site movers and others. The improvements of information model and general updates are also shown, in particular we explain how other collaborations outside ATLAS could benefit the system as a computing resources information catalogue. AGIS is evolving towards a common information system, not coupled to a specific experiment.

  13. Class Generation for Numerical Wind Atlases

    DEFF Research Database (Denmark)

    Cutler, N.J.; Jørgensen, B.H.; Ersbøll, Bjarne Kjær

    2006-01-01

    A new optimised clustering method is presented for generating wind classes for mesoscale modelling to produce numerical wind atlases. It is compared with the existing method of dividing the data in 12 to 16 sectors, 3 to 7 wind-speed bins and dividing again according to the stability...... of the atmosphere. Wind atlases are typically produced using many years of on-site wind observations at many locations. Numerical wind atlases are the result of mesoscale model integrations based on synoptic scale wind climates and can be produced in a number of hours of computation. 40 years of twice daily NCEP...... adapting to the local topography. The purpose of forming classes is to minimise the computational time for the mesoscale model while still representing the synoptic climate features. Only tried briefly in the past, clustering has traits that can be used to improve the existing class generation method...

  14. Readiness of the ATLAS Spanish Federated Tier-2 for the Physics Analysis of the early collision events at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, E; Amoros, G; Fassi, F; Fernandez, A; Gonzalez, S; Kaci, M; Lamas, A; Salt, J; Sanchez, J [Instituto de Fisica Corpuscular (IFIC) (centro mixto CSIC - University Valencia), E-46071 Valencia (Spain); Nadal, J; Borrego, C; Campos, M; Pacheco, A [Institut de Fisica d' Altes Energies (IFAE) Facultat de Ciencies UAB, E-08193 Bellaterra, Barcelona (Spain); Pardo, J; Del Cano, L; Peso, J Del; Fernandez, P; March, L; Munoz, L [Universidad Autonoma de Madrid (UAM) Dpto. de Fisica Teorica, 28049 Madrid (Spain); Espinal, X, E-mail: elena.oliver@ific.uv.e [Port d' Informacio CientIfica (PIC) Campus UAB Edifici D E-08193 Bellaterra, Barcelona (Spain)

    2010-04-01

    In this contribution an evaluation of the readiness parameters for the Spanish ATLAS Federated Tier-2 is presented, regarding the ATLAS data taking which is expected to start by the end of the year 2009. Special attention will be paid to the Physics Analysis from different points of view: Data Management, Simulated events Production and Distributed Analysis Tests. Several use cases of Distributed Analysis in GRID infrastructures and local interactive analysis in non-Grid farms, are provided, in order to evaluate the interoperability between both environments, and to compare the different performances. The prototypes for local computing infrastructures for data analysis are described. Moreover, information about a local analysis facilities, called Tier-3, is given.

  15. ATLAS-Canada Network

    Energy Technology Data Exchange (ETDEWEB)

    Gable, I; Sobie, R J [HEPnet/Canada, Victoria, BC (Canada); Bedinelli, M; Butterworth, S; Groer, L; Kupchinsky, V [University of Toronto, Toronto, ON (Canada); Caron, B; McDonald, S; Payne, C [TRIUMF Laboratory, Vancouver, BC (Canada); Chambers, R [University of Alberta, Edmonton, AB (Canada); Fitzgerald, B [University of Victoria, Victoria, BC (Canada); Hatem, R; Marshall, P; Pobric, D [CANARIE Inc., Ottawa, ON (Canada); Maddalena, P; Mercure, P; Robertson, S; Rochefort, M [McGill University, Montreal, QC (Canada); McWilliam, D [BCNet, Vancouver, BC (Canada); Siegert, M [Simon Fraser University, Burnaby, BC (Canada)], E-mail: igable@uvic.ca (and others)

    2008-12-15

    The ATLAS-Canada computing model consists of a WLCG Tier-1 computing centre located at the TRIUMF Laboratory in Vancouver, Canada, and two distributed Tier-2 computing centres in eastern and western Canadian universities. The TRIUMF Tier-1 is connected to the CERN Tier-0 via a 10G dedicated circuit provided by CANARIE. The Canadian institutions hosting Tier-2 facilities are connected to TRIUMF via 1G lightpaths, and routing between Tier-2s occurs through TRIUMF. This paper discusses the architecture of the ATLAS-Canada network, the challenges of building the network, and the future plans.

  16. The Herschel ATLAS

    Science.gov (United States)

    Eales, S.; Dunne, L.; Clements, D.; Cooray, A.; De Zotti, G.; Dye, S.; Ivison, R.; Jarvis, M.; Lagache, G.; Maddox, S.; hide

    2010-01-01

    The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 sq deg of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.

  17. Review of Current Standard Model Results in ATLAS

    CERN Document Server

    Brandt, Gerhard; The ATLAS collaboration

    2018-01-01

    This talk highlights results selected from the Standard Model research programme of the ATLAS Collaboration at the Large Hadron Collider. Results using data from $p-p$ collisions at $\\sqrt{s}=7,8$~TeV in LHC Run-1 as well as results using data at $\\sqrt{s}=13$~TeV in LHC Run-2 are covered. The status of cross section measurements from soft QCD processes and jet production as well as photon production are presented. The presentation extends to vector boson production with associated jets. Precision measurements of the production of $W$ and $Z$ bosons, including a first measurement of the mass of the $W$ bosons, $m_W$, are discussed. The programme to measure electroweak processes with di-boson and tri-boson final states is outlined. All presented measurements are compatible with Standard Model descriptions and allow to further constrain it. In addition they allow to probe new physics which would manifest through extra gauge couplings, or Standard Model gauge couplings deviating from their predicted value.

  18. ATLAS Data Challenge 2 A massive Monte Carlo production on the GRID

    CERN Document Server

    González de la Hoz, S; Lozano, J; Salt, J; Fassi, F; March, L; Adams, D; Deng, W; Nevski, P; Smith, J; Yu, D; Zhao, X; Poulard, G; Goossens, L; Nairz, A; Branco, M; Benekos, N C; Sturrock, R; Walker, R; Vetterli, M; Chudoba, J; Tas, P; Duckeck, G; Kennedy, J; Nielsen, J; Wäänänen, A; Bernardet, K; Negri, G; Rebatto, D; De Salvo, A; Perini, L; Vaccarossa, L; Ould-Saada, F; Read, A; Merino, G; Smirnova, O G; Ellert, M; Quing, D; Brochu, F; Gieraltowski, J; Youssef, S; De, K; Oz-turk, N; Sosebee, M; Severini, H; Gardner, R; Mambeli, M; Smirnov, Y; European Grid Conference

    2005-01-01

    The study and validation of the ATLAS Computing Model started three years ago and will continue for few years in the context of the so-called Data Chal-lenges (DC). DC1 was conducted during 2002-03; the main goals achieved were to set up the simulation data production infrastructure in a real worldwide collaborative effort and to gain experience in exercising an ATLAS wide production model. DC2 (from May until December 2004) is divided into three phases: (i) generate Monte Carlo data using GEANT4 on three different Grid projects: LCG, GRID3 and NorduGrid; (ii) simulate the first pass recon-struction of real data expected in 2007, and (iii) test the Distributed Analysis model. Experience with the use of the system in world-wide DC2 production of ten million events will be presented. We also present how the three Grid fla-vours are operated. Finally we discuss the first prototypes of Distributed Analy-sis systems.

  19. The Pig PeptideAtlas

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius; Sun, Zhi

    2016-01-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data...... repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been...... underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within...

  20. Situational analysis: preliminary regional review of the Mental Health Atlas 2014.

    Science.gov (United States)

    Gater, R; Chew, Z; Saeed, K

    2015-09-28

    The WHO comprehensive Mental Health Action Plan 2013-2020 established goals and objectives that Member States have agreed to meet by 2020. To update the Atlas of Mental Health 2011, specific indicators from the Mental Health Action Plan and additional indicators on service coverage were incorporated into the questionnaire for the Atlas 2014. The data will help facilitate improvement in information gathering and focus efforts towards implementation of the Mental Health Action Plan. The questionnaire was completed by the national mental health focal point of each country. This preliminary review seeks to consolidate data from the initial response to the Atlas 2014 questionnaire by Member States in the Eastern Mediterranean Region. Data for this review were analysed for the whole Region, by health systems groupings and by individual countries. Where possible, data are compared with the Mental Health Atlas 2011 to give a longitudinal perspective.

  1. Vector Boson Scattering at ATLAS

    CERN Document Server

    Ozcan, V E

    2009-01-01

    While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.

  2. Vector Boson Scattering at ATLAS

    CERN Document Server

    Ozcan, V E

    2008-01-01

    While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.

  3. Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies.

    Science.gov (United States)

    Cooper, Robert J; Caffini, Matteo; Dubb, Jay; Fang, Qianqian; Custo, Anna; Tsuzuki, Daisuke; Fischl, Bruce; Wells, William; Dan, Ippeita; Boas, David A

    2012-09-01

    We describe the validation of an anatomical brain atlas approach to the analysis of diffuse optical tomography (DOT). Using MRI data from 32 subjects, we compare the diffuse optical images of simulated cortical activation reconstructed using a registered atlas with those obtained using a subject's true anatomy. The error in localization of the simulated cortical activations when using a registered atlas is due to a combination of imperfect registration, anatomical differences between atlas and subject anatomies and the localization error associated with diffuse optical image reconstruction. When using a subject-specific MRI, any localization error is due to diffuse optical image reconstruction only. In this study we determine that using a registered anatomical brain atlas results in an average localization error of approximately 18 mm in Euclidean space. The corresponding error when the subject's own MRI is employed is 9.1 mm. In general, the cost of using atlas-guided DOT in place of subject-specific MRI-guided DOT is a doubling of the localization error. Our results show that despite this increase in error, reasonable anatomical localization is achievable even in cases where the subject-specific anatomy is unavailable. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Physics with Tau Lepton Final States in ATLAS

    Directory of Open Access Journals (Sweden)

    Pingel Almut M.

    2013-05-01

    Full Text Available The ATLAS detector records collisions from two high-energetic proton beams circulating in the LHC. An integral part of the ATLAS physics program are analyses with tau leptons in the final state. Here an overview is given over the studies done in ATLAS with hadronically-decaying final state tau leptons: Standard Model cross-section measurements of Z → ττ, W → τν and tt̅ → bb̅ e/μν τhadν; τ polarization measurements in W → τν decays; Higgs searches and various searches for physics beyond the Standard Model.

  5. Big Data tools as applied to ATLAS event data

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00225336; The ATLAS collaboration; Gardner, Robert; Bryant, Lincoln

    2017-01-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Logfiles, database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and associated analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data. Such modes would simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of machine learning environments and to...

  6. ATLAS Cold Leg Top Slot Break Analysis using RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Haejung; Lee, Sang Ik; Park, Ju-Hyun; Choi, Tong-Soo [KEPCO NF, Daejeon (Korea, Republic of)

    2016-10-15

    U.S. Nuclear Regulatory Commission (US-NRC) has been reviewing the design certification application for APR1400 submitted by Korea Electric Power Corporation (KEPCO). The main concern about cold leg top slot break is that cladding temperature might be increased by core uncover due to four loop seal reformation following flooding of safety injection water. An integral effect test for cold leg top slot break was performed by KAERI (Korea Atomic Energy Research Institute) using ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation), which is a scaled down experimental facility for APR1400. In this study, RELAP5/MOD3.3/Patch04 is assessed by experimental result of ATLAS cold leg top slot break. Also, thermal hydraulic phenomena by four loop seals reformation is observed by RELAP5 result. The RELAP5/MOD3.3/Patch04 is assessed by the experimental result of ATLAS cold leg top slot break. The top slot break is described by offtake model, and the mass flow rate is fairly well estimated. The RELAP5 well predicts the correlation between general trend and four loop seal reformation. The pressure of the core region and the cladding temperature tends to increase during four loop seal reformation due to steam path blockage on four loop seals. It is presumed that the code cannot estimate two phase phenomena by loop seal clearing as same as experiments. In terms of cladding temperature, loop seal reformation due to loop seal elevation of APR1400 does not need to be the issue, since the void fraction at the active top core is maintained over 0.4.

  7. Dashboard Task Monitor for Managing ATLAS User Analysis on the Grid

    Science.gov (United States)

    Sargsyan, L.; Andreeva, J.; Jha, M.; Karavakis, E.; Kokoszkiewicz, L.; Saiz, P.; Schovancova, J.; Tuckett, D.; Atlas Collaboration

    2014-06-01

    The organization of the distributed user analysis on the Worldwide LHC Computing Grid (WLCG) infrastructure is one of the most challenging tasks among the computing activities at the Large Hadron Collider. The Experiment Dashboard offers a solution that not only monitors but also manages (kill, resubmit) user tasks and jobs via a web interface. The ATLAS Dashboard Task Monitor provides analysis users with a tool that is independent of the operating system and Grid environment. This contribution describes the functionality of the application and its implementation details, in particular authentication, authorization and audit of the management operations.

  8. Dashboard task monitor for managing ATLAS user analysis on the grid

    International Nuclear Information System (INIS)

    Sargsyan, L; Andreeva, J; Karavakis, E; Saiz, P; Tuckett, D; Jha, M; Kokoszkiewicz, L; Schovancova, J

    2014-01-01

    The organization of the distributed user analysis on the Worldwide LHC Computing Grid (WLCG) infrastructure is one of the most challenging tasks among the computing activities at the Large Hadron Collider. The Experiment Dashboard offers a solution that not only monitors but also manages (kill, resubmit) user tasks and jobs via a web interface. The ATLAS Dashboard Task Monitor provides analysis users with a tool that is independent of the operating system and Grid environment. This contribution describes the functionality of the application and its implementation details, in particular authentication, authorization and audit of the management operations.

  9. ATLAS results on searches for long-lived particles

    CERN Document Server

    Otono, Hidetoshi; The ATLAS collaboration

    2018-01-01

    Various new physics beyond standard model predict that long-lived particles would be produced at the LHC, which leave unconventional signatures in the ATLAS detector. In this talk, many searches done by the ATLAS collaboration will be reported.

  10. Studying radiative B decays with the Atlas detector

    International Nuclear Information System (INIS)

    Viret, S.

    2004-09-01

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b → sγ), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/√B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  11. Monte Carlo modeling of Standard Model multi-boson production processes for √s = 13 TeV ATLAS analyses

    CERN Document Server

    Li, Shu; The ATLAS collaboration

    2017-01-01

    We present the Monte Carlo(MC) setup used by ATLAS to model multi-boson processes in √s = 13 TeV proton-proton collisions. The baseline Monte Carlo generators are compared with each other in key kinematic distributions of the processes under study. Sample normalization and systematic uncertainties are discussed.

  12. Lessons learned from the ATLAS performance studies of the Iberian Cloud for the first LHC running period.

    CERN Document Server

    Sánchez-Martínez, V; The ATLAS collaboration; Borrego, C; del Peso, J; Delfino, M; Gomes, J; González de la Hoz, S; Pacheco Pages, A; Salt, J; Sedov, A; Villaplana, M; Wolters, H

    2013-01-01

    In this contribution we describe the performance of the Iberian (Spain and Portugal) ATLAS cloud during the first LHC running period (March 2010-January 2013) in the context of the GRID Computing and Data Distribution Model. The evolution of the resources for CPU, disk and tape in the Iberian Tier-1 and Tier-2s is summarized. The data distribution over all ATLAS destinations is shown, focusing on the number of files transferred and the size of the data. The status and distribution of simulation and analysis jobs within the cloud are discussed. The Distributed Analysis tools used to perform physics analysis are explained as well. Cloud performance in terms of the availability and reliability of its sites is discussed. The e ffect of the changes in the ATLAS Computing Model on the cloud is analyzed. Finally, the readiness of the Iberian Cloud towards the fi rst Long Shutdown (LS1) is evaluated and an outline of the foreseen actions to take in the coming years is given. The shutdown will be a good opportunity to...

  13. Analysis of ATLAS 6-inch cold leg break simulation with MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se Yun; Jun, Hwang Yong; Ha, Sang Jun [Korea Electric Power Company, Daejeon (Korea, Republic of)

    2011-05-15

    A Domestic Standard Problem (DSP) exercise using ATLAS facility has been organized by KAERI. As the second DSP exercise, the 6-inch cold leg bottom break was determined. This experiment is the counterpart test to the DVI line break to verify the safety performance of the DVI method over the traditional CLI method. Compared with the large break LOCA, the phases of the small break LOCA prior to core recovery occur over a long period. The blowdown, natural circulation, loop seal clearance, boil-off, and core recovery phase should be investigated minutely with relevant models of safety analysis codes in order to predict these thermal hydraulic phenomena correctly. To investigate the ECC bypass phenomena, a finer study on the thermalhydraulic behavior in upper annulus downcomer was carried out

  14. Snowmelt and sublimation: field experiments and modelling in the High Atlas Mountains of Morocco

    Directory of Open Access Journals (Sweden)

    O. Schulz

    2004-01-01

    Full Text Available Snow in the High Atlas Mountains is a major source for freshwater renewal and for water availability in the semi-arid lowlands of south-eastern Morocco. Snowfall- and snow-ablation monitoring and modelling is important for estimating potential water delivery from the mountain water towers to the forelands. This study is part of GLOWA-IMPETUS, an integrated management project dealing with scarce water resources in West Africa. The Ameskar study area is located to the south of the High Atlas Mountains, in their rain shadow. As a part of the M’Goun river basin within the upper Drâa valley, the study area is characterised by high radiation inputs, low atmospheric humidity and long periods with sub-zero temperatures. Its altitude ranges between 2000 m and 4000 m, with dominant north- and south-facing slopes. Snowfall occurs mainly from November to April but even summit regions can become repeatedly devoid of snow cover. Snow cover maps for the M’Goun basin (1240 km2 are derived from calculations of NDSI (Normalized Difference Snow Index from MODIS satellite images and snow depth is monitored at four automatic weather stations between 2000–4000 m. Snowfall events are infrequent at lower altitudes. The presence of snow penitentes at altitudes above 3000 m indicates that snow sublimation is an important component of snow ablation. Snow ablation was modelled with the UEB Utah Energy Balance Model (Tarboton and Luce, 1996. This single layer, physically-based, point energy and mass balance model is driven by meteorological variables recorded at the automatic weather stations at Tounza (2960 m and Tichki (3260 m. Data from snow pillows at Tounza and Tichki are used to validate the model’s physical performance in terms of energy and water balances for a sequence of two snowfall events in the winter of 2003/4. First UEB modelling results show good overall performance and timing of snowmelt and sublimation compared to field investigations. Up to 44

  15. ATLAS computing operations within the GridKa Cloud

    International Nuclear Information System (INIS)

    Kennedy, J; Walker, R; Olszewski, A; Nderitu, S; Serfon, C; Duckeck, G

    2010-01-01

    The organisation and operations model of the ATLAS T1-T2 federation/Cloud associated to the GridKa T1 in Karlsruhe is described. Attention is paid to Cloud level services and the experience gained during the last years of operation. The ATLAS GridKa Cloud is large and divers spanning 5 countries, 2 ROC's and is currently comprised of 13 core sites. A well defined and tested operations model in such a Cloud is of the utmost importance. We have defined the core Cloud services required by the ATLAS experiment and ensured that they are performed in a managed and sustainable manner. Services such as Distributed Data Management involving data replication,deletion and consistency checks, Monte Carlo Production, software installation and data reprocessing are described in greater detail. In addition to providing these central services we have undertaken several Cloud level stress tests and developed monitoring tools to aid with Cloud diagnostics. Furthermore we have defined good channels of communication between ATLAS, the T1 and the T2's and have pro-active contributions from the T2 manpower. A brief introduction to the GridKa Cloud is provided followed by a more detailed discussion of the operations model and ATLAS services within the Cloud.

  16. Evolution of the ATLAS distributed computing system during the LHC long shutdown

    Science.gov (United States)

    Campana, S.; Atlas Collaboration

    2014-06-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R&D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.

  17. Evolution of the ATLAS distributed computing system during the LHC long shutdown

    International Nuclear Information System (INIS)

    Campana, S

    2014-01-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R and D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.

  18. Atlas-guided prostate intensity modulated radiation therapy (IMRT) planning

    International Nuclear Information System (INIS)

    Sheng, Yang; Li, Taoran; Zhang, You; Lee, W Robert; Yin, Fang-Fang; Wu, Q Jackie; Ge, Yaorong

    2015-01-01

    An atlas-based IMRT planning technique for prostate cancer was developed and evaluated. A multi-dose atlas was built based on the anatomy patterns of the patients, more specifically, the percent distance to the prostate and the concaveness angle formed by the seminal vesicles relative to the anterior-posterior axis. A 70-case dataset was classified using a k-medoids clustering analysis to recognize anatomy pattern variations in the dataset. The best classification, defined by the number of classes or medoids, was determined by the largest value of the average silhouette width. Reference plans from each class formed a multi-dose atlas. The atlas-guided planning (AGP) technique started with matching the new case anatomy pattern to one of the reference cases in the atlas; then a deformable registration between the atlas and new case anatomies transferred the dose from the atlas to the new case to guide inverse planning with full automation. 20 additional clinical cases were re-planned to evaluate the AGP technique. Dosimetric properties between AGP and clinical plans were evaluated. The classification analysis determined that the 5-case atlas would best represent anatomy patterns for the patient cohort. AGP took approximately 1 min on average (corresponding to 70 iterations of optimization) for all cases. When dosimetric parameters were compared, the differences between AGP and clinical plans were less than 3.5%, albeit some statistical significances observed: homogeneity index (p  >  0.05), conformity index (p  <  0.01), bladder gEUD (p  <  0.01), and rectum gEUD (p  =  0.02). Atlas-guided treatment planning is feasible and efficient. Atlas predicted dose can effectively guide the optimizer to achieve plan quality comparable to that of clinical plans. (paper)

  19. Measurements of low energy observables in proton-proton collisions with the ATLAS Detector.

    CERN Document Server

    Myska, Miroslav; The ATLAS collaboration

    2017-01-01

    Low energy phenomena have been studied in detail at the LHC, providing important input for improving models of non-perturbative QCD effects. The ATLAS collaboration has performed several new measurements in this sector: We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton--proton collisions at a centre-of-mass energy of 13 TeV. The results are corrected for detector effects and compared to predictions from various Monte Carlo generators. ATLAS has also studied the correlated hadron production. In particular, an analysis of the momentum difference between charged hadrons in high–energy proton–proton collisions is performed and the results are compared to the predictions of a helical QCD string fragmentation model. New results in forward physics are expected to be available soon. We close this presentation with the measurement of the exclusive "\\gamma\\gamma \\rightarrow \\mu^{+}\\mu^{-}" production in proton-proton collisions at a center-of-mass ...

  20. Advances in ATLAS@Home towards a major ATLAS computing resource

    CERN Document Server

    Cameron, David; The ATLAS collaboration

    2018-01-01

    The volunteer computing project ATLAS@Home has been providing a stable computing resource for the ATLAS experiment since 2013. It has recently undergone some significant developments and as a result has become one of the largest resources contributing to ATLAS computing, by expanding its scope beyond traditional volunteers and into exploitation of idle computing power in ATLAS data centres. Removing the need for virtualization on Linux and instead using container technology has made the entry barrier significantly lower data centre participation and in this paper, we describe the implementation and results of this change. We also present other recent changes and improvements in the project. In early 2017 the ATLAS@Home project was merged into a combined LHC@Home platform, providing a unified gateway to all CERN-related volunteer computing projects. The ATLAS Event Service shifts data processing from file-level to event-level and we describe how ATLAS@Home was incorporated into this new paradigm. The finishing...

  1. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2017-01-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  2. The new ATLAS Fast Calorimeter Simulation

    Science.gov (United States)

    Schaarschmidt, J.; ATLAS Collaboration

    2017-10-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  3. Engineering design evaluation of Atlas tile-calorimeter

    International Nuclear Information System (INIS)

    Hill, N.; Guarino, V.; Proudfoot, J.; Stanek, R.; Price, L.; Petereit, E.

    1994-01-01

    In an effort to familiarize themselves with the work that has been done to date on the design of the Tile Cal hadron calorimeter for Atlas, the authors have undertaken a thorough examination of the current designs. They concentrated on the work that has been done by the IHEP Group at Protvino, and in particular the work presented at the last Atlas Week. They constructed six different finite element models as they have learned more about the system. These models were meant to be rough models only and do not represent actual construction in all cases. In some cases, shortcuts were taken in an attempt to set boundary conditions and to reduce the size of the problem to accommodate software limitations, while still providing enough information to further the understanding of the design. After reviewing the analysis and thinking about the construction, the authors have some suggested modifications, which are presented in this paper. It is clear that the work done at both CERN and Protvino has been impressive and thorough. The authors have tried to evaluate and understand both the CERN baseline design and the suggested design option from Protvino

  4. ATLAS Distributed Computing in LHC Run2

    International Nuclear Information System (INIS)

    Campana, Simone

    2015-01-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run-2. An increase in both the data rate and the computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (Prodsys-2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward a flexible computing model. A flexible computing utilization exploring the use of opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model; the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover, a new data management strategy, based on a defined lifetime for each dataset, has been defined to better manage the lifecycle of the data. In this note, an overview of an operational experience of the new system and its evolution is presented. (paper)

  5. Intensity and sulci landmark combined brain atlas construction for Chinese pediatric population.

    Science.gov (United States)

    Luo, Yishan; Shi, Lin; Weng, Jian; He, Hongjian; Chu, Winnie C W; Chen, Feiyan; Wang, Defeng

    2014-08-01

    Constructing an atlas from a population of brain images is of vital importance to medical image analysis. Especially in neuroscience study, creating a brain atlas is useful for intra- and inter-population comparison. Research on brain atlas construction has attracted great attention in recent years, but the research on pediatric population is still limited, mainly due to the limited availability and the relatively low quality of pediatric magnetic resonance brain images. This article is targeted at creating a high quality representative brain atlas for Chinese pediatric population. To achieve this goal, we have designed a set of preprocessing procedures to improve the image quality and developed an intensity and sulci landmark combined groupwise registration method to align the population of images for atlas construction. As demonstrated in experiments, the newly constructed atlas can better represent the size and shape of brains of Chinese pediatric population, and show better performance in Chinese pediatric brain image analysis compared with other standard atlases. Copyright © 2014 Wiley Periodicals, Inc.

  6. Advances in service and operations for ATLAS data management

    International Nuclear Information System (INIS)

    Stewart, Graeme A; Garonne, Vincent; Lassnig, Mario; Molfetas, Angelos; Barisits, Martin; Calvet, Ivan; Beermann, Thomas; Megino, Fernando Barreiro; Campana, Simone; Zhang, Donal; Tykhonov, Andrii; Serfon, Cedric; Oleynik, Danila; Petrosyan, Artem

    2012-01-01

    ATLAS has recorded almost 5PB of RAW data since the LHC started running at the end of 2009. Many more derived data products and complimentary simulation data have also been produced by the collaboration and, in total, 70PB is currently stored in the Worldwide LHC Computing Grid by ATLAS. All of this data is managed by the ATLAS Distributed Data Management system, called Don Quixote 2 (DQ2). DQ2 has evolved rapidly to help ATLAS Computing operations manage these large quantities of data across the many grid sites at which ATLAS runs and to help ATLAS physicists get access to this data. In this paper we describe new and improved DQ2 services: popularity; space monitoring and accounting; exclusion service; cleaning agents; deletion agents. We describe the experience of data management operation in ATLAS computing, showing how these services enable management of petabyte scale computing operations. We illustrate the coupling of data management services to other parts of the ATLAS computing infrastructure, in particular showing how feedback from the distributed analysis system in ATLAS has enabled dynamic placement of the most popular data, helping users and groups to analyse the increasing data volumes on the grid.

  7. Advances in service and operations for ATLAS data management

    Science.gov (United States)

    Stewart, Graeme A.; Garonne, Vincent; Lassnig, Mario; Molfetas, Angelos; Barisits, Martin; Zhang, Donal; Calvet, Ivan; Beermann, Thomas; Barreiro Megino, Fernando; Tykhonov, Andrii; Campana, Simone; Serfon, Cedric; Oleynik, Danila; Petrosyan, Artem; ATLAS Collaboration

    2012-06-01

    ATLAS has recorded almost 5PB of RAW data since the LHC started running at the end of 2009. Many more derived data products and complimentary simulation data have also been produced by the collaboration and, in total, 70PB is currently stored in the Worldwide LHC Computing Grid by ATLAS. All of this data is managed by the ATLAS Distributed Data Management system, called Don Quixote 2 (DQ2). DQ2 has evolved rapidly to help ATLAS Computing operations manage these large quantities of data across the many grid sites at which ATLAS runs and to help ATLAS physicists get access to this data. In this paper we describe new and improved DQ2 services: popularity; space monitoring and accounting; exclusion service; cleaning agents; deletion agents. We describe the experience of data management operation in ATLAS computing, showing how these services enable management of petabyte scale computing operations. We illustrate the coupling of data management services to other parts of the ATLAS computing infrastructure, in particular showing how feedback from the distributed analysis system in ATLAS has enabled dynamic placement of the most popular data, helping users and groups to analyse the increasing data volumes on the grid.

  8. Integration of Titan supercomputer at OLCF with ATLAS Production System

    CERN Document Server

    AUTHOR|(SzGeCERN)643806; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Wenaus, Torre

    2017-01-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this paper we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for jo...

  9. Integration of Titan supercomputer at OLCF with ATLAS production system

    CERN Document Server

    Panitkin, Sergey; The ATLAS collaboration

    2016-01-01

    The PanDA (Production and Distributed Analysis) workload management system was developed to meet the scale and complexity of distributed computing for the ATLAS experiment. PanDA managed resources are distributed worldwide, on hundreds of computing sites, with thousands of physicists accessing hundreds of Petabytes of data and the rate of data processing already exceeds Exabyte per year. While PanDA currently uses more than 200,000 cores at well over 100 Grid sites, future LHC data taking runs will require more resources than Grid computing can possibly provide. Additional computing and storage resources are required. Therefore ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. In this talk we will describe a project aimed at integration of ATLAS Production System with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA Pilot framework for job...

  10. PD2P : PanDA Dynamic Data Placement for ATLAS

    OpenAIRE

    Maeno, T; De, K; Panitkin, S

    2012-01-01

    The PanDA (Production and Distributed Analysis) system plays a key role in the ATLAS distributed computing infrastructure. PanDA is the ATLAS workload management system for processing all Monte-Carlo (MC) simulation and data reprocessing jobs in addition to user and group analysis jobs. The PanDA Dynamic Data Placement (PD2P) system has been developed to cope with difficulties of data placement for ATLAS. We will describe the design of the new system, its performance during the past year of d...

  11. Complex terrain wind resource estimation with the wind-atlas method: Prediction errors using linearized and nonlinear CFD micro-scale models

    DEFF Research Database (Denmark)

    Troen, Ib; Bechmann, Andreas; Kelly, Mark C.

    2014-01-01

    Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...... flow model (CFD) for a number of sites in very complex terrain (large terrain slopes). We first briefly describe the Wind Atlas methodology as implemented in WAsP and the specifics of the “classical” model setup and the new setup allowing the use of the CFD computation engine. We discuss some known...

  12. Online gas analysis and diagnosis for RPC detectors in the ATLAS experiment

    International Nuclear Information System (INIS)

    De Asmundis, Riccardo

    2007-01-01

    Resistive Plate Counters (RPC) detectors need a very strict control of gas parameters: motivations for this statement come from both the request of stability in the detector working point, and chemical consideration concerning potentially aggressive materials generated during the ionization processes into the sensitive gap; the latter point can be relevant because of a possible damage to the internal surface of the detector that has to be avoided in order to ensure an high detection efficiency of the RPC during their ten years or more of operation in ATLAS. In order to understand these aspects, detailed studies on gas behavior have been carried on at the GIF-X5 at CERN (2002-2005), based on Gas Chromatographic and spectroscopy techniques. Main results of these analysis are presented here, together with the design of the online analyzer to be installed on ATLAS conceived to keep control of gas quality and to trigger maintenance interventions on the gas system, in particular on the purification subsystem

  13. Atlas event production on the EGEE infrastructure

    CERN Document Server

    Espinal, X; Perini, L; Rod, W

    2007-01-01

    ATLAS is one of the four LHC (Large Hadron Collider) experiments at CERN, is devoted to study proton-proton and ion-ion collisions at 14TeV. ATLAS collaboration is composed of about 2000 scientists spread around the world. The activity of the experiment requirements for next year is of about 300TB of storage and a CPU power of about 13 Mski2sk, and is relying on GRID philosophy and EGEE infrastructure. Simulated events are distributed over EGEE by the Atlas production system. Data has to be processed and must be accessible by a huge number of scientists for analysis. The throughput of data for Atlas experiment is expected to be of 320 MB/s with an integrated amount of data per year of ~10Pb. The processing and storage need a distributed share of resources, spread worldwide and interconnected with GRID technologies as the requirements are so demanding for the LHC. In that sense event production is the way to produce, process and store data for analysis before the experiment startup, and is performed in a distr...

  14. ATLAS. LHC experiments

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In Greek mythology, Atlas was a Titan who had to hold up the heavens with his hands as a punishment for having taken part in a revolt against the Olympians. For LHC, the ATLAS detector will also have an onerous physics burden to bear, but this is seen as a golden opportunity rather than a punishment. The major physics goal of CERN's LHC proton-proton collider is the quest for the long-awaited£higgs' mechanism which drives the spontaneous symmetry breaking of the electroweak Standard Model picture. The large ATLAS collaboration proposes a large general-purpose detector to exploit the full discovery potential of LHC's proton collisions. LHC will provide proton-proton collision luminosities at the aweinspiring level of 1034 cm2 s~1, with initial running in at 1033. The ATLAS philosophy is to handle as many signatures as possible at all luminosity levels, with the initial running providing more complex possibilities. The ATLAS concept was first presented as a Letter of Intent to the LHC Committee in November 1992. Following initial presentations at the Evian meeting (Towards the LHC Experimental Programme') in March of that year, two ideas for generalpurpose detectors, the ASCOT and EAGLE schemes, merged, with Friedrich Dydak (MPI Munich) and Peter Jenni (CERN) as ATLAS cospokesmen. Since the initial Letter of Intent presentation, the ATLAS design has been optimized and developed, guided by physics performance studies and the LHC-oriented detector R&D programme (April/May, page 3). The overall detector concept is characterized by an inner superconducting solenoid (for inner tracking) and large superconducting air-core toroids outside the calorimetry. This solution avoids constraining the calorimetry while providing a high resolution, large acceptance and robust detector. The outer magnet will extend over a length of 26 metres, with an outer diameter of almost 20 metres. The total weight of the detector is 7,000 tonnes. Fitted with its end

  15. Overview of ATLAS Heavy Flavor Measurements

    CERN Document Server

    Seidel, Sally; The ATLAS collaboration

    2018-01-01

    The ATLAS Experiment presents four recent measurements in the field of B-Physics using data recorded at center of mass energy 8 TeV at the LHC. All are compared to contemporary models. These measurements involve differential cross sections for b-hadron pair production; prompt J/psi pair production differential cross sections; differential production cross sections for psi(2S) and X(3872), both observed in decays to J/psi pi+ pi-; and an angular analysis of Bd to K* mu+ mu- decays.

  16. Pre-test analysis of a LBLOCA using the design data of the ATLAS facility, a reduced-height integral effect test loop for PWRs

    International Nuclear Information System (INIS)

    Hyun-Sik Park; Ki-Yong Choi; Dong-Jin Euh; Tae-Soon Kwon; Won-Pil Baek

    2005-01-01

    Full text of publication follows: The simulation capability of the KAERI integral effect test facility, ATLAS (Advanced Thermalhydraulic Test Loop for Accident Simulation), has been assessed for a large-break loss-of-coolant accident (LBLOCA) transient. The ATLAS facility is a 1/2 height-scaled, 1/144 area-scaled (1/288 in volume scale), and full-pressure test loop based on the design features of the APR1400, an evolutionary pressurized water reactor that has been developed by Korean industry. The APR1400 has four mechanically separated hydraulic trains for the emergency core cooling system (ECCS) with direct vessel injection (DVI). The APR1400 design features have brought about several new safety issues related to the LBLOCA including the steam-water interaction, ECC bypass, and boiling in the reactor vessel downcomer. The ATLAS facility will be used to investigate the multiple responses between the systems or between the components during various anticipated transients. The ATLAS facility has been designed according to a scaling method that is mainly based on the model suggested by Ishii and Kataoka. The ATLAS facility is being evaluated against the prototype plant APR1400 with the same control logics and accident scenarios using the best-estimated code, MARS. This paper briefly introduces the basic design features of the ATLAS facility and presents the results of pre-test analysis for a postulated LBLOCA of a cold leg. The LBLOCA analyses has been conducted to assess the validity of the applied scaling law and the similarity between the ATLAS facility and the APR1400. As the core simulator of the ATLAS facility has the 10% capability of the scaled full power, the blowdown phase can not be simulated, and the starting point of the accident scenario is around the end of blowdown. So it is an important problem to find the correct initial conditions. For the analyzed LBLOCA scenario, the ATLAS facility showed very similar thermal-hydraulic characteristics to the APR

  17. The effect of morphometric atlas selection on multi-atlas-based automatic brachial plexus segmentation

    International Nuclear Information System (INIS)

    Van de Velde, Joris; Wouters, Johan; Vercauteren, Tom; De Gersem, Werner; Achten, Eric; De Neve, Wilfried; Van Hoof, Tom

    2015-01-01

    The present study aimed to measure the effect of a morphometric atlas selection strategy on the accuracy of multi-atlas-based BP autosegmentation using the commercially available software package ADMIRE® and to determine the optimal number of selected atlases to use. Autosegmentation accuracy was measured by comparing all generated automatic BP segmentations with anatomically validated gold standard segmentations that were developed using cadavers. Twelve cadaver computed tomography (CT) atlases were included in the study. One atlas was selected as a patient in ADMIRE®, and multi-atlas-based BP autosegmentation was first performed with a group of morphometrically preselected atlases. In this group, the atlases were selected on the basis of similarity in the shoulder protraction position with the patient. The number of selected atlases used started at two and increased up to eight. Subsequently, a group of randomly chosen, non-selected atlases were taken. In this second group, every possible combination of 2 to 8 random atlases was used for multi-atlas-based BP autosegmentation. For both groups, the average Dice similarity coefficient (DSC), Jaccard index (JI) and Inclusion index (INI) were calculated, measuring the similarity of the generated automatic BP segmentations and the gold standard segmentation. Similarity indices of both groups were compared using an independent sample t-test, and the optimal number of selected atlases was investigated using an equivalence trial. For each number of atlases, average similarity indices of the morphometrically selected atlas group were significantly higher than the random group (p < 0,05). In this study, the highest similarity indices were achieved using multi-atlas autosegmentation with 6 selected atlases (average DSC = 0,598; average JI = 0,434; average INI = 0,733). Morphometric atlas selection on the basis of the protraction position of the patient significantly improves multi-atlas-based BP autosegmentation accuracy

  18. Test of the little Higgs model in Atlas at LHC: simulation of the digitization of the electromagnetic calorimeter; Test du modele du petit Higgs dans ATLAS au LHC: simulation de la numerisation du calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Lechowski, M

    2005-04-15

    LHC is a proton-proton collider with an energy of 14 TeV in the center of mass, which will start operating in 2007 at CERN. Two of its experiments, ATLAS, and CMS, will search and study in particular the Higgs boson, Supersymmetry and other new physics. This thesis was about two aspects of the ATLAS experiment. On one hand the simulation of the liquid Argon electromagnetic calorimeter, with the emulation of the electronic chain in charge of the digitization of the signal and also the evaluation of the electronic noise and the pile-up noise (coming from minimum bias events of inelastic collisions at LHC). These two points have been validated by the analysis of the data taken during beam tests in 2002 and 2004. On the other hand, a physics study concerning the Little Higgs model. This recent model solves the hierarchy problem of the Standard Model, in introducing new heavy particles to cancel quadratic divergences arising in the calculation of the Higgs boson mass. These new particles, with a mass about the TeV/c{sup 2}, are a heavy quark top, heavy gauge bosons Z{sub H}, W{sub H} and A{sub H}, and a heavy Higgs boson triplet. The physics study dealt with the characteristic decays of the model, Z{sub H} in Z + H and W{sub H} in W + H, with a Higgs mass either at 120 GeV/c{sup 2} decaying in two photons or at 200 GeV/c{sup 2} decaying in ZZ or WW. Results show that in both cases, for 300 fb{sup -1} (3 years at high luminosity), an observation of the signal at 5 {sigma} for Z{sub H} et W{sub H} masses less than 2 TeV/c{sup 2} is possible, covering a large part of the parameter space. (author)

  19. Electroweak measurements with the ATLAS detector.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349845; The ATLAS collaboration

    2015-01-01

    ATLAS measurements of multi-boson production processes involving combinations of W, Z and isolated photons at 8 TeV are summarized. Standard Model cross section are measured with high precision by ATLAS and are compared to world averages. Production processes sensitive to vector-boson fusion and vector-boson scattering are also presented and used for the triple and quartic gauge boson couplings limits setting.

  20. Search for Long-lived particles with the ATLAS detector

    CERN Document Server

    Saito, Masahiko; The ATLAS collaboration

    2017-01-01

    Several supersymmetric models predict the production of meta-stable supersymmetric particles. Such particles, if charged, may be detected through disappearing tracks. The poster presents recent results from disappearing track analysis based on an integrated luminosity of 36.1 $\\mathrm{fb}^{-1}$ of $pp$ collisions at a centre of mass energy of 13 TeV with the ATLAS detector at the LHC.

  1. Recent results on Higgs measurements and searches in ATLAS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The excellent operation of the LHC, and a fast processing and analysis, has enabled ATLAS to produce many new results during the last months with similar or better sensitivity than the one reached during Run 1 of the LHC. The seminar will give an overview of the Standard Model Higgs boson measurements and of searches for non-standard scalar states or decay modes.

  2. The ATLAS Production System Evolution: New Data Processing and Analysis Paradigm for the LHC Run2 and High-Luminosity

    Science.gov (United States)

    Barreiro, F. H.; Borodin, M.; De, K.; Golubkov, D.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Padolski, S.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    The second generation of the ATLAS Production System called ProdSys2 is a distributed workload manager that runs daily hundreds of thousands of jobs, from dozens of different ATLAS specific workflows, across more than hundred heterogeneous sites. It achieves high utilization by combining dynamic job definition based on many criteria, such as input and output size, memory requirements and CPU consumption, with manageable scheduling policies and by supporting different kind of computational resources, such as GRID, clouds, supercomputers and volunteer-computers. The system dynamically assigns a group of jobs (task) to a group of geographically distributed computing resources. Dynamic assignment and resources utilization is one of the major features of the system, it didn’t exist in the earliest versions of the production system where Grid resources topology was predefined using national or/and geographical pattern. Production System has a sophisticated job fault-recovery mechanism, which efficiently allows to run multi-Terabyte tasks without human intervention. We have implemented “train” model and open-ended production which allow to submit tasks automatically as soon as new set of data is available and to chain physics groups data processing and analysis with central production by the experiment. We present an overview of the ATLAS Production System and its major components features and architecture: task definition, web user interface and monitoring. We describe the important design decisions and lessons learned from an operational experience during the first year of LHC Run2. We also report the performance of the designed system and how various workflows, such as data (re)processing, Monte-Carlo and physics group production, users analysis, are scheduled and executed within one production system on heterogeneous computing resources.

  3. MARS input data for steady-state calculation of ATLAS

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Euh, D. J.; Choi, K. Y.; Kwon, T. S.; Jeong, J. J.; Baek, W. P.

    2004-12-01

    An integral effect test loop for Pressurized Water Reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is under construction by Thermal-Hydraulics Safety Research Division in Korea Atomic Energy Research Institute (KAERI). This report includes calculation sheets of the input for the best-estimate system analysis code, the MARS code, based on the ongoing design features of ATLAS. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. The contents of this report are divided into three parts: (1) core and reactor vessel, (2) steam generator and steam line, and (3) primary piping, pressurizer and reactor coolant pump. The steady-state analysis for the ATLAS facility will be performed based on these calculation sheets, and its results will be applied to the detailed design of ATLAS. Additionally, the calculation results will contribute to getting optimum test conditions and preliminary operational test conditions for the steady-state and transient experiments

  4. ATLAS job monitoring in the Dashboard Framework

    CERN Document Server

    Sargsyan, L; The ATLAS collaboration; Campana, S; Karavakis, E; Kokoszkiewicz, L; Saiz, P; Schovancova, J; Tuckett, D

    2012-01-01

    Monitoring of the large-scale data processing of the ATLAS experiment includes monitoring of production and user analysis jobs. The Experiment Dashboard provides a common job monitoring solution, which is shared by ATLAS and CMS experiments. This includes an accounting portal as well as real-time monitoring. Dashboard job monitoring for ATLAS combines information from PanDA job processing database, Production system database and monitoring information from jobs submitted through GANGA to Workload Management System (WMS) or local batch systems. Usage of Dashboard-based job monitoring applications will decrease load on the PanDA database and overcome scale limitations in PanDA monitoring caused by the short job rotation cycle in the PanDA database. Aggregation of the task/job metrics from different sources provides complete view of job processing activity in ATLAS scope.

  5. ATLAS job monitoring in the Dashboard Framework

    International Nuclear Information System (INIS)

    Andreeva, J; Campana, S; Karavakis, E; Kokoszkiewicz, L; Saiz, P; Tuckett, D; Sargsyan, L; Schovancova, J

    2012-01-01

    Monitoring of the large-scale data processing of the ATLAS experiment includes monitoring of production and user analysis jobs. The Experiment Dashboard provides a common job monitoring solution, which is shared by ATLAS and CMS experiments. This includes an accounting portal as well as real-time monitoring. Dashboard job monitoring for ATLAS combines information from the PanDA job processing database, Production system database and monitoring information from jobs submitted through GANGA to Workload Management System (WMS) or local batch systems. Usage of Dashboard-based job monitoring applications will decrease load on the PanDA database and overcome scale limitations in PanDA monitoring caused by the short job rotation cycle in the PanDA database. Aggregation of the task/job metrics from different sources provides complete view of job processing activity in ATLAS scope.

  6. ATLAS Outreach Highlights

    CERN Document Server

    Cheatham, Susan; The ATLAS collaboration

    2016-01-01

    The ATLAS outreach team is very active, promoting particle physics to a broad range of audiences including physicists, general public, policy makers, students and teachers, and media. A selection of current outreach activities and new projects will be presented. Recent highlights include the new ATLAS public website and ATLAS Open Data, the very recent public release of 1 fb-1 of ATLAS data.

  7. Big Data Analytics Tools as Applied to ATLAS Event Data

    CERN Document Server

    Vukotic, Ilija; The ATLAS collaboration

    2016-01-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Log file data and database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data so as to simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of big data, statistical and machine learning tools...

  8. Calorimetry triggering in ATLAS

    CERN Document Server

    Igonkina, O; Adragna, P; Aharrouche, M; Alexandre, G; Andrei, V; Anduaga, X; Aracena, I; Backlund, S; Baines, J; Barnett, B M; Bauss, B; Bee, C; Behera, P; Bell, P; Bendel, M; Benslama, K; Berry, T; Bogaerts, A; Bohm, C; Bold, T; Booth, J R A; Bosman, M; Boyd, J; Bracinik, J; Brawn, I, P; Brelier, B; Brooks, W; Brunet, S; Bucci, F; Casadei, D; Casado, P; Cerri, A; Charlton, D G; Childers, J T; Collins, N J; Conde Muino, P; Coura Torres, R; Cranmer, K; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Davis, A O; De Santo, A; Degenhardt, J; Delsart, P A; Demers, S; Demirkoz, B; Di Mattia, A; Diaz, M; Djilkibaev, R; Dobson, E; Dova, M, T; Dufour, M A; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Faulkner, P J W; Ferland, J; Flacher, H; Fleckner, J E; Flowerdew, M; Fonseca-Martin, T; Fratina, S; Fhlisch, F; Gadomski, S; Gallacher, M P; Garitaonandia Elejabarrieta, H; Gee, C N P; George, S; Gillman, A R; Goncalo, R; Grabowska-Bold, I; Groll, M; Gringer, C; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hauser, R; Hellman, S; Hidvgi, A; Hillier, S J; Hryn'ova, T; Idarraga, J; Johansen, M; Johns, K; Kalinowski, A; Khoriauli, G; Kirk, J; Klous, S; Kluge, E-E; Koeneke, K; Konoplich, R; Konstantinidis, N; Kwee, R; Landon, M; LeCompte, T; Ledroit, F; Lei, X; Lendermann, V; Lilley, J N; Losada, M; Maettig, S; Mahboubi, K; Mahout, G; Maltrana, D; Marino, C; Masik, J; Meier, K; Middleton, R P; Mincer, A; Moa, T; Monticelli, F; Moreno, D; Morris, J D; Mller, F; Navarro, G A; Negri, A; Nemethy, P; Neusiedl, A; Oltmann, B; Olvito, D; Osuna, C; Padilla, C; Panes, B; Parodi, F; Perera, V J O; Perez, E; Perez Reale, V; Petersen, B; Pinzon, G; Potter, C; Prieur, D P F; Prokishin, F; Qian, W; Quinonez, F; Rajagopalan, S; Reinsch, A; Rieke, S; Riu, I; Robertson, S; Rodriguez, D; Rogriquez, Y; Rhr, F; Saavedra, A; Sankey, D P C; Santamarina, C; Santamarina Rios, C; Scannicchio, D; Schiavi, C; Schmitt, K; Schultz-Coulon, H C; Schfer, U; Segura, E; Silverstein, D; Silverstein, S; Sivoklokov, S; Sjlin, J; Staley, R J; Stamen, R; Stelzer, J; Stockton, M C; Straessner, A; Strom, D; Sushkov, S; Sutton, M; Tamsett, M; Tan, C L A; Tapprogge, S; Thomas, J P; Thompson, P D; Torrence, E; Tripiana, M; Urquijo, P; Urrejola, P; Vachon, B; Vercesi, V; Vorwerk, V; Wang, M; Watkins, P M; Watson, A; Weber, P; Weidberg, T; Werner, P; Wessels, M; Wheeler-Ellis, S; Whiteson, D; Wiedenmann, W; Wielers, M; Wildt, M; Winklmeier, F; Wu, X; Xella, S; Zhao, L; Zobernig, H; de Seixas, J M; dos Anjos, A; Asman, B; Özcan, E

    2009-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 105 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  9. Recent updates on the Standard Model Higgs boson measurements from the ATLAS and CMS experiments

    CERN Document Server

    Wang, Song-Ming

    2017-01-01

    This report presents the latest results from the ATLAS and CMS experiments on the measurements of the Standard Model Higgs boson by using the proton-proton collisions produced by the Large Hadron Collider during the first two years of Run 2 data taking.

  10. Search for Exotic Physics Beyond the Standard Model with the ATLAS Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00287508; The ATLAS collaboration

    2017-01-01

    A summary is given of non-SUSY searches for New Physics with the ATLAS detector at the LHC. Shown results use a data sample collected with a center-of-mass energy of ${\\sqrt{s}=8}$ TeV and an integrated luminosity of around $20$ fb$^{-1}$ in proton-proton collisions. Four recent searches using leptons, photons, missing transverse energy, and jets are presented. No significant deviations from Standard Model expectations are observed, hence new limits on a wide set of predictions for several Standard Model extensions are set.

  11. ttH coupling measurements in ATLAS and combined results of 8 TeV data

    Energy Technology Data Exchange (ETDEWEB)

    Sopczak, Andre; Ali, Babar; Seifert, Frank [IEAP CTU in Prague (Czech Republic); Gentile, Simonetta; Kuna, Marine; Monzani, Simone [La Sapienza Universita, Roma (Italy); INFN, Roma (Italy)

    2016-07-01

    After the discovery of a Higgs boson, the measurements of its properties are now at the forefront of research. The measurement of the associated production of a Higgs boson and a pair of top quarks is of particular importance as the ttH Yukawa coupling is large, and thus a probe for physics beyond the Standard Model. For the first time the ttH production was analysed in the final state with two same-sign light leptions (electrons or muons) and a hadronically decaying tau lepton: ttH → 2l+1 τ{sub had}. The analysis was based on data taken by the ATLAS experiment recorded from 8 TeV proton-proton collisions. It contributed significantly to the combined ATLAS results of the five multi-lepton final states. These results were further combined with other ATLAS ttH analyses where H → γγ and H → b anti b. The combined results are consistent with the Standard Model (SM) expectation allowing models beyond the SM to be constrained.

  12. AGIS: Integration of new technologies used in ATLAS Distributed Computing

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00291854; The ATLAS collaboration; Di Girolamo, Alessandro; Alandes Pradillo, Maria

    2017-01-01

    The variety of the ATLAS Distributed Computing infrastructure requires a central information system to define the topology of computing resources and to store different parameters and configuration data which are needed by various ATLAS software components. The ATLAS Grid Information System (AGIS) is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services. Being an intermediate middleware system between clients and external information sources (like central BDII, GOCDB, MyOSG), AGIS defines the relations between experiment specific used resources and physical distributed computing capabilities. Being in production during LHC Runl AGIS became the central information system for Distributed Computing in ATLAS and it is continuously evolving to fulfil new user requests, enable enhanced operations and follow the extension of the ATLAS Computing model. The ATLAS Computin...

  13. CERN Open Days 2013, Point 1 - ATLAS: ATLAS Experiment

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: The ATLAS Experiment at CERN is one of the largest and most complex scientific endeavours ever assembled. The detector, located at collision point 1 of the LHC, is designed to explore the fundamental components of nature and to study the forces that shape our universe. The past year’s discovery of a Higgs boson is one of the most important scientific achievements of our time, yet this is only one of many key goals of ATLAS. During a brief break in their journey, some of the 3000-member ATLAS collaboration will be taking time to share the excitement of this exploration with you. On surface no restricted access  The exhibit at Point 1 will give visitors a chance to meet these modern-day explorers and to learn from them how answers to the most fundamental questions of mankind are being sought. Activities will include a visit to the ATLAS detector, located 80m below ground; watching the prize-winning ATLAS movie in the ATLAS cinema; seeing real particle tracks in a cloud chamber and discussi...

  14. Task management in the new ATLAS production system

    International Nuclear Information System (INIS)

    De, K; Golubkov, D; Klimentov, A; Potekhin, M; Vaniachine, A

    2014-01-01

    This document describes the design of the new Production System of the ATLAS experiment at the LHC [1]. The Production System is the top level workflow manager which translates physicists' needs for production level processing and analysis into actual workflows executed across over a hundred Grid sites used globally by ATLAS. As the production workload increased in volume and complexity in recent years (the ATLAS production tasks count is above one million, with each task containing hundreds or thousands of jobs) there is a need to upgrade the Production System to meet the challenging requirements of the next LHC run while minimizing the operating costs. In the new design, the main subsystems are the Database Engine for Tasks (DEFT) and the Job Execution and Definition Interface (JEDI). Based on users' requests, DEFT manages inter-dependent groups of tasks (Meta-Tasks) and generates corresponding data processing workflows. The JEDI component then dynamically translates the task definitions from DEFT into actual workload jobs executed in the PanDA Workload Management System [2]. We present the requirements, design parameters, basics of the object model and concrete solutions utilized in building the new Production System and its components.

  15. Overview of ATLAS Heavy Flavor Measurements

    CERN Document Server

    Seidel, Sally; The ATLAS collaboration

    2018-01-01

    The ATLAS Experiment presents four recent measurements in the field of B-Physics using data recorded at center of mass energy 8 TeV at the LHC. All are compared to contemporary models. These measurements involve differential cross sections for $b$-hadron pair production; prompt $J/\\psi$ pair production differential cross sections; differential production cross sections for $\\psi(2S)$ and $X(3872)$, both observed in decays to $J/\\psi \\pi^+ \\pi^-$; and an angular analysis of $B_d^0 \\rightarrow K^* \\mu^+ \\mu^-$ decays.

  16. Search for the standard-model Higgs boson in the associated WH production with 1.47 fb-1 data of the ATLAS experiment at the LHC

    International Nuclear Information System (INIS)

    Verlage, Tobias

    2011-01-01

    The Large Hadron Collider is a particle accelerator at CERN, in which since March 30th 2010 protons are brought to collision at a c. m. energy of √(s)=7 TeV. These events can be observed b y means of the ATLAS detector, one of two universal detectors at the Large Hadron Collider. One of the main purposes of the ATLAS detector is the search for the Standard-Model Higgs boson. This thesis describes a study on the search for the Standard-Model Higgs boson, whereby the production of the Higgs boson in association with a vector boson W ± and the subsequent decay in a bottom-quark pair iks studied. For this token data of the ATLAS detector, which correspond to an integrated luminosity of 1.47 fb -1 , are compared with simulated physical events. An analysis based on cuts for the separation of the signal events of background processes is presented. Furthermore systematic uncertainties are determined. Finally an upper exclusion limit of the production rate for a Standard-Model Higgs boson in dependence of its mass in the range from 110 GeV to 139 GeV is calculated and discussed. The strongest exclusion limit can be posed for a Higgs boson with a mass of 110 GeV. For this a 16-fold larger production rate as that of the Standard-Model prediction can be excluded with a confidence level of 95%. For the whole studied mass range an upper exclusion limit for Higgs bosons with 16-29-fold increased Standard-Model production rate results.

  17. Event visualization in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211497; The ATLAS collaboration; Boudreau, Joseph; Konstantinidis, Nikolaos; Martyniuk, Alex; Moyse, Edward; Thomas, Juergen; Waugh, Ben; Yallup, David

    2017-01-01

    At the beginning, HEP experiments made use of photographical images both to record and store experimental data and to illustrate their findings. Then the experiments evolved and needed to find ways to visualize their data. With the availability of computer graphics, software packages to display event data and the detector geometry started to be developed. Here, an overview of the usage of event display tools in HEP is presented. Then the case of the ATLAS experiment is considered in more detail and two widely used event display packages are presented, Atlantis and VP1, focusing on the software technologies they employ, as well as their strengths, differences and their usage in the experiment: from physics analysis to detector development, and from online monitoring to outreach and communication. Towards the end, the other ATLAS visualization tools will be briefly presented as well. Future development plans and improvements in the ATLAS event display packages will also be discussed.

  18. Lifetime measurement of trapped staus using ATLAS

    CERN Document Server

    Sibley, Logan

    I study the creation of long-lived staus at a 14 TeV centre of mass energy in proton-proton collisions at the LHC using both the ATLAS and ACME detectors. The ATLAS overburden or underburden, or even ATLAS itself, may trap the semi-stable staus at that place where they will remain until the time at which they decay, where the stau lifetime ranges between seven days and one year. Using a novel method, one may count the number of muons and pions originating from the stau decay using the standard ATLAS cosmic ray trigger. Using an idealized detector model, I find that this method can lead to measurements of the stau lifetime and SUSY cross-section to within statistical uncertainties of 6% and 1% of their actual values, respectively.

  19. Modelling Z→ττ processes in ATLAS with τ-embedded Z→μμ data

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Penc, Ondřej; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2015-01-01

    Roč. 10, Sept (2015), P09018 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : ATLAS * performance of high energy physics detectors * simulation methods and programs * analysis and statistical methods Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.310, year: 2015

  20. Identification of the Higgs boson produced in association with top quark pairs in proton-proton collision: an analysis of the final state containing three leptons with the ATLAS detector

    CERN Document Server

    Vecchio, Valentina; The ATLAS collaboration

    2017-01-01

    The associated production of the Higgs boson with top quarks (tt ̄H) allows to constrain the top Yukawa coupling. This coupling is a key parameter of the Standard Model and its direct study through the tt ̄H production mode is one of the most challenging in the ATLAS physics program at LHC. An explorative analysis for this process has been performed using 13.2 fb−1 of Run-2 data recorded by the ATLAS detector in 2015 and 2016 at a center of mass energy of 13 TeV. The studied final state has three charged light leptons (electrons and muons) and hadronic jets. The primary targets are the Higgs boson decays in vector bosons and tau leptons (H →WW, H → ZZ, H → τ τ ). This paper describes the physical objects definition, the analysis strategy, the estimation and the modeling of the main backgrounds. Results are shown in terms of the ratio between the measured cross section and the one predicted by the Standard Model.

  1. Bayesian estimation of regularization and atlas building in diffeomorphic image registration.

    Science.gov (United States)

    Zhang, Miaomiao; Singh, Nikhil; Fletcher, P Thomas

    2013-01-01

    This paper presents a generative Bayesian model for diffeomorphic image registration and atlas building. We develop an atlas estimation procedure that simultaneously estimates the parameters controlling the smoothness of the diffeomorphic transformations. To achieve this, we introduce a Monte Carlo Expectation Maximization algorithm, where the expectation step is approximated via Hamiltonian Monte Carlo sampling on the manifold of diffeomorphisms. An added benefit of this stochastic approach is that it can successfully solve difficult registration problems involving large deformations, where direct geodesic optimization fails. Using synthetic data generated from the forward model with known parameters, we demonstrate the ability of our model to successfully recover the atlas and regularization parameters. We also demonstrate the effectiveness of the proposed method in the atlas estimation problem for 3D brain images.

  2. Reliability Engineering for ATLAS Petascale Data Processing on the Grid

    CERN Document Server

    Golubkov, D V; The ATLAS collaboration; Vaniachine, A V

    2012-01-01

    The ATLAS detector is in its third year of continuous LHC running taking data for physics analysis. A starting point for ATLAS physics analysis is reconstruction of the raw data. First-pass processing takes place shortly after data taking, followed later by reprocessing of the raw data with updated software and calibrations to improve the quality of the reconstructed data for physics analysis. Data reprocessing involves a significant commitment of computing resources and is conducted on the Grid. The reconstruction of one petabyte of ATLAS data with 1B collision events from the LHC takes about three million core-hours. Petascale data processing on the Grid involves millions of data processing jobs. At such scales, the reprocessing must handle a continuous stream of failures. Automatic job resubmission recovers transient failures at the cost of CPU time used by the failed jobs. Orchestrating ATLAS data processing applications to ensure efficient usage of tens of thousands of CPU-cores, reliability engineering ...

  3. Integration of ROOT Notebooks as an ATLAS analysis web-based tool in outreach and public data release

    CERN Document Server

    Sanchez, Arturo; The ATLAS collaboration

    2016-01-01

    The integration of the ROOT data analysis framework with the Jupyter Notebook technology presents an incredible potential in the enhance and expansion of educational and training programs: starting from university students in their early years, passing to new ATLAS PhD students and post doctoral researchers, to those senior analysers and professors that want to restart their contact with the analysis of data or to include a more friendly but yet very powerful open source tool in the classroom. Such tools have been already tested in several environments and a fully web-based integration together with Open Access Data repositories brings the possibility to go a step forward in the search of ATLAS for integration between several CERN projects in the field of the education and training, developing new computing solutions on the way.

  4. The ATLAS Electron and Photon Trigger

    CERN Document Server

    Jones, Samuel David; The ATLAS collaboration

    2018-01-01

    ATLAS electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena. To cope with ever-increasing luminosity and more challenging pile-up conditions at a centre-of-mass energy of 13 TeV, the trigger selections need to be optimized to control the rates and keep efficiencies high. The ATLAS electron and photon trigger performance in Run 2 will be presented, including both the role of the ATLAS calorimeter in electron and photon identification and details of new techniques developed to maintain high performance even in high pile-up conditions.

  5. Digital atlas of fetal brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Teresa; Weinberger, E. [Department of Radiology, Seattle Children' s Hospital, Seattle, WA (United States); Matesan, Manuela [University of Washington, Department of Radiology, Seattle, WA (United States); Bulas, Dorothy I. [Division of Diagnostic Imaging and Radiology, Children' s National Medical Center, Washington, DC (United States)

    2010-02-15

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  6. Digital atlas of fetal brain MRI

    International Nuclear Information System (INIS)

    Chapman, Teresa; Weinberger, E.; Matesan, Manuela; Bulas, Dorothy I.

    2010-01-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download. Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development. (orig.)

  7. Automated brain structure segmentation based on atlas registration and appearance models

    DEFF Research Database (Denmark)

    van der Lijn, Fedde; de Bruijne, Marleen; Klein, Stefan

    2012-01-01

    Accurate automated brain structure segmentation methods facilitate the analysis of large-scale neuroimaging studies. This work describes a novel method for brain structure segmentation in magnetic resonance images that combines information about a structure’s location and appearance. The spatial...... with different magnetic resonance sequences, in which the hippocampus and cerebellum were segmented by an expert. Furthermore, the method is compared to two other segmentation techniques that were applied to the same data. Results show that the atlas- and appearance-based method produces accurate results...

  8. In vivo quantitative whole-brain diffusion tensor imaging analysis of APP/PS1 transgenic mice using voxel-based and atlas-based methods

    International Nuclear Information System (INIS)

    Qin, Yuan-Yuan; Li, Mu-Wei; Oishi, Kenichi; Zhang, Shun; Zhang, Yan; Zhao, Ling-Yun; Zhu, Wen-Zhen; Lei, Hao

    2013-01-01

    Diffusion tensor imaging (DTI) has been applied to characterize the pathological features of Alzheimer's disease (AD) in a mouse model, although little is known about whether these features are structure specific. Voxel-based analysis (VBA) and atlas-based analysis (ABA) are good complementary tools for whole-brain DTI analysis. The purpose of this study was to identify the spatial localization of disease-related pathology in an AD mouse model. VBA and ABA quantification were used for the whole-brain DTI analysis of nine APP/PS1 mice and wild-type (WT) controls. Multiple scalar measurements, including fractional anisotropy (FA), trace, axial diffusivity (DA), and radial diffusivity (DR), were investigated to capture the various types of pathology. The accuracy of the image transformation applied for VBA and ABA was evaluated by comparing manual and atlas-based structure delineation using kappa statistics. Following the MR examination, the brains of the animals were analyzed for microscopy. Extensive anatomical alterations were identified in APP/PS1 mice, in both the gray matter areas (neocortex, hippocampus, caudate putamen, thalamus, hypothalamus, claustrum, amygdala, and piriform cortex) and the white matter areas (corpus callosum/external capsule, cingulum, septum, internal capsule, fimbria, and optic tract), evidenced by an increase in FA or DA, or both, compared to WT mice (p 0.05). The histopathological changes in the gray matter areas were confirmed by microscopy studies. DTI did, however, demonstrate significant changes in white matter areas, where the difference was not apparent by qualitative observation of a single-slice histological specimen. This study demonstrated the structure-specific nature of pathological changes in APP/PS1 mouse, and also showed the feasibility of applying whole-brain analysis methods to the investigation of an AD mouse model. (orig.)

  9. Networks in ATLAS

    Science.gov (United States)

    McKee, Shawn; ATLAS Collaboration

    2017-10-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks. We will report on a number of networking initiatives in ATLAS including participation in the global perfSONAR network monitoring and measuring efforts of WLCG and OSG, the collaboration with the LHCOPN/LHCONE effort, the integration of network awareness into PanDA, the use of the evolving ATLAS analytics framework to better understand our networks and the changes in our DDM system to allow remote access to data. We will also discuss new efforts underway that are exploring the inclusion and use of software defined networks (SDN) and how ATLAS might benefit from: • Orchestration and optimization of distributed data access and data movement. • Better control of workflows, end to end. • Enabling prioritization of time-critical vs normal tasks • Improvements in the efficiency of resource usage

  10. Calorimetry triggering in ATLAS

    International Nuclear Information System (INIS)

    Igonkina, O; Achenbach, R; Andrei, V; Adragna, P; Aharrouche, M; Bauss, B; Bendel, M; Alexandre, G; Anduaga, X; Aracena, I; Backlund, S; Bogaerts, A; Baines, J; Barnett, B M; Bee, C; P, Behera; Bell, P; Benslama, K; Berry, T; Bohm, C

    2009-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 | 10 5 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  11. Calorimetry Triggering in ATLAS

    International Nuclear Information System (INIS)

    Igonkina, O.; Achenbach, R.; Adragna, P.; Aharrouche, M.; Alexandre, G.; Andrei, V.; Anduaga, X.; Aracena, I.; Backlund, S.; Baines, J.; Barnett, B.M.; Bauss, B.; Bee, C.; Behera, P.; Bell, P.; Bendel, M.; Benslama, K.; Berry, T.; Bogaerts, A.; Bohm, C.; Bold, T.; Booth, J.R.A.; Bosman, M.; Boyd, J.; Bracinik, J.; Brawn, I.P.; Brelier, B.; Brooks, W.; Brunet, S.; Bucci, F.; Casadei, D.; Casado, P.; Cerri, A.; Charlton, D.G.; Childers, J.T.; Collins, N.J.; Conde Muino, P.; Coura Torres, R.; Cranmer, K.; Curtis, C.J.; Czyczula, Z.; Dam, M.; Damazio, D.; Davis, A.O.; De Santo, A.; Degenhardt, J.

    2011-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2/10 5 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  12. Calorimetry triggering in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Igonkina, O [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Achenbach, R; Andrei, V [Kirchhoff Institut fuer Physik, Universitaet Heidelberg, Heidelberg (Germany); Adragna, P [Physics Department, Queen Mary, University of London, London (United Kingdom); Aharrouche, M; Bauss, B; Bendel, M [Institut fr Physik, Universitt Mainz, Mainz (Germany); Alexandre, G [Section de Physique, Universite de Geneve, Geneva (Switzerland); Anduaga, X [Universidad Nacional de La Plata, La Plata (Argentina); Aracena, I [Stanford Linear Accelerator Center (SLAC), Stanford (United States); Backlund, S; Bogaerts, A [European Laboratory for Particle Physics (CERN), Geneva (Switzerland); Baines, J; Barnett, B M [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon (United Kingdom); Bee, C [Centre de Physique des Particules de Marseille, IN2P3-CNRS, Marseille (France); P, Behera [Iowa State University, Ames, Iowa (United States); Bell, P [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Benslama, K [University of Regina, Regina (Canada); Berry, T [Department of Physics, Royal Holloway and Bedford New College, Egham (United Kingdom); Bohm, C [Fysikum, Stockholm University, Stockholm (Sweden)

    2009-04-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 | 10{sup 5} to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  13. Distributed analysis functional testing using GangaRobot in the ATLAS experiment

    Science.gov (United States)

    Legger, Federica; ATLAS Collaboration

    2011-12-01

    Automated distributed analysis tests are necessary to ensure smooth operations of the ATLAS grid resources. The HammerCloud framework allows for easy definition, submission and monitoring of grid test applications. Both functional and stress test applications can be defined in HammerCloud. Stress tests are large-scale tests meant to verify the behaviour of sites under heavy load. Functional tests are light user applications running at each site with high frequency, to ensure that the site functionalities are available at all times. Success or failure rates of these tests jobs are individually monitored. Test definitions and results are stored in a database and made available to users and site administrators through a web interface. In this work we present the recent developments of the GangaRobot framework. GangaRobot monitors the outcome of functional tests, creates a blacklist of sites failing the tests, and exports the results to the ATLAS Site Status Board (SSB) and to the Service Availability Monitor (SAM), providing on the one hand a fast way to identify systematic or temporary site failures, and on the other hand allowing for an effective distribution of the work load on the available resources.

  14. ATLAS Thesis Award 2017

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Winners of the ATLAS Thesis Award were presented with certificates and glass cubes during a ceremony on 22 February, 2018. They are pictured here with Karl Jakobs (ATLAS Spokesperson), Max Klein (ATLAS Collaboration Board Chair) and Katsuo Tokushuku (ATLAS Collaboration Board Deputy Chair).

  15. A system for managing information at ATLAS

    International Nuclear Information System (INIS)

    Tilbrook, I.R.

    1993-01-01

    In response to a need for better management of maintenance and document information at the Argonne Tandem-Linear Accelerating System (ATLAS), the ATLAS Information Management System (AIMS) has been created. The system is based on the relational database model. The system's applications use the Alpha-4 relational database management system, a commercially available software package. The system's function and design are described

  16. Fusion set selection with surrogate metric in multi-atlas based image segmentation

    International Nuclear Information System (INIS)

    Zhao, Tingting; Ruan, Dan

    2016-01-01

    Multi-atlas based image segmentation sees unprecedented opportunities but also demanding challenges in the big data era. Relevant atlas selection before label fusion plays a crucial role in reducing potential performance loss from heterogeneous data quality and high computation cost from extensive data. This paper starts with investigating the image similarity metric (termed ‘surrogate’), an alternative to the inaccessible geometric agreement metric (termed ‘oracle’) in atlas relevance assessment, and probes into the problem of how to select the ‘most-relevant’ atlases and how many such atlases to incorporate. We propose an inference model to relate the surrogates and the oracle geometric agreement metrics. Based on this model, we quantify the behavior of the surrogates in mimicking oracle metrics for atlas relevance ordering. Finally, analytical insights on the choice of fusion set size are presented from a probabilistic perspective, with the integrated goal of including the most relevant atlases and excluding the irrelevant ones. Empirical evidence and performance assessment are provided based on prostate and corpus callosum segmentation. (paper)

  17. Automatic labeling of MR brain images through extensible learning and atlas forests.

    Science.gov (United States)

    Xu, Lijun; Liu, Hong; Song, Enmin; Yan, Meng; Jin, Renchao; Hung, Chih-Cheng

    2017-12-01

    Multiatlas-based method is extensively used in MR brain images segmentation because of its simplicity and robustness. This method provides excellent accuracy although it is time consuming and limited in terms of obtaining information about new atlases. In this study, an automatic labeling of MR brain images through extensible learning and atlas forest is presented to address these limitations. We propose an extensible learning model which allows the multiatlas-based framework capable of managing the datasets with numerous atlases or dynamic atlas datasets and simultaneously ensure the accuracy of automatic labeling. Two new strategies are used to reduce the time and space complexity and improve the efficiency of the automatic labeling of brain MR images. First, atlases are encoded to atlas forests through random forest technology to reduce the time consumed for cross-registration between atlases and target image, and a scatter spatial vector is designed to eliminate errors caused by inaccurate registration. Second, an atlas selection method based on the extensible learning model is used to select atlases for target image without traversing the entire dataset and then obtain the accurate labeling. The labeling results of the proposed method were evaluated in three public datasets, namely, IBSR, LONI LPBA40, and ADNI. With the proposed method, the dice coefficient metric values on the three datasets were 84.17 ± 4.61%, 83.25 ± 4.29%, and 81.88 ± 4.53% which were 5% higher than those of the conventional method, respectively. The efficiency of the extensible learning model was evaluated by state-of-the-art methods for labeling of MR brain images. Experimental results showed that the proposed method could achieve accurate labeling for MR brain images without traversing the entire datasets. In the proposed multiatlas-based method, extensible learning and atlas forests were applied to control the automatic labeling of brain anatomies on large atlas datasets or dynamic

  18. Beyond Standard Model searches with top quarks at ATLAS

    International Nuclear Information System (INIS)

    Chevalier, F.

    2008-01-01

    At the Lhc, the top quark is expected to provide a huge and clean signal. With about eight millions of expected top pairs and three millions of single top events produced per year in the low luminosity runs, and with a low level of backgrounds, the Lhc will open a new opportunity for precision measurements of the top quark properties and for exotic topology searches involving top quarks. As the ATLAS discovery potential on new physics with top quarks is being assessed with many analyses, this paper focuses on two particular topics: heavy neutral resonance and charged Higgs boson searches with top quarks. The analyses and the ATLAS expectations are described.

  19. Supporting ATLAS

    CERN Multimedia

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator. The installation of the feet is scheduled to finish during January 2004 with an installation precision at the 1 mm level despite their height of 5.3 metres. The manufacture was carried out in Russia (Company Izhorskiye Zavody in St. Petersburg), as part of a Russian and JINR Dubna in-kind contribution to ATLAS. Involved in the installation is a team from IHEP-Protvino (Russia), the ATLAS technical co-ordination team at CERN, and the CERN survey team. In all, about 15 people are involved. After the feet are in place, the barrel toroid magnet and the barrel calorimeters will be installed. This will keep the ATLAS team busy for the entire year 2004.

  20. Integration of ROOT Notebooks as a Web-based ATLAS Analysis tool for public data releases and outreach

    CERN Document Server

    Banda, Tea; CERN. Geneva. EP Department

    2016-01-01

    The project consists in the initial development of ROOT notebooks for a Z boson analysis in C++ programming language that will allow students and researches to perform fast and very useful data analysis, using ATLAS public data and Monte- Carlo simulations. Several tools are considered: ROOT Data Analysis Frame- work, Jupyter Notebook Technology and CERN-ROOT computing service so-called SWAN.

  1. A cardiac contouring atlas for radiotherapy

    DEFF Research Database (Denmark)

    Duane, Frances; Aznar, Marianne C; Bartlett, Freddie

    2017-01-01

    defined from cardiology models and agreed by two cardiologists. Reference atlas contours were delineated and written guidelines prepared. Six radiation oncologists tested the atlas. Spatial variation was assessed using the DICE similarity coefficient (DSC) and the directed Hausdorff average distance (d→H,avg......-observer contour separation (mean d→H,avg) was 1.5-2.2mm for left ventricular segments and 1.3-5.1mm for coronary artery segments. This spatial variation resulted in

  2. 17 April 2008 - Head of Internal Audit Network meeting visiting the ATLAS experimental area with CERN ATLAS Team Leader P. Fassnacht, ATLAS Technical Coordinator M. Nessi and ATLAS Resources Manager M. Nordberg.

    CERN Multimedia

    Mona Schweizer

    2008-01-01

    17 April 2008 - Head of Internal Audit Network meeting visiting the ATLAS experimental area with CERN ATLAS Team Leader P. Fassnacht, ATLAS Technical Coordinator M. Nessi and ATLAS Resources Manager M. Nordberg.

  3. AGIS: Evolution of Distributed Computing information system for ATLAS

    Science.gov (United States)

    Anisenkov, A.; Di Girolamo, A.; Alandes, M.; Karavakis, E.

    2015-12-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produces petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization of computing resources in order to meet the ATLAS requirements of petabytes scale data operations. It has been evolved after the first period of LHC data taking (Run-1) in order to cope with new challenges of the upcoming Run- 2. In this paper we describe the evolution and recent developments of the ATLAS Grid Information System (AGIS), developed in order to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  4. The ATLAS Distributed Computing project for LHC Run-2 and beyond.

    CERN Document Server

    Di Girolamo, Alessandro; The ATLAS collaboration

    2015-01-01

    The ATLAS Distributed Computing infrastructure has evolved after the first period of LHC data taking in order to cope with the challenges of the upcoming LHC Run2. An increased data rate and computing demands of the Monte-Carlo simulation, as well as new approaches to ATLAS analysis, dictated a more dynamic workload management system (ProdSys2) and data management system (Rucio), overcoming the boundaries imposed by the design of the old computing model. In particular, the commissioning of new central computing system components was the core part of the migration toward the flexible computing model. The flexible computing utilization exploring the opportunistic resources such as HPC, cloud, and volunteer computing is embedded in the new computing model, the data access mechanisms have been enhanced with the remote access, and the network topology and performance is deeply integrated into the core of the system. Moreover a new data management strategy, based on defined lifetime for each dataset, has been defin...

  5. Migration of ATLAS PanDA to CERN

    International Nuclear Information System (INIS)

    Stewart, Graeme Andrew; Klimentov, Alexei; Maeno, Tadashi; Nevski, Pavel; Nowak, Marcin; De Castro Faria Salgado, Pedro Emanuel; Wenaus, Torre; Koblitz, Birger; Lamanna, Massimo

    2010-01-01

    The ATLAS Production and Distributed Analysis System (PanDA) is a key component of the ATLAS distributed computing infrastructure. All ATLAS production jobs, and a substantial amount of user and group analysis jobs, pass through the PanDA system, which manages their execution on the grid. PanDA also plays a key role in production task definition and the data set replication request system. PanDA has recently been migrated from Brookhaven National Laboratory (BNL) to the European Organization for Nuclear Research (CERN), a process we describe here. We discuss how the new infrastructure for PanDA, which relies heavily on services provided by CERN IT, was introduced in order to make the service as reliable as possible and to allow it to be scaled to ATLAS's increasing need for distributed computing. The migration involved changing the backend database for PanDA from MySQL to Oracle, which impacted upon the database schemas. The process by which the client code was optimised for the new database backend is discussed. We describe the procedure by which the new database infrastructure was tested and commissioned for production use. Operations during the migration had to be planned carefully to minimise disruption to ongoing ATLAS offline computing. All parts of the migration were fully tested before commissioning the new infrastructure and the gradual migration of computing resources to the new system allowed any problems of scaling to be addressed.

  6. A search for supersymmetry in Di-Lepton final states using the Razor variables with the ATLAS detector

    CERN Document Server

    Kuwertz, Emma

    A search for supersymmetry in nal states with exactly two leptons (electrons or muons) is presented. These leptons can be of any avour or sign combination, with events being selected by imposing constraints on the Razor variables. The analysis is performed on the full 2011 dataset of proton-proton collisions at 7 TeV centre-of-mass energy, totalling an integrated luminosity of 4 : 7 fb1, gathered by the ATLAS experiment at the CERN Large Hadron Collider. No signi cant devia- tion from the Standard Model expectation is observed. Exclusion limits are placed on the parameter space of Gauge Mediated supersymmetry, the constrained mini- mal supersymmetric extension to the Standard Model and simpli ed SUSY-inspired models. In addition the nature of noise bursts and sporadically noisy channels in the ATLAS Liquid Argon calorimeter is studied. This includes the development of a tool for use by data quality experts at ATLAS to facilitate the identi cation and agging of cells ...

  7. Summary of the ATLAS experiment's sensitivity to supersymmetry after LHC Run 1 - interpreted in the phenomenological MSSM

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzo, Thomas Gerard; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-10-21

    A summary of the constraints from the ATLAS experiment on $R$-parity conserving supersymmetry is presented. Results from 22 separate ATLAS searches are considered, each based on analysis of up to 20.3 fb$^{-1}$ of proton-proton collision data at the centre-of-mass energy of $\\sqrt{s}$ = 7 and 8 TeV at the Large Hadron Collider.  The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, in which the lightest supersymmetric particle is a neutralino, taking into account constraints from previous precision electroweak and flavour measurements as well as from dark matter related measurements.  The results are presented in terms of constraints on supersymmetric particle masses and are compared to limits from simplified models. The impact of ATLAS searches on parameters such as the dark matter relic density, the couplings of the observed Higgs boson, and the degree of electroweak fine-tuning is also shown.  Spectra for surviving supersymmetry model ...

  8. EnviroAtlas - Austin, TX - Ecosystem Services by Block Group

    Science.gov (United States)

    This EnviroAtlas dataset presents environmental benefits of the urban forest in 750 block groups in Austin, Texas. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. ORIGIN OF THE CHAOTIC MOTION OF THE SATURNIAN SATELLITE ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Renner, S.; Vienne, A. [Université Lille 1, Observatoire de Lille 1 impasse de l’Observatoire, F-59000 Lille (France); Cooper, N. J.; Murray, C. D. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom); Moutamid, M. El [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Sicardy, B. [LESIA/Observatoire de Paris, PSL, CNRS UMR 8109, University Pierre et Marie Curie, University Paris-Diderot, 5 place Jules Janssen, F-92195 Meudon Cédex (France); Saillenfest, M. [IMCCE, Observatoire de Paris, CNRS UMR 8028, 77 avenue Denfert-Rochereau, F-75014 Paris (France)

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied by the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.

  10. Experimental limits from ATLAS on Standard Model Higgs production.

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Experimental limits from ATLAS on Standard Model Higgs production in the mass range 110-600 GeV. The solid curve reflects the observed experimental limits for the production of a Higgs of each possible mass value (horizontal axis). The region for which the solid curve dips below the horizontal line at the value of 1 is excluded with a 95% confidence level (CL). The dashed curve shows the expected limit in the absence of the Higgs boson, based on simulations. The green and yellow bands correspond (respectively) to 68%, and 95% confidence level regions from the expected limits. Higgs masses in the narrow range 123-130 GeV are the only masses not excluded at 95% CL

  11. LUCID: the ATLAS Luminosity Detector

    CERN Document Server

    Fabbri, Laura; The ATLAS collaboration

    2018-01-01

    A precise measurement of luminosity is a key component of the ATLAS program: its uncertainty is a systematics for all cross-section measurements, from Standard Model processes to new discoveries, and for some precise measurements it can be dominant. To be predictive a precision compatible with PDF uncertainty ( 1-2%) is desired. LUCID (LUminosity Cherenkov Integrating Detector) is sensitive to charged particles generated by the pp collisions. It is the only ATLAS dedicated detector for this purpose and the referred one during the second run of LHC data taking.

  12. Digital gene atlas of neonate common marmoset brain.

    Science.gov (United States)

    Shimogori, Tomomi; Abe, Ayumi; Go, Yasuhiro; Hashikawa, Tsutomu; Kishi, Noriyuki; Kikuchi, Satomi S; Kita, Yoshiaki; Niimi, Kimie; Nishibe, Hirozumi; Okuno, Misako; Saga, Kanako; Sakurai, Miyano; Sato, Masae; Serizawa, Tsuna; Suzuki, Sachie; Takahashi, Eiki; Tanaka, Mami; Tatsumoto, Shoji; Toki, Mitsuhiro; U, Mami; Wang, Yan; Windak, Karl J; Yamagishi, Haruhiko; Yamashita, Keiko; Yoda, Tomoko; Yoshida, Aya C; Yoshida, Chihiro; Yoshimoto, Takuro; Okano, Hideyuki

    2018-03-01

    Interest in the common marmoset (Callithrix jacchus) as a primate model animal has grown recently, in part due to the successful demonstration of transgenic marmosets. However, there is some debate as to the suitability of marmosets, compared to more widely used animal models, such as the macaque monkey and mouse. Especially, the usage of marmoset for animal models of human cognition and mental disorders, is still yet to be fully explored. To examine the prospects of the marmoset model for neuroscience research, the Marmoset Gene Atlas (https://gene-atlas.bminds.brain.riken.jp/) provides a whole brain gene expression atlas in the common marmoset. We employ in situ hybridization (ISH) to systematically analyze gene expression in neonate marmoset brains, which allows us to compare expression with other model animals such as mouse. We anticipate that these data will provide sufficient information to develop tools that enable us to reveal marmoset brain structure, function, cellular and molecular organization for primate brain research. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  13. Preliminary Analysis Using Multi-atlas Labeling Algorithms for Tracing Longitudinal Change

    Directory of Open Access Journals (Sweden)

    Eun Young eKim

    2015-07-01

    Full Text Available Multicenter longitudinal neuroimaging has great potential to provide efficient and consistent biomarkers for research of neurodegenerative diseases and aging. In rare disease studies it is of primary importance to have a reliable tool that performs consistently for data from many different collection sites to increase study power. A multi-atlas labeling algorithm is a powerful brain image segmentation approach that is becoming increasingly popular in image processing. The present study examined the performance of multi-atlas labeling tools for subcortical identification using two types of in-vivo image database: Traveling Human Phantom and PREDICT-HD. We compared the accuracy (Dice Similarity Coefficient; DSC and intraclass correlation; ICC, multicenter reliability (Coefficient of Variance; CV, and longitudinal reliability (volume trajectory smoothness and Akaike Information Criterion; AIC of three automated segmentation approaches: two multi-atlas labeling tools, MABMIS and MALF, and a machine-learning-based tool, BRAINSCut. In general, MALF showed the best performance (higher DSC, ICC, lower CV, AIC, and smoother trajectory with a couple of exceptions. First, the results of accumben, where BRAINSCut showed higher reliability, were still premature to discuss their reliability levels since their validity is still in doubt (DSC<0.7, ICC < 0.7. For caudate, BRAINSCut presented slightly better accuracy while MALF showed significantly smoother longitudinal trajectory. We discuss advantages and limitations of these performance variations and conclude that improved segmentation quality can be achieved using multi-atlas labeling methods. While multi-atlas labeling methods are likely to help improve overall segmentation quality, caution has to be taken when one chooses an approach, as our results suggest that segmentation outcome can vary depending on research interest.

  14. ATLAS & Google — "Data Ocean" R&D Project

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    ATLAS is facing several challenges with respect to their computing requirements for LHC Run-3 (2020-2023) and HL-LHC runs (2025-2034). The challenges are not specific for ATLAS or/and LHC, but common for HENP computing community. Most importantly, storage continues to be the driving cost factor and at the current growth rate cannot absorb the increased physics output of the experiment. Novel computing models with a more dynamic use of storage and computing resources need to be considered. This project aims to start an R&D project for evaluating and adopting novel IT technologies for HENP computing. ATLAS and Google plan to launch an R&D project to integrate Google cloud resources (Storage and Compute) to the ATLAS distributed computing environment. After a series of teleconferences, a face-to-face brainstorming meeting in Denver, CO at the Supercomputing 2017 conference resulted in this proposal for a first prototype of the "Data Ocean" project. The idea is threefold: (a) to allow ATLAS to explore the...

  15. Report to users of ATLAS

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1995-05-01

    This report contains discussing in the following areas: Status of the Atlas accelerator; highlights of recent research at Atlas; concept for an advanced exotic beam facility based on Atlas; program advisory committee; Atlas executive committee; and Atlas and ANL physics division on the world wide web

  16. Latest ATLAS results on $\\phi_s$

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00222462; The ATLAS collaboration

    2017-01-01

    New Physics effects beyond the predictions of the Standard Model may manifest in the $CP$-violation of $b$-hadron decays. This paper presents the latest analysis of $B^0_s \\to J/\\psi\\phi$ decay at the ATLAS experiment, measuring the $CP$-violating phase $\\phi_s$, the decay width $\\Gamma_s$ and the difference of widths between the mass eigenstates $\\Delta\\Gamma_s$. The latest results are using integrated luminosity of 14.3 fb$^{-1}$ collected by the ATLAS detector from $\\sqrt{s}$ = 8 TeV $pp$ collisions at the Large Hadron Collider, and are statistically combined with the results from 4.9 fb$^{-1}$ of $\\sqrt{s}$ = 7 TeV data, leading to: \\begin{eqnarray*} \\phi_s & = & -0.090 \\pm 0.078 \\;\\mathrm{(stat.)} \\pm 0.041 \\;\\mathrm{(syst.)~rad} ,\\;\\;\\\\ \\Delta\\Gamma_s & = & 0.085 \\pm 0.011 \\;\\mathrm{(stat.)} \\pm 0.007 \\;\\mathrm{(syst.)~ps}^{-1} ,\\;\\;\\\\ \\Gamma_s & = & 0.675 \\pm 0.003 \\;\\mathrm{(stat.)} \\pm 0.003 \\;\\mathrm{(syst.)~ps}^{-1}. \\end{eqnarray*} The results are also presented in the form...

  17. PD2P: PanDA Dynamic Data Placement for ATLAS

    International Nuclear Information System (INIS)

    Maeno, T; Panitkin, S; De, K

    2012-01-01

    The PanDA (Production and Distributed Analysis) system plays a key role in the ATLAS distributed computing infrastructure. PanDA is the ATLAS workload management system for processing all Monte-Carlo (MC) simulation and data reprocessing jobs in addition to user and group analysis jobs. The PanDA Dynamic Data Placement (PD2P) system has been developed to cope with difficulties of data placement for ATLAS. We will describe the design of the new system, its performance during the past year of data taking, dramatic improvements it has brought about in the efficient use of storage and processing resources, and plans for the future.

  18. Digital atlas of fetal brain MRI.

    Science.gov (United States)

    Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I

    2010-02-01

    Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.

  19. Monitoring individual traffic flows within the ATLAS TDAQ network

    International Nuclear Information System (INIS)

    Sjoen, R; Batraneanu, S M; Leahu, L; Martin, B; Al-Shabibi, A; Stancu, S; Ciobotaru, M

    2010-01-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities and limitations of this diagnostic tool, giving an example of its use in solving system problems that arise during the ATLAS data taking.

  20. ATLAS Future Framework Requirements Group Report

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    The Future Frameworks Requirements Group was constituted in Summer 2013 to consider and summarise the framework requirements from trigger and offline for configuring, scheduling and monitoring the data processing software needed by the ATLAS experiment. The principal motivation for such a re-examination arises from the current and anticipated evolution of CPUs, where multiple cores, hyper-threading and wide vector registers require a shift to a concurrent programming model. Such a model requires extensive changes in the current Gaudi/Athena frameworks and offers the opportunity to consider how HLT and offline processing can be better accommodated within the ATLAS framework. This note contains the report of the Future Frameworks Requirements Group.

  1. An atlas-based multimodal registration method for 2D images with discrepancy structures.

    Science.gov (United States)

    Lv, Wenchao; Chen, Houjin; Peng, Yahui; Li, Yanfeng; Li, Jupeng

    2018-06-04

    An atlas-based multimodal registration method for 2-dimension images with discrepancy structures was proposed in this paper. Atlas was utilized for complementing the discrepancy structure information in multimodal medical images. The scheme includes three steps: floating image to atlas registration, atlas to reference image registration, and field-based deformation. To evaluate the performance, a frame model, a brain model, and clinical images were employed in registration experiments. We measured the registration performance by the squared sum of intensity differences. Results indicate that this method is robust and performs better than the direct registration for multimodal images with discrepancy structures. We conclude that the proposed method is suitable for multimodal images with discrepancy structures. Graphical Abstract An Atlas-based multimodal registration method schematic diagram.

  2. The search for a standard model Higgs at the LHC and electron identification using transition radiation in the ATLAS tracker

    International Nuclear Information System (INIS)

    Egede, U.

    1998-01-01

    The large Hadron Collider (LHC) will be ready for proton-proton collisions in the year 2005 and the ATLAS detector will be one of the two experiments at the LHC which will explore a new and higher energy range for particle physics. In this thesis, an analysis of the power of the ATLAS detector to detect a Standard Model Higgs boson has been performed. It is shown that it will be possible to discover a Higgs particle across the complete mass range from the lower limit defined by the reach of the LEP2 collider experiments to the upper theoretical limit around 1 TeV. The role of the inner tracking detector of ATLAS for the detection of conversions and the identification of the primary vertex in the detection of a Higgs particle in the Higgs to two photon decay channel is demonstrated with a detailed detector simulation. The identification of a 1 TeV Higgs particle requires a good understanding of both the signal and the backgrounds. The related uncertainties are covered in detail and it is shown that the Higgs can be identified in the H→WW→lvjj, H→ZZ→llvv and H→ZZ→lljj decay channels. The Transition Radiation Tracker (TRT) is a combined tracking and electron identification device which will be a part of the inner tracking detector of ATLAS. For a prototype of the TRT the electron identification performance is analysed and it is shown that the full scale TRT together with the calorimeters will provide the electron identification power required for a clean electron and photon signal at the LHC. For the prototype a rejection factor of 100 against pions was achieved with an electron efficiency of 90%. the importance of the TRT for a clear detection of a Higgs particle is demonstrated

  3. The search for a standard model Higgs at the LHC and electron identification using transition radiation in the ATLAS tracker

    Energy Technology Data Exchange (ETDEWEB)

    Egede, U.

    1998-01-01

    The large Hadron Collider (LHC) will be ready for proton-proton collisions in the year 2005 and the ATLAS detector will be one of the two experiments at the LHC which will explore a new and higher energy range for particle physics. In this thesis, an analysis of the power of the ATLAS detector to detect a Standard Model Higgs boson has been performed. It is shown that it will be possible to discover a Higgs particle across the complete mass range from the lower limit defined by the reach of the LEP2 collider experiments to the upper theoretical limit around 1 TeV. The role of the inner tracking detector of ATLAS for the detection of conversions and the identification of the primary vertex in the detection of a Higgs particle in the Higgs to two photon decay channel is demonstrated with a detailed detector simulation. The identification of a 1 TeV Higgs particle requires a good understanding of both the signal and the backgrounds. The related uncertainties are covered in detail and it is shown that the Higgs can be identified in the H{yields}WW{yields}lvjj, H{yields}ZZ{yields}llvv and H{yields}ZZ{yields}lljj decay channels. The Transition Radiation Tracker (TRT) is a combined tracking and electron identification device which will be a part of the inner tracking detector of ATLAS. For a prototype of the TRT the electron identification performance is analysed and it is shown that the full scale TRT together with the calorimeters will provide the electron identification power required for a clean electron and photon signal at the LHC. For the prototype a rejection factor of 100 against pions was achieved with an electron efficiency of 90%. the importance of the TRT for a clear detection of a Higgs particle is demonstrated. 82 refs, figs, tabs.

  4. A Probabilistic Analysis of Data Popularity in ATLAS Data Caching

    International Nuclear Information System (INIS)

    Titov, M; Záruba, G; De, K; Klimentov, A

    2012-01-01

    One of the most important aspects in any computing distribution system is efficient data replication over storage or computing centers, that guarantees high data availability and low cost for resource utilization. In this paper we propose a data distribution scheme for the production and distributed analysis system PanDA at the ATLAS experiment. Our proposed scheme is based on the investigation of data usage. Thus, the paper is focused on the main concepts of data popularity in the PanDA system and their utilization. Data popularity is represented as the set of parameters that are used to predict the future data state in terms of popularity levels.

  5. Spanish ATLAS Tier-2: facing up to LHC Run 2

    CERN Document Server

    Gonzalez de la Hoz, Santiago; Fassi, Farida; Fernandez Casani, Alvaro; Kaci, Mohammed; Lacort Pellicer, Victor Ruben; Montiel Gonzalez, Almudena Del Rocio; Oliver Garcia, Elena; Pacheco Pages, Andres; Sánchez, Javier; Sanchez Martinez, Victoria; Salt, José; Villaplana Perez, Miguel

    2015-01-01

    The goal of this work is to describe the way of addressing the main challenges of Run-2 by the Spanish ATLAS Tier-2. The considerable increase of energy and luminosity for the upcoming Run-2 with respect to Run-1 has led to a revision of the ATLAS computing model as well as some of the main ATLAS computing tools. The adaptation on these changes will be shown, with the peculiarities that it is a distributed Tier-2 composed of three sites and its members are involved on ATLAS computing tasks with a hub of research, innovation and education.

  6. Tau lepton reconstruction with energy flow and the search for R-parity violating supersymmetry at the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sebastian

    2012-10-15

    This thesis investigates the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) for R-parity violating (RPV) supersymmetric (SUSY) models in the framework of mSUGRA, where the stau ({tau}) is the lightest supersymmetric particle (LSP). Hence, the LSP is charged and decays in contrast to R-parity conserving models. For the first time in the framework of this RPV model a detailed signal to background analysis is performed for a specific benchmark scenario using a full Monte Carlo simulation of the ATLAS detector. Furthermore a feasibility study for an estimate of the stau LSP mass is given. The fast track simulation FATRAS is a new approach for the Monte Carlo simulation of particles in the tracking systems of the ATLAS experiment. Its results are compared to first data at {radical}(s) = 900 GeV. Additionally, two generic detector simulations are compared to the full simulation. The reconstruction of tau leptons is crucial for many searches for new physics with ATLAS. Therefore, the reconstruction of tracks for particles from tau decays is studied. A novel method, PanTau, is presented for the tau reconstruction in ATLAS. It is based on the energy flow algorithm eflowRec. Its performance is evaluated in Monte Carlo simulations. The dependency of the identification variables on the jet energy are studied in detail. Finally, the energy flow quantities and the identification variables are compared between Monte Carlo simulations and measured multijet events with first ATLAS data at {radical}(s) = 7 TeV.

  7. Tau lepton reconstruction with energy flow and the search for R-parity violating supersymmetry at the ATLAS experiment

    International Nuclear Information System (INIS)

    Fleischmann, Sebastian

    2012-10-01

    This thesis investigates the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) for R-parity violating (RPV) supersymmetric (SUSY) models in the framework of mSUGRA, where the stau (τ) is the lightest supersymmetric particle (LSP). Hence, the LSP is charged and decays in contrast to R-parity conserving models. For the first time in the framework of this RPV model a detailed signal to background analysis is performed for a specific benchmark scenario using a full Monte Carlo simulation of the ATLAS detector. Furthermore a feasibility study for an estimate of the stau LSP mass is given. The fast track simulation FATRAS is a new approach for the Monte Carlo simulation of particles in the tracking systems of the ATLAS experiment. Its results are compared to first data at √(s) = 900 GeV. Additionally, two generic detector simulations are compared to the full simulation. The reconstruction of tau leptons is crucial for many searches for new physics with ATLAS. Therefore, the reconstruction of tracks for particles from tau decays is studied. A novel method, PanTau, is presented for the tau reconstruction in ATLAS. It is based on the energy flow algorithm eflowRec. Its performance is evaluated in Monte Carlo simulations. The dependency of the identification variables on the jet energy are studied in detail. Finally, the energy flow quantities and the identification variables are compared between Monte Carlo simulations and measured multijet events with first ATLAS data at √(s) = 7 TeV.

  8. A Model Independent General Search for new physics in ATLAS

    CERN Document Server

    Amoroso, S; The ATLAS collaboration

    2016-01-01

    We present results of a model-independent general search for new phenomena in proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the LHC. The data set corresponds to a total integrated luminosity of 20.3~\\ifb. Event topologies involving isolated electrons, photons and muons, as well as jets, including those identified as originating from \\textit{b}-quarks (\\textit{b}-jets) and missing transverse momentum are investigated. The events are subdivided according to their final states into exclusive event classes. For the 697 classes with a Standard Model expectation greater than 0.1 events, a search algorithm tests the compatibility of data against the Monte Carlo simulated background in three kinematic variables sensitive to new physics effects. No significant deviation is found in data. The number and size of the observed deviations follow the Standard Model expectation obtained from simulated pseudo-experiments.

  9. A Model Independent General Search for new physics in ATLAS

    Science.gov (United States)

    Amoroso, S.; ATLAS Collaboration

    2016-04-01

    We present results of a model-independent general search for new phenomena in proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the LHC. The data set corresponds to a total integrated luminosity of 20.3 fb-1. Event topologies involving isolated electrons, photons and muons, as well as jets, including those identified as originating from b-quarks (b-jets) and missing transverse momentum are investigated. The events are subdivided according to their final states into exclusive event classes. For the 697 classes with a Standard Model expectation greater than 0.1 events, a search algorithm tests the compatibility of data against the Monte Carlo simulated background in three kinematic variables sensitive to new physics effects. No significant deviation is found in data. The number and size of the observed deviations follow the Standard Model expectation obtained from simulated pseudo-experiments.

  10. Search for $B → \\mu^{+}\\mu^{−}$ Decays with the Full Run I Data of The ATLAS Experiment

    CERN Document Server

    AUTHOR|(SzGeCERN)655651; Vrba, Vaclav; Cerri, Alessandro; Palestini, Sandro

    Rare $B_s$ and $B_d$ meson decays into two muons are forbidden at the tree level of the Standard Model. They offer the opportunity to perform genuine probes of Yukawa interactions or Electroweak precision tests and play very important role to find signatures of physics beyond the Standard Model. A brief insight into the theoretical foundations of these decays is given in the introductory section, followed by a section with the ATLAS experiment description, none of which is directly a result of author's own work. The ATLAS Collaboration has been searching for $B_{(s)}^0 \\to \\mu^{+}\\mu^{-}$ decays using merged 2011 $\\sqrt{s} = 7$ TeV and 2012 $\\sqrt{s} = 8$ TeV Full Run I Data sample ($\\approx 25~fb^{-1}$). The analysis procedure has been firmly established and unblinding of the search region of $B_{(s)}^0 \\to \\mu^{+}\\mu^{-}$ is imminent. A sensitivity of the analysis to the $B_s^0 \\to \\mu^{+}\\mu^{-}$ signal is estimated to be $4.7~\\pm~1.0~\\sigma$. The description of the whole ATLAS $B_{(s)}^0 \\to \\mu^{+}\\mu^{-...

  11. ATLAS-AWS

    International Nuclear Information System (INIS)

    Gehrcke, Jan-Philip; Stonjek, Stefan; Kluth, Stefan

    2010-01-01

    We show how the ATLAS offline software is ported on the Amazon Elastic Compute Cloud (EC2). We prepare an Amazon Machine Image (AMI) on the basis of the standard ATLAS platform Scientific Linux 4 (SL4). Then an instance of the SLC4 AMI is started on EC2 and we install and validate a recent release of the ATLAS offline software distribution kit. The installed software is archived as an image on the Amazon Simple Storage Service (S3) and can be quickly retrieved and connected to new SL4 AMI instances using the Amazon Elastic Block Store (EBS). ATLAS jobs can then configure against the release kit using the ATLAS configuration management tool (cmt) in the standard way. The output of jobs is exported to S3 before the SL4 AMI is terminated. Job status information is transferred to the Amazon SimpleDB service. The whole process of launching instances of our AMI, starting, monitoring and stopping jobs and retrieving job output from S3 is controlled from a client machine using python scripts implementing the Amazon EC2/S3 API via the boto library working together with small scripts embedded in the SL4 AMI. We report our experience with setting up and operating the system using standard ATLAS job transforms.

  12. EnviroAtlas

    Data.gov (United States)

    City and County of Durham, North Carolina — This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://www.epa.gov/enviroatlas). The layers in this web...

  13. The AAL project: automated monitoring and intelligent analysis for the ATLAS data taking infrastructure

    CERN Document Server

    Kazarov, A; The ATLAS collaboration; Magnoni, L

    2011-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for filtering and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The huge flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This require strong competence and experience in understanding and discovering problems and root causes, and often the meaningful in...

  14. New physics searches, spectroscopy and decay properties of b-hadrons with the ATLAS experiment

    CERN Document Server

    Maeland, Steffen; The ATLAS collaboration

    2015-01-01

    Latest results in the ATLAS programme of searches and precision measurement of heavy hadrons are presented. It includes observation of excited B_c(2S) state, measurement of the B_c meson decays, as well as new decay modes of b-hadrons and search for New Physics signatures in processes that are naturally suppressed in the Standard Model. We present the latest search for rare B_s -> mu+mu- decay and angular analysis of the semileptonic rare decay B_d -> K*mu+mu- and an updated study of mixing and CP violation in the Bs system with full ATLAS Run-1 data.

  15. The ATLAS PanDA Pilot in Operation

    International Nuclear Information System (INIS)

    Nilsson, P; De, K; Stradling, A; Caballero, J; Maeno, T; Wenaus, T

    2011-01-01

    The Production and Distributed Analysis system (PanDA) was designed to meet ATLAS requirements for a data-driven workload management system capable of operating at LHC data processing scale. Submitted jobs are executed on worker nodes by pilot jobs sent to the grid sites by pilot factories. This paper provides an overview of the PanDA pilot system and presents major features added in light of recent operational experience, including multi-job processing, advanced job recovery for jobs with output storage failures, gLExec based identity switching from the generic pilot to the actual user, and other security measures. The PanDA system serves all ATLAS distributed processing and is the primary system for distributed analysis; it is currently used at over 100 sites worldwide. We analyze the performance of the pilot system in processing real LHC data on the OSG, EGI and Nordugrid infrastructures used by ATLAS, and describe plans for its evolution.

  16. ATLAS DQ2 Deletion Service

    International Nuclear Information System (INIS)

    Oleynik, Danila; Petrosyan, Artem; Garonne, Vincent; Campana, Simone

    2012-01-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 Deletion Service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogues to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  17. Dear ATLAS colleagues,

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  18. Encoding atlases by randomized classification forests for efficient multi-atlas label propagation.

    Science.gov (United States)

    Zikic, D; Glocker, B; Criminisi, A

    2014-12-01

    We propose a method for multi-atlas label propagation (MALP) based on encoding the individual atlases by randomized classification forests. Most current approaches perform a non-linear registration between all atlases and the target image, followed by a sophisticated fusion scheme. While these approaches can achieve high accuracy, in general they do so at high computational cost. This might negatively affect the scalability to large databases and experimentation. To tackle this issue, we propose to use a small and deep classification forest to encode each atlas individually in reference to an aligned probabilistic atlas, resulting in an Atlas Forest (AF). Our classifier-based encoding differs from current MALP approaches, which represent each point in the atlas either directly as a single image/label value pair, or by a set of corresponding patches. At test time, each AF produces one probabilistic label estimate, and their fusion is done by averaging. Our scheme performs only one registration per target image, achieves good results with a simple fusion scheme, and allows for efficient experimentation. In contrast to standard forest schemes, in which each tree would be trained on all atlases, our approach retains the advantages of the standard MALP framework. The target-specific selection of atlases remains possible, and incorporation of new scans is straightforward without retraining. The evaluation on four different databases shows accuracy within the range of the state of the art at a significantly lower running time. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The hatfield SCT lunar atlas photographic atlas for Meade, Celestron and other SCT telescopes

    CERN Document Server

    Cook, Jeremy

    2005-01-01

    Schmitt-Cassegrain Telescopes (SCT) and Schmitt-Maksutov telescopes - which include the best-selling models from Meade, Celestron, and other important manufacturers - reverse the visual image left for right, giving a "mirror image". This makes it extremely difficult for observers to identify lunar features at the eyepiece of one of these instruments, using conventional atlases which show the Moon "upside-down" with south at the top. The human brain just doesn't cope well with trying to compare the real thing with a map that is a mirror-image of it!The Hatfield SCT Lunar Atlas solves the problem. Photographs and the detailed key maps are exactly as the Moon appears through the eyepiece of an SCT or Maksutov telescope. Smaller IAU-standard reference photographs are included on each page, to make it simple to compare the mirrored SCT photographs and maps with those that appear in other conventional atlases.Every owner of an SCT - and that's most amateur astronomers - will want this!.

  20. Dark Matter, Supersymmetry and the ATLAS Detector

    CERN Document Server

    Saxena, Sheetal

    Masters Report Univer sity of Toronto Department of Physics August 21, 2008 A Study of Jet and Missing Transv erse Ener gy Reconstruction and Data Cleaning Techniques on ATLAS Calorimeter Cosmic Ray Data Travis Bain 995981834 Abstract Monte Carlo generated QCD jets, and jets reconstructed from cosmic ray data are analyzed and compared. This comparison allo ws some of the rst opportunities to run through a full study , from data collection, to reconstruction, to analysis, within ATLAS, using real events. The ability to handle data at every step of the way will be crucial in achie ving a ìsteady-stateî mode of operation in the coming months and years of ATLAS operation. The use of electromagnetic fractions as a data cleaning technique within the ATLAS calorimeter system is also studied and sho wn to be a rob ust tool in remo ving high ener gy cosmic ray events as a background from jet and E Miss T distrib utions

  1. Multilevel Workflow System in the ATLAS Experiment

    CERN Document Server

    Borodin, M; The ATLAS collaboration; Golubkov, D; Klimentov, A; Maeno, T; Vaniachine, A

    2015-01-01

    The ATLAS experiment is scaling up Big Data processing for the next LHC run using a multilevel workflow system comprised of many layers. In Big Data processing ATLAS deals with datasets, not individual files. Similarly a task (comprised of many jobs) has become a unit of the ATLAS workflow in distributed computing, with about 0.8M tasks processed per year. In order to manage the diversity of LHC physics (exceeding 35K physics samples per year), the individual data processing tasks are organized into workflows. For example, the Monte Carlo workflow is composed of many steps: generate or configure hard-processes, hadronize signal and minimum-bias (pileup) events, simulate energy deposition in the ATLAS detector, digitize electronics response, simulate triggers, reconstruct data, convert the reconstructed data into ROOT ntuples for physics analysis, etc. Outputs are merged and/or filtered as necessary to optimize the chain. The bi-level workflow manager - ProdSys2 - generates actual workflow tasks and their jobs...

  2. GEOLINGUISTICS: THE LINGUISTIC ATLAS OF PARANÁ

    Directory of Open Access Journals (Sweden)

    Rosa Evangelina de Santana BELLI RODRIGUES

    2015-06-01

    Full Text Available The objective of this work is to analyze the methodology adopted by the Linguistic Atlas of Paraná – APLR (AGUILERA, 1990 and to describe its results in relation to other Brazilian atlas. To meet this objective, we first present the modifications, mainly methodological, under gone by Geolinguistics towards a more complete and in depth description of linguistic variation. The Pluridimensional Geolinguistics and Contractual model of Harald Thun (1998 and the Linguistics Atlas of Brazil – ALiB (CARDOSO et all, 2014, published in October, 2014, are presented. It was also necessary to describe, although briefly, the most traditional Geolinguistics research method, characteristic of the ALPR, before referring the text back to Aguilera’s Atlas. After discussing the criteria on which the ALPR was constructed, from choice of informers to the Geolinguistics charts that compose it, as well as its complementation by the ALPR II (ALTINO, 2007, it was possible to analyze the results and relate them to the hypotheses posed by the thesis which gave origin to it.

  3. The Web Lecture Archive Project: Archiving ATLAS Presentations and Tutorials

    CERN Multimedia

    Herr, J

    2004-01-01

    The geographical diversity of the ATLAS Collaboration presents constant challenges in the communication between and training of its members. One important example is the need for training of new collaboration members and/or current members on new developments. The Web Lecture Archive Project (WLAP), a joint project between the University of Michigan and CERN Technical Training, has addressed this challenge by recording ATLAS tutorials in the form of streamed "Web Lectures," consisting of synchronized audio, video and high-resolution slides, available on demand to anyone in the world with a Web browser. ATLAS software tutorials recorded by WLAP include ATHENA, ATLANTIS, Monte Carlo event generators, Object Oriented Analysis and Design, GEANT4, and Physics EDM and tools. All ATLAS talks, including both tutorials and meetings are available at http://www.wlap.org/browser.php?ID=atlas. Members of the University of Michigan Physics Department and Media Union, under the framework of the ATLAS Collaboratory Project ...

  4. ATLAS IV in situ heating test in Boom Clay

    International Nuclear Information System (INIS)

    Chen, Guangjing; Li, Xiangling; Verstricht, Jan; Sillen, Xavier

    2012-01-01

    Document available in extended abstract form only. The small scale in-situ ATLAS (Admissible Thermal Loading for Argillaceous Storage) tests are performed to assess the hydro-mechanical effects of a thermal transient on the host Boom clay at the HADES underground research facility in Mol, Belgium. The initial test set-up, consisting of a heater borehole and two observation boreholes, was installed in 1991-1992. The first test (later named 'ATLAS I') was then performed from July 1993 to June 1996; during this time, the heater dissipated a constant power of 900 W. During the second phase ('ATLAS II'), the heating power was doubled (1800 W) and maintained constant from June 1996 to May 1997. This was followed by shutdown and natural cooling starting from June 1997 on. To broaden the THM characterization of the Boom clay at a larger scale and at different temperature levels, the test set-up was extended in 2006 by drilling two additional instrumented boreholes (AT97E and AT98E). The heater was switched on again from April 2007 to April 2008 with a stepwise power increase, followed by an instantaneous shutdown. This phase is called 'ATLAS III'. The above tests have provided a large set of good quality and well documented data on temperature, pore water pressure and total stress; these data allowed to make several interesting observations regarding the thermal anisotropy and THM coupling in the Boom clay. The straightforward geometry and well defined boundary conditions of the tests facilitate the comparison between measurement and numerical modeling studies. Based on the three dimensional coupled THM modeling of the ATLAS III test, the good agreement between measurement and numerical modeling of temperature and pore water pressure yields a set of THM parameters and confirms the thermo-mechanical anisotropy of the Boom clay. To get a better insight in the anisotropic THM behavior of the Boom clay, a new upward instrumented borehole was drilled above the ATLAS heater at

  5. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    Science.gov (United States)

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. ATLAS people can run!

    CERN Multimedia

    Claudia Marcelloni de Oliveira; Pauline Gagnon

    It must be all the training we are getting every day, running around trying to get everything ready for the start of the LHC next year. This year, the ATLAS runners were in fine form and came in force. Nine ATLAS teams signed up for the 37th Annual CERN Relay Race with six runners per team. Under a blasting sun on Wednesday 23rd May 2007, each team covered the distances of 1000m, 800m, 800m, 500m, 500m and 300m taking the runners around the whole Meyrin site, hills included. A small reception took place in the ATLAS secretariat a week later to award the ATLAS Cup to the best ATLAS team. For the details on this complex calculation which takes into account the age of each runner, their gender and the color of their shoes, see the July 2006 issue of ATLAS e-news. The ATLAS Running Athena Team, the only all-women team enrolled this year, won the much coveted ATLAS Cup for the second year in a row. In fact, they are so good that Peter Schmid and Patrick Fassnacht are wondering about reducing the women's bonus in...

  7. The ATLAS Glasgow Overview Week

    CERN Multimedia

    Richard Hawkings

    2007-01-01

    The ATLAS Overview Weeks always provide a good opportunity to see the status and progress throughout the experiment, and the July week at Glasgow University was no exception. The setting, amidst the traditional buildings of one of the UK's oldest universities, provided a nice counterpoint to all the cutting-edge research and technology being discussed. And despite predictions to the contrary, the weather at these northern latitudes was actually a great improvement on the previous few weeks in Geneva. The meeting sessions comprehensively covered the whole ATLAS project, from the subdetector and TDAQ systems and their commissioning, through to offline computing, analysis and physics. As a long-time ATLAS member who remembers plenary meetings in 1991 with 30 people drawing detector layouts on a whiteboard, the hardware and installation sessions were particularly impressive - to see how these dreams have been translated into 7000 tons of reality (and with attendant cabling, supports and services, which certainly...

  8. Recent ATLAS Articles on WLAP

    CERN Multimedia

    J. Herr

    As reported in the September 2004 ATLAS eNews, the Web Lecture Archive Project is a system for the archiving and publishing of multimedia presentations, using the Web as medium. We list here newly available WLAP items relating to ATLAS: Atlas Physics Workshop 6-11 June 2005 June 2005 ATLAS Week Plenary Session Click here to browse WLAP for all ATLAS lectures.

  9. Overview over opportunities for measuring new physics with ATLAS and CMS

    CERN Document Server

    Johansson, Per; The ATLAS collaboration

    2018-01-01

    This document gives of an overview over opportunities for measuring new physics with ATLAS and CMSD. Describing different signatures and searches, as angular distributions, different analysis techniques currently ongoing at ATLAS and CMS as well as future prospects.

  10. Parcellation of the Healthy Neonatal Brain into 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood.

    Science.gov (United States)

    Blesa, Manuel; Serag, Ahmed; Wilkinson, Alastair G; Anblagan, Devasuda; Telford, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Macnaught, Gillian; Semple, Scott I; Bastin, Mark E; Boardman, James P

    2016-01-01

    Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after birth from 33 typically developing neonates born at term (mean postmenstrual age at birth 39(+5) weeks, range 37(+2)-41(+6)). An adult brain atlas (SRI24/TZO) was propagated to the neonatal data using temporal registration via childhood templates with dense temporal samples (NIH Pediatric Database), with the final atlas (Edinburgh Neonatal Atlas, ENA33) constructed using the Symmetric Group Normalization (SyGN) method. After this step, the computed final transformations were applied to T2-weighted data, and fractional anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas with 107 anatomical regions; a symmetric version was also created to facilitate studies of laterality. Volumes of each region of interest were measured to provide reference data from normal subjects. Because this atlas is generated from step-wise propagation of adult labels through intermediate time points in childhood, it may serve as a useful starting point for modeling brain growth during development.

  11. Parcellation of the healthy neonatal brain into 107 regions using atlas propagation through intermediate time points in childhood

    Directory of Open Access Journals (Sweden)

    Manuel eBlesa Cabez

    2016-05-01

    Full Text Available Neuroimage analysis pipelines rely on parcellated atlases generated from healthy individuals to provide anatomic context to structural and diffusion MRI data. Atlases constructed using adult data introduce bias into studies of early brain development. We aimed to create a neonatal brain atlas of healthy subjects that can be applied to multi-modal MRI data. Structural and diffusion 3T MRI scans were acquired soon after birth from 33 typically developing neonates born at term (mean postmenstrual age at birth 39+5 weeks, range 37+2-41+6. An adult brain atlas (SRI24/TZO was propagated to the neonatal data using temporal registration via childhood templates with dense temporal samples (NIH Pediatric Database, with the final atlas (Edinburgh Neonatal Atlas, ENA33 constructed using the Symmetric Group Normalization method. After this step, the computed final transformations were applied to T2-weighted data, and fractional anisotropy, mean diffusivity, and tissue segmentations to provide a multi-modal atlas with 107 anatomical regions; a symmetric version was also created to facilitate studies of laterality. Volumes of each region of interest were measured to provide reference data from normal subjects. Because this atlas is generated from step-wise propagation of adult labels through intermediate time points in childhood, it may serve as a useful starting point for modelling brain growth during development.

  12. ATLAS particle detector CSC ROD software design and implementation, and, Addition of K physics to chi-squared analysis of FDQM

    CERN Document Server

    Hawkins, Donovan Lee

    2005-01-01

    In this thesis I present a software framework for use on the ATLAS muon CSC readout driver. This C++ framework uses plug-in Decoders incorporating hand-optimized assembly language routines to perform sparsification and data formatting. The software is designed with both flexibility and performance in mind, and runs on a custom 9U VME board using Texas Instruments TMS360C6203 digital signal processors. I describe the requirements of the software, the methods used in its design, and the results of testing the software with simulated data. I also present modifications to a chi-squared analysis of the Standard Model and Four Down Quark Model (FDQM) originally done by Dr. Dennis Silverman. The addition of four new experiments to the analysis has little effect on the Standard Model but provides important new restrictions on the FDQM. The method used to incorporate these new experiments is presented, and the consequences of their addition are reviewed.

  13. Evolving ATLAS Computing For Today’s Networks

    CERN Document Server

    Campana, S; The ATLAS collaboration; Jezequel, S; Negri, G; Serfon, C; Ueda, I

    2012-01-01

    The ATLAS computing infrastructure was designed many years ago based on the assumption of rather limited network connectivity between computing centres. ATLAS sites have been organized in a hierarchical model, where only a static subset of all possible network links can be exploited and a static subset of well connected sites (CERN and the T1s) can cover important functional roles such as hosting master copies of the data. The pragmatic adoption of such simplified approach, in respect of a more relaxed scenario interconnecting all sites, was very beneficial during the commissioning of the ATLAS distributed computing system and essential in reducing the operational cost during the first two years of LHC data taking. In the mean time, networks evolved far beyond this initial scenario: while a few countries are still poorly connected with the rest of the WLCG infrastructure, most of the ATLAS computing centres are now efficiently interlinked. Our operational experience in running the computing infrastructure in ...

  14. Searches for Exotic New Physics with ATLAS and CMS

    CERN Document Server

    Hance, Michael; The ATLAS collaboration

    2018-01-01

    Many theories beyond the Standard Model predict new phenomena accessible by the LHC. The ATLAS, CMS, and LHCb experiments all have rigorous search programs ongoing with the aim to find indications for new physics involving state of the art analysis techniques. This talk reports on new results obtained using the pp collision data sample collected in 2015 and 2016 at the LHC with a centre-of-mass energy of 13 TeV.

  15. Profumo di SUSY: Suggestive Correlations in the ATLAS and CMS High Jet Multiplicity Data

    CERN Document Server

    Li, Tianjun; Nanopoulos, Dimitri V; Walker, Joel W

    2011-01-01

    We present persistently amassing evidence that the CMS and ATLAS Collaborations may indeed be already registering supersymmetry events at the Large Hadron Collider (LHC). Our analysis is performed in the context of a highly phenomenologically favorable model named No-Scale F-SU(5), which represents the unification of the F-lipped SU(5) Grand Unified Theory (GUT), two pairs of hypothetical TeV-scale vector-like supersymmetric multiplets derived out of F-Theory, and the dynamically established boundary conditions of No-Scale supergravity. We document highly suggestive correlations between the first inverse femtobarn of observations by CMS and ATLAS, where seductive excesses in multijet events, particularly those with nine or more jets, are unambiguously accounted for by a precision Monte-Carlo simulation of the F-SU(5) model space. This intimate correspondence is optimized by a unified gaugino mass in the neighborhood of M_{1/2}=518 GeV. We supplement this analysis by extrapolating for the expected data profile...

  16. ttH Coupling Measurement with the ATLAS Detector at the LHC

    CERN Document Server

    Hadef, Asma; The ATLAS collaboration

    2017-01-01

    The Higgs boson is discovered on the 4th of July 2012 with a mass around 125 $\\text{GeV}/c^2$ by ATLAS and CMS experiments at LHC. Determining the Higgs properties (production and decay modes, couplings,...) is an important part of the high-energy physics programme in this decade. A search for the Higgs boson production in association with a top quark pair (ttH) at ATLAS is presented in this talk at an unexplored center-of-mass energy of 13 TeV, which could allow a first direct measurement of the top quark Yukawa coupling and could reveal new physics. The ttH analysis in ATLAS is divided into 3 channels according to the Higgs decay modes: $H \\rightarrow$ Hadrons, $H \\rightarrow$ Leptons and $H \\rightarrow$ Photons. The best-fit value of the ratio of observed and Standard Model cross sections of ttH production process, using 2015-2016 data and combining all ttH final states, is 1.8 $\\pm$ 0.7, corresponds to 2.8 $\\sigma$ (1.8 $\\sigma$) observed (expected) significance.

  17. New format for ATLAS e-news

    CERN Multimedia

    Pauline Gagnon

    ATLAS e-news got a new look! As of November 30, 2007, we have a new format for ATLAS e-news. Please go to: http://atlas-service-enews.web.cern.ch/atlas-service-enews/index.html . ATLAS e-news will now be published on a weekly basis. If you are not an ATLAS colaboration member but still want to know how the ATLAS experiment is doing, we will soon have a version of ATLAS e-news intended for the general public. Information will be sent out in due time.

  18. Probabilistic atlas based labeling of the cerebral vessel tree

    Science.gov (United States)

    Van de Giessen, Martijn; Janssen, Jasper P.; Brouwer, Patrick A.; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2015-03-01

    Preoperative imaging of the cerebral vessel tree is essential for planning therapy on intracranial stenoses and aneurysms. Usually, a magnetic resonance angiography (MRA) or computed tomography angiography (CTA) is acquired from which the cerebral vessel tree is segmented. Accurate analysis is helped by the labeling of the cerebral vessels, but labeling is non-trivial due to anatomical topological variability and missing branches due to acquisition issues. In recent literature, labeling the cerebral vasculature around the Circle of Willis has mainly been approached as a graph-based problem. The most successful method, however, requires the definition of all possible permutations of missing vessels, which limits application to subsets of the tree and ignores spatial information about the vessel locations. This research aims to perform labeling using probabilistic atlases that model spatial vessel and label likelihoods. A cerebral vessel tree is aligned to a probabilistic atlas and subsequently each vessel is labeled by computing the maximum label likelihood per segment from label-specific atlases. The proposed method was validated on 25 segmented cerebral vessel trees. Labeling accuracies were close to 100% for large vessels, but dropped to 50-60% for small vessels that were only present in less than 50% of the set. With this work we showed that using solely spatial information of the vessel labels, vessel segments from stable vessels (>50% presence) were reliably classified. This spatial information will form the basis for a future labeling strategy with a very loose topological model.

  19. Higgs results from ATLAS

    International Nuclear Information System (INIS)

    Chen, Xin

    2016-01-01

    The updated Higgs measurements in various search channels with ATLAS Run 1 data are reviewed. Both the Standard Model (SM) Higgs results, such as H → γγ, ZZ, WW, ττ, μμ, bb-bar, and Beyond Standard Model (BSM) results, such as the charged Higgs, Higgs invisible decay and tensor couplings, are summarized. Prospects for future Higgs searches are briefly discussed

  20. Mechanical Commissioning of the ATLAS Barrel Toroid Magnet

    CERN Document Server

    Foussat, A; Dudarev, A; Bajas, H; Védrine, P; Berriaud, C; Sun, Z; Sorbi, M

    2008-01-01

    ATLAS is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider. Its features include the 4 T Barrel Toroid magnet, the largest superconducting magnet (25 m long, 20 m diameter) that provides the magnetic field for the ATLAS muon spectrometer. The coils integrated at CERN, were tested individually at maximum current of 22 kA in 2005. Following the mechanical assembly of the Barrel Toroid in the ATLAS underground cavern, the test of the full Barrel Toroid was performed in October 2006. Further tests are foreseen at the end 2007 when the system will include the two End Cap Toroids (ECT). The paper gives an overview of the good mechanical test results achieved in comparison with model predictions and the experience gained in the mechanical behavior of the ATLAS Toroidal coils is discussed.

  1. ATLAS Virtual Visits bringing the world into the ATLAS control room

    CERN Document Server

    AUTHOR|(CDS)2051192; The ATLAS collaboration; Yacoob, Sahal

    2016-01-01

    ATLAS Virtual Visits is a project initiated in 2011 for the Education & Outreach program of the ATLAS Experiment at CERN. Its goal is to promote public appreciation of the LHC physics program and particle physics, in general, through direct dialogue between ATLAS physicists and remote audiences. A Virtual Visit is an IP-based videoconference, coupled with a public webcast and video recording, between ATLAS physicists and remote locations around the world, that typically include high school or university classrooms, Masterclasses, science fairs, or other special events, usually hosted by collaboration members. Over the past two years, more than 10,000 people, from all of the world’s continents, have actively participated in ATLAS Virtual Visits, with many more enjoying the experience from the publicly available webcasts and recordings. We present an overview of our experience and discuss potential development for the future.

  2. Recent Improvements in the ATLAS PanDA Pilot

    International Nuclear Information System (INIS)

    Nilsson, P; De, K; Bejar, J Caballero; Maeno, T; Potekhin, M; Wenaus, T; Compostella, G; Contreras, C; Dos Santos, T

    2012-01-01

    The Production and Distributed Analysis system (PanDA) in the ATLAS experiment uses pilots to execute submitted jobs on the worker nodes. The pilots are designed to deal with different runtime conditions and failure scenarios, and support many storage systems. This talk will give a brief overview of the PanDA pilot system and will present major features and recent improvements including CernVM File System integration, the job retry mechanism, advanced job monitoring including JEM technology, and validation of new pilot code using the HammerCloud stress-testing system. PanDA is used for all ATLAS distributed production and is the primary system for distributed analysis. It is currently used at over 130 sites worldwide. We analyze the performance of the pilot system in processing LHC data on the OSG, EGI and Nordugrid infrastructures used by ATLAS, and describe plans for its further evolution.

  3. Evolution of the ATLAS Software Framework towards Concurrency

    CERN Document Server

    Jones, Roger; The ATLAS collaboration; Leggett, Charles; Wynne, Benjamin

    2015-01-01

    The ATLAS experiment has successfully used its Gaudi/Athena software framework for data taking and analysis during the first LHC run, with billions of events successfully processed. However, the design of Gaudi/Athena dates from early 2000 and the software and the physics code has been written using a single threaded, serial design. This programming model has increasing difficulty in exploiting the potential of current CPUs, which offer their best performance only through taking full advantage of multiple cores and wide vector registers. Future CPU evolution will intensify this trend, with core counts increasing and memory per core falling. Maximising performance per watt will be a key metric, so all of these cores must be used as efficiently as possible. In order to address the deficiencies of the current framework, ATLAS has embarked upon two projects: first, a practical demonstration of the use of multi-threading in our reconstruction software, using the GaudiHive framework; second, an exercise to gather r...

  4. MHD modeling of ATLAS experiments to study transverse shear interface interactions

    CERN Document Server

    Faehl, R J; Keinigs, R K; Lindemuth, I R

    2001-01-01

    Summary form only given. The transverse shear established at the interface of two solids moving at differential velocities on the order of the sound speed is being studied in experiments on the ATLAS capacitor bank at Los Alamos, beginning in August 2001. The ATLAS bank has finished certification tests and has demonstrated peak currents of 27.5 MA with a 5 microsecond risetime into an inductive load. One- and two-dimensional MHD calculations have been performed in support of these "friction-like" ATLAS experiments. Current flowing along the outer surface of a thick aluminum liner, roughly 8 mm thick, accelerates the solid liner to velocities ~1 km/s. This cylindrically imploding liner then impacts a target assembly, composed of alternating regions of high and low density materials. The different shock speeds in the two materials leads to a differential velocity along the interface. Shock heating, elastic- plastic flow, and stress transport are included in the calculations. Material strength properties are tre...

  5. Search for the standard-model Higgs boson in the associated WH production with 1.47 fb{sup -1} data of the ATLAS experiment at the LHC; Suche des Standardmodell Higgs-Boson bei der assoziierten WH-Produktion mit 1.47 fb{sup -1} Daten des ATLAS-Experimentes am LHC

    Energy Technology Data Exchange (ETDEWEB)

    Verlage, Tobias

    2011-09-28

    The Large Hadron Collider is a particle accelerator at CERN, in which since March 30th 2010 protons are brought to collision at a c. m. energy of √(s)=7 TeV. These events can be observed b y means of the ATLAS detector, one of two universal detectors at the Large Hadron Collider. One of the main purposes of the ATLAS detector is the search for the Standard-Model Higgs boson. This thesis describes a study on the search for the Standard-Model Higgs boson, whereby the production of the Higgs boson in association with a vector boson W{sup ±} and the subsequent decay in a bottom-quark pair iks studied. For this token data of the ATLAS detector, which correspond to an integrated luminosity of 1.47 fb{sup -1}, are compared with simulated physical events. An analysis based on cuts for the separation of the signal events of background processes is presented. Furthermore systematic uncertainties are determined. Finally an upper exclusion limit of the production rate for a Standard-Model Higgs boson in dependence of its mass in the range from 110 GeV to 139 GeV is calculated and discussed. The strongest exclusion limit can be posed for a Higgs boson with a mass of 110 GeV. For this a 16-fold larger production rate as that of the Standard-Model prediction can be excluded with a confidence level of 95%. For the whole studied mass range an upper exclusion limit for Higgs bosons with 16-29-fold increased Standard-Model production rate results.

  6. Supporting ATLAS

    CERN Multimedia

    maximilien brice

    2003-01-01

    Eighteen feet made of stainless steel will support the barrel ATLAS detector in the cavern at Point 1. In total, the ATLAS feet system will carry approximately 6000 tons, and will give the same inclination to the detector as the LHC accelerator.

  7. PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC

    Directory of Open Access Journals (Sweden)

    Megino Fernando Barreiro

    2016-01-01

    The PanDA (Production and Distributed Analysis system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS, up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA.

  8. Experience running a distributed Tier-2 in Spain for the ATLAS experiment

    International Nuclear Information System (INIS)

    March, L; Hoz, S Gonzales de la; Kaci, M; Fassi, F; Fernandez, A; Lamas, A; Salt, J; Sanchez, J; Peso, J del; Fernandez, P; Munoz, L; Pardo, J; Espinal, X; Garitaonandia, H; Mir, M L; Nadal, J; Pacheco, A; Shuskov, S

    2008-01-01

    The main role of the Tier-2s is to provide computing resources for production of physics simulated events and distributed data analysis. The Spanish ATLAS Tier-2 is geographically distributed among three HEP institutes: IFAE (Barcelona), IFIC (Valencia) and UAM (Madrid). Currently it has a computing power of 430 kSI2K CPU, a disk storage capacity of 87 TB and a network bandwidth, connecting the three sites and the nearest Tier-1 (PIC), of 1 Gb/s. These resources will be increased according to the ATLAS Computing Model with time in parallel to those of all ATLAS Tier-2s. Since 2002, it has been participating into the different Data Challenge exercises. Currently, it is achieving around 1.5% of the whole ATLAS collaboration production in the framework of the Computing System Commissioning exercise. A distributed data management is also arising as an important issue in the daily activities of the Tier-2. The distribution in three sites has shown to be useful due to an increasing service redundancy, a faster solution of problems, the share of computing expertise and know-how. Experience gained running the distributed Tier-2 in order to be ready at the LHC start-up will be presented

  9. Top quark polarization in t-channel single top-quark events with the ATLAS detector

    CERN Document Server

    Chitishvili, Mariam

    2017-01-01

    This summary presents the measurement of the top‐quark polarization in t-channel single top quarks with the ATLAS detector at the LHC. Monte Carlo simulated events are used. Selected events contain one lepton, large missing transverse momentum and exactly two jets, with one of them identified as b-jet. Selection cuts are used to identify the t-channel topology at reconstruction level. The polarization is measured, from an asymmetry in an angular distribution, at parton level by correcting the reconstructed angular distribution for detector effects. This project provides an overview on how a "standard" physics analysis is performed within ATLAS. The analysis is performed in ROOT. Simulation data is reconstructed to perform an unfolded measurement of a given property of a fundamental particle within the Standard Model. Finally results are compared with theoretical predictions.

  10. WRF Mesoscale Pre-Run for the Wind Atlas of Mexico

    OpenAIRE

    Hahmann, Andrea N.; Pena Diaz, Alfredo; Hansen, Jens Carsten

    2016-01-01

    This report documents the work performed by DTU Wind Energy for the project “Atlas Eólico Mexicano” or the Wind Atlas of Mexico. This document reports on the methods used in “Pre-run” of the windmapping project for Mexico. The interim mesoscale modeling results were calculated from the output of simulations using the Weather, Research and Forecasting (WRF) model. We document the method used to run the mesoscale simulations and to generalize the WRF model wind climatologies. A separate section...

  11. A review of structural and functional brain networks: small world and atlas.

    Science.gov (United States)

    Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang

    2015-03-01

    Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.

  12. Report to users of Atlas

    International Nuclear Information System (INIS)

    Ahmad, I.; Glagola, B.

    1996-06-01

    This report contains the following topics: Status of the ATLAS Accelerator; Highlights of Recent Research at ATLAS; Program Advisory Committee; ATLAS User Group Executive Committee; FMA Information Available On The World Wide Web; Conference on Nuclear Structure at the Limits; and Workshop on Experiments with Gammasphere at ATLAS

  13. The Monitoring and Calibration Web Systems for the ATLAS Tile Calorimeter Data Quality Analysis

    International Nuclear Information System (INIS)

    Sivolella, A; Maidantchik, C; Ferreira, F

    2012-01-01

    The Tile Calorimeter (TileCal) is one of the ATLAS sub-detectors. The read-out is performed by about 10,000 PhotoMultiplier Tubes (PMTs). The signal of each PMT is digitized by an electronic channel. The Monitoring and Calibration Web System (MCWS) supports the data quality analysis of the electronic channels. This application was developed to assess the detector status and verify its performance. It can provide to the user the list of TileCal known problematic channels, that is stored in the ATLAS condition database (COOL DB). The bad channels list guides the data quality validator in identifying new problematic channels and is used in data reconstruction and the system allows to update the channels list directly in the COOL database. MCWS can generate summary results, such as eta-phi plots and comparative tables of the masked channels percentage. Regularly, during the LHC (Large Hadron Collider) shutdown a maintenance of the detector equipments is performed. When a channel is repaired, its calibration constants stored in the COOL database have to be updated. Additionally MCWS system manages the update of these calibration constants values in the COOL database. The MCWS has been used by the Tile community since 2008, during the commissioning phase, and was upgraded to comply with ATLAS operation specifications. Among its future developments, it is foreseen an integration of MCWS with the TileCal control Web system (DCS) in order to identify high voltage problems automatically.

  14. 3D atlas of brain connections and functional circuits

    Science.gov (United States)

    Pan, Jinghong; Nowinski, Wieslaw L.; Fock, Loe K.; Dow, Douglas E.; Chuan, Teh H.

    1997-05-01

    This work aims at the construction of an extendable brain atlas system which contains: (i) 3D models of cortical and subcortical structures along with their connections; (ii) visualization and exploration tools; and (iii) structures and connections editors. A 3D version of the Talairach- Tournoux brain atlas along with 3D Brodmann's areas are developed, co-registered, and placed in the Talairach stereotactic space. The initial built-in connections are thalamocortical ones. The structures and connections editors are provided to allow the user to add and modify cerebral structures and connections. Visualization and explorations tools are developed with four ways of exploring the brain connections model: composition, interrogation, navigation and diagnostic queries. The atlas is designed as an open system which can be extended independently in other centers according to their needs and discoveries.

  15. Searches for Vector-Like Quarks at 13 TeV at the ATLAS Experiment

    CERN Document Server

    Nackenhorst, Olaf; The ATLAS collaboration

    2017-01-01

    Vector like quarks appear in many theories beyond the Standard Model as a way to cancel the mass divergence for the Higgs boson. The current status of the ATLAS searches for the production of vector like quarks will be reviewed for proton-proton collisions at 13 TeV. This presentation will address the analysis techniques, in particular the selection criteria, the background modeling and the related experimental uncertainties.

  16. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. In this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of

  17. Wind Atlas of Aegean Sea with SAR data

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Hasager, Charlotte Bay; Badger, Merete

    2013-01-01

    The Global Wind Atlas project is established to create a “free-to-use” wind atlas of the whole globe. The modelling chain of the project includes micro-scale models and new reanalysis datasets. Local measurements are planed to be use for test and validation. Unfortunately, it is not always possible...... to find long term offshore measurement to make wind statistics. The main reason is the cost of setup and maintenance of an offshore mast. One of the regions which has high potential in wind resources but so far is without any long term offshore measurement is the Aegean sea. Recent developments...... in satellite radar technologies made it possible to use Synthetic Aperture Radars (SAR) for wind speed and direction measurements at offshore locations. In this study, a new technique of making wind atlases is applied to the region of Aegean Sea is presented. The method has been tested and validated...

  18. ATLAS @ LHC: status and recent results

    CERN Document Server

    McPherson, Robert; The ATLAS collaboration

    2017-01-01

    The status and data taking summary of the ATLAS experiment at the CERN Large Hadron Collider is reviewed. Recent physics analysis results are presented, and the detector upgrade program is briefly summarized.

  19. First-year experience with the ATLAS online monitoring framework

    International Nuclear Information System (INIS)

    Corso-Radu, A

    2010-01-01

    ATLAS is one of the four experiments in the Large Hadron Collider (LHC) at CERN, which has been put in operation this year. The challenging experimental environment and the extreme detector complexity required development of a highly scalable distributed monitoring framework, which is currently being used to monitor the quality of the data being taken as well as operational conditions of the hardware and software elements of the detector, trigger and data acquisition systems. At the moment the ATLAS Trigger/DAQ system is distributed over more than 1000 computers, which is about one third of the final ATLAS size. At every minute of an ATLAS data taking session the monitoring framework serves several thousands physics events to monitoring data analysis applications, handles more than 4 million histograms updates coming from more than 4 thousands applications, executes 10 thousands advanced data quality checks for a subset of those histograms, displays histograms and results of these checks on several dozens of monitors installed in main and satellite ATLAS control rooms. This note presents the overview of the online monitoring software framework, and describes the experience, which was gained during an extensive commissioning period as well as at the first phase of LHC beam in September 2008. Performance results, obtained on the current ATLAS DAQ system will also be presented, showing that the performance of the framework is adequate for the final ATLAS system.

  20. Calibration for the ATLAS Level-1 Calorimeter-Trigger

    International Nuclear Information System (INIS)

    Foehlisch, F.

    2007-01-01

    This thesis describes developments and tests that are necessary to operate the Pre-Processor of the ATLAS Level-1 Calorimeter Trigger for data acquisition. The major tasks of Pre-Processor comprise the digitizing, time-alignment and the calibration of signals that come from the ATLAS calorimeter. Dedicated hardware has been developed that must be configured in order to fulfill these tasks. Software has been developed that implements the register-model of the Pre-Processor Modules and allows to set up the Pre-Processor. In order to configure the Pre-Processor in the context of an ATLAS run, user-settings and the results of calibration measurements are used to derive adequate settings for registers of the Pre-Processor. The procedures that allow to perform the required measurements and store the results into a database are demonstrated. Furthermore, tests that go along with the ATLAS installation are presented and results are shown. (orig.)

  1. Calibration for the ATLAS Level-1 Calorimeter-Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, F.

    2007-12-19

    This thesis describes developments and tests that are necessary to operate the Pre-Processor of the ATLAS Level-1 Calorimeter Trigger for data acquisition. The major tasks of Pre-Processor comprise the digitizing, time-alignment and the calibration of signals that come from the ATLAS calorimeter. Dedicated hardware has been developed that must be configured in order to fulfill these tasks. Software has been developed that implements the register-model of the Pre-Processor Modules and allows to set up the Pre-Processor. In order to configure the Pre-Processor in the context of an ATLAS run, user-settings and the results of calibration measurements are used to derive adequate settings for registers of the Pre-Processor. The procedures that allow to perform the required measurements and store the results into a database are demonstrated. Furthermore, tests that go along with the ATLAS installation are presented and results are shown. (orig.)

  2. Top Physics at Atlas

    CERN Document Server

    Romano, M; The ATLAS collaboration

    2013-01-01

    This talk is an overview of recent results on top-quark physics obtained by the ATLAS collaboration from the analysis of p-p collisions at 7 and 8 TeV at the Large Hadron Collider. Total and differential top pair cross section, single top cross section and mass measurements are presented.

  3. The AAL project: Automated monitoring and intelligent AnaLysis for the ATLAS data taking infrastructure

    CERN Document Server

    Magnoni, L; The ATLAS collaboration; Kazarov, A

    2011-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for filtering and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The huge flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This require strong competence and experience in understanding and discovering problems and root causes, and often the meaningful in...

  4. Data federation strategies for ATLAS using XRootD

    Science.gov (United States)

    Gardner, Robert; Campana, Simone; Duckeck, Guenter; Elmsheuser, Johannes; Hanushevsky, Andrew; Hönig, Friedrich G.; Iven, Jan; Legger, Federica; Vukotic, Ilija; Yang, Wei; Atlas Collaboration

    2014-06-01

    In the past year the ATLAS Collaboration accelerated its program to federate data storage resources using an architecture based on XRootD with its attendant redirection and storage integration services. The main goal of the federation is an improvement in the data access experience for the end user while allowing more efficient and intelligent use of computing resources. Along with these advances come integration with existing ATLAS production services (PanDA and its pilot services) and data management services (DQ2, and in the next generation, Rucio). Functional testing of the federation has been integrated into the standard ATLAS and WLCG monitoring frameworks and a dedicated set of tools provides high granularity information on its current and historical usage. We use a federation topology designed to search from the site's local storage outward to its region and to globally distributed storage resources. We describe programmatic testing of various federation access modes including direct access over the wide area network and staging of remote data files to local disk. To support job-brokering decisions, a time-dependent cost-of-data-access matrix is made taking into account network performance and key site performance factors. The system's response to production-scale physics analysis workloads, either from individual end-users or ATLAS analysis services, is discussed.

  5. Atlas warping for brain morphometry

    Science.gov (United States)

    Machado, Alexei M. C.; Gee, James C.

    1998-06-01

    In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.

  6. Overview of the ATLAS distributed computing system

    CERN Document Server

    Elmsheuser, Johannes; The ATLAS collaboration

    2018-01-01

    The CERN ATLAS experiment successfully uses a worldwide computing infrastructure to support the physics program during LHC Run 2. The grid workflow system PanDA routinely manages 250 to 500 thousand concurrently running production and analysis jobs to process simulation and detector data. In total more than 300 PB of data is distributed over more than 150 sites in the WLCG and handled by the ATLAS data management system Rucio. To prepare for the ever growing LHC luminosity in future runs new developments are underway to even more efficiently use opportunistic resources such as HPCs and utilize new technologies. This presentation will review and explain the outline and the performance of the ATLAS distributed computing system and give an outlook to new workflow and data management ideas for the beginning of the LHC Run 3.

  7. Identifying fake leptons in ATLAS while hunting SUSY in 8 TeV proton-proton collisions

    CERN Document Server

    Gillam, Thomas P S

    For several theoretically and experimentally motivated reasons, super- symmetry (SUSY) has for some time been identified as an interesting candidate for a theory of fundamental particle physics beyond the Stan- dard Model. The ATLAS collaboration, of which I am a member, possess a detector emplaced in the Large Hadron Collider experiment at CERN. If SUSY does in fact describe our universe, then it is hoped that evidence of it will be visible in data collected in the ATLAS detector. I present an analysis looking for a particular signature that could indicate the presence of SUSY; events containing two like-charge leptons (e or μ). This signature benefits from having both low Standard Model backgrounds as well as potential to observe several SUSY scenarios, par- ticularly those involving strong production processes. These include pair production of squarks and gluinos. The latter of these are particularly relevant for the analysis presented herein since gluinos are Majorana fermions; hence they can decay to...

  8. 4D atlas of the mouse embryo for precise morphological staging.

    Science.gov (United States)

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.

  9. EnviroAtlas - Reptile Biodiversity Ecosystem Services Metrics by 12-digit HUC for the Conterminous United States

    Science.gov (United States)

    This EnviroAtlas dataset contains biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for reptile species, based on the number of reptile species as measured by predicted habitat present within a pixel. These metrics were created from grouping national level single species habitat models created by the USGS Gap Analysis Program into smaller ecologically based, phylogeny based, or stakeholder suggested composites. The dataset includes reptile species richness metrics for all reptile species, lizards, snakes, turtles, poisonous reptiles, Natureserve-listed G1,G2, and G3 reptile species, and reptile species listed by IUCN (International Union for Conservation of Nature), PARC (Partners in Amphibian and Reptile Conservation) and SWPARC (Southwest Partners in Amphibian and Reptile Conservation). This dataset was produced by a joint effort of New Mexico State University, US EPA, and USGS to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa

  10. Test of the little Higgs model in Atlas at LHC: simulation of the digitization of the electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Lechowski, M.

    2005-04-01

    LHC is a proton-proton collider with an energy of 14 TeV in the center of mass, which will start operating in 2007 at CERN. Two of its experiments, ATLAS, and CMS, will search and study in particular the Higgs boson, Supersymmetry and other new physics. This thesis was about two aspects of the ATLAS experiment. On one hand the simulation of the liquid Argon electromagnetic calorimeter, with the emulation of the electronic chain in charge of the digitization of the signal and also the evaluation of the electronic noise and the pile-up noise (coming from minimum bias events of inelastic collisions at LHC). These two points have been validated by the analysis of the data taken during beam tests in 2002 and 2004. On the other hand, a physics study concerning the Little Higgs model. This recent model solves the hierarchy problem of the Standard Model, in introducing new heavy particles to cancel quadratic divergences arising in the calculation of the Higgs boson mass. These new particles, with a mass about the TeV/c 2 , are a heavy quark top, heavy gauge bosons Z H , W H and A H , and a heavy Higgs boson triplet. The physics study dealt with the characteristic decays of the model, Z H in Z + H and W H in W + H, with a Higgs mass either at 120 GeV/c 2 decaying in two photons or at 200 GeV/c 2 decaying in ZZ or WW. Results show that in both cases, for 300 fb -1 (3 years at high luminosity), an observation of the signal at 5 σ for Z H et W H masses less than 2 TeV/c 2 is possible, covering a large part of the parameter space. (author)

  11. Searches for BSM Physics in Rare B-Decays in ATLAS

    CERN Document Server

    Ibragimov, I; The ATLAS collaboration

    2014-01-01

    Beyond Standard Model (BSM) Physics can be searched for indirectly in processes strongly suppressed in the Standard Model, e.g. in flavor-changing neutral-current processes. Results of the study with ATLAS data of the renowned rare decay, Bs -> mu+mu-, will be presented. The measurement of the angular distribution parameters in the weak decay Bd -> K*mumu is also sensitive to BSM physics. Results with ATLAS data will be discussed in the presentation.

  12. EnviroAtlas - NatureServe Analysis of Imperiled or Federally Listed Species by HUC-12 for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes analysis by NatureServe of species that are Imperiled (G1/G2) or Listed under the U.S. Endangered Species Act (ESA) by 12-digit...

  13. ATLAS database application enhancements using Oracle 11g

    CERN Document Server

    Dimitrov, G; The ATLAS collaboration; Blaszczyk, M; Sorokoletov, R

    2012-01-01

    The ATLAS experiment at LHC relies on databases for detector online data-taking, storage and retrieval of configurations, calibrations and alignments, post data-taking analysis, file management over the grid, job submission and management, condition data replication to remote sites. Oracle Relational Database Management System (RDBMS) has been addressing the ATLAS database requirements to a great extent for many years. Ten database clusters are currently deployed for the needs of the different applications, divided in production, integration and standby databases. The data volume, complexity and demands from the users are increasing steadily with time. Nowadays more than 20 TB of data are stored in the ATLAS production Oracle databases at CERN (not including the index overhead), but the most impressive number is the hosted 260 database schemas (for the most common case each schema is related to a dedicated client application with its own requirements). At the beginning of 2012 all ATLAS databases at CERN have...

  14. WRF Mesoscale Pre-Run for the Wind Atlas of Mexico

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Pena Diaz, Alfredo; Hansen, Jens Carsten

    This report documents the work performed by DTU Wind Energy for the project “Atlas Eólico Mexicano” or the Wind Atlas of Mexico. This document reports on the methods used in “Pre-run” of the windmapping project for Mexico. The interim mesoscale modeling results were calculated from the output...

  15. The next generation PanDA Pilot for and beyond the ATLAS experiment

    CERN Document Server

    Nilsson, Paul; The ATLAS collaboration

    2018-01-01

    The Production and Distributed Analysis system (PanDA) is a pilot-based workload management system that was originally designed for the ATLAS Experiment at the LHC to operate on grid sites. Since the coming LHC data taking runs will require more resources than grid computing alone can provide, the various LHC experiments are engaged in an ambitious program to extend the computing model to include opportunistically used resources such as High Performance Computers (HPCs), clouds and volunteer computers. To this end, PanDA is being extended beyond grids and ATLAS to be used on the new types of resources as well as by other experiments. A new key component is being developed, the next generation PanDA Pilot (Pilot 2). Pilot 2 is a complete rewrite of the original PanDA Pilot which has been used in the ATLAS Experiment for over a decade. The new Pilot architecture follows a component-based approach which improves system flexibility, enables a clear workflow control, evolves the system according to modern function...

  16. The future of event-level information repositories, indexing, and selection in ATLAS

    International Nuclear Information System (INIS)

    Barberis, D; Cranshaw, J; Malon, D; Gemmeren, P Van; Zhang, Q; Dimitrov, G; Nairz, A; Sorokoletov, R; Doherty, T; Quilty, D; Gallas, E J; Hrivnac, J; Nowak, M

    2014-01-01

    ATLAS maintains a rich corpus of event-by-event information that provides a global view of the billions of events the collaboration has measured or simulated, along with sufficient auxiliary information to navigate to and retrieve data for any event at any production processing stage. This unique resource has been employed for a range of purposes, from monitoring, statistics, anomaly detection, and integrity checking, to event picking, subset selection, and sample extraction. Recent years of data-taking provide a foundation for assessment of how this resource has and has not been used in practice, of the uses for which it should be optimized, of how it should be deployed and provisioned for scalability to future data volumes, and of the areas in which enhancements to functionality would be most valuable. This paper describes how ATLAS event-level information repositories and selection infrastructure are evolving in light of this experience, and in view of their expected roles both in wide-area event delivery services and in an evolving ATLAS analysis model in which the importance of efficient selective access to data can only grow.

  17. Preparation of Northern Mid-Continent Petroleum Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Gerhard; Timothy R. Carr; W. Lynn Watney

    1998-05-01

    As proposed, the third year program will continue and expand upon the Kansas elements of the original program, and provide improved on-line access to the prototype atlas. The third year of the program will result in a digital atlas sufficient to provide a permanent improvement in data access to Kansas operators. The ultimate goal of providing an interactive history-matching interface with a regional database will be demonstrated as the program covers more geographic territory and the database expands. The atlas will expand to include significant reservoirs representing the major plays in Kansas, and North Dakota. Primary products of the third year prototype atlas will be on-line accessible digital databases and technical publications covering two additional petroleum plays in Kansas and one in North Dakota. Regional databases will be supplemented with geological field studies of selected fields in each play. Digital imagery, digital mapping, relational data queries, and geographical information systems will be integral to the field studies and regional data sets. Data sets will have relational links to provide opportunity for history-matching, feasibility, and risk analysis tests on contemplated exploration and development projects. The flexible "web-like" design of the atlas provides ready access to data, and technology at a variety of scales from regional, to field, to lease, and finally to the individual well bore. The digital structure of the atlas permits the operator to access comprehensive reservoir data and customize the interpretative products (e.g., maps and cross-sections) to their needs. The atlas will be accessible in digital form on-line using a World-Wide-Web browser as the graphical user interface. Regional data sets and field studies will be freestanding entities that will be made available on-line through the Internet to users as they are completed. Technology transfer activities will be ongoing from the earliest part of this project, providing

  18. ATLAS Exotic Searches

    CERN Document Server

    Bousson, Nicolas

    2012-01-01

    Thanks to the outstanding performance of the Large Hadron Collider (LHC) that delivered more than 2 fb^-1 of proton-proton collision data at center-of-mass energy of 7 TeV, the ATLAS experiment has been able to explore a wide range of exotic models trying to address the questions unanswered by the Standard Model of particle physics. Searches for leptoquarks, new heavy quarks, vector-like quarks, black holes, hidden valley and contact interactions are reviewed in these proceedings.

  19. Multilevel Workflow System in the ATLAS Experiment

    International Nuclear Information System (INIS)

    Borodin, M; De, K; Navarro, J Garcia; Golubkov, D; Klimentov, A; Maeno, T; Vaniachine, A

    2015-01-01

    The ATLAS experiment is scaling up Big Data processing for the next LHC run using a multilevel workflow system comprised of many layers. In Big Data processing ATLAS deals with datasets, not individual files. Similarly a task (comprised of many jobs) has become a unit of the ATLAS workflow in distributed computing, with about 0.8M tasks processed per year. In order to manage the diversity of LHC physics (exceeding 35K physics samples per year), the individual data processing tasks are organized into workflows. For example, the Monte Carlo workflow is composed of many steps: generate or configure hard-processes, hadronize signal and minimum-bias (pileup) events, simulate energy deposition in the ATLAS detector, digitize electronics response, simulate triggers, reconstruct data, convert the reconstructed data into ROOT ntuples for physics analysis, etc. Outputs are merged and/or filtered as necessary to optimize the chain. The bi-level workflow manager - ProdSys2 - generates actual workflow tasks and their jobs are executed across more than a hundred distributed computing sites by PanDA - the ATLAS job-level workload management system. On the outer level, the Database Engine for Tasks (DEfT) empowers production managers with templated workflow definitions. On the next level, the Job Execution and Definition Interface (JEDI) is integrated with PanDA to provide dynamic job definition tailored to the sites capabilities. We report on scaling up the production system to accommodate a growing number of requirements from main ATLAS areas: Trigger, Physics and Data Preparation. (paper)

  20. Photon+V measurements in ATLAS

    CERN Document Server

    Krasnopevtsev, Dimitrii; The ATLAS collaboration

    2017-01-01

    ATLAS measurements of multi-boson production processes involving isolated photons in proton–proton collisions at 8 TeV are summarized. Standard Model cross sections are measured with high precision and are compared to theoretical predictions. No deviations from Standard Model predictions are observed and limits are placed on parameters used to describe anomalous triple and quartic gauge-boson couplings.

  1. Searches for New Phenomena with the ATLAS detector

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2017-01-01

    Many theories beyond the Standard Model (BSM) predict new phenomena accessible by the LHC which prevent the need of fine-tuning of the Higgs Boson mass or expand the gauge sectors of the SM to name a few. Searches for new physics models are performed using the ATLAS experiment at the LHC focusing on exotic signatures that can be realized in serval BSM theories. The results reported do not touch on Dark Matter signatures and use the pp collision data sample collected in 2015 and 2016 by the ATLAS detector at the LHC with a centre-of-mass energy of 13 TeV.

  2. South Baltic Wind Atlas

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hahmann, Andrea N.; Hasager, Charlotte Bay

    A first version of a wind atlas for the South Baltic Sea has been developed using the WRF mesoscale model and verified by data from tall Danish and German masts. Six different boundary-layer parametrization schemes were evaluated by comparing the WRF results to the observed wind profiles at the m...

  3. Angular analysis of $B^0_d \\to K^{*}\\mu^+\\mu^-$ decays in $pp$ collisions at $\\sqrt{s}= 8$ TeV with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Alderweireldt, Sara; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Álvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagnaia, Paolo; Bahmani, Marzieh; Bahrasemani, Sina; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Bandyopadhyay, Anjishnu; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tyler Colt; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Beck, Helge Christoph; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrá, Sonia; Carrillo-Montoya, German D; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Jing; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'eramo, Louis; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Daneri, Maria Florencia; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Duvnjak, Damir; Dyndal, Mateusz; Dziedzic, Bartosz Sebastian; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernst, Michael; Errede, Steven; Escalier, Marc; Escobar, Carlos; Esposito, Bellisario; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Förster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; García Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Geßner, Gregor; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giangiacomi, Nico; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herr, Holger; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higón-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kendrick, James; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linck, Rebecca Anne; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jesse; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loesle, Alena; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Mateos, David; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lutz, Margaret Susan; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mankinen, Katja Hannele; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McPherson, Robert; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meier, Karlheinz; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nitta, Tatsumi; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'connor, Kelsey; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearson, Benjamin; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Peri, Francesco; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Poulard, Gilbert; Poulsen, Trine; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rangel-Smith, Camila; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherafati, Nima; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Søgaard, Andreas; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Sopczak, Andre; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, D M S; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thiele, Fabian; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vadla, Knut Oddvar Hoie; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valentinetti, Sara; Valero, Alberto; Valéry, Loïc; Valkar, Stefan; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wagner-Kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Qing; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Lailin; Xu, Tairan; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamatani, Masahiro; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Yu, Jaehoon; Yu, Jie; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zemaityte, Gabija; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2018-01-01

    An angular analysis of the decay $B^0_d \\to K^{*}\\mu^+\\mu^-$ is presented, based on proton-proton collision data recorded by the ATLAS experiment at the LHC. The study is using 20.3 fb$^{-1}$ of integrated luminosity collected during 2012 at centre-of-mass energy of $\\sqrt{s}=8$ TeV. Measurements of the $K^{*}$ longitudinal polarisation fraction and a set of angular parameters obtained for this decay are presented. The results are compatible with the Standard Model predictions.

  4. Modelling of Track Reconstruction Inside Jets with the 2016 ATLAS $\\sqrt{s}= 13$ TeV pp dataset

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    Inside the core of high transverse momentum jets, the particle density is so high that the tracks of charged particles begin to overlap, and due to the different charged particles, pixel clusters in the ATLAS inner detector begin to merge. This high density environment results in a degradation of track reconstruction. Recent innovations to the ambiguity solving in the charged particle pattern recognition partially mitigate the loss in performance. However, it is critical for all physics results using tracks inside jets that the algorithms be well modeled by simulation. This note presents new measurements of the charged particle reconstruction inefficiency and fake rate inside jets with the $\\sqrt{s}=13$ TeV $pp$ dataset collected by the ATLAS experiment at the LHC in 2016.

  5. Performance of the ATLAS Calorimeter Trigger in the LHC Run 1 Data Taking Period

    CERN Document Server

    Oliveira Damazio, D; The ATLAS collaboration

    2013-01-01

    The ATLAS detector operated very successfully at the LHC Run 1 data taking period collecting a large number of events used for the discovery of the Higgs boson as well as for the search for beyond the Standard Model physics. In the main search channels related to the finding of the Higgs, the ATLAS calorimeter system played a major role measuring the energy of photons, electrons, jets, taus and neutrinos, via missing transverse energy measurement. The ATLAS trigger system selects from the huge amount of events produced every second, those few that must be recorded for physics analysis (less than one out of 40 thousand can be kept). The selection process is performed in 3 levels with increasing complexity and resolution. The first level is hardware based, seeding the two other software levels called together the High-Level Trigger. The paper will describe details of the calorimeter based HLT algorithms with special emphasis on the algorithms used for missing transverse energy and jet detection which were impro...

  6. ATLAS Review Office

    CERN Multimedia

    Szeless, B

    The ATLAS internal reviews, be it the mandatory Production Readiness Reviews, the now newly installed Production Advancement Reviews, or the more and more requested different Design Reviews, have become a part of our ATLAS culture over the past years. The Activity Systems Status Overviews are, for the time being, a one in time event and should be held for each system as soon as possible to have some meaning. There seems to a consensus that the reviews have become a useful project tool for the ATLAS management but even more so for the sub-systems themselves making achievements as well as possible shortcomings visible. One other recognized byproduct is the increasing cross talk between the systems, a very important ingredient to make profit all the systems from the large collective knowledge we dispose of in ATLAS. In the last two months, the first two PARs were organized for the MDT End Caps and the TRT Barrel Modules, both part of the US contribution to the ATLAS Project. Furthermore several different design...

  7. Berliner Philarmoniker ATLAS visit

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    The Berliner Philarmoniker in on tour through Europe. They stopped on June 27th in Geneva, for a concert at the Victoria Hall. An ATLAS visit was organised the morning after, lead by the ATLAS spokesperson Karl Jakobs (welcome and overview talk) and two ATLAS guides (AVC visit and 3D movie).

  8. Atlas of temporal variations - interdisciplinary scientific work

    Science.gov (United States)

    Gamburtsev, A. G.; Oleinik, O. V.

    2003-04-01

    The year 2002 will culminate in the publication of the third volume of the fundamental interdisciplinary work "Atlas of Temporal Variations in Natural, Anthropogenic and Social Processes", which now will comprise three volumes (1994, 1998, 2002). The Atlas has pooled the information on the main peculiarities of processes' behaviour in various natural and humanitarian spheres over the widest temporal and spatial range. The main scientific goal of the work consists in discovering the behaviour pattern of natural, anthropogenic and social processes and the cause and effect links between them. Thus, the Atlas contains extensive comparative generalisation from the vastly different data. For one thing, it is a fundamental work on the law-governed nature of evolution in natural and social spheres; for another, it can be used as a reference book and valuable source of information for research in different directions. The authors seek to treat every piece of information as part of an integrated whole. When analysing the data, we operate on the premise that surrounding nature, society and their elements are open dynamic systems. Systems of this kind exhibit non-linear characteristics and a tendency towards ordered and chaotic behaviour. These features are revealed in the course of the analysis of time series. The data processing procedures applied are unified, all processes being generally expressed in terms of their time series and time-spectral diagrams. The technique is aimed at determination of investigated parameters' rhythms and the analysis of their evolution. This approach enables us to show the dynamics of processes occurring in absolutely dissimilar objects and performs their comparative analysis, with particular emphasis placed on rhythms and trends. As a result successions of illustrations are obtained and formed the basis of the Atlas. The Atlas covers processes that occur in objects belonging to the lithosphere, atmosphere, hydrosphere and social sphere as well

  9. Getting ATLAS ready for Physics

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The ATLAS detector is reaching completion and all subsystems are being commissioned into global operation. Periodic runs with cosmics allow tuning of the entire chain of controls and data taking up to physics analysis. The scenario of early physics reach will also be presented.

  10. Software Validation in ATLAS

    International Nuclear Information System (INIS)

    Hodgkinson, Mark; Seuster, Rolf; Simmons, Brinick; Sherwood, Peter; Rousseau, David

    2012-01-01

    The ATLAS collaboration operates an extensive set of protocols to validate the quality of the offline software in a timely manner. This is essential in order to process the large amounts of data being collected by the ATLAS detector in 2011 without complications on the offline software side. We will discuss a number of different strategies used to validate the ATLAS offline software; running the ATLAS framework software, Athena, in a variety of configurations daily on each nightly build via the ATLAS Nightly System (ATN) and Run Time Tester (RTT) systems; the monitoring of these tests and checking the compilation of the software via distributed teams of rotating shifters; monitoring of and follow up on bug reports by the shifter teams and periodic software cleaning weeks to improve the quality of the offline software further.

  11. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hasib, Ahmed; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of statistical techniques such as principal component analysis, and a neural n...

  12. Performance and impact of dynamic data placement in ATLAS

    CERN Document Server

    Maier, Thomas; The ATLAS collaboration

    2018-01-01

    For high-throughput computing the efficient use of distributed computing resources relies on an evenly distributed workload, which in turn requires wide availability of input data that is used in physics analysis. In ATLAS, the dynamic data placement agent C3PO was implemented in the ATLAS distributed data management system Rucio which identifies popular data and creates additional, transient replicas to make data more widely and more reliably available. This contribution presents studies on the performance of C3PO and the impact it has on throughput rates of distributed computing in ATLAS. This includes analysis of the placement algorithm selection behaviour regarding the data considered for replication and destination storage elements, usage after the placement decision of the chosen datasets in general and the newly created copies in particular, and the impact on metrics like job waiting times, task completion times and failure rates of tasks.

  13. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome

    Directory of Open Access Journals (Sweden)

    Severin Andrew J

    2010-08-01

    Full Text Available Abstract Background Next generation sequencing is transforming our understanding of transcriptomes. It can determine the expression level of transcripts with a dynamic range of over six orders of magnitude from multiple tissues, developmental stages or conditions. Patterns of gene expression provide insight into functions of genes with unknown annotation. Results The RNA Seq-Atlas presented here provides a record of high-resolution gene expression in a set of fourteen diverse tissues. Hierarchical clustering of transcriptional profiles for these tissues suggests three clades with similar profiles: aerial, underground and seed tissues. We also investigate the relationship between gene structure and gene expression and find a correlation between gene length and expression. Additionally, we find dramatic tissue-specific gene expression of both the most highly-expressed genes and the genes specific to legumes in seed development and nodule tissues. Analysis of the gene expression profiles of over 2,000 genes with preferential gene expression in seed suggests there are more than 177 genes with functional roles that are involved in the economically important seed filling process. Finally, the Seq-atlas also provides a means of evaluating existing gene model annotations for the Glycine max genome. Conclusions This RNA-Seq atlas extends the analyses of previous gene expression atlases performed using Affymetrix GeneChip technology and provides an example of new methods to accommodate the increase in transcriptome data obtained from next generation sequencing. Data contained within this RNA-Seq atlas of Glycine max can be explored at http://www.soybase.org/soyseq.

  14. The Future of PanDA in ATLAS Distributed Computing

    CERN Document Server

    De, Kaushik; The ATLAS collaboration; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Petrosyan, Artem; Schovancova, Jaroslava; Vaniachine, Alexandre; Wenaus, Torre

    2015-01-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyze the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favor of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addi...

  15. Monitoring individual traffic flows within the ATLAS TDAQ network

    CERN Document Server

    Sjoen, R; Ciobotaru, M; Batraneanu, S M; Leahu, L; Martin, B; Al-Shabibi, A

    2010-01-01

    The ATLAS data acquisition system consists of four different networks interconnecting up to 2000 processors using up to 200 edge switches and five multi-blade chassis devices. The architecture of the system has been described in [1] and its operational model in [2]. Classical, SNMP-based, network monitoring provides statistics on aggregate traffic, but for performance monitoring and troubleshooting purposes there was an imperative need to identify and quantify single traffic flows. sFlow [3] is an industry standard based on statistical sampling which attempts to provide a solution to this. Due to the size of the ATLAS network, the collection and analysis of the sFlow data from all devices generates a data handling problem of its own. This paper describes how this problem is addressed by making it possible to collect and store data either centrally or distributed according to need. The methods used to present the results in a relevant fashion for system analysts are discussed and we explore the possibilities a...

  16. Modelling of the $t\\bar{t}H$ and $t\\bar{t}V$ $(V=W,Z)$ processes for $\\sqrt{s}=13$ TeV ATLAS analyses

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    Production of top quark pairs in association with heavy Standard Model bosons is important both as a signal and a background in several ATLAS analyses. Strong constraints on such processes cannot at present be obtained from data, and therefore their modelling by Monte Carlo simulation as well as the associated uncertainties are important. This note documents the Monte Carlo samples currently being used in ATLAS for the $t\\bar{t}H$ and $t\\bar{t}V$ ($V=W,Z$ vector bosons) processes for $\\sqrt{s}=13$ TeV proton-proton collisions.

  17. Spanish ATLAS Tier-2 facing up to Run-2 period of LHC

    CERN Document Server

    Gonzalez de la Hoz, Santiago; The ATLAS collaboration; Fassi, Farida; Fernandez Casani, Alvaro; Kaci, Mohammed; Lacort Pellicer, Victor Ruben; Montiel Gonzalez, Almudena Del Rocio; Oliver Garcia, Elena; Pacheco Pages, Andres; Salt, José; Villaplana Perez, Miguel; Sanchez Martinez, Victoria; Sánchez, Javier

    2015-01-01

    The goal of this work is to describe the way of addressing the main challenges of Run-2 by the Spanish ATLAS Tier-2. The considerable increase of energy and luminosity for the upcoming Run-2 w.r.t. Run-1 has led to a revision of the ATLAS computing model as well as some of the main ATLAS computing tools. The adaptation to these changes will be shown, with the peculiarities that it is a distributed Tier-2 composed of three sites and its members are involved on ATLAS computing tasks with a hub of research, innovation and education.

  18. ATLAS Potential for Beauty Physics Measurements

    International Nuclear Information System (INIS)

    Smizanska, M.

    2001-01-01

    The main focus of ATLAS b physics has traditionally been on the standard model. In the last few years also the aspects of new physics in B-decays has been addressed. Another new field of studies started recently is a beauty production. We give an overview of the older as well as more recent results. After an introduction outlining selected trigger and detector performance characteristics, we explain methods and goals of CP violation measurements in decay channels of B d 0 meson, physics of B s 0 system and of rare decays. Finally, the ATLAS program for beauty production measurements is presented. (author)

  19. Cartea de Colorat a Experimentului ATLAS - ATLAS Experiment Colouring Book in Romanian

    CERN Multimedia

    Anthony, Katarina

    2018-01-01

    Language: Romanian - The ATLAS Experiment Colouring Book is a free-to-download educational book, ideal for kids aged 5-9. It aims to introduce children to the field of High-Energy Physics, as well as the work being carried out by the ATLAS Collaboration. Limba: Română - Cartea de Colorat a Experimentului ATLAS este o carte educativă gratuită, ideală pentru copiii cu vârsta cuprinsă între 5-9 ani. Scopul său este de a introduce copii în domeniul fizicii de înaltă energie, precum și activitatea desfășurată de colaborarea ATLAS.

  20. Derived Physics Data Production in ATLAS: Experience with Run 1 and Looking Ahead (proceedings)

    CERN Document Server

    Laycock, P; The ATLAS collaboration; Beckingham, M; Henderson, R; Zhou, L

    2014-01-01

    While a significant fraction of ATLAS physicists directly analyse the AOD (Analysis Object Data) produced at the CERN Tier 0, a much larger fraction have opted to analyse data in a flat ROOT format. The large scale production of this Derived Physics Data (DPD) format must cater for both detailed performance studies of the ATLAS detector and object reconstruction, as well as higher level and generally lighter-content physics analysis. The delay between data-taking and DPD production allows for software improvements, while the ease of arbitrarily defined skimming/slimming of this format results in an optimally performant format for end-user analysis. Given the diversity of requirements, there are many flavours of DPDs, which can result in large peak computing resource demands. While the current model has proven to be very flexible for the individual groups and has successfully met the needs of the collaboration, the resource requirements at the end of Run 1 are much larger than planned. In the near future, ATLA...