WorldWideScience

Sample records for asphaltite

  1. Determination of Selenium and Nickel in Asphaltite from Milli (Sirnak) Deposit in SE Anatolia of Turkey

    Science.gov (United States)

    Aydin, Isil; Fidan, Celal; Kavak, Orhan; Erek, Figen; Aydin, Firat

    2017-12-01

    Asphaltite is one of the naturally occurring black, solid bitumen’s, which are soluble at heating in carbon disulphide band fuse. Asphaltite is also a solidified hydro carbon compound derived from petroleum [1]. According to the World Energy Council, Turkish National Committee (1998), the total reserve of the asphaltic substances that are found in south eastern Turkey is about 82 million tons, with Silopi and Sirnak reserves to get her comprising the major part of the Asphaltite deposits. Selenium and Nickel are very important elements both environmental and health. Selenium plays an important role in the formation of the enzyme antioxidant effect in the cell. The need for Selenium increases in situations such as pregnancy, menopause, grow than development, air pollution. Nickel is used for preventing iron-poor blood, increasing iron absorption, and treating weak bones. In this study, asphaltites were taken from Milli vein from Sirnak deposit in SE Anatolia of Turkey. A total of 6.500.000 tons of Asphaltite reserves have been identified as asphaltites in Milli (Sirnak). The sample preparation method was developed in Asphaltite by spectroanalytical techniques, wet acid digestion. MW-AD followed by ICP-OES were used for the determination of Selenium and Nickel in Asphaltite. Proximate analysis of Asphaltite fly ash samples was made. It also, Selenium and Nickel element analysis in Asphaltite were made.

  2. Properties of sulfonated cation-exchangers made from petroleum asphaltites

    International Nuclear Information System (INIS)

    Pokonova, Yu.V.; Pol'kin, G.B.; Proskuryakov, V.A.

    1982-01-01

    The use of ion-exchangers in radiochemical technology is accompanied by changes of their properties under the influence of ionizing radiation. The rate of development of these processes depends on the nature and structure of the matrix and on the nature and amount of ionic groups. We have proposed a method of synthesis of ion-exchangers resistant to γ radiation from petroleum asphaltites. Continuing these investigations, we prepared cation-exchangers by sulfonation of a mixture of petroleum asphaltites and acid asphalt. An investigation of their radiation resistance is described in this paper

  3. Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey

    Science.gov (United States)

    Bilgin, Oyku

    2017-12-01

    The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.

  4. Caracterización y clasificación geoquímica de asfaltitas cubanas Geochemical characterization and classification of Cuban asphaltites

    Directory of Open Access Journals (Sweden)

    Zulema Dominguez

    2008-01-01

    Full Text Available Traditional biomarker parameters and aromatic compounds were applied to characterize and classify ten Cuban asphaltites (asphaltene-rich petroleum occurring as seeps or filling veins, joints, cavities and fissures. Genetic molecular parameters were compared in order to establish oil-oil correlations between samples. Thermal evolution was investigated using saturated biomarker and aromatic maturity parameters. All samples seem to represent petroleum in the early catagenetic stage. Statistical procedures used as auxiliary techniques show that they represent oils of Family II (marine anoxic carbonate sourced oils, except for 2 samples interpreted as belonging to Family III oils (normal marine siliciclastic suboxic sourced oils.

  5. Comportamiento de una Mezcla Densa en Caliente Elaborada con Asfaltos Modificados con Asfaltita

    Directory of Open Access Journals (Sweden)

    Hugo A. Rondón-Quintana

    2009-06-01

    Full Text Available Laboratory tests were used to evaluate the effect on the mechanical properties of a hot asphalt mix (MDC-2 as per INVIAS, 2007 specifications due to the addition by wet way of a natural asphaltite from the San Alberto Mine (Santander, Colombia. The strength under monotonic load, resilient modulus and rutting were evaluated. Two asphalt cements (CA were used, CA 80-100 from the Barrancabermeja refinery (Colombia and CA 60-70 from Apiay (Colombia. The results show that the mechanical properties evaluated were higher for the MDC2 mixes modified with asphaltite compared with mixtures with asphalts without additives. Additionally penetration tests at different temperatures and softening points were conducted on asphalt cementswith and without additive. The asphaltite produces higher penetration resistance and lower thermal flow susceptibility.

  6. Evaluación de las propiedades mecánicas de una mezcla densa en caliente modificada con asfaltita/Mechanical Properties Evaluation of a hot Asphalt Mixture Modified with Asphaltite

    Directory of Open Access Journals (Sweden)

    Hugo Alexander Rondón Quintana

    2012-12-01

    Full Text Available El trabajo evaluó en laboratorio la resistencia mecánica bajo carga monotónica, el módulo resiliente y la resistencia a la deformación permanente que experimenta una mezcla asfáltica cuando se modifica con una asfaltita. Adicionalmente, fue evaluada durante dos años, la influencia del medio ambiente de la ciudad de Bogotá D.C., sobre las propiedades mecánicas de la mezcla modificada. Se concluye que la resistencia mecánica de la mezcla asfáltica modificada incrementa en comparación con la convencional. La tendencia general de las mezclas con el tiempo de exposición al medio ambiente de Bogotá D.C., es experimentar un aumento en los valores de rigidez debido principalmente a procesos de endurecimiento por envejecimiento del ligante asfáltico. Sin embargo, para el caso de las mezclas modificadas y fabricadas con CA 60-70 en los primeros cinco meses de exposición, la rigidez disminuye.The strength under monotonic load, resilient modulus and rutting were evaluated on a hot-mix asphalt (HMAmodified with a natural sphaltite. Additionally, the influence of the environmental conditions of BogotáD.C., was evaluated during two years on the mechanical properties of a modified asphalt mixture. The results show that the mechanical properties evaluated were better for the HMA mixes modified in compared with those with neat asphalts. The asphaltite produces higher mechanical resistance in HMA. The general tendency of the mixtures is increase the modulus with time due to aging of the asphalt cement. However, modified mixtures with AC 60- 70, decrease in stiffness during the first months.

  7. Uranium exploration of the Colorado Plateau: interim staff report

    International Nuclear Information System (INIS)

    1980-10-01

    This report is an issue of the original draft copy of the Interim Staff Report on Uranium Exploration on the Colorado Plateau, dated June 1951. The original draft copy was only recently located and is being published at this time because of the interest in the contained historical content. The table of contents of this report lists: history of uranium mining; geology; proposed program for the geologic investigations section; general activities of industry and government; and future exploration of sedimentary uranium deposits and anticipated results. Under the proposed program section are: future of the copper-uranium deposits as a source of uranium; uraniferous asphaltite deposits; and commission exploration and future possibilities. The section on general activities of industry and government includes: exploratory and development drilling; field investigations and mapping; early geologic investigations and investigations by the US geological survey; and geophysical exploration. Tables are also presented on: uranium production by districts; US Geological survey drilling statistics; Colorado Exploration Branch drilling statistics; summary of drilling projects; and comparative yearly core-drill statistics on the Colorado Plateau

  8. Hydrocarbons and oxygen compounds in the bitumens of kukersite oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Pais, R; Klesment, I; Pobul, L

    1979-01-01

    This is a continuation of an earlier work which described commercial batches of kukersite in terms of oxidative kerogen destruction. The low concentration of bitumen in the kerogen and its group composition indicate that this bitumen is syngenetic. The authors studied the way in which the bitumen and kerogen are structurally connected. They also analyzed four commercial batches of kukersite and asphaltite, the organic-rich dark-colored layer found in the middle of the kukersite strate. Whereas American studies of Colorado shales containing 10-20% bitumen from organic matter have indicated, based on the identical structures of the bitumen and kerogen that there is a genetic relationship between them, the present study rarely found such structural elements in the bitumen and kerogen. The kukersite contained little bitumen--0.7% of the total organic matter. The authors believed that the different composition of the bitumen and kerogen does not prove that they are epigenetic. Kukersite also fails to follow the rule that the paraffins of ancient shales have KHapprox.1 and carbon chains shorter than C/sub 22/.

  9. Insight into the nature and formation of the organic matter observed on Ceres

    Science.gov (United States)

    Ammannito, E.; Vinogradoff, V.; De Sanctis, M. C.; De Angelis, S.; Ferrari, M.; Ciarniello, M.; Raponi, A.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    Observed by the Dawn spacecraft since March 2015, Ceres is a fascinating world [1]. Its surface, covered by phyllosilicates, carbonates, ammoniated-bearing hydrated minerals, water ice, salts and opaque materials indicates a complex chemical environment [1,2,3]. VIR, the Visible and InfraRed mapping spectrometer onboard the Dawn mission, has revealed the presence of aliphatic carbons with the 3.3-3.5 µm bands, near the Ernutet crater [4]. The origin of this OM is likely related to an endogenous source [4] and new issues are raised: what is the origin formation and the true nature of the OM hidden behind these aliphatic signatures? We used the spectral imaging (SPIM) facility in use at the laboratory of IAPS-INAF (spare of the VIR instrument onboard Dawn) to measure organic materials in the range 0.2-5.1 µm. These materials, such as insoluble organic matter (IOM) of chondrites, synthetic polymers, asphaltite, as well as spectra from literature data have been compared to VIR data. The Ceres aliphatic bands might match with an aliphatic branched polymer structure, i.e. with a 1.3 Science, 353 (6303) 1008-1010. [2] De Sanctis et al., (2015) Nature 528, 241-244. [3] De Sanctis et al., (2016) Nature 536, 54- 57. [4] De Sanctis et al., (2017) Science, 355, 719-722. [5] Holm et al., (2015), Astrobiology, 15, 587-600.

  10. Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model

    International Nuclear Information System (INIS)

    Ediger, Volkan S.; Akar, Sertac; Ugurlu, Berkin

    2006-01-01

    This study aims at forecasting the most possible curve for domestic fossil fuel production of Turkey to help policy makers to develop policy implications for rapidly growing dependency problem on imported fossil fuels. The fossil fuel dependency problem is international in scope and context and Turkey is a typical example for emerging energy markets of the developing world. We developed a decision support system for forecasting fossil fuel production by applying a regression, ARIMA and SARIMA method to the historical data from 1950 to 2003 in a comparative manner. The method integrates each model by using some decision parameters related to goodness-of-fit and confidence interval, behavior of the curve, and reserves. Different forecasting models are proposed for different fossil fuel types. The best result is obtained for oil since the reserve classifications used it is much better defined them for the others. Our findings show that the fossil fuel production peak has already been reached; indicating the total fossil fuel production of the country will diminish and theoretically will end in 2038. However, production is expected to end in 2019 for hard coal, in 2024 for natural gas, in 2029 for oil and 2031 for asphaltite. The gap between the fossil fuel consumption and production is growing enormously and it reaches in 2030 to approximately twice of what it is in 2000

  11. Chemical and thermal evolution of diagenetic fluids and the genesis of U and Cu ore in and adjacent to the Paradox Basin with emphasis on the Lisbon Valley and Temple Mountain areas, Utah and Colorado

    International Nuclear Information System (INIS)

    Morrison, S.J.

    1986-01-01

    Strata-of the central Colorado Plateau of southeastern Utah and southwestern Colorado hot Cu(+/-Ag) ore in salt anticline related faults, and stratiform sandstone-type uranium deposits. The goals of this study were to develop, evaluate, and interpret a geochemical data base from a restricted stratigraphic interval, and to develop models of the chemical and thermal evolution of the interaction of rock framework with pore fluids. Fluid inclusions, mineral chemistry, and C/O stable isotopes in calcite gangue associated with vein-type copper ore at Lisbon Valley suggest mixing of two solutions caused precipitation of the ore. Regularly interstratified chlorite/smectite (corrensite) coats grains in marine and eolian sandstones of the Permian Cutler Formation in the Lisbon Valley area. Local hydrothermal fluids rising along the Lisbon fault apparently permeated the Cutler red-bed section and precipitated the clay minerals. Detailed petrographic studies and fluid inclusion data from calcite cements in the Moss Back Member, support theories of syndiagenetic mobilization of humic compounds, uranium fixation and cementation at Lisbon Valley. The Temple Mountain area hosts uranium ore bodies that are unique among sandstone-type uranium deposits in structural setting, mineralogy, exotic elements, and the occurrence of asphaltite in the ores. This study suggests that warm fluids (70 0 C) have migrated along ring fractures bounding the collapse structure as evidenced by fluid inclusions trapped in authigenic dolomite in the basal Triassic Wingate Sandstone. K/Ar dates using alunite indicate that fluid migration was active as late as 13 my. Modeling suggests that dolomite at the Wingate/Chinle contact precipitated as two fluids mixed

  12. Ion irradiation of the Murchison meteorite: Visible to mid-infrared spectroscopic results

    Science.gov (United States)

    Lantz, C.; Brunetto, R.; Barucci, M. A.; Dartois, E.; Duprat, J.; Engrand, C.; Godard, M.; Ledu, D.; Quirico, E.

    2015-05-01

    Aims: The goal of this study is to simulate space weathering processes on primitive bodies. We use ion implantation as a simulation of solar wind irradiation, which has been suggested by several authors to be the major component of space weathering on main belt asteroids. The laboratory analogs we irradiate and analyze are carbonaceous chondrites; we started the study with the Allende CV meteorite and in this companion paper we present results on the Murchison CM meteorite. Methods: We performed irradiations on pressed pellets of Murchison with 40 keV He+ and Ar+ ions using fluences up to 3 × 1016 ions/cm2. Reflectance spectra were acquired ex situ before and after irradiation in the visible to mid-infrared range (0.4-16 μm). A Raman analysis was also performed to investigate the modifications of the aromatic carbonaceous component. Results: Our results indicate that spectral variations after irradiation within the visible range are smaller than spectral variations due to sample grain size or viewing geometry of the Murchison meteorite. The aqueous alteration band profile near 3 μm changes after irradiation, as adsorbed water is removed, and phyllosilicates are affected. Raman spectroscopy highlights the insoluble organic matter (IOM) modification under irradiation. We observe a shift of the silicates band at 9.9 μm, probably due to a preferential loss of Mg (compared to Fe, the lighter Mg is more easily sputtered backward) and/or amorphization of Mg-rich materials. We compare our results to previous experiments on organic-rich materials (like asphaltite or carbonaceous chondrites), and on ordinary chondrites and olivine grains. We find that the reddening/darkening trend observed on silicate-rich surfaces is not valid for all carbonaceous chondrites, and that the spectral modifications after irradiation are a function of the initial albedo.

  13. Site investigation SFR. Fracture mineralogy and geochemistry of borehole sections sampled for groundwater chemistry and Eh. Results from boreholes KFR01, KFR08, KFR10, KFR19, KFR7A and KFR105

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Bjoern (WSP Sverige AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB, Grabo (Sweden))

    2011-01-15

    This report is part of the complementary site investigations for the future expansion of SFR. The report presents the results obtained during a detailed mineralogical and geochemical study of fracture minerals in drill cores from borehole section sampled for groundwater chemistry and where downhole Eh measurements have been performed. The groundwater redox system comprises not only the water, but also the bedrock/fracture mineral system in contact with this water. It is thus important to gain knowledge of the solid phases in contact with the groundwater, i.e. the fracture minerals. The samples studied for mineralogy and geochemistry, here reported, were selected to represent the fracture surfaces in contact with the groundwater in the sampled borehole sections and will give input to the hydrogeochemical model (SFR SDM). The mineralogy was determined using SEM-EDS and XRD and the geochemistry of fracture filling material was analysed by ICP-AES and ICP-QMS. The most common fracture minerals in the samples are mixed layer clay (smectite-illite), illite, chlorite, calcite, quartz, adularia and albite. Other minerals identified in the borehole sections include laumontite, pyrite, barite, chalcopyrite, hematite, Fe-oxyhydroxide, muscovite, REE-carbonate, allanite, biotite, asphaltite, galena, sphalerite, arsenopyrite, uranium phosphate, uranium silicate, Y-Ca silicate, monazite, xenotime, harmotome and fluorite. There are no major differences between the fracture mineralogy of the investigated borehole sections from SFR and the fracture mineralogy of the Forsmark site investigation area. The four fracture mineral generations distinguished within the Forsmark site investigation are also found at SFR. However, some differences have been observed: 1) Barite and uranium minerals are more common in the SFR fractures, 2) clay minerals like mixed layer illite-smectite and illite dominates in contrast to Forsmark where corrensite is by far the most common clay mineral and, 3

  14. Site investigation SFR. Fracture mineralogy and geochemistry of borehole sections sampled for groundwater chemistry and Eh. Results from boreholes KFR01, KFR08, KFR10, KFR19, KFR7A and KFR105

    International Nuclear Information System (INIS)

    Sandstroem, Bjoern; Tullborg, Eva-Lena

    2011-01-01

    This report is part of the complementary site investigations for the future expansion of SFR. The report presents the results obtained during a detailed mineralogical and geochemical study of fracture minerals in drill cores from borehole section sampled for groundwater chemistry and where downhole Eh measurements have been performed. The groundwater redox system comprises not only the water, but also the bedrock/fracture mineral system in contact with this water. It is thus important to gain knowledge of the solid phases in contact with the groundwater, i.e. the fracture minerals. The samples studied for mineralogy and geochemistry, here reported, were selected to represent the fracture surfaces in contact with the groundwater in the sampled borehole sections and will give input to the hydrogeochemical model (SFR SDM). The mineralogy was determined using SEM-EDS and XRD and the geochemistry of fracture filling material was analysed by ICP-AES and ICP-QMS. The most common fracture minerals in the samples are mixed layer clay (smectite-illite), illite, chlorite, calcite, quartz, adularia and albite. Other minerals identified in the borehole sections include laumontite, pyrite, barite, chalcopyrite, hematite, Fe-oxyhydroxide, muscovite, REE-carbonate, allanite, biotite, asphaltite, galena, sphalerite, arsenopyrite, uranium phosphate, uranium silicate, Y-Ca silicate, monazite, xenotime, harmotome and fluorite. There are no major differences between the fracture mineralogy of the investigated borehole sections from SFR and the fracture mineralogy of the Forsmark site investigation area. The four fracture mineral generations distinguished within the Forsmark site investigation are also found at SFR. However, some differences have been observed: 1) Barite and uranium minerals are more common in the SFR fractures, 2) clay minerals like mixed layer illite-smectite and illite dominates in contrast to Forsmark where corrensite is by far the most common clay mineral and, 3

  15. Site investigation SFR. Fracture mineralogy including identification of uranium phases and hydrochemical characterisation of groundwater in borehole KFR106

    International Nuclear Information System (INIS)

    Sandstroem, Bjoern; Nilsson, Kersti; Tullborg, Eva-Lena

    2011-12-01

    This report presents the fracture mineralogy and hydrochemistry of borehole KFR106. The most abundant fracture minerals in the examined drill core samples are clay minerals, calcite, quartz and adularia; chlorite is also common but is mostly altered and found interlayered with corrensite. The most common clay mineral is a mixed layer clay consisting of illite-smectite. Pyrite, galena, chalcopyrite, barite (-celestine) and hematite are also commonly found in the fractures, but usually in trace amounts. Other minerals identified in the examined fractures are U-phosphate, pitchblende, U(Ca)-silicate, asphaltite, biotite, monazite, fluorite, titanite, sericite, xenotime, rutile and (Ca, REEs)-carbonate. Uranium has been introduced, mobilised and reprecipitated during at least four different episodes: 1) Originally, during emplacement of U-rich pegmatites, probably as uraninite. 2) At a second event, uranium was mobilised under brittle conditions during formation of breccia/cataclasite. Uraninite was altered to pitchblende and partly coffinitised. Mobilised uranium precipitated as pitchblende closely associated with hematite and chlorite in cataclasite and fracture sealings prior to 1,000 Ma. 3) During the Palaeozoic U was remobilised and precipitated as U-phosphate on open fracture surfaces. 4) An amorphous U-silicate has also been found in open fractures; the age of this precipitation is not known but it is inferred to be Palaeozoic or younger. Groundwater was sampled in two sections in borehole KFR106 with pumping sequences of about 6 days for each section. The samples from sections KFR106:1 and KFR106:2 (260-300 m and 143-259 m borehole length, i.e. -261 and -187 m.a.s.l. mid elevation of the section, respectively) were taken in November 2009 and yielded groundwater chemistry data in accordance with SKB chemistry class 3 and 5. In section KFR106:1 and KFR106:2, the chloride contents were 850 and 1,150 mg/L and the drilling water content 6 and 4%, respectively

  16. Site investigation SFR. Fracture mineralogy including identification of uranium phases and hydrochemical characterisation of groundwater in borehole KFR106

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Bjoern [WSP Sverige AB, Goeteborg (Sweden); Nilsson, Kersti [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2011-12-15

    This report presents the fracture mineralogy and hydrochemistry of borehole KFR106. The most abundant fracture minerals in the examined drill core samples are clay minerals, calcite, quartz and adularia; chlorite is also common but is mostly altered and found interlayered with corrensite. The most common clay mineral is a mixed layer clay consisting of illite-smectite. Pyrite, galena, chalcopyrite, barite (-celestine) and hematite are also commonly found in the fractures, but usually in trace amounts. Other minerals identified in the examined fractures are U-phosphate, pitchblende, U(Ca)-silicate, asphaltite, biotite, monazite, fluorite, titanite, sericite, xenotime, rutile and (Ca, REEs)-carbonate. Uranium has been introduced, mobilised and reprecipitated during at least four different episodes: 1) Originally, during emplacement of U-rich pegmatites, probably as uraninite. 2) At a second event, uranium was mobilised under brittle conditions during formation of breccia/cataclasite. Uraninite was altered to pitchblende and partly coffinitised. Mobilised uranium precipitated as pitchblende closely associated with hematite and chlorite in cataclasite and fracture sealings prior to 1,000 Ma. 3) During the Palaeozoic U was remobilised and precipitated as U-phosphate on open fracture surfaces. 4) An amorphous U-silicate has also been found in open fractures; the age of this precipitation is not known but it is inferred to be Palaeozoic or younger. Groundwater was sampled in two sections in borehole KFR106 with pumping sequences of about 6 days for each section. The samples from sections KFR106:1 and KFR106:2 (260-300 m and 143-259 m borehole length, i.e. -261 and -187 m.a.s.l. mid elevation of the section, respectively) were taken in November 2009 and yielded groundwater chemistry data in accordance with SKB chemistry class 3 and 5. In section KFR106:1 and KFR106:2, the chloride contents were 850 and 1,150 mg/L and the drilling water content 6 and 4%, respectively

  17. Petroleum Gases Market in Turkey

    International Nuclear Information System (INIS)

    Bumin, S.; Ozyoruk, B.

    2007-01-01

    and Europe. Therefore, Turkey is widely called as 'The Energy Bridge between the East and the West'. Turkey's natural energy resources are quite diversified; hard coal, lignite, asphaltite, oil, natural gas, hydro, geothermal, wood, animal and plant wastes, solar and secondary energy resources such as coke and briquettes are produced and consumed. Although Turkey's oil and natural gas reserves are limited, coal reserves are quite abundant. Energy forecasts show that primary energy demand would be 117 million TOE in 2005 and 156 million TOE in 2010. Turkey has a large LPG (Liquefied Petroleum Gas) consumption, which ranks third in Europe and within the top ten in the world. Turkey's LPG market structure depends largely on imports. At the end of 2005, the LPG consumption was around 3.7 billion tonnes and about 80 % of this, which amounts to 2.8 billion tonnes, has been provided through imports.(author)