WorldWideScience

Sample records for astronautics

  1. Den danske astronaut

    DEFF Research Database (Denmark)

    Jakobsen, Lars Sejersgård

    2014-01-01

    Undervisningsmateriale til mellemtrinnet om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015......Undervisningsmateriale til mellemtrinnet om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015...

  2. Den danske astronaut

    DEFF Research Database (Denmark)

    Jakobsen, Lars Sejersgård

    2014-01-01

    Undervisningsmateriale til udskolingen om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015......Undervisningsmateriale til udskolingen om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015...

  3. Astronauts For Hire The Emergence of a Commercial Astronaut Corps

    CERN Document Server

    Seedhouse, Erik

    2012-01-01

    The spaceflight industry is being revolutionized. It is no longer the sole preserve of professional astronauts working on government-funded manned spaceflight programs. As private companies are being encouraged to build and operate launch vehicles, and even spacecraft that can be hired on a contract basis, a new breed of astronauts is coming into being. Astronauts for Hire describes how this commercial astronaut corps will be selected and trained. It provides a unique insight into the kinds of missions and tasks that the astronauts will be involved in, from suborbital science missions to commercial trips to low Earth orbit. The book also describes the new fleet of commercial spaceships being developed - reusable rocket-propelled vehicles that will offer quick, routine, and affordable access to the edge of space. The author also explores the possibility of private enterprise establishing interplanetary spaceports, lunar bases, and outposts on the surface of Mars.

  4. NASA Astronaut Occupational Surveillance Program and Lifetime Surveillance of Astronaut Health, LSAH, Astronaut Exposures and Risk in the Terrestrial and Spaceflight Environment

    Science.gov (United States)

    Keprta, Sean R.; Tarver, William; Van Baalen, Mary; McCoy, Torin

    2015-01-01

    United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.

  5. Philosophy on astronaut protection: Perspective of an astronaut

    International Nuclear Information System (INIS)

    Baker, E.

    1997-01-01

    There are significant differences in the risks during the launch of a spacecraft, its journey, and its subsequent return to earth, as contrasted to the risks of latent cancers that may develop as a result of the associated radiation exposures. Once the spacecraft has landed, following a successful mission, the risks of accidental death are over. The risks of latent cancers, however, will remain with the astronauts for the rest of their lives. The same may be true for many of the effects of the space environment, including microgravity. Compounding the problem with respect to radiation are the large uncertainties accompanying the estimates of the associated latent cancer risks. In addition to radiation doses received as a result of being exposed in space, astronauts have received significant does of radiation in conjunction with medical examinations and experiments conducted to obtain data on the effects of the space environment on humans. The experiments were considered to be a part of the 'job' of being an astronaut, and the resulting doses were included in the medical records. Following this approach, the accompanying doses were counted against the career limits being imposed on each astronaut. As a result, volunteering for such experiments could cause an earlier termination of the career of an astronaut than would otherwise have occurred and add to the total radiation exposure, thereby increasing one's risk of subsequent illness. Through cooperative efforts, these does have been significantly reduced in recent years. In fact, one of the outcomes of these efforts has been the incorporation of the ALARA concept into the radiation protection program for the astronauts. The fact that a space mission has a range of risks, including some that are relatively large, is no justification for failing to reduce the accompanying radiation risk

  6. Safeguarding the Health of the NASA Astronaut Community: the Need for Expanded Medical Monitoring for Former NASA Astronauts Under the Astronaut Occupational Health Program

    Science.gov (United States)

    Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley

    2016-01-01

    The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.

  7. Astronaut Demographic Database: Everything You Want to Know About Astronauts and More

    Science.gov (United States)

    Keeton, Kathryn; Patterson, Holly

    2011-01-01

    A wealth of information regarding the astronaut population is available that could be especially useful to researchers. However, until now, it has been difficult to obtain that information in a systematic way. Therefore, this "astronaut database" began as a way for researchers within the Behavioral Health and Performance Group to keep track of the ever growing astronaut corps population. Before our effort, compilation of such data could be found, but not in a way that was easily acquired or accessible. One would have to use internet search engines, read through lengthy and potentially inaccurate informational sites, or read through astronaut biographies compiled by NASA. Astronauts are a unique class of individuals and, by examining such information, which we dubbed "Demographics," we hoped to find some commonalities that may be useful for other research areas and future research topics. By organizing the information pertaining to astronauts1 in a formal, unified catalog, we believe we have made the information more easily accessible, readily useable, and user friendly. Our end goal is to provide this database to others as a highly functional resource within the research community. Perhaps the database can eventually be an official, published document for researchers to gain full access.

  8. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    Science.gov (United States)

    1969-01-01

    Apollo 11 Onboard Film -- The deployment of scientific experiments by Astronaut Edwin Aldrin Jr. is photographed by Astronaut Neil Armstrong. Man's first landing on the Moon occurred today at 4:17 p.m. as Lunar Module 'Eagle' touched down gently on the Sea of Tranquility on the east side of the Moon.

  9. Astronauts' menu problem.

    Science.gov (United States)

    Lesso, W. G.; Kenyon, E.

    1972-01-01

    Consideration of the problems involved in choosing appropriate menus for astronauts carrying out SKYLAB missions lasting up to eight weeks. The problem of planning balanced menus on the basis of prepackaged food items within limitations on the intake of calories, protein, and certain elements is noted, as well as a number of other restrictions of both physical and arbitrary nature. The tailoring of a set of menus for each astronaut on the basis of subjective rankings of each food by the astronaut in terms of a 'measure of pleasure' is described, and a computer solution to this problem by means of a mixed integer programming code is presented.

  10. Astronautics and psychology: recommendations for the psychological training of astronauts.

    Science.gov (United States)

    Haupt, G F

    1991-11-01

    The methods presently applied in the psychological training of astronauts are based on the principle of ensuring maximum performance of astronauts during missions. The shortcomings are obvious since those undergoing training provide nothing but the best ability to cope with Earth problem situations and add simply an experience of space problem situations as they are presently conceived. Earth attitudes and Earth behaviour remain and are simply modified. Through the utilization of interdisciplinary space knowledge a much higher degree of problem anticipation could be achieved and the astronaut be psychologically transformed into a space-being. This would at the same time stimulate interdisciplinary space research. The interdisciplinary space knowledge already available suggests that space requires not only physical and mental adjustments, but a profoundly new relationship with life.

  11. Astronaut training ground

    OpenAIRE

    2000-01-01

    "While most NPS graduates are still assigned to sea missions, so many are venturing into the "Final Frontier" that NPS is among the top four schools in producing future astronauts. Since moving to Monterey from the Naval Academy in 1951, NPS has already graduated 35 astronauts, some of whom have flown Space Shuttle missions..."

  12. Astronaut Joseph Kerwin takes blood sample from Astronaut Charles Conrad

    Science.gov (United States)

    1973-01-01

    Scientist-Astronaut Joseph P. Kerwin (right), Skylab 2 science pilot and a doctor of medicine, takes a blood sample from Astronaut Charles Conrad Jr., Sylab 2 commander, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the Skylab 1 and 2 space station cluster in Earth orbit. The blood sampling was part of the Skylab Hematology and Immunology Experiment M110 series.

  13. European astronaut training in Houston.

    Science.gov (United States)

    Chiarenza, O

    1993-11-01

    Three European astronauts are currently training as Space Shuttle Mission Specialists at NASA's Johnson Space Center in Houston. Two of the astronauts, Maurizio Cheli and Jean-Francois Clervoy, recently became members of NASA's 'astronaut pool' and have entered the Advanced Training phase. The third one, Claude Nicollier, is now preparing for the mission to service the Hubble Space Telescope in December.

  14. Astronautics Degrees for Space Industry

    Science.gov (United States)

    Gruntman, M.; Brodsky, R.; Erwin, D.; Kunc, J.

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science degree program in Astronautics combines basic science and engineering classes with specialized astronautics classes. The Master of Science degree program in Astronautics offers classes in various areas of space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers. The new world of distance learning presents new challenges and opens new opportunities. We show how the transformation of distance learning and particularly the introduction of webcasting transform organization of the program and class delivery. We will describe in detail the academic focus of the program, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  15. Space radiation and astronaut safety

    CERN Document Server

    Seedhouse, Erik

    2018-01-01

    This brief explores the biological effects of long-term radiation on astronauts in deep space. As missions progress beyond Earth's orbit and away from the protection of its magnetic shielding, astronauts risk constant exposure to higher levels of galactic cosmic rays and solar particle events. The text concisely addresses the full spectrum of biomedical consequences from exposure to space radiation and goes on to present possible ways to mitigate such dangers and protect astronauts within the limitations of existing technologies.

  16. Geoscience Training for NASA Astronaut Candidates

    Science.gov (United States)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.

    2017-01-01

    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  17. Astronauts Exercising in Space Video

    Science.gov (United States)

    2001-01-01

    To minimize the effects of weightlessness and partial gravity, astronauts use several counter measures to maintain health and fitness. One counter measure is exercise to help reduce or eliminate muscle atrophy and bone loss, and to improve altered cardiovascular function. This video shows astronauts on the International Space Station (ISS) using the stationary Cycle/ Ergometer Vibration Isolation System (CVIS), the Treadmill Vibration Isolation System (TVIS), and the resistance exercise device. These technologies and activities will be crucial to keeping astronauts healthy and productive during the long missions to the Moon. Mars, and beyond.

  18. Designing Interfaces for Astronaut Autonomy in Space

    Science.gov (United States)

    Hillenius, Steve

    2015-01-01

    As we move towards human deep space missions, astronauts will no longer be able to say, Houston, we have a problem. The restricted contact with mission control because of the incredible distance from Earth will require astronauts to make autonomous decisions. How will astronauts take on the roles of mission control? This is an area of active research that has far reaching implications for the future of distant spaceflight. Come to this talk to hear how we are using design and user research to come up with innovative solutions for astronauts to effectively explore the Moon, Mars, and beyond.

  19. Educating Astronauts About Conservation Biology

    Science.gov (United States)

    Robinson, Julie A.

    2001-01-01

    This article reviews the training of astronauts in the interdisciplinary work of conservation biology. The primary responsibility of the conservation biologist at NASA is directing and supporting the photography of the Earth and maintaining the complete database of the photographs. In order to perform this work, the astronauts who take the pictures must be educated in ecological issues.

  20. STS-71 astronauts training in Russia

    Science.gov (United States)

    1994-01-01

    Astronauts Norman E. Thagard and Bonnie J. Dunbar in cosmonaut space suits in the Training Simulator Facility at the Gagarin Cosmonaut Training Center (Star City), near Moscow, Russia. In March 1995, astronaut Thagard is scheduled to be launched in a Russ

  1. STS-71 astronauts before egress training

    Science.gov (United States)

    1994-01-01

    Astronaut Robert L. Gibson (left), STS-71 mission commander, converses with two crew mates prior to emergency egress training in the Systems Integration Facility at JSC. Astronaut Bonnie J. Dunbar and Gregory J. Harbaugh are attired in training versions o

  2. Shoulder Injury Incidence Rates in NASA Astronauts

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Foy, Millennia; Wear, Mary L.; Van Baalen, Mary

    2014-01-01

    Evaluation of the astronaut shoulder injury rates began with an operational concern at the Neutral Buoyancy Laboratory (NBL) during Extravehicular Activity (EVA) training. An astronaut suffered a shoulder injury during an NBL training run and commented that it was possibly due to a hardware issue. During the subsequent investigation, questions arose regarding the rate of shoulder injuries in recent years and over the entire history of the astronaut corps.

  3. Moon bound choosing and preparing NASA's lunar astronauts

    CERN Document Server

    Burgess, Colin

    2013-01-01

    Often lost in the shadow of the first group of astronauts for the Mercury missions, the second and third groups included the leading figures for NASA's activities for the following two decades. “Moon Bound” complements the author’s recently published work, “Selecting the Mercury Seven” (2011), extending the story of the men who helped to launch human spaceflight and broaden the American space program. Although the initial 1959 group became known as the legendary pioneering Mercury astronauts, the astronauts of Groups 2 and 3 gave us many household names. Sixteen astronauts from both groups traveled to the Moon in Project Apollo, with several actually walking on the Moon, one of them being Neil Armstrong. This book draws on interviews to tell the astronauts' personal stories and recreate the drama of that time. It describes the process by which they were selected as astronauts and explains how the criteria had changed since the first group. “Moon Bound” is divided into two parts, recounting the b...

  4. Low urinary albumin excretion in astronauts during space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2003-01-01

    BACKGROUND: Physiological changes occur in man during space missions also at the renal level. Proteinuria was hypothesized for space missions but research data are missing. METHODS: Urinary albumin, as an index of proteinuria, and other variables were analyzed in 4 astronauts during space missions...... onboard the MIR station and on the ground (control). Mission duration before first urine collection in the four astronauts was 4, 26, 26, and 106 days, respectively. On the ground, data were collected 2 months before mission in two astronauts, 6 months after in the other astronauts. A total of twenty......-two 24-hour urine collections were obtained in space (n per astronaut = 1-14) and on the ground (n per astronaut = 2-12). Urinary albumin was measured by radioimmunoassay. For each astronaut, mean of data in space and on the ground was defined as individual average. RESULTS: The individual averages of 24...

  5. Digital Astronaut Photography: A Discovery Dataset for Archaeology

    Science.gov (United States)

    Stefanov, William L.

    2010-01-01

    Astronaut photography acquired from the International Space Station (ISS) using commercial off-the-shelf cameras offers a freely-accessible source for high to very high resolution (4-20 m/pixel) visible-wavelength digital data of Earth. Since ISS Expedition 1 in 2000, over 373,000 images of the Earth-Moon system (including land surface, ocean, atmospheric, and lunar images) have been added to the Gateway to Astronaut Photography of Earth online database (http://eol.jsc.nasa.gov ). Handheld astronaut photographs vary in look angle, time of acquisition, solar illumination, and spatial resolution. These attributes of digital astronaut photography result from a unique combination of ISS orbital dynamics, mission operations, camera systems, and the individual skills of the astronaut. The variable nature of astronaut photography makes the dataset uniquely useful for archaeological applications in comparison with more traditional nadir-viewing multispectral datasets acquired from unmanned orbital platforms. For example, surface features such as trenches, walls, ruins, urban patterns, and vegetation clearing and regrowth patterns may be accentuated by low sun angles and oblique viewing conditions (Fig. 1). High spatial resolution digital astronaut photographs can also be used with sophisticated land cover classification and spatial analysis approaches like Object Based Image Analysis, increasing the potential for use in archaeological characterization of landscapes and specific sites.

  6. Is autonomic modulation different between European and Chinese astronauts?

    Science.gov (United States)

    Liu, Jiexin; Li, Yongzhi; Verheyden, Bart; Chen, Shanguang; Chen, Zhanghuang; Gai, Yuqing; Liu, Jianzhong; Gao, Jianyi; Xie, Qiong; Yuan, Ming; Li, Qin; Li, Li; Aubert, André E

    2015-01-01

    The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.

  7. Is autonomic modulation different between European and Chinese astronauts?

    Directory of Open Access Journals (Sweden)

    Jiexin Liu

    Full Text Available The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences.Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions. Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability.Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts.Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.

  8. Cancer Risk in Astronauts: A Constellation of Uncommon Consequences

    Science.gov (United States)

    Milder, Caitlin M.; Elgart, S. Robin; Chappell, Lori; Charvat, Jaqueline M.; Van Baalen, Mary; Huff, Janice L.; Semones, Edward J.

    2017-01-01

    Excess cancers resulting from external radiation exposures have been noted since the early 1950s, when a rise in leukemia rates was first reported in young atomic bomb survivors [1]. Further studies in atomic bomb survivors, cancer patients treated with radiotherapy, and nuclear power plant workers have confirmed that radiation exposure increases the risk of not only leukemia, but also a wide array of solid cancers [2,3]. NASA has long been aware of this risk and limits astronauts' risk of exposure-induced death (REID) from cancer by specifying permissible mission durations (PMD) for astronauts on an individual basis. While cancer is present among astronauts, current data does not suggest any excess of known radiation-induced cancers relative to a comparable population of U.S. adults; however, very uncommon cancers have been diagnosed in astronauts including nasopharyngeal cancer, lymphoma of the brain, and acral myxoinflammatory fibroblastic sarcoma. In order to study cancer risk in astronauts, a number of obstacles must be overcome. Firstly, several factors make the astronaut cohort considerably different from the cohorts that have previously been studied for effects resulting from radiation exposure. The high rate of accidents and the much healthier lifestyle of astronauts compared to the U.S. population make finding a suitable comparison population a problematic task. Space radiation differs substantially from terrestrial radiation exposures studied in the past; therefore, analyses of galactic cosmic radiation (GCR) in animal models must be conducted and correctly applied to the human experience. Secondly, a large enough population of exposed astronauts must exist in order to obtain the data necessary to see any potential statistically significant differences between the astronauts and the control population. Thirdly, confounders and effect modifiers, such as smoking, diet, and other space stressors, must be correctly identified and controlled for in those

  9. Medically induced amenorrhea in female astronauts.

    Science.gov (United States)

    Jain, Varsha; Wotring, Virginia E

    2016-01-01

    Medically induced amenorrhea can be achieved through alterations in the normal regulatory hormones via the adoption of a therapeutic agent, which prevents menstrual flow. Spaceflight-related advantages for medically induced amenorrhea differ according to the time point in the astronaut's training schedule. Pregnancy is contraindicated for many pre-flight training activities as well as spaceflight, therefore effective contraception is essential. In addition, the practicalities of menstruating during pre-flight training or spaceflight can be challenging. During long-duration missions, female astronauts have often continuously taken the combined oral contraceptive pill to induce amenorrhea. Long-acting reversible contraceptives (LARCs) are safe and reliable methods used to medically induce amenorrhea terrestrially but as of yet, not extensively used by female astronauts. If LARCs were used, daily compliance with an oral pill is not required and no upmass or trash would need disposal. Military studies have shown that high proportions of female personnel desire amenorrhea during deployment; better education has been recommended at recruitment to improve uptake and autonomous decision-making. Astronauts are exposed to similar austere conditions as military personnel and parallels can be drawn with these results. Offering female astronauts up-to-date, evidence-based, comprehensive education, in view of the environment in which they work, would empower them to make informed decisions regarding menstrual suppression while respecting their autonomy.

  10. The Application of Leap Motion in Astronaut Virtual Training

    Science.gov (United States)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  11. Multiphoton tomography of astronauts

    Science.gov (United States)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  12. CRAFT: Collaborative Rover and Astronauts Future Technology

    Science.gov (United States)

    Da-Poian, V. D. P.; Koryanov, V. V. K.

    2018-02-01

    Our project is focusing on the relationship between astronauts and rovers to best work together during surface explorations. Robots will help and assist astronauts, and will also work autonomously. Our project is to develop this type of rover.

  13. Space Shuttle Underside Astronaut Communications Performance Evaluation

    Science.gov (United States)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  14. Astronautics degrees for the space industry

    Science.gov (United States)

    Gruntman, M.; Brodsky, R. F.; Erwin, D. A.; Kunc, J. A.

    2004-01-01

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science and Master of Science degree programs in Astronautics combine basic science and engineering classes with specialized classes in space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available entirely through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers while earning their degrees. The new world of distance learning presents new challenges and opens new opportunities. Distance learning, and particularly the introduction of webcasting, transform the organization of the graduate program and class delivery. We describe in detail the program's academic focus, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  15. Cardiovascular Disease Outcomes Among the NASA Astronaut Corps

    Science.gov (United States)

    Charvat, Jacqueline M.; Lee, Stuart M. C.; Wear, Mary L.; Stenger, Michael B.; Van Baalen, Mary

    2018-01-01

    BACKGROUND: Acute effects of spaceflight on the cardiovascular system have been studied extensively, but the combined chronic effects of spaceflight and aging are not well understood. Preparation for and participation in spaceflight activities are associated with changes in the cardiovascular system such as decreased carotid artery distensibility and decreased ventricular mass which may lead to an increased risk of cardiovascular disease. Additionally, astronauts who travel into space multiple times or for longer durations may be at an increased risk across their lifespan. To that end, the purpose of this study was to determine the incidence of common cardiovascular disease (CVD) outcomes among the NASA astronaut corps during their active career and through retirement. METHODS: Cardiovascular disease outcomes were defined as reports of any of the following: myocardial infarction (MI), revascularization procedures (coronary artery bypass graft surgery [CABG] or percutaneous coronary intervention [PCI]), hypertension, stroke or transient ischemic attack [TIA], heart failure, or total CVD (as defined by the AHA - combined outcome of MI, Angina Pectoris, heart failure, stroke, and hypertension). Each outcome was identified individually from review of NASA's Electronic Medical Record (EMR), EKG reports, and death certificates using ICD-9 codes as well as string searches of physician notes of astronaut exams that occurred between 1959 and 2016. RESULTS: Of 338 NASA astronauts selected as of 2016, 9 reported an MI, 12 reported a revascularization procedure, (7 PCI and 5 CABG), 4 reported Angina (without MI), 5 reported heart failure, 9 reported stroke/TIA, and 96 reported hypertension. Total CVD was reported in 105 astronauts. No astronaut who had an MI or revascularization procedure flew a spaceflight mission following the event. All MI, revascularization, and stroke events occurred in male astronauts. When reviewing astronaut ECG reports, abnormal ECG reports were found

  16. Radiation hazards to astronauts

    International Nuclear Information System (INIS)

    Bergmann, R.; Hajek, M.; Berger, T.; Reitz, G.; Bilski, P.; Puchalska, M.

    2009-01-01

    Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses at the level of critical radiosensitive organs and tissues. Within the European MATROSHKA experiment, the dose profile in an anthropomorphic phantom body was investigated at intra- and extravehicular activities on the International Space Station. The effective scientific exploitation of obtained dosimetric data is ensured within the 7 th EU Framework Programme project HAMLET. Based on experimental data and radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body shall be developed to further refine estimations of radiation risks on interplanetary long-term missions. (orig.)

  17. Astronaut Neil Armstrong during thermovacuum training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  18. Official portrait of astronaut Stephen S. Oswald

    Science.gov (United States)

    1992-01-01

    Official portrait of astronaut Stephen S. Oswald. Oswald, a member of Astronaut Class 11, wears launch and entry suit (LES) with launch and entry helmet (LEH) positioned at his side. In the background is the United States (U.S.) flag and a space shuttle orbiter model.

  19. EAC trains its first international astronaut class.

    Science.gov (United States)

    Bolender, Hans; Bessone, Loredana; Schoen, Andreas; Stevenin, Herve

    2002-11-01

    After several years of planning and preparation, ESA's ISS training programme has become operational. Between 26 August and 6 September, the European Astronaut Centre (EAC) near Cologne gave the first ESA advanced training course for an international ISS astronaut class. The ten astronauts who took part--two from NASA, four from Japan and four from ESA--had begun their advanced training programme back in 2001 with sessions at the Johnson Space Center (JSC) in Houston and at the Japanese Training Centre in Tsukuba. During their stay in Cologne, the ten astronauts participated in a total of 33 classroom lessons and hands-on training sessions, which gave them a detailed overview of the systems and subsystems of the Columbus module, the Automated Transfer Vehicle (ATV), and the related crew operations tasks. They were also introduced to the four ESA experiment facilities to be operated inside the Columbus module. After their first week of training at EAC, the astronauts were given the opportunity to see the flight model of the Columbus module being integrated at the site of ESA's ISS prime contractor, Astrium in Bremen. The second week of training at EAC included hands-on instruction on the Columbus Data Management System (DMS) using the recently installed Columbus Crew Training Facility. In preparation for the first advanced crew training session at EAC, two Training Readiness Reviews (TRR) were conducted there in June and August. These reviews were supported by training experts and astronauts from NASA, NASDA and CSA (Canada), who were introduced to ESA's advanced training concept and the development process, and then analysed and evaluated the training flow, content and instructional soundness of lessons and courses, as well as the fidelity of the training facilities and the skills of the ESA training instructors. The International Training Control Board (ITCB), made up of representatives from all of the ISS International Partners and mandated to control and

  20. Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James

    2016-01-01

    Introduction: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The risks for renal stone formation in astronauts due to bone loss and hypercalcuria are unknown. Astronauts have a stone risk which is about the same as commercial aviation pilots, which is about half that of the general population. However, proper management of this condition is still crucial to mitigate health and mission risks in the spaceflight environment. Methods: An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was done. The NASA Flight Medicine Clinic's electronic medical record and Longitudinal Survey of Astronaut Health were also reviewed. Using this work, a screening and management algorithm was created that takes into consideration the unique operational environment of spaceflight. Results: Renal stone screening and management guidelines for astronauts were created based on accepted standards of care, with consideration to the environment of spaceflight. In the proposed algorithm, all astronauts will receive a yearly screening ultrasound for renal calcifications, or mineralized renal material (MRM). Any areas of MRM, 3 millimeters or larger, are considered a positive finding. Three millimeters approaches the detection limit of standard ultrasound, and several studies have shown that any stone that is 3 millimeters or less has an approximately 95 percent chance of spontaneous passage. For mission-assigned astronauts, any positive ultrasound study is followed by low-dose renal computed tomography (CT) scan, and flexible ureteroscopy if CT is positive. Other specific guidelines were also created. Discussion: The term "MRM" is used to account for small areas of calcification that may be outside the renal collecting system, and allows objectivity without otherwise constraining the diagnostic and treatment process for potentially very small calcifications of uncertain

  1. Radiation monitoring system for astronauts

    International Nuclear Information System (INIS)

    Thomson, I.; MacKay, G.; Ng, A.; Tomi, L.

    1996-01-01

    Astronauts in space are constantly under the bombardment of radiation particles from trapped electrons, and trapped proton. In addition, cosmic rays, while penetrating the spacecraft shell, generate secondary radiation of neutrons. As astronauts' stay in space is getting longer, the need for a real-time radiation monitoring device has become critical. Thermoluminescent dosemeter (TLD), used onboard both the MIR and the Space Transportation System (STS), cannot provide real-time dose reading. This paper describes a real-time direct read-out device, currently under development, which can measure skin, eye, and Blood Forming Organ (BFO) doses separately. (author)

  2. STS-71 astronauts and cosmonauts during egress training

    Science.gov (United States)

    1994-01-01

    Astronaut Robert L. Gibson (arms folded, near center) STS-71 mission commander, joins several crew mates during a briefing preceding emergency egress training in the Systems Integration Facility at JSC. Astronauts Bonnie J. Dunbar and Gregory J. Harbaugh

  3. Screening and Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James; Sargsyan, Ashot; Garcia, Kathleen

    2017-01-01

    Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The true risk for renal stone formation in astronauts due to the space flight environment is unknown. Proper management of this condition is crucial to mitigate health and mission risks. The NASA Flight Medicine Clinic electronic medical record and the Lifetime Surveillance of Astronaut Health databases were reviewed. An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was also done. This work was used to develop a screening and management protocol for renal stones in astronauts that is relevant to the spaceflight operational environment. In the proposed guidelines all astronauts receive a yearly screening and post-flight renal ultrasound using a novel ultrasound protocol. The ultrasound protocol uses a combination of factors, including: size, position, shadow, twinkle and dispersion properties to confirm the presence of a renal calcification. For mission-assigned astronauts, any positive ultrasound study is followed by a low-dose renal computed tomography scan and urologic consult. Other specific guidelines were also created. A small asymptomatic renal stone within the renal collecting system may become symptomatic at any time, and therefore affect launch and flight schedules, or cause incapacitation during a mission. Astronauts in need of definitive care can be evacuated from the International Space Station, but for deep space missions evacuation is impossible. The new screening and management algorithm has been implemented and the initial round of screening ultrasounds is under way. Data from these exams will better define the incidence of renal stones in U.S. astronauts, and will be used to inform risk mitigation for both short and long duration spaceflights.

  4. Methodology for astronaut reconditioning research.

    Science.gov (United States)

    Beard, David J; Cook, Jonathan A

    2017-01-01

    Space medicine offers some unique challenges, especially in terms of research methodology. A specific challenge for astronaut reconditioning involves identification of what aspects of terrestrial research methodology hold and which require modification. This paper reviews this area and presents appropriate solutions where possible. It is concluded that spaceflight rehabilitation research should remain question/problem driven and is broadly similar to the terrestrial equivalent on small populations, such as rare diseases and various sports. Astronauts and Medical Operations personnel should be involved at all levels to ensure feasibility of research protocols. There is room for creative and hybrid methodology but careful systematic observation is likely to be more achievable and fruitful than complex trial based comparisons. Multi-space agency collaboration will be critical to pool data from small groups of astronauts with the accepted use of standardised outcome measures across all agencies. Systematic reviews will be an essential component. Most limitations relate to the inherent small sample size available for human spaceflight research. Early adoption of a co-operative model for spaceflight rehabilitation research is therefore advised. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Psychological training of German science astronauts.

    Science.gov (United States)

    Manzey, D; Schiewe, A

    1992-07-01

    Although the significance of psychosocial issues of manned space flights has been discussed very often in recent literature, up to now, very few attempts have been made in North-America or Europe to provide astronaut candidates or spacecrew members with some kind of psychological training. As a first attempt in this field, a psychological training program for science astronauts is described, which has been developed by the German Aerospace Research Establishment and performed as part of the mission-independent biomedical training of the German astronauts' team. In contrast to other training concepts, this training program focused not only on skills needed to cope with psychosocial issues regarding long-term stays in space, but also on skills needed to cope with the different demands during the long pre-mission phase. Topics covered in the training were "Communication and Cooperation", "Stress-Management", "Coping with Operational Demands", "Effective Problem Solving in Groups", and "Problem-Oriented Team Supervision".

  6. Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI.

    Science.gov (United States)

    Roberts, Donna R; Albrecht, Moritz H; Collins, Heather R; Asemani, Davud; Chatterjee, A Rano; Spampinato, M Vittoria; Zhu, Xun; Chimowitz, Marc I; Antonucci, Michael U

    2017-11-02

    There is limited information regarding the effects of spaceflight on the anatomical configuration of the brain and on cerebrospinal fluid (CSF) spaces. We used magnetic resonance imaging (MRI) to compare images of 18 astronauts' brains before and after missions of long duration, involving stays on the International Space Station, and of 16 astronauts' brains before and after missions of short duration, involving participation in the Space Shuttle Program. Images were interpreted by readers who were unaware of the flight duration. We also generated paired preflight and postflight MRI cine clips derived from high-resolution, three-dimensional imaging of 12 astronauts after long-duration flights and from 6 astronauts after short-duration flights in order to assess the extent of narrowing of CSF spaces and the displacement of brain structures. We also compared preflight ventricular volumes with postflight ventricular volumes by means of an automated analysis of T 1 -weighted MRIs. The main prespecified analyses focused on the change in the volume of the central sulcus, the change in the volume of CSF spaces at the vertex, and vertical displacement of the brain. Narrowing of the central sulcus occurred in 17 of 18 astronauts after long-duration flights (mean flight time, 164.8 days) and in 3 of 16 astronauts after short-duration flights (mean flight time, 13.6 days) (P<0.001). Cine clips from a subgroup of astronauts showed an upward shift of the brain after all long-duration flights (12 astronauts) but not after short-duration flights (6 astronauts) and narrowing of CSF spaces at the vertex after all long-duration flights (12 astronauts) and in 1 of 6 astronauts after short-duration flights. Three astronauts in the long-duration group had optic-disk edema, and all 3 had narrowing of the central sulcus. A cine clip was available for 1 of these 3 astronauts, and the cine clip showed upward shift of the brain. Narrowing of the central sulcus, upward shift of the brain

  7. Undergraduate Astronautics at the United States Naval Academy.

    Science.gov (United States)

    Bagaria, William J.

    1991-01-01

    The aerospace engineering curriculum at the U.S. Naval Academy which includes an astronautical and an aeronautical track is described. The objective of the program is to give students the necessary astronautical engineering background to perform a preliminary spacecraft design during the last semester of the program. (KR)

  8. Epstein-Barr virus shedding by astronauts during space flight

    Science.gov (United States)

    Pierson, D. L.; Stowe, R. P.; Phillips, T. M.; Lugg, D. J.; Mehta, S. K.

    2005-01-01

    Patterns of Epstein-Barr virus (EBV) reactivation in 32 astronauts and 18 healthy age-matched control subjects were characterized by quantifying EBV shedding. Saliva samples were collected from astronauts before, during, and after 10 space shuttle missions of 5-14 days duration. At one time point or another, EBV was detected in saliva from each of the astronauts. Of 1398 saliva specimens from 32 astronauts, polymerase chain reaction analysis showed that 314 (23%) were positive for EBV DNA. Examination by flight phase showed that 29% of the saliva specimens collected from 28 astronauts before flight were positive for EBV DNA, as were 16% of those collected from 25 astronauts during flight and 16% of those collected after flight from 23 astronauts. The mean number of EBV copies from samples taken during the flights was 417 per mL, significantly greater (p<.05) than the number of viral copies from the preflight (40) and postflight (44) phases. In contrast, the control subjects shed EBV DNA with a frequency of 3.7% and mean number of EBV copies of 40 per mL of saliva. Ten days before flight and on landing day, titers of antibody to EBV viral capsid antigen were significantly (p<.05) greater than baseline levels. On landing day, urinary levels of cortisol and catecholamines were greater than their preflight values. In a limited study (n=5), plasma levels of substance P and other neuropeptides were also greater on landing day. Increases in the number of viral copies and in the amount of EBV-specific antibody were consistent with EBV reactivation before, during, and after space flight.

  9. Astronaut Stephen Oswald and fellow crew members on middeck

    Science.gov (United States)

    1995-01-01

    Astronaut Stephen S. Oswald (center), STS-67 mission commander, is seen with two of his fellow crew members and an experiment which required a great deal of his time on the middeck of the Earth orbiting Space Shuttle Endeavour. Astronaut John M. Grunsfeld inputs mission data on a computer while listening to a cassette. Astronaut William G. Gregory (right edge of frame), pilot, consults a check list. The Middeck Active Control Experiment (MACE), not in use here, can be seen in upper center.

  10. Latent Virus Reactivation in Astronauts and Shingles Patients

    Science.gov (United States)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpesviruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpes viruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  11. Three astronauts inside Command Module Simulator during Apollo Simulation

    Science.gov (United States)

    1968-01-01

    Three astronauts inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Left to right are Astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot.

  12. Astronauts Armstrong and Scott arrive at Hickam Field, Hawaii

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott, pilot, arrive at Hickam Field, Hawaii on their way from Naha, Okinawa, to Cape Kennedy, Florida. Astronaut Walter M. Schirra Jr. is at extreme left.

  13. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    Science.gov (United States)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  14. Characterizing Fractures Across the Astronaut Corps: Preliminary Findings from Population-Level Analysis

    Science.gov (United States)

    Rossi, Meredith M.; Charvat, Jacqueline; Sibonga, Jean; Sieker, Jeremy

    2017-01-01

    Despite evidence of bone loss during spaceflight and operational countermeasures to mitigate this loss, the subsequent risk of fracture among astronauts is not known. The physiologic process of diminished bone density and bone recovery during or following spaceflight is multifactorial. Such factors as age, sex, fracture history, and others may combine to increase fracture risk among astronauts. As part of the 2016 Bone Research and Clinical Advisory Panel (RCAP), the authors analyzed data collected on 338 NASA astronauts to describe the demographics, bone-relevant characteristics, and fracture history of the astronaut population. The majority of the population are male (n=286, 84.6%), have flown at least one mission (n=306, 90.5%), and were between the ages of 30 and 49 at first mission (n=296, 96.7% of those with at least one mission). Of the 338 astronauts, 241 (71.3%) experienced a fracture over the course of their lifetime. One hundred and five (43.5%) of these 241 astronauts only experienced a fracture prior to being selected into the Astronaut Corps, whereas 53 (22.0%) only experienced a fracture after selection as an astronaut. An additional 80 astronauts (33.2%) had both pre- and post-selection fractures. The remaining 3 astronauts had a fracture of unknown date, which could not be categorized as pre- or post-selection. Among the 133 astronauts with at least one post-selection fracture, males comprised 90.2% (n=120) compared to 84.5% of the entire Corps, and females accounted for 9.8% (n=13) compared to 15.4% of the Corps. Ninety-seven of the 133 astronauts with post-selection fractures (72.9%) had one fracture event, 22 (16.5%) had two fractures, and 14 (10.5%) had three or more fractures. Some astronauts with multiple fractures suffered these in a single event, such as an automobile accident. The 133 astronauts with a post-selection fracture accounted for a total of 188 fracture events. One hundred and four (78.2%) of astronauts with post

  15. Astronaut training for STS 41-D mission

    Science.gov (United States)

    1984-01-01

    Astronauts David C. Leestma and Kathryn D. Sullivan, two of three 41-D mission specialists, rehearse some of the duties they will be performing on their flight. Dr. Sullivan holds the Krimsky rule against her cheekbones as part of an ongoing Shuttle study on near vision acuity. Astronaut Leestma reviews a flight data file flipbook. They are seated on the floor of the Space Shuttle Simulator, in front of the forward middeck lockers.

  16. Enhancing astronaut performance using sensorimotor adaptability training

    OpenAIRE

    Bloomberg, Jacob J.; Peters, Brian T.; Cohen, Helen S.; Mulavara, Ajitkumar P.

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the bal...

  17. Atrial Arrhythmias in Astronauts. Summary of a NASA Summit

    Science.gov (United States)

    Barr, Yael; Watkins, Sharmila; Polk, J. D.

    2011-01-01

    This slide presentation reviews the findings of a panel of heart experts brought together to study if atrial arrhythmias more prevalent in astronauts, and potential risk factors that may predispose astronauts to atrial arrhythmias. The objective of the panel was to solicit expert opinion on screening, diagnosis, and treatment options, identify gaps in knowledge, and propose relevant research initiatives. While Atrial Arrhythmias occur in approximately the same percents in astronauts as in the general population, they seem to occur at younger ages in astronauts. Several reasons for this predisposition were given: gender, hypertension, endurance training, and triggering events. Potential Space Flight-Related Risk factors that may play a role in precipitating lone atrial fibrillation were reviewed. There appears to be no evidence that any variable of the space flight environment increases the likelihood of developing atrial arrhythmias during space flight.

  18. Train Like an Astronaut Educational Outreach

    Science.gov (United States)

    Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.

    2012-01-01

    In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".

  19. Mission X: Train Like an Astronaut Challenge

    Science.gov (United States)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  20. Initial Incidence of White Matter Hyperintensities on MRI in Astronauts

    Science.gov (United States)

    Norcross, Jason; Sherman, Paul; McGuire, Steve; Kochunov, Peter

    2016-01-01

    Introduction: Previous literature has described the increase in white matter hyperintensity (WMH) burden associated with hypobaric exposure in the U-2 and altitude chamber operating personnel. Although astronauts have similar hypobaric exposure pressures to the U2 pilot population, astronauts have far fewer exposures and each exposure would be associated with a much lower level of decompression stress due to rigorous countermeasures to prevent decompression sickness. Therefore, we postulated that the WMH burden in the astronaut population would be less than in U2 pilots. Methods: Twenty-one post-flight de-identified astronaut MRIs (5 mm slice thickness FLAIR sequences) were evaluated for WMH count and volume. The only additional data provided was an age range of the astronauts (43-57) and if they had ever performed an EVA (13 yes, 8 no). Results: WMH count in these 21 astronaut MRI was 21.0 +/- 24.8 (mean+/- SD) and volume was 0.382 +/- 0.602 ml, which was significantly higher than previously published results for the U2 pilots. No significant differences between EVA and no EVA groups existed. Age range of astronaut population is not directly comparable to the U2 population. Discussion: With significantly less frequent (sometimes none) and less stressful hypobaric exposures, yet a much higher incidence of increased WMH, this indicates the possibility of additional mechanisms beyond hypobaric exposure. This increase unlikely to be attributable just to the differences in age between astronauts and U2 pilots. Forward work includes continuing review of post-flight MRI and evaluation of pre to post flight MRI changes if available. Data mining for potential WMH risk factors includes collection of age, sex, spaceflight experience, EVA hours, other hypobaric exposures, hyperoxic exposures, radiation, high performance aircraft experience and past medical history. Finally, neurocognitive and vision/eye results will be evaluated for any evidence of impairment linked to

  1. Psychometric Personality Differences Between Candidates in Astronaut Selection.

    Science.gov (United States)

    Mittelstädt, Justin M; Pecena, Yvonne; Oubaid, Viktor; Maschke, Peter

    This paper investigates personality traits as potential factors for success in an astronaut selection by comparing personality profiles of unsuccessful and successful astronaut candidates in different phases of the ESA selection procedure. It is further addressed whether personality traits could predict an overall assessment rating at the end of the selection. In 2008/2009, ESA performed an astronaut selection with 902 candidates who were either psychologically recommended for mission training (N = 46) or failed in basic aptitude (N = 710) or Assessment Center and interview testing (N = 146). Candidates completed the Temperament Structure Scales (TSS) and the NEO Personality Inventory Revised (NEO-PI-R). Those candidates who failed in basic aptitude testing showed higher levels of Neuroticism (M = 49.8) than the candidates who passed that phase (M = 45.4 and M = 41.6). Additionally, candidates who failed in basic testing had lower levels of Agreeableness (M = 132.9) than recommended candidates (M = 138.1). TSS scales for Achievement (r = 0.19) and Vitality (r = 0.18) showed a significant correlation with the overall assessment rating given by a panel board after a final interview. Results indicate that a personality profile similar to Helmreich's "Right Stuff" is beneficial in astronaut selection. Influences of test anxiety on performance are discussed. Mittelstädt JM, Pecena Y, Oubaid V, Maschke P. Psychometric personality differences between candidates in astronaut selection. Aerosp Med Hum Perform. 2016; 87(11):933-939.

  2. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  3. Motivational profile of astronauts at the International Space Station

    Science.gov (United States)

    Brcic, Jelena

    2010-11-01

    Research has demonstrated that the motive triad of needs for achievement, power, and affiliation can predict variables such as occupational success and satisfaction, innovation, aggressiveness, susceptibility to illness, cooperation, conformity, and many others. The present study documents the motivational profiles of astronauts at three stages of their expedition. Thematic content analysis was employed for references to Winter's well-established motive markers in narratives (media interviews, journals, and oral histories) of 46 astronauts participating in International Space Station (ISS) expeditions. Significant pre-flight differences were found in relation to home agency and job status. NASA astronauts, compared with those from the Russian Space Agency, are motivated by higher need for power, as are commanders in comparison to flight engineers. The need for affiliation motive showed a significant change from pre-flight to in-flight stages. The implications of the relationship between the motivational profile of astronauts and the established behavioural correlates of such profiles are discussed.

  4. Astronaut John W. Young during water egress training

    Science.gov (United States)

    1966-01-01

    Astronaut John W. Young, prime crew command pilot for the Gemini 10 space flight, sits in Static Article 5 during water egress training activity on board the NASA Motor Vessel Retriever. The SA-5 will be placed in the water and he and Astronaut Michael Collins, will then practice egress and water survival techniques. At right is Gordon Harvey, Spacecraft Operations Branch, Flight Crew Support Division.

  5. Game-based evaluation of personalized support for astronauts in long duration missions

    NARCIS (Netherlands)

    Smets, N.J.J.M.; Abbing, M.S.; Neerincx, M.A.; Lindenberg, J.; Oostendorp, H. van

    2008-01-01

    Long duration missions set high requirements for personalized astronaut support that takes into account the social, cognitive and affective state of the astronaut. Such support should be tested as thoroughly as possible before deployment into space. The in-orbit influences of the astronaut's state

  6. Astronaut John Young in Command Module Simulator during Apollo Simulation

    Science.gov (United States)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  7. Astronaut Voss Works in the Destiny Laboratory

    Science.gov (United States)

    2001-01-01

    In this photograph, Astronaut James Voss, flight engineer of Expedition Two, performs a task at a work station in the International Space Station (ISS) Destiny Laboratory, or U.S. Laboratory, as Astronaut Scott Horowitz, STS-105 mission commander, floats through the hatchway leading to the Unity node. After spending five months aboard the orbital outpost, the ISS Expedition Two crew was replaced by Expedition Three and returned to Earth aboard the STS-105 Space Shuttle Discovery on August 22, 2001. The Orbiter Discovery was launched from the Kennedy Space Center on August 10, 2001.

  8. Astronautics and Aeronautics: A Chronology, 1996-2000

    Science.gov (United States)

    Lewis, Marieke; Swanson, Ryan

    2009-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  9. Astronautics and Aeronautics: A Chronology, 2001-2005

    Science.gov (United States)

    Ivey, William Noel; Lewis, Marieke

    2010-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in U.S. and foreign aeronautics and astronautics. It covers the years 2001 through 2005. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  10. Temazepam, but not zolpidem, causes orthostatic hypotension in astronauts after spaceflight

    Science.gov (United States)

    Shi, Shang-Jin; Garcia, Kathleen M.; Meck, Janice V.

    2003-01-01

    Insomnia is a common symptom, not only in the adult population but also in many astronauts. Hypnotics, such as temazepam (a benzodiazepine) and zolpidem (an imidazopyridine), are often taken to relieve insomnia. Temazepam has been shown clinically to have hemodynamic side effects, particularly in the elderly; however, the mechanism is not clear. Zolpidem does not cause hemodynamic side effects. The purpose of this study was to determine whether the use of different hypnotics during spaceflight might contribute significantly to the high incidence of postflight orthostatic hypotension, and to compare the findings in astronauts with clinical research. Astronauts were separated into three groups: control (n = 40), temazepam (15 or 30 mg; n = 9), and zolpidem (5 or 10 mg; n = 8). In this study, temazepam and zolpidem were only taken the night before landing. The systolic and diastolic blood pressures and heart rates of the astronauts were measured during stand tests before spaceflight and on landing day. On landing day, systolic pressure decreased significantly and heart rate increased significantly in the temazepam group, but not in the control group or in the zolpidem group. Temazepam may aggravate orthostatic hypotension after spaceflight when astronauts are hemodynamically compromised. Temazepam should not be the initial choice as a sleeping aid for astronauts. These results in astronauts may help to explain the hemodynamic side effects in the elderly who are also compromised. Zolpidem may be a better choice as a sleeping aid in these populations.

  11. Essays on the History of Rocketry and Astronautics: Proceedings of the Third through the Sixth History Symposia of the International Academy of Astronautics, volume 1

    Science.gov (United States)

    Hall, R. C. (Editor)

    1977-01-01

    This two volume publication presents the proceedings of the third through sixth history symposia of the International Academy of Astronautics. Thirty-nine papers are divided into four categories: (1) Early Solid Propellant Rocketry; (2) Rocketry and Astronautics: Concepts, Theory, and Analyses after 1880; (3) The Development of Liquid and Solid Propellant Rockets from 1880 to 1945; and (4) Rocketry and Astronautics after 1945. Categories 1 and 2 will be found in volume 1 and the remainder in volume 2. Among other diciplines, Rocketry and Astronautics encompasses the physical and engineering sciences including fluid mechanics, thermodynamics, vibration theory, structural mechanics, and celestial mechanics. Papers presented in these two volumes range from those of empirical experimenters who used the time-honored cut and try methods to scientists wielding theoretical principles. The work traces the coupling of the physical and engineering sciences, industrial advances, and state support that produced the awesome progress in rocketry and astronautics for the most part within living memory. The proceedings of the four symposia present in these two volumes contain information on the work of leading investigators and their associates carried out in the first two-thirds of the twentieth century.

  12. Spaceflight Modulates Gene Expression in Astronauts

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts are exposed to a unique combination of stressors during spaceflight which leads to alterations in their physiology and potentially increases their...

  13. Former Astronaut Neil A. Armstrong Visits MSFC

    Science.gov (United States)

    2007-01-01

    Among several other NASA dignitaries, former astronaut Neil A. Armstrong visited the Marshall Space Flight Center (MSFC) in attendance of the annual NASA Advisory Council Meeting. While here, Mr. Armstrong was gracious enough to allow the casting of his footprint. This casting will join those of other astronauts on display at the center. Armstrong was first assigned to astronaut status in 1962. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971. Pictured with Armstrong is MSFC employee Daniel McFall, who assisted with the casting procedure.

  14. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    Science.gov (United States)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  15. Extravehicular mobility unit training and astronaut injuries

    Science.gov (United States)

    Strauss, Samuel; Krog, Ralph L.; Feiveson, Alan H.

    2005-01-01

    BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.

  16. Astronaut Wendy Lawrence participates in training session in the CCT

    Science.gov (United States)

    1994-01-01

    Seated in the pilot's seat of a JSC Shuttle trainer, astronaut Wendy B. Lawrence, STS-67 flight engineer, participates in a training session. The 1992 astronaut class graduate is in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory.

  17. Astronauts Armstrong and Aldrin study rock samples during field trip

    Science.gov (United States)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, and Astronaut Edwin Aldrin, Lunar module pilot for Apollo 11, study rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  18. Eating in space--from an astronaut's perspective

    Science.gov (United States)

    Kerwin, Joseph; Seddon, Rhea

    2002-01-01

    Food systems and meal components are constantly under review and development at the National Aerospace and Space Administration. The goal of this work is to generate a diet that meets the nutrient requirements of astronauts and satiates them. The constraints involved in shorter- and longer-term missions are described. The insight provided by observations of astronauts from the Skylab and Shuttle eras will allow researchers to consider the fact that, for any nutritional regimen to work, it must consider the limitations and taste buds of the individuals involved. Otherwise, the best diet design generated by their work may never be consumed.

  19. Problems of psychological monitoring in astronaut training.

    Science.gov (United States)

    Morgun, V V

    1997-10-01

    Monitoring of the goal-oriented psychological changes of a man during professional training is necessary. The level development of the astronaut psychic features is checked by means of psychological testing with the final aim to evaluate each professionally important psychological qualities and to evaluate in general. The list of psychological features needed for evaluation is determined and empirically selected weight factors based on wide statistical sampling is introduced. Accumulation of psychological test results can predict an astronaut's ability of solving complicated problems in a flight mission. It can help to correct the training process and reveal weakness.

  20. Astronaut James Lovell checks body temperature with oral temperature probe

    Science.gov (United States)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  1. Origins of astronautics in Switzerland

    Science.gov (United States)

    Wadlis, A.

    1977-01-01

    Swiss contributions to astronautics are recounted. Scientists mentioned include: Bernoulli and Euler for their early theoretical contributions; the balloonist, Auguste Piccard; J. Ackeret, for his contributions to the study of aerodynamics; the rocket propulsion pioneer, Josef Stemmer; and the Swiss space scientists, Eugster, Stettbacker, Zwicky, and Schurch.

  2. Space station astronauts discuss life in space during AGU interview

    Science.gov (United States)

    Showstack, Randy

    2012-07-01

    Just one day after China's Shenzhou-9 capsule, carrying three Chinese astronauts, docked with the Tiangong-1 space lab on 18 June, Donald Pettit, a NASA astronaut on the International Space Station (ISS), said it is “a step in the right direction” that more people are in space. “Before they launched, there were six people in space,” he said, referring to those on ISS, “and there are 7 billion people on Earth.” The astronauts were “like one in a billion. Now there are nine people in space,” Pettit said during a 19 June interview that he and two other astronauts onboard ISS had with AGU. Pettit continued, “So the gradient of human beings going into space is moving in the right direction. We need to change these numbers so that more and more human beings can call space their home so we can expand off of planet Earth and move out into our solar system.”

  3. Astronauts under high supervision

    International Nuclear Information System (INIS)

    Debiar, A.; Loverini, M.J.; Annibal, M.

    1997-01-01

    The CEA radiobiology and radio-pathology laboratory, together with the CNES (the French space agency), have carried out Biodose, a study on the Mir space station astronauts, which objective was to study the processes and mechanisms of the chromosomal damages induced by cosmic radiations, through physical and biological dosimetric experiments. Results are summarized, which show the unusual nature of the chromosomal abnormalities due to heavy ions

  4. Nevada Test Site craters used for astronaut training

    Science.gov (United States)

    Moore, H. J.

    1977-01-01

    Craters produced by chemical and nuclear explosives at the Nevada Test Site were used to train astronauts before their lunar missions. The craters have characteristics suitable for reconnaissance-type field investigations. The Schooner test produced a crater about 300 m across and excavated more than 72 m of stratigraphic section deposited in a fairly regular fashion so that systematic observations yield systematic results. Other features common on the moon, such as secondary craters and glass-coated rocks, are present at Schooner crater. Smaller explosive tests on Buckboard Mesa excavated rocks from three horizontal alteration zones within basalt flows so that the original sequence of the zones could be determined. One crater illustrated the characteristics of craters formed across vertical boundaries between rock units. Although the exercises at the Nevada Test Site were only a small part of the training of the astronauts, voice transcripts of Apollo missions 14, 16, and 17 show that the exercises contributed to astronaut performance on the moon.

  5. Enhancing astronaut performance using sensorimotor adaptability training.

    Science.gov (United States)

    Bloomberg, Jacob J; Peters, Brian T; Cohen, Helen S; Mulavara, Ajitkumar P

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments-enhancing their ability to "learn to learn." We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

  6. Calculation of Radiation Protection Quantities and Analysis of Astronaut Orientation Dependence

    Science.gov (United States)

    Clowdsley, Martha S.; Nealy, John E.; Atwell, William; Anderson, Brooke M.; Luetke, Nathan J.; Wilson, John W.

    2006-01-01

    Health risk to astronauts due to exposure to ionizing radiation is a primary concern for exploration missions and may become the limiting factor for long duration missions. Methodologies for evaluating this risk in terms of radiation protection quantities such as dose, dose equivalent, gray equivalent, and effective dose are described. Environment models (galactic cosmic ray and solar particle event), vehicle/habitat geometry models, human geometry models, and transport codes are discussed and sample calculations for possible lunar and Mars missions are used as demonstrations. The dependence of astronaut health risk, in terms of dosimetric quantities, on astronaut orientation within a habitat is also examined. Previous work using a space station type module exposed to a proton spectrum modeling the October 1989 solar particle event showed that reorienting the astronaut within the module could change the calculated dose equivalent by a factor of two or more. Here the dose equivalent to various body tissues and the whole body effective dose due to both galactic cosmic rays and a solar particle event are calculated for a male astronaut in two different orientations, vertical and horizontal, in a representative lunar habitat. These calculations also show that the dose equivalent at some body locations resulting from a solar particle event can vary by a factor of two or more, but that the dose equivalent due to galactic cosmic rays has a much smaller (<15%) dependence on astronaut orientation.

  7. Intraocular Lens Use in an Astronaut During Long Duration Spaceflight.

    Science.gov (United States)

    Mader, Thomas H; Gibson, C Robert; Schmid, Josef F; Lipsky, William; Sargsyan, Ashot E; Garcia, Kathleen; Williams, Jeffrey N

    2018-01-01

    The purpose of this paper is to report the first use of an intraocular lens (IOL) in an astronaut during long duration spaceflight (LDSF). An astronaut developed a unilateral cataract and underwent phacoemulsification with insertion of an acrylic IOL. Approximately 15 mo later he flew on a Soyuz spacecraft to the International Space Station (ISS), where he successfully completed a 6-mo mission. Ocular examination, including ultrasound (US), was performed before, during, and after his mission and he was questioned regarding visual changes during each portion of his flight. We documented no change in IOL position during his space mission. This astronaut reported excellent and stable vision during liftoff, entry into microgravity (MG), 6 mo on the ISS, descent, and landing. Our results suggest that modern IOLs are stable, effective, and well tolerated during LDSF.Mader TH, Gibson CR, Schmid JF, Lipsky W, Sargsyan AE, Garcia K, Williams JN. Intraocular lens use in an astronaut during long duration spaceflight. Aerosp Med Hum Perform. 2018; 89(1):63-65.

  8. Spaceflight modulates gene expression in the whole blood of astronauts.

    Science.gov (United States)

    Barrila, Jennifer; Ott, C Mark; LeBlanc, Carly; Mehta, Satish K; Crabbé, Aurélie; Stafford, Phillip; Pierson, Duane L; Nickerson, Cheryl A

    2016-01-01

    Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a first-of-its-kind pilot study to assess spaceflight-related gene-expression changes in the whole blood of astronauts. Using an array comprised of 234 well-characterized stress-response genes, we profiled transcriptomic changes in six astronauts (four men and two women) from blood preserved before and immediately following the spaceflight. Differentially regulated transcripts included those important for DNA repair, oxidative stress, and protein folding/degradation, including HSP90AB1 , HSP27 , GPX1 , XRCC1 , BAG-1 , HHR23A , FAP48 , and C-FOS . No gender-specific differences or relationship to number of missions flown was observed. This study provides a first assessment of transcriptomic changes occurring in the whole blood of astronauts in response to spaceflight.

  9. Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

    Science.gov (United States)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.

    1999-01-01

    The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.

  10. Haige astronaut venitab Atlantise missiooni / Liisi Poll

    Index Scriptorium Estoniae

    Poll, Liisi, 1980-

    2008-01-01

    Saksamaa astronaut ei saanud haiguse tõttu minna avakosmosesse, mistõttu lükkus edasi ka Euroopa Kosmoseagentuuri laborimooduli paigaldamine rahvusvahelisse kosmosejaama (ISS). Lisa: Teaduslabor Columbos

  11. Apollo 11 astronaut Neil Armstrong suits up before launch

    Science.gov (United States)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  12. Apollo 11 astronaut Neil Armstrong looks over flight plans

    Science.gov (United States)

    1969-01-01

    Apollo 11 Commander Neil Armstrong is looking over flight plans while being assisted by a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  13. EAC training and medical support for International Space Station astronauts.

    Science.gov (United States)

    Messerschmid, E; Haignere, J P; Damian, K; Damann, V

    2000-11-01

    The operation of the International Space Station (ISS) will be a global multilateral endeavour. Each International Partner will be responsible for the operation of its elements and for providing a crew complement proportional to its share of the overall resources. The preparations of the European Astronaut Centre to furnish training and medical support for the ISS astronauts are described.

  14. High-LET particle exposure of Skylab astronauts

    International Nuclear Information System (INIS)

    Benton, E.V.; Peterson, D.D.; Bailey, J.V.; Parnell, T.

    1977-01-01

    High-LET particle radiation was registered in nuclear track recording plastic dosimeters worn on the wrists of Skylab astronauts and located in a heavily shielded film vault. The mission-average planar flux of high-LET particles with LET >= 100 keV/micron . tissue has been determined to be 2.7 +- 0.6 particles/cm 2 . day . 2π sr and 0.34 +- 0.4 particles/cm 2 . day . 2π sr, respectively, for the nine astronauts and for the film vault. Comparison of results representative of a wide range of shielding depths reveals that the magnitude and slope of the integral LET spectrum of high-LET particles inside spacecraft are proportional to the amount of shielding. (author)

  15. Biological dosimetry in astronauts

    International Nuclear Information System (INIS)

    Durante, M.

    1996-01-01

    Due to the unavoidable presence of ionizing radiation in space, astronauts are classified as radiation workers. I fact, dose rate in space is considerably higher than on earth. Radiation dose absorbed after one day in space is close to the dose received by all natural sources, excluding radon, in one year on earth. Large solar particle events can considerably increase this dose, and could even be life threatening for an inadequately protected crew

  16. Enhancing Astronaut Performance using Sensorimotor Adaptability Training

    Directory of Open Access Journals (Sweden)

    Jacob J Bloomberg

    2015-09-01

    Full Text Available Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments - enhancing their ability to learn to learn. We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

  17. Determining spherical lens correction for astronaut training underwater.

    Science.gov (United States)

    Porter, Jason; Gibson, C Robert; Strauss, Samuel

    2011-09-01

    To develop a model that will accurately predict the distance spherical lens correction needed to be worn by National Aeronautics and Space Administration astronauts while training underwater. The replica space suit's helmet contains curved visors that induce refractive power when submersed in water. Anterior surface powers and thicknesses were measured for the helmet's protective and inside visors. The impact of each visor on the helmet's refractive power in water was analyzed using thick lens calculations and Zemax optical design software. Using geometrical optics approximations, a model was developed to determine the optimal distance spherical power needed to be worn underwater based on the helmet's total induced spherical power underwater and the astronaut's manifest spectacle plane correction in air. The validity of the model was tested using data from both eyes of 10 astronauts who trained underwater. The helmet's visors induced a total power of -2.737 D when placed underwater. The required underwater spherical correction (FW) was linearly related to the spectacle plane spherical correction in air (FAir): FW = FAir + 2.356 D. The mean magnitude of the difference between the actual correction worn underwater and the calculated underwater correction was 0.20 ± 0.11 D. The actual and calculated values were highly correlated (r = 0.971) with 70% of eyes having a difference in magnitude of astronauts. The model accurately predicts the actual values worn underwater and can be applied (more generally) to determine a suitable spectacle lens correction to be worn behind other types of masks when submerged underwater.

  18. Astronaut Dale Gardner holds up for sale sign after EVA

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, having just completed the major portion of his second extravehicular activity (EVA) period in three days, holds up a 'for sale' sign. Astronaut Joseph P. ALlen IV, who also participated in the two EVA's, is reflected in Gardner's helmet visor. A portion of each of two recovered satellites is in the lower right corner, with Westar nearer Discovery's aft.

  19. Astronauts Cooper and Conrad prepare cameras during visual acuity tests

    Science.gov (United States)

    1965-01-01

    Astronauts L. Gordon Cooper Jr. (left), command pilot, and Charles Conrad Jr., pilot, the prime crew of the Gemini 5 space flight, prepare their cameras while aboard a C-130 aircraft flying near Laredo. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions.

  20. Some psychological and engineering aspects of the extravehicular activity of astronauts.

    Science.gov (United States)

    Khrunov, E V

    1973-01-01

    One of the main in-flight problems being fulfilled by astronauts is the preparation for and realization of egress into open space for the purpose of different kinds of extravehicular activity, such as, the performance of scientific experiments, repairing and dismantling operations etc. The astronaut's activity outside the space vehicle is the most difficult item of the space flight programme, which is complicated by a number of space factors affecting a man, viz. dynamic weightlessness, work in a space suit under conditions of excessive pressure, difficulties of space orientation etc. The peculiarities mentioned require special training of the cosmonaut. The physical training involves a series of exercises forming the body-control habits necessary for work in a state of weightlessness. In a new kind of training use is made of equipment simulating the state of weightlessness. From analysis of the available data and the results of my own investigations during ground training and the Soyuz 4 and 5 flights one can establish the following peculiarities of the astronaut's extravehicular activity: (1) Operator response lag in the planned algorithm; (ii) systematic appearance of some stereotype errors in the mounting and dismantling of the outer equipment and in scientific-technical experiments; (iii) a high degree of emotional strain and 30-35% decrease in in-flight working capacity of the astronaut compared with the ground training data; (iv) a positive influence of space adaptation on the cosmonaut and the efficiency of his work in open space; (v) the necessity for further engineering and psychological analysis of the astronaut's activity under conditions of the long space flight of the multi-purpose orbital station. One of the main reasons for the above peculiarities is the violation of the control-coordination functions of the astronaut in the course of the dynamical operations. The paper analyses the extravehicular activity of the astronaut and presents some

  1. Radiation hazards to astronauts; Strahlengefahren fuer Astronauten

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, R.; Hajek, M. [Inst. of Atomic and Subatomic Physics, Vienna Univ. of Tech. (Austria); Berger, T.; Reitz, G. [Inst. of Aerospace Medicine, German Aerospace Center (Germany); Bilski, P. [Henryk Niewodniczanski Inst. of Nuclear Physics, Polish Academy of Sciences (Poland); Puchalska, M. [Henryk Niewodniczanski Inst. of Nuclear Physics, Polish Academy of Sciences (Poland); Dept. of Applied Physics, Chalmers Univ. of Tech. (Sweden)

    2009-07-01

    Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses at the level of critical radiosensitive organs and tissues. Within the European MATROSHKA experiment, the dose profile in an anthropomorphic phantom body was investigated at intra- and extravehicular activities on the International Space Station. The effective scientific exploitation of obtained dosimetric data is ensured within the 7{sup th} EU Framework Programme project HAMLET. Based on experimental data and radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body shall be developed to further refine estimations of radiation risks on interplanetary long-term missions. (orig.)

  2. Astronaut Glenn in the Friendship 7

    Science.gov (United States)

    1962-01-01

    Astronaut John Glenn in the Friendship 7 capsule during the first manned orbital flight, the MA-6 mission. Boosted by the Mercury-Atlas vehicle, a modified Atlas (intercontinental ballistic missile), the MA-6 mission lasted for 5 hours and orbited the Earth three times.

  3. Identifying the "Right Stuff": An Exploration-Focused Astronaut Job Analysis

    Science.gov (United States)

    Barrett, J. D.; Holland, A. W.; Vessey, W. B.

    2015-01-01

    Industrial and organizational (I/O) psychologists play a key role in NASA astronaut candidate selection through the identification of the competencies necessary to successfully engage in the astronaut job. A set of psychosocial competencies, developed by I/O psychologists during a prior job analysis conducted in 1996 and updated in 2003, were identified as necessary for individuals working and living in the space shuttle and on the International Space Station (ISS). This set of competencies applied to the space shuttle and applies to current ISS missions, but may not apply to longer-duration or long-distance exploration missions. With the 2015 launch of the first 12- month ISS mission and the shift in the 2020s to missions beyond low earth orbit, the type of missions that astronauts will conduct and the environment in which they do their work will change dramatically, leading to new challenges for these crews. To support future astronaut selection, training, and research, I/O psychologists in NASA's Behavioral Health and Performance (BHP) Operations and Research groups engaged in a joint effort to conduct an updated analysis of the astronaut job for current and future operations. This project will result in the identification of behavioral competencies critical to performing the astronaut job, along with relative weights for each of the identified competencies, through the application of job analysis techniques. While this job analysis is being conducted according to job analysis best practices, the project poses a number of novel challenges. These challenges include the need to identify competencies for multiple mission types simultaneously, to evaluate jobs that have no incumbents as they have never before been conducted, and working with a very limited population of subject matter experts. Given these challenges, under the guidance of job analysis experts, we used the following methods to conduct the job analysis and identify the key competencies for current and

  4. Astronaut suitability requirements and selection process; Uchu hikoshi tanjo eno michi (shishitsu yokyu)

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, H. [National Space Development Agency of Japan, Tokyo (Japan)

    1999-10-05

    Manned space activities at National Space Development Agency of Japan and the suitability requirements that an astronaut is supposed to satisfy are described. At the first phase, candidates have to participate in a manned space experiment utilizing a NASA space shuttle and, in 1985, Mori, Mukai, and Doi were selected to be payload specialists. At the second phase, Astronauts Wakata, Doi, and Mori were sent to the mission specialist training course, this being one of the jobs aboard a space shuttle, which was for preparing for the construction and operation of the international space station. In January, 1996, Astronaut Wakata performed extravehicular tool manipulation and so forth, and Astronaut Doi did the same in 1997. The endowments that an astronaut is expected to have include undoubted professionalism, adaptability to branches out of his field, adaptability to a prolonged stay in space, spirit of teamwork and coordination, and ability to perform wide range of duties aboard an international space station. (NEDO)

  5. Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.

    Science.gov (United States)

    Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice

    2017-08-01

    Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.

  6. Astronaut C. Michael Foale is briefed on use of Sky Genie

    Science.gov (United States)

    1994-01-01

    Astronaut C. Michael Foale, STS-63 mission specialist, is briefed on the use of Sky Genie device by Karin L. Porter. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  7. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    Science.gov (United States)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  8. Astronaut training manual

    Science.gov (United States)

    Coleman, E. A.

    1980-01-01

    Scientific information from previous space flights, space medicine, exercise physiology, and sports medicine was used to prepare a physical fitness manual suitable for use by members of the NASA astronaut population. A variety of scientifically valid exercise programs and activities suitable for the development of physical fitness are provided. Programs, activities, and supportive scientific data are presented in a concise, easy to read format so as to permit the user to select his or her mode of training with confidence and devote time previously spent experimenting with training routines to preparation for space flight. The programs and activities included were tested and shown to be effective and enjoyable.

  9. Astronauts Ross and Helms at CAPCOM station during STS-61 simulations

    Science.gov (United States)

    1993-01-01

    Astronauts Jerry L. Ross and Susan J. Helms are pictured at the Spacecraft Communicators console during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  10. Philosophy on astronaut protection: A physician's perspective

    International Nuclear Information System (INIS)

    Holloway, H.

    1997-01-01

    The National Aeronautics and Space Administration has a responsibility to assure that proper ethical standards are applied in establishing and applying limits for the control of radiation doses to the astronauts. Such a responsibility obviously includes assuring that the astronauts are properly informed of the hazards associated with individuals missions and that they agree to accept the associated risks. The responsibility, however, does not end there. It includes a need to discuss how to initiate a discourse for developing the related ethical standards and how to determine who should be involved in their establishment. To assure that such proper communications on matters that encompass the realms of policy, science, politics, and ethics. There is also a need to mesh public perceptions with those of the scientific and technical community. This will be a monumental undertaking

  11. Leisure time activities in space: A survey of astronauts and cosmonauts

    Science.gov (United States)

    Kelly, Alan D.; Kanas, Nick

    Questionnaires were returned from 54 astronauts and cosmonauts which addressed preferences for media and media-generated subjects that could be used to occupy leisure time in space. Ninety-three percent of the respondents had access to records or audio cassettes, and cosmonauts had greater access than astronauts to multiple media. Cosmonauts and long-duration space travelers reported that they missed various media more than their astronaut and short-duration counterparts. Media subjects that related to international events, national events and historical topics were rated as most preferable by all respondents and by several of the respondent groups. The findings are discussed in terms of their relevance for occupying free time during future long-duration manned space missions.

  12. Cosmonauts and astronauts during medical operations training

    Science.gov (United States)

    1994-01-01

    Cosmonaut Alexandr F. Poleshchuk (right) inventories medical supplies with Ezra D. Kucharz, medical operations trainer for Krug Life Sciences, Incorporated. Poleshchuk, a Mir reserve crew member, and a number of other cosmonauts and astronauts participati

  13. Astronauts Grissom and Young during water egress training in Gulf of Mexico

    Science.gov (United States)

    1965-01-01

    A technician adjusts the suit of Astronaut Virgil I. Grissom during water egress training operations in the Gulf of Mexico. Astronaut John W. Young (standing) observes. Grissom and Young are the prime crew for the Gemini-Titan 3 flight scheduled this spring.

  14. Astronaut Donald H. Peterson talks with others during training session STS-6

    Science.gov (United States)

    1982-01-01

    Astronaut Donald H. Peterson talks with Astronaut James P. Bagian (almost out of frame at right edge) during a training session for STS-6 crew members in the Shuttle mockup and integration laboratory. Petterson is wearing the shuttle flight suit and holding his helmet.

  15. Astronautics and aeronautics, 1976. A chronology

    Science.gov (United States)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  16. Official portrait of astronaut Ronald J. Grabe

    Science.gov (United States)

    1989-01-01

    Official portrait of Ronald J. Grabe, United States Air Force (USAF) Colonel, member of Astronaut Class 9 (1980), and space shuttle pilot. Grabe wears launch and entry suit (LES) with helmet displayed on table at his left.

  17. Astronaut Neil Armstrong participates in simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  18. Morphing: A Novel Approach to Astronaut Suit Sizing

    Science.gov (United States)

    Margerum, Sarah; Clowers, Kurt; Rajulu, Sudhakar

    2006-01-01

    The fitting of a spacesuit to an astronaut is an iterative process consisting of two parts. The first uses anthropometric data to provide an approximation of the suit components that will fit the astronaut. The second part is the subjective fitting, where small adjustments are made based on the astronaut s preference. By providing a better approximation of the correct suit components, the entire fit process time can be reduced significantly. The goals of this project are twofold: (1) To evaluate the effectiveness of the existing sizing algorithm for the Mark III Hybrid suit and (2) to determine what additional components are needed in order to provide adequate sizing for the existing astronaut population. A single subject was scanned using a 3D whole-body scanner (VITUS 3D) in the Mark III suit in eight different poses and four subjects in minimal clothing were also scanned in similar poses. The 3D external body scans of the suit and the subject are overlaid and visually aligned in a customized MATLAB program. The suit components were contracted or expanded linearly along the subjects limbs to match the subjects segmental lengths. Two independent measures were obtained from the morphing program on four subjects and compared with the existing sizing information. Two of the four subjects were in correspondence with the sizing algorithm and morphing results. The morphing outcome for a third subject, incompatible with the suit, suggested that an additional arm element at least 6 inches smaller than the existing smallest suit component would need to be acquired. The morphing result of the fourth subject, deemed incompatible with the suit using the sizing algorithm, indicated a different suit configuration which would be compatible. This configuration matched with the existing suit fit check data.

  19. Cerebrovascular Accident Incidence in the NASA Astronaut Population

    Science.gov (United States)

    LaPelusa, Michael B.; Charvat, Jacqueline M.; Lee, Lesley R.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    The development of atherosclerosis is strongly associated with an increased risk for cerebrovascular accidents (CVA), including stroke and transient ischemic attacks (TIA). Certain unique occupational exposures that individuals in the NASA astronaut corps face, specifically high-performance aircraft training, SCUBA training, and spaceflight, are hypothesized to cause changes to the cardiovascular system. These changes, which include (but are not limited to) oxidative damage as a result of radiation exposure and circadian rhythm disturbance, increased arterial stiffness, and increased carotid-intima-media thickness (CIMT), may contribute to the development of atherosclerosis and subsequent CVA. The purpose of this study was to review cases of CVA in the NASA astronaut corps and describe the comorbidities and occupational exposures associated with CVA.

  20. Astronautics and Aeronautics, 1979-1984: A chronology

    Science.gov (United States)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  1. APOLLO 17 PRELAUNCH ASTRONAUT TRAINING

    Science.gov (United States)

    1972-01-01

    Apollo Command Module Pilot Evans, left, and Mission Commander Cernan, right, discuss their flight plans as each prepares to fly a T-38 jet aircraft at Patrick Air Force Base just south of the Spaceport. Astronauts Cernan and Evans flew the T-38 aircraft today on training flights over the Kennedy Space Center area to practice flying skills in preparation for upcoming launch to the Moon scheduled 12/06/72.

  2. NASA Astronaut Selection 2009: Behavioral Overview

    Science.gov (United States)

    Holland, A.; Sipes, W.; Bevan, G.; Schmidt, L.; Slack, K.; Moomaw, R.; Vanderark, S.

    2011-01-01

    Behavioral Health and Performance (BHP) is an operational group under medical sciences at NASA/Johnson Space Center. Astronaut applicant screening and assessment is one function of this group, along with psychological training, inflight behavioral support and family services. Direct BHP assessment spans 6-7 months of a 17-month overall selection process.

  3. Astronaut Ronald Sega in crew cabin

    Science.gov (United States)

    1994-01-01

    Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principle investigator on the the WSF project. Note the University of Colorado, Colorado Springs banner above his head.

  4. Astronaut Joseph Tanner is assisted into his EMU during training

    Science.gov (United States)

    1994-01-01

    Astronaut Joseph R. Tanner, STS-66 mission specialist, is assisted by Boeing suit expert Steve Voyles in donning the gloves for his extravehicular mobility unit (EMU) as he prepares to be submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Though no extravehicular activity (EVA) is planned for the mission, at least two astronauts are trained to perform tasks that would require a space walk in the event of failure of remote systems.

  5. Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts

    Science.gov (United States)

    Meck, J. V.; Reyes, C. J.; Perez, S. A.; Goldberger, A. L.; Ziegler, M. G.

    2001-01-01

    OBJECTIVE: The incidence of postflight orthostatic intolerance after short-duration spaceflight is about 20%. However, the incidence after long-duration spaceflight was unknown. The purpose of this study was to test the hypothesis that orthostatic intolerance is more severe after long-duration than after short-duration flight. METHODS: We performed tilt tests on six astronauts before and after long-duration (129-190 days) spaceflights and compared these data with data obtained during stand tests before and after previous short-duration missions. RESULTS: Five of the six astronauts studied became presyncopal during tilt testing after long-duration flights. Only one had become presyncopal during stand testing after short-duration flights. We also compared the long-duration flight tilt test data to tilt test data from 20 different astronauts who flew on the short-duration Shuttle missions that delivered and recovered the astronauts to and from the Mir Space Station. Five of these 20 astronauts became presyncopal on landing day. Heart rate responses to tilt were no different between astronauts on long-duration flights and astronauts on short-duration flights, but long-duration subjects had lower stroke volumes and cardiac outputs than short-duration presyncopal subjects, suggesting a possible decrease in cardiac contractile function. One subject had subnormal norepinephrine release with upright posture after the long flight but not after the short flight. Plasma volume losses were not greater after long flights. CONCLUSION: Long-duration spaceflight markedly increases orthostatic intolerance, probably with multiple contributing factors.

  6. Spaceflight-induced changes in white matter hyperintensity burden in astronauts.

    Science.gov (United States)

    Alperin, Noam; Bagci, Ahmet M; Lee, Sang H

    2017-11-21

    To assess the effect of weightlessness and the respective roles of CSF and vascular fluid on changes in white matter hyperintensity (WMH) burden in astronauts. We analyzed prespaceflight and postspaceflight brain MRI scans from 17 astronauts, 10 who flew a long-duration mission on the International Space Station (ISS) and 7 who flew a short-duration mission on the Space Shuttle. Automated analysis methods were used to determine preflight to postflight changes in periventricular and deep WMH, CSF, and brain tissue volumes in fluid-attenuated inversion recovery and high-resolution 3-dimensional T1-weighted imaging. Differences between cohorts and associations between individual measures were assessed. The short-term reversibility of the identified preflight to postflight changes was tested in a subcohort of 5 long-duration astronauts who had a second postflight MRI scan 1 month after the first postflight scan. Significant preflight to postflight changes were measured only in the long-duration cohort and included only the periventricular WMH and ventricular CSF volumes. Changes in deep WMH and brain tissue volumes were not significant in either cohort. The increase in periventricular WMH volume was significantly associated with an increase in ventricular CSF volume (ρ = 0.63, p = 0.008). A partial reversal of these increases was observed in the long-duration subcohort with a 1-month follow-up scan. Long-duration exposure to microgravity is associated with an increase in periventricular WMH in astronauts. This increase was linked to an increase in ventricular CSF volume documented in ISS astronauts. There was no associated change in or abnormal levels of WMH volumes in deep white matter as reported in U-2 high-altitude pilots. © 2017 American Academy of Neurology.

  7. Astronaut Gordon Cooper during flight tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, relaxes while waiting for weight and balance tests to begin (03974); Cooper prior to entering the Mercury Spacecraft for a series of simulated flight tests. During these tests NASA doctors, engineers and technicians monitor Cooper's performance (03975); Cooper undergoing suit pressurization tests (03976).

  8. Astronautics and aeronautics, 1978: A chronology

    Science.gov (United States)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  9. Christer Fuglesang, a former CERN physicist-turned-astronaut

    CERN Multimedia

    NASA

    2006-01-01

    European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, participates in the mission's second extravehicular activity (EVA) as construction resumes on the International Space Station. Image: NASA.

  10. NPS Adds Another Astronaut Alumnus With NASA’s Newest Class

    OpenAIRE

    Kuska, Dale M.

    2013-01-01

    Article taken from the NPS website: http://www.nps.edu/About/News/NPS-Adds-Another-Astronaut-Alumnus-With-NASAs-Newest-Class.html When NASA Administrator Charles Bolden announced the latest class of NASA’s eight astronaut candidates, June 17, the Naval Postgraduate School (NPS) was able to add yet another space-traveling alumnus to its ranks, now totaling 41 and counting. Lt. Cmdr. Victor Glover, an F/A-18 combat pilot currently serving as a Legislative Fellow in the office of Senat...

  11. Salivary Varicella Zoster Virus in Astronauts and in Patients of Herpes Zoster

    Science.gov (United States)

    Mehta, Satish; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpes viruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpesviruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors? offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  12. Astronaut Bonnie Dunbar watches crewmates during training

    Science.gov (United States)

    1994-01-01

    Astronaut Bonnie J. Dunbar, STS-71 mission specialist, smiles as she watches a crew mate (out of frame) make a simulated parachute landing in nearby water. The action came as part of an emergency bailout training session in the JSC Weightless Environment

  13. Incidence of Epstein-Barr Virus in Astronaut Saliva During Spaceflight

    Science.gov (United States)

    Payne, Deborah A.; Mehta, Satish K.; Tyring, Stephen K.; Stowe, Raymond P.; Pierson, Duane L.

    1998-01-01

    Astronauts experience psychological and physical stresses that may result in re-activation of latent viruses during spaceflight, potentially increasing the risk of disease among crew members. The shedding of Epstein-Barr virus (EBV) in the saliva of astronauts will increase during spaceflight. A total of 534 saliva specimens were collected from 11 EBV-seropositive astronauts before, during, and after four space shuttle missions. The presence of EBV DNA in saliva, assessed by polymerase chain reaction (PCR), was used to determine shedding patterns before, during, and after spaceflight. EBV DNA was detected more frequently before flight than during (p less than 0.001) or after (p less than 0.01) flight. No significant difference between the in-flight and postflight periods was detected in the frequency of occurrence of EBV DNA. The increased frequency of shedding of EBV before flight suggests that stress levels may be greater before launch than during or after spaceflight.

  14. Astronautics and aeronautics, 1985: A chronology

    Science.gov (United States)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  15. Getting to the Heart of Cardiovascular Risk Assessment in Astronauts for Exploration Class Missions

    Science.gov (United States)

    Elgart, S. R.; Shavers, M. R.; Chappell, L.; Milder, C. M.; Huff, J. L.; Semones, E. J.; Simonsen, L. C.; Patel, Z. S.

    2017-01-01

    Since the beginning of manned spaceflight, NASA has recognized the potential risk of cardiovascular decrements due to stressors in the space environment. Of particular concern is the effect of space radiation on cardiovascular disease since astronauts will be exposed to higher levels of galactic cosmic rays outside the Earth's protective magnetosphere. To date, only a few studies have examined the effects of heavy ion radiation on cardiovascular disease, and at lower, space-relevant doses, the association between radiation exposure and cardiovascular pathology is more varied and unclear. Furthermore, other spaceflight conditions such as microgravity, circadian shifts, and confinement stress pose unique challenges in estimating the health risks that can be attributed to exposure to ionizing radiations. In this work, we review age, cause of mortality, and radiation exposure amongst early NASA astronauts in selection groups and discuss the limitations of assessing such a cohort when attempting to characterize the risk of space flight, including stressors such as space radiation and microgravity exposure, on cardiovascular health. METHODS: NASA astronauts in selection groups 1-7 were chosen and the comparison population was white men of the same birth cohort as drawn from data from the CDC Wonder Database and CDC National Center for Health Statistics Life Tables. Cause of death information was obtained from the Lifetime Surveillance of Astronaut Health program and deceased astronauts were classified based on ICD-10 codes: ischemic heart disease (IHD), stroke, cancer, acute occupational events, non-NASA accidents, and other/unknown. Expected years of life left and expected age at death were calculated for the cohort. RESULTS AND CONCLUSIONS: There were 32 deaths in this early astronaut population, 12 of which were due to accidents or acute occupational events that impacted lifespan considerably. The average age at death from these causes is 30 years lower than the

  16. Latent Virus Reactivation in Space Shuttle Astronauts

    Science.gov (United States)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  17. From Homo Sapiens to Homo Cosmicus - Astronautics, Darwinism abd Historical Determinism

    Science.gov (United States)

    Tolkowsky, G.

    Since its inception in late-nineteenth century, astronautics has been viewed as a historical outcome of human evolution as well as a future driver thereof. The history of astronautics-related, evolutionary thought reveals a tension between the Darwinian notion of natural selection and that of homocosmic predestination - be it of dialectical materialistic or theological nature. One can detect the influence of this ideological diversity on the American and Soviet space programs.

  18. Reporters Interview Family of Apollo 11 Astronaut Neil Armstrong

    Science.gov (United States)

    1969-01-01

    Newsmen talked with the wife and sons of Apollo 11 astronaut Neil A. Armstrong after the successful launch of Apollo 11 on its trajectory to the moon. The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  19. How can we protect astronauts from cosmic rays?

    International Nuclear Information System (INIS)

    Parker, E.

    2006-01-01

    Interplanetary astronauts would absorb more radiation in a single year than radiation workers are supposed to receive in a lifetime and as a consequence large number of them would develop radiation-related illnesses like cancer, cataract or would suffer from brain damage. In recognition to radiation threats, Nasa set up the space radiation shielding program in 2003. The first idea was to protect the astronauts by surrounding them with matter, by analogy of the earth's atmosphere but the problem of such a shield is its weight: the required mass would be at least 400 tons. The second proposal was to deflect the cosmic rays magnetically but the deflection of particles that have energies up to 2 GeV requires a magnetic field 600.000 times as strong as earth's equatorial field. Strong magnetic field may itself be dangerous. A more recent idea has been to give the spacecraft a positive charge which would repel any incoming positively charged nucleus. The drawback is that the ship will attract and accelerate negatively charged particles over distances as long as a few tens of thousands of kilometers. The result would be that the natural cosmic-ray flux would be replaced with a much more intense artificial one. At the present time the different solutions for protecting the astronauts from cosmic rays give little encouragement. (A.C.)

  20. Astronaut John Glenn Enters Friendship 7

    Science.gov (United States)

    1962-01-01

    Astronaut John Glenn enters the Mercury spacecraft, Friendship 7, prior to the launch of MA-6 on February 20, 1961 and became the first American who orbited the Earth. The MA-6 mission was the first manned orbital flight boosted by the Mercury-Atlas vehicle, a modified Atlas ICBM (Intercontinental Ballistic Missile), lasted for five hours, and orbited the Earth three times.

  1. Astronaut Scott Parazynski during egress training

    Science.gov (United States)

    1994-01-01

    Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (foreground) during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  2. How Can "Weightless" Astronauts Be Weighed?

    Science.gov (United States)

    Carnicer, Jesus; Reyes, Francisco; Guisasola, Jenaro

    2012-01-01

    In introductory physics courses, within the context of studying Newton's laws, it is common to consider the problem of a body's "weight" when it is in free fall. The solution shows that the "weight" is zero and this leads to a discussion of the concept of weight. There are permanent free-fall situations such as astronauts in a spacecraft orbiting…

  3. Official portrait of Astronaut Anna L. Fisher

    Science.gov (United States)

    1985-01-01

    Official portrait of Astronaut Anna L. Fisher. Fisher is posing with her helmet on the table in front of her and the American flag appears over the opposite shoulder (34357); Posing with an empty table in front of her and the American flag behind her (34358).

  4. Astronaut training for STS 41-G mission

    Science.gov (United States)

    1984-01-01

    Astronauts training for STS 41-G mission. Payload specialist Paul Scully-Power sits in an office near the space shuttle simulator reviewing a diagram. He is wearging a communications head set. At his elbow is an example of food packets to be used aboard the shuttle.

  5. Telecast of Astronauts Armstrong and Aldrin by the Lunar Module

    Science.gov (United States)

    1969-01-01

    Astronauts Neil A. Armstrong (in center) commander; and Edwin E. Aldrin Jr. (on right), lunar module pilot, are seen standing near their Lunar Module in this black and white reproduction taken from a telecast by the Apollo 11 lunar surface television camera during the Apollo 11 extravehicular activity. This picture was made from a televised image received at the Deep Space Network tracking station at Goldstone, California. President Richard M. Nixon had just spoken to the two astronauts by radio and Aldrin, a colonel in the U.S. Air Force, is saluting the president.

  6. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  7. Characterizing Fractures Across the Astronaut Corps: Preliminary Findings from Population-Level Analysis

    Science.gov (United States)

    Rossi, Meredith M.; Charvat, Jacqueline M.; Sibonga, Jean D.; Sieker, Jeremy

    2017-01-01

    Despite evidence of bone loss during spaceflight and the implementation of countermeasures to mitigate this loss, the subsequent risk of fracture among astronauts is not known. Multiple factors such as age, sex, fracture history, and others may combine to increase fracture risk. The purpose of this study was to describe fractures among the astronaut population and generate questions for future occupational surveillance studies.

  8. 24-h blood pressure in Space: The dark side of being an astronaut

    NARCIS (Netherlands)

    Karemaker, John M.; Berecki-Gisolf, Janneke

    2009-01-01

    Inflight 24-h profiles of blood pressure (BP) and heart rate (HR) were recorded in 2 ESA-astronauts by automatic upper arm cuff measurements. In one astronaut this was combined with Portapres (TM) continuous finger blood pressure recordings. It was the intention to contrast the latter to 24-h

  9. Psychological Selection of NASA Astronauts for International Space Station Missions

    Science.gov (United States)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  10. Apollo 11 Astronaut Neil Armstrong During Lunar Rock Collection Training

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil A. Armstrong uses a geologist's hammer in selecting rock specimens during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. Armstrong, alongside astronaut Edwin (Buzz) Aldrin, practiced gathering rock specimens using special lunar geological tools in preparation for the first Lunar landing. Mission was accomplished in July of the same year. Aboard the Marshall Space Fight center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Armstrong, commander; Aldrin, Lunar Module pilot; and a third astronaut Michael Collins, Command Module pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin, while Collins remained in lunar orbit. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The lunar surface exploration was concluded in 2½ hours.

  11. Artists concept of Apollo 11 Astronaut Neil Armstrong on the moon

    Science.gov (United States)

    1969-01-01

    A Grumman Aircraft Engineering Corporation artist's concept depicting mankind's first walk on another celestianl body. Here, Astronaut Neil Armstrong, Apollo 11 commander, is making his first step onto the surface of the moon. In the background is the Earth, some 240,000 miles away. Armstrong. They are continuing their postflight debriefings. The three astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  12. European astronaut selected for the third Hubble Space Telescope

    Science.gov (United States)

    1998-08-01

    The STS-104 crew will rendezvous with the orbiting Hubble Space Telescope, which is the size of a city bus, capture it using the Shuttle's Canadian robot arm and secure it in Columbia's payload bay. Then, working in teams of two, the four astronauts will leave the Shuttle's pressurised cabin and venture into the payload bay, performing a variety of tasks that will improve the productivity and reliability of the telescope. The four astronauts will perform a series of six "extravehicular" activities in the open space environment. Such activities are commonly called spacewalks, but this term does little justice to the considerable physical and mental efforts that astronauts need to make in doing the very demanding work involved. The Shuttle commander and pilot for this flight have not yet been appointed, but the four designated mission specialists begin training for the STS-104 mission immediately. "The ambitious nature of this mission, with its six spacewalks, made it important for the payload crew to begin training as early as possible," said David C. Leestma, NASA Director of Flight Crew Operations at the Johnson Space Center in Houston, to which Claude Nicollier is on resident assignment from ESA's European Astronaut Centre in Cologne, Germany, the home base of the European astronaut corps. The Hubble Space Telescope was launched into orbit in April 1990. It is one of the most capable optical telescopes available to astronomers today, producing images and spectral observations at the forefront of astronomy. The European Space Agency contributed a 15 share to the development of Hubble. One of the five scientific instruments on board, the Faint Object Camera, was built by a European industrial consortium made up of British Aerospace, Dornier and Matra under a contract with the European Space Agency. The solar arrays which provide Hubble with electrical power were manufactured by British Aerospace and Dornier. In its eight years of operation, the telescope has not

  13. Sequential Imaging of Earth by Astronauts: 50 Years of Global Change

    Science.gov (United States)

    Evans, Cynthia A.

    2009-01-01

    For nearly 50 years, astronauts have collected sequential imagery of the Earth. In fact, the collection of astronaut photography comprises one of the earliest sets of data (1961 to present) available to scientists to study the regional context of the Earth s surface and how it changes. While today s availability of global high resolution satellite imagery enables anyone with an internet connection to examine specific features on the Earth s surface with a regional context, historical satellite imagery adds another dimension (time) that provides researchers and students insight about the features and processes of a region. For example, one of the geographic areas with the longest length of record contained within the astronaut photography database is the lower Nile River. The database contains images that document the flooding of Lake Nasser (an analog to today s flooding behind China s Three Gorges Dam), the changing levels of Lake Nasser s water with multiyear cycles of flood and drought, the recent flooding and drying of the Toshka Lakes, as well as urban growth, changes in agriculture and coastal subsidence. The imagery database allows investigations using different time scales (hours to decades) and spatial scales (resolutions and fields of view) as variables. To continue the imagery collection, the astronauts on the International Space Station are trained to understand basic the Earth Sciences and look for and photograph major events such as tropical storms, landslides, and volcanic eruptions, and document landscapes undergoing change (e.g., coastal systems, cities, changing forest cover). We present examples of selected sequences of astronaut imagery that illustrate the interdependence of geological processes, climate cycles, human geography and development, and prompt additional questions about the underlying elements of change.

  14. Assessment of Astronaut Hand Function Using a Robotic Exoskeleton

    Data.gov (United States)

    National Aeronautics and Space Administration — An extended period of space exploration has deleterious effects on the neuromuscular system. Sensorimotor impairments can hinder an astronaut's performance by...

  15. Results of the psychiatric, select-out evaluation of US astronaut applications

    Science.gov (United States)

    Faulk, D. M.; Santy, P. A.; Holland, A. W.; Marsh, R.

    1992-01-01

    The psychiatric exclusion criteria for astronauts are based on NASA Medical Psychiatric Standards for space flight. Until recently, there were no standardized methods to evaluate disqualifying psychopathology in astronaut applicants. Method: One hundred and six astronaut applicants who had passed the intitial screening were evaluated for Axis 1 and Axis 2 DSM-3-R diagnoses using the NASA structured psychiatric interview. The interview consisted of three parts: (1) an unstructured portion for obtaining biographical and historical information, (2) the schedule for effective disorders-lifetime version (SASDL), specially modified to include all disqualifying Axis 1 mental disorders; and, (3) the personality assessment schedule (PAS) also modified to evaluate for Axis 2 disorders. Results: Nine of 106 candidates (8.5 percent) met diagnostic criteria for six Axis 1 disorders (including V code) or Axis 2 disorders. Two of these disorders were disqualifying for the applicants. 'Near' diagnoses (where applicants met at least 50 percent of the listed criteria) were assessed to demonstrate that clinicians using the interview were able to overcome applicants' reluctance to report symptomatomatology. Conclusion: The use of the NASA structured interview was effective in identifying past and present psychopathology in a group of highly motivated astronaut applicants. This was the first time a structured psychiatric interview had been used in such a setting for this purpose.

  16. The Graphical Representation of the Digital Astronaut Physiology Backbone

    Science.gov (United States)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  17. Astronauts and cosmonauts during emergency bailout training session

    Science.gov (United States)

    1994-01-01

    Using small life rafts, several cosmonauts and astronauts participating in joint Russia - United States space missions take part in an emergency bailout training session in the JSC Weightless Environment Training Facility (WETF) 25-feet-deep pool. In the

  18. Official portrait of Astronaut Ronald E. McNair

    Science.gov (United States)

    1985-01-01

    Official portrait of Astronaut Ronald E. McNair. McNair is in the blue shuttle flight suit, standing in front of a table which holds a model of the Space Shuttle. An American flag is visible behind him.

  19. Astronaut Neil A. Armstrong during water egress training

    Science.gov (United States)

    1965-01-01

    Astronaut Neil A. Armstrong, Gemini 5 backup crew command pilot, sits in the Gemini Static Article 5 spacecraft and prepares to be lowered from the deck of the NASA Motor Vessel Retriever for water egress training in the Gulf.

  20. Astronaut radiation. Will it become a problem?

    International Nuclear Information System (INIS)

    Parker, I.

    1988-01-01

    The U.S. NRCP recommendations to NASA for astronauts' dose limits to deep-body, eyes and skin are discussed in outline in relation to the longer space flights (e.g. space station duties and a manned Mars mission). Cosmic rays, solar flares and trapped Van Allen belt radiation are considered. (U.K.)

  1. STS-118 Astronaut Tracy Caldwell During Training

    Science.gov (United States)

    2006-01-01

    Tracy E. Caldwell, STS-118 astronaut and mission specialist, participates in a training session on the usage of a special device, used to lower oneself from a troubled shuttle, in the Space Vehicle Mockup Facility at the Johnson Space Center. Caldwell is wearing a training version of her shuttle launch and entry suit.

  2. Astronaut Dale Gardner rehearses during EVA practice

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC. Gardner handles a stinger device to make initial contact with one of the two satellites they will be working with.

  3. Astronaut Terry J. Hart in training session RMS for STS-2 bldg 29

    Science.gov (United States)

    1981-01-01

    Astronaut Terry J. Hart in training session with the Remote Manipulator System (RMS) for STS-2 bldg 29. Views show Truly working at the command console while watching out the windows. Karen Ehlers, an RMS procedures specialist, can be seen at left side of frame while Astronaut Sally Ride waits on right for her time at the RMS.

  4. A survey of Rocketry and astronautics in Spain

    Science.gov (United States)

    Maluquer, J. J.

    1977-01-01

    The entire field of rocketry and astronautics in Spain was studied. Congreve war rockets in military actions were emphasized in the African war, the Cuban campaign and the Spanish Civil War. Rockets in space travel were also summarized along with space science fiction.

  5. Astronaut Robert L. Crippen prepares for underwater training session

    Science.gov (United States)

    1983-01-01

    Astronaut Robert L. Crippen, STS-7 crew commander, adjusts his extravehicular mobility unit's (EMU) gloves prior to donning his helmet for a training session in the weightless environment test facility (WETF).

  6. Protecting Astronaut Medical Privacy: Review of Presentations and Publications for Attributability

    Science.gov (United States)

    Wear, M. L.; Charvat, J. M.; Lee, L. R.; Babiak-Vazquez, A.; Mason, S. S.; Van Baalen, M.

    2018-01-01

    Retrospective research and medical data collected on astronauts can be a valuable resource for researchers. This data can be requested from two separate NASA Archives. The Lifetime Surveillance of Astronaut Health (LSAH) holds astronaut medical data, and the Life Sciences Data Archive (LSDA) holds research data. One condition of use of astronaut research and medical data is the requirement that all abstracts, publications and presentations using this data must be reviewed for attributability. All final versions of abstracts, presentations, posters, and manuscripts must be reviewed by LSDA/LSAH prior to submission to a conference, journal, or other entities outside the Principal Investigator (PI) laboratory [including the NASA Export Control Document Availability Authorization (DAA) system]. If material undergoes multiple revisions (e.g., journal editor comments), the new versions must also be reviewed by LSDA/LSAH prior to re-submission to the journal. The purpose of this review is to ensure that no personally identifiable information (PII) is included in materials that are presented in a public venue or posted to the public domain. The procedures for submitting materials for review will be outlined. The process that LSAH/LSDA follows for assessing attributability will be presented. Characteristics and parameter combinations that often prompt attributability concerns will be identified. A published case report for a National Football League (NFL) player will be used to demonstrate how, in a population of public interest, a combination of information can result in inadvertent release of private or sensitive information.

  7. Astronaut Gordon Cooper in centrifuge for tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, is strapped into the gondola while undergoing tests in the centrifuge at the Naval Air Development Center, Johnsville, Pennsylvania. The centrifuge is used to investigate by simulation the pilot's capability to control the vehicle during the actual flight in its booster and reentry profile.

  8. Astronaut Stephen Oswald during emergency bailout training

    Science.gov (United States)

    1994-01-01

    Suited in a training version of the Shuttle partial-pressure launch and entry garment, astronaut Stephen S. Oswald, STS-67 commander, gets help with a piece of gear from Boeing's David Brandt. The scene was photographed prior to a session of emergency bailout training in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF).

  9. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  10. Astronauts McDivitt and White look over training plans

    Science.gov (United States)

    1965-01-01

    Astronauts James A. McDivitt (left) and Edward H. White II are shown looking over training plans at Cape Kennedy during prelaunch preparations. The NASA Headquarters alternative photo number is 65-H-275.

  11. Probabilistic Risk Assessment for Astronaut Post Flight Bone Fracture

    Science.gov (United States)

    Lewandowski, Beth; Myers, Jerry; Licata, Angelo

    2015-01-01

    Introduction: Space flight potentially reduces the loading that bone can resist before fracture. This reduction in bone integrity may result from a combination of factors, the most common reported as reduction in astronaut BMD. Although evaluating the condition of bones continues to be a critical aspect of understanding space flight fracture risk, defining the loading regime, whether on earth, in microgravity, or in reduced gravity on a planetary surface, remains a significant component of estimating the fracture risks to astronauts. This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM) to understanding pre-, post, and in mission astronaut bone fracture risk. The overview includes an assessment of contributing factors utilized in the BFxRM and illustrates how new information, such as biomechanics of space suit design or better understanding of post flight activities may influence astronaut fracture risk. Opportunities for the bone mineral research community to contribute to future model development are also discussed. Methods: To investigate the conditions in which spaceflight induced changes to bone plays a critical role in post-flight fracture probability, we implement a modified version of the NASA Bone Fracture Risk Model (BFxRM). Modifications included incorporation of variations in physiological characteristics, post-flight recovery rate, and variations in lateral fall conditions within the probabilistic simulation parameter space. The modeled fracture probability estimates for different loading scenarios at preflight and at 0 and 365 days post-flight time periods are compared. Results: For simple lateral side falls, mean post-flight fracture probability is elevated over mean preflight fracture probability due to spaceflight induced BMD loss and is not fully recovered at 365 days post-flight. In the case of more energetic falls, such as from elevated heights or with the addition of lateral movement

  12. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    OpenAIRE

    Lixun Zhang; Yupeng Zou; Lan Wang; Xinping Pei

    2012-01-01

    A novel Astronaut Rehabilitative Training Robot (ART) based on a cable‐driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut’s active movements. Based on the dynamics modelling of the cable‐driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC) is presented...

  13. Analysis of aluminum protective effect for female astronauts in solar particle events

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-01-01

    Full Text Available In order to ensure the health and safety of female astronauts in space, the risks of space radiation should be evaluated, and effective methods for protecting against space radiation should be investigated. In this paper, a dose calculation model is established for Chinese female astronauts. The absorbed doses of some organs in two historical solar particle events are calculated using Monte Carlo methods, and the shielding conditions are 0 gcm-2 and 5 gcm-2 aluminum, respectively. The calculated results are analysed, compared, and discussed. The results show that 5 gcm-2 aluminum cannot afford enough effective protection in solar particle events. Hence, once encountering solar particle events in manned spaceflight missions, in order to ensure the health and safety of female astronauts, they are not allowed to stay in the pressure vessel, and must enter into the thicker shielding location such as food and water storage cabin.

  14. Astronauts Scott and Armstrong undergoe water egress training

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (on left), command pilot, and David R. Scott, pilot of the Gemini 8 prime crew, use a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. Three Manned Spacecraft Center swimmers assist in the training exercise.

  15. Radiation dosimetry for crewmember exposure to cosmic radiation during astronaut training operations

    International Nuclear Information System (INIS)

    Shavers, M.R.; Gersey, B.B.; Wilkins, R.T.; Semones, E.J.; Cucinotta, F.A.

    2003-01-01

    'Atmospheric exposures' of astronauts to cosmic ions and secondary particles during air-flight training are being measured and analytically modeled for inclusion in the astronaut medical records database. For many of the ∼170 astronauts currently in the astronaut corps, their occupational radiation exposure history will be dominated by cosmic ion exposures during air-travel rather than short-duration spaceflight. Relatively low (usually <10 μSv hr -1 ) and uniform organ dose rates result from the penetrating mix of cosmic particles during atmospheric exposures at all altitudes, but at rates that vary greatly due to differences in flight profiles and the geomagnetic conditions at the time of flight. The precision and accuracy to which possible deleterious effects of the exposures can be assessed suffers from limitations that similarly impact assessment of human exposures in low-Earth orbit: uncertainties associated with the environmental measurements and their interpretation, uncertainties associated with the analytical tools that transport the cosmic radiation environment, and uncertain biological responses to low-dose-rate exposures to radiation fields of mixed radiation 'quality'. Lineal energy spectra will be measured using a Tissue Equivalent Proportional Counter designed for training and operational sorties frequently flown in T-38, Space Shuttle Trainer, and high altitude WB-57 aircraft. Linear energy spectra will be measured over multiple flights using CR-39 plastic nuclear track detectors, as well. Flight records are available for nearly 200,000 sorties flown in NASA aircraft by astronauts and flight officers in the Johnson Space Center Aircraft Operations Division over the past 25 years, yet this database only partially documents the complete exposure histories. Age-dependent risk analysis indicates significant impact, particularly to young women who anticipate lengthy on-orbit careers

  16. Apollo 11 Astronaut Armstrong Arrives at the Flight Crew Training Building

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil Armstrong walks to the flight crew training building at the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  17. Astronautics and aeronautics, 1972. [a chronology of events

    Science.gov (United States)

    1974-01-01

    Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.

  18. Behavioral Issues Associated With Long Duration Space Expeditions: Review and Analysis of Astronaut Journals

    Science.gov (United States)

    Struster, Jack

    2010-01-01

    Personal journals maintained by NASA astronauts during six-month expeditions onboard the International Space Station were analyzed to obtain information concerning a wide range of behavioral and human factors issues. Astronauts wrote most about their work, followed by outside communications (with mission control, family, and friends), adjustment to the conditions, interactions with crew mates, recreation/leisure, equipment (installation, maintenance), events (launches, docking, hurricanes, etc.), organization/management, sleep, and food. The study found evidence of a decline in morale during the third quarters of the missions and identified key factors that contribute to sustained adjustment and optimal performance during long-duration space expeditions. Astronauts reported that they benefited personally from writing in their journals because it helped maintain perspective on their work and relations with others. Responses to questions asked before, during, and after the expeditions show that living and working onboard the ISS is not as difficult as the astronauts anticipate before starting their six-month tours of duty. Recommendations include application of study results and continuation of the experiment to obtain additional data as crew size increases and operations evolve.

  19. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  20. Astronauts McNair and Stewart prepare for reentry

    Science.gov (United States)

    1984-01-01

    Astronauts Ronald E. McNair and Robert L. Stewart prepare for the re-entry phase of the shuttle Challenger near the end of the 41-B mission. The are stationed behind the crew commander and pilot. Stewart is already wearing his helmet. McNair is stowing some of his gear.

  1. Astronaut Neil Armstrong participates in simulation of moon's surface

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, deploys a lunar surface television camera during lunar surface simulation training in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission.

  2. Astronauts Armstrong and Scott during photo session outside KSC

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (left), command pilot, and David R. Scott, pilot, the Gemini 8 prime crew, during a photo session outside the Kennedy Space Center (KSC) Mission Control Center. They are standing in front of a radar dish.

  3. 78 FR 72011 - Interpretation Concerning Involvement of NASA Astronauts During a Licensed Launch or Reentry

    Science.gov (United States)

    2013-12-02

    ..., from engaging in operational functions during an FAA-licensed launch or reentry. NASA noted that all... environmental controls and life support systems.'' NASA also asked the FAA whether NASA's astronauts could... an off-nominal or emergency situation, the NASA astronaut would, much of the time, be using...

  4. The last of NASA's original pilot astronauts expanding the space frontier in the late sixties

    CERN Document Server

    Shayler, David J

    2017-01-01

    Resulting from the authors’ deep research into these two pre-Shuttle astronaut groups, many intriguing and untold stories behind the selection process are revealed in the book. The often extraordinary backgrounds and personal ambitions of these skilled pilots, chosen to continue NASA’s exploration and knowledge of the space frontier, are also examined. In April 1966 NASA selected 19 pilot astronauts whose training was specifically targeted to the Apollo lunar landing missions and the Earth-orbiting Skylab space station. Three years later, following the sudden cancellation of the USAF’s highly classified Manned Orbiting Laboratory (MOL) project, seven military astronauts were also co-opted into NASA’s space program. This book represents the final chapter by the authors in the story of American astronaut selections prior to the era of the Space Shuttle. Through personal interviews and original NASA documentation, readers will also gain a true insight into a remarkable age of space travel as it unfolded ...

  5. Astronaut Anna Fisher demonstrates sleep restraints on shuttle

    Science.gov (United States)

    1984-01-01

    Astronaut Anna L. Fisher demonstrates the versatility of shuttle sleep restraints to accommodate the preference of crewmembers as she appears to have configured hers in a horizontal hammock mode. Stowage lockers, one of the middeck walls, another sleep restraint, a jury-rigged foot and hand restraint are among other items in the frame.

  6. Physiological responses of astronaut candidates to simulated +Gx orbital emergency re-entry.

    Science.gov (United States)

    Wu, Bin; Xue, Yueying; Wu, Ping; Gu, Zhiming; Wang, Yue; Jing, Xiaolu

    2012-08-01

    We investigated astronaut candidates' physiological and pathological responses to +Gx exposure during simulated emergency return from a running orbit to advance astronaut +Gx tolerance training and medical support in manned spaceflight. There were 13 male astronaut candidates who were exposed to a simulated high +Gx acceleration profile in a spacecraft during an emergency return lasting for 230 s. The peak value was 8.5 G. Subjective feelings and symptoms, cardiovascular and respiratory responses, and changes in urine component before, during, and after +Gx exposure were investigated. Under high +Gx exposure, 15.4% of subjects exhibited arrhythmia. Heart rate (HR) increased significantly and four different types of HR response curves were distinguished. The ratio of QT to RR interval on the electrocardiograms was significantly increased. Arterial oxygen saturation (SaO2) declined with increasing G value and then returned gradually. SaO2 reached a minimum (87.7%) at 3 G during the decline phase of the +Gx curve. Respiratory rate increased significantly with increasing G value, while the amplitude and area of the respiratory waves were significantly reduced. The overshoot appeared immediately after +Gx exposure. A few subjects suffered from slight injuries, including positive urine protein (1/13), positive urinary occult blood (1/13), and a large area of petechiae on the back (1/13). Astronaut candidates have relatively good tolerance to the +Gx profile during a simulation of spacecraft emergent ballistic re-entry. However, a few subjects exhibited adverse physiological responses and slight reversible pathological injuries.

  7. A Program of Research and Education in Astronautics at the NASA Langley Research Center

    Science.gov (United States)

    Tolson, Robert H.

    2000-01-01

    The objectives of the Program were to conduct research at the NASA Langley Research Center in the area of astronautics and to provide a comprehensive education program at the Center leading to advanced degrees in Astronautics. We believe that the program has successfully met the objectives and has been of significant benefit to NASA LaRC, the GWU and the nation.

  8. Mission X: Train Like an Astronaut Pilot Study

    Science.gov (United States)

    Lloyd, Charles W.; Olivotto, C.; Boese, A.; Spiero, F.; Galoforo, G.; Niihori, M.

    2011-01-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 14 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and inspire and motivate students to pursue careers in STEM fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, and United Kingdom hosted teams for the pilot this past spring, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing on 131 teams, more than 3700 students from 40 cities worldwide participated in the first round of Mission X. OUTCOMES AND BEST PRACTICES Members of the Mission X core team will highlight the outcomes of this international educational outreach pilot project, show video highlights of the challenge, provide the working group s initial assessment of the project and discuss the future potential of the effort. The team will also discuss ideas and best practices for international partnership in education outreach efforts from various agency perspectives and experiences

  9. Astronaut Curtis L. Brown, Jr., pilot, works with his life raft during emergency bailout training

    Science.gov (United States)

    1996-01-01

    STS-77 TRAINING VIEW --- Astronaut Curtis L. Brown, Jr., pilot, works with his life raft during emergency bailout training for crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Brown will join five other astronauts for nine days aboard the Space Shuttle Endeavour next month.

  10. College of Engineering alumnus honored with American Institute of Aeronautics and Astronautics Abe M. Zarem Award

    OpenAIRE

    Nystrom, Lynn A.

    2009-01-01

    Adam Cowling, a recent master's graduate of Virginia Tech's Aerospace and Ocean Engineering Department in the College of Engineering, is the 2009 recipient of the American Institute of Aeronautics and Astronautics (AIAA) Abe M. Zarem Award for Distinguished Achievement in Astronautics.

  11. Identification of Psychological Stresses for Astronauts and Cosmonauts

    Science.gov (United States)

    Marsh, Melinda

    As humans continue to explore and expand in the solar system, psychological problems brought about by high stress of living in the space environment will continue to increase. Unfortunately, due to many reasons, including relative difficulties with gaining access to astronauts and cosmonauts and to gather psychological data from them regarding stressors, this area is not very well known and discussed. Five astronauts and cosmonauts from three space agencies: ESA, RSA, and JAXA were unoffi- cially surveyed regarding their experiences with ten general categories of psychological stressors as well as eight subcategories of interpersonal conflict stressors accepted in space related community of psychologists. The two subjects in space for longer periods of time reported more stressors and were likely to rate stressors as having a greater effect on the chance of mission failure. Shorter duration flyers reported nearly all general stressors were likely to increase in the event of a longer duration space flight. With the increased interest in long duration spaceflight, psychological stressors are more likely to affect mission success.

  12. Combined Effects of Spaceflight and Age in Astronauts as Assessed by Areal Bone Mineral Density [BMD] and Trabecular Bone Score

    Science.gov (United States)

    Sibonga, Jean D.; Spector, Elizabeth R.; Ploutz-Snyder, R.; Evans, H. J.; King, L.; Watts, N. B.; Hans, D.; Smith, S. A.

    2013-01-01

    Spaceflight is a potential risk factor for secondary osteoporosis in astronauts. Although lumbar spine (LS) BMD declines rapidly, more than expected for age, there have been no fragility fractures in astronauts that can clearly be attributed to spaceflight. Recently, astronauts have been returning from 6-month spaceflights with absolute BMD still above young adult mean BMD. In spite of these BMD measurements, we project that the rapid loss in bone mass over long-duration spaceflight affects the bone microarchitecture of the LS which might predispose astronauts to premature vertebral fractures. Thus, we evaluated TBS, a novel texture index correlated with vertebral bone microarchitecture, as a means of monitoring changes to bone microarchitecture in astronauts as they age. We previously reported that TBS detects an effect of spaceflight (6-month duration), independent of BMD, in 51 astronauts (47+/-4 y) (Smith et al, J Clin Densitometry 2014). Hence, TBS was evaluated in serial DXA scans (Hologic Discovery W) conducted triennially in all active and retired astronauts and more frequently (before spaceflight, after spaceflight and until recovery) in the subset of astronauts flying 4-6- month missions. We used non-linear models to describe trends in observations (BMD or TBS) plotted as a function of astronaut age. We fitted 1175 observations of 311 astronauts, pre-flight and then postflight starting 3 years after landing or after astronaut's BMD for LS was restored to within 2% of preflight BMD. Observations were then grouped and defined as follows: 1) LD: after exposure to at least one long-duration spaceflight > 100 days and 2) SD: before LD and after exposure to at least one short-duration spaceflight < 30 days. Data from males and females were analyzed separately. Models of SD observations revealed that TBS and BMD had similar curvilinear declines with age for both male and female astronauts. However, models of LD observations showed TBS declining with age while

  13. Astronaut Neil Armstrong studies rock samples during geological field trip

    Science.gov (United States)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, studies rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  14. Private Astronaut Training Prepares Commercial Crews of Tomorrow

    Science.gov (United States)

    2015-01-01

    A new company that includes a handful of former NASA personnel is already taking applications for the first comprehensive commercial astronaut training approved by the Federal Aviation Administration. Waypoint 2 Space, located at Johnson Space Center, hopes to draw space tourists and enthusiasts and future commercial crewmembers with first-hand NASA know-how, as well as agency training technology.

  15. Astronaut Dale Gardner rehearses control of MMU during EVA practice

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, 51-A mission specialist, rehearses control of manned maneuvering unit (MMU) during a practice for an extravehicular activity (EVA). Gardner is in the Shuttle mockup and integration laboratory at JSC.

  16. A novel variable-gravity simulation method: potential for astronaut training.

    Science.gov (United States)

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  17. Intracranial pressure-induced optic nerve sheath response as a predictive biomarker for optic disc edema in astronauts.

    Science.gov (United States)

    Wostyn, Peter; De Deyn, Peter Paul

    2017-11-01

    A significant proportion of the astronauts who spend extended periods in microgravity develop ophthalmic abnormalities. Understanding this syndrome, called visual impairment and intracranial pressure (VIIP), has become a high priority for National Aeronautics and Space Administration, especially in view of future long-duration missions (e.g., Mars missions). Moreover, to ensure selection of astronaut candidates who will be able to complete long-duration missions with low risk of the VIIP syndrome, it is imperative to identify biomarkers for VIIP risk prediction. Here, we hypothesize that the optic nerve sheath response to alterations in intracranial pressure may be a potential predictive biomarker for optic disc edema in astronauts. If confirmed, this biomarker could be used for preflight identification of astronauts at risk for developing VIIP-associated optic disc edema.

  18. Astronaut Pedro Duque Watches A Water Bubble

    Science.gov (United States)

    2003-01-01

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  19. The F.I.T. Story: Astronautics at F.I.T.

    Science.gov (United States)

    Aviation/Space, 1980

    1980-01-01

    Describes the astronautic programs and research at the Florida Institute of Technology, Melborne, Florida. Undergraduate and graduate students participate in research, such as Lighter-Than-Air vehicles, optical observation, auroral-magnetospheric research, and geomagnetism. (DS)

  20. Geological trainings for analogue astronauts: Lessons learned from MARS2013 expedition, Morocco

    Science.gov (United States)

    Orgel, C.; Achorner, I.; Losiak, A.; Gołębiowska, I.; Rampey, M.; Groemer, G.

    2013-09-01

    The Austrian Space Forum (OeWF) is a national organisation for space professionals and space enthusiasts. In collaboration with internal partner organisations, the OeWF focuses on Mars analogue research with their space volunteers and organises space-related outreach/education activities and conducts field tests with the Aouda.X and Aouda.S spacesuit simulators in Mars analogue environment. The main project of OeWF is called "PolAres" [1]. As the result of lessons learned from the Río Tinto 2011 expedition [4], we started to organise geological training sessions for the analogue astronauts. The idea was to give them basic geological background to perform more efficiently in the field. This was done in close imitation of the Apollo astronaut trainings that included theoretical lectures (between Jan. 1963-Nov. 1972) about impact geology, igneous petrology of the Moon, geophysics and geochemistry as well as several field trips to make them capable to collect useful samples for the geoscientists on Earth [3] [5]. In the last year the OeWF has organised three geoscience workshops for analogue astronauts as the part of their "astronaut" training. The aim was to educate the participants to make them understand the fundamentals in geology in theory and in the field (Fig. 1.). We proposed the "Geological Experiment Sampling Usefulness" (GESU) experiment for the MARS2013 simulation to improve the efficiency of the geological trainings. This simulation was conducted during February 2013, a one month Mars analogue research was conducted in the desert of Morocco [2] (Fig. 2.).

  1. Astronaut Clothing for Exploration Missions

    Science.gov (United States)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  2. Astronaut Neil Armstrong participates in lunar surface siumlation training

    Science.gov (United States)

    1969-01-01

    Suited Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, participates in lunar surface simulation training on April 18, 1969, in bldg 9, Manned Spacecraft Center (MSC). Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he simulates scooping up a lunar surface sample.

  3. Use of the Remote Access Virtual Environment Network (RAVEN) for coordinated IVA-EVA astronaut training and evaluation.

    Science.gov (United States)

    Cater, J P; Huffman, S D

    1995-01-01

    This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments.

  4. Determination of the Risk of Radiation-Associated Circulatory and Cancer Disease Mortality in a NASA Early Astronaut Cohort

    Science.gov (United States)

    Elgart, S. R.; Chappell, L.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Little, M.; Patel, Z. S.

    2017-01-01

    Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to determine if there was sufficient evidence for excess risk of cardiovascular disease and cancer in early NASA astronaut cohorts. NASA astronauts in selection groups 1-7 were chosen; this relatively homogeneous cohort consists of 73 white males, who unlike today's astronauts, maintained similar smoking and drinking habits to the general US population, and have published radiation doses. The participants flew in space on missions Mercury through Shuttle and received space radiation doses between 0-74.1 milligrays. Cause of death information was obtained from the Lifetime Surveillance of Astronaut Health (LSAH) program at NASA Johnson Space Center. Mortality was compared with the US male population. Trends of mortality with dose were assessed using a logistic model, fitted by maximum likelihood. Only 32 (43.84 percent) of the 73 early astronauts have died. Standard mortality ratios (SMRs) for cancer (n=7, SMR=43.4, 95 percent CI 17.8, 84.9), all circulatory disease (n=7, SMR=33.2, 95 percent CI 13.7, 65.0), and ischemic heart disease (IHD) (n=5, SMR=40.1, 95 percent CI 13.2, 89.4) were significantly lower than for the US white male population. For cerebrovascular disease, the upper confidence interval for SMR included 100, indicating it was not significantly different from the US population (n=2, SMR = 77.0, 95 percent CI 9.4, 268.2). The power of the study is low and remains below 10 percent even when risks 10 times those reported in the literature are assumed. Due to small sample size, there is currently insufficient statistical power to evaluate space

  5. Subclinical Shed of Infectious Varicella zoster Virus in Astronauts

    Science.gov (United States)

    Cohrs, Randall J.; Mehta, Satish K.; Schmid, D. Scott; Gilden, Donald H.; Pierson, Duane L.

    2007-01-01

    Aerosol borne varicella zoster virus (VZV) enters the nasopharynx and replicates in tonsillar T-cells, resulting in viremia and varicella (chickenpox). Virus then becomes latent in cranial nerve, dorsal root and autonomic nervous system ganglia along the entire neuraxis (1). Decades later, as cell-mediated immunity to VZV declines (4), latent VZV can reactivate to produce zoster (shingles). Infectious VZV is present in patients with varicella or zoster, but shed of infectious virus in the absence of disease has not been shown. We previously detected VZV DNA in saliva of astronauts during and shortly after spaceflight, suggesting stress induced subclinical virus reactivation (3). We show here that VZV DNA as well as infectious virus in present in astronaut saliva. VZV DNA was detected in saliva during and after a 13-day spaceflight in 2 of 3 astronauts (Fig. panel A). Ten days before liftoff, there was a rise in serum anti-VZV antibody in subjects 1 and 2, consistent with virus reactivation. In subject 3, VZV DNA was not detected in saliva, and there was no rise in anti-VZV antibody titer. Subject 3 may have been protected from virus reactivation by having zoster DNA was detected in astronaut saliva months before spaceflight, or in saliva of 10 age/sex-matched healthy control subjects sampled on alternate days for 3 weeks (88 saliva samples). Saliva taken 2-6 days after landing from all 3 subjects was cultured on human fetal lung cells (Fig. panel B). Infectious VZV was recovered from saliva of subjects 1 and 2 on the second day after landing. Virus specificity was confirmed by antibody staining and DNA analysis which showed it to be VZV of European descent, common in the US (5). Further, both antibody staining and DNA PCR demonstrated that no HSV-1 was detected in any infected culture. This is the first report of infectious VZV shedding in the absence of clinical disease. Spaceflight presents a uniquely stressful environment which includes physical isolation and

  6. Astronaut Anna Fisher Suits Up for NBS Training

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  7. Astronaut Anna Fisher Suiting Up For NBS Training

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suiting up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  8. Astronaut Anna Fisher Suited Up For NBS Training

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher suited up for training on a mockup of a modular section of the HST for an axial scientific instrument change out.

  9. Astronaut Prepares for Mission With Virtual Reality Hardware

    Science.gov (United States)

    2001-01-01

    Astronaut John M. Grunsfeld, STS-109 payload commander, uses virtual reality hardware at Johnson Space Center to rehearse some of his duties prior to the STS-109 mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. This technology allows NASA astronauts to practice International Space Station work missions in advance. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  10. Land Cover/Land Use Classification and Change Detection Analysis with Astronaut Photography and Geographic Object-Based Image Analysis

    Science.gov (United States)

    Hollier, Andi B.; Jagge, Amy M.; Stefanov, William L.; Vanderbloemen, Lisa A.

    2017-01-01

    For over fifty years, NASA astronauts have taken exceptional photographs of the Earth from the unique vantage point of low Earth orbit (as well as from lunar orbit and surface of the Moon). The Crew Earth Observations (CEO) Facility is the NASA ISS payload supporting astronaut photography of the Earth surface and atmosphere. From aurora to mountain ranges, deltas, and cities, there are over two million images of the Earth's surface dating back to the Mercury missions in the early 1960s. The Gateway to Astronaut Photography of Earth website (eol.jsc.nasa.gov) provides a publically accessible platform to query and download these images at a variety of spatial resolutions and perform scientific research at no cost to the end user. As a demonstration to the science, application, and education user communities we examine astronaut photography of the Washington D.C. metropolitan area for three time steps between 1998 and 2016 using Geographic Object-Based Image Analysis (GEOBIA) to classify and quantify land cover/land use and provide a template for future change detection studies with astronaut photography.

  11. An Update on Mortality in the U.S. Astronaut Corps: 1959-2009

    Science.gov (United States)

    Amirian, E.; Clark, April; Halm, Melissa; Hartnett, Heather

    2009-01-01

    Although it has now been over 50 years since mankind first ventured into space, the long-term health impacts of human space flight remain largely unknown. Identifying factors that affect survival and prognosis among those who participate in space flight is vitally important, as the era of commercial space flight approaches and NASA prepares for missions to Mars. The Longitudinal Study of Astronaut Health is a prospective study designed to examine trends in astronaut morbidity and mortality. The purpose of this analysis was to describe and explore predictors of overall and cause-specific mortality among individuals selected for the U.S. astronaut corps. All U.S. astronauts (n=321), regardless of flight status, were included in this analysis. Death certificate searches were conducted to ascertain vital status and cause of death through April 2009. Data were collected from medical records and lifestyle questionnaires. Multivariable Cox regression modeling was used to calculate the mortality hazard associated with embarking on space flight, adjusted for sex, race, and age at selection. Between 1959 and 2009, there were 39 (12.1%) deaths. Of these deaths, 18 (42.2%) were due to occupational accidents; 7 (17.9%) were due to other accidents; 6 (15.4%) were attributable to cancer; 6 (15.4%) resulted from cardiovascular/circulatory diseases; and 2 (5.1%) were from other causes. Participation in space flight did not significantly increase mortality hazard over time (adjusted hazard ratio=0.57; 95% confidence interval=0.26-1.26. Because our results are based on a small sample size, future research that includes payload specialists, other space flight participants, and international crew members is warranted to maximize statistical power.

  12. Prevalence of Sleep Deficiency and Hypnotic Use Among Astronauts Before, During and After Spaceflight: An Observational Study

    Science.gov (United States)

    Barger, Laura K.; Flynn-Evans, Erin E.; Kubey, Alan; Walsh, Lorcan; Ronda, Joseph M.; Wang, Wei; Wright, Kenneth P.; Czeisler, Charles A.

    2014-01-01

    Background Sleep deprivation and fatigue are common subjective complaints among astronauts. We conducted the first large-scale evaluation of objectively-estimated sleep of astronauts on both short- and long-duration spaceflight missions. Methods Allnon-Russian crewmembers assigned to space shuttle flights with inflight experiments from July 2001 until July 2011 or ISS Expeditions from 2006 –2011 were eligible to participate. We objectively assessed, via wrist actigraphy and daily logs, sleep-wake timing of 64 astronauts on 80 Space Shuttle missions, encompassing 26 Space Transportation System flights (1,063 inflight days), and 21 astronauts on the International Space Station (ISS) (3,248 inflight days) and, for each astronaut, during two Earth-based data-collection intervals prior to and one following spaceflight (4,013 ground-based days). Findings Astronauts attempted and obtained significantly less actigraphically-estimated sleep per night on space shuttle missions (7·35 ± 0·47 and 5·96 ± 0·56 hours, respectively), in the 11-days before spaceflight (7·35 ± 0·51 and 6·04 ± 0·72 hours, respectively) and even three months before spaceflight (7·40 ± 0·59 and 6·29 ± 0·67 hours, respectively) than they did upon their return to Earth (8·01 ± 0·78 and 6·74 ± 0·91 hours, respectively) (p Astronauts on ISS missions also obtained significantly less sleep three months prior (6.41 ± 0.65), in the 11 days prior (5.86 ± 0.94) and during spaceflight (6.09 ± 0.67 hours), as compared to the first week post-mission (6.95 ± 1.04 hours; p astronauts was prevalent not only during space shuttle and ISS missions, but also throughout a 3-month pre-flight training interval. Despite chronic sleep curtailment, sleeping pill use was pervasive during spaceflight. As chronic sleep loss produces performance decrements, these findings highlight the need for development of effective counter measures to promote sleep. Funding The study was supported by NASA

  13. Hybrid Force Control Based on ICMAC for an Astronaut Rehabilitative Training Robot

    Directory of Open Access Journals (Sweden)

    Lixun Zhang

    2012-08-01

    Full Text Available A novel Astronaut Rehabilitative Training Robot (ART based on a cable-driven mechanism is represented in this paper. ART, a typical passive force servo system, can help astronauts to bench press in a microgravity environment. The purpose of this paper is to design controllers to eliminate the surplus force caused by an astronaut's active movements. Based on the dynamics modelling of the cable-driven unit, a hybrid force controller based on improved credit assignment CMAC (ICMAC is presented. A planning method for the cable tension is proposed so that the dynamic load produced by the ART can realistically simulate the gravity and inertial force of the barbell in a gravity environment. Finally, MATLAB simulation results of the man-machine cooperation system are provided in order to verify the effectiveness of the proposed control strategy. The simulation results show that the hybrid control method based on the structure invariance principle can inhibit the surplus force and that ICMAC can improve the dynamic performance of the passive force servo system. Furthermore, the hybrid force controller based on ICMAC can ensure the stability of the system.

  14. Astronauts Need Their Rest Too: Sleep-Wake Actigraphy and Light Exposure During Space Flight

    Science.gov (United States)

    Czeisler, Charles; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    The success and effectiveness of human space flight depends on astronauts' ability to maintain a high level of cognitive performance and vigilance. This alert state ensures the proper operation of sophisticated instrumentation. An important way for humans to remedy fatigue and maintain alertness is to get plenty of rest. Astronauts, however, commonly experience difficulty sleeping while in space. During flight, they may also experience disruption of the body's circadian rhythm - the natural phases the body goes through every day as we oscillate between states of high activity during the waking day and recuperation, rest, and repair during nighttime sleep. Both of these factors are associated with impairment of alertness and performance, which could have important consequences during a mission in space. The human body was designed to sleep at night and be alert and active during the day. We receive these cues from the time of day or amount of light, such as the rising or setting of the sun. However, in the environment of the Space Shuttle or the International Space Station where light levels are highly variable, the characteristics of a 24-hour light/dark cycle are not present to cue the astronauts' bodies about what time of the day it is. Astronauts orbiting Earth see a sunset and sunrise every 90 minutes, sending potentially disruptive signals to the area of the brain that regulates sleep. On STS-107, researchers will measure sleep-wake activity with state-of-the-art technology to quantify how much sleep astronauts obtain in space. Because light is the most powerful time cue to the body's circadian system, individual light exposure patterns of the astronauts will also be monitored to determine if light exposure is associated with sleep disruption. The results of this research could lead to the development of a new treatment for sleep disturbances, enabling crewmembers to avoid the decrements in alertness and performance due to sleep deprivation. What we learn

  15. Russian language instruction for two American ASTP astronauts

    Science.gov (United States)

    1974-01-01

    Two astronauts associated with the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) receive instruction in the Russian language during ASTP activity at JSC. They are Robert F. Overmyer, a member of the support team of the American ASTP crew, who is seated at left; and Vance D. Brand (in center), the command module pilot of the American ASTP prime crew. The instructor is Anatoli Forestanko.

  16. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    Science.gov (United States)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  17. Astronaut William Fisher preparing to train in the WETF

    Science.gov (United States)

    1985-01-01

    Astronaut William Fisher is shown in his extravehicular mobility unit (EMU) preparing to train in the Weightless Environment Training Facility (WETF). He is wearing the communications carrier assembly but not the full helmet (32102); Reflections of the WETF can be seen on the closed visor of the EMU helmet Fiser is wearing (32103).

  18. Astronaut Neil Armstrong participates in lunar surface simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  19. Astronaut Tamara Jernigan in the CCT during a training session

    Science.gov (United States)

    1994-01-01

    Astronaut Tamara E. Jernigan, STS-67 payload commander, is shown here in the Shuttle Training Facility at JSC participating in a training session. Jernigan is training with the RMS controls in the Crew Compartment Trainer (CCT) of JSC's Shuttle mockup and integration laboratory.

  20. Astronaut Neil Armstrong in Launch Complex 16 trailer during suiting up

    Science.gov (United States)

    1966-01-01

    Astronaut Neil A. Armstrong, command pilot of the Gemini 8 space flight, sits in the Launch Complex 16 trailer during suiting up operations for the Gemini 8 mission. Suit technician Jim Garrepy assists.

  1. Dynamical modeling approach to risk assessment for radiogenic leukemia among astronauts engaged in interplanetary space missions.

    Science.gov (United States)

    Smirnova, Olga A; Cucinotta, Francis A

    2018-02-01

    A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can

  2. What it takes to Fly in Space...Training to be an Astronaut and Daily Operations on ISS

    Science.gov (United States)

    Ham, Michelle

    2009-01-01

    This presentation highlights NASA requirements to become an astronaut, training astronauts must do to fly on the International Space Station (ISS), systems and other training, and day-to-day activities onboard ISS. Additionally, stowage, organization and methods of communication (email, video conferenceing, IP phone) are discussed.

  3. Astronaut Neil A. Armstrong Undergoes Communications Systems Final Check

    Science.gov (United States)

    1969-01-01

    Dunned in his space suit, mission commander Neil A. Armstrong does a final check of his communications system before before the boarding of the Apollo 11 mission. Launched via a Saturn V launch vehicle, the first manned lunar mission launched from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of astronauts Armstrong; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) Pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. Meanwhile, astronaut Collins piloted the CM in a parking orbit around the Moon. During a 2½ hour surface exploration, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  4. Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight

    Science.gov (United States)

    Reschke, Millard F.; Bloomberg, J. J.; Wood, S. J.; Harm, D. L.

    2011-01-01

    Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).

  5. Improvements to the Ionizing Radiation Risk Assessment Program for NASA Astronauts

    Science.gov (United States)

    Semones, E. J.; Bahadori, A. A.; Picco, C. E.; Shavers, M. R.; Flores-McLaughlin, J.

    2011-01-01

    To perform dosimetry and risk assessment, NASA collects astronaut ionizing radiation exposure data from space flight, medical imaging and therapy, aviation training activities and prior occupational exposure histories. Career risk of exposure induced death (REID) from radiation is limited to 3 percent at a 95 percent confidence level. The Radiation Health Office at Johnson Space Center (JSC) is implementing a program to integrate the gathering, storage, analysis and reporting of astronaut ionizing radiation dose and risk data and records. This work has several motivations, including more efficient analyses and greater flexibility in testing and adopting new methods for evaluating risks. The foundation for these improvements is a set of software tools called the Astronaut Radiation Exposure Analysis System (AREAS). AREAS is a series of MATLAB(Registered TradeMark)-based dose and risk analysis modules that interface with an enterprise level SQL Server database by means of a secure web service. It communicates with other JSC medical and space weather databases to maintain data integrity and consistency across systems. AREAS is part of a larger NASA Space Medicine effort, the Mission Medical Integration Strategy, with the goal of collecting accurate, high-quality and detailed astronaut health data, and then securely, timely and reliably presenting it to medical support personnel. The modular approach to the AREAS design accommodates past, current, and future sources of data from active and passive detectors, space radiation transport algorithms, computational phantoms and cancer risk models. Revisions of the cancer risk model, new radiation detection equipment and improved anthropomorphic computational phantoms can be incorporated. Notable hardware updates include the Radiation Environment Monitor (which uses Medipix technology to report real-time, on-board dosimetry measurements), an updated Tissue-Equivalent Proportional Counter, and the Southwest Research Institute

  6. An ethical duty: Let astronautical development unfold - to make the people more secure

    Science.gov (United States)

    Bernasconi, Marco C.

    2014-11-01

    In examining alternative space-development models, one observes that Heinlein postulated the first Moon flight as the outcome of the focused action of an individual - building upon an ample commercial aerospace transportation infrastructure. The same technological basis and entrepreneurial drive would then sustain a fast human and economic expansion on three new planets. Instead, historically, humans reached the Moon thanks to a "Faustian bargain" between astronautical developers and governments. This approach brought the early Apollo triumphs, but it also created the presumption of this method as the sole one for enabling space development. Eventually, the application of this paradigm caused the decline of the astronautical endeavor. Thus, just as conventional methods became unable to sustain the astronautical endeavor, space development appeared as vital, e.g., to satisfy the people's basic needs (metabolic resources, energy, materials, and space), as shown elsewhere. Such an endeavor must grow from actions generating new wealth through commercial activities to become self-supporting. Acquisition and distribution of multiform space resources call, however, for a sound ethical environment, as predatory governments can easily forfeit those resources. The paper begins the search for means apt to maintain a societal environment suited for this purpose. Among numerous initiatives needed, dissemination of factual information and moral-right education support take a central position: In fact, the vital condition for true Astronautics - a vast increase in actual respect of moral rights - can also become its best consequence, as the prosperity from the space arena empowers the people, making them materially safer and more secure in their fundamental moral rights.

  7. Free-flying dynamics and control of an astronaut assistant robot based on fuzzy sliding mode algorithm

    Science.gov (United States)

    Gao, Qing; Liu, Jinguo; Tian, Tongtong; Li, Yangmin

    2017-09-01

    Space robots can perform some tasks in harsh environment as assistants of astronauts or substitutions of astronauts. Taking the limited working time and the arduous task of the astronauts in the space station into account, an astronaut assistant robot (AAR-2) applied in the space station is proposed and designed in this paper. The AAR-2 is achieved with some improvements on the basis of AAR-1 which was designed before. It can exploit its position and attitude sensors and control system to free flight or hover in the space cabin. And it also has a definite environmental awareness and artificial intelligence to complete some specified tasks under the control of astronauts or autonomously. In this paper, it mainly analyzes and controls the 6-DOF motion of the AAR-2. Firstly, the system configuration of AAR-2 is specifically described, and the movement principles are analyzed. Secondly, according to the physical model of the AAR-2, the Newton - Euler equation is applied in the preparation of space dynamics model of 6-DOF motion. Then, according to the mathematical model's characteristics which are nonlinear and strong coupling, a dual closed loop position and attitude controller based on fuzzy sliding mode control is proposed and designed. Finally, simulation experiments are appropriate to provide for AAR-2 control system by using Matlab/Simulink. From the simulation results it can be observed that the designed fuzzy sliding mode controller can control the 6-DOF motion of AAR-2 quickly and precisely.

  8. Apollo 10 astronauts in space suits in front of Command Module

    Science.gov (United States)

    1968-01-01

    Three astronauts named as the prime crew of the Apollo 10 space mission. Left to right, are Eugene A. Cernan, lunar module pilot; John W. Young, command module pilot; and Thomas P. Stafford, commander.

  9. Astronautics and Aeronautics, 1986-1990: A Chronology

    Science.gov (United States)

    Gawdiak, Ihor Y.; Miro, Ramon J.; Stueland, Sam

    1997-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the LibrarY of Congress for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1996-1990 and continues the series of annual chronologies published by NASA. The present volume returns to the format used in the Astronautics and Aeronautics, 1979-1984: A Chronology volume. It also integrates in a single table the information presented in two or three previous publications.

  10. Astronautics and Aeronautics, 1991-1995: A Chronology

    Science.gov (United States)

    Gawdiak, Ihor Y. (Compiler); Shetland, Charles (Compiler)

    2000-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the Library of Congress and RSIS for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1991-1995 and continues the series of annual chronologies published by NASA. The present volume uses the format of the previous edition of this series, Astronautics and Aeronautics, 1986-1990: A Chronology. It also integrates, in the appendices, information presented in previous publication

  11. A facility for training Space Station astronauts

    Science.gov (United States)

    Hajare, Ankur R.; Schmidt, James R.

    1992-01-01

    The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.

  12. Changes in Neutrophil Functions in Astronauts

    Science.gov (United States)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  13. Astronaut Curtis Brown on flight deck mockup during training

    Science.gov (United States)

    1994-01-01

    Astronaut Curtis L. Brown, STS-66 pilot, mans the pilot's station during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  14. Astronautics summary and prospects

    CERN Document Server

    Kiselev, Anatoly Ivanovich; Menshikov, Valery Alexandrovich

    2003-01-01

    The monograph by A.I.Kiselev, A.A. Medvedev and Y.A.Menshikov, Astronautics: Summary and Prospects, aroused enthusiasm both among experts and the public at large. This is due to the felicitous choice of presentation that combines a simple description of complex space matters with scientificsubstantiation of the sub­ jectmatter described. The wealth of color photos makes the book still more attractive, and it was nominated for an award at the 14th International Moscow Book Fair, being singled out as the "best publication of the book fair". The book's popularity led to a second edition, substantially revised and enlarged. Since the first edition did not sufficiently cover the issues of space impact on ecology and the prospective development of space systems, the authors revised the entire volume, including in it the chapter "Space activity and ecology" and the section "Multi-function space systems". Using the federal monitoring system, now in the phase of system engi­ neering, as an example, the authors consi...

  15. An Innovative Virtual Training Simulator for Columbus Astronauts

    Science.gov (United States)

    Risola, F.; Morzuch, G.

    2004-06-01

    The International Space Station (ISS) is a co-operative programme among the main world space agencies. The European Space Agency contribution is the Automated Transfer Vehicle and the Columbus Orbital Facility, which is the European laboratory of the ISS. It provides a pressurized environment to house up to ten payload racks containing scientific instruments for the conduct of a broad band of experiments. The astronauts on-board of the ISS interact with the payloads for the preparation and execution of the experiments and before their expedition, they have to train on ground in the most realistic manner. The training is carried out at the European Astronauts Centre in the Columbus Trainer, a complex facility that reproduces the physical layout of the ISS European laboratory and a set of payload racks simulators. These simulators are being developed by Dataspazio with an innovative low-cost approach combining the high realism of the simulation with the flexibility and re-usability of the payloads simulators. The hearth of this approach is the interactive payload Virtual Front-panel Interface. The development of these high-realism training payload simulators incorporate several technological issues such as Digital Light ProcessingTM, projected capacitance touch-screen, high-fidelity graphics and simulation software.

  16. Drugs in space: Pharmacokinetics and pharmacodynamics in astronauts.

    Science.gov (United States)

    Kast, Johannes; Yu, Yichao; Seubert, Christoph N; Wotring, Virginia E; Derendorf, Hartmut

    2017-11-15

    Space agencies are working intensely to push the current boundaries of human spaceflight by sending astronauts deeper into space than ever before, including missions to Mars and asteroids. Spaceflight alters human physiology due to fluid shifts, muscle and bone loss, immune system dysregulation, and changes in the gastrointestinal tract and metabolic enzymes. These alterations may change the pharmacokinetics and/or pharmacodynamics of medications used by astronauts and subsequently might impact drug efficacy and safety. Most commonly, medications are administered during space missions to treat sleep disturbances, allergies, space motion sickness, pain, and sinus congestion. These medications are administered under the assumption that they act in a similar way as on Earth, an assumption that has not been investigated systematically yet. Few inflight pharmacokinetic data have been published, and pharmacodynamic and pharmacokinetic/pharmacodynamic studies during spaceflight are also lacking. Therefore, bed-rest models are often used to simulate physiological changes observed during microgravity. In addition to pharmacokinetic/pharmacodynamic changes, decreased drug and formulation stability in space could also influence efficacy and safety of medications. These alterations along with physiological changes and their resulting pharmacokinetic and pharmacodynamic effects must to be considered to determine their ultimate impact on medication efficacy and safety during spaceflight. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Apollo 11 Astronaut Neil Armstrong Performs Ladder Practice

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first Lunar landing mission, Apollo 11 crew members underwent training activities to practice activities they would be performing during the mission. In this photograph, Neil Armstrong, donned in his space suit, practices getting back to the first rung of the ladder on the Lunar Module (LM). The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  18. Apollo 11 Astronaut Neil Armstrong Approaches Practice Helicopter

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11, crew members underwent training to practice activities they would be performing during the mission. In this photograph Neil Armstrong approaches the helicopter he flew to practice landing the Lunar Module (LM) on the Moon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished

  19. The Role and Training of NASA Astronauts in the Post-Shuttle Era

    Science.gov (United States)

    2011-01-01

    In May 2010 the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC's Committee on Human Spaceflight Crew Operations was tasked to: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change following space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA's human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA's human spaceflight program has garnered considerable discussion in recent years, and there is considerable uncertainty about what that program will involve in the coming years, the committee was not tasked to address whether or not human spaceflight should continue, or what form it should take. The committee's task restricted it to studying those activities managed by the Flight Crew Operations Directorate, or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  20. Astronaut John Young during final suiting operations for Apollo 10 mission

    Science.gov (United States)

    1969-01-01

    A technician attaches hose from test stand to spacesuit of Astronaut John W. Young, Apollo 10 command module pilot, during final suiting operations for the Apollo 10 lunar orbit mission. Another technician makes adjustment behind Young.

  1. Radiation health consequences for astronauts: mechanisms, monitoring and prevention

    Science.gov (United States)

    Neyfakh, E.

    During space flights crews are exposed chronically to uneven irradiation of enhanced bioefficiency following with significant elevation for chromosomal aberrations as minimum. To protect in space rationally monitoring and preventing of health radiogenic individual primary consequences for astronauts are of high importance. Majority of Chernobyl-touched population has some common etiologic radiogenic mechanisms and radioloads with astronauts ones during long-term missions and former is able to be used well as the close ground-level model. Primary radiogenic deviations. Two radiogenic pathologies as lipoperoxic ( LP ) stress with coupled deficits for essential bioantioxidants ( BAO ) were typical for chronic low-dose Chernobyl-touched contingents. When BAO expenditure had led to their subnormal levels, radiogenic free radical chain -b ranched LP processes occurred in vivo hyperbolically. Catabolites and their free radicals of the abnormal LP cascade are known to be toxic, mutagenic / carcinogenic and teratogenic factors as such, as they are for retinol and tocopherol deficiencies. Both coupled pathogenic factors interrelated synergistically. Simultaneous dysbalances for LP and / or BAO systems were evaluated as the cause and markers for metabolic disregulations. Human LP stress was proved to be the most radiosensible known marker to mo nitor least invasively of blood microsamples in a ground lab via the developed PC Program. But for capsule conditions the best approach is assumed to be LP monitoring via skin ultraweak green-blue chemiluminescence ( CL ) caused by recombination of peroxyl radicals. CL from surfaces of organs was embedded first ( E. Neyfakh, 1964 - 71 ) to reflect their internal LP velocities in vivo and it is the non-invasive on-line simple method of the highest sensitivity, supplying with data transmissible to the ground directly. Related deviations. a) Radiogenic hypermutagenesis: LP catabolites and their free radicals are responsible for direct DNA

  2. Selecting the Mercury Seven The Search for America's First Astronauts

    CERN Document Server

    Burgess, Colin

    2011-01-01

    In January 1959, after an exhaustive search through military service records, a number of Americas elite test pilots received orders to attend a series of top-secret briefings in Washington, D.C. These briefings were designed to assist in selecting a group of astronauts for the newly formed National Aeronautics and Space Administration (NASA) and its man-in-space program, Project Mercury. Following in-depth medical and psychological screening, 32 finalists were chosen. They would be subjected to the most rigorous, exploratory, and even degrading medical and psychological stress tests ever imposed on the nation's service personnel. NASA wanted the best of the best in its quest for the nation's first astronauts, and this is the story of that search for a group of near-supermen who were destined to become trailblazing pioneers of American space flight. For the very first time, after extensive research and numerous interviews, the names and amazing stories of those 32 finalists are finally revealed in this book. ...

  3. The astronaut of 1988. [training and selection

    Science.gov (United States)

    Slayton, D. K.

    1973-01-01

    Past space exploration history is reviewed for a projection of requirements in astronaut training and selection in 1988. The categories of talent required for those space missions are listed as test pilots and operational pilots for the test phase of programs; flight engineers and mechanics for Space Shuttle and Space Stations; medical doctors as experimentators and crew members; medical technicians and nurses for support medical service; veterinarians and veterinary technicians; physisits, chemists and geologists; and military men and administrators. Multinational crews and participation of both sexes are anticipated.

  4. Portrait of Astronaut Neil A. Armstrong, commander of Apollo 11 mission

    Science.gov (United States)

    1969-01-01

    Portrait of Astronaut Neil A. Armstrong, commander of the Apollo 11 Lunar Landing mission in his space suit, with his helmet on the table in front of him. Behind him is a large photograph of the lunar surface.

  5. Astronauts Allen and Gemar during extravehicular activity (EVA) training in CCT

    Science.gov (United States)

    1994-01-01

    Astronauts Charles D. (Sam) Gemar, and Andrew M. Allen participate in a training exercise at JSC's Crew Compartment Trainer (CCT), located in the Space Vehicle Mockup Facility. Gemar sits inside the airlock as Allen reviews procedures for EVA.

  6. Astronaut Scott Parazynski in hatch of CCT during training

    Science.gov (United States)

    1994-01-01

    Astronaut Scott E. Parazynski, STS-66 mission specialist, poses near the hatchway of the crew compartment trainer (CCT) (out of frame) in JSC's Shuttle mockup and integration laboratory. Crew members were about to begin a rehearsal of procedures to be followed during the launch and entry phases of their flight. That rehearsal was followed by a training session on emergency egress procedures.

  7. Astronaut Tamara Jernigan deploys life raft during WETF training

    Science.gov (United States)

    1994-01-01

    Astronaut Tamara E. Jernigan, STS-67 payload commander, deploys a life raft during a session of emergency bailout training. The training took place in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). Jernigan was joined by her crew mates for the training session. Several SCUBA-equipped divers who assisted in the training can be seen in this photograph.

  8. Astronaut training plans and training facilities in Japan; Uchu hikoshi tanjo eno michi (kunren to kunren setsubi)

    Energy Technology Data Exchange (ETDEWEB)

    Harada, C. [National Space Development Agency of Japan, Tokyo (Japan)

    1999-10-05

    Introduced are the training of astronauts for duties aboard a space shuttle, training provided by NASDA (National Space Development Agency of Japan), and training facilities. The astronaut candidate training course involves space science, space medicine, ocean science, and others, in addition to flight training aboard the T-38 jet trainer, emergency procedure training, shuttle system training, weightlessness training aboard the KC-135 jet plane on a ballistic flight, and SCUBA training. After candidates are named to serve aboard the space shuttle, they are to undergo training related to the shuttle system, emergency exit, adaptation to the surroundings, and the space laboratory system. As for ISS (international space station), astronauts will have to construct the station, and to stay there for a long time operating and maintaining the station and manipulating various experimental apparatuses. The astronaut training process in Japan covers approximately four years, including candidate training, advanced training, and mission dependent training. The training facilities include a weightless environment test system, low-pressure environment adaptation training system, etc., available at NASDA's Tsukuba Space Center. (NEDO)

  9. Automation of PCXMC and ImPACT for NASA Astronaut Medical Imaging Dose and Risk Tracking

    Science.gov (United States)

    Bahadori, Amir; Picco, Charles; Flores-McLaughlin, John; Shavers, Mark; Semones, Edward

    2011-01-01

    To automate astronaut organ and effective dose calculations from occupational X-ray and computed tomography (CT) examinations incorporating PCXMC and ImPACT tools and to estimate the associated lifetime cancer risk per the National Council on Radiation Protection & Measurements (NCRP) using MATLAB(R). Methods: NASA follows guidance from the NCRP on its operational radiation safety program for astronauts. NCRP Report 142 recommends that astronauts be informed of the cancer risks from reported exposures to ionizing radiation from medical imaging. MATLAB(R) code was written to retrieve exam parameters for medical imaging procedures from a NASA database, calculate associated dose and risk, and return results to the database, using the Microsoft .NET Framework. This code interfaces with the PCXMC executable and emulates the ImPACT Excel spreadsheet to calculate organ doses from X-rays and CTs, respectively, eliminating the need to utilize the PCXMC graphical user interface (except for a few special cases) and the ImPACT spreadsheet. Results: Using MATLAB(R) code to interface with PCXMC and replicate ImPACT dose calculation allowed for rapid evaluation of multiple medical imaging exams. The user inputs the exam parameter data into the database and runs the code. Based on the imaging modality and input parameters, the organ doses are calculated. Output files are created for record, and organ doses, effective dose, and cancer risks associated with each exam are written to the database. Annual and post-flight exposure reports, which are used by the flight surgeon to brief the astronaut, are generated from the database. Conclusions: Automating PCXMC and ImPACT for evaluation of NASA astronaut medical imaging radiation procedures allowed for a traceable and rapid method for tracking projected cancer risks associated with over 12,000 exposures. This code will be used to evaluate future medical radiation exposures, and can easily be modified to accommodate changes to the risk

  10. Traditional Cardiovascular Risk Factors as Predictors of Cardiovascular Events in the U.S. Astronaut Corps

    Science.gov (United States)

    Halm, M. K.; Clark, A.; Wear, M. L.; Murray, J. D.; Polk, J. D.; Amirian, E.

    2009-01-01

    Risk prediction equations from the Framingham Heart Study are commonly used to predict the absolute risk of myocardial infarction (MI) and coronary heart disease (CHD) related death. Predicting CHD-related events in the U.S. astronaut corps presents a monumental challenge, both because astronauts tend to live healthier lifestyles and because of the unique cardiovascular stressors associated with being trained for and participating in space flight. Traditional risk factors may not hold enough predictive power to provide a useful indicator of CHD risk in this unique population. It is important to be able to identify individuals who are at higher risk for CHD-related events so that appropriate preventive care can be provided. This is of special importance when planning long duration missions since the ability to provide advanced cardiac care and perform medical evacuation is limited. The medical regimen of the astronauts follows a strict set of clinical practice guidelines in an effort to ensure the best care. The purpose of this study was to evaluate the utility of the Framingham risk score (FRS), low-density lipoprotein (LDL) and high-density lipoprotein levels, blood pressure, and resting pulse as predictors of CHD-related death and MI in the astronaut corps, using Cox regression. Of these factors, only two, LDL and pulse at selection, were predictive of CHD events (HR(95% CI)=1.12 (1.00-1.25) and HR(95% CI)=1.70 (1.05-2.75) for every 5-unit increase in LDL and pulse, respectively). Since traditional CHD risk factors may lack the specificity to predict such outcomes in astronauts, the development of a new predictive model, using additional measures such as electron-beam computed tomography and carotid intima-media thickness ultrasound, is planned for the future.

  11. Astronaut L. Gordon Cooper is assisted into his spacecraft for tests

    Science.gov (United States)

    1963-01-01

    NASA and McDonnell Aircraft Corp. spacecraft technicians assist Astronaut L. Gordon Cooper into his spacecraft prior to undergoing tests in the altitude chamber. These tests are used to determine the operating characteristcs of the overall environmental control system.

  12. Astronaut Thomas Stafford during water egress training in Gulf of Mexico

    Science.gov (United States)

    1965-01-01

    Astronaut Thomas P. Stafford, Gemini 6 prime crew pilot, climbs out of a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. A NASA swimmer in the water nearby assists in the exercise.

  13. Swing-arm beam erector (SABER) concept for single astronaut assembly of space structure

    Science.gov (United States)

    Watson, J. J.; Heard, W. L., Jr.; Jensen, J. K.

    1985-01-01

    Results are presented of tests conducted to evaluate a mobile work station/assembly fixture concept that would mechanically assist an astronaut in the on-orbit manual assembly of erectable truss-beams. The concept eliminates astronaut manual translation by use of a motorized work platform with foot restraints. The tests involved assembly of a tetrahedral truss-beam by a test subject in simulated zero gravity (neutral bouyancy in water). A three-bay truss-beam was assembled from 30 aluminum struts with quick-attachment structural joints. The results show that average on-orbit assembly rates of 2.1 struts per minute can be expected for struts of the size employed in these tests.

  14. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  15. Did Vertigo Kill America's Forgotten Astronaut?

    Science.gov (United States)

    Bendrick, Gregg A.; Merlin, Peter W.

    2007-01-01

    On November 15, 1967, U.S. Air Force test pilot Major Michael J. Adams was killed while flying the X-15 rocket-propelled research vehicle in a parabolic spaceflight profile. This flight was part of a joint effort with NASA. An electrical short in one of the experiments aboard the vehicle caused electrical transients, resulting in excessive workload by the pilot. At altitude Major Adams inappropriately initiated a flat spin that led to a series of unusual aircraft attitudes upon atmospheric re-entry, ultimately causing structural failure of the airframe. Major Adams was known to experience vertigo (i.e. spatial disorientation) while flying the X-15, but all X-15 pilots most likely experienced vertigo (i.e. somatogravic, or "Pitch-Up", illusion) as a normal physiologic response to the accelerative forces involved. Major Adams probably experienced vertigo to a greater degree than did others, since prior aeromedical testing for astronaut selection at Brooks AFB revealed that he had an unusually high degree of labyrinthine sensitivity. Subsequent analysis reveals that after engine burnout, and through the zenith of the flight profile, he likely experienced the oculoagravic ("Elevator") illusion. Nonetheless, painstaking investigation after the mishap revealed that spatial disorientation (Type II, Recognized) was NOT the cause, but rather, a contributing factor. The cause was in fact the misinterpretation of a dual-use flight instrument (i.e. Loss of Mode Awareness), resulting in confusion between yaw and roll indications, with subsequent flight control input that was inappropriate. Because of the altitude achieved on this flight, Major Adams was awarded Astronaut wings posthumously. Understanding the potential for spatial disorientation, particularly the oculoagravic illusion, associated with parabolic spaceflight profiles, and understanding the importance of maintaining mode awareness in the context of automated cockpit design, are two lessons that have direct

  16. Astronaut Anna Fisher practices control of the RMS in a trainer

    Science.gov (United States)

    1984-01-01

    Astronaut Anna Lee Fisher, mission specialist for 51-A, practices control of the remote manipulator system (RMS) at a special trainer at JSC. Dr. Fisher is pictured in the manipulator development facility (MDF) of JSC's Shuttle mockup and integration laboratory.

  17. STS-71 astronauts and cosmonauts listen to briefing during training session

    Science.gov (United States)

    1994-01-01

    A number of Russian cosmonauts and an American astronaut listen to a briefing on launch and landing emergency situations during a training session in the Systems Integration Facility at JSC. Scheduled to launch aboard the Space Shuttle Atlantis with the S

  18. Underwater EVA training in the WETF with astronaut Robert L. Stewart

    Science.gov (United States)

    1983-01-01

    Underwater extravehicular activity (EVA) training in the weightless environment training facility (WETF) with astronaut Robert L. Stewart. Stewart is simulating a planned EVA using the mobile foot restraint device and a one-G version of the Canadian-built remote manipulator system.

  19. Astronaut observations of global biomass burning

    International Nuclear Information System (INIS)

    Wood, C.A.; Nelson, R.

    1991-01-01

    One of the most fundamental inputs for understanding and modeling possible effects of biomass burning is knowledge of the size of the area burned. Because the burns are often very large and occur on all continents (except Antarctica), observations from space are essential. Information is presented in this chapter on another method for monitoring biomass burning, including immediate and long-term effects. Examples of astronaut photography of burning during one year give a perspective of the widespread occurrence of burning and the variety of biological materials that are consumed. The growth of burning in the Amazon region is presented over 15 years using smoke as a proxy for actual burning. Possible climate effects of smoke palls are also discussed

  20. Astronaut John Grunsfeld during EVA training in the WETF

    Science.gov (United States)

    1995-01-01

    Astronaut John M. Grunsfeld, STS-67 mission specialist, gives a salute as he is about to be submerged in a 25-feet deep pool in JSC's Weightless Environment Training Facility (WETF). Wearing a special training version of the Extravehicular Mobility Unit (EMU) space suit and assisted by several JSC SCUBA-equipped divers, Grunsfeld was later using the pool to rehearse contingency space walk chores.

  1. Astronauts in Outer Space Teaching Students Science: Comparing Chinese and American Implementations of Space-to-Earth Virtual Classrooms

    Science.gov (United States)

    An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.

    2016-01-01

    The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…

  2. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit.

    Science.gov (United States)

    Orwoll, Eric S; Adler, Robert A; Amin, Shreyasee; Binkley, Neil; Lewiecki, E Michael; Petak, Steven M; Shapses, Sue A; Sinaki, Mehrsheed; Watts, Nelson B; Sibonga, Jean D

    2013-06-01

    Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions. Copyright © 2013 American Society for Bone and Mineral Research.

  3. A Method for Estimating Costs and Benefits of Space Assembly and Servicing By Astronauts and Robots

    Science.gov (United States)

    Purves, Lloyd R.; Benfield, Mark (Technical Monitor)

    2002-01-01

    One aspect of designing future space missions is to determine whether Space Assembly and Servicing (SAS) is useful and, if so, what combination of robots and astronauts provides the most effective means of accomplishing it. Certain aspects of these choices, such as the societal value of developing the means for humans to live in space, do not lend themselves to quantification. However, other SAS costs and benefits can be quantified in a manner that can help select the most cost-effective SAS approach. Any space facility, whether it is assembled and serviced or not, entails an eventual replacement cost due to wear and obsolescence. Servicing can reduce this cost by limiting replacement to only failed or obsolete components. However, servicing systems, such as space robots, have their own logistics cost, and astronauts can have even greater logistics requirements. On the other hand, humans can be more capable than robots at performing dexterous and unstructured tasks, which can reduce logistics costs by allowing a reduction in mass of replacement components. Overall, the cost-effectiveness of astronaut SAS depends on its efficiency; and, if astronauts have to be wholly justified by their servicing usefulness, then the serviced space facility has to be large enough to fully occupy them.

  4. Astronaut Ronald Evans photographed during transearth coast EVA

    Science.gov (United States)

    1972-01-01

    Astronaut Ronald E. Evans is photographed performing extravehicular activity (EVA) during the Apollo 17 spacecraft's transearth coast. During his EVA Command Module pilot Evans retrieved film cassettes from the Lunar Sounder, Mapping Camera, and Panoramic Camera. The total time for the transearth EVA was one hour seven minutes 19 seconds, starting at ground elapsed time of 257:25 (2:28 p.m.) amd ending at ground elapsed time of 258:42 (3:35 p.m.) on Sunday, December 17, 1972.

  5. Astronaut John Glenn with artist who painted 'Friendship 7' on capsule

    Science.gov (United States)

    1962-01-01

    Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 'Friendship 7' mission, is suited up and seated beside his capsule during preflight activity at Cape Canaveral. Glenn is shown with artist Cecilia Bibby who painted the name 'Friendship 7' on his Mercury spacecraft.

  6. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Science.gov (United States)

    Chancellor, Jeffery C.; Scott, Graham B. I.; Sutton, Jeffrey P.

    2014-01-01

    Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts. PMID:25370382

  7. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Jeffery C. Chancellor

    2014-09-01

    Full Text Available Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO. Shielding is an effective countermeasure against solar particle events (SPEs, but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.

  8. Decreased otolith-mediated vestibular response in 25 astronauts induced by long-duration spaceflight.

    Science.gov (United States)

    Hallgren, Emma; Kornilova, Ludmila; Fransen, Erik; Glukhikh, Dmitrii; Moore, Steven T; Clément, Gilles; Van Ombergen, Angelique; MacDougall, Hamish; Naumov, Ivan; Wuyts, Floris L

    2016-06-01

    The information coming from the vestibular otolith organs is important for the brain when reflexively making appropriate visual and spinal corrections to maintain balance. Symptoms related to failed balance control and navigation are commonly observed in astronauts returning from space. To investigate the effect of microgravity exposure on the otoliths, we studied the otolith-mediated responses elicited by centrifugation in a group of 25 astronauts before and after 6 mo of spaceflight. Ocular counterrolling (OCR) is an otolith-driven reflex that is sensitive to head tilt with regard to gravity and tilts of the gravito-inertial acceleration vector during centrifugation. When comparing pre- and postflight OCR, we found a statistically significant decrease of the OCR response upon return. Nine days after return, the OCR was back at preflight level, indicating a full recovery. Our large study sample allows for more general physiological conclusions about the effect of prolonged microgravity on the otolith system. A deconditioned otolith system is thought to be the cause of several of the negative effects seen in returning astronauts, such as spatial disorientation and orthostatic intolerance. This knowledge should be taken into account for future long-term space missions. Copyright © 2016 the American Physiological Society.

  9. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    Science.gov (United States)

    1991-01-01

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  10. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    Science.gov (United States)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  11. Astronaut Ronald Evans is suited up for EVA training

    Science.gov (United States)

    1972-01-01

    Astronaut Ronald E. Evans, command module pilot of the Apollo 17 lunar landing mission, is assisted by technicians in suiting up for extravehicular activity (EVA) training in a water tank in bldg 5 at the Manned Spacecraft Center (49970); Evans participates in EVA training in a water tank in bldg 5 at the Manned Spacecraft Center. The structure in the picture simulates the Scientific Instrument Module (SIM) bay of the Apollo 17 Service Module (49971).

  12. A Noninvasive Miniaturized-Wireless Laser-Doppler Fiber-Optic Sensor for Understanding Distal Fingertip Injuries in Astronauts

    Science.gov (United States)

    Ansari, Rafat R.; Jones, Jeffrey A.; Pollonini, Luca; Rodriquez, Mikael; Opperman, Roedolph; Hochstein, Jason

    2009-01-01

    During extra-vehicular activities (EVAs) or spacewalks astronauts over use their fingertips under pressure inside the confined spaces of gloves/space suits. The repetitive hand motion is a probable cause for discomfort and injuries to the fingertips. We describe a new wireless fiber-optic probe that can be integrated inside the astronaut glove for noninvasive blood perfusion measurements in distal fingertips. In this preliminary study, we present blood perfusion measurements while performing hand-grip exercises simulating the use of space tools.

  13. Multifunctional Integrated Photonic Lab-on-a-Chip for Astronaut Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Astronauts do not have a simple and reliable method to accurately and in real-time monitor their health during missions. IFOS proposes an innovative miniaturized...

  14. Operational Ground Testing Protocol to Optimize Astronaut Sleep Medication Efficacy and Individual Effects

    Data.gov (United States)

    National Aeronautics and Space Administration — As of July 3, 2014, data collection has been completed for 29 participants, with each participant completing testing across three nights at the Astronaut Quarantine...

  15. Astronaut Anna Fisher in NBS Training For Hubble Space Telescope

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory. It was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, the HST was finally designed and built becoming operational in the 1990s. The HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS) served as the test center for shuttle astronauts training for Hubble related missions. Shown is astronaut Anna Fisher training on a mock-up of a modular section of the HST for an axial scientific instrument change out.

  16. Astronaut Dale Gardner using MMU to travel to Westar VI satellite

    Science.gov (United States)

    1984-01-01

    Astronaut Dale A. Gardner, wearing the manned maneuvering unit (MMU) approaching the spinng Westar VI satellite over Bahama Banks. Gardner uses a large tool called the apogee kick motor capture device (ACD) to enter the nozzle of the spent Westar engine and stabilize the satellite to capture it for return to Earth.

  17. Astronaut Heidemarie M. Stefanyshyn-Piper During STS-115 Training

    Science.gov (United States)

    2005-01-01

    Wearing a training version of the shuttle launch and entry suit, STS-115 astronaut and mission specialist, Heidemarie M. Stefanyshyn-Piper, puts the final touches on her suit donning process prior to the start of a water survival training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center. Launched on September 9, 2006, the STS-115 mission continued assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  18. Astronaut Bone Medical Standards Derived from Finite Element (FE) Models of QCT Scans from Population Studies

    Science.gov (United States)

    Sibonga, J. D.; Feiveson, A. H.

    2014-01-01

    This work was accomplished in support of the Finite Element [FE] Strength Task Group, NASA Johnson Space Center [JSC], Houston, TX. This group was charged with the task of developing rules for using finite-element [FE] bone-strength measures to construct operating bands for bone health that are relevant to astronauts following exposure to spaceflight. FE modeling is a computational tool used by engineers to estimate the failure loads of complex structures. Recently, some engineers have used this tool to characterize the failure loads of the hip in population studies that also monitored fracture outcomes. A Directed Research Task was authorized in July, 2012 to investigate FE data from these population studies to derive these proposed standards of bone health as a function of age and gender. The proposed standards make use of an FE-based index that integrates multiple contributors to bone strength, an expanded evaluation that is critical after an astronaut is exposed to spaceflight. The current index of bone health used by NASA is the measurement of areal BMD. There was a concern voiced by a research and clinical advisory panel that the sole use of areal BMD would be insufficient to fully evaluate the effects of spaceflight on the hip. Hence, NASA may not have a full understanding of fracture risk, both during and after a mission, and may be poorly estimating in-flight countermeasure efficacy. The FE Strength Task Group - composed of principal investigators of the aforementioned population studies and of FE modelers -donated some of its population QCT data to estimate of hip bone strength by FE modeling for this specific purpose. Consequently, Human Health Countermeasures [HHC] has compiled a dataset of FE hip strengths, generated by a single FE modeling approach, from human subjects (approx.1060) with ages covering the age range of the astronauts. The dataset has been analyzed to generate a set of FE strength cutoffs for the following scenarios: a) Qualify an

  19. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts: Space for Exploration

    Science.gov (United States)

    Elgart, S. R.; Little, M. P.; Campbell, L. J.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Patel, Z. S.

    2018-01-01

    Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to establish whether there is evidence for excess cardiovascular disease or cancer mortality in an early NASA astronaut cohort and determine if a correlation exists between space radiation exposure and mortality.

  20. Advanced biosensors for monitoring astronauts' health during long-duration space missions.

    Science.gov (United States)

    Roda, Aldo; Mirasoli, Mara; Guardigli, Massimo; Zangheri, Martina; Caliceti, Cristiana; Calabria, Donato; Simoni, Patrizia

    2018-07-15

    Long-duration space missions pose important health concerns for astronauts, especially regarding the adverse effects of microgravity and exposure to high-energy cosmic rays. The long-term maintenance of crew health and performance mainly relies on prevention, early diagnoses, condition management, and medical interventions in situ. In-flight biosensor diagnostic devices and medical procedures must use few resources and operate in a microgravity environment, which complicates the collection and management of biological samples. Moreover, the biosensors must be certified for in-flight operation according to strict design and safety regulations. Herein, we report on the state of the art and recent advances in biosensing diagnostic instrumentation for monitoring astronauts' health during long-duration space missions, including portable and wearable biosensors. We discuss perspectives on new-format biosensors in autonomous space clinics. We also describe our own work in developing biosensing devices for non-invasively diagnosing space-related diseases, and how they are used in long-duration missions. Finally, we discuss the benefits of space exploration for Earth-based medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The Astronaut-Athlete: Optimizing Human Performance in Space.

    Science.gov (United States)

    Hackney, Kyle J; Scott, Jessica M; Hanson, Andrea M; English, Kirk L; Downs, Meghan E; Ploutz-Snyder, Lori L

    2015-12-01

    It is well known that long-duration spaceflight results in deconditioning of neuromuscular and cardiovascular systems, leading to a decline in physical fitness. On reloading in gravitational environments, reduced fitness (e.g., aerobic capacity, muscular strength, and endurance) could impair human performance, mission success, and crew safety. The level of fitness necessary for the performance of routine and off-nominal terrestrial mission tasks remains an unanswered and pressing question for scientists and flight physicians. To mitigate fitness loss during spaceflight, resistance and aerobic exercise are the most effective countermeasure available to astronauts. Currently, 2.5 h·d, 6-7 d·wk is allotted in crew schedules for exercise to be performed on highly specialized hardware on the International Space Station (ISS). Exercise hardware provides up to 273 kg of loading capability for resistance exercise, treadmill speeds between 0.44 and 5.5 m·s, and cycle workloads from 0 and 350 W. Compared to ISS missions, future missions beyond low earth orbit will likely be accomplished with less vehicle volume and power allocated for exercise hardware. Concomitant factors, such as diet and age, will also affect the physiologic responses to exercise training (e.g., anabolic resistance) in the space environment. Research into the potential optimization of exercise countermeasures through use of dietary supplementation, and pharmaceuticals may assist in reducing physiological deconditioning during long-duration spaceflight and have the potential to enhance performance of occupationally related astronaut tasks (e.g., extravehicular activity, habitat construction, equipment repairs, planetary exploration, and emergency response).

  2. Biofeedback monitoring-devices for astronauts in space environment

    Science.gov (United States)

    Rotondo, G.; Pancheri, P.; Monesi, F.; Grantaliano, G.; DePascalis, V.

    After a reconsideration of the state-of-the-art in biofeedback research the implementation of biofeedback systems is envisioned as a countermeasure of stress for the psychoprophylaxis of the astronaut. A one-session experiment performed on two groups of subjects to assess the interference from EMG-feedback on the performance in a simultaneous psychomotor trial with a view to expanding biofeedback application is described. The results show that the experimental group performed in the same way as the control without feedback, but with less CNS activation. Some general conclusions are drawn from the advances in technology.

  3. Five Apollo astronauts with Lunar Module at ASVC prior to grand opening

    Science.gov (United States)

    1997-01-01

    Some of the former Apollo program astronauts observe a Lunar Module and Moon mockup during a tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. Some of the visiting astonauts were (from left): Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; Apollo 9 Lunar Module Pilot Russell L. Schweikart; Apollo 10 Command Module Pilot and Apollo 16 Commander John W. Young; Apollo 10 Commander Thomas P. Stafford; and Apollo 11 Lunar Module Pilot Edwin E. 'Buzz' Aldrin, Jr. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.

  4. Astronaut training in view of the future: A Columbus payload instructor perspective

    Science.gov (United States)

    Aguzzi, Manuela; Bosca, Riccardo; Müllerschkowski, Uwe

    2010-02-01

    In early 2008 the Columbus module was successfully attached to the ISS. Columbus is the main European contribution to the on-board scientific activity, and is the result of the interdisciplinary effort of European professionals involved from the concept to the utilisation of the laboratory. Astronauts from different Space Agencies have been trained to operate the scientific payloads aboard Columbus, in order to return fundamental data to the scientific community. The aim of this paper is to describe the current activity of the Columbus Payload Training Team (as part of the European Astronaut Centre of ESA) and from this experience derive lessons learned for the future training development, in view of long-term missions. The general structure of the training is described. The Columbus Payload Training Team activity is outlined and the process of the lesson development (Instructional System Design) is briefly described. Finally the features of the training process that can become critical in future scenario are highlighted.

  5. Astronauts Parise and Jernigan check helmets prior to training session

    Science.gov (United States)

    1994-01-01

    Attired in training versions of the Shuttle partial-pressure launch and entry suits, payload specialist Dr. Ronald A Parise (left) and astronaut Tamara E. Jernigan, payload commander, check over their helmets prior to a training session. Holding the helmets is suit expert Alan M. Rochford, of NASA. The two were about to join their crew mates in a session of emergency bailout training at JSC's Weightless Environment Training Facility (WETF).

  6. Former Dryden pilot and NASA astronaut Neil Armstrong

    Science.gov (United States)

    1991-01-01

    Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8

  7. Economic value analysis of the return from the Korean astronaut program and the science culture diffusion activity in Korea

    Science.gov (United States)

    Yi, Soyeon; Jang, Hyun-Jin; Lee, Hyo Suk; Yu, Jong-Phil; Kim, Soyeon; Lee, Joohee; Hur, Hee-Young

    2013-06-01

    In this study, we analyze the economic effects from the Korean Astronaut Program (KAP) and the subsequent Science Culture Diffusion Activity (SCDA). Korea has had a huge practical effect on the development of science and technology and has increased international awareness of Korea by producing Korea's first astronaut. There has also been a large, ripple effect on space related industries. In addition, the KAP has exercised a far-reaching influence on Korean society and culture by boosting all science and engineering and inspiring national pride. After the KAP, astronauts' outreach activities, such as lectures for the general public; interviews on television, newspapers and magazines; participating in children's science camps; and distributing publications and DVDs about astronaut program for general public, were instituted for diffusing science culture. Thus, positive effects such as the promotion of Korea's level of technology, student interest in science and engineering fields, and the expansion of the industrial base were reinforced after the KAP. This study is aimed at evaluating the economic significance and the value of return through analyzing the effects of the KAP and the subsequent Science Culture Diffusion Activity.

  8. Social desirability bias in personality testing: Implications for astronaut selection

    Science.gov (United States)

    Sandal, Gro M.; Musson, Dave; Helmreich, Robert. L.; Gravdal, Lene

    2005-07-01

    The assessment of personality is recognized by space agencies as an approach to identify candidates likely to perform optimally during spaceflights. In the use of personality scales for selection, the impact of social desirability (SD) has been cited as a concern. Study 1 addressed the impact of SD on responses to the Personality Characteristic Inventory (PCI) and NEO-FFI. This was achieved by contrasting scores from active astronauts (N=65) with scores of successful astronaut applicants (N=63), and between pilots applicants (N=1271) and pilot research subjects (N=120). Secondly, personality scores were correlated with scores on the Marlow Crown Social Desirability Scale among applicants to managerial positions (N=120). The results indicated that SD inflated scores on PCI scales assessing negative interpersonal characteristics, and impacted on four of five scales in NEO-FFI. Still, the effect sizes were small or moderate. Study 2 addressed performance implications of SD during an assessment of males applying to work as rescue personnel operations in the North Sea (N=22). The results showed that SD correlated negatively with cognitive test performance, and positively with discrepancy in performance ratings between self and two observers. In conclusion, caution is needed in interpreting personality scores in applicant populations. SD may be a negative predictor for performance under stress.

  9. How can we protect astronauts from cosmic rays?; Peut-on proteger les voyageurs spatiaux?

    Energy Technology Data Exchange (ETDEWEB)

    Parker, E. [Chicago Univ., IL (United States)

    2006-05-15

    Interplanetary astronauts would absorb more radiation in a single year than radiation workers are supposed to receive in a lifetime and as a consequence large number of them would develop radiation-related illnesses like cancer, cataract or would suffer from brain damage. In recognition to radiation threats, Nasa set up the space radiation shielding program in 2003. The first idea was to protect the astronauts by surrounding them with matter, by analogy of the earth's atmosphere but the problem of such a shield is its weight: the required mass would be at least 400 tons. The second proposal was to deflect the cosmic rays magnetically but the deflection of particles that have energies up to 2 GeV requires a magnetic field 600.000 times as strong as earth's equatorial field. Strong magnetic field may itself be dangerous. A more recent idea has been to give the spacecraft a positive charge which would repel any incoming positively charged nucleus. The drawback is that the ship will attract and accelerate negatively charged particles over distances as long as a few tens of thousands of kilometers. The result would be that the natural cosmic-ray flux would be replaced with a much more intense artificial one. At the present time the different solutions for protecting the astronauts from cosmic rays give little encouragement. (A.C.)

  10. Astronauts Young and Duke participate in training with Lunar Roving Vehicle

    Science.gov (United States)

    1972-01-01

    Astronauts John W. Young (right) and Charles M. Duke Jr., participate in simulation training with the Lunar Roving Vehicle (LRV) during Apollo 16 pre-launch activity at the Kennedy Space Center. All systems on the LRV-2 were activated and checked for trouble-free operation during the simulations. Young is the Apollo 16 commander; and Duke is the lunar module pilot.

  11. Biomechanical aspects of gravitational training of the astronauts before the flight.

    Science.gov (United States)

    Laputin, A N

    1997-07-01

    Researchers tested a hypothesis that astronauts can become more proficient in training for tasks during space flight by training in a high gravity suit. Computer image analysis of movements, tensodynamography, and myotonometry were used to analyze movement in the hypergravity suit, muscle response, and other biomechanical factors. Results showed that training in the hypergravity suit improved the biomechanics of motor performance.

  12. Group structure and group process for effective space station astronaut teams

    Science.gov (United States)

    Nicholas, J. M.; Kagan, R. S.

    1985-01-01

    Space Station crews will encounter new problems, many derived from the social interaction of groups working in space for extended durations. Solutions to these problems must focus on the structure of groups and the interaction of individuals. A model of intervention is proposed to address problems of interpersonal relationships and emotional stress, and improve the morale, cohesiveness, and productivity of astronaut teams.

  13. Astronaut Norman Thagard rests on middeck while other team is on duty

    Science.gov (United States)

    1985-01-01

    Astronaut Norman E. Thagard, mission specialist for the 'silver' team, rests on the middeck while the 'gold' team is on duty in the science module. Don L. Lind, left, 'gold' team member, meanwhile participates in autogenic feedback training (AFT), designed to help flight crewmembers overcome the effects of zero-gravity adaptation.

  14. Astronaut Training using Virtual Reality in a Neutrally Buoyant Environment

    OpenAIRE

    Everson, Timothy; McDermott, Christopher; Kain, Aaron; Fernandez, Cesar; Horan, Ben

    2017-01-01

    Astronauts undergo significant training in preparation for operating in space. In the past governments have been driving space exploration through ventures such as the National Aeronautics and Space Administration (NASA), however more recently new private companies have formed such as SpaceX who are designing commercially viable and reusable spacecraft. As such, the economics of space travel are more important than ever, and there is a logical need to research affordable and effective trainin...

  15. Locomotor problems of supersonic aviation and astronautics.

    Science.gov (United States)

    Remes, P

    1989-04-01

    Modern high-speed aviation and space flight are fraught with many problems and require a high standard of health and fitness. Those responsible for the health of pilots must appreciate the importance of early diagnosis even before symptoms appear. This is particularly true in terms of preventing spinal injuries where even a single Schmorl's node may make a pilot unfit for high-speed flying. Spinal fractures are frequent during emergency ejection and landing. Helicopter crews are particularly prone to spinal disc degeneration due to vibration. By effective lowering of vibration by changes in the seats, a reduction in such lesions is possible. The osteoporosis and muscle atrophy occurring among astronauts subjected to prolonged weightlessness can be prevented by regular physical exercises.

  16. Astronaut Training in the Neutral Buoyancy Simulator

    Science.gov (United States)

    1993-01-01

    This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  17. Simulated Partners and Collaborative Exercise (SPACE to boost motivation for astronauts: study protocol

    Directory of Open Access Journals (Sweden)

    Deborah L. Feltz

    2016-11-01

    Full Text Available Abstract Background Astronauts may have difficulty adhering to exercise regimens at vigorous intensity levels during long space missions. Vigorous exercise is important for aerobic and musculoskeletal health during space missions and afterwards. A key impediment to maintaining vigorous exercise is motivation. Finding ways to motivate astronauts to exercise at levels necessary to mitigate reductions in musculoskeletal health and aerobic capacity have not been explored. The focus of Simulated Partners and Collaborative Exercise (SPACE is to use recently documented motivation gains in task groups to heighten the exercise experience for participants, similar in age and fitness to astronauts, for vigorous exercise over a 6-month exercise regimen. A secondary focus is to determine the most effective features in simulated exercise partners for enhancing enjoyment, self-efficacy, and social connectedness. The aims of the project are to (1 Create software-generated (SG exercise partners and interface software with a cycle ergometer; (2 Pilot test design features of SG partners within a video exercise game (exergame, and (3 Test whether exercising with an SG partner over 24-week time period, compared to exercising alone, leads to greater work effort, aerobic capacity, muscle strength, exercise adherence, and enhanced psychological parameters. Methods/Design This study was approved by the Institutional Review Board (IRB. Chronic exercisers, between the ages 30 and 62, were asked to exercise on a cycle ergometer 6 days per week for 24 weeks using a routine consisting of alternating between moderate-intensity continuous and high-intensity interval sessions. Participants were assigned to one of three conditions: no partner (control, always faster SG partner, or SG partner who was not always faster. Participants were told they could vary cycle ergometer output to increase or decrease intensity during the sessions. Mean change in cycle ergometer power (watts

  18. NASA and ESA astronauts visit ESO. Hubble repair team meets European astronomers in Garching.

    Science.gov (United States)

    1994-02-01

    On Wednesday, February 16, 1994, seven NASA and ESA astronauts and their spouses will spend a day at the Headquarters of the European Southern Observatory. They are the members of the STS-61 crew that successfully repaired the Hubble Space Telescope during a Space Shuttle mission in December 1993. This will be the only stop in Germany during their current tour of various European countries. ESO houses the Space Telescope European Coordinating Facility (ST/ECF), a joint venture by the European Space Agency and ESO. This group of astronomers and computer specialists provide all services needed by European astronomers for observations with the Space Telescope. Currently, the European share is about 20 of the total time available at this telescope. During this visit, a Press Conference will be held on Wednesday, February 16, 11:45 - 12:30 at the ESO Headquarters Karl-Schwarzschild-Strasse 2 D-85748 Garching bei Munchen. Please note that participation in this Press Conference is by invitation only. Media representatives may obtain invitations from Mrs. E. Volk, ESO Information Service at this address (Tel.: +49-89-32006276; Fax.: +49-89-3202362), until Friday, February 11, 1994. After the Press Conference, between 12:30 - 14:00, a light refreshment will be served at the ESO Headquarters to all participants. >From 14:00 - 15:30, the astronauts will meet with students and teachers from the many scientific institutes in Garching in the course of an open presentation at the large lecture hall of the Physics Department of the Technical University. It is a 10 minute walk from ESO to the hall. Later the same day, the astronauts will be back at ESO for a private discussion of various space astronomy issues with their astronomer colleagues, many of whom are users of the Hubble Space Telescope, as well as ground-based telescopes at the ESO La Silla Observatory and elsewhere. The astronauts continue to Switzerland in the evening.

  19. Cytogenetic biodosimetry using the blood lymphocytes of astronauts

    Science.gov (United States)

    George, Kerry A.; Rhone, Jordan; Chappell, Lori J.; Cucinotta, Francis A.

    2013-11-01

    Cytogenetic analysis of peripheral blood lymphocytes is the most sensitive and reliable method currently available for in vivo assessment of the biological effects of exposure to radiation and provides the most informative measurement of radiation induced health risks. Data indicates that space missions of a few months or more can induce measureable increases in the yield of chromosome damage in the blood lymphocytes of astronauts that can be used to estimate an organ dose equivalent, and biodosimetry estimates lie within the range expected from physical dosimetry. Space biodosimetry poses some unique challenges compared to terrestrial biological assessments of radiation exposures, but data provides a direct measurement of space radiation damage, which takes into account individual radiosensitivity in the presence of confounding factors such as microgravity and other stress conditions. Moreover if chromosome damage persists in the blood for many years, results can be used for retrospective dose reconstruction. In contrast to physical measurements, which are external to body and require multiple devices to detect all radiation types all of which have poor sensitivity to neutrons, biodosimetry is internal and includes the effects of shielding provided by the body itself plus chromosome damage shows excellent sensitivity to protons, heavy ions, and neutrons. In addition, chromosome damage is reflective of cancer risk and biodosimetry values can therefore be used to validate and develop risk assessment models that can be used to characterize health risk incurred by crewmembers. The current paper presents a review of astronaut biodosimetry data, along with recently derived data on the relative cancer risk estimated using the quantitative approach derived from the European Study Group on Cytogenetic Biomarkers and Health database.

  20. Data Mining Activity for Bone Discipline: Calculating a Factor of Risk for Hip Fracture in Long-Duration Astronauts

    Science.gov (United States)

    Ellman, R.; Sibonga, J. D.; Bouxsein, M. L.

    2010-01-01

    The factor-of-risk (Phi), defined as the ratio of applied load to bone strength, is a biomechanical approach to hip fracture risk assessment that may be used to identify subjects who are at increased risk for fracture. The purpose of this project was to calculate the factor of risk in long duration astronauts after return from a mission on the International Space Station (ISS), which is typically 6 months in duration. The load applied to the hip was calculated for a sideways fall from standing height based on the individual height and weight of the astronauts. The soft tissue thickness overlying the greater trochanter was measured from the DXA whole body scans and used to estimate attenuation of the impact force provided by soft tissues overlying the hip. Femoral strength was estimated from femoral areal bone mineral density (aBMD) measurements by dual-energy x-ray absorptiometry (DXA), which were performed between 5-32 days of landing. All long-duration NASA astronauts from Expedition 1 to 18 were included in this study, where repeat flyers were treated as separate subjects. Male astronauts (n=20) had a significantly higher factor of risk for hip fracture Phi than females (n=5), with preflight values of 0.83+/-0.11 and 0.36+/-0.07, respectively, but there was no significant difference between preflight and postflight Phi (Figure 1). Femoral aBMD measurements were not found to be significantly different between men and women. Three men and no women exceeded the theoretical fracture threshold of Phi=1 immediately postflight, indicating that they would likely suffer a hip fracture if they were to experience a sideways fall with impact to the greater trochanter. These data suggest that male astronauts may be at greater risk for hip fracture than women following spaceflight, primarily due to relatively less soft tissue thickness and subsequently greater impact force.

  1. Feasibility study of astronaut standardized career dose limits in LEO and the outlook for BLEO

    Science.gov (United States)

    McKenna-Lawlor, Susan; Bhardwaj, A.; Ferrari, Franco; Kuznetsov, Nikolay; Lal, A. K.; Li, Yinghui; Nagamatsu, Aiko; Nymmik, Rikho; Panasyuk, Michael; Petrov, Vladislav; Reitz, Guenther; Pinsky, Lawrence; Muszaphar Shukor, Sheikh; Singhvi, A. K.; Straube, Ulrich; Tomi, Leena; Townsend, Lawrence

    2014-11-01

    Cosmic Study Group SG 3.19/1.10 was established in February 2013 under the aegis of the International Academy of Astronautics to consider and compare the dose limits adopted by various space agencies for astronauts in Low Earth Orbit. A preliminary definition of the limits that might later be adopted by crews exploring Beyond Low Earth Orbit was, in addition, to be made. The present paper presents preliminary results of the study reported at a Symposium held in Turin by the Academy in July 2013. First, an account is provided of exposure limits assigned by various partner space agencies to those of their astronauts that work aboard the International Space Station. Then, gaps in the scientific and technical information required to safely implement human missions beyond the shielding provided by the geomagnetic field (to the Moon, Mars and beyond) are identified. Among many recommendations for actions to mitigate the health risks potentially posed to personnel Beyond Low Earth Orbit is the development of a preliminary concept for a Human Space Awareness System to: provide for crewed missions the means of prompt onboard detection of the ambient arrival of hazardous particles; develop a strategy for the implementation of onboard responses to hazardous radiation levels; support modeling/model validation that would enable reliable predictions to be made of the arrival of hazardous radiation at a distant spacecraft; provide for the timely transmission of particle alerts to a distant crewed vehicle at an emergency frequency using suitably located support spacecraft. Implementation of the various recommendations of the study can be realized based on a two pronged strategy whereby Space Agencies/Space Companies/Private Entrepreneurial Organizations etc. address the mastering of required key technologies (e.g. fast transportation; customized spacecraft design) while the International Academy of Astronautics, in a role of handling global international co-operation, organizes

  2. Telecast of Astronauts Armstrong and Aldrin by the Lunar Module ladder

    Science.gov (United States)

    1969-01-01

    Astronauts Neil A. Armstrong (on left), commander; and Edwin E. Aldrin Jr., lunar module pilot, are seen standing by the Lunar Module ladder in this black and white reproduction taken from a telecast by the Apollo 11 lunar surface television camera during the Apollo 11 extravehicular activity. This picture was made from a televised image received at the Deep Space Network tracking station at Goldstone, California.

  3. Astronaut Jean-Francois Clervoy in middeck during launch/entry training

    Science.gov (United States)

    1994-01-01

    Wearing a training version of a partial pressure suit, Astronaut Jean-Francois Clervoy, STS-66 international mission specialist, secures himself on a collapsible seat on the middeck of a shuttle trainer during a rehearsal of procedures to be followed during launch and entry phases of the scheduled November flight of STS-66. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  4. Occupational-Specific Strength Predicts Astronaut-Related Task Performance in a Weighted Suit.

    Science.gov (United States)

    Taylor, Andrew; Kotarsky, Christopher J; Bond, Colin W; Hackney, Kyle J

    2018-01-01

    Future space missions beyond low Earth orbit will require deconditioned astronauts to perform occupationally relevant tasks within a planetary spacesuit. The prediction of time-to-completion (TTC) of astronaut tasks will be critical for crew safety, autonomous operations, and mission success. This exploratory study determined if the addition of task-specific strength testing to current standard lower body testing would enhance the prediction of TTC in a 1-G test battery. Eight healthy participants completed NASA lower body strength tests, occupationally specific strength tests, and performed six task simulations (hand drilling, construction wrenching, incline walking, collecting weighted samples, and dragging an unresponsive crewmember to safety) in a 48-kg weighted suit. The TTC for each task was recorded and summed to obtain a total TTC for the test battery. Linear regression was used to predict total TTC with two models: 1) NASA lower body strength tests; and 2) NASA lower body strength tests + occupationally specific strength tests. Total TTC of the test battery ranged from 20.2-44.5 min. The lower body strength test alone accounted for 61% of the variability in total TTC. The addition of hand drilling and wrenching strength tests accounted for 99% of the variability in total TTC. Adding occupationally specific strength tests (hand drilling and wrenching) to standard lower body strength tests successfully predicted total TTC in a performance test battery within a weighted suit. Future research should couple these strength tests with higher fidelity task simulations to determine the utility and efficacy of task performance prediction.Taylor A, Kotarsky CJ, Bond CW, Hackney KJ. Occupational-specific strength predicts astronaut-related task performance in a weighted suit. Aerosp Med Hum Perform. 2018; 89(1):58-62.

  5. Eye-Head Coordination in 31 Space Shuttle Astronauts during Visual Target Acquisition.

    Science.gov (United States)

    Reschke, Millard F; Kolev, Ognyan I; Clément, Gilles

    2017-10-27

    Between 1989 and 1995, NASA evaluated how increases in flight duration of up to 17 days affected the health and performance of Space Shuttle astronauts. Thirty-one Space Shuttle pilots participating in 17 space missions were tested at 3 different times before flight and 3 different times after flight, starting within a few hours of return to Earth. The astronauts moved their head and eyes as quickly as possible from the central fixation point to a specified target located 20°, 30°, or 60° off center. Eye movements were measured with electro-oculography (EOG). Head movements were measured with a triaxial rate sensor system mounted on a headband. The mean time to visually acquire the targets immediately after landing was 7-10% (30-34 ms) slower than mean preflight values, but results returned to baseline after 48 hours. This increase in gaze latency was due to a decrease in velocity and amplitude of both the eye saccade and head movement toward the target. Results were similar after all space missions, regardless of length.

  6. Development of a Human Behavior and Performance Training Curriculum for ISS Astronauts

    Science.gov (United States)

    VanderArk, Steve; Tomi, Leena; Vassin, Alexander; Inoue, Natsuhiko; Bessone, Lorendana; OConnor, Sharon; Mukai, Chiaki; Coffee, Emily; Sipes, Walter; Salnitskiy, Vyecheslav; hide

    2007-01-01

    The paper will describe the DACUM process and summarize the core competencies that were agreed upon, internationally, as important for ISS astronauts. The paper will further discuss the ongoing work being completed by the subgroup, Human Behaviour and Performance Training Working Group, including defining the competencies and behavioural markers. Finally, an overview of remaining work will be provided, including determining which competencies require formal training and which require no formal training, developing training objectives, sequencing the training, and establishing how to assess training effectiveness. DISCUSSION: Designing a common set of goals for behavioural training has been the desire of the SHBP WG since its inception in 1998. This group, along with training specialists and astronauts, are making great strides toward defining these competencies. The road ahead will be exceedingly challenging as training objectives are defined and a training flow is proposed to the MCOP; with proposed ISS crews increasing to six people in the near future, such enhanced behavioural training may be all the more essential for mission success.

  7. Reaching for the stars: The story of astronaut training and the lunar landing

    Science.gov (United States)

    Goldstein, Stanley H.

    1987-01-01

    The training for the Mercury, Gemini, and Apollo programs is described. The form and function of training and the historical background which shaped the nature of that training are reviewed. For the three programs, the astronaut selection, the meeting of training requirements, and program management are addressed.

  8. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    International Nuclear Information System (INIS)

    Sun Wenjuan; Xie Tianwu; Liu Qian; Jia Xianghong; Xu Feng

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 x 2 x 4 mm 3 for radioactive particle transport simulations from isotropic protons with energies of 5000 - 10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). (author)

  9. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    Science.gov (United States)

    Sun, Wenjuan; JIA, Xianghong; XIE, Tianwu; XU, Feng; LIU, Qian

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm3for radioactive particle transport simulations from isotropic protons with energies of 5000–10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158

  10. A superconducting shield to protect astronauts

    CERN Document Server

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  11. Training Select-in Interviewers for Astronaut Selection: A Program Evaluation

    Science.gov (United States)

    Hysong, S.; Galarza, L.; Holland, A.; Billica, Roger (Technical Monitor)

    2000-01-01

    Psychological factors critical to the success of short and long-duration missions have been identified in previous research; however, evaluation for such critical factors in astronaut applicants leaves much room for human interpretation. Thus, an evaluator training session was designed to standardize the interpretation of critical factors, as well as the structure of the select-in interview across evaluators. The purpose of this evaluative study was to determine the effectiveness of the evaluator training sessions and their potential impact on evaluator ratings.

  12. Astronauts McMonagle and Brown on flight deck mockup during training

    Science.gov (United States)

    1994-01-01

    Astronauts Donald R. McMonagle, STS-66 mission commander, left, and Curtis L. Brown, STS-66 pilot, man the commander's and pilot's stations, respectively, during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  13. Custom Gradient Compression Stockings May Prevent Orthostatic Intolerance in Astronauts After Space Flight

    Science.gov (United States)

    Stenger, Michael B.; Lee, Stuart M. C.; Westby, Christian M.; Platts, Steven H.

    2010-01-01

    Orthostatic intolerance after space flight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. NASA astronauts currently wear an inflatable anti-gravity suit (AGS) during re-entry, but this device is uncomfortable and loses effectiveness upon egress from the Shuttle. We recently determined that thigh-high, gradient compression stockings were comfortable and effective after space flight, though to a lesser degree than the AGS. We also recently showed that addition of splanchnic compression to this thigh-high compression stocking paradigm improved orthostatic tolerance to a level similar to the AGS, in a ground based model. Purpose: The purpose of this study was to evaluate a new, three-piece breast-high gradient compression garment as a countermeasure to post-space flight orthostatic intolerance. Methods: Eight U.S. astronauts have volunteered for this experiment and were individually fitted for a three-piece, breast-high compression garment to provide 55 mmHg compression at the ankle which decreased to approximately 20 mmHg at the top of the leg and provides 15 mmHg over the abdomen. Orthostatic testing occurred 30 days pre-flight (w/o garment) and 2 hours after flight (w/ garment) on landing day. Blood pressure (BP), Heart Rate (HR) and Stroke Volume (SV) were acquired for 2 minutes while the subject lay prone and then for 3.5 minutes after the subject stands up. To date, two astronauts have completed pre- and post-space flight testing. Data are mean SD. Results: BP [pre (prone to stand): 137+/-1.6 to 129+/-2.5; post: 130+/-2.4 to 122+/-1.6 mmHg] and SV [pre (prone to stand): 61+/-1.6 to 38+/-0.2; post: 58+/-6.4 to 37+/-6.0 ml] decreased with standing, but no differences were seen post-flight w/ compression garments compared to pre-flight w/o garments. HR [pre (prone to stand): 66+/-1.6 to 74+/-3.0, post: 67+/-5.6 to 78+/-6.8 bpm] increased with standing, but no differences were seen pre- to post-flight. Conclusion: After space

  14. Ocular Counter Rolling in Astronauts After Short- and Long-Duration Spaceflight.

    Science.gov (United States)

    Reschke, Millard F; Wood, Scott J; Clément, Gilles

    2018-05-17

    Ocular counter-rolling (OCR) is a reflex generated by the activation of the gravity sensors in the inner ear that stabilizes gaze and posture during head tilt. We compared the OCR measures that were obtained in 6 astronauts before, during, and after a spaceflight lasting 4-6 days with the OCR measures obtained from 6 astronauts before and after a spaceflight lasting 4-9 months. OCR in the short-duration fliers was measured using the afterimage method during head tilt at 15°, 30°, and 45°. OCR in the long-duration fliers was measured using video-oculography during whole body tilt at 25°. A control group of 7 subjects was used to compare OCR measures during head tilt and whole body tilt. No OCR occurred during head tilt in microgravity, and the response returned to normal within 2 hours of return from short-duration spaceflight. However, the amplitude of OCR was reduced for several days after return from long-duration spaceflight. This decrease in amplitude was not accompanied by changes in the asymmetry of OCR between right and left head tilt. These results indicate that the adaptation  of otolith-driven reflexes to microgravity is a long-duration process.

  15. NASA Virtual Glovebox: An Immersive Virtual Desktop Environment for Training Astronauts in Life Science Experiments

    Science.gov (United States)

    Twombly, I. Alexander; Smith, Jeffrey; Bruyns, Cynthia; Montgomery, Kevin; Boyle, Richard

    2003-01-01

    The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The Virtual GloveboX (VGX) integrates high-fidelity graphics, force-feedback devices and real- time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  16. Tracking Historical NASA EVA Training: Lifetime Surveillance of Astronaut Health (LSAH) Development of the EVA Suit Exposure Tracker (EVA SET)

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Lee, Lesley R.; Wear, Mary L.; Van Baalen, Mary

    2017-01-01

    During a spacewalk, designated as extravehicular activity (EVA), an astronaut ventures from the protective environment of the spacecraft into the vacuum of space. EVAs are among the most challenging tasks during a mission, as they are complex and place the astronaut in a highly stressful environment dependent on the spacesuit for survival. Due to the complexity of EVA, NASA has conducted various training programs on Earth to mimic the environment of space and to practice maneuvers in a more controlled and forgiving environment. However, rewards offset the risks of EVA, as some of the greatest accomplishments in the space program were accomplished during EVA, such as the Apollo moonwalks and the Hubble Space Telescope repair missions. Water has become the environment of choice for EVA training on Earth, using neutral buoyancy as a substitute for microgravity. During EVA training, an astronaut wears a modified version of the spacesuit adapted for working in water. This high fidelity suit allows the astronaut to move in the water while performing tasks on full-sized mockups of space vehicles, telescopes, and satellites. During the early Gemini missions, several EVA objectives were much more difficult than planned and required additional time. Later missions demonstrated that "complex (EVA) tasks were feasible when restraints maintained body position and underwater simulation training ensured a high success probability".1,2 EVA training has evolved from controlling body positioning to perform basic tasks to complex maintenance of the Hubble Space Telescope and construction of the International Space Station (ISS). Today, preparation is centered at special facilities built specifically for EVA training, such as the Neutral Buoyancy Laboratory (NBL) at NASA's Johnson Space Center ([JSC], Houston) and the Hydrolab at the Gagarin Cosmonaut Training Centre ([GCTC], Star City, outside Moscow). Underwater training for an EVA is also considered hazardous duty for NASA

  17. Astronaut observations of the Persian (Arabian) Gulf during STS-45

    Science.gov (United States)

    Ackleson, Steven G.; Pitts, David E.; Sullivan, Kathryn D.; Reynolds, R. M.

    1992-01-01

    As a result of the 1991 Persian Gulf war, between mid-January and June 1991, the Persian Gulf was contaminated with an estimated 4 to 6 million barrels of crude oil, released directly into the Gulf from refinement facilities, transhipment terminals, and moored tankers along the coast of Kuwait, and precipitated from oil fire smoke plumes. To assess the environmental impact of the oil, an international team of marine scientists representing 14 nations was assembled under the auspices of the United Nations International Oceanic Commission and the Regional Organization for Protection of the Marine Environment to conduct detailed surveys of the Persian Gulf, the Strait of Hormuz, and the Gulf of Oman, including hydrographic, chemical, and biological measurements. To supplement the field surveys and to serve as an aid in data interpretation, astronauts aboard the Space Shuttle Atlantis photographed water features and coastal habitats in the Persian Gulf during mission STS-45 (24 March to 02 April 1992). The astronauts collected 111 hand-held, color photographs of the Gulf (72 70-mm photographs and 39 5-inch photographs) from an altitude of 296 km (160 n.mi.). The photographs reveal distributions in water turbidity associated with outflow from the Shatt-al-Arab and water circulation along the entire coast of Iran and the Strait of Hormuz, coastal wetlands and shallow-water habitats, and sticks appearing in the sunglint pattern, which appear to be oil.

  18. Astronaut John Young displays drawing of Charlie Brown

    Science.gov (United States)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, displays drawing of Charlie Brown in this color reproduction taken from the fourth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was about half-way to the moon, or approximately 112,000 nautical miles from the earth. Charlie Brown will be the code name of the Command Module (CM) during Apollo 10 operations when the Lunar Module and CM are separated (34075); Young displays drawing of Snoopy in this reproduction taken from a television transmission. Snoopy will be the code name of the Lunar Module (LM) during Apollo 10 operations when the LM and CM are separated (34076).

  19. Members of House Committee on Science and Astronautics Visited MSFC

    Science.gov (United States)

    1962-01-01

    The members of the House Committee on Science and Astronautics visited the Marshall Space Flight Center (MSFC) on March 9, 1962 to gather first-hand information of the nation's space exploration program. The congressional group was composed of members of the Subcommittee on Marned Space Flight. Headed by Representative Olin E. Teague of Texas, other members were James G. Fulton, Pennsylvania; Ken Heckler, West Virginia; R. Walter Riehlman, New York; Richard L. Roudebush,, Indiana; John W. Davis, Georgia; James C. Corman, California; Joseph Waggoner, Louisiana; J. Edgar Chenoweth, Colorado; and William G. Bray, Indiana.

  20. Views of the extravehicular activity of Astronaut Stewart during STS 41-B

    Science.gov (United States)

    1984-01-01

    Close up frontal view of Astronaut Robert L. Stewart, mission specialist, as he participates in a extravehicular activity (EVA), a few meters away from the cabin of the shuttle Challenger. The open payload bay is reflected in his helmet visor as he faces the camera. Stewart is wearing the extravehicular mobility unit (EMU) and one of the manned maneuvering units (MMU) developed for this mission.

  1. NASA study of cataract in astronauts (NASCA). Report 1: Cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity.

    Science.gov (United States)

    Chylack, Leo T; Peterson, Leif E; Feiveson, Alan H; Wear, Mary L; Manuel, F Keith; Tung, William H; Hardy, Dale S; Marak, Lisa J; Cucinotta, Francis A

    2009-07-01

    The NASA Study of Cataract in Astronauts (NASCA) is a 5-year longitudinal study of the effect of space radiation exposure on the severity/progression of nuclear, cortical and posterior subcapsular (PSC) lens opacities. Here we report on baseline data that will be used over the course of the longitudinal study. Participants include 171 consenting astronauts who flew at least one mission in space and a comparison group made up of three components: (a) 53 astronauts who had not flown in space, (b) 95 military aircrew personnel, and (c) 99 non-aircrew ground-based comparison subjects. Continuous measures of nuclear, cortical and PSC lens opacities were derived from Nidek EAS 1000 digitized images. Age, demographics, general health, nutritional intake and solar ocular exposure were measured at baseline. Astronauts who flew at least one mission were matched to comparison subjects using propensity scores based on demographic characteristics and medical history stratified by gender and smoking (ever/never). The cross-sectional data for matched subjects were analyzed by fitting customized non-normal regression models to examine the effect of space radiation on each measure of opacity. The variability and median of cortical cataracts were significantly higher for exposed astronauts than for nonexposed astronauts and comparison subjects with similar ages (P=0.015). Galactic cosmic space radiation (GCR) may be linked to increased PSC area (P=0.056) and the number of PSC centers (P=0.095). Within the astronaut group, PSC size was greater in subjects with higher space radiation doses (P=0.016). No association was found between space radiation and nuclear cataracts. Cross-sectional data analysis revealed a small deleterious effect of space radiation for cortical cataracts and possibly for PSC cataracts. These results suggest increased cataract risks at smaller radiation doses than have been reported previously.

  2. The state of knowledge of astronaut radiation protection principles

    International Nuclear Information System (INIS)

    Boszkiewicz, T.

    1986-01-01

    Different noxious agents such as accelerations, vibration, weightlessness, emotional tention, microclimate of hermetic space-ship or orbital station and cosmic radiation act on organism during space flight. No health hazardous radioactive radiation intensity or harmful influence on astronaut organism are observed during the not-long-lasted flights on low ceilings. But scientific researches show the danger exists in case of longlasted flights on high ceilings particularly during interplanetary flights, so it is necessary to undertake suitable countermeasures. The problem is even more important because the parallel activity of radioactive radiation and some more noxious agents can be very harmfull even with the small radiation dose. 8 refs. (author)

  3. Challenges in the 1990's for astronaut training simulators

    Science.gov (United States)

    Brown, Patrick M.; Hajare, Ankur R.; Stark, George E.

    1990-01-01

    New challenges for the simulation community at the Johnson Space Center both in near and long terms are considered. In the near term, the challenges of supporting an increasing flight rate, maintaining operations while replacing obsolete subsystems, and incorporating forthcoming changes to the Space Shuttle are discussed, and focus is placed on a change of forward flight-deck instruments from electro-mechanical devices to electronic displays. Training astronauts for complex concurrent missions involving multiple spacecraft and geographically dispersed ground facilities is considered to be foremost of the long-term challenges, in addition to the tasks of improving the simulator reliability and the operational efficiency of the facilities.

  4. PI in the sky: The astronaut science advisor on SLS-2

    Science.gov (United States)

    Hazelton, Lyman R.; Groleau, Nicolas; Frainier, Richard J.; Compton, Michael M.; Colombano, Silvano P.; Szolovits, Peter

    1994-01-01

    The Astronaut Science Advisor (ASA, also known as Principal-Investigator-in-a-Box) is an advanced engineering effort to apply expert systems technology to experiment monitoring and control. Its goal is to increase the scientific value of information returned from experiments on manned space missions. The first in-space test of the system will be in conjunction with Professor Larry Young's (MIT) vestibulo-ocular 'Rotating Dome' experiment on the Spacelab Life Sciences 2 mission (STS-58) in the Fall of 1993. In a cost-saving effort, off-the-shelf equipment was employed wherever possible. Several modifications were necessary in order to make the system flight-worthy. The software consists of three interlocking modules. A real-time data acquisition system digitizes and stores all experiment data and then characterizes the signals in symbolic form; a rule-based expert system uses the symbolic signal characteristics to make decisions concerning the experiment; and a highly graphic user interface requiring a minimum of user intervention presents information to the astronaut operator. Much has been learned about the design of software and user interfaces for interactive computing in space. In addition, we gained a great deal of knowledge about building relatively inexpensive hardware and software for use in space. New technologies are being assessed to make the system a much more powerful ally in future scientific research in space and on the ground.

  5. Views of Astronaut (Col.) Joe Engle and son Jon with L-5 Piper Cub

    Science.gov (United States)

    1981-01-01

    Views of Astronaut (Col.) Joe Engle and son Jon with L-5 Piper Cub at Clover Airport. Photos include Engle turning propeller while his son sits in the cockpit (34323); both Engle and son examine propeller (34324); Engle works on engine while his son sits in cockpit (34325).

  6. HAMLET -Human Model MATROSHKA for Radiation Exposure Determination of Astronauts -Current status and results

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Burmeister, Soenke; Labrenz, Johannes; Hager, Luke; Palfalvi, Jozsef K.; Hajek, Michael; Puchalska, Monika; Sihver, Lembit

    The exploration of space as seen in specific projects from the European Space Agency (ESA) acts as groundwork for human long duration space missions. One of the main constraints for long duration human missions is radiation. The radiation load on astronauts and cosmonauts in space (as for the ISS) is a factor of 100 higher than the natural radiation on Earth and will further increase should humans travel to Mars. In preparation for long duration space missions it is important to evaluate the impact of space radiation in order to secure the safety of the astronauts and minimize their radiation risks. To determine the radiation risk on humans one has to measure the radiation doses to radiosensitive organs within the human body. One way to approach this is the ESA facility MATROSHKA (MTR), under the scientific and project lead of DLR. It is dedicated to determining the radiation load on astronauts within and outside the International Space Station (ISS), and was launched in January 2004. MTR is currently preparing for its fourth experimental phase inside the Japanese Experimental Module (JEM) in summer 2010. MTR, which mimics a human head and torso, is an anthropomorphic phantom containing over 6000 radiation detectors to determine the depth dose and organ dose distribution in the body. It is the largest international research initiative ever performed in the field of space dosimetry and combines the expertise of leading research institutions around the world, thereby generating a huge pool of data of potentially immense value for research. Aiming at optimal scientific exploitation, the FP7 project HAMLET aims to process and compile the data acquired individually by the participating laboratories of the MATROSHKA experiment. Based on experimental input from the MATROSHKA experiment phases as well as on radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body will be built up. The scientific achievements

  7. ICRP PUBLICATION 123: Assessment of Radiation Exposure of Astronauts in Space

    International Nuclear Information System (INIS)

    Dietze, G.; Bartlett, D.T.; Cool, D.A.; Cucinotta, F.A.; Jia, X.; McAulay, I.R.; Pelliccioni, M.; Petrov, V.; Reitz, G.; Sato, T.

    2013-01-01

    During their occupational activities in space, astronauts are exposed to ionising radiation from natural radiation sources present in this environment. They are, however, not usually classified as being occupationally exposed in the sense of the general ICRP system for radiation protection of workers applied on Earth. The exposure assessment and risk-related approach described in this report is clearly restricted to the special situation in space, and should not be applied to any other exposure situation on Earth. The report describes the terms and methods used to assess the radiation exposure of astronauts, and provides data for the assessment of organ doses. Chapter 1 describes the specific situation of astronauts in space, and the differences in the radiation fields compared with those on Earth. In Chapter 2, the radiation fields in space are described in detail, including galactic cosmic radiation, radiation from the Sun and its special solar particle events, and the radiation belts surrounding the Earth. Chapter 3 deals with the quantities used in radiological protection, describing the Publication 103 (ICRP, 2007) system of dose quantities, and subsequently presenting the special approach for applications in space; due to the strong contribution of heavy ions in the radiation field, radiation weighting is based on the radiation quality factor, Q, instead of the radiation weighting factor, w R . In Chapter 4, the methods of fluence and dose measurement in space are described, including instrumentation for fluence measurements, radiation spectrometry, and area and individual monitoring. The use of biomarkers for the assessment of mission doses is also described. The methods of determining quantities describing the radiation fields within a spacecraft are given in Chapter 5. Radiation transport calculations are the most important tool. Some physical data used in radiation transport codes are presented, and the various codes used for calculations in high

  8. Lifetime Surveillance of Astronaut Health (LSAH) / Life Sciences Data Archive (LSDA) Data Request Helpdesk

    Science.gov (United States)

    Young, Millennia; Van Baalen, Mary

    2016-01-01

    This session is intended to provide to HRP IWS attendees instant feedback on archived astronaut data, including such topics as content of archives, access, request processing, and data format. Members of the LSAH and LSDA teams will be available at a 'help desk' during the poster sessions to answer questions from researchers.

  9. Telecast of Astronaut Neil Armstrong descending ladder to surface of the moon

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, descends the ladder of the Apollo 11 Lunar Module prior to making the first step by man on the moon. This view is a black and white reproduction taken from a telecast by the Apollo 11 lunar surface camera during extravehicular activity. The black bar running through the center of the picture is an anamoly in the television ground data system at the Goldstone Tracking Station.

  10. Former astronauts Schirra and Armstrong visit KSC for STS-83 launch

    Science.gov (United States)

    1997-01-01

    Among the many special NASA STS-83 launch guests who witnessed the liftoff of the Space Shuttle Columbia April 4 were Apollo 7 Commander Walter M. 'Wally' Schirra (left ) and Apollo l1 Commander Neil A. Armstrong. The two former astronauts are posing in front of the Apollo Command and Service Module in the Apollo/Saturn V Center at KSC. Columbia took off from Launch Pad 39A at 2:20:32 p.m. EST to begin the 16-day Microgravity Science Laboratory-1 (MSL-1) mission.

  11. Preliminary application of a novel algorithm to monitor changes in pre-flight total peripheral resistance for prediction of post-flight orthostatic intolerance in astronauts

    Science.gov (United States)

    Arai, Tatsuya; Lee, Kichang; Stenger, Michael B.; Platts, Steven H.; Meck, Janice V.; Cohen, Richard J.

    2011-04-01

    Orthostatic intolerance (OI) is a significant challenge for astronauts after long-duration spaceflight. Depending on flight duration, 20-80% of astronauts suffer from post-flight OI, which is associated with reduced vascular resistance. This paper introduces a novel algorithm for continuously monitoring changes in total peripheral resistance (TPR) by processing the peripheral arterial blood pressure (ABP). To validate, we applied our novel mathematical algorithm to the pre-flight ABP data previously recorded from twelve astronauts ten days before launch. The TPR changes were calculated by our algorithm and compared with the TPR value estimated using cardiac output/heart rate before and after phenylephrine administration. The astronauts in the post-flight presyncopal group had lower pre-flight TPR changes (1.66 times) than those in the non-presyncopal group (2.15 times). The trend in TPR changes calculated with our algorithm agreed with the TPR trend calculated using measured cardiac output in the previous study. Further data collection and algorithm refinement are needed for pre-flight detection of OI and monitoring of continuous TPR by analysis of peripheral arterial blood pressure.

  12. Improving Bone-Health Monitoring in Astronauts: Recommended Use of Quantitative Computed Tomography [QCT] for Clinical and Operational Decisions by NASA

    Science.gov (United States)

    Sibonga, J. D.; Truszkowski, P.

    2010-01-01

    DXA measurement of areal bone mineral density [aBMD,g/cm2] is required by NASA for assessing skeletal integrity in astronauts. Due to the abundance of population-based data that correlate hip and spine BMDs to fragility fractures, BMD is widely applied as a predictor of fractures in the general aging population. In contrast, QCT is primarily a research technology that measures three-dimensional , volumetric BMD (vBMD,mg/cm3) of bone and is therefore capable of differentiating between cortical and trabecular components. Additionally, when combined with Finite Element Modeling [FEM], a computational tool, QCT data can be used to estimate the whole bone strength of the hip [FE strength] for a specific load vector. A recent report demonstrated that aBMD failed to correlate with incurred changes in FE strength (for fall and stance loading) by astronauts over typical 180-day ISS (International Space Station) missions. While there are no current guidelines for using QCT data in clinical practice, QCT increases the understanding of how bone structure and mineral content are affected by spaceflight and recovery on Earth. In order to understand/promote/consider the use of QCT, NASA convened a panel of clinicians specializing in osteoporosis. After reviewing the available, albeit limited, medical and research information from long-duration astronauts (e.g., data from DXA, QCT, FEM, biochemistry analyses, medical records and in-flight exercise performance) the panelists were charged with recommending how current and future research data and analyses could inform clinical and operational decisions. The Panel recommended that clinical bone tests on astronauts should include QCT (hip and lumbar spine) for occupational risk surveillance and for the estimation of whole hip bone strength as derived by FEM. FE strength will provide an improved index that NASA could use to select astronauts of optimal bone health for extended duration missions, for repeat missions or for specific

  13. Electrically Stimulated Antagonist Muscle Contraction Increased Muscle Mass and Bone Mineral Density of One Astronaut - Initial Verification on the International Space Station

    OpenAIRE

    Shiba, Naoto; Matsuse, Hiroo; Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi

    2015-01-01

    Background Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut?s musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system?s orbital operation capability and utility, as well as its preventative effect on a...

  14. Traces of the Gods: Ancient Astronauts as a Vision of Our Future

    OpenAIRE

    Richter, Jonas

    2012-01-01

    Ancient astronaut speculation (also called paleo-SETI), often labeled pseudoscience or modern myth, still awaits in-depth research. Focusing on Erich von Däniken and reconstructing his views on god and cosmology from scattered statements throughout his books, this article analyzes his attitudes toward science and religion as well as his concepts of god and creation. In this regard, his pantheistic combination of the big bang theory with a model of god as supercomputer is of special interest. ...

  15. Astronaut Richard H. Truly in training session RMS for STS-2 bldg 9A

    Science.gov (United States)

    1981-01-01

    Astronaut Richard H. Truly in training session with the Remote Manipulator System (RMS) for STS-2 bldg 9A. Views show Truly working at the command console while watching out the windows. Karen Ehlers, an RMS procedures specialist, can be seen at left side of frame (34314); view from behind Truly as he trains at the RMS console (34315).

  16. Preparing for the High Frontier: The Role and Training of NASA Astronauts in the Post- Space Shuttle Era

    Science.gov (United States)

    2011-01-01

    In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  17. Human space biology at SCK-CEN: from in vitro cell experiments to the follow-up of astronauts

    International Nuclear Information System (INIS)

    Baatout, S.

    2009-01-01

    Prolonged exposure to space radiation and extended microgravity has revealed profound physiological and clinical changes in astronauts. The health problems thought to be related to the effects of microgravity include a decrease in the heart and the respiratory rates, a loss of body weight, changes in bone calcium, a redistribution of body fluids with a greater amount in the upper body, a decrease in muscle tissue, a weakening of the veins and arteries in the legs, as well as an underproduction of red blood cells leading to anaemia. At the cellular and molecular levels, microgravity is known to induce both a loss of T-cell activation and changes in gene expression patterns, as well as a three-dimensional growth of normal cells and tumour cells, an alteration of the mitochondrial organization, a modification of the production of extracellular matrix proteins and apoptosis in some types of cells. The Earth's magnetic field protects us from harmful radiation. On Earth, we are still exposed to small amounts of radiation when we go for medical x-rays, when we travel on transcontinental flights or just from radon in the air. However, astronauts are exposed to 50 to 100 times as much radiation - and that is just in a low Earth orbit. In deep space, astronauts can be exposed to even higher doses. It is well known that large amounts of radiation can cause severe health effects by altering DNA in our cells. The health effects from space radiation are therefore a critical safety concern for long-term space travel. Possible health risks include cancer, cataracts, acute radiation sickness, hereditary effects, and damage to the central nervous system. The aims of this research are 1) to ensure the immunological monitoring of a cohort of astronauts (having spent around 6 months aboard the International Space Station ISS) and 2) to investigate the effects of an in vitro exposure of endothelial cells and other types of cells to radiation and/or microgravity conditions

  18. Space Plants for Astronaut Consumption

    Science.gov (United States)

    Mickens, Matthew A.; Grandpre, Ayla Moriah; Boehm, Emma; Barnwell, Payton

    2017-01-01

    Growing plants in space will be an essential part of sustaining astronauts during long-range missions. During the summer of 2017, three female NASA interns, have been engaged in research relevant to food production in space, and will present their projects to an all female program known as Girls in STEM camp. Ayla Grandpre, a senior from Rocky Mountain College, has performed data mining and analysis of crop growth results gathered through Fairchild Botanical Gardens program, Growing Beyond Earth. Ninety plants were downselected to three for testing in controlled environment chambers at KSC. Ayla has also managed an experiment testing a modified hydroponics known as PONDS, to grow mizuna mustard greens and red robin cherry tomatoes. Emma Boehm, a senior from the University of Minnesota, has investigated methods to sterilize seeds and analyzed the most common microbial communities on seed surfaces. She has tested a bleach fuming method and an ethanol treatment. Emma has also tested Tokyo bekana Chinese cabbage seeds from four commercial seed vendors to identity differences in germination and growth variability. Lastly, Payton Barnwell, a junior from Florida Polytechnic University has shown that light recipes provided by LEDs can alter the growth and nutrition of 'Outredgeous' lettuce, Chinese cabbage, and Mizuna. The results of her light quality experiments will provide light recipe recommendations for space crops that grown in the Advanced Plant Habitat currently aboard the International Space Station.

  19. Nuclear emulsion measurements of the astronauts' radiation exposure on the Apollo-Soyuz mission

    Science.gov (United States)

    Schaefer, H. J.; Sullivan, J. J.

    1976-01-01

    On the Apollo-Soyuz mission each astronaut carried one passive dosimeter containing nuclear photographic emulsions, plastic foils, TLD chips, and neutron-activation foils for recording radiation exposure. This report is limited to the presentation of data retrieved from nuclear emulsions. Protons, most of them trapped particles encountered in numerous passes through the South Atlantic Anomaly, contributed by far the largest share to the mission dose. Their linear energy transfer (LET) spectrum was established from track and grain counts in a G.5 emulsion which is used for medium and high energies, and from ender counts in a K.2 emulsion which is used for low energies. The total mission fluence of protons was found to be equivalent to a unidirectional beam of 448,500 square centimeters. The broad spectrum was broken down into small LET intervals, which allowed for the computation of absorbed doses and dose equivalents. The totals are 51 millirad and 74 millirem. Counts of disintegration stars in K.2 emulsion are incomplete at present. While a total of 467 stars were identified, counting their prong numbers is still in progress. It was concluded that the Apollo-Soyuz astronauts' radiation exposure as such did not contain anything out of the ordinary that would seem to require special attention.

  20. Intracranial pressure-induced optic nerve sheath response as a predictive biomarker for optic disc edema in astronauts

    NARCIS (Netherlands)

    Wostyn, Peter; De Deyn, Peter Paul

    2017-01-01

    A significant proportion of the astronauts who spend extended periods in microgravity develop ophthalmic abnormalities. Understanding this syndrome, called visual impairment and intracranial pressure (VIIP), has become a high priority for National Aeronautics and Space Administration, especially in

  1. New Investigations of the Gow Lake Impact Structure, Saskatchewan, Canada: Impact Melt Rocks, Astronaut Training, and More

    Science.gov (United States)

    Osinski, G. R.; Singleton, A. C.; Ozaruk, A.; Hansen, J. R.

    2012-03-01

    New investigations of the Gow Lake impact structure has revealed an almost complete sequence of impactites from the crater floor upward through a series of melt-free and melt-bearing rocks. This research involved an astronaut training component.

  2. The Virtual GloveboX (VGX: a Semi-immersive Virtual Environment for Training Astronauts in Life Sciences Experiments

    Directory of Open Access Journals (Sweden)

    I. Alexander Twombly

    2004-06-01

    Full Text Available The International Space Station will soon provide an unparalleled research facility for studying the near- and longer-term effects of microgravity on living systems. Using the Space Station Glovebox Facility - a compact, fully contained reach-in environment - astronauts will conduct technically challenging life sciences experiments. Virtual environment technologies are being developed at NASA Ames Research Center to help realize the scientific potential of this unique resource by facilitating the experimental hardware and protocol designs and by assisting the astronauts in training. The "Virtual GloveboX" (VGX integrates high-fidelity graphics, force-feedback devices and real-time computer simulation engines to achieve an immersive training environment. Here, we describe the prototype VGX system, the distributed processing architecture used in the simulation environment, and modifications to the visualization pipeline required to accommodate the display configuration.

  3. Official Portrait of Astronaut Neil Armstrong

    Science.gov (United States)

    1969-01-01

    Neil Armstrong, donned in his space suit, poses for his official Apollo 11 portrait. Armstrong began his flight career as a naval aviator. He flew 78 combat missions during the Korean War. Armstrong joined the NASA predecessor, NACA (National Advisory Committee for Aeronautics), as a research pilot at the Lewis Laboratory in Cleveland and later transferred to the NACA High Speed Flight Station at Edwards AFB, California. He was a project pilot on many pioneering high speed aircraft, including the 4,000 mph X-15. He has flown over 200 different models of aircraft, including jets, rockets, helicopters, and gliders. In 1962, Armstrong was transferred to astronaut status. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971.

  4. NBL Pistol Grip Tool for Underwater Training of Astronauts

    Science.gov (United States)

    Liszka, Michael; Ashmore, Matthew; Behnke, Mark; Smith, Walter; Waterman, Tod

    2011-01-01

    A document discusses a lightweight, functional mockup of the Pistol Grip Tool for use during underwater astronaut training. Previous training tools have caused shoulder injuries. This new version is more than 50 percent lighter [in water, weight is 2.4 lb (=1.1 kg)], and can operate for a six-hour training session after 30 minutes of prep for submersion. Innovations in the design include the use of lightweight materials (aluminum and Delrin(Registered TradeMark)), creating a thinner housing, and the optimization of internal space with the removal of as much excess material as possible. This reduces tool weight and maximizes buoyancy. Another innovation for this tool is the application of a vacuum that seats the Orings in place and has shown to be reliable in allowing underwater usage for up to six hours.

  5. VESsel GENeration Analysis (VESGEN): Innovative Vascular Mappings for Astronaut Exploration Health Risks and Human Terrestrial Medicine

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Kao, David; Valizadegan, Hamed; Martin, Rodney; Murray, Matthew C.; Ramesh, Sneha; Sekaran, Srinivaas

    2017-01-01

    Currently, astronauts face significant health risks in future long-duration exploration missions such as colonizing the Moon and traveling to Mars. Numerous risks include greatly increased radiation exposures beyond the low earth orbit (LEO) of the ISS, and visual and ocular impairments in response to microgravity environments. The cardiovascular system is a key mediator in human physiological responses to radiation and microgravity. Moreover, blood vessels are necessarily involved in the progression and treatment of vascular-dependent terrestrial diseases such as cancer, coronary vessel disease, wound-healing, reproductive disorders, and diabetes. NASA developed an innovative, globally requested beta-level software, VESsel GENeration Analysis (VESGEN) to map and quantify vascular remodeling for application to astronaut and terrestrial health challenges. VESGEN mappings of branching vascular trees and networks are based on a weighted multi-parametric analysis derived from vascular physiological branching rules. Complex vascular branching patterns are determined by biological signaling mechanisms together with the fluid mechanics of multi-phase laminar blood flow.

  6. Development of a computational model for astronaut reorientation.

    Science.gov (United States)

    Stirling, Leia; Willcox, Karen; Newman, Dava

    2010-08-26

    The ability to model astronaut reorientations computationally provides a simple way to develop and study human motion control strategies. Since the cost of experimenting in microgravity is high, and underwater training can lead to motions inappropriate for microgravity, these techniques allow for motions to be developed and well-understood prior to any microgravity exposure. By including a model of the current space suit, we have the ability to study both intravehicular and extravehicular activities. We present several techniques for rotating about the axes of the body and show that motions performed by the legs create a greater net rotation than those performed by the arms. Adding a space suit to the motions was seen to increase the resistance torque and limit the available range of motion. While rotations about the body axes can be performed in the current space suit, the resulting motions generated a reduced rotation when compared to the unsuited configuration. 2010 Elsevier Ltd. All rights reserved.

  7. Notice of retraction: Role of Cerebrospinal Fluid in Spaceflight-induced Ocular Changes and Visual Impairment in Astronauts.

    Science.gov (United States)

    Alperin, Noam; Bagci, Ahmet M; Oliu, Carlos J; Lee, Sang H; Lam, Byron L

    2017-10-16

    Notice of retraction: the article "Role of Cerebral Spinal Fluid in Space Flight Induced Ocular Changes and Visual Impairment in Astronauts" by Alperin et al This article has been retracted due to security concerns raised by NASA, the sponsoring agency. © RSNA, 2017.

  8. Modeling and dynamic simulation of astronaut's upper limb motions considering counter torques generated by the space suit.

    Science.gov (United States)

    Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang

    2017-07-01

    Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.

  9. Results of the ESA study on psychological selection of astronaut applicants for Columbus missions I: Aptitude testing

    Science.gov (United States)

    Fassbender, Christoph; Goeters, Klaus-Martin

    European participation in the Space Station Freedom brought about new challenges for the psychological selection of astronaut candidates, particularly in respect to specific demands of long duration space flights. For this reason existing selection criteria and methods were reassessed. On these grounds a study was undertaken applying a unique composition of aptitude tests to a group of 97 ESA scientists and engineers who are highly comparable to the expected astronaut applicants with respect to age and education. The tests assessed operational aptitudes such as logical reasoning, memory function, perception, spatial orientation, attention, psychomotor function, and multiple task capacity. The study goals were: 1) Verification of psychometric qualities and applicability of tests in a normative group; 2) Search for culture-fair tests by which multi-national groups can be examined; 3) Identification of test methods which consider general and special operational demands of long duration space flights. Based on the empirical findings a test battery was arranged for use in the selection of ESA astronaut applicants. Results showed that 16 out of the 18 employed tests have good psychometric qualities and differentiate reliably in the special group of testees. The meta structure of the test battery as described by a factorial analysis is presented. Applicability of tests was generally high. Tests were culture-fair, however, a relation between English language skills and test results was identified. Since most item material was language-free, this was explained with the importance of English language skills for the understanding of test instructions. Solutions to this effect are suggested.

  10. Tolerance to extended galvanic vestibular stimulation: optimal exposure for astronaut training.

    Science.gov (United States)

    Dilda, Valentina; MacDougall, Hamish G; Moore, Steven T

    2011-08-01

    We have developed an analogue of postflight sensorimotor dysfunction in astronauts using pseudorandom galvanic vestibular stimulation (GVS). To date there has been no study of the effects of extended GVS on human subjects and our aim was to determine optimal exposure for astronaut training based on tolerance to intermittent and continuous galvanic stimulation. There were 60 subjects who were exposed to a total of 10.5 min of intermittent GVS at a peak current of 3.5 mA or 5 mA. A subset of 24 subjects who tolerated the intermittent stimulus were subsequently exposed to 20-min continuous stimulation at 3.5 mA or 5 mA. During intermittent GVS the large majority of subjects (78.3%) reported no or at most mild motion sickness symptoms, 13.3% reported moderate symptoms, and 8.3% experienced severe nausea and requested termination of the stimulus. During 20-min continuous exposure, 83.3% of subjects reported no or at most mild motion sickness symptoms and 16.7% (all in the 5-mA group) experienced severe nausea. Based on these results, we propose two basic modes of GVS application to minimize the incidence of motion sickness: intermittent high (5 mA) amplitude, suited to simulation of intensive operator tasks requiring a high-fidelity analogue of postflight sensorimotor dysfunction such as landing or docking maneuvers; and continuous low (3.5 mA) amplitude stimulation, for longer simulation scenarios such as extra vehicular activity. Our results suggest that neither mode of stimulation would induce motion sickness in the large majority of subjects for up to 20 min exposure.

  11. IAC-11.E1-7.-A1.8.5 The Mission X: Train Like an Astronaut pilot study

    Science.gov (United States)

    Lloyd, Charles W.

    2012-12-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 11 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and to inspire and motivate students to pursue careers in science, technology, engineering and math (STEM) fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, Belgium, Czech Republic and United Kingdom hosted teams for the pilot in the spring of 2010, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing in 137 teams, more than 4000 students from over 40 cities worldwide participated in the first round of Mission X.

  12. The astronaut and the banana peel: An EVA retriever scenario

    Science.gov (United States)

    Shapiro, Daniel G.

    1989-01-01

    To prepare for the problem of accidents in Space Station activities, the Extravehicular Activity Retriever (EVAR) robot is being constructed, whose purpose is to retrieve astronauts and tools that float free of the Space Station. Advanced Decision Systems is at the beginning of a project to develop research software capable of guiding EVAR through the retrieval process. This involves addressing problems in machine vision, dexterous manipulation, real time construction of programs via speech input, and reactive execution of plans despite the mishaps and unexpected conditions that arise in uncontrolled domains. The problem analysis phase of this work is presented. An EVAR scenario is used to elucidate major domain and technical problems. An overview of the technical approach to prototyping an EVAR system is also presented.

  13. Polymer degradation and ultrafine particles - Potential inhalation hazards for astronauts

    Science.gov (United States)

    Ferin, J.; Oberdoerster, G.

    1992-01-01

    To test the hypothesis that exposure to ultrafine particles results in an increased interstiatilization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO2 particles access the pulmonary interstitium to a larger extent than fine particles and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  14. Studies at LBL's Bevalac will help resolve uncertainties about radiation risks to astronauts

    International Nuclear Information System (INIS)

    Kahn, J.

    1991-01-01

    Plans to operate the LBL's Bevalac facility for space research are discussed. The proposed program includes the use of cell cultures and animal models to assess the biological consequences of exposures to different particles that are components of the space radiation environment. Research will also be conducted on measures to counter radiation. Experiments will be carried out to examine how various materials that could be used in a spacecraft wall would alter the cascade of particles that would ultimately reach an astronaut

  15. The Age of Robotic Milk: Data Output Analysis of LELY Astronaut Computer Program

    OpenAIRE

    Christensen, Jessica R

    2017-01-01

    LELY is one of the major companies in the world that manufactures robotic dairy milkers. While Lely is a worldwide company based in Holland, It entered the United States market only within the past few years. Dairy robotics is a new field that has great potential for innovation, but it still has relatively unknown effects on dairy farms, dairy production, and dairy farmers. During the summer of 2016, the research conducted centered on a data output analysis of the LELY Astronaut computer prog...

  16. Design considerations for an astronaut monorail system for large space structures and the structural characterization of its positioning arm

    Science.gov (United States)

    Watson, Judith J.

    1992-08-01

    An astronaut monorail system (AMS) is presented as a vehicle to transport and position EVA astronauts along large space truss structures. The AMS is proposed specifically as an alternative to the crew and equipment transfer aid for Space Station Freedom. Design considerations for the AMS were discussed and a reference configuration was selected for the study. Equations were developed to characterize the stiffness and frequency behavior of the AMS positioning arm. Experimental data showed that these equations gave a fairly accurate representation of the stiffness and frequency behavior of the arm. A study was presented to show trends for the arm behavior based on varying parameters of the stiffness and frequency equations. An ergonomics study was conducted to provide boundary conditions for tolerable frequency and deflection to be used in developing a design concept for the positioning arm. The feasibility of the AMS positioning arm was examined using equations and working curves developed in this study. It was found that a positioning arm of a length to reach all interior points of the space station truss structure could not be designed to satisfy frequency and deflection constraints. By relaxing the design requirements and the ergonomic boundaries, an arm could be designed which would provide a stable work platform for the EVA astronaut and give him access to over 75 percent of the truss interior.

  17. Effects of HZE particles on astronauts

    International Nuclear Information System (INIS)

    Curtis, S.B.; Townsend, L.W.; Wilson, J.W.

    1991-01-01

    Outside the effective shielding provided by Earth's magnetic field, space travelers will experience penetrating high-energy galactic cosmic rays, which reach the orbit of earth isotropically and with fluxes that vary smoothly over an 11-yr interval that is related to the 11-yr cycle of solar activity. This radiation consists of protons (Z=1) up to uranium (Z=92). There is an abundance of even--over odd-Z nuclei, with several local peaks in abundance when plotted as a function of Z. A prominent peak occurs in the iron abundance (Z=26) and is presumably related to the richness of iron in the galactic cosmic ray sources. The iron component is particularly important in a biological assessment of risk. High-energy particles with Z>2 have been called (high Z and energy) (HZE) particles. These particles are a concern in the evaluation of radiation risk because (a) they are highly ionizing and cause considerable damage as they penetrate biological tissue, and (b) they undergo nuclear interactions within the spacecraft shielding and the bodies of the astronauts themselves to produce lighter, more penetrating and sometimes highly ionizing secondaries. Considerably more ground-based cellular and animal experimentation is in order with high-energy heavy-ion beams before definitive statements can be made on the risk of HZE particles to humans outside the geomagnetosphere

  18. Effects of HZE particles on astronauts

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, S.B. (Lawrence Berkeley Lab., CA (United States)); Townsend, L.W.; Wilson, J.W. (National Aeronautics and Space Administration, Langley, CA (United States))

    1991-01-01

    Outside the effective shielding provided by Earth's magnetic field, space travelers will experience penetrating high-energy galactic cosmic rays, which reach the orbit of earth isotropically and with fluxes that vary smoothly over an 11-yr interval that is related to the 11-yr cycle of solar activity. This radiation consists of protons (Z=1) up to uranium (Z=92). There is an abundance of even--over odd-Z nuclei, with several local peaks in abundance when plotted as a function of Z. A prominent peak occurs in the iron abundance (Z=26) and is presumably related to the richness of iron in the galactic cosmic ray sources. The iron component is particularly important in a biological assessment of risk. High-energy particles with Z>2 have been called (high Z and energy) (HZE) particles. These particles are a concern in the evaluation of radiation risk because (a) they are highly ionizing and cause considerable damage as they penetrate biological tissue, and (b) they undergo nuclear interactions within the spacecraft shielding and the bodies of the astronauts themselves to produce lighter, more penetrating and sometimes highly ionizing secondaries. Considerably more ground-based cellular and animal experimentation is in order with high-energy heavy-ion beams before definitive statements can be made on the risk of HZE particles to humans outside the geomagnetosphere.

  19. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    Science.gov (United States)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  20. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    Science.gov (United States)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  1. Current and future translation trends in aeronautics and astronautics

    Science.gov (United States)

    Rowe, Timothy

    1986-01-01

    The pattern of translation activity in aeronautics and astronautics is reviewed. It is argued that the international nature of the aerospace industry and the commercialization of space have increased the need for the translation of scientific literature in the aerospace field. Various factors which can affect the quality of translations are examined. The need to translate the activities of the Soviets, Germans, and French in materials science in microgravity, of the Japanese, Germans, and French in the development of industrial ceramics, and of the Chinese in launching and communications satellites is discussed. It is noted that due to increases in multilateral and bilateral relationships in the aerospace industry, the amount of translation from non-English source material into non-English text will increase and the most important languages will be French and German, with an increasing demand for Japanese, Chinese, Spanish, and Italian translations.

  2. Spaceflight-Induced Visual Impairment and Globe Deformations in Astronauts Are Linked to Orbital Cerebrospinal Fluid Volume Increase.

    Science.gov (United States)

    Alperin, Noam; Bagci, Ahmet M

    2018-01-01

    Most of the astronauts onboard the International Space Station (ISS) develop visual impairment and ocular structural changes that are not fully reversible upon return to earth. Current understanding assumes that the so-called visual impairments/intracranial pressure (VIIP) syndrome is caused by cephalad vascular fluid shift. This study assesses the roles of cerebrospinal fluid (CSF) and intracranial pressure (ICP) in VIIP. Seventeen astronauts, 9 who flew a short-duration mission on the space shuttle (14.1 days [SD 1.6]) and 7 who flew a long-duration mission on the ISS (188 days [SD 22]) underwent MRI of the brain and orbits to assess the pre-to-post spaceflight changes in four categories: VIIP severity measures: globe flattening and nerve protrusion; orbital and ventricular CSF volumes; cortical gray and white matter volumes; and MR-derived ICP (MRICP). Significant pre-to-post-flight increase in globe flattening and optic nerve protrusion occurred only in the long-duration cohort (0.031 [SD 0.019] vs -0.001 [SD 0.006], and 0.025 [SD 0.013] vs 0.001 [SD 0.006]; p < 0.00002 respectively). The increased globe deformations were associated with significant increases in orbital and ventricular CSF volumes, but not with increased tissue vascular fluid content. Additionally, a moderate increase in MRICP of 6 mmHg was observed in only two ISS astronauts with large ocular structure changes. These findings are evidence for the primary role of CSF and a lesser role for intracranial cephalad fluid-shift in the formation of VIIP. VIIP is caused by a prolonged increase in orbital CSF spaces that compress the globes' posterior pole, even without a large increase in ICP.

  3. Statistical Evaluation of Causal Factors Associated with Astronaut Shoulder Injury in Space Suits.

    Science.gov (United States)

    Anderson, Allison P; Newman, Dava J; Welsch, Roy E

    2015-07-01

    Shoulder injuries due to working inside the space suit are some of the most serious and debilitating injuries astronauts encounter. Space suit injuries occur primarily in the Neutral Buoyancy Laboratory (NBL) underwater training facility due to accumulated musculoskeletal stress. We quantitatively explored the underlying causal mechanisms of injury. Logistic regression was used to identify relevant space suit components, training environment variables, and anthropometric dimensions related to an increased propensity for space-suited injury. Two groups of subjects were analyzed: those whose reported shoulder incident is attributable to the NBL or working in the space suit, and those whose shoulder incidence began in active duty, meaning working in the suit could be a contributing factor. For both groups, percent of training performed in the space suit planar hard upper torso (HUT) was the most important predictor variable for injury. Frequency of training and recovery between training were also significant metrics. The most relevant anthropometric dimensions were bideltoid breadth, expanded chest depth, and shoulder circumference. Finally, record of previous injury was found to be a relevant predictor for subsequent injury. The first statistical model correctly identifies 39% of injured subjects, while the second model correctly identifies 68% of injured subjects. A review of the literature suggests this is the first work to quantitatively evaluate the hypothesized causal mechanisms of all space-suited shoulder injuries. Although limited in predictive capability, each of the identified variables can be monitored and modified operationally to reduce future impacts on an astronaut's health.

  4. Physiological and psychological stress limits for astronautics Observations during the Skylab I-III missions

    Science.gov (United States)

    Burchard, E. C.

    1975-01-01

    The physiological and psychological factors of manned space flight had a particular significance in the Skylab missions during which astronauts were subjected to a life in a space environment for longer periods of time than on previous space missions. The Skylab missions demonstrated again the great adaptability of human physiology to the environment of man. The results of Skylab have indicated also approaches for enhancing the capability of man to tolerate the physiological and psychological stresses of space flight.

  5. Critical 2D-to-3D Transformation of NASA's VESGEN Software for Astronaut Health Countermeasures and Terrestrial Medicine/Ecological Commercialization

    Data.gov (United States)

    National Aeronautics and Space Administration — The challenge is to map and quantify 3D vascular remodeling in critically important tissues such as the astronaut and diabetic retina and mouse gastro-intestinal...

  6. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom

    Science.gov (United States)

    Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.

    2017-11-01

    One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation

  7. Gregory A. Merkel Greeted By Astronauts and MSFC Personnel

    Science.gov (United States)

    1972-01-01

    Springfield, Massachusetts high school student, Gregory A. Merkel, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab Mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  8. The outcomes of the Brazilian Olympiad of Astronomy and Astronautics as an opportunity to develop successful outreach actions

    Science.gov (United States)

    Figueiró Spinelli, Patrícia; de Oliveira Costa, Cristiane; Requeijo, Flávia; do Amaral Ferreira, Marcelo Augusto; Torres Perillo, Augusto; Batista Garcia Canalle, João; Reis Neto, Eugênio; Nascimento, Josina

    2015-08-01

    Every year, hundreds of thousands of students and teachers from all over the country take part in the Brazilian Olympiad of Astronomy and Astronautics (OBA). This has the aim of both spreading astronomy and astronautics-related concepts and training teachers about these topics. After being marked some of the exams are sent by participant schools to the Organizing Committee to select candidates for the international competition. The OBA exam archive thereby offers an unique opportunity to evaluate the teaching of astronomy in Brazil in relation to school level and content, as well as over time. Understanding the misconceptions unraveled by the exams is of utmost importance to planning successful outreach activities. In this talk I will present how the analysis of the 2013 OBA event helped the Museum of Astronomy and Related Sciences to develop an astronomy education kit aimed at teachers and how this cooperation between an academic institution and schools is helping educators in their pedagogical practice to teach astronomy in the classroom.

  9. Astronaut Parazynski greets First Lady Hillary Clinton and Chelsea Clinton

    Science.gov (United States)

    1999-01-01

    First Lady Hillary Rodham Clinton (right) and her daughter, Chelsea, are greeted by NASA Astronaut Scott E. Parazynski (left) upon their arrival at the Skid Strip at Cape Canaveral Air Station to view the launch of Space Shuttle mission STS-93. Liftoff is scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes.

  10. Psychophysiological monitoring of operator's emotional stress in aviation and astronautics.

    Science.gov (United States)

    Simonov, P V; Frolov, M V; Ivanov, E A

    1980-01-01

    The level of emotional stress depending on the power of motivation and the estimation by the subject of the probability (possibility) of goal achievement, largely influences the operator's skill performance (that of a pilot, controller, astronaut). A decrease in the emotional tonus leads to drowsiness, lack of vigilance, missing of significant signals, and to slower reactions. The extremely high stress level disorganizes the activity, complicates it with a trend toward untimely acts and reactions to the insignificant signals (false alarms). The best methods to monitor the degree of the operator's emotional state during his skill performance are the integral estimation of the changes in heart-rate and T-peak amplitude, as well as the analysis of spectral and intonational characteristics of the human voice during radio conversation. These methods were tested on paratroopers, pilots in civil aviation, and airport controllers.

  11. Fatigue in U.S. Astronauts Onboard the International Space Station: Environmental factors, Operational Impacts, and Implementation of Countermeasures

    Science.gov (United States)

    Scheuring, R. A.; Moomaw, R. C.; Johnston, S. L.

    2015-01-01

    Crewmembers have experienced fatigue for reasons similar to military deployments. Astronauts experience psychological stressors such as: heavy workloads, extended duty periods, circadian misalignment, inadequate/ineffective sleep, distracting background noise, unexpected and variable mission schedules, unfavorable thermal control, unusual sleep environment with schedules that impinge on pre-sleep periods.

  12. [Astronauts, asteroids and the universe of antithrombotic therapies in primary percutaneous coronary intervention].

    Science.gov (United States)

    De Luca, Leonardo; Granatelli, Antonino

    2017-06-01

    A sensation of self-awareness on the relativity of our certainties comes over looking to the huge amount of data on antithrombotic therapies assessed in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (pPCI). This sensation can be compared to the so-called "overview effect", a cognitive shift in awareness reported by some astronauts during spaceflight, often while viewing the Earth from orbit. In this review we will mention drugs floated like meteors in the Universe of STEMI treatment and we will discuss the body of evidence on oral and intravenous antithrombotic therapies for patients undergoing pPCI.

  13. Astronauts Work in the Russian Zvezda Service Module

    Science.gov (United States)

    2001-01-01

    Astronauts Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and Daniel W. Bursch, Expedition Four flight engineer, work in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000 pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  14. Distance and Size Perception in Astronauts during Long-Duration Spaceflight

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    2013-12-01

    Full Text Available Exposure to microgravity during spaceflight is known to elicit orientation illusions, errors in sensory localization, postural imbalance, changes in vestibulo-spinal and vestibulo-ocular reflexes, and space motion sickness. The objective of this experiment was to investigate whether an alteration in cognitive visual-spatial processing, such as the perception of distance and size of objects, is also taking place during prolonged exposure to microgravity. Our results show that astronauts on board the International Space Station exhibit biases in the perception of their environment. Objects’ heights and depths were perceived as taller and shallower, respectively, and distances were generally underestimated in orbit compared to Earth. These changes may occur because the perspective cues for depth are less salient in microgravity or the eye-height scaling of size is different when an observer is not standing on the ground. This finding has operational implications for human space exploration missions.

  15. Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario

    Science.gov (United States)

    1995-01-01

    STS-77 TRAINING VIEW --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco, mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Centers (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.

  16. Non-Invasive, Quantitative, and Remote Detection of Early Radiation Cataracts for Applications in Bio-Astronautics and Bio-Informatics

    Science.gov (United States)

    Ansari, Rafat R.; Giblin, Frank J.; King, James F.; Singh, B. (Technical Monitor)

    2002-01-01

    Human exploration of Mars may be a possibility in the next twenty years. Maintaining good vision is an essential aspect of achieving a successful mission. Continuous radiation exposure is a risk factor for radiation-induced cataracts in astronauts. A compact device based on the technique of dynamic light scattering (DLS) is designed for monitoring an astronaut's ocular health during long-duration space travel. Preliminary data on the simulated effects of ionizing radiation exposure to the ocular tissues of nonhuman animals and results on the sensitivity of DLS over established clinical procedures in investigating cataracts are presented. This capability of early diagnosis, unmatched by any other clinical technique in use today, may enable prompt initiation of preventive/curative therapy. An internet web based system integrating photon correlation data and controlling the hardware to monitor cataract development in vivo at a remote site in real time (teleophthalmology) is currently being developed. Cataract studies on-board the International Space Station (ISS) will be helpful in designing better protective radiation shields for future space vehicles and space suits.

  17. Harnessing functional food strategies for the health challenges of space travel—Fermented soy for astronaut nutrition

    Science.gov (United States)

    Buckley, Nicole D.; Champagne, Claude P.; Masotti, Adriana I.; Wagar, Lisa E.; Tompkins, Thomas A.; Green-Johnson, Julia M.

    2011-04-01

    Astronauts face numerous health challenges during long-duration space missions, including diminished immunity, bone loss and increased risk of radiation-induced carcinogenesis. Changes in the intestinal flora of astronauts may contribute to these problems. Soy-based fermented food products could provide a nutritional strategy to help alleviate these challenges by incorporating beneficial lactic acid bacteria, while reaping the benefits of soy isoflavones. We carried out strain selection for the development of soy ferments, selecting strains of lactic acid bacteria showing the most effective growth and fermentation ability in soy milk ( Streptococcus thermophilus ST5, Bifidobacterium longum R0175 and Lactobacillus helveticus R0052). Immunomodulatory bioactivity of selected ferments was assessed using an in vitro challenge system with human intestinal epithelial and macrophage cell lines, and selected ferments show the ability to down-regulate production of the pro-inflammatory cytokine interleukin-8 following challenge with tumour necrosis factor-alpha. The impact of fermentation on vitamin B1 and B6 levels and on isoflavone biotransformation to agluconic forms was also assessed, with strain variation-dependent biotransformation ability detected. Overall this suggests that probiotic bacteria can be successfully utilized to develop soy-based fermented products targeted against health problems associated with long-term space travel.

  18. Astronaut James S. Voss Performs Tasks in the Destiny Laboratory

    Science.gov (United States)

    2001-01-01

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  19. Astronauts Prepare for Mission With Virtual Reality Hardware

    Science.gov (United States)

    2001-01-01

    Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at Johnson Space Center to train for upcoming duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties for the fourth Hubble Space Telescope Servicing mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  20. Human factors considerations for training astronauts to function effectively in multiple environments

    Science.gov (United States)

    Cohen, Malcolm M.

    1991-01-01

    This paper reviews some of the basic issues involved in training individuals to function appropriately under the several conditions that comprise the aerospace environment. The topic of transfer of training is examined in some detail, and the use of high-fidelity simulators in various training programs is discussed. Both current and classical techniques used to train astronauts are noted, and some relatively new and innovative training techniques and methods are described. Particularly, the paper discusses an important aspect of functioning appropriately in a given environment that is based on how well the operator calibrates his motor activity for that specific environment. The role of motor-sensory feedback for the acquisition of motor skills is discussed in the context of training.

  1. Artist's rendering of astronaut Neil Armstrong planting U.S. flag on Moon

    Science.gov (United States)

    1969-01-01

    Artist's Concept: Apollo 11 astronaut Neil Armstrong, after stepping onto the lunar surface, will plant the United States flag in its soil. The flag will be made of nylone, size 3- by 5 feet on a staff 8 feet long. During flight it will be stowed in two 4-foot sections strapped to the Lunar Module ladder. Armstrong's first assignment after stepping off the ladder is to pull a 'D' ring to start a television camera. The second assignment is to erect the U.S. flag. The flag will appear to be flying in a breeze. This is done with a spring-loaded wire in the nylon cloth. With everything is working normally, this will be observed on live television.

  2. Monitoring Bone Health after Spaceflight: Data Mining to Support an Epidemiological Analysis of Age-related Bone Loss in Astronauts

    Science.gov (United States)

    Baker, K. S,; Amin, S.; Sibonga, Jean D.

    2009-01-01

    Through the epidemiological analysis of bone data, HRP is seeking evidence as to whether the prolonged exposure to microgravity of low earth orbit predisposes crewmembers to an earlier onset of osteoporosis. While this collaborative Epidemiological Project may be currently limited by the number of ISS persons providing relevant spaceflight medical data, a positive note is that it compares medical data of astronauts to data of an age-matched (not elderly) population that is followed longitudinally with similar technologies. The inclusion of data from non-ISS and non-NASA crewmembers is also being pursued. The ultimate goal of this study is to provide critical information for NASA to understand the impact of low physical or minimal weight-bearing activity on the aging process as well as to direct its development of countermeasures and rehabilitation programs to influence skeletal recovery. However, in order to optimize these results NASA needs to better define the requirements for long term monitoring and encourage both active and retired astronauts to contribute to a legacy of data that will define human health risks in space.

  3. Persistence of Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    Science.gov (United States)

    George, Kerry

    Cytogenetic damage in astronaut's peripheral blood lymphocytes is a useful in vivo marker of space radiation induced damage. Moreover, if radiation induced chromosome translocations persist in peripheral blood lymphocytes for many years, as has been assumed, they could potentially be used to measure retrospective doses or prolonged low dose rate exposures. However, as more data becomes available, evidence suggests that the yield of translocations may decline with time after irradiation, at least for space radiation exposures. We present our latest follow-up measurements of chromosome aberrations in astronauts' blood lymphocytes assessed by FISH painting and collected at various times beginning directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Since the level of stable aberrations depends on the interplay between natural loss of circulating T-lymphocytes and replenishment from the stem or progenitor cells, the differences in the rates of decay could be explained by inter-individual variation in lymphocyte turn over. Biodosimetry estimates derived from cytogenetic analysis of samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember who has participated in two separate long-duration space missions and has been followed up for over 10 years provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  4. The neurovestibular challenges of astronauts and balance patients: some past countermeasures and two alternative approaches to elicitation, assessment and mitigation

    Directory of Open Access Journals (Sweden)

    Ben Lawson

    2016-11-01

    Full Text Available Astronauts and vestibular patients face analogous challenges to orientation function due to adaptive exogenous (weightlessness-induced or endogenous (pathology-induced alterations in the processing of acceleration stimuli. Given some neurovestibular similarities between these challenges, both affected groups may benefit from shared research approaches and adaptation measurement/improvement strategies. This paper reviews various past strategies and introduces two plausible ground-based approaches, the first of which is a method for eliciting and assessing vestibular adaptation-induced imbalance. Second, we review a strategy for mitigating imbalance associated with vestibular pathology and fostering readaptation. In discussing the first strategy (for imbalance assessment, we review a pilot study wherein imbalance was elicited (among healthy subjects via an adaptive challenge that caused a temporary/reversible disruption. The surrogate vestibular deficit was caused by a brief period of movement-induced adaptation to an altered (rotating gravitoinertial frame of reference. This elicited adaptation and caused imbalance when head movements were made after reentry into the normal (non-rotating frame of reference. We also review a strategy for fall mitigation, viz., a prototype tactile sway feedback device for aiding balance/recovery after disruptions caused by vestibular pathology. We introduce the device and review a preliminary exploration of its effectiveness in aiding clinical balance rehabilitation (discussing the implications for healthy astronauts. Both strategies reviewed in this paper represent cross-disciplinary research spin-offs: the ground-based vestibular challenge and tactile cueing display were derived from aeromedical research to benefit military aviators suffering from flight simulator-relevant aftereffects or inflight spatial disorientation, respectively. These strategies merit further evaluation using clinical and astronaut

  5. Observing the Earth from an Astronaut's View - Applied Remote Sensing in Schools

    Science.gov (United States)

    Rienow, Andreas; Hodam, Henryk; Menz, Gunter; Kerstin, Voß

    2015-04-01

    Since spring 2014, NASA conducts the High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS). HDEV consists of four cameras mounted at ESA's Columbus laboratory. They continuously observe our earth in three different perspectives. Hence, they provide not only footage showing the Sun and the Moon rising and setting but also regular images of landscapes that are difficult to access, such as mountain ranges, deserts, and tropical rainforests. The German educational project "Columbus Eye", which is executed by the University of Bonn and is funded by the German Aerospace Center (DLR), aims at the implementation of the HDEV imagery and videos in a teaching portal: www.columbuseye.uni-bonn.de. Pupils should be motivated to work with the footage in order to learn about pattern and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (www.fis.uni-bonn.de/en). Recognizing that in-depth use of satellite imagery can only be achieved by the means of computer aided learning methods, a sizeable number of e-Learning contents in German and English have been created throughout the last 7 years since FIS' kickoff. The talk presents the educational valorization of ISS and satellite borne imagery data as well as their interactive implementation for teachers and pupils in both learning portals. It will be shown which possibilities the topic of earth observation from space holds ready for teaching the regular STEM curricula. A report of first experiences of a nationwide road show accompanying the mission of the ESA astronaut Alexander Gerst will be given. Among others it involved an event during which pupils from a secondary school in North Rhine-Westphalia have talked to the astronaut via ham radio. Accordingly, the presentation addresses the question of how synergies of human

  6. STS-61B Astronaut Ross During ACCESS Extravehicular Activity

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, VA and the Marshall Space Flight Center (MSFC), ACCESS and EASE were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  7. The development of a virtual camera system for astronaut-rover planetary exploration.

    Science.gov (United States)

    Platt, Donald W; Boy, Guy A

    2012-01-01

    A virtual assistant is being developed for use by astronauts as they use rovers to explore the surface of other planets. This interactive database, called the Virtual Camera (VC), is an interactive database that allows the user to have better situational awareness for exploration. It can be used for training, data analysis and augmentation of actual surface exploration. This paper describes the development efforts and Human-Computer Interaction considerations for implementing a first-generation VC on a tablet mobile computer device. Scenarios for use will be presented. Evaluation and success criteria such as efficiency in terms of processing time and precision situational awareness, learnability, usability, and robustness will also be presented. Initial testing and the impact of HCI design considerations of manipulation and improvement in situational awareness using a prototype VC will be discussed.

  8. Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity

    OpenAIRE

    B. Vadiraj; S. N. Omkar; B. Kapil Bharadwaj; Yash Vardhan Gupta

    2016-01-01

    During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and...

  9. Real-time Ultrasound Assessment of Astronaut Spinal Anatomy and Disorders on the International Space Station.

    Science.gov (United States)

    Garcia, Kathleen M; Harrison, Michael F; Sargsyan, Ashot E; Ebert, Douglas; Dulchavsky, Scott A

    2018-04-01

    Back pain is one of the most common conditions of astronauts during spaceflight and is hypothesized to be attributed to pathologic anatomic changes. Ultrasound (US) represents the only available imaging modality on the International Space Station, but a formal US protocol for imaging the structures of the spinal column does not exist. This investigation developed a method of acquiring diagnostic-quality images of the anterior lumbar and cervical regions of the spine during long-duration spaceflight. Comprehensive spinal US examinations were conducted on 7 long-duration spaceflight astronauts before flight, in flight, and after flight and compared to preflight and postflight magnetic resonance imaging data. In-flight scans were conducted after just-in-time training assisted by remote expert tele-US guidance. Novice users were able to obtain diagnostic-quality spinal images with a 92.5% success rate. Thirty-three anomalous or pathologic findings were identified during the preflight US analysis, and at least 14 new findings or progressions were identified during the postflight US analysis. Common findings included disk desiccation, osteophytes, and qualitative changes in the intervertebral disk height and angle. Ultrasound has proven efficacy as a portable and versatile diagnostic imaging modality under austere conditions. We demonstrated a potential role for US to evaluate spinal integrity and alterations in the extreme environment of space on the International Space Station. Further investigations should be performed to corroborate this imaging technique and to create a larger database related to in-flight spinal conditions during long-duration spaceflight. © 2017 by the American Institute of Ultrasound in Medicine.

  10. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Science.gov (United States)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  11. Astronaut Preflight Cardiovascular Variables Associated with Vascular Compliance are Highly Correlated with Post-Flight Eye Outcome Measures in the Visual Impairment Intracranial Pressure (VIIP) Syndrome Following Long Duration Spaceflight

    Science.gov (United States)

    Otto, Christian; Ploutz-Snyder, R.

    2015-01-01

    The detection of the first VIIP case occurred in 2005, and adequate eye outcome measures were available for 31 (67.4%) of the 46 long duration US crewmembers who had flown on the ISS since its first crewed mission in 2000. Therefore, this analysis is limited to a subgroup (22 males and 9 females). A "cardiovascular profile" for each astronaut was compiled by examining twelve individual parameters; eleven of these were preflight variables: systolic blood pressure, pulse pressure, body mass index, percentage body fat, LDL, HDL, triglycerides, use of anti-lipid medication, fasting serum glucose, and maximal oxygen uptake in ml/kg. Each of these variables was averaged across three preflight annual physical exams. Astronaut age prior to the long duration mission, and inflight salt intake was also included in the analysis. The group of cardiovascular variables for each crew member was compared with seven VIIP eye outcome variables collected during the immediate post-flight period: anterior-posterior axial length of the globe measured by ultrasound and optical biometry; optic nerve sheath diameter, optic nerve diameter, and optic nerve to sheath ratio- each measured by ultrasound and magnetic resonance imaging (MRI), intraocular pressure (IOP), change in manifest refraction, mean retinal nerve fiber layer (RNFL) on optical coherence tomography (OCT), and RNFL of the inferior and superior retinal quadrants. Since most of the VIIP eye outcome measures were added sequentially beginning in 2005, as knowledge of the syndrome improved, data were unavailable for 22.0% of the outcome measurements. To address the missing data, we employed multivariate multiple imputation techniques with predictive mean matching methods to accumulate 200 separate imputed datasets for analysis. We were able to impute data for the 22.0% of missing VIIP eye outcomes. We then applied Rubin's rules for collapsing the statistical results across our 200 multiply imputed data sets to assess the canonical

  12. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts: Persistence of Damage After Flight and the Effects of Repeat Long Duration Missions

    Science.gov (United States)

    George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.

    2010-01-01

    Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  13. Analysis of complex-type chromosome exchanges in astronauts' lymphocytes after space flight as a biomarker of high-LET exposure

    International Nuclear Information System (INIS)

    George, K.; Wu, H.; Willingham, V.; Cucinotta, F.A.

    2002-01-01

    High-linear energy transfer (LET) radiation is moreefficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. To investigate if complex chromosome exchanges are induced by the high-LET component of space radiation exposure, damage was assessed in astronauts' blood lymphocytes before and after longduration missions of 3-4 months. The frequency of simple translocations increased significantly for most of the crewmembers studied. However, there were few complex exchanges detected and only one crewmember had a significant increase after flight. It has been suggested that the yield of complex chromosome damage could be underestimated when analyzing metaphase cellscollected at one time point after irradiation, andanalysis of chemically-induced premature chromosomecondensation (PCC) may be more accurate since problems with complicated cell-cycle delays are avoided.However, in this case the yields of chromosome damage were similar for metaphase and PCC analysis of astronauts' lymphocytes. It appears that the use of complex-type exchanges as biomarkerof radiation quality in vivo after low-dose chronicexposure in mixed radiation fields is hampered by statistical uncertainties. (author)

  14. Do Astronauts have a Higher Rate of Orthopedic Shoulder Conditions than a Cohort of Working Professionals?

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Young, Millenia; Wear, Mary L.; Tarver, W. J.; Van Baalen, Mary

    2016-01-01

    Occupational surveillance of astronaut shoulder injuries began with operational concerns at the Neutral Buoyancy Laboratory (NBL) during Extra Vehicular Activity (EVA) training. NASA has implemented several occupational health initiatives during the past 20 years to decrease the number and severity of injuries, but the individual success rate is unknown. Orthopedic shoulder injury and surgery rates were calculated, but classifying the rates as normal, high or low was highly dependent on the comparison group. The purpose of this study was to identify a population of working professionals and compare orthopedic shoulder consultation and surgery rates.

  15. Space Culture: Innovative Cultural Approaches To Public Engagement With Astronomy, Space Science And Astronautics

    Science.gov (United States)

    Malina, Roger F.

    2012-01-01

    In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds

  16. Potential enhanced risk for space-station astronauts

    International Nuclear Information System (INIS)

    Brenner, D.J.

    1991-01-01

    One of the limiting features of a low-orbital inclination space station will be the radiation dose to which astronauts will be exposed from fast protons trapped by the earth's magnetic field in the South Atlantic Anomaly (SAA). This dose, typically 5 cGy for a 90-day mission, will be delivered in many small, hourly fractions corresponding to the orbiting period of the space station. Protons in the energy range of those trapped in the SAA deposit dose as a mixture of sparsely-ionizing, proton-induced Coulomb interactions, and densely ionizing interactions from proton-induced nuclear fragmentation products. For protons in the SAA, about one third of the dose and the majority of the dose equivalent will be due to densely-ionizing interactions. Thus it is possible that fast protons will, like neutrons, exhibit an enhancement of risk when delivered in many small fractions over a long period. To quantify the potential extent of the problem, the authors use consistent modeling of the inverse dose rate effect as a function of dose, dose rate, and radiation quality. The basic notion is that cells in some period of their cycle are more sensitive to radiation than cells that are not in this period. Then, a single exposure of cycling cells to densely-ionizing radiation will result in some fraction of these sensitive cells receiving very large depositions of energy - much greater than required to produce the changes that lead to oncogenic transformation. On the other hand, if the exposure is fractionated, a larger proportion of sensitive cells will be exposed, though to smaller average numbers of energy depositions

  17. Apollo 11 Astronauts In Prayer Within Quarantine Facility

    Science.gov (United States)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via a Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was taken to safety aboard the USS Hornet, where they were quartered in a mobile quarantine facility. Shown here is the Apollo 11 crew inside the quarantine facility as prayer is offered by Lt. Commander John Pirrto, USS Hornet Chaplain accompanied by U.S. President Richard Nixon (front right). With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  18. Digital Astronaut Project Biomechanical Models: Biomechanical Modeling of Squat, Single-Leg Squat and Heel Raise Exercises on the Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem

    2015-01-01

    The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on

  19. Summary of astronaut inputs on automation and robotics for Space Station Freedom

    Science.gov (United States)

    Weeks, David J.

    1990-01-01

    Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.

  20. STS-61B Astronaut Spring During EASE Extravehicular Activity (EVA)

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  1. Electrically Stimulated Antagonist Muscle Contraction Increased Muscle Mass and Bone Mineral Density of One Astronaut - Initial Verification on the International Space Station.

    Science.gov (United States)

    Shiba, Naoto; Matsuse, Hiroo; Takano, Yoshio; Yoshimitsu, Kazuhiro; Omoto, Masayuki; Hashida, Ryuki; Tagawa, Yoshihiko; Inada, Tomohisa; Yamada, Shin; Ohshima, Hiroshi

    2015-01-01

    Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS). We developed the Hybrid Training System (HTS) to maintain an astronaut's musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system's orbital operation capability and utility, as well as its preventative effect on an astronaut's musculoskeletal atrophy. HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR). 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks) were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance), MRI (muscle volume), and DXA (BMD, lean [muscle] mass, fat mass). Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force) and a measuring tape (upper arm circumference). The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm) changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule) of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts) of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle) mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR. These results showed the orbital operation

  2. Electrically Stimulated Antagonist Muscle Contraction Increased Muscle Mass and Bone Mineral Density of One Astronaut - Initial Verification on the International Space Station.

    Directory of Open Access Journals (Sweden)

    Naoto Shiba

    Full Text Available Musculoskeletal atrophy is one of the major problems of extended periods of exposure to weightlessness such as on the International Space Station (ISS. We developed the Hybrid Training System (HTS to maintain an astronaut's musculoskeletal system using an electrically stimulated antagonist to resist the volitional contraction of the agonist instead of gravity. The present study assessed the system's orbital operation capability and utility, as well as its preventative effect on an astronaut's musculoskeletal atrophy.HTS was attached to the non-dominant arm of an astronaut staying on the ISS, and his dominant arm without HTS was established as the control (CTR. 10 sets of 10 reciprocal elbow curls were one training session, and 12 total sessions of training (3 times per week for 4 weeks were performed. Pre and post flight ground based evaluations were performed by Biodex (muscle performance, MRI (muscle volume, and DXA (BMD, lean [muscle] mass, fat mass. Pre and post training inflight evaluations were performed by a hand held dynamometer (muscle force and a measuring tape (upper arm circumference.The experiment was completed on schedule, and HTS functioned well without problems. Isokinetic elbow extension torque (Nm changed -19.4% in HTS, and -21.7% in CTR. Isokinetic elbow flexion torque changed -23.7% in HTS, and there was no change in CTR. Total Work (Joule of elbow extension changed -8.3% in HTS, and +0.3% in CTR. For elbow flexion it changed -23.3% in HTS and -32.6% in CTR. Average Power (Watts of elbow extension changed +22.1% in HTS and -8.0% in CTR. For elbow flexion it changed -6.5% in HTS and -4.8% in CTR. Triceps muscle volume according to MRI changed +11.7% and that of biceps was +2.1% using HTS, however -0.1% and -0.4% respectively for CTR. BMD changed +4.6% in the HTS arm and -1.2% for CTR. Lean (muscle mass of the arm changed only +10.6% in HTS. Fat mass changed -12.6% in HTS and -6.4% in CTR.These results showed the orbital

  3. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  4. Former Dryden pilot and NASA astronaut Neil Armstrong being inducted into the Aerospace Walk of Hono

    Science.gov (United States)

    1991-01-01

    Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8

  5. A Review of Training Methods and Instructional Techniques: Implications for Behavioral Skills Training in U.S. Astronauts (DRAFT)

    Science.gov (United States)

    Hysong, Sylvia J.; Galarza, Laura; Holland, Albert W.

    2007-01-01

    Long-duration space missions (LDM) place unique physical, environmental and psychological demands on crewmembers that directly affect their ability to live and work in space. A growing body of research on crews working for extended periods in isolated, confined environments reveals the existence of psychological and performance problems in varying degrees of magnitude. The research has also demonstrated that although the environment plays a cathartic role, many of these problems are due to interpersonal frictions (Wood, Lugg, Hysong, & Harm, 1999), and affect each individual differently. Consequently, crewmembers often turn to maladaptive behaviors as coping mechanisms, resulting in decreased productivity and psychological discomfort. From this body of research, critical skills have been identified that can help a crewmember better navigate the psychological challenges of long duration space flight. Although most people lack several of these skills, most of them can be learned; thus, a training program can be designed to teach crewmembers effective leadership, teamwork, and self-care strategies that will help minimize the emergence of maladaptive behaviors. Thus, it is the purpose of this report is twofold: 1) To review the training literature to help determine the optimal instructional methods to use in delivering psychological skill training to the U.S. Astronaut Expedition Corps, and 2) To detail the structure and content of the proposed Astronaut Expedition Corps Psychological Training Program.

  6. PREFACE: International Scientific and Research Conference on Topical Issues in Aeronautics and Astronautics (dedicated to the 55th anniversary from the foundation of SibSAU)

    Science.gov (United States)

    2015-10-01

    The International Scientific and Research Conference ''Topical Issues in Aeronautics and Astronautics'' is one of the most significant scientific conferences arranged by the Reshetnev Siberian State Aerospace University (SibSAU) which is located in the Krasnoyarsk Region of Russian Federation. In April 2015 this Conference was dedicated to the 55th anniversary from the foundation of the University. Traditionally, the Conference is seen as emblematic of the University's specialty and is annually organized in April, when the first human travelled into space. This Conference is arranged for undergraduate, graduate and postgraduate students, scientists and lecturers, as well as developers, designers and constructors representing leading companies and enterprises of the aerospace sector to give opportunities to present their projects, research work and results. The Conference is a great chance to connect scientists and highly-qualified and skilled specialists with a new community of future scientists and practitioners in the aerospace sector. The Conference proceedings include papers presented by creative young specialists closely connected with aviation and space vehicles - design, production, problem-solving in space machine building and aerospace education, macro- and microeconomic development of the field, new approaches to solving philosophical and social problems, - experienced scientists and specialists, and all those who want to dedicate themselves to aeronautics and astronautics. The selected papers are presented in these proceedings to share University research results, innovations and cutting-edge technologies with the international community to develop aeronautics and astronautics on a global scale.

  7. Improving Working Conditions for Astronauts: An Electronic Personal Restraint System for Use in Microgravity Environments

    Directory of Open Access Journals (Sweden)

    Kevin Tait

    2012-01-01

    Full Text Available While in microgravity, astronauts are preoccupied with physical restraint, which takes attention away from the maintenance task or scientific experiment at hand. This may directly lead to safety concerns and increased time for extravehicular activity, as well as potentially inhibit or corrupt data collection. A primary concern is the time it takes to manipulate the current restraint system. The portable foot restraint currently in use by NASA employs a series of pins in order to engage the system or release in an emergency. This requires considerable time for the user to detach, and there is an increased risk of entanglement. If restraint operating time could be reduced by 50%, the astronaut’s assigned experiment time could be increased an average of 100 minutes per mission. Another problem identified by NASA included the inability of the current system to release the user upon failure. Research and design was conducted following the Six-Sigma DMEDI project architecture, and a new form of restraint to replace the existing system was proposed. The research team first studied the customer requirements and relevant standards set by NASA, and with this information they began drafting designs for a solution. This project utilized electromagnetism to restrain a user in microgravity. The proposed system was capable of being manipulated quickly, failing in a manner that released the user, and being electronically controlled. This active electronic control was a new concept in restraint systems, as it enabled an astronaut to effectively “walk” along a surface while remaining restrained to it. With the design prototype and a limited budget, a rudimentary test assembly was built by the team, and most of NASA’s specifications were met. With recommendations from NASA, the research team concluded by developing potential material and design solutions that can be explored in the future by Purdue University or other parties.

  8. From Model Rockets to Spacewalks: an Astronaut Physician’s Journey and the Science of the United States’ Space Program*

    OpenAIRE

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author’s life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can ...

  9. Regulation of circadian blood pressure: from mice to astronauts.

    Science.gov (United States)

    Agarwal, Rajiv

    2010-01-01

    Circadian variation is commonly seen in healthy people; aberration in these biological rhythms is an early sign of disease. Impaired circadian variation of blood pressure (BP) has been shown to be associated with greater target organ damage and with an elevated risk of cardiovascular events independent of the BP load. The purpose of this review is to examine the physiology of circadian BP variation and propose a tripartite model that explains the regulation of circadian BP. The time-keeper in mammals resides centrally in the suprachiasmatic nucleus. Apart from this central clock, molecular clocks exist in most peripheral tissues including vascular tissue and the kidney. These molecular clocks regulate sodium balance, sympathetic function and vascular tone. A physiological model is proposed that integrates our understanding of molecular clocks in mice with the circadian BP variation among humans. The master regulator in this proposed model is the sleep-activity cycle. The equivalents of peripheral clocks are endothelial and adrenergic functions. Thus, in the proposed model, the variation in circadian BP is dependent upon three major factors: physical activity, autonomic function, and sodium sensitivity. The integrated consideration of physical activity, autonomic function, and sodium sensitivity appears to explain the physiology of circadian BP variation and the pathophysiology of disrupted BP rhythms in various conditions and disease states. Our understanding of molecular clocks in mice may help to explain the provenance of blunted circadian BP variation even among astronauts.

  10. Training astronauts using three-dimensional visualisations of the International Space Station.

    Science.gov (United States)

    Rycroft, M; Houston, A; Barker, A; Dahlstron, E; Lewis, N; Maris, N; Nelles, D; Bagaoutdinov, R; Bodrikov, G; Borodin, Y; Cheburkov, M; Ivanov, D; Karpunin, P; Katargin, R; Kiselyev, A; Kotlayarevsky, Y; Schetinnikov, A; Tylerov, F

    1999-03-01

    Recent advances in personal computer technology have led to the development of relatively low-cost software to generate high-resolution three-dimensional images. The capability both to rotate and zoom in on these images superposed on appropriate background images enables high-quality movies to be created. These developments have been used to produce realistic simulations of the International Space Station on CD-ROM. This product is described and its potentialities demonstrated. With successive launches, the ISS is gradually built up, and visualised over a rotating Earth against the star background. It is anticipated that this product's capability will be useful when training astronauts to carry out EVAs around the ISS. Simulations inside the ISS are also very realistic. These should prove invaluable when familiarising the ISS crew with their future workplace and home. Operating procedures can be taught and perfected. "What if" scenario models can be explored and this facility should be useful when training the crew to deal with emergency situations which might arise. This CD-ROM product will also be used to make the general public more aware of, and hence enthusiastic about, the International Space Station programme.

  11. Astronaut Photography of the Earth: A Long-Term Dataset for Earth Systems Research, Applications, and Education

    Science.gov (United States)

    Stefanov, William L.

    2017-01-01

    The NASA Earth observations dataset obtained by humans in orbit using handheld film and digital cameras is freely accessible to the global community through the online searchable database at https://eol.jsc.nasa.gov, and offers a useful compliment to traditional ground-commanded sensor data. The dataset includes imagery from the NASA Mercury (1961) through present-day International Space Station (ISS) programs, and currently totals over 2.6 million individual frames. Geographic coverage of the dataset includes land and oceans areas between approximately 52 degrees North and South latitudes, but is spatially and temporally discontinuous. The photographic dataset includes some significant impediments for immediate research, applied, and educational use: commercial RGB films and camera systems with overlapping bandpasses; use of different focal length lenses, unconstrained look angles, and variable spacecraft altitudes; and no native geolocation information. Such factors led to this dataset being underutilized by the community but recent advances in automated and semi-automated image geolocation, image feature classification, and web-based services are adding new value to the astronaut-acquired imagery. A coupled ground software and on-orbit hardware system for the ISS is in development for planned deployment in mid-2017; this system will capture camera pose information for each astronaut photograph to allow automated, full georegistration of the data. The ground system component of the system is currently in use to fully georeference imagery collected in response to International Disaster Charter activations, and the auto-registration procedures are being applied to the extensive historical database of imagery to add value for research and educational purposes. In parallel, machine learning techniques are being applied to automate feature identification and classification throughout the dataset, in order to build descriptive metadata that will improve search

  12. Virtual Astronaut for Scientific Visualization—A Prototype for Santa Maria Crater on Mars

    Directory of Open Access Journals (Sweden)

    Edward A. Guinness

    2012-12-01

    Full Text Available To support scientific visualization of multiple-mission data from Mars, the Virtual Astronaut (VA creates an interactive virtual 3D environment built on the Unity3D Game Engine. A prototype study was conducted based on orbital and Opportunity Rover data covering Santa Maria Crater in Meridiani Planum on Mars. The VA at Santa Maria provides dynamic visual representations of the imaging, compositional, and mineralogical information. The VA lets one navigate through the scene and provides geomorphic and geologic contexts for the rover operations. User interactions include in-situ observations visualization, feature measurement, and an animation control of rover drives. This paper covers our approach and implementation of the VA system. A brief summary of the prototype system functions and user feedback is also covered. Based on external review and comments by the science community, the prototype at Santa Maria has proven the VA to be an effective tool for virtual geovisual analysis.

  13. Synergistic action of gravity and temperature on the motor system within the lifespan: a "Baby Astronaut" hypothesis.

    Science.gov (United States)

    Meigal, Alexander Yu

    2013-03-01

    Here we describe GATO (gravity, age, thermoregulation, and oxygenation) hypothesis (or a "Baby Astronaut" hypothesis) which we suggest to explain synergistic effect of these factors on the motor system. Taken separately, microgravity (in spaceflight, G~0), the early age, heat and hypoxia exert identical effect on the motor system. We posit that synergy of these factors originate from their synchronicity during intrauterine immersion (analog microgravity) of the fetus in warm hypoxic condition. We further postulate three successive motor adaptive strategies, driven lifelong by gravity as the key factor. The first by age, fetal/microgravity (FM)-strategy, induced by the intrauterine immersion of the fetus, is based on domination of fast type muscle fibers. After birth, thought to be analog for landing from orbit, newborn is subjected to combined influence of cooler ambient temperature, normoxia, and 1G Earth gravity, which cooperatively form a slower GE-strategy. Eventually, healthy ageing results in further domination of slow type muscle fibers that forms the slowest (SL)-strategy. Our hypothesis implies that specific sensory conditions may substitute for each other owing to their synergistic action on the motor system. According to GATO hypothesis heating and hypoxia may be considered as "pro-microgravity" factors, while cold and hyperoxia - as "pro-gravity" ones. As such, cold may act as a partial "surrogate" for gravity, estimated as ~0.2G. That may have potential to elaborate countermeasures for muscle atrophy in astronauts either on-board in long-term spaceflight or for post-flight rehabilitation. Based on GATO hypothesis, predictions on muscle remodeling caused by illumination, sound/noise, and gravidity are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    Science.gov (United States)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  15. Effect of oxygen pressure on sensitivity of CR-39 used for astronauts radiation dosimetry

    International Nuclear Information System (INIS)

    Murai, T.; Yabe, S.; Nagamatsu, A.; Tawara, H.; Kumagai, H.; Miyazawa, Y.; Kitajo, K.; Kodaira, S.; Yasuda, N.

    2006-01-01

    The personal radiation dosimeters for astronauts are exposed to low-pressure oxygen gas (0.29 atmospheres) during extra-vehicle activities. CR-39 plastic track detectors are one of the typical passive dosimeters for space radiation monitoring. We investigated change in track formation sensitivity of the antioxidant-doped CR-39 plastic with which oxygen gas comes in contact at different pressures up to 2 atmospheres for 1h to 10 days. The oxygen effect on sensitivity was measured for the C, Si and Fe ions (10-200 keV/μm) from the HIMAC heavy ion accelerator. The sensitivity is obviously sensitive to oxygen pressure at heavy-ion exposures, but not sensitive to the experience of oxygen atmosphere before and after the ion exposures. The maximum sensitivity is obtained at 0.29 atmospheres. The present experimental data suggested that the effect depends on LET of incident particles. (author)

  16. Astronaut James S. Voss Performs Task in the Russian Zvezda Service Module

    Science.gov (United States)

    2001-01-01

    Astronaut James S. Voss, Expedition Two flight engineer, performs an electronics task in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian-built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity, the first U.S.-built component to the ISS. Zvezda (Russian word for star), the third component of the ISS and the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  17. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    Science.gov (United States)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  18. STS-102 Astronaut Thomas Views International Space Station Through Shuttle Window

    Science.gov (United States)

    2001-01-01

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  19. Persistence of Space Radiation-Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts and the Effects of Repeat Long Duration Space Missions

    Science.gov (United States)

    George, Kerry A.; Cucinotta, Francis A.

    2009-01-01

    The yield of chromosome damage in astronauts blood lymphocytes has been shown to increase after long duration space missions of a few months or more. This provides a useful in vivo measurement of space radiation induced damage that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest follow-up analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times, from directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and estimates derived from samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. Limited data on three individuals who have participated in repeat long duration space flights indicates a lack of correlation between time in space and translocation yields, and show a possible adaptive response to space radiation exposure.

  20. Pharmacokinetics of Acetaminophen in Hind Limbs Unloaded Mice: A Model System Simulating the Effects of Low Gravity on Astronauts in Space

    Science.gov (United States)

    Peterson, Amanda; Risin, Semyon A.; Ramesh, Govindarajan T.; Dasgupta, Amitava; Risin, Diana

    2008-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in Space. Low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration in astronauts. Acquiring of such knowledge has inherent difficulties due to limited opportunities for experimenting in Space. One of the approaches is to use model systems that simulate some of the Space conditions on Earth. In this study we used hind limbs unloaded mice (HLU) to investigate the possible changes in PK of acetaminophen, a widely used analgesic with high probability of use by astronauts. The HLU is recognized as an appropriate model for simulating the effects of low gravity on hemodynamic parameters. Mice were tail suspended (n = 24) for 24-96 hours prior to introduction of acetaminophen (150 - 300 mg/kg). The drug (in aqueous solution containing 10% ethyl alcohol by volume) was given orally by a gavage procedure and after the administration of acetaminophen mice were additionally suspended for 30 min, 1 and 2 hours. Control mice (n = 24) received the same dose of acetaminophen and were kept freely all the time. Blood specimens were obtained either from retroorbital venous sinuses or from heart. Acetaminophen concentration was measured in plasma by the fluorescent polarization immunoassay and the AxSYM analyzer (Abbott Laboratories). In control mice peak acetaminophen concentration was achieved at 30 min. By 1 hour the concentration decreased to less than 50% of the peak level and at 2 hours the drug was almost undetectable in the serum. HLU for 24 hours significantly altered the acetaminophen pharmacokinetic: at 30 min the acetaminophen concentrations were significantly (both statistically and medically significant) lower than in control mice. The concentrations also reduced less

  1. Effect of STS space suit on astronaut dominant upper limb EVA work performance

    Science.gov (United States)

    Greenisen, Michael C.

    1987-01-01

    The STS Space Suited and unsuited dominant upper limb performance was evaluated in order to quantify future EVA astronaut skeletal muscle upper limb performance expectations. Testing was performed with subjects standing in EVA STS foot restraints. Data was collected with a CYBEX Dynamometer enclosed in a waterproof container. Control data was taken in one g. During one g testing, weight of the Space Suit was relieved from the subject via an overhead crane with a special connection to the PLSS of the suit. Experimental data was acquired during simulated zero g, accomplished by neutral buoyancy in the Weightless Environment Training Facility. Unsuited subjects became neutrally buoyant via SCUBA BC vests. Actual zero g experimental data was collected during parabolic arc flights on board NASA's modified KC-135 aircraft. During all test conditions, subjects performed five EVA work tasks requiring dominant upper limb performance and ten individual joint articulation movements. Dynamometer velocities for each tested movement were 0 deg/sec, 30 or 60 deg/sec and 120 or 180 deg/sec, depending on the test, with three repetitions per test. Performance was measured in foot pounds of torque.

  2. Astronauts Stefanyshyn-Piper, Lindsey and Currie greet First Lady Hillary Clinton at the Skid Strip

    Science.gov (United States)

    1999-01-01

    First Lady Hillary Rodham Clinton is greeted by Astronauts (from left) Heidemarie M. Stefanyshyn-Piper, Steven W. Lindsey, and Nancy Jane Currie upon Mrs. Clinton's arrival at the Skid Strip at Cape Canaveral Air Station. She and her daughter, Chelsea (far right) are here to view the launch of Space Shuttle mission STS- 93, scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes.

  3. Defining the Relationship Between Biomarkers of Oxidation and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Science.gov (United States)

    Lee, Stuart M. C.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis.

  4. Results of the ESA study on psychological selection of astronaut candidates for Columbus missions II: Personality assessment

    Science.gov (United States)

    Goeters, Klaus-Martin; Fassbender, Christoph

    A unique composition of personality assessment methods was applied to a group of 97 ESA scientists and engineers. This group is highly comparable to real astronaut candidates with respect to age and education. The list of used tests includes personality questionnaires, problem solving in groups as well as a projective technique. The study goals were: 1. Verification of psychometric qualities and applicability of tests to the target group; 2. Search for culture-fair tests by which multi-national European groups can be examined; 3. Identification of test methods by which the adaptability of the candidates to the psycho-social stress of long-duration space flights can be assessed. Based on the empirical findings, a test battery was defined which can be used in the selection of ESA space personnel.

  5. From model rockets to spacewalks: an astronaut physician's journey and the science of the United States' space program.

    Science.gov (United States)

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author's life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can be accomplished in the microgravity of space. NASA's efforts to develop inspection and repair capabilities in the aftermath of the Columbia tragedy are also covered, as are the nation's plans for returning to the Moon and continuing on to Mars as part of the Vision for Space Exploration (VSE).

  6. Defining the Relationship Between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Science.gov (United States)

    Lee, S. M. C.; Martin, D. S.; Smith, S. M.; Zwart, S. R.; Laurie, S. S; Ribeiro, L. C.; Stenger, M. B.

    2017-01-01

    Current human space travel consists primarily of long-duration missions onboard the International Space Station (ISS), but in the future may include exploration-class missions to nearby asteroids, Mars, or its moons. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative stress and inflammation can accelerate the development of atherosclerosis.

  7. Different Perspectives on Asthenia in Astronauts and Cosmonauts: International Research Literature

    Science.gov (United States)

    Sandoval, Luis; Shea, Camille; Otto, Christian; Leventon, Lauren

    2010-01-01

    The Behavioral Health and Performance (BHP) Element is one of the six elements within the NASA Human Research Program (HRP) and is responsible for managing four risks: a) The Risk of Performance Decrements due to inadequate Cooperation, Coordination, Communication and Psychological Adaptation within a Team (Team), b) the Risk of Performance Errors due to Sleep Loss, Circadian De-synchronization, Fatigue and Work Overload (Sleep), c) Risk of Behavioral Conditions (BMed), and d) the Risk of Psychiatric Disorders (BMed). The aim of this report is to address some of the recommendations made by the recent NASA HRP Standing Review Panel for the Behavioral Medicine Risk of Psychiatric Disorders. Such recommendations included: a) the inclusion of important national and international literature in English and non-English language materials; including journals, books, magazines, conference reports and b) an extensive literature review of certain types of psychological states to predict, detect, and assess adverse mental states that may negatively affect the psychological well being of the astronauts, specifically asthenia. This report was a collaborative international work effort focused on the evaluation and determination of the importance of continuing research on asthenia as a possible psychological problem that might affect the optimal psychological functioning among crewmembers during long-duration space flight missions. Russian medical personnel (flight surgeons and psychologist) have observed symptoms of asthenia (weakness, increased fatigue, irritability, and attention and memory disorders) in cosmonauts after four months in space (Myasnikov& Zamaleddinov1996; Grigorieve, 1996 ) and believe that asthenia is one of the greater risks that will affect crews? optimal psychological functioning.

  8. Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial

    Science.gov (United States)

    Maggioni, Aldo P.; Greene, Stephen J.; Fonarow, Gregg C.; Böhm, Michael; Zannad, Faiez; Solomon, Scott D.; Lewis, Eldrin F.; Baschiera, Fabio; Hua, Tsushung A.; Gimpelewicz, Claudio R.; Lesogor, Anastasia; Gheorghiade, Mihai; Ramos, Silvina; Luna, Alejandra; Miriuka, Santiago; Diez, Mirta; Perna, Eduardo; Luquez, Hugo; Pinna, Jorge Garcia; Castagnino, Jorge; Alvarenga, Pablo; Ibañez, Julio; Blumberg, Eduardo Salmon; Dizeo, Claudio; Guerrero, Rodolfo Ahuad; Schygiel, Pablo; Milesi, Rodolfo; Sosa, Carlos; Hominal, Miguel; Marquez, Lilia Lobo; Poy, Carlos; Hasbani, Eduardo; Vico, Marisa; Fernandez, Alberto; Vita, Nestor; Vanhaecke, Johan; De Keulenaer, Gilles; Striekwold, Harry; Vervoort, Geert; Vrolix, Mathias; Henry, Philippe; Dendale, Paul; Smolders, Walter; Marechal, Patrick; Vandekerckhove, Hans; Oliveira, Mucio; Neuenschwande, Fernando; Reis, Gilmar; Saraiva, Jose; Bodanese, Luiz; Canesin, Manoel; Greco, Oswaldo; Bassan, Roberto; Marino, Roberto Luis; Giannetti, Nadia; Moe, Gordon; Sussex, Bruce; Sheppard, Richard; Huynh, Thao; Stewart, Robert; Haddad, Haissam; Echeverria, Luis; Quintero, Adalberto; Torres, Adriana; Jaramillo, Mónica; Lopez, Mónica; Mendoza, Fernan; Florez, Noel; Cotes, Carlos; Garcia, Magali; Belohlavek, Jan; Hradec, Jaromir; Peterka, Martin; Gregor, Pavel; Monhart, Zdenek; Jansky, Petr; Kettner, Jiri; Reichert, Petr; Spinar, Jindrich; Brabec, Tomas; Hutyra, Martin; Solar, Miroslav; Pietilä, Mikko; Nyman, Kai; Pajari, Risto; Cohen, Ariel; Galinier, Michel; Gosse, Philippe; Livarek, Bernard; Neuder, Yannick; Jourdain, Patrick; Picard, François; Isnard, Richard; Hoppe, Uta; Kaeaeb, Stefan; Rosocha, Stefan; Prondzinsky, Roland; Felix, Stephan; Duengen, Hans-Dirk; Figulla, Hans-Reiner; Fischer, Sven; Behrens, Steffen; Stawowy, Philipp; Kruells-Muench, Juergen; Knebel, Fabian; Nienaber, Christoph; Werner, Dierk; Aron, Wilma; Remppis, Bjoern; Hambrecht, Rainer; Kisters, Klaus; Werner, Nikos; Hoffmann, Stefan; Rossol, Siegbert; Geiss, Ernst; Graf, Kristof; Hamann, Frank; von Scheidt, Wolfgang; Schwinger, Robert; Tebbe, Ulrich; Costard-Jaeckle, Angelika; Lueders, Stephan; Heitzer, Thomas; Leutermann-Oei, Marie-Louise; Braun-Dullaeus, Ruediger; Roehnisch, Jens-Uwe; Muth, Gerhard; Goette, Andreas; Rotter, Achim; Ebelt, Henning; Olbrich, Hans-Georg; Mitrovic, Veselin; Hengstenberg, Christian; Schellong, Sebastian; Zamolyi, Karoly; Vertes, Andras; Matoltsy, Andras; Palinkas, Attila; Herczeg, Bela; Apro, Dezso; Lupkovics, Geza; Tomcsanyi, Janos; Toth, Kalman; Mathur, Atul; Banker, Darshan; Bharani, Anil; Arneja, Jaspal; Khan, Aziz; Gadkari, Milind; Hiremath, Jagdish; Patki, Nitin; Kumbla, Makund; Santosh, M.J.; Ravikishore, A.G.; Abhaichand, Rajpal; Maniyal, Vijayakukmar; Nanjappa, Manjunath; Reddy, P. Naveen; Chockalingam, Kulasekaran; Premchand, Rajendra; Mahajan, Vijay; Lewis, Basil; Wexler, Dov; Shochat, Michael; Keren, Andre; Omary, Muhamad; Katz, Amos; Marmor, Alon; Lembo, Giuseppe; Di Somma, Salvatore; Boccanelli, Alessandro; Barbiero, Mario; Pajes, Giuseppe; De Servi, Stefano; Greco, Dott Cosimo; De Santis, Fernando; Floresta, Agata; Visconti, Luigi Oltrona; Piovaccari, Giancarlo; Cavallini, Claudio; Di Biase, Matteo; Masini, Dott Franco; Vassanelli, Corrado; Viecca, Maurizio; Cangemi, Dott Francesco; Pirelli, Salvatore; Borghi, Claudio; Volpe, Massimo; Branzi, Angelo; Percoco, Dott Giovanni; Severi, Silvia; Santini, Alberto; De Lorenzi, Ettore; Metra, Marco; Zacà, Valerio; Mortara, Andrea; Tranquilino, Francisco P.; Babilonia, Noe A.; Ferrolino, Arthur M.; Manlutac, Benjamin; Dluzniewski, Miroslaw; Dzielinska, Zofia; Nowalany-Kozie, Ewa; Mazurek, Walentyna; Wierzchowiecki, Jerzy; Wysokinski, Andrzej; Szachniewicz, Joanna; Romanowski, Witold; Krauze-Wielicka, Magdalena; Jankowski, Piotr; Berkowski, Piotr; Szelemej, Roman; Kleinrok, Andrzej; Kornacewicz-Jac, Zdzislawa; Vintila, Marius; Vladoianu, Mircea; Militaru, Constantin; Dan, Gheorghe; Dorobantu, Maria; Dragulescu, Stefan; Kostenko, Victor; Vishnevsky, Alexandr; Goloschekin, Boris; Tyrenko, Vadim; Gordienko, Alexander; Kislyak, Oxana; Martsevich, Sergey; Kuchmin, Alexey; Karpov, Yurii; Fomin, Igor; Shvarts, Yury; Orlikova, Olga; Ershova, Olga; Berkovich, Olga; Sitnikova, Maria; Pakhomova, Inna; Boldueva, Svetlana; Tyurina, Tatiana; Simanenkov, Vladimir; Boyarkin, Mikhail; Novikova, Nina; Tereschenko, Sergey; Zadionchenko, Vladimir; Shogenov, Zaur; Gordeev, Ivan; Moiseev, Valentin; Wong, Raymond; Ong, Hean Yee; Le Tan, Ju; Goncalvesova, Eva; Kovar, Frantisek; Skalina, Ivan; Kasperova, Viera; Hojerova, Silvia; Szentivanyi, Miroslav; Stancak, Branislav; Babcak, Marian; Kycina, Peter; Poliacik, Pavol; Toth, Peter; Sirotiakova, Jana; de Sa, Esteban Lopez; Bueno, Manuel Gomez; Selles, Manuel Martinez; Cabrera, Jose Angel; Freire, Ramon Bover; Gonzalez Juanatey, Jose Ramon; Comin, Josep; Soriano, FranciscoRidocci; Lopez, Alejandro; Vicho, Raul; Lama, Manuel Geraldia; Schaufelberger, Maria; Brunotte, Richard; Ullman, Bengt; Hagerman, Inger; Cizinsky, Stella; Cherng, Wen-Jin; Yu, Wen-Chung; Kuo, Chi-Tai; Chang, Kuan-Cheng; Lai, Wen-Ter; Kuo, Jen-Yuan; Ural, Dilek; Badak, Ozer; Akin, Mustafa; Yigit, Zerrin; Yokusoglu, Mehmet; Yilmaz, Mehmet; Abaci, Adnan; Ebinc, Haksun; Perlman, Richard; Parish, David; Bergin, James; Burnham, Kenneth; Brown, Christopher; Lundbye, Justin; Williams, Celeste; Eisen, Howard; Juneman, Elizabeth; Joseph, Susan; Peberdy, Mary Ann; Peura, Jennifer; Gupta, Vishal; Habet, Kalim; French, William; Mody, Freny; Graham, Susan; Hazelrigg, Monica; Chung, Eugene; Dunlap, Stephanie; Nikolaidis, Lazaros; Najjar, Samer; Katz, Richard; Murali, Srinivas; Izzo, Joseph L.; Callister, Tracy; Phillips, Roland; Lippolis, Nicholas; Winterton, John; Meymandi, Sheba; Heilman, Karl; Oren, Ron; Zolty, Ronald; Brottman, Michael; Gunawardena, D.R.; Adams, Kirkwood; Barnard, Denise; Klapholz, Marc; Fulmer, James

    2013-01-01

    Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64–0.99; DM: HR: 1.16, 95% CI: 0.91–1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50–0.94; DM: HR: 1.64, 95% CI: 1.15–2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium ≥6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71–1.93; DM: HR: 2.39, 95% CI: 1.30

  9. From Model Rockets to Spacewalks: an Astronaut Physician’s Journey and the Science of the United States’ Space Program*

    Science.gov (United States)

    Parazynski, Scott E

    2006-01-01

    From simple childhood dreams to their fulfillment, this presentation chronicles the author’s life journey from young model rocketteer through his medical training and eventual career as a NASA astronaut. Over the course of four Space Shuttle flights and a cumulative 6 weeks in space, including 20 hours of Extravehicular Activity (EVA, or spacewalking), this article describes a wide range of activities and scientific payloads that are representative of the unique and valuable science that can be accomplished in the microgravity of space. NASA’s efforts to develop inspection and repair capabilities in the aftermath of the Columbia tragedy are also covered, as are the nation’s plans for returning to the Moon and continuing on to Mars as part of the Vision for Space Exploration (VSE). PMID:18528479

  10. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Science.gov (United States)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  11. STS-61B Astronaut Ross Works on Assembly Concept for Construction of Erectable Space Structure

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  12. STS-61B Astronauts Ross and Spring Work on Experimental Assembly of Structures in Extravehicular

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). This STS-61B onboard photo depicts astronauts Ross and Spring working on EASE. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  13. The assessment and analysis of astronaut mental fatigue in long-duration spaceflight

    Science.gov (United States)

    Li, Yun; Zhou, Qianxiang; Zu, Xiaoqi

    2012-07-01

    In the field of aerospace, mental work has become the main form of most operations, and the other operations are mixed works which are mental work dominated. Confined spaces, silent space environment, specified mode of communication, limited contract with the ground and discomfort of weightlessness also can lead to the aggravation and acceleration of mental fatigue. In aerospace activities, due to the instantaneous distraction of operator, slow response or lack of coordination could lead to serious accident, the study of mental fatigue is particularly important. In order to study the impact of continuous mental task and rest, we conducted an experiment which combined subjective evaluation with physiology index evaluation. Five subjects were selected in the experiment, and they were asked to perform continuous operation task in a simulator to imitate astronaut schedule. In the course of the experiment, subjective fatigue score (used Samn-Perelli and SWAT) and EEG power spectra were measured at the following hours: 8:00(starting time), 11:30, 15:00, 19:00, 23:00(before sleep), 6:00(after sleep), and 8:00(end time). The experiment showed that a short rest is not enough to make the subjects restored to the original state. The reduction of high frequency components and increase of low frequency in EEG also became more obvious with the increased mental fatigue. Gravity frequency of EEG had a shift to low frequency and is strongly correlated with mental fatigue level. These phenomena were similar with the results of subjective test. The SWAT also could tell us the main causes of metal fatigue during this process.

  14. Effect of sampling schedule on pharmacokinetic parameter estimates of promethazine in astronauts

    Science.gov (United States)

    Boyd, Jason L.; Wang, Zuwei; Putcha, Lakshmi

    2005-08-01

    Six astronauts on the Shuttle Transport System (STS) participated in an investigation on the pharmacokinetics of promethazine (PMZ), a medication used for the treatment of space motion sickness (SMS) during flight. Each crewmember completed the protocol once during flight and repeated thirty days after returned to Earth. Saliva samples were collected at scheduled times for 72 h after PMZ administration; more frequent samples were collected on the ground than during flight owing to schedule constraints in flight. PMZ concentrations in saliva were determined by a liquid chromatographic/mass spectrometric (LC-MS) assay and pharmacokinetic parameters (PKPs) were calculated using actual flight and ground-based data sets and using time-matched sampling schedule on ground to that during flight. Volume of distribution (Vc) and clearance (Cls) decreased during flight compared to that from time-matched ground data set; however, ClS and Vc estimates were higher for all subjects when partial ground data sets were used for analysis. Area under the curve (AUC) normalized with administered dose was similar in flight and partial ground data; however AUC was significantly lower using time-matched sampling compared with the full data set on ground. Half life (t1/2) was longest during flight, shorter with matched-sampling schedule on ground and shortest when complete data set from ground was used. Maximum concentration (Cmax), time for Cmax (tmax), parameters of drug absorption, depicted a similar trend with lowest and longest respectively, during flight, lower with time- matched ground data and highest and shortest with full ground data.

  15. The Visual Impairment Intracranial Pressure Syndrome in Long Duration NASA Astronauts: An Integrated Approach

    Science.gov (United States)

    Otto, C. A.; Norsk, P.; Shelhamer, M. J.; Davis, J. R.

    2015-01-01

    The Visual Impairment Intracranial Pressure (VIIP) syndrome is currently NASA's number one human space flight risk. The syndrome, which is related to microgravity exposure, manifests with changes in visual acuity (hyperopic shifts, scotomas), changes in eye structure (optic disc edema, choroidal folds, cotton wool spots, globe flattening, and distended optic nerve sheaths). In some cases, elevated cerebrospinal fluid pressure has been documented postflight reflecting increased intracranial pressure (ICP). While the eye appears to be the main affected end organ of this syndrome, the ocular affects are thought to be related to the effect of cephalad fluid shift on the vascular system and the central nervous system. The leading hypotheses for the development of VIIP involve microgravity induced head-ward fluid shifts along with a loss of gravity-assisted drainage of venous blood from the brain, both leading to cephalic congestion and increased ICP. Although not all crewmembers have manifested clinical signs or symptoms of the VIIP syndrome, it is assumed that all astronauts exposed to microgravity have some degree of ICP elevation in-flight. Prolonged elevations of ICP can cause long-term reduced visual acuity and loss of peripheral visual fields, and has been reported to cause mild cognitive impairment in the analog terrestrial population of Idiopathic Intracranial Hypertension (IIH). These potentially irreversible health consequences underscore the importance of identifying the factors that lead to this syndrome and mitigating them.

  16. Mission X: Train Like an Astronaut. International Fitness Challenge

    Science.gov (United States)

    Lloyd, Charles

    2011-01-01

    The Mission X, Train like an Astronaut, pilot project was a 2-year effort directed by the International Life Science Working Group. The pilot was funded by the Human Research Program and was lead by the Human Research Program Education and Outreach (HRPEO) project and supported by a group of space agencies providing in-kind resources. The aim was to identify an international educational outreach concept that would promote a life science topic utilizing the education and outreach expertise of the various space agencies working on the utilization of the International Space Station. This in turn serves as an inspiration for the younger generation to aspire to go further in school, and provides insight into the capability of a participating country to ensure the effort provided value for their communities and children. The pilot project developed the necessary tools to promote communications between the partners and to use materials and expertise from all the countries? space agencies. The Mission X Website (trainlikeanastronaut.org) provided a single repository for the educational activities as well as a place for the Challenge Teams to provide their progress in the international fitness challenge. It also added to the International flavor as different countries were able to share and learn about what was happening with all those involved in the 6-week challenge period. A point system was utilized to promote constructive, cooperative competition in which 4164 students participated. The points were used to help FitKid, Astro Charlie, "Walk-To-The-Moon". The 18 physical and educational Mission X activities were made available on the Mission X website in seven languages. The Mission X pilot project was considered a success in 1) the design, development, and implementation of the multi-language website, 2) the expansion of healthy lifestyle awareness, and 3) the concept for drawing an international educational community together to highlight global topics in association

  17. Experimental and numerical studies on the treatment of wet astronaut trash by forced-convection drying

    Science.gov (United States)

    Arquiza, J. M. R. Apollo; Morrow, Robert; Remiker, Ross; Hunter, Jean B.

    2017-09-01

    During long-term space missions, astronauts generate wet trash, including food containers with uneaten portions, moist hygiene wipes and wet paper towels. This waste produces two problems: the loss of water and the generation of odors and health hazards by microbial growth. These problems are solved by a closed-loop, forced-convection, heat-pump drying system which stops microbial activity by both pasteurization and desiccation, and recovers water in a gravity-independent porous media condensing heat exchanger. A transient, pseudo-homogeneous continuum model for the drying of wet ersatz trash was formulated for this system. The model is based on the conservation equations for energy and moisture applied to the air and solid phases and includes the unique trash characteristic of having both dry and wet solids. Experimentally determined heat and mass transfer coefficients, together with the moisture sorption equilibrium relationship for the wet material are used in the model. The resulting system of differential equations is solved by the finite-volume method as implemented by the commercial software COMSOL. Model simulations agreed well with experimental data under certain conditions. The validated model will be used in the optimization of the entire closed-loop system consisting of fan, air heater, dryer vessel, heat-pump condenser, and heat-recovery modules.

  18. 1st Lunar International Laboratory (LIL) Symposium Research in Geosciences and Astronomy : Organized by the International Academy of Astronautics at the XVIth International Astronautical Congress Athens, 16 September, 1965 and Dedicated to the Twentieth Anniversary of UNESCO

    CERN Document Server

    1966-01-01

    The Lunar International Laboratory (LIL) project of the International Academy of Astronautics was begun upon the proposal of the editor at the First Special Meeting of the Academy at Stockholm on 16 August 1960. The late THEODORE VON KARMAN, first President of the Academy, appointed the following members of the LIL Committee: Prof. N. BoNEFF (Bulgaria), Prof. M. FLoRKIN (Belgium), Mr. A. G. HALEY (U. S. A. ), Prof. Sir BERNARD LovELL (U. K. ) (Vice­ Chairman), Prof. L. MALAVARD (France), Dr. F. J. MALINA (U. S. A. ) (Chairman), Prof. H. 0BERTH (German Federal Republic), Dr. W. H. PicKERING (U. S. A. ), Prof. E. SANGER (German Federal Republic), Prof. L. I. SEDOV (U. S. S. R. ), Prof. L. SPITZER, JR. (U. S. A. ), Dr. H. STRUGHOLD (U. S. A. ), Prof. H. C. UREY (U. S. A. ) and himself. Since 1960 the following additional members were appointed to the Committee: Mr. A. C. CLARKE (U. K. ), Prof. A. DoLLFUS (France), Prof. Z. KoPAL (U. K. ), Dr. S. F. SINGER (U. S. A. ), Prof. N. M. SISSAKIAN (U. S. S. R. ) and Pr...

  19. 19th Biannual Symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR)

    CERN Document Server

    Heller, Gerd; Krämer, Ewald; Wagner, Claus; Breitsamter, Christian

    2016-01-01

    This book presents contributions to the 19th biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. Though the book’s primary emphasis is on the aerospace context, it also addresses further important applications, e.g. in ground transportation and energy. .

  20. Hematopoietic Stem Cell Therapy to Countermeasure Cancer in Astronauts during Exploration of Deep Space

    Science.gov (United States)

    Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.

    2004-01-01

    Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.

  1. Evidence based selection of probiotic strains to promote astronaut health or alleviate symptoms of illness on long duration spaceflight missions.

    Science.gov (United States)

    Douglas, G L; Voorhies, A A

    2017-10-13

    Spaceflight impacts multiple aspects of human physiology, which will require non-invasive countermeasures as mission length and distance from Earth increases and the capability for external medical intervention decreases. Studies on Earth have shown that probiotics have the potential to improve some of the conditions that have manifested during spaceflight, such as gastrointestinal distress, dermatitis, and respiratory infections. The constraints and risks of spaceflight make it imperative that probiotics are carefully selected based on their strain-specific benefits, doses, delivery mechanisms, and relevance to likely crew conditions prior to evaluation in astronauts. This review focuses on probiotics that have been incorporated into healthy human gastrointestinal microbiomes and associated clinically with improvements in inflammatory state or alleviation of symptoms of crew-relevant illness. These studies provide an evidence base for probiotic selection with the greatest potential to support crew health and well-being in spaceflight.

  2. ESA astronaut (and former physicist at CERN) Christer Fuglesang returning a symbolic neutralino particle to CERN Director for research Sergio Bertolucci. Fuglesang flew the neutralino to the International Space Station on the occasion of his STS128 mission in 2009.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    ESA astronaut (and former physicist at CERN) Christer Fuglesang returning a symbolic neutralino particle to CERN Director for research Sergio Bertolucci. Fuglesang flew the neutralino to the International Space Station on the occasion of his STS128 mission in 2009.

  3. Proteomic Assessment of Fluid Shifts and Association with Visual Impairment and Intracranial Pressure in Twin Astronauts

    Science.gov (United States)

    Rana, Brinda K.; Stenger, Michael B.; Lee, Stuart M. C.; Macias, Brandon R.; Siamwala, Jamila; Piening, Brian Donald; Hook, Vivian; Ebert, Doug; Patel, Hemal; Smith, Scott; hide

    2016-01-01

    BACKGROUND: Astronauts participating in long duration space missions are at an increased risk of physiological disruptions. The development of visual impairment and intracranial pressure (VIIP) syndrome is one of the leading health concerns for crew members on long-duration space missions; microgravity-induced fluid shifts and chronic elevated cabin CO2 may be contributing factors. By studying physiological and molecular changes in one identical twin during his 1-year ISS mission and his ground-based co-twin, this work extends a current NASA-funded investigation to assess space flight induced "Fluid Shifts" in association with the development of VIIP. This twin study uniquely integrates physiological and -omic signatures to further our understanding of the molecular mechanisms underlying space flight-induced VIIP. We are: (i) conducting longitudinal proteomic assessments of plasma to identify fluid regulation-related molecular pathways altered by long-term space flight; and (ii) integrating physiological and proteomic data with genomic data to understand the genomic mechanism by which these proteomic signatures are regulated. PURPOSE: We are exploring proteomic signatures and genomic mechanisms underlying space flight-induced VIIP symptoms with the future goal of developing early biomarkers to detect and monitor the progression of VIIP. This study is first to employ a male monozygous twin pair to systematically determine the impact of fluid distribution in microgravity, integrating a comprehensive set of structural and functional measures with proteomic, metabolomic and genomic data. This project has a broader impact on Earth-based clinical areas, such as traumatic brain injury-induced elevations of intracranial pressure, hydrocephalus, and glaucoma. HYPOTHESIS: We predict that the space-flown twin will experience a space flight-induced alteration in proteins and peptides related to fluid balance, fluid control and brain injury as compared to his pre-flight protein

  4. Modeling the acute health effects of astronauts from exposure to large solar particle events.

    Science.gov (United States)

    Hu, Shaowen; Kim, Myung-Hee Y; McClellan, Gene E; Cucinotta, Francis A

    2009-04-01

    Radiation exposure from Solar Particle Events (SPE) presents a significant health concern for astronauts for exploration missions outside the protection of the Earth's magnetic field, which could impair their performance and result in the possibility of failure of the mission. Assessing the potential for early radiation effects under such adverse conditions is of prime importance. Here we apply a biologically based mathematical model that describes the dose- and time-dependent early human responses that constitute the prodromal syndromes to consider acute risks from SPEs. We examine the possible early effects on crews from exposure to some historically large solar events on lunar and/or Mars missions. The doses and dose rates of specific organs were calculated using the Baryon radiation transport (BRYNTRN) code and a computerized anatomical man model, while the hazard of the early radiation effects and performance reduction were calculated using the Radiation-Induced Performance Decrement (RIPD) code. Based on model assumptions we show that exposure to these historical events would cause moderate early health effects to crew members inside a typical spacecraft or during extra-vehicular activities, if effective shielding and medical countermeasure tactics were not provided. We also calculate possible even worse cases (double intensity, multiple occurrences in a short period of time, etc.) to estimate the severity, onset and duration of various types of early illness. Uncertainties in the calculation due to limited data on relative biological effectiveness and dose-rate modifying factors for protons and secondary radiation, and the identification of sensitive sites in critical organs are discussed.

  5. Pilot Study on the Investigation of Tear Fluid Biomarkers as an Indicator of Ocular, Neurological, and Immunological Health in Astronauts

    Science.gov (United States)

    Morton, Stephen; Crucian, Brian; Hagan, Suzanne; Satyamitra, Merriline; Daily, Anna

    2018-01-01

    The purpose of this pilot study is to investigate the collection, preparation, and analysis of tear biomarkers as a means of assessing ocular, neurological, and immunological health. At present, no published data exists on the cytokine profiles of tears from astronauts exposed to long periods of microgravity and space irradiations. In addition, no published data exist on cytokine (biomarker) profiles of tears that have been collected from irradiated non-human biological systems (primates and other animal models). A goal for the proposed pilot study is to discover novel tear biomarkers which can help inform researchers, clinicians, epidemiologist and healthcare providers about the health status of a living biological system, as well as informing them when a disease state is triggered. This would be done via analysis of the onset of expression of pro-inflammatory cytokines, leading up to the full progression of a disease (i.e. cancer, loss of vision, radiation-induced oxidative stress, cardiovascular disorders, fibrosis in major organs, bone loss). Another goal of this pilot study is to investigate the state of disease against proposed medical countermeasures, in order to determine whether the countermeasures are efficacious in preventing or mitigating these injuries. An example of an up and coming tear biomarker technology, Ascendant Dx, a clinical stage diagnostic company, is developing a screening test to detect breast cancer using proteins from tears. The team utilized Liquid Chromatography -Mass Spectrometry with Mass analysis (LC MS/MS) as a discovery platform followed by validation with ELISA to come up with a panel of protein biomarkers that can differentiate breast cancer samples from control ("cancer free") samples with results far surpassing the results of imaging techniques in use today. Continued research into additional proteins is underway to increase the sensitivity and specificity of the test and development efforts are on the way to transfer the

  6. Astronautics

    Science.gov (United States)

    1977-01-01

    Principles of rocket engineering, flight dynamics, and trajectories are discussed in this summary of Soviet rocket development and technology. Topics include rocket engine design, propellants, propulsive efficiency, and capabilities required for orbital launch. The design of the RD 107, 108, 119, and 214 rocket engines and their uses in various satellite launches are described. NASA's Saturn 5 and Atlas Agena launch vehicles are used to illustrate the requirements of multistage rockets.

  7. Development of a recombinant DNA assay system for the detection of genetic change in astronauts' cells

    International Nuclear Information System (INIS)

    Atchley, S.V.; Chen, D.J.C.; Strniste, G.F.; Walters, R.A.; Moyzis, R.K.

    1984-01-01

    We are developing a new recombinant DNA system for the detection and measurement of genetic change in humans caused by exposure to low level ionizing radiation. A unique feature of the method is the use of cloned repetitive DNA probes to assay human DNA for structural changes during or after irradiation. Repetitive sequences exist in different families. Collectively they constitute over 25% of the DNA in a human cell. Repeat families have between 10 and 500,000 members. We have constructed repetitive DNA sequence libraries using recombinant DNA techniques. From these libraries we have isolated and characterized individual repeats comprising 75 to 90% of the mass of human repetitive DNA. Repeats used in our assay system exist in tandem arrays in the genome. Perturbation of these sequences in a cell, followed by detection with a repeat probe, produces a new, multimeric ''ladder'' pattern on an autoradiogram. The repeat probe used in our initial study is complementary to 1% of human DNA. Therefore, the sensitivity of this method is several orders of magnitude better than existing assays. Preliminary evidence from human skin cells exposed to acute, low-dose x-ray treatments indicates that DNA is affected at a dose as low as 5R. The radiation doses used in this system are well within the range of doses received by astronauts during spaceflight missions. Due to its small material requirements, this technique could easily be adapted for use in space. 16 refs., 1 fig

  8. Evaluation of the user experience of "astronaut training device": an immersive, vr-based, motion-training system

    Science.gov (United States)

    Yue, Kang; Wang, Danli; Yang, Xinpan; Hu, Haichen; Liu, Yuqing; Zhu, Xiuqing

    2016-10-01

    To date, as the different application fields, most VR-based training systems have been different. Therefore, we should take the characteristics of application field into consideration and adopt different evaluation methods when evaluate the user experience of these training systems. In this paper, we propose a method to evaluate the user experience of virtual astronauts training system. Also, we design an experiment based on the proposed method. The proposed method takes learning performance as one of the evaluation dimensions, also combines with other evaluation dimensions such as: presence, immersion, pleasure, satisfaction and fatigue to evaluation user experience of the System. We collect subjective and objective data, the subjective data are mainly from questionnaire designed based on the evaluation dimensions and user interview conducted before and after the experiment. While the objective data are consisted of Electrocardiogram (ECG), reaction time, numbers of reaction error and the video data recorded during the experiment. For the analysis of data, we calculate the integrated score of each evaluation dimension by using factor analysis. In order to improve the credibility of the assessment, we use the ECG signal and reaction test data before and after experiment to validate the changes of fatigue during the experiment, and the typical behavioral features extracted from the experiment video to explain the result of subjective questionnaire. Experimental results show that the System has a better user experience and learning performance, but slight visual fatigue exists after experiment.

  9. Automatic Georeferencing of Astronaut Auroral Photography: Providing a New Dataset for Space Physics

    Science.gov (United States)

    Riechert, Maik; Walsh, Andrew P.; Taylor, Matt

    2014-05-01

    Astronauts aboard the International Space Station (ISS) have taken tens of thousands of photographs showing the aurora in high temporal and spatial resolution. The use of these images in research though is limited as they often miss accurate pointing and scale information. In this work we develop techniques and software libraries to automatically georeference such images, and provide a time and location-searchable database and website of those images. Aurora photographs very often include a visible starfield due to the necessarily long camera exposure times. We extend on the proof-of-concept of Walsh et al. (2012) who used starfield recognition software, Astrometry.net, to reconstruct the pointing and scale information. Previously a manual pre-processing step, the starfield can now in most cases be separated from earth and spacecraft structures successfully using image recognition. Once the pointing and scale of an image are known, latitudes and longitudes can be calculated for each pixel corner for an assumed auroral emission height. As part of this work, an open-source Python library is developed which automates the georeferencing process and aids in visualization tasks. The library facilitates the resampling of the resulting data from an irregular to a regular coordinate grid in a given pixel per degree density, it supports the export of data in CDF and NetCDF formats, and it generates polygons for drawing graphs and stereographic maps. In addition, the THEMIS all-sky imager web archive has been included as a first transparently accessible imaging source which in this case is useful when drawing maps of ISS passes over North America. The database and website are in development and will use the Python library as their base. Through this work, georeferenced auroral ISS photography is made available as a continously extended and easily accessible dataset. This provides potential not only for new studies on the aurora australis, as there are few all-sky imagers in

  10. Metabolomic and Genomic Markers of Atherosclerosis as Related to Oxidative Stress, Inflammation, and Vascular Function in Twin Astronauts

    Science.gov (United States)

    Lee, Stuart M. C.; Rana, Brinda K.; Stenger, Michael B.; Sears, Dorothy D.; Smith, Scott M.; Zwart, Sara R.; Macias, Brandon R.; Hargans, Alan R.; Sharma, Kumar; De Vivo, Immaculata

    2017-01-01

    BACKGROUND: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and his ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine spaceflight-related atherosclerosis risk that is independent of the confounding factors associated with different genotypes. PURPOSE: The purpose of this investigation was to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we simultaneously assessed gene expression and DNA methylation in leukocytes. HYPOTHESIS: We predict that, compared to the ground-based twin, the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift

  11. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    Science.gov (United States)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  12. SEMG analysis of astronaut upper arm during isotonic muscle actions with normal standing posture

    Science.gov (United States)

    Qianxiang, Zhou; Chao, Ma; Xiaohui, Zheng

    sEMG analysis of astronaut upper arm during isotonic muscle actions with normal standing posture*1 Introduction Now the research on the isotonic muscle actions by using Surface Electromyography (sEMG) is becoming a pop topic in fields of astronaut life support training and rehabilitations. And researchers paid more attention on the sEMG signal processes for reducing the influence of noise which is produced during monitoring process and the fatigue estimation of isotonic muscle actions with different force levels by using the parameters which are obtained from sEMG signals such as Condition Velocity(CV), Median Frequency(MDF), Mean Frequency(MNF) and so on. As the lucubrated research is done, more and more research on muscle fatigue issue of isotonic muscle actions are carried out with sEMG analysis and subjective estimate system of Borg scales at the same time. In this paper, the relationship between the variable for fatigue based on sEMG and the Borg scale during the course of isotonic muscle actions of the upper arm with different contraction levels are going to be investigated. Methods 13 young male subjects(23.4±2.45years, 64.7±5.43Kg, 171.7±5.41cm) with normal standing postures were introduced to do isotonic actions of the upper arm with different force levels(10% MVC, 30%MVC and 50%MVC). And the MVC which means maximal voluntary contraction was obtained firstly in the experiment. Also the sEMG would be recorded during the experiments; the Borg scales would be recorded for each contraction level. By using one-third band octave method, the fatigue variable (p) based on sEMG were set up and it was expressed as p = i g(fi ) · F (fi ). And g(fi ) is defined as the frequent factor which was 0.42+0.5 cos(π fi /f0 )+0.08 cos(2π fi /f0 ), 0 f0 . According to the equations, the p could be computed and the relationship between variable p and the Borg scale would be investigated. Results In the research, three kinds of fitted curves between variable p and Borg

  13. Exotic aspects of black holes: an astronaut near the horizon (on the methodological note by A A Grib and Yu V Pavlov 'Is it possible to see the infinite future of the Universe when falling into a black hole?')

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2009-01-01

    We comment on the methodological note by A A Grib and Yu V Pavlov [Phys. Usp. 52 257 (2009)] to show that its authors are incorrect in understanding a passage that they quote from A M Cherepashchuk's book Black Holes in the Universe (Fryazino: Vek-2, 2005, p.7) and which supposes an astronaut to be at rest in the vicinity of the horizon (not to fall freely into a black hole!). With this error corrected, Grib and Pavlov's note is quite useful methodologically. (letters to the editors)

  14. Human Behavior and Performance Support for ISS Operations and Astronaut Selections: NASA Operational Psychology for Six-Crew Operations

    Science.gov (United States)

    VanderArk, Steve; Sipes, Walter; Holland, Albert; Cockrell, Gabrielle

    2010-01-01

    The Behavioral Health and Performance group at NASA Johnson Space Center provides psychological support services and behavioral health monitoring for ISS astronauts and their families. The ISS began as an austere outpost with minimal comforts of home and minimal communication capabilities with family, friends, and colleagues outside of the Mission Control Center. Since 1998, the work of international partners involved in the Space Flight Human Behavior and Performance Working Group has prepared high-level requirements for behavioral monitoring and support. The "buffet" of services from which crewmembers can choose has increased substantially. Through the process of development, implementation, reviewing effectiveness and modifying as needed, the NASA and Wyle team have proven successful in managing the psychological health and well being of the crews and families with which they work. Increasing the crew size from three to six brought additional challenges. For the first time, all partners had to collaborate at the planning and implementation level, and the U.S. served as mentor to extrapolate their experiences to the others. Parity in available resources, upmass, and stowage had to be worked out. Steady progress was made in improving off-hours living and making provisions for new technologies within a system that has difficulty moving quickly on certifications. In some respect, the BHP support team fell victim to its previous successes. With increasing numbers of crewmembers in training, requests to engage our services spiraled upward. With finite people and funds, a cap had to placed on many services to ensure that parity could be maintained. The evolution of NASA BHP services as the ISS progressed from three- to six-crew composition will be reviewed, and future challenges that may be encountered as the ISS matures in its assembly-complete state will be discussed.

  15. LETTERS TO THE EDITORS: Exotic aspects of black holes: an astronaut near the horizon(on the methodological note by A A Grib and Yu V Pavlov "Is it possible to see the infinite future of the Universe when falling into a black hole?")

    Science.gov (United States)

    Cherepashchuk, Anatolii M.

    2009-08-01

    We comment on the methodological note by A A Grib and Yu V Pavlov [Phys. Usp. 52 257 (2009)] to show that its authors are incorrect in understanding a passage that they quote from A M Cherepashchuk's book Black Holes in the Universe (Fryazino: Vek-2, 2005, p.7) and which supposes an astronaut to be at rest in the vicinity of the horizon (not to fall freely into a black hole!). With this error corrected, Grib and Pavlov's note is quite useful methodologically.

  16. The Functional Task Test (FTT): An Interdisciplinary Testing Protocol to Investigate the Factors Underlying Changes in Astronaut Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Lawrence, E. L.; Arzeno, N. M.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts. S. H.; hide

    2011-01-01

    Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.

  17. Rapid prototyping, astronaut training, and experiment control and supervision: distributed virtual worlds for COLUMBUS, the European Space Laboratory module

    Science.gov (United States)

    Freund, Eckhard; Rossmann, Juergen

    2002-02-01

    In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.

  18. Astronautic structures manual

    Science.gov (United States)

    1977-01-01

    Three-volume reference work serves as catalog of analysis techniques for elastic and inelastic stress ranges and as source on background and development of methods. Information is condensation of published journal articles, industry and university publications, textbooks, and government documents.

  19. Space activity impact on science and technology. Proceedings of the twenty-fourth international astronautical congress, Baku, USSR, October 7--13, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, L G; Contensou, P; Hilton, W F [eds.

    1976-01-01

    Topics covered include: Soviet automatic vehicles for lunar exploration and their influence on the progress of automatics and control theory; the problems of space technology and their influence on science and technics; industrial use of aerospace technology; development of liquid-propellant rocket engine engineering and its influence on science and technology in the USSR; space medicine and public health; impact of space activity on technology in a country the size of France; astronautics as a stimulus for celestial mechanics; space activity impact on the science and technology of rotating bodies; skylab systems flight performance, an interim report; the design and utilization of a spacelab for sortie missions; the spacelab program; man and the environment, remote sensing from space; EOLE application program for meteorological experiments, complementary experiences; machine processing methods for earth observational data; recent advances in geologic applications of remote sensing from space; infrared scanning for meteorological purposes; spatial antartic glaciology; reflection spectra usage in recognition of plant covers; experimental investigation of aeronautical and maritime communications and surveillance using satellites; the ESRO MAROTS program; the problem of habitability in spaceships; atmosphere revitalization for manned spacecraft; prospects of international cooperation in medical sciences; developing a technology base in planetary entry aerothermodynamics; scientific results of the automatic ionospheric laboratory Yantar 4 flight; nonlinear unsteady motions in solid propellant rockets with application to large motors; investigation of the physical and mechanical properties of the lunar sample brought by Luna 20 and along the route of motion of Lunokhod 2; orbiting astronomical observatory Copernicus; the delta launch vehicle model 2914 series; space tug mission and program planning; space and education; and safety in youth rocket experiments. (GHT)

  20. Representation of the Physiological Factors Contributing to Postflight Changes in Functional Performance Using Motion Analysis Software

    Science.gov (United States)

    Parks, Kelsey

    2010-01-01

    Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.

  1. Career Excess Mortality Risk from Diagnostic Radiological Exams Required for Crewmembers Participating in Long Duration Space Flight

    Science.gov (United States)

    Dodge, C. W.; Gonzalez, S. M.; Picco, C. E.; Johnston, S. L.; Shavers, M. R.; VanBaalen, M.

    2008-01-01

    NASA requires astronauts to undergo diagnostic x-ray examinations as a condition for their employment. The purpose of these procedures is to assess the astronaut s overall health and to diagnose conditions that could jeopardize the success of long duration space missions. These include exams for acceptance into the astronaut corps, routine periodic exams, as well as evaluations taken pre and post missions. Issues: According to NASA policy these medical examinations are considered occupational radiological exposures, and thus, are included when computing the astronaut s overall radiation dose and associated excess cancer mortality risk. As such, astronauts and administrators are concerned about the amount of radiation received from these procedures due to the possibility that these additional doses may cause astronauts to exceed NASA s administrative limits, thus disqualifying them from future flights. Methods: Radiation doses and cancer mortality risks following required medical radiation exposures are presented herein for representative male and female astronaut careers. Calculation of the excess cancer mortality risk was performed by adapting NASA s operational risk assessment model. Averages for astronaut height, weight, number of space missions and age at selection into the astronaut corps were used as inputs to the NASA risk model. Conclusion: The results show that the level of excess cancer mortality imposed by all required medical procedures over an entire astronaut s career is approximately the same as that resulting from a single short duration space flight (i.e. space shuttle mission). In short the summation of all medical procedures involving ionizing radiation should have no impact on the number of missions an astronaut can fly over their career. Learning Objectives: 1. The types of diagnostic medical exams which astronauts are subjected to will be presented. 2. The level of radiation dose and excess mortality risk to the average male and female

  2. Three Conservation Applications of Astronaut Photographs of Earth: Tidal Flat Loss (Japan), Elephant Impacts on Vegetation (Botswana), and Seagrass and Mangrove Monitoring (Australia)

    Science.gov (United States)

    Lulla, Kamlesh P.; Robinson, Julie A.; Minorukashiwagi; Maggiesuzuki; Duanenellis, M.; Bussing, Charles E.; Leelong, W. J.; McKenzie, Andlen J.

    2000-01-01

    NASA photographs taken from low Earth orbit can provide information relevant to conservation biology. This data source is now more accessible due to improvements in digitizing technology, Internet file transfer, and availability of image processing software. We present three examples of conservation-related projects that benefited from using orbital photographs. (1) A time series of photographs from the Space Shuttle showing wetland conversion in Japan was used as a tool for communicating about the impacts of tidal flat loss. Real-time communication with astronauts about a newsworthy event resulted in acquiring current imagery. These images and the availability of other high resolution digital images from NASA provided timely public information on the observed changes. (2) A Space Shuttle photograph of Chobe National Park in Botswana was digitally classified and analyzed to identify the locations of elephant-impacted woodland. Field validation later confirmed that areas identified on the image showed evidence of elephant impacts. (3) A summary map from intensive field surveys of seagrasses in Shoalwater Bay, Australia was used as reference data for a supervised classification of a digitized photograph taken from orbit. The classification was able to distinguish seagrasses, sediments and mangroves with accuracy approximating that in studies using other satellite remote sensing data. Orbital photographs are in the public domain and the database of nearly 400,000 photographs from the late 1960s to the present is available at a single searchable location on the Internet. These photographs can be used by conservation biologists for general information about the landscape and in quantitative applications.

  3. Gamification for astronaut training

    NARCIS (Netherlands)

    Cornelissen, F.; Neerincx, M.A.; Smets, N.J.J.M.; Breebaart, L.; Dujardin, P.; Wolff, M.

    2012-01-01

    This paper reports on the use and the evaluation of applying gaming aspects as a means to promote self-study and increase motivation to train for executing operations on human space flight missions that have a duration that exceeds the typical duration of low earth orbit missions. The gaming aspects

  4. Continuity and Change in Family's Role in Long-Duration Space Missions

    Science.gov (United States)

    Johnson, Phyllis

    As long-duration missions become commonplace, it will be important to consider the effect of the astronaut's career on his/her family, and the role of family in supporting that career. In the short history of the space program, archival information about three long-duration programs- Skylab, Shuttle-Mir, and the International Space Station—-provides valuable information about the astronauts' adjustment to increasingly longer times in space. These sources potentially include the astronaut's views about the role of family in that adjustment. The purpose of this paper is to present a qualitative analysis of the astronauts' views about the role family played in his/her career, as well as the effect of the astronaut career on his/her family. Specifically, what roles did family play, e.g., being there at important events, accepting the importance of the astronaut career? How did astronauts view the effects of separation, risks, and publicity on their family? How much did astronauts emphasize dealing with separation through communication with family? How consistent have astronauts' views remained over the three types of missions which have spanned from 1973 to today? The data base for this qualitative study is the Johnson Space Center oral histories for astronauts who participated in Skylab or Shuttle-Mir, and the Johnson Space Center archives of ISS mission journals and logs, and pre-flight interviews with ISS astronauts. Male astronauts are the main focus of the change-over-time information as only one woman participated in Shuttle- Mir and no women were in the Skylab program. However, qualitative data will be presented about female astronauts on ISS and on Shuttle-Mir for some comparative information by sex for those programs. Skylab preliminary findings: Having a wife and parents who were supportive made all of the difference in the astronaut career. It would not have been possible to maintain some semblance of family life without the wife's managing it. Private

  5. Apollo 7 prime crew during water egress training in Gulf of Mexico

    Science.gov (United States)

    1968-01-01

    The prime crew of the first manned Apollo space mission, Apollo 7, is seen in Apollo Command Module Boilerplate 1102 during water egress training in the Gulf of Mexico. In foreground is Astronaut Walter M. Schirra Jr., in center is Astronaut Donn F. Eisele, and in background is Astronaut Walter Cunningham.

  6. Disney characters greet prime ASTP crewmen to Florida's Disney World

    Science.gov (United States)

    1975-01-01

    Two Walt Disney comic cartoon characters, Donald Duck and Pluto, were on hand to greet a group of Apollo-Soyuz Test Project crewmen on their arrival at Disney World near Orlando. From left, are interpreter K. S. Samofal, interpreter Nicholas Timacheff, Cosmonaut Vladimir A. Shatalov, Astronaut Vance D. Brand, Astronaut Donald K. Slayton, Cosmonaut Aleksey A. Leonov (squeezing Pluto's nose) and Astronaut Thomas P. Stafford. The astronauts and cosmonauts were in Florida for a three-day inspection tour of the Kennedy Space Center where they looked over ASTP launch facilities and flight hardware.

  7. Dietary Formulas Fortify Antioxidant Supplements

    Science.gov (United States)

    2013-01-01

    The astronaut's life and work is so different from our own daily experiences that it s easy to forget that astronauts are people, too. Just like everyone else, astronauts have basic nutritional needs, such as five to nine servings of fruit and vegetables per day, in order to maintain optimal health. Here on Earth, it can be a challenge to incorporate the recommended amount of fruit and veggies into our diets, despite easy access to fresh produce. In space, it becomes even more difficult, as astronauts must take everything they need with them. And in the harsh conditions of space, many miles from medical assistance, proper nutrition takes on added importance. As NASA makes plans to send astronauts on missions that could take months and even years, the Agency explores new ways to provide astronauts with a daily dose of nutrition equivalent to that provided by fresh produce. These foods are critically important because they provide the essential vitamins, minerals, pigments, and other micronutrients (substances required in small amounts for human health) that promote everything from healthy skin to a strong heart.

  8. Astronautics in past and future

    Science.gov (United States)

    Stuhlinger, E.

    1974-01-01

    The contributions of Oberth in the development of rocket technology as a basis for the conduction of manned and unmanned space flights are considered, giving attention also to other rocket pioneers, including Ziolkowski, Ganswindt, von Hoefft, and Goddard. Early stages in rocket development in Germany, Russia, and the U.S. are examined. The launching of Sputnik I in October 1957 was the beginning of a new era in the history of mankind. The start of this new era of space exploration and space utilization comes at a time when the limited resources of the earth begin to impose severe restrictions upon the continuing growth of human technology and civilization. It is predicted that the new space technology will provide the means for overcoming these restrictions. Future space programs, which are partly based on the development of the space shuttle, are discussed, taking into account the international aspects of the new plans for the utilization and the study of space.

  9. [Psychopharmacology in aviation and astronautics].

    Science.gov (United States)

    Vasil'ev, P V; Glod, G D

    1977-01-01

    Flights aboard modern vehicles are associated with high nervous-emotional and physical stresses. This may induce depletion of reserve capabilities, development of fatigue and, consequently, reduction of work capacity of crewmembers. The paper discusses approaches and results of the use of drugs by pilots and cosmonauts in order to alleviate their fatigue and emotional stress. It gives indications and contraindications for the adminstration of stimulants and tranquilizers. On the basis of a comprehensive analysis of the literature data and their own findings, the authors draw the conclusion that the use of stimulants and anxiolytics may increase the level of reliability and performance of air- and spacecraft pilots during programmed and, particularly, contigent situations of the flight.

  10. Navy Space and Astronautics Orientation.

    Science.gov (United States)

    Herron, R. G.

    Fundamental concepts of the spatial environment, technologies, and applications are presented in this manual prepared for senior officers and key civilian employees. Following basic information on the atmosphere, solar system, and intergalactic space, a detailed review is included of astrodynamics, rocket propulsion, bioastronautics, auxiliary…

  11. Training of cosmonauts and astronauts

    Science.gov (United States)

    Gurovskiy, N. N.; Link, M. M.

    1975-01-01

    The biomedical and preflight training of spacecraft crews is discussed based on a survey of scientific and technical literature in the U.S. and U.S.S.R. Experience gained from high velocity and high altitude aircraft flights, predictions of human reactions and theoretical models of human adaptation to the new environment of space, and actual spaceflight experience provided scientists and specialists with data from which the state of human health in space could be predicted and life support measures developed.

  12. Digital Astronaut: Bone Remodeling Model

    Data.gov (United States)

    National Aeronautics and Space Administration — Significant progress has been made with regard to the plan outlined in the 2014 report for building in the effects of exercise induced loading on preserving bone...

  13. A space vehicle rotating with a uniform angu- lar velocity about a ...

    Indian Academy of Sciences (India)

    IAS Admin

    A space vehicle rotating with a uniform angu- lar velocity about a vertical axis fixed to it is falling freely vertically downwards, say, with its engine shut off. It carries two astronauts inside it. One astronaut throws a tiny tool towards the other astronaut. The motion of the tiny tool with reference to a rotating frame rigidly fixed.

  14. Apollo 14 emblem

    Science.gov (United States)

    1970-01-01

    This is the Apollo 14 crew patch. It features the astronaut lapel pin approaching the Moon and leaving a comet trail from the liftoff point on Earth. The pin design was adopted by the astronaut corps several years ago. Astronauts who have not yet flown in space wear silver pins. Those who have flown wear gold pins.

  15. Risk of Orthostatic Intolerance During Re-Exposure to Gravity

    Science.gov (United States)

    Platts, Steven; Stenger, Michael B.; Lee, Stuart M. C.; Westby, Christian M.; Phillips, Tiffany R.; Arzeno, Natalia M.; Johnston, Smith; Mulugeta, Lealem

    2015-01-01

    Post-spaceflight orthostatic intolerance remains a significant concern to NASA. In Space Shuttle missions, astronauts wore anti-gravity suits and liquid cooling garments to protect against orthostatic intolerance during re-entry and landing, but in-flight exercise and the end-of-mission fluid loading failed to protect approximately 30% of Shuttle astronauts when these garments were not worn. The severity of the problem appears to be increased after long-duration space flight. Five of six US astronauts could not complete a 10-minutes upright-posture tilt testing on landing day following 4-5 month stays aboard the Mir space station. The majority of these astronauts had experienced no problems of orthostatic intolerance following their shorter Shuttle flights. More recently, four of six US astronauts could not complete a tilt test on landing day following approximately 6 month stays on the International Space Station. Similar observations were made in the Soviet and Russian space programs, such that some cosmonauts wear the Russian compression garments (Kentavr) up to 4 days after landing. Future exploration missions, such as those to Mars or Near Earth Objects, will be long duration, and astronauts will be landing on planetary bodies with no ground-support teams. The occurrence of severe orthostatic hypotension could threaten the astronauts' health and safety and success of the mission.

  16. Analogue Simulation of human and psychosocial factors for MoonMars bases

    Science.gov (United States)

    Davidová, Lucie; Foing, Bernard

    2017-04-01

    Several courageous plans regarding future human space exploration have been proposed. Both main future targets, ESA's Moon village, as well as journey to Mars represent huge challenge for humans. Appropriate research on psychological aspects of humans in extreme conditions is needed. Analogue simulations represent valuable source of information that help us to understand how to provide an adequate support to astronauts in specific conditions of isolation and limited resources. The psychosocial investigation was designed to builds on combination of several methods based on subjective as well as objective assessments, namely observation, sociomapping, content analysis of interviews etc. Research on several simulations provided lessons learned and various insights. The attention was paid particularly to the interpersonal interactions among crew members, intragroup as well as intergroup communication, cooperation, and performance. This comprehensive approach enables early detection of hidden structures and potential insufficiencies of an astronaut team. The sociomapping of interpersonal communication as well as analysis of interviews with participants revealed insufficiencies especially in communication between the analogue astronauts and mission control. Another important finding was gain by investigation of the relationship between the astronaut crew and mission control. Astronauts low trust to mission control can have a great negative impact to the performance and well-being of astronauts. The findings of the psychosocial studies are very important for designing astronaut training and planning future mission.

  17. S N Maitra

    Indian Academy of Sciences (India)

    Motion of a Tiny Tool Thrown by an Astronaut Inside a Spinning Space Vehicle in a State of Free Fall · S N Maitra · More Details Fulltext PDF. Volume 15 Issue 4 April 2010 pp 355-362 Classroom. Motion of a Tiny Tool Thrown by an Astronaut towards another Astronaut inside a Spinning Space Vehicle in a State of Free Fall ...

  18. Biolab Crew Training

    OpenAIRE

    Illmer, Norbert

    2005-01-01

    In order to return optimum scientific data for the evaluation on ground astronauts have to be efficiently trained on facility operations and the science background of the experiments. The European Astronaut Centre (EAC) provides training to all astronauts assigned to experiments on the BIOLAB research facility of Columbus. This training primarily uses the full scale BIOLAB training model at EAC.

  19. Insect food for astronauts: gas exchange in silkworms fed on mulberry and lettuce and the nutritional value of these insects for human consumption during deep space flights.

    Science.gov (United States)

    Tong, L; Yu, X; Liu, H

    2011-10-01

    In this study, silkworm moth (Bombyx mori L.) larvae were regarded as an animal protein source for astronauts in the bioregenerative life support system during long-term deep space exploration in the future. They were fed with mulberry and stem lettuce leaves during the first three instars and the last two instars, respectively. In addition, this kind of environmental approach, which utilised inedible biomass of plants to produce animal protein of high quality, can likewise be applied terrestrially to provide food for people living in extreme environments and/or impoverished agro-ecosystems, such as in polar regions, isolated military bases, ships, submarines, etc. Respiration characteristics of the larvae during development under two main physiological conditions, namely eating and not-eating of leaves, were studied. Nutrient compositions of silkworm powder (SP), ground and freeze-dried silkworms on the 3rd day of the 5th instar larvae, including protein, fat, vitamins, minerals and fatty acids, were measured using international standard methods. Silkworms' respiration rates, measured when larvae were eating mulberry leaves, were higher than those of similar larvae that hadn't eaten such leaves. There was a significant difference between silkworms fed on mulberry leaves and those fed on stem lettuce in the 4th and 5th instars (Pinsects were under the two physiological statuses (P<0.01). Moreover, silkworms' respiration quotient under the eating regime was larger than when under the not-eating regime. The SP was found to be rich in protein and amino acids in total; 12 essential vitamins, nine minerals and twelve fatty acids were detected. Moreover, 359 kcal could be generated per 100 gram of SP (dry weight).

  20. Development of Bone Remodeling Model for Spaceflight Bone Physiology Analysis

    Science.gov (United States)

    Pennline, James A.; Werner, Christopher R.; Lewandowski, Beth; Thompson, Bill; Sibonga, Jean; Mulugeta, Lealem

    2015-01-01

    Current spaceflight exercise countermeasures do not eliminate bone loss. Astronauts lose bone mass at a rate of 1-2% a month (Lang et al. 2004, Buckey 2006, LeBlanc et al. 2007). This may lead to early onset osteoporosis and place the astronauts at greater risk of fracture later in their lives. NASA seeks to improve understanding of the mechanisms of bone remodeling and demineralization in 1g in order to appropriately quantify long term risks to astronauts and improve countermeasures. NASA's Digital Astronaut Project (DAP) is working with NASA's bone discipline to develop a validated computational model to augment research efforts aimed at achieving this goal.

  1. Latent Virus Reactivation: From Space to Earth

    Science.gov (United States)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Reactivation of latent viruses is a recognized consequence of decreased immunity. More recently viral reactivation has been identified as an important in vivo indicator of clinically relevant immune changes. Viral reactivation can be determined quickly and easily by the presence of virus in saliva and other body fluids. Real-time polymerase chain reaction (PCR) is a highly sensitive and specific molecular method to detect the presence of specific viral DNA. Studies in astronauts demonstrated that herpes simplex virus type 1(HSV-1), Epstein-Barr Virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate at rates above normal during and after spaceflight in response to moderately decreased T-cell immunity. This technology was expanded to patients on Earth beginning with human immune deficiency virus (HIV) immuno-compromised patients. The HIV patients shed EBV in saliva at rates 9-fold higher than observed in astronauts demonstrating that the level of EBV shedding reflects the severity of impaired immunity. Whereas EBV reactivation is not expected to produce serious effects in astronauts on missions of 6 months or less, VZV reactivation in astronauts could produce shingles. Reactivation of live, infectious VZV in astronauts with no symptoms was demonstrated in astronauts during and after spaceflight. We applied our technology to study VZV-induced shingles in patients. In a study of 54 shingles patients, we showed salivary VZV was present in every patient on the day antiviral (acyclovir) treatment was initiated. Pain and skin lesions decreased with antiviral treatment. Corresponding decreases in levels of VZV were also observed and accompanied recovery. Although the level of VZV in shingles patients before the treatment was generally higher than those found in astronauts, lower range of VZV numbers in shingles patients overlapped with astronaut s levels. This suggests a potential risk of shingles to astronauts resulting from reactivation of VZV. In

  2. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta,Lealem; Myers, Jerry G.; Lewandowski, Beth; Platts, Steven H.

    2011-01-01

    Mars and NEO missions will expose astronaut to extended durations of reduced reduced gravity, isolation and higher radiation. These new operation conditions pose health risks that are not well understood and perhaps unanticipated. Advanced computational simulation environments can beneficially augment research to predict, assess and mitigate potential hazards to astronaut health. The NASA Digital Astronaut Project (DAP), within the NASA Human Research Program, strives to achieve this goal.

  3. Scientific field training for human planetary exploration

    Science.gov (United States)

    Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

    2010-05-01

    Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved

  4. A High Performance Approach to Minimizing Interactions between Inbound and Outbound Signals in Helmet, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a high performance approach to enhancing communications between astronauts. In the new generation of NASA audio systems for astronauts, inbound signals...

  5. Effects of Long Duration Spaceflight on Venous and Arterial Compliance in Astronants

    Science.gov (United States)

    Platts, Steven; Ribeiro, L. Christine

    2014-01-01

    1. Project Overview Visual impairment and intracranial pressure (VIIP) is a spaceflight-associated medical condition affecting at least a third of American astronauts who have flown International Space Station (ISS) missions. VIIP is defined primarily by visual acuity deficits and anatomical changes to eye structures. In some astronauts, eye-related changes do not revert back to the preflight state upon return to Earth. Our team will study some of the possible causes for this syndrome. This will be achieved by reviewing previous astronaut data for factors that may predispose astronauts to higher rates of developing this syndrome or greater severity of symptoms. Additionally, we will conduct 3 separate experiments that will characterize vessels in the head and neck and measure the effects of the experimental conditions on ocular structures and function. 2. Technical Summary The primary objective of this study is to determine whether vascular compliance is altered by spaceflight and whether such adaptations are related to the incidence of the VIIP. In particular, we will measure ocular parameters and vascular compliance in vessels of the head and neck in astronauts who have no spaceflight experience (Ground), in astronauts before, during, and after spaceflight (Flight), and in bed rest subjects with conditions similar to spaceflight (Bed Rest). Additionally, we will analyze astronaut data from the Lifetime Surveillance of Astronaut Health (LSAH) archives to determine which factors might be predictive of the development of VIIP (Data Mining). The project will be conducted in four separate, but related parts. Hypothesis The central hypothesis of this proposal is that exposure to the spaceflight environment aboard the ISS may lead to development of the VIIP syndrome (increased intracranial pressure and impaired visual acuity) and that this may be related to alterations in venous and/or arterial compliance in the head and neck. Specific Aims 1. To determine whether

  6. ESA Press Event: See Mars Express before its departure to the Red Planet

    Science.gov (United States)

    2002-08-01

    There will be ten participants: four ESA astronauts (Pedro Duque, Leopold Eyharts, Paolo Nespoli and Thomas Reiter), four Japanese astronauts from NASDA (Takao Doi, Koichi Wakata, Satoshi Furukawa and Aikihido Hoshide) and two NASA astronauts (Nicole Passonno Stott and Stephanie D. Wilson). The main objective of this training session is to prepare the astronauts for the tasks they will have to perform when the Japanese experiment module (JEM) and ESA's Columbus laboratory are docked with the core of the International Space Station over the years ahead. After completing their training and certification, the astronauts will be assigned to long-duration missions to the ISS. The advanced training at the EAC will focus on the Columbus systems and the Automated Transfer Vehicle (ATV). It will consist of 24 classroom lectures on the Columbus and ATV systems and 4 on payloads, and 2 sessions in the Columbus Trainer. Instructors are being provided by Astrium for the Columbus systems and Alenia Spazio for the ATV, with ESA/EAC staff as mentors for the Columbus payloads. The astronauts are scheduled to visit Astrium in Bremen on 30 August to get acquainted with the flight unit of the Columbus laboratory module currently undergoing integration. This group of astronauts started their advanced training in April 2001 at NASA's Johnson Space Center (JSC), Houston, where they attended a first course on the US segment of the International Space Station. This was followed by training on the JEM system at NASDA's Tsukuba Space Center, Japan, in December 2001 - January 2002 and additional training at the JSC in May 2002. At the beginning of next year the group will be returning to Tsukuba for training on Japanese payloads. Hands-on sessions on Columbus Payload Training Models are scheduled for the second half of 2003, again at ESA's European Astronaut Centre. On Thursday 5 September, between 16:30 and 18:30 hrs, the astronauts and other ESA specialists will be available for interviews

  7. View of Commemorative plaque left on moon at Hadley-Apennine landing site

    Science.gov (United States)

    1971-01-01

    A close-up view of a commemorative plaque left on the Moon at the Hadley-Apennine landing site in memory of 14 NASA astronauts and USSR cosmonauts, now deceased. Their names are inscribed in alphabetical order on the plaque. The plaque was stuck in the lunar soil by Astronauts David R. Scott and James B. Irwin during their Apollo 15 lunar surface extravehicular activity. The tin, man-like object represents the figure of a fallen astronaut/cosmonaut.

  8. The Crew Earth Observations Experiment: Earth System Science from the ISS

    Science.gov (United States)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  9. STS-59 crewmembers in training for onboard Earth observations

    Science.gov (United States)

    1993-01-01

    The six astronauts in training for the STS-59 mission are shown onboard Earth observations tips by Justin Wilkinson (standing, foreground) of the Space Shuttle Earth Observations Project (SSEOP) group. Astronaut Sidney M. Gutierrez, mission commander, is at center on the left side of the table. Others, left to right, are Astronauts Kevin P. Chilton, pilot; Jerome (Jay) Apt and Michael R.U. (Rich) Clifford, both mission specialists; Linda M. Godwin, payload commander; and Thomas D. Jones, mission specialist.

  10. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide

    Science.gov (United States)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)

    2010-01-01

    Scientists from the Image Science and Analysis Laboratory (ISAL) at NASA's Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. Scientists from the Image Science and Analysis

  11. A glimpse from the inside of a space suit: What is it really like to train for an EVA?

    Science.gov (United States)

    Gast, Matthew A.; Moore, Sandra K.

    2011-01-01

    The beauty of the view from the office of a spacewalking astronaut gives the impression of simplicity, but few beyond the astronauts, and those who train them, know what it really takes to get there. Extravehicular Activity (EVA) training is an intense process that utilizes NASA's Neutral Buoyancy Laboratory (NBL) to develop a very specific skill set needed to safely construct and maintain the orbiting International Space Station. To qualify for flight assignments, astronauts must demonstrate the ability to work safely and efficiently in the physically demanding environment of the space suit, possess an acute ability to resolve unforeseen problems, and implement proper tool protocols to ensure no tools will be lost in space. Through the insights and the lessons learned by actual EVA astronauts and EVA instructors, this paper will take you on a journey through an astronaut's earliest experiences working in the space suit, termed the Extravehicular Mobility Unit (EMU), in the underwater training environment of the NBL. This work details an actual Suit Qualification NBL training event, outlines the numerous challenges the astronauts face throughout their initial training, and the various ways they adapt their own abilities to overcome them. The goal of this paper is to give everyone a small glimpse into what it is really like to work in a space suit.

  12. Dr. David Brown poses with a portrait of Ronald McNair

    Science.gov (United States)

    1999-01-01

    In the gymnasium of Ronald McNair Magnet School in Cocoa, Fla., Dr. David Brown, a NASA astronaut, poses with a portrait of NASA astronaut Ronald McNair. The portrait was presented to the school by Walt Disney World during a tribute to McNair. The school had previously been renamed for the fallen astronaut who was one of a crew of seven who lost their lives during an accident following launch of the Space Shuttle Challenger in January 1986.

  13. Tim Peake and Britain's road to space

    CERN Document Server

    Seedhouse, Erik

    2017-01-01

    This book puts the reader in the flight suit of Britain’s first male astronaut, Tim Peake. It chronicles his life, along with the Principia mission and the down-to-the-last-bolt descriptions of life aboard the ISS, by way of the hurdles placed by the British government and the rigors of training at Russia’s Star City military base. In addition, this book discusses the learning curves required in astronaut and mission training and the complexity of the technologies required to launch an astronaut and keep them alive for months on end. This book underscores the fact that technology and training, unlike space, do not exist in a vacuum; complex technical systems, like the ISS, interact with the variables of human personality, and the cultural background of the astronauts. .

  14. Robonaut: a robot designed to work with humans in space

    Science.gov (United States)

    Bluethmann, William; Ambrose, Robert; Diftler, Myron; Askew, Scott; Huber, Eric; Goza, Michael; Rehnmark, Fredrik; Lovchik, Chris; Magruder, Darby

    2003-01-01

    The Robotics Technology Branch at the NASA Johnson Space Center is developing robotic systems to assist astronauts in space. One such system, Robonaut, is a humanoid robot with the dexterity approaching that of a suited astronaut. Robonaut currently has two dexterous arms and hands, a three degree-of-freedom articulating waist, and a two degree-of-freedom neck used as a camera and sensor platform. In contrast to other space manipulator systems, Robonaut is designed to work within existing corridors and use the same tools as space walking astronauts. Robonaut is envisioned as working with astronauts, both autonomously and by teleoperation, performing a variety of tasks including, routine maintenance, setting up and breaking down worksites, assisting crew members while outside of spacecraft, and serving in a rapid response capacity.

  15. Astronautics and aeronautics, 1977: A chronology

    Science.gov (United States)

    Ritchie, E. H.

    1986-01-01

    This publication is a chronology of events during the year 1977 in the fields of aeronautical and space research, development, activity, and policy. It includes appendixes, an index, and illustrations. Chronological entries list sources for further inquiry.

  16. Astronautics and aeronautics, 1974: A chronology

    Science.gov (United States)

    Brun, N. L.

    1977-01-01

    The 14th volume in the NASA series of day-by-day records of aeronautical and space events has somewhat narrowed its scope and selectivity in its brief accounts from immediately available, open sources. This year the emphasis is even more directly focused on concrete air and space activities. The text continues to reflect some events in other agencies and countries.

  17. Canadian Astronautics Limited's SARSAT ground stations

    Science.gov (United States)

    Taylor, J. D.; Renner, R. C.

    1984-01-01

    The SARSAT Local User Terminal (LUT) is described. The RF receiving subsystem is based on a conventional 3 m dish antenna mounted on an elevation-over-azimuth pedestal to permit tracking of the low altitude, near polar satellites. Only program tracking is used since orbit parameters and time must always be known precisely for use in position location. Operation of the LUT is split into real-time mode during which Doppler data are generated and stored, and post-pass during which data are sorted and position located. Location accuracy is to within 20 km.

  18. Space Handbook: Astronautics and its Applications

    National Research Council Canada - National Science Library

    Buchheim, Robert W

    2007-01-01

    ... in the space environment, rocket vehicles, propulsion systems, propellants, internal power sources, structures and materials, flight path and orientation control, guidance, communication, observation...

  19. Gateway to Astronaut Photography of Earth

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  20. STS-47 Astronaut Crew Training Clip

    Science.gov (United States)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri, is seen during various parts of their training, including SAREX training in the Full Fuselage Trainer (FFT), firefighting training. A familiarization flight in the KC-135, a food tasting, photo training in the Crew Compartment Trainer, and bailout training in the Weightless Environment Training Facility (WETF) are also shown.