Sample records for artificial intelligence consortium

  1. Artificial intelligence

    Hunt, Earl B


    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  2. Artificial intelligence

    Ennals, J R


    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  3. Artificial Intelligence

    Warwick, Kevin


    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  4. Artificial intelligence

    A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990

  5. Artificial Intelligence.

    Lawrence, David R; Palacios-González, César; Harris, John


    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve. PMID:26957450

  6. Artificial intelligence

    Duda, Antonín


    Abstract : Issue of this work is to acquaint the reader with the history of artificial inteligence, esspecialy branch of chess computing. Main attention is given to progress from fifties to the present. The work also deals with fighting chess programs against each other, and against human opponents. The greatest attention is focused on 1997 and duel Garry Kasparov against chess program Deep Blue. The work is divided into chapters according to chronological order.

  7. Intelligence: Real or artificial?

    Schlinger, Henry D


    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally r...

  8. Quo Vadis, Artificial Intelligence?

    Alfons Schuster; Daniel Berrar; Naoyuki Sato


    Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervou...

  9. Principles of artificial intelligence

    Nilsson, Nils J


    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  10. Natural or Artificial Intelligence?

    Havlík, Vladimír

    Plzeň: University of West Bohemia, 2013 - (Romportl, J.; Ircing, P.; Zackova, E.; Polak, M.; Schuster, R.), s. 15-27 ISBN 978-80-261-0275-5. [International Conference Beyond AI 2013. Plzeň (CZ), 12.11.2013-14.11.2013] Institutional support: RVO:67985955 Keywords : artificial intelligence * natural intelligence * artifact * natural process * intrinsic intentionality Subject RIV: AA - Philosophy ; Religion

  11. Artificial intelligence in nanotechnology

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  12. Web Intelligence and Artificial Intelligence in Education

    Devedzic, Vladan


    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  13. Artificial intelligence within AFSC

    Gersh, Mark A.


    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  14. Artificial Intelligence and CALL.

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  15. Artificial Intelligence and Information Retrieval.

    Teodorescu, Ioana


    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  16. Integrating artificial intelligence into organizational intelligence

    Florin LEON; Atanasiu, Gabriela M.


    Organizational intelligence is the capability of an organization to create knowledge and to use it in order to strategically adapt to its environment. Intelligence of an organization is more than the aggregated intelligence of its members – it is an emergent property of the complex interactions of its subsystems and the way they are aggregated. Processes analyse related to organizational intelligence can be achieved by means of agent-based simulations. Distributed artificial intelligence addr...

  17. Impacts of Artificial Intelligence

    Trappl, R.


    This book, which is intended to serve as the first stage in an iterative process of detecting, predicting, and assessing the impacts of Artificial Intelligence opens with a short "one-hour course" in AI, which is intended to provide a nontechnical informative introduction to the material which follows. Next comes an overview chapter which is based on an extensive literature search, the position papers, and discussions. The next section of the book contains position papers whose richness...

  18. Artificial Intelligence in Transition

    Hart, Peter E.


    In the past fifteen years artificial intelligence has changed from being the preoccupation of a handful of scientists to a thriving enterprise that has captured the imagination of world leaders and ordinary citizens alike. While corporate and government officials organize new projects whose potential impact is widespread, to date few people have been more affected by the transition than those already in the field. I review here some aspects of this transition, and pose some issues that it rai...

  19. Intelligence, Artificial and Otherwise

    Chace, William M.


    I rise now to speak with the assumption that all of you know very well what I am going to say. I am the humanist here, the professor of English. We humanists, when asked to speak on questions of science and technology, are notorious for offering an embarrassed and ignorant respect toward those matters, a respect, however, which can all too quickly degenerate into insolent condescension. Face to face with the reality of computer technology, say, or with "artificial intelligence," we humanists ...

  20. Uncertainty in artificial intelligence

    Kanal, LN


    How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.

  1. Bayesian artificial intelligence

    Korb, Kevin B


    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  2. Soft computing in artificial intelligence

    Matson, Eric


    This book explores the concept of artificial intelligence based on knowledge-based algorithms. Given the current hardware and software technologies and artificial intelligence theories, we can think of how efficient to provide a solution, how best to implement a model and how successful to achieve it. This edition provides readers with the most recent progress and novel solutions in artificial intelligence. This book aims at presenting the research results and solutions of applications in relevance with artificial intelligence technologies. We propose to researchers and practitioners some methods to advance the intelligent systems and apply artificial intelligence to specific or general purpose. This book consists of 13 contributions that feature fuzzy (r, s)-minimal pre- and β-open sets, handling big coocurrence matrices, Xie-Beni-type fuzzy cluster validation, fuzzy c-regression models, combination of genetic algorithm and ant colony optimization, building expert system, fuzzy logic and neural network, ind...

  3. A Primer on Artificial Intelligence.

    Leal, Ralph A.

    A survey of literature on recent advances in the field of artificial intelligence provides a comprehensive introduction to this field for the non-technical reader. Important areas covered are: (1) definitions, (2) the brain and thinking, (3) heuristic search, and (4) programing languages used in the research of artificial intelligence. Some…

  4. The handbook of artificial intelligence

    Barr, Avron


    The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine

  5. Artificial Intelligence in Civil Engineering

    Pengzhen Lu


    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  6. Artificial intelligence in hematology.

    Zini, Gina


    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems. PMID:16203606

  7. Artificial Intelligence in Canada: A Review

    Mccalla, Gordon; Cercone, Nick


    Canadians have made many contributions to artificial intelligence over the years. This article presents a summary of current research in artificial intelligence in Canada and acquaints readers with the Canadian organization for artificial intelligence -- the Canadian Society for the Computational Studies of Intelligence / Societe Canadienne pour l' Etude de l'Intelligence par Ordinateur (CSCSI/ SCEIO).

  8. Medical applications of artificial intelligence

    Agah, Arvin


    Enhanced, more reliable, and better understood than in the past, artificial intelligence (AI) systems can make providing healthcare more accurate, affordable, accessible, consistent, and efficient. However, AI technologies have not been as well integrated into medicine as predicted. In order to succeed, medical and computational scientists must develop hybrid systems that can effectively and efficiently integrate the experience of medical care professionals with capabilities of AI systems. After providing a general overview of artificial intelligence concepts, tools, and techniques, Medical Ap

  9. Artificial intelligence and intelligent tutoring systems

    Livergood, N.D.


    As a species we have evolved by increasing our mental and physical powers through the deliberate development and use of instruments that amplify our inherent capabilities. Whereas hereditarily given instincts predetermine the actions of lower animal forms, human existence begins with freedom. As humans we can choose what actions we will perform. We have invented a technology called education to prepare ourselves for life. At present, our educational structures and procedures are failing to prepare us efficiently for the demands of modern life. One of the most important new technologies, in relation to human development, is the digital computer. This dissertation proposes that artificial intelligence maintain a highly critical technological awareness. Artificial intelligence, because of its origin as a politically sponsored field of investigation, must strive for constant awareness of its place within the larger political-economic world and its possible misuse by factions intent on manipulation and control. Computerized models of the human mind could be used in developing progressively more sophisticated brainwashing systems. Intelligent tutoring systems comprise an important new technology within the field of artificial intelligence. This dissertation explores specification and design procedures, functions and issues in developing intelligent tutoring systems.

  10. Computer automation and artificial intelligence

    Rapid advances in computing, resulting from micro chip revolution has increased its application manifold particularly for computer automation. Yet the level of automation available, has limited its application to more complex and dynamic systems which require an intelligent computer control. In this paper a review of Artificial intelligence techniques used to augment automation is presented. The current sequential processing approach usually adopted in artificial intelligence has succeeded in emulating the symbolic processing part of intelligence, but the processing power required to get more elusive aspects of intelligence leads towards parallel processing. An overview of parallel processing with emphasis on transputer is also provided. A Fuzzy knowledge based controller for amination drug delivery in muscle relaxant anesthesia on transputer is described. 4 figs. (author)

  11. Progress and Challenge of Artificial Intelligence

    Zhong-Zhi Shi; Nan-Ning Zheng


    Artificial Intelligence (AI) is generally considered to be a subfield of computer science, that is concerned to attempt simulation, extension and expansion of human intelligence. Artificial intelligence has enjoyed tremendous success over the last fifty years. In this paper we only focus on visual perception, granular computing, agent computing, semantic grid. Human-level intelligence is the long-term goal of artificial intelligence. We should do joint research on basic theory and technology of intelligence by brain science, cognitive science, artificial intelligence and others. A new cross discipline intelligence science is undergoing a rapid development. Future challenges are given in final section.

  12. Computational aerodynamics and artificial intelligence

    Mehta, U. B.; Kutler, P.


    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  13. A Definition of Artificial Intelligence

    Dobrev, Dimiter


    In this paper we offer a formal definition of Artificial Intelligence and this directly gives us an algorithm for construction of this object. Really, this algorithm is useless due to the combinatory explosion. The main innovation in our definition is that it does not include the knowledge as a part of the intelligence. So according to our definition a newly born baby also is an Intellect. Here we differs with Turing's definition which suggests that an Intellect is a person with knowledge gai...

  14. Artificial intelligence techniques in Prolog

    Shoham, Yoav


    Artificial Intelligence Techniques in Prolog introduces the reader to the use of well-established algorithmic techniques in the field of artificial intelligence (AI), with Prolog as the implementation language. The techniques considered cover general areas such as search, rule-based systems, and truth maintenance, as well as constraint satisfaction and uncertainty management. Specific application domains such as temporal reasoning, machine learning, and natural language are also discussed.Comprised of 10 chapters, this book begins with an overview of Prolog, paying particular attention to Prol

  15. Developing Creativity: Artificial Barriers in Artificial Intelligence

    Jennings, Kyle E.


    The greatest rhetorical challenge to developers of creative artificial intelligence systems is convincingly arguing that their software is more than just an extension of their own creativity. This paper suggests that “creative autonomy,” which exists when a system not only evaluates creations on its own, but also changes its standards without explicit direction, is a necessary condition for making this argument. Rather than requiring that the system be hermetically sealed to avoid perceptions...

  16. Artificial Intelligence Databases: A Survey and Comparison.

    Stern, David


    Identifies and describes online databases containing references to materials on artificial intelligence, robotics, and expert systems, and compares them in terms of scope and usage. Recommendations for conducting online searches on artificial intelligence and related fields are offered. (CLB)

  17. Artificial Intelligence Assists Ultrasonic Inspection

    Schaefer, Lloyd A.; Willenberg, James D.


    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  18. Impact of Artificial Intelligence on Economic Theory

    Tshilidzi Marwala


    Artificial intelligence has impacted many aspects of human life. This paper studies the impact of artificial intelligence on economic theory. In particular we study the impact of artificial intelligence on the theory of bounded rationality, efficient market hypothesis and prospect theory.

  19. How to Improve Artificial Intelligence through Web

    Adrian LUPASC


    Intelligent agents, intelligent software applications and artificial intelligent applications from artificial intelligence service providers may make their way onto the Web in greater number as adaptive software, dynamic programming languages and Learning Algorithms are introduced into Web Services. The evolution of Web architecture may allow intelligent applications to run directly on the Web by introducing XML, RDF and logic layer. The Intelligent Wireless Web’s significant potential for ra...

  20. Uncertainty in artificial intelligence

    Levitt, TS; Lemmer, JF; Shachter, RD


    Clearly illustrated in this volume is the current relationship between Uncertainty and AI.It has been said that research in AI revolves around five basic questions asked relative to some particular domain: What knowledge is required? How can this knowledge be acquired? How can it be represented in a system? How should this knowledge be manipulated in order to provide intelligent behavior? How can the behavior be explained? In this volume, all of these questions are addressed. From the perspective of the relationship of uncertainty to the basic questions of AI, the book divides naturally i

  1. Psychological Studies and Artificial Intelligence

    Ringle, Martin


    This paper argues for the position that experimental human studies are relevant to most facets of AI research and that closer ties between AI and experimental psychology will enhance the development of booth the principles of artificial intelligence and their implementation in computers. Raising psychological assumptions from the level of ad hoc intuitions to the level of systematic empirical observation, in the long run, will improve the quality of AI research and help to integrate it with r...

  2. Automated Scheduling Via Artificial Intelligence

    Biefeld, Eric W.; Cooper, Lynne P.


    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  3. Educational Advances in Artificial Intelligence

    Brown, Laura E.; Michigan Technological University; Kauchak, David; University of California, San Diego


    The emergence of massive open online courses has initiated a broad national-wide discussion on higher education practices, models, and pedagogy.  Artificial intelligence and machine learning courses were at the forefront of this trend and are also being used to serve personalized, managed content in the back-end systems. Massive open online courses are just one example of the sorts of pedagogical innovations being developed to better teach AI. This column will discuss and share innovative ed...

  4. Artificial Intelligence, Knowledge Extraction and the Study of Human Intelligence.

    d'Ydewalle, Gery; Delhaye, Patrick


    Describes artificial intelligence (AI) as the study of intelligence with the ideas and methods of computation. States that the goal is to make computers more intelligent and thereby uncover the principles that make intelligent behavior possible. Discusses knowledge representations, production (if-then) systems, and expert systems as forms of AI.…

  5. Of Artificial Intelligence and Legal Reasoning

    Sunstein, Cass Robert


    Can computers, or artificial intelligence, reason by analogy? This essay urges that they cannot, because they are unable to engage in the crucial task of identifying the normative principle that links or separates cases. Current claims, about the ability of artificial intelligence to reason analogically, rest on an inadequate picture of what legal reasoning actually is. For the most part, artificial intelligence now operates as a kind of advanced version of LEXIS, offering research assistance...

  6. Readings in artificial intelligence and software engineering

    Rich, Charles


    Readings in Artificial Intelligence and Software Engineering covers the main techniques and application of artificial intelligence and software engineering. The ultimate goal of artificial intelligence applied to software engineering is automatic programming. Automatic programming would allow a user to simply say what is wanted and have a program produced completely automatically. This book is organized into 11 parts encompassing 34 chapters that specifically tackle the topics of deductive synthesis, program transformations, program verification, and programming tutors. The opening parts p

  7. Innovative applications of artificial intelligence

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  8. Epistasis analysis using artificial intelligence.

    Moore, Jason H; Hill, Doug P


    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data. PMID:25403541

  9. Artificial intelligence methods for diagnostic

    To assist in diagnosis of its nuclear power plants, the Research and Development Division of Electricite de France has been developing skills in Artificial Intelligence for about a decade. Different diagnostic expert systems have been designed. Among them, SILEX for control rods cabinet troubleshooting, DIVA for turbine generator diagnosis, DIAPO for reactor coolant pump diagnosis. This know how in expert knowledge modeling and acquisition is direct result of experience gained during developments and of a more general reflection on knowledge based system development. We have been able to reuse this results for other developments such as a guide for auxiliary rotating machines diagnosis. (authors)

  10. Logical Foundations Of Artificial Intelligence

    Angel Garrido


    Full Text Available The procedures of searching solutions to problems, in Artificial Intelligence, can be brought about, in many occasions, without knowledge of the Domain, and in other situations, with knowledge of it. This last procedure is usually called Heuristic Search. In such methods the matrix techniques reveal themselves as essential. Their introduction can give us an easy and precise way in the search of solution. Our paper explains how the matrix theory appears and fruitfully participates in A I, with feasible applications to Game Theory.

  11. Artificial intelligence a beginner's guide

    Whitby, Blay


    Tomorrow begins right here as we embark on an enthralling and jargon-free journey into the world of computers and the inner recesses of the human mind. Readers encounter everything from the nanotechnology used to make insect-like robots, to computers that perform surgery, in addition to discovering the biggest controversies to dog the field of AI. Blay Whitby is a Lecturer on Cognitive Science and Artificial Intelligence at the University of Sussex UK. He is the author of two books and numerous papers.

  12. Advanced Artificial Intelligence Technology Testbed

    Anken, Craig S.


    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  13. Improving designer productivity. [artificial intelligence

    Hill, Gary C.


    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  14. Economic reasoning and artificial intelligence.

    Parkes, David C; Wellman, Michael P


    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people. PMID:26185245

  15. Contribution of artificial intelligence to operation

    Artificial Intelligence techniques are already used in nuclear plants for assistance to operation: synthesis from numerous information sources may be then derived, based on expert knowledge. Artificial intelligence may be used also for quality and reliability assessment of software-based control-command systems. Various expert systems developed by CEA, EDF and Framatome are presented


    A.P. Sobchak


    Full Text Available This article discusses the main issues of artificial intelligence and its implementation in daily life in the form of control systems for mechatronic systems. Due to intensive application of the latest scientific and technological achievements and a new element base, there spring up new technologies of artificial intelligence creation principles and laws realization, examples of which given in the article

  17. A Study on Artificial Intelligence IQ and Standard Intelligent Model

    Liu, Feng; Shi, Yong


    Currently, potential threats of artificial intelligence (AI) to human have triggered a large controversy in society, behind which, the nature of the issue is whether the artificial intelligence (AI) system can be evaluated quantitatively. This article analyzes and evaluates the challenges that the AI development level is facing, and proposes that the evaluation methods for the human intelligence test and the AI system are not uniform; and the key reason for which is that none of the models ca...


    Lynggaard, Per


    A majority of the research performed today explore artificial intelligence in smart homes by using a centralized approach where a smart home server performs the necessary calculations. This approach has some disadvantages that can be overcome by shifting focus to a distributed approach where...... the artificial intelligence system is implemented as distributed as agents running parts of the artificial intelligence system. This paper presents a distributed smart home architecture that distributes artificial intelligence in smart homes and discusses the pros and cons of such a concept. The presented...... distributed model is a layered model. Each layer offers a different complexity level of the embedded distributed artificial intelligence. At the lowest layer smart objects exists, they are small cheap embedded microcontroller based smart devices that are powered by batteries. The next layer contains a more...

  19. Artificial Intelligence Research and Development: Proc. of the 11th International Conference of the Catalan Association for Artificial Intelligence

    Alsinet, Teresa; Puyol-Gruart, Josep; Torras, Carme


    Artificial Intelligence Research and Development. Proceedings of the 11th International Conference of the Catalan Association for Artificial Intelligence. Volume 184 Frontiers in Artificial Intelligence and Applications Peer Reviewed

  20. Text Classification using Artificial Intelligence

    Kamruzzaman, S M


    Text classification is the process of classifying documents into predefined categories based on their content. It is the automated assignment of natural language texts to predefined categories. Text classification is the primary requirement of text retrieval systems, which retrieve texts in response to a user query, and text understanding systems, which transform text in some way such as producing summaries, answering questions or extracting data. Existing supervised learning algorithms for classifying text need sufficient documents to learn accurately. This paper presents a new algorithm for text classification using artificial intelligence technique that requires fewer documents for training. Instead of using words, word relation i.e. association rules from these words is used to derive feature set from pre-classified text documents. The concept of na\\"ive Bayes classifier is then used on derived features and finally only a single concept of genetic algorithm has been added for final classification. A syste...

  1. Artificial intelligence and process management

    Techniques derived from work in artificial intelligence over the past few decades are beginning to change the approach in applying computers to process management. To explore this new approach and gain real practical experience of its potential a programme of experimental applications was initiated by Sira in collaboration with the process industry. This programme encompassed a family of experimental applications ranging from process monitoring, through supervisory control and troubleshooting to planning and scheduling. The experience gained has led to a number of conclusions regarding the present level of maturity of the technology, the potential for further developments and the measures required to secure the levels of system integrity necessary in on-line applications to critical processes. (author)

  2. Artificial Intelligence and Information Management

    Fukumura, Teruo

    After reviewing the recent popularization of the information transmission and processing technologies, which are supported by the progress of electronics, the authors describe that by the introduction of the opto-electronics into the information technology, the possibility of applying the artificial intelligence (AI) technique to the mechanization of the information management has emerged. It is pointed out that althuogh AI deals with problems in the mental world, its basic methodology relies upon the verification by evidence, so the experiment on computers become indispensable for the study of AI. The authors also describe that as computers operate by the program, the basic intelligence which is concerned in AI is that expressed by languages. This results in the fact that the main tool of AI is the logical proof and it involves an intrinsic limitation. To answer a question “Why do you employ AI in your problem solving”, one must have ill-structured problems and intend to conduct deep studies on the thinking and the inference, and the memory and the knowledge-representation. Finally the authors discuss the application of AI technique to the information management. The possibility of the expert-system, processing of the query, and the necessity of document knowledge-base are stated.

  3. Artificial intelligence in power system optimization

    Ongsakul, Weerakorn


    With the considerable increase of AI applications, AI is being increasingly used to solve optimization problems in engineering. In the past two decades, the applications of artificial intelligence in power systems have attracted much research. This book covers the current level of applications of artificial intelligence to the optimization problems in power systems. This book serves as a textbook for graduate students in electric power system management and is also be useful for those who are interested in using artificial intelligence in power system optimization.

  4. Economic modeling using artificial intelligence methods

    Marwala, Tshilidzi


    This book examines the application of artificial intelligence methods to model economic data. It addresses causality and proposes new frameworks for dealing with this issue. It also applies evolutionary computing to model evolving economic environments.

  5. The importance of artificial intelligence for Naval intelligence training simulations

    Sweat, Patricia A.


    Agent technology is widely deployed in numerous commercial areas such as networking, modeling, and software; however, this technology remains under-utilized by operational organizations within the United States Navy. This thesis will investigate the importance of artificial intelligence (AI) for military training simulations, particularly in the training of intelligence personnel in the Navy. The Computer Generated Forces (CGF) of the current Intelligence Team Trainer's (ITT) system initiate ...

  6. Artificial intelligence techniques for rational decision making

    Marwala, Tshilidzi


    Develops insights into solving complex problems in engineering, biomedical sciences, social science and economics based on artificial intelligence. Some of the problems studied are in interstate conflict, credit scoring, breast cancer diagnosis, condition monitoring, wine testing, image processing and optical character recognition. The author discusses and applies the concept of flexibly-bounded rationality which prescribes that the bounds in Nobel Laureate Herbert Simon's bounded rationality theory are flexible due to advanced signal processing techniques, Moore's Law and artificial intellig

  7. Artificial Intelligence and Spacecraft Power Systems

    Dugel-Whitehead, Norma R.


    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  8. Artificial Intelligence for Controlling Robotic Aircraft

    Krishnakumar, Kalmanje


    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  9. Improving Tools in Artificial Intelligence

    Angel Garrido


    Full Text Available The historical origin of the Artificial Intelligence (AI is usually established in the Dartmouth Conference, of 1956. But we can find many more arcane origins [1]. Also, we can consider, in more recent times, very great thinkers, as Janos Neumann (then, John von Neumann, arrived in USA, Norbert Wiener, Alan Mathison Turing, or Lofti Zadeh, for instance [12, 14]. Frequently AI requires Logic. But its Classical version shows too many insufficiencies. So, it was necessary to introduce more sophisticated tools, as Fuzzy Logic, Modal Logic, Non-Monotonic Logic and so on [1, 2]. Among the things that AI needs to represent are categories, objects, properties, relations between objects, situations, states, time, events, causes and effects, knowledge about knowledge, and so on. The problems in AI can be classified in two general types [3, 5], search problems and representation problems. On this last "peak", there exist different ways to reach their summit. So, we have [4] Logics, Rules, Frames, Associative Nets, Scripts, and so on, many times connected among them. We attempt, in this paper, a panoramic vision of the scope of application of such representation methods in AI. The two more disputable questions of both modern philosophy of mind and AI will be perhaps the Turing Test and the Chinese Room Argument. To elucidate these very difficult questions, see our final note.

  10. Subjective Reality and Strong Artificial Intelligence

    Serov, Alexander


    The main prospective aim of modern research related to Artificial Intelligence is the creation of technical systems that implement the idea of Strong Intelligence. According our point of view the path to the development of such systems comes through the research in the field related to perceptions. Here we formulate the model of the perception of external world which may be used for the description of perceptual activity of intelligent beings. We consider a number of issues related to the dev...

  11. One Decade of Universal Artificial Intelligence

    Hutter, Marcus


    The first decade of this century has seen the nascency of the first mathematical theory of general artificial intelligence. This theory of Universal Artificial Intelligence (UAI) has made significant contributions to many theoretical, philosophical, and practical AI questions. In a series of papers culminating in book (Hutter, 2005), an exciting sound and complete mathematical model for a super intelligent agent (AIXI) has been developed and rigorously analyzed. While nowadays most AI researchers avoid discussing intelligence, the award-winning PhD thesis (Legg, 2008) provided the philosophical embedding and investigated the UAI-based universal measure of rational intelligence, which is formal, objective and non-anthropocentric. Recently, effective approximations of AIXI have been derived and experimentally investigated in JAIR paper (Veness et al. 2011). This practical breakthrough has resulted in some impressive applications, finally muting earlier critique that UAI is only a theory. For the first time, wit...

  12. Performance support systems and artificial intelligent considerations

    Intelligent performance support systems (PSS) for reactor operations have been discussed, but none is operating yet. The features desired are human-centred design, intelligent behaviour, and real-time performance. PSS derive their origins from the realization that intelligent open-loop complex plant control involves consideration of the human component as well as the machine part of the system. Also , for the PSS to be effective, real-time operating capability is necessary. In this context, the present paper examines the role of artificial intelligence in PSS. 22 refs., 3 figs

  13. Artificial Intelligence Research at the Artificial Intelligence Laboratory, Massachusetts Institute of Technology

    Winston, Patrick H.


    The primary goal of the Artificial Intelligence Laboratory is to understand how computers can be made to exhibit intelligence. Two corollary goals are to make computers more useful and to understand certain aspects of human intelligence. Current research includes work on computer robotics and vision, expert systems, learning and commonsense reasoning, natural language understanding, and computer architecture.

  14. Artificial Intelligence and Robotic From the Past to Present

    Elnaz Asgarifar; Bashir Golchin


    This paper overviews the basic principles and recent advances in the Artificial Intelligent robotics and the utilization of robots in nowadays life and the various compass. The aim of the paper is to introduce the basic concepts of artificial intelligent techniques and present a survey about robots. In first section we have a survey on the concept of artificial intelligence and intelligence life; also we introduce two important factors in artificial intelligence. In the next section, we have ...

  15. How to Improve Artificial Intelligence through Web

    Adrian LUPASC


    Full Text Available Intelligent agents, intelligent software applications and artificial intelligent applications from artificial intelligence service providers maymake their way onto the Web in greater number as adaptive software, dynamic programming languages and Learning Algorithms are introduced intoWeb Services. The evolution of Web architecture may allow intelligent applications to run directly on the Web by introducing XML, RDF and logiclayer. The Intelligent Wireless Web’s significant potential for rapidly completing information transactions may take an important contribution toglobal worker productivity. Artificial intelligence can be defined as the study of the ways in which computers can be made to perform cognitivetasks. Examples of such tasks include understanding natural language statements, recognizing visual patterns or scenes, diagnosing diseases orillnesses, solving mathematical problems, performing financial analyses, learning new procedures for solving problems. The term expert system canbe considered to be a particular type of knowledge-based system. An expert system is a system in which the knowledge is deliberately represented“as it is”. Expert systems are applications that make decisions in real-life situations that would otherwise be performed by a human expert. They areprograms designed to mimic human performance at specialized, constrained problem-solving tasks. They are constructed as a collection of IF-THENproduction rules combined with a reasoning engine that applies those rules, either in a forward or backward direction, to specific problems.

  16. Artificial Intelligence Techniques for Steam Generator Modelling

    Wright, Sarah


    This paper investigates the use of different Artificial Intelligence methods to predict the values of several continuous variables from a Steam Generator. The objective was to determine how the different artificial intelligence methods performed in making predictions on the given dataset. The artificial intelligence methods evaluated were Neural Networks, Support Vector Machines, and Adaptive Neuro-Fuzzy Inference Systems. The types of neural networks investigated were Multi-Layer Perceptions, and Radial Basis Function. Bayesian and committee techniques were applied to these neural networks. Each of the AI methods considered was simulated in Matlab. The results of the simulations showed that all the AI methods were capable of predicting the Steam Generator data reasonably accurately. However, the Adaptive Neuro-Fuzzy Inference system out performed the other methods in terms of accuracy and ease of implementation, while still achieving a fast execution time as well as a reasonable training time.

  17. Using Artificial Intelligence Models in System Identification

    Elshamy, Wesam


    Artificial Intelligence (AI) techniques are known for its ability in tackling problems found to be unyielding to traditional mathematical methods. A recent addition to these techniques are the Computational Intelligence (CI) techniques which, in most cases, are nature or biologically inspired techniques. Different CI techniques found their way to many control engineering applications, including system identification, and the results obtained by many researchers were encouraging. However, most...

  18. Artificial Intelligence-The Emerging Technology

    R.P. Shenoy


    Artificial Intelligence (AI), once considered as an obscure branch of computer science, is now having a growing number of adherents in a wide variety of fields. AI is particularly useful for combat automation in defence. The combined works of computer scientists and technologists and cognitive scientists have brought out for intelligent information processing knowledge is the key factor. In the last few years, AI has been tried out with a high degree of success in certain areas such as the Ex...

  19. Algorithms and architectures of artificial intelligence

    Tyugu, E


    This book gives an overview of methods developed in artificial intelligence for search, learning, problem solving and decision-making. It gives an overview of algorithms and architectures of artificial intelligence that have reached the degree of maturity when a method can be presented as an algorithm, or when a well-defined architecture is known, e.g. in neural nets and intelligent agents. It can be used as a handbook for a wide audience of application developers who are interested in using artificial intelligence methods in their software products. Parts of the text are rather independent, so that one can look into the index and go directly to a description of a method presented in the form of an abstract algorithm or an architectural solution. The book can be used also as a textbook for a course in applied artificial intelligence. Exercises on the subject are added at the end of each chapter. Neither programming skills nor specific knowledge in computer science are expected from the reader. However, some p...

  20. Application Of Artificial Intelligence To Wind Tunnels

    Lo, Ching F.; Steinle, Frank W., Jr.


    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  1. Knowledge representation an approach to artificial intelligence

    Bench-Capon, TJM


    Although many texts exist offering an introduction to artificial intelligence (AI), this book is unique in that it places an emphasis on knowledge representation (KR) concepts. It includes small-scale implementations in PROLOG to illustrate the major KR paradigms and their developments.****back cover copy:**Knowledge representation is at the heart of the artificial intelligence enterprise: anyone writing a program which seeks to work by encoding and manipulating knowledge needs to pay attention to the scheme whereby he will represent the knowledge, and to be aware of the consequences of the ch

  2. Machine learning an artificial intelligence approach

    Banerjee, R; Bradshaw, Gary; Carbonell, Jaime Guillermo; Mitchell, Tom Michael; Michalski, Ryszard Spencer


    Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV a

  3. Fundamental research in artificial intelligence at NASA

    Friedland, Peter


    This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.

  4. Nature inspired algorithms and artificial intelligence

    Elisa Valentina Onet


    Full Text Available Artificial intelligence has been very muchinterested in studying the characteristics ofintelligent agent, mainly planning, learning,reasoning (making decisions and perception.Biological processes and methods have beeninfluencing science from many decades. Naturalsystems have many properties that inspiredapplications - self-organisation, simplicity of basicelements, dynamics, flexibility. This paper is a surveyof nature inspired algorithms, like Particle SwarmOptimization (PSO, Ant Colony Optimization (ACOand Artificial Bee Colony(ABC.

  5. Report on the 1986 Artificial Intelligence and Simulation Workshop

    Modjeski, Richard B.


    The first Artificial Intelligence (AI) and simulation workshop was held during the National Conference on Artificial Intelligence (AAAI-86) on 11 August 1986 at Wharton Hall, the University of Pennsylvania.

  6. Abstraction in artificial intelligence and complex systems

    Saitta, Lorenza


    Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences.  After discussing the characterizing properties of abstraction, a formal model, the K

  7. Employing Artificial Intelligence To Minimise Internet Fraud

    Edward Wong Sek Khin


    Full Text Available Internet fraud is increasing on a daily basis with new methods for extracting funds from government, corporations, businesses in general, and persons appearing almost hourly. The increases in on-line purchasing and the constant vigilance of both seller and buyer have meant that the criminal seems to be one-step ahead at all times. To pre-empt or to stop fraud before it can happen occurs in the non-computer based daily transactions of today because of the natural intelligence of the players, both seller and buyer. Currently, even with advances in computing techniques, intelligence is not the current strength of any computing system of today, yet techniques are available which may reduce the occurrences of fraud, and are usually referred to as artificial intelligence systems.This paper provides an overview of the use of current artificial intelligence (AI techniques as a means of combating fraud.Initially the paper describes how artificial intelligence techniques are employed in systems for detecting credit card fraud (online and offline fraud and insider trading.Following this, an attempt is made to propose the using of MonITARS (Monitoring Insider Trading and Regulatory Surveillance Systems framework which use a combination of genetic algorithms, neural nets and statistical analysis in detecting insider dealing. Finally, the paper discusses future research agenda to the role of using MonITARS system.

  8. Event tree analysis using artificial intelligence techniques

    Dixon, B.W.; Hinton, M.F.


    Artificial Intelligence (AI) techniques used in Expert Systems and Object Oriented Programming are discussed as they apply to Event Tree Analysis. A SeQUence IMPortance calculator, SQUIMP, is presented to demonstrate the implementation of these techniques. Benefits of using AI methods include ease of programming, efficiency of execution, and flexibility of application. The importance of an appropriate user interface is stressed. 5 figs.

  9. Nature inspired algorithms and artificial intelligence

    Elisa Valentina Onet; Ecaterina Vladu


    Artificial intelligence has been very muchinterested in studying the characteristics ofintelligent agent, mainly planning, learning,reasoning (making decisions) and perception.Biological processes and methods have beeninfluencing science from many decades. Naturalsystems have many properties that inspiredapplications - self-organisation, simplicity of basicelements, dynamics, flexibility. This paper is a surveyof nature inspired algorithms, like Particle SwarmOptimization (PSO), Ant Colony Op...

  10. Dynamic Restructuring Of Problems In Artificial Intelligence

    Schwuttke, Ursula M.


    "Dynamic tradeoff evaluation" (DTE) denotes proposed method and procedure for restructuring problem-solving strategies in artificial intelligence to satisfy need for timely responses to changing conditions. Detects situations in which optimal problem-solving strategies cannot be pursued because of real-time constraints, and effects tradeoffs among nonoptimal strategies in such way to minimize adverse effects upon performance of system.

  11. Yale Artificial Intelligence Project (Research in Progress)

    Collins, Gregg


    The Yale Artificial Intelligence Project, under the direction of Professor Roger C. Schank, supports a number of research projects. Most of this research is in the02-02 area of attempting to model the processes involved in human understanding, with a current emphasis on memory models and the processes involved in learning.

  12. Artificial Intelligence Applications to Videodisc Technology

    Vries, John K.; Banks, Gordon; McLinden, Sean; Moossy, John; Brown, Melanie


    Much of medical information is visual in nature. Since it is not easy to describe pictorial information in linguistic terms, it has been difficult to store and retrieve this type of information. Coupling videodisc technology with artificial intelligence programming techniques may provide a means for solving this problem.

  13. A Starter's Guide to Artificial Intelligence.

    McConnell, Barry A.; McConnell, Nancy J.


    Discussion of the history and development of artificial intelligence (AI) highlights a bibliography of introductory books on various aspects of AI, including AI programing; problem solving; automated reasoning; game playing; natural language; expert systems; machine learning; robotics and vision; critics of AI; and representative software. (LRW)

  14. Algorithmic Game Theory and Artificial Intelligence

    Elkind, Edith; Nanyang Technological University; Leyton-Brown, Kevin; University of British Columbia


    We briefly survey the rise of game theory as a topic of study in artificial intelligence, and explain the term algorithmic game theory. We then de- scribe three broad areas of current inquiry by AI researchers in algorithmic game theory: game playing, social choice, and mechanism design. Finally, we give short summaries of each of the six articles appearing in this issue.

  15. Application of Artificial Intelligence to operator assistance

    This paper describes an application of Artificial Intelligence to nuclear power plant control. An expert system is proposed in which the experience of NRC certified instructors, as represented in a knowledge base by a series of production rules, is used to recommend control sequences to the operator based on the state of the plant at the time

  16. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    Jeremy Straub; Justin Huber


    An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (p...

  17. Artificial Intelligence A New Synthesis

    Nilsson, Nils J


    Intelligent agents are employed as the central characters in this new introductory text. Beginning with elementary reactive agents, Nilsson gradually increases their cognitive horsepower to illustrate the most important and lasting ideas in AI. Neural networks, genetic programming, computer vision, heuristic search, knowledge representation and reasoning, Bayes networks, planning, and language understanding are each revealed through the growing capabilities of these agents. The book provides a refreshing and motivating new synthesis of the field by one of AI's master expositors and leading re

  18. Artificial intelligence and information-control systems of robots - 87

    Independent research areas of artificial intelligence represent the following problems: automatic problem solving and new knowledge discovering, automatic program synthesis, natural language, picture and scene recognition and understanding, intelligent control systems of robots equipped with sensoric subsystems, dialogue of two knowledge systems, as well as studying and modelling higher artificial intelligence attributes, such as emotionality and personality. The 4th Conference draws on the problems treated at the preceding Conferences, and presents the most recent knowledge on the following topics: theoretical problems of artificial intelligence, knowledge-based systems, expert systems, perception and pattern recognition, robotics, intelligent computer-aided design, special-purpose computer systems for artificial intelligence and robotics

  19. Artificial intelligence and CAD/CAM

    Iwata, K.


    In recent years CAD/CAM technology has improved industrial productivity. It is a significant step towards the design of the factory of the future. CAD/CAM in conjunction with artificial intelligence will become paramount. Workers in this field are attempting to produce systems of ever-increasing intelligence and independence for everyday use in factories, schools and elsewhere. A computer system which could understand natural language in both spoken and handwritten form and communicate in natural language would have considerable advantage in practical situations over one of the present generation of computers and computer programs. 2 references.

  20. Introducing artificial intelligence into structural optimization programs

    Artificial Intelligence /AI/ is defined as the branch of the computer science concerned with the study of the ideas that enable computers to be intelligent. The main purpose of the application of AI in engineering is to develop computer programs which function better as tools for engineers and designers. Many computer programs today have properties which make them inconvenient to their final users and the research carried within the field of AI provides tools and techniques so that these restriction can be removed. The continuous progress in computer technology has lead to developing efficient computer systems which can be applied to more than simple solving sets of equations. (orig.)

  1. The potential of artificial intelligence toys

    Dai, Zheng


    Artificial intelligence is moving to a next step of development and application areas. From electronic games to human-like robots, AI toy is a good choice for next step during this process. Technology-based design is fit to the development of AI toy. It can exert the advantages and explore more...... value for existing resources. It combines AI programs and common sensors to realize the function of intelligence input and output. Designers can use technology-based criteria to design and need to consider the possible issues in this new field. All of these aspects can be referenced from electronic game...

  2. Seventh Scandinavian Conference on Artificial Intelligence

    Lund, Henrik Hautop; Mayoh, Brian Henry; Perram, John


    The book covers the seventh Scandinavian Conference on Artificial Intelligence, held at the Maersk Mc-Kinney Moller Institute for Production Technology at the University of Southern Denmark during the period 20-21 February, 2001. It continues the tradition established by SCAI of being one...... of the most important regional AI conferences in Europe, attracting high quality submissions from Scandinavia and the rest of the world, including the Baltic countries. The contents include robotics, sensor/motor intelligence, evolutionary robotics, behaviour-based systems, multi-agent systems, applications...

  3. Philosophy of Logic and Artificial Intelligence

    Karavasileiadis, Christos; O'Bryan, Stephan


    For many years, scientists have been trying to implement human intelligence in machines without being able to make a complete model of human mind. Some people connect this failure to theorems proved by Kurt Gödel in 1931 and they are called Gödel’s Incompleteness Theorems. The results of Gödel’s Incompleteness Theorem caused many philosophical debates between the “believers” of Artificial Intelligence (A.I) and those who find it impossible. The purpose of this project is to examine how Gödel’...

  4. Projective simulation for artificial intelligence

    Briegel, Hans J.; de Las Cuevas, Gemma


    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  5. Artificial intelligence techniques in power systems

    Laughton, M.A.


    Since the early to mid 1980s much of the effort in power systems analysis has turned away from the methodology of formal mathematical modelling which came from the fields of operations research, control theory and numerical analysis to the less rigorous techniques of artificial intelligence (AI). Today the main AI techniques found in power systems applications are those utilising the logic and knowledge representations of expert systems, fuzzy systems, artificial neural networks (ANN) and, more recently, evolutionary computing. These techniques will be outlined in this chapter and the power system applications indicated. (Author)

  6. Artificial intelligence - NASA. [robotics for Space Station

    Erickson, J. D.


    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  7. Artificial intelligence in nuclear power plants

    The IAEA Specialists' Meeting on Artificial Intelligence in Nuclear Power Plants was arranged in Helsink/Vantaa, Finland, on October 10-12, 1989, under auspices of the International Working Group of Nuclear Power Plant Control and Instrumentation of the International Atomic Energy Agency (IAEA/IWG NPPCI). Technical Research Centre of Finland together with Imatran Voima Oy and Teollisuuden Voima Oy answered for the practical arrangements of the meeting. 105 participants from 17 countries and 2 international organizations took part in the meeting and 58 papers were submitted for presentation. These papers gave a comprehensive picture of the recent status and further trends in applying the rapidly developing techniques of artificial intelligence and expert systems to improve the quality and safety in designing and using of nuclear power worldwide

  8. Differing Methodological Perspectives in Artificial Intelligence Research

    Hall, Rogers P.; Kibler, Dennis F.


    A variety of proposals for preferred methodological approaches has been advanced in the recent artificial intelligence (AI) literature. Rather than advocating a particular approach, this article attempts to explain the apparent confusion of efforts in the field in terms of differences among underlying methodological perspectives held by practicing researchers. The article presents a review of such perspectives discussed in the existing literature and then considers a descriptive and relativel...

  9. Answering Curious Questions about Artificial Intelligence

    Wiedermann, Jiří

    Cham: Springer, 2015 - (Romportl, J.; Zackova, E.; Kelemen, J.), s. 187-199. (Topics in Intelligent Engineering and Informatics. 9). ISBN 978-3-319-09667-4. ISSN 2193-9411. [Artificial Dreams. International Conference. Pilsen (CZ), 05.11.2012-06.11.2012] R&D Projects: GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : cognitive systems * computational models * non-uniform evolving automaton Subject RIV: IN - Informatics, Computer Science

  10. The Road to Quantum Artificial Intelligence

    Sgarbas, Kyriakos N


    This paper overviews the basic principles and recent advances in the emerging field of Quantum Computation (QC), highlighting its potential application to Artificial Intelligence (AI). The paper provides a very brief introduction to basic QC issues like quantum registers, quantum gates and quantum algorithms and then it presents references, ideas and research guidelines on how QC can be used to deal with some basic AI problems, such as search and pattern matching, as soon as quantum computers...

  11. Coordination Techniques for Distributed Artificial Intelligence

    Jennings, N. R.


    Coordination, the process by which an agent reasons about its local actions and the (anticipated) actions of others to try and ensure the community acts in a coherent manner, is perhaps the key problem of the discipline of Distributed Artificial Intelligence (DAI). In order to make advances it is important that the theories and principles which guide this central activity are uncovered and analysed in a systematic and rigourous manner. To this end, this paper models agent communities using a ...

  12. Parallel processing for artificial intelligence 1

    Kanal, LN; Kumar, V; Suttner, CB


    Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discus

  13. A (Very) Brief History of Artificial Intelligence

    Buchanan, Bruce G.


    In this brief history, the beginnings of artificial intelligence are traced to philosophy, fiction, and imagination. Early inventions in electronics, engineering, and many other disciplines have influenced AI. Some early milestones include work in problems solving which included basic work in learning, knowledge representation, and inference as well as demonstration programs in language understanding, translation, theorem proving, associative memory, and knowledge-based systems. The article e...

  14. Empirical Methods in Artificial Intelligence: A Review

    Langley, Pat


    Paul Cohen's book Empirical Methods for Artificial Intelligence aims to encourage this trend by providing AI practitioners with the knowledge and tools needed for careful empirical evaluation. The volume provides broad coverage of experimental design and statistics, ranging from a gentle introduction of basic ideas to a detailed presentation of advanced techniques, often combined with illustrative examples of their application to the empirical study of AI. The book is generally well written, ...

  15. Readings in artificial intelligence and software engineering

    Rich, C.; Waters, R.C.


    Research at the intersection of artificial intelligence and software engineering is important to both AI researchers and software engineers. For AI, programming is a domain that stimulates research in knowledge representation and automated reasoning. In software engineering, AI techniques are being applied to a new generation of programming tools. This book covers a wide spectrum of work in this area. Some of the topics covered include deductive synthesis, program verification, and transformational approaches.

  16. Artificial Intelligence Research at General Electric

    Sweet, Larry


    General Electric is engaged in a broad range of research and development activities in artificial intelligence, with the dual objectives of improving the productivity of its internal operations and of enhancing future products and services in its aerospace, industrial, aircraft engine, commercial, and service sectors. Many of the applications projected for AI within GE will require significant advances in the state of the art in advanced inference, formal logic, and architectures for real-tim...

  17. Experimental Realization of Quantum Artificial Intelligence

    Zhaokai, Li; Xiaomei, Liu; Nanyang, Xu; Jiangfeng, Du


    Machines are possible to have some artificial intelligence like human beings owing to particular algorithms or software. Such machines could learn knowledge from what people taught them and do works according to the knowledge. In practical learning cases, the data is often extremely complicated and large, thus classical learning machines often need huge computational resources. Quantum machine learning algorithm, on the other hand, could be exponentially faster than classical machines using q...

  18. Friendly Artificial Intelligence: the Physics Challenge

    Tegmark, Max


    Relentless progress in artificial intelligence (AI) is increasingly raising concerns that machines will replace humans on the job market, and perhaps altogether. Eliezer Yudkowski and others have explored the possibility that a promising future for humankind could be guaranteed by a superintelligent "Friendly AI", designed to safeguard humanity and its values. I argue that, from a physics perspective where everything is simply an arrangement of elementary particles, this might be even harder ...

  19. Artificial intelligence approach to legal reasoning

    For artificial intelligence, understanding the forms of human reasoning is a central goal. Legal reasoning is a form that makes a new set of demands on artificial intelligence methods. Most importantly, a computer program that reasons about legal problems must be able to distinguish between questions it is competent to answer and questions that human lawyers could seriously argue either way. In addition, a program for analyzing legal problems should be able to use both general legal rules and decisions in past cases; and it should be able to work with technical concepts that are only partly defined and subject to shifts of meaning. Each of these requirements has wider applications in artificial intelligence, beyond the legal domain. This dissertation presents a computational framework for legal reasoning, within which such requirements can be accommodated. The development of the framework draws significantly on the philosophy of law, in which the elucidation of legal reasoning is an important topic. A key element of the framework is the legal distinction between hard cases and clear cases. In legal writing, this distinction has been taken for granted more often than it has been explored. Here, some initial heuristics are proposed by which a program might make the distinction

  20. Artificial intelligence approach to accelerator control systems

    An experiment was recently started at LAMPF to evaluate the power and limitations of using artificial intelligence techniques to solve problems in accelerator control and operation. A knowledge base was developed to describe the characteristics and the relationships of the first 30 devices in the LAMPF H+ beam line. Each device was categorized and pertinent attributes for each category defined. Specific values were assigned in the knowledge base to represent each actual device. Relationships between devices are modeled using the artificial intelligence techniques of rules, active values, and object-oriented methods. This symbolic model, built using the Knowledge Engineering Environment (KEE) system, provides a framework for analyzing faults, tutoring trainee operators, and offering suggestions to assist in beam tuning. Based on information provided by the domain expert responsible for tuning this portion of the beam line, additional rules were written to describe how he tunes, how he analyzes what is actually happening, and how he deals with failures. Initial results have shown that artificial intelligence techniques can be a useful adjunct to traditional methods of numerical simulation. Successful and efficient operation of future accelerators may depend on the proper merging of symbolic reasoning and conventional numerical control algorithms

  1. Artificial Intelligence and Computer Assisted Instruction. CITE Report No. 4.

    Elsom-Cook, Mark

    The purpose of the paper is to outline some of the major ways in which artificial intelligence research and techniques can affect usage of computers in an educational environment. The role of artificial intelligence is defined, and the difference between Computer Aided Instruction (CAI) and Intelligent Computer Aided Instruction (ICAI) is…

  2. Artificial Intelligence and Robotic From the Past to Present

    Elnaz Asgarifar


    Full Text Available This paper overviews the basic principles and recent advances in the Artificial Intelligent robotics and the utilization of robots in nowadays life and the various compass. The aim of the paper is to introduce the basic concepts of artificial intelligent techniques and present a survey about robots. In first section we have a survey on the concept of artificial intelligence and intelligence life; also we introduce two important factors in artificial intelligence. In the next section, we have overview on the basic elements of artificial intelligence. Then, another important section in this paper is intelligent robots and the behavior based robotics. The use of robots in nowadays life is in the various domains. We introduce one of them that are rehabilitation robots.

  3. Non-Newtonian Aspects of Artificial Intelligence

    Zak, Michail


    The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.

  4. Artificial Intelligence – Making an Intelligent personal assistant

    Mr. Ankush Bhatia


    A bot in computing is an autonomous program on a network (especially the Internet) which can interact with systems or users.[ Simpson, J., and Weiner, E. (1989)] This document gives the description of how memory of an Artificial-Intelligence bot can be stored in an optimized way with a faster searching algorithm and how it can learn new things; the user wants the bot to learn. This paper gives the details of how a bot uses a an ordered tree data structure, called TRIE or a prefix tree to dyna...

  5. The epistemology and information systems based on artificial intelligence

    Miguel Rendueles Mata


    Full Text Available The Epistemology was been a Philosophy discipline, that takes its own autonomy from different XVII century currents. The epistemology action field considers the possibility of human intelligence representation. Because of the born of Information Systems based on Artificial Intelligence, the Epistemology is in front of a new challenge, its seems that a lot of things has to be clarify according with the advances on this area. This article reflects the problem and suggests the idea to conjugate the new advances of the epistemological tradition with the Artificial Intelligence.Key Words: Epistemology, Knowledge Theory, Ontology, Artificial Intelligence, Natural Intelligence.

  6. Artificial Intelligence-The Emerging Technology

    R. P. Shenoy


    Full Text Available Artificial Intelligence (AI, once considered as an obscure branch of computer science, is now having a growing number of adherents in a wide variety of fields. AI is particularly useful for combat automation in defence. The combined works of computer scientists and technologists and cognitive scientists have brought out for intelligent information processing knowledge is the key factor. In the last few years, AI has been tried out with a high degree of success in certain areas such as the Expert Systems and the Computer Vision Systems. Both these have great potential in target classification and identification, information fusion, multiradar Air Defence Network, C2 (Command andControl operations etc. in defence.

  7. Artificial intelligence applications at the ICPP

    Westinghouse Idaho Nuclear Company (WINCO) initiated an aggressive program for artificial intelligence (AI) expert system implementations in 1985. The first expert system, Safety Analysis Methods Advisor (SAMA) was completed in 1986 to help operational safety analysts select analysis methodologies for safety analysis reports. The SAMA expert system was implemented as a rule-based system using a commercial expert system shell. The major benefit of the system is for training new safety analysts. The first successful implementation launched three other expert system projects: a process alarm filtering system, a process control advisor, and a mass spectrometer trouble-shooting advisor. This paper describes the current status of these projects

  8. Markov decision processes in artificial intelligence

    Sigaud, Olivier


    Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustr

  9. Beyond Artificial Intelligence toward Engineered Psychology

    Bozinovski, Stevo; Bozinovska, Liljana

    This paper addresses the field of Artificial Intelligence, road it went so far and possible road it should go. The paper was invited by the Conference of IT Revolutions 2008, and discusses some issues not emphasized in AI trajectory so far. The recommendations are that the main focus should be personalities rather than programs or agents, that genetic environment should be introduced in reasoning about personalities, and that limbic system should be studied and modeled. Engineered Psychology is proposed as a road to go. Need for basic principles in psychology are discussed and a mathematical equation is proposed as fundamental law of engineered and human psychology.

  10. Optimizing radiologic workup: An artificial intelligence approach

    The increasing complexity of diagnostic imaging is presenting an ever-expanding variety of radiologic test options to referring clinicians, making it more difficult for them to plan efficient workup. Diagnosis-oriented reimbursement systems are providing new incentives for hospitals and radiologists to use imaging modalities judiciously. This paper describes DxCON, a developmental artificial intelligence-based computer system, which gives advice to physicians about the optimum sequencing of radiologic tests. DxCON analyzes a physician's proposed workup plan and discusses its strengths and weaknesses. The domain chosen for this research is the imaging workup of obstructive jaundice

  11. Probabilistic machine learning and artificial intelligence

    Ghahramani, Zoubin


    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  12. Parallel processing for artificial intelligence 2

    Kumar, V; Suttner, CB


    With the increasing availability of parallel machines and the raising of interest in large scale and real world applications, research on parallel processing for Artificial Intelligence (AI) is gaining greater importance in the computer science environment. Many applications have been implemented and delivered but the field is still considered to be in its infancy. This book assembles diverse aspects of research in the area, providing an overview of the current state of technology. It also aims to promote further growth across the discipline. Contributions have been grouped according to their

  13. A Progress Report on Artificial Intelligence: Hospital Applications and a Review of the Artificial Intelligence Marketplace

    Brenkus, Lawrence M.


    Artificial intelligence applications are finally beginning to move from the university research laboratory into commercial use. Before the end of the century, this new computer technology will have profound effects on our work, economy, and lives. At present, relatively few products have appeared in the hospital, but we can anticipate significant product offerings in instrumentation and affecting hospital administration within 5 years.

  14. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    Jeremy Straub


    Full Text Available An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (perhaps ensuring that a set of foreseeable conditions trigger an appropriate response, this may be insufficient to fully characterize and validate safe system performance. An approach to validating the performance of an artificial intelligence system using a simple artificial intelligence test case producer (AITCP is presented. The AITCP allows the creation and simulation of prospective operating scenarios at a rate far exceeding that possible by human testers. Four scenarios for testing an autonomous navigation control system are presented: single actor in two-dimensional space, multiple actors in two-dimensional space, single actor in three-dimensional space, and multiple actors in three-dimensional space. The utility of using the AITCP is compared to that of human testers in each of these scenarios.

  15. Accelerating artificial intelligence with reconfigurable computing

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  16. Artificial intelligence model for sustain ability measurement

    The article analyses the main dimensions of organizational sustain ability, their possible integrations into artificial neural network. In this article authors performing analyses of organizational internal and external environments, their possible correlations with 4 components of sustain ability, and the principal determination models for sustain ability of organizations. Based on the general principles of sustainable development organizations, a artificial intelligence model for the determination of organizational sustain ability has been developed. The use of self-organizing neural networks allows the identification of the organizational sustain ability and the endeavour to explore vital, social, antropogenical and economical efficiency. The determination of the forest enterprise sustain ability is expected to help better manage the sustain ability. (Authors)

  17. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part A: The core ingredients

    Gevarter, W. B.


    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. The goal of Artificial Intelligence is focused on developing computational approaches to intelligent behavior. This goal is so broad - covering virtually all aspects of human cognitive activity - that substantial confusion has arisen as to the actual nature of AI, its current status and its future capability. This volume, the first in a series of NBS/NASA reports on the subject, attempts to address these concerns. Thus, this report endeavors to clarify what AI is, the foundations on which it rests, the techniques utilized, applications, the participants and, finally, AI's state-of-the-art and future trends. It is anticipated that this report will prove useful to government and private engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  18. Marine litter prediction by artificial intelligence

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems

  19. Research in artificial intelligence for nuclear facilities

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, artificial intelligence can increase efficiency and effectiveness in a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) and in research facility experiments. Recent work at the University of Tennessee has demonstrated the feasibility of using neural networks to identify six different transients introduced into the simulation of a steam generator of a nuclear power plant. This work is now being extended to utilize data from a nuclear power plant training simulator. In one configuration, the inputs to the neural network are a subset of the quantities that are typical of those available from the safety parameter display system. The outputs of the network represent the various states of the plant (e.g., normal operation, coolant leakage, inadequate core flow, excessive peak fuel temperature, etc.). Training of the neural network is performed by introducing various faults or conditions to be diagnosed into the simulator. The goal of this work is to demonstrate a neural network diagnostic system that could provide advice to the operators in accordance with the emergency operating procedures

  20. Artificial Intelligence Research Branch future plans

    Stewart, Helen (Editor)


    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems.

  1. Artificial intelligence. Fears of an AI pioneer.

    Russell, Stuart; Bohannon, John


    From the enraged robots in the 1920 play R.U.R. to the homicidal computer H.A.L. in 2001: A Space Odyssey, science fiction writers have embraced the dark side of artificial intelligence (AI) ever since the concept entered our collective imagination. Sluggish progress in AI research, especially during the “AI winter” of the 1970s and 1980s, made such worries seem far-fetched. But recent breakthroughs in machine learning and vast improvements in computational power have brought a flood of research funding— and fresh concerns about where AI may lead us. One researcher now speaking up is Stuart Russell, a computer scientist at the University of California, Berkeley, who with Peter Norvig, director of research at Google, wrote the premier AI textbook, Artificial Intelligence: A Modern Approach, now in its third edition. Last year, Russell joined the Centre for the Study of Existential Risk at Cambridge University in the United Kingdom as an AI expert focusing on “risks that could lead to human extinction.” Among his chief concerns, which he aired at an April meeting in Geneva, Switzerland, run by the United Nations, is the danger of putting military drones and weaponry under the full control of AI systems. This interview has been edited for clarity and brevity. PMID:26185241

  2. Artificial intelligence approaches to software engineering

    Johannes, James D.; Macdonald, James R.


    Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.

  3. Applications of artificial intelligence, including expert systems

    When Artificial Intelligence is applied to a complex physical system like a nuclear plant it is useful to distinguish between two rather distinct and different intelligent views of such a plant. The first view may be characterised as ''the designer's view''. This is the view of the plant as it was originally conceived and designed; it is essentially a once-and-for-all static view, corresponding to the implicit assumption of an ''ageless plant'', or at most a plant which ages in a preconceived, preset manner. The second view, which may be characterised as ''the operators view'', has to do more with a real-world, ageing plant. It is a more dynamic view, which sees the ageing process as one in which unforeseen, and possibly unforeseeable events may occur at equally unforeseen, and possibly unforeseeable times. The first view is predominantly a way of thinking about the plant, while the second is very often more a way of feeling about it. It should be emphasized that both ways are ways of intelligence. (author)

  4. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Hostetter, Carl F. (Editor)


    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  5. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    Hostetter, Carl F. (Editor)


    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  6. Artificial symbols and the essence of intelligent computing

    Magnus, Amy L.; Oxley, Mark E.


    A challenge for intelligent computing is translating the skills of innovation into mathematical theory and persistent learning algorithms. Computational intelligence differs from artificial intelligence in that artificial intelligence reasons over symbols while computational intelligence reasons over sub-symbolic data and information. Natural symbos arise from shared human experiences. The creative quality of human interaction suggests symbol generation involves a collection of cooperative agents capable of representing relative experience, negotiating innovation, and---finally---building consensus. As hybrids of sub-symbolic and symbolic reasoning become the norm, it is necessary to formalize the design and evaluation of artificial symbols. In this paper, we delineate the difference between sub-symbolic patterns and symbolic experience. Further, we propose fundamental theory supporting the autonomous construction of artificial symbols which---we assert---is the ultimate culmination of an intelligent computation. We apply this theory to model selection among neural networks.

  7. The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence

    Colombano, Silvano


    There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.

  8. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Rash, James L. (Editor)


    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  9. Artificial Intelligence – Making an Intelligent personal assistant

    Mr. Ankush Bhatia


    Full Text Available A bot in computing is an autonomous program on a network (especially the Internet which can interact with systems or users.[ Simpson, J., and Weiner, E. (1989] This document gives the description of how memory of an Artificial-Intelligence bot can be stored in an optimized way with a faster searching algorithm and how it can learn new things; the user wants the bot to learn. This paper gives the details of how a bot uses a an ordered tree data structure, called TRIE or a prefix tree to dynamically store the things it learns and what to reply when a person commands asks him something, with a little modification.

  10. Robustness in Nature as a Design Principle for Artificial Intelligence

    Schuster, Alfons

    Robustness is a feature in many systems, natural and artificial alike. This chapter investigates robustness from a variety of perspectives including its appearances in nature and its application in modern environments. A particular focus investigates the relevance and importance of robustness in a discipline where many techniques are inspired by problem-solving strategies found in nature—artificial intelligence. The challenging field of artificial intelligence provides an opportunity to engage in a wider discussion on the subject of robustness.

  11. Artificial intelligence applied to process signal analysis

    Corsberg, D.


    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge-based appraoch to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored. 8 refs.

  12. Artificial Intelligence Software Engineering (AISE) model

    Kiss, Peter A.


    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  13. Artificial intelligence in the materials processing laboratory

    Workman, Gary L.; Kaukler, William F.


    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  14. Artificial Intelligence In Computational Fluid Dynamics

    Vogel, Alison Andrews


    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  15. Artificial intelligence in process design and operation

    Artificial Intelligence (AI) has recently become prominent in the discussion of computer applications in the utility business. In order to assess this technology, a research project was performed to determine whether software development techniques based on AI could be used to facilitate management of information associated with the design of a generating station. The approach taken was the development of an expert system, using a relatively simple set of rules acting on a more complex knowledge base. A successful prototype for the application was developed and its potential extension to a production environment demonstrated. During the course of prototype development, other possible applications of AI in design engineering were discovered, and areas of particular interest selected for further investigation. A plan for AI R and D was formulated. That plan and other possible future work in AI are discussed

  16. An artificial intelligence approach towards disturbance analysis

    Scale and degree of sophistication of technological plants, e.g. nuclear power plants, have been essentially increased during the last decades. Conventional disturbance analysis systems have proved to work successfully in well-known situations. But in cases of emergencies, the operator needs more advanced assistance in realizing diagnosis and therapy control. The significance of introducing artificial intelligence (AI) methods in nuclear power technology is emphasized. Main features of the on-line disturbance analysis system SAAP-2 are reported about. It is being developed for application to nuclear power plants. Problems related to man-machine communication will be gone into more detail, because their solution will influence end-user acceptance considerably. (author)

  17. Minimum DNBR Prediction Using Artificial Intelligence

    The minimum DNBR (MDNBR) for prevention of the boiling crisis and the fuel clad melting is very important factor that should be consistently monitored in safety aspects. Artificial intelligence methods have been extensively and successfully applied to nonlinear function approximation such as the problem in question for predicting DNBR values. In this paper, support vector regression (SVR) model and fuzzy neural network (FNN) model are developed to predict the MDNBR using a number of measured signals from the reactor coolant system. Also, two models are trained using a training data set and verified against test data set, which does not include training data. The proposed MDNBR estimation algorithms were verified by using nuclear and thermal data acquired from many numerical simulations of the Yonggwang Nuclear Power Plant Unit 3 (YGN-3)

  18. Issues and challenges in artificial intelligence

    Kulikowski, Juliusz; Mroczek, Teresa; Wtorek, Jerzy


    The importance of human-computer system interaction problems is increasing due to the growing expectations of users on general computer systems capabilities in human work and life facilitation. Users expect system which is not only a passive tool in human hands but rather an active partner equipped with a sort of artificial intelligence, having access to large information resources, being able to adapt its behavior to the human requirements and to collaborate with the human users.   This book collects examples of recent human-computer system solutions. The content of the book is divided into three parts. Part I is devoted to detection, recognition and reasoning in different circumstances and applications. Problems associated with data modeling, acquisition and mining are presented by papers collected in part II and part III is devoted to Optimization.

  19. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part B: Applications

    Gevarter, W. B.


    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.

  20. Amplify scientific discovery with artificial intelligence

    Gil, Yolanda; Greaves, Mark T.; Hendler, James; Hirsch, Hyam


    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automated language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.

  1. Beyond AI: Interdisciplinary Aspects of Artificial Intelligence

    Romportl, Jan; Zackova, Eva; Beyond Artificial Intelligence : Contemplations, Expectations, Applications


    Products of modern artificial intelligence (AI) have mostly been formed by the views, opinions and goals of the “insiders”, i.e. people usually with engineering background who are driven by the force that can be metaphorically described as the pursuit of the craft of Hephaestus. However, since the present-day technology allows for tighter and tighter mergence of the “natural” everyday human life with machines of immense complexity, the responsible reaction of the scientific community should be based on cautious reflection of what really lies beyond AI, i.e. on the frontiers where the tumultuous ever-growing and ever-changing cloud of AI touches the rest of the world.   The chapters of this boo are based on the selected subset of the presentations that were delivered by their respective authors at the conference “Beyond AI: Interdisciplinary Aspects of Artificial Intelligence” held in Pilsen in December 2011.   From its very definition, the reflection of the phenomena that lie beyond AI must be i...


    Ahmed M. Tobal


    Full Text Available In a world reached a population of six billion humans increasingly demand it for food, feed with a water shortage and the decline of agricultural land and the deterioration of the climate needs 1.5 billion hectares of agricultural land and in case of failure to combat pests needs about 4 billion hectares. Weeds represent 34% of the whole pests while insects, diseases and the deterioration of agricultural land present the remaining percentage. Weeds Identification has been one of the most interesting classification problems for Artificial Intelligence (AI and image processing. The most common case is to identify weeds within the field as they reduce the productivity and harm the existing crops. Success in this area results in an increased productivity, profitability and at the same time decreases the cost of operation. On the other hand, when AI algorithms combined with appropriate imagery tools may present the right solution to the weed identification problem. In this study, we introduce an evolutionary artificial neural network to minimize the time of classification training and minimize the error through the optimization of the neuron parameters by means of a genetic algorithm. The genetic algorithm, with its global search capability, finds the optimum histogram vectors used for network training and target testing through a fitness measure that reflects the result accuracy and avoids the trial-and-error process of estimating the network inputs according to the histogram data.

  3. The First Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAmI '06)

    Augusto, Juan Carlos; Shapiro, Daniel


    The first annual workshop on the role of AI in ambient intelligence was held in Riva de Garda, Italy, on August 29, 2006. The workshop was colocated with the European Conference on Artificial Intelligence (ECAI 2006). It provided an opportunity for researchers in a variety of AI subfields together with representatives of commercial interests to explore ambient intelligence technology and applications.

  4. Use of artificial intelligence in nuclear power plants

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of non-operating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which artificial intelligence can increase the efficiency and effectiveness of overall plant and corporate operations. This paper reviews the state-of-the-art of artificial intelligence techniques, specifically, expert systems and neural networks, to nuclear power plants. This paper has reviewed the state-of-the-art of artificial intelligence, specifically expert systems and neural networks that are applied to problems in nuclear power plants

  5. Interaction between Software Engineering and Artificial Intelligence- A Review

    Prince Jain


    Software engineering and artificial intelligence is the two field of the computer science. During the last decades, the disciplines of Artificial Intelligence and Software Engineering have developedseparately without the much exchange of research outcomes. However, both fields of computer science have different characteristics, benefits and limitations. This statement opens many possibilities and ideas for research. One idea is that the researcher applies the available methods, tools and tech...

  6. Artificial Intelligence Research in Engineering at North Carolina State University

    Rasdorf, William J.; Fisher, Edward L.


    This article presents a summary of ongoing, funded artificial intelligence research at North Carolina State University. The primary focus of the research is engineering aspects of artificial intelligence. These research efforts can be categorized into four main areas: engineering expert systems, generative database management systems, human-machine communication, and robotics and vision. Involved in the research are investigators from both the School of Engineering and the Department of Compu...

  7. The Role of Artificial Intelligence Technologies in Crisis Response

    Khalil, Khaled M; Nazmy, Taymour T; Salem, Abdel-Badeeh M


    Crisis response poses many of the most difficult information technology in crisis management. It requires information and communication-intensive efforts, utilized for reducing uncertainty, calculating and comparing costs and benefits, and managing resources in a fashion beyond those regularly available to handle routine problems. In this paper, we explore the benefits of artificial intelligence technologies in crisis response. This paper discusses the role of artificial intelligence technologies; namely, robotics, ontology and semantic web, and multi-agent systems in crisis response.




    This paper aims at presenting a planning model for adapting the behavior of virtual courses based on artificial intelligence techniques, in particular using not only a multi-agent system approach, but also artificial intelligence planning methods. The design and implementation of the system by means of a pedagogical multi-agent approach and the definition of a framework to specify the adaptation strategy allow us to incorporate several pedagogical and technological approaches that are in acco...

  9. Artificial intelligence applications in information and communication technologies

    Bouguila, Nizar


    This book presents various recent applications of Artificial Intelligence in Information and Communication Technologies such as Search and Optimization methods, Machine Learning, Data Representation and Ontologies, and Multi-agent Systems. The main aim of this book is to help Information and Communication Technologies (ICT) practitioners in managing efficiently their platforms using AI tools and methods and to provide them with sufficient Artificial Intelligence background to deal with real-life problems.  .

  10. Artificial intelligence technologies applied to terrain analysis

    Wright, J.C. (Army Training and Doctrine Command, Fort Monroe, VA (USA)); Powell, D.R. (Los Alamos National Lab., NM (USA))


    The US Army Training and Doctrine Command is currently developing, in cooperation with Los Alamos National Laboratory, a Corps level combat simulation to support military analytical studies. This model emphasizes high resolution modeling of the command and control processes, with particular attention to architectural considerations that enable extension of the model. A planned future extension is the inclusion of an computer based planning capability for command echelons that can be dynamical invoked during the execution of then model. Command and control is the process through which the activities of military forces are directed, coordinated, and controlled to achieve the stated mission. To perform command and control the commander must understand the mission, perform terrain analysis, understand his own situation and capabilities as well as the enemy situation and his probable actions. To support computer based planning, data structures must be available to support the computer's ability to understand'' the mission, terrain, own capabilities, and enemy situation. The availability of digitized terrain makes it feasible to apply artificial intelligence technologies to emulate the terrain analysis process, producing data structures for uses in planning. The work derived thus for to support the understanding of terrain is the topic of this paper. 13 refs., 5 figs., 6 tabs.

  11. Computational neuroscience for advancing artificial intelligence

    Fernando P. Ponce


    Full Text Available resumen del libro de Alonso, E. y Mondragón, E. (2011. Hershey, NY: Medical Information Science Reference. La neurociencia como disciplinapersigue el entendimiento del cerebro y su relación con el funcionamiento de la mente a través del análisis de la comprensión de la interacción de diversos procesos físicos, químicos y biológicos (Bassett & Gazzaniga, 2011. Por otra parte, numerosas disciplinasprogresivamente han realizado significativas contribuciones en esta empresa tales como la matemática, la psicología o la filosofía, entre otras. Producto de este esfuerzo, es que junto con la neurociencia tradicional han aparecido disciplinas complementarias como la neurociencia cognitiva, la neuropsicología o la neurocienciacomputacional (Bengio, 2007; Dayan & Abbott, 2005. En el contexto de la neurociencia computacional como disciplina complementaria a laneurociencia tradicional. Alonso y Mondragón (2011 editan el libroComputacional Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications.

  12. [Artificial intelligence] AI for protection systems

    Aggarwal, R.; Johns, A.


    The reliable operation of large power systems with small stability margins is highly dependent on control systems and protection devices. Progress in the field of microprocessor systems and demanding requirements in respect of the performance of protective relays are the reasons for digital device applications to power system protection. The superiority of numeric protection over its analogue alternatives is attributed to such factors as accurate extraction of the fundamental voltage and current components through filtering, functional benefits resulting from multi-processor design and extensive self-monitoring, etc. However, all these reasons have not led to a major impact on speed, sensitivity and selectivity of primary protective relays, and the gains are only marginal; this is so because conventional digital relays still rely on deterministic signal models and a heuristic approach for decision making, so that only a fraction of the information contained within voltage and current signals as well as knowledge about the plant to be protected is used. The performance of digital relays may be substantially improved if the decision making is based on elements of artificial intelligence (AI). (Author)

  13. Artificial intelligence aid to efficient plant operations

    As the nuclear power industry matures, it is becoming more and more important that plants be operated in an efficient, cost-effective manner, without, of course, any decrease in the essential margins of safety. Indeed, most opportunities for improved efficiency have little or no relation to nuclear safety, but are based on trade-offs among operator controllable parameters both within and external to the reactor itself. While these trade-offs are describable in terms of basic physical theory, thermodynamics, and the mathematics of control systems, their actual application is highly plant specific and influenced even by the day-to-day condition of the various plant components. This paper proposes the use of artificial intelligence techniques to construct a computer-based expert assistant to the plant operator for the purpose of aiding him in improving the efficiency of plant operation on a routine basis. The proposed system, which only advises the human operator, seems more amenable to the current regulatory approach than a truly automated control system even if the latter provides for manual override

  14. Vibration energy harvester optimization using artificial intelligence

    Hadas, Z.; Ondrusek, C.; Kurfurst, J.; Singule, V.


    This paper deals with an optimization study of a vibration energy harvester. This harvester can be used as autonomous source of electrical energy for remote or wireless applications, which are placed in environment excited by ambient mechanical vibrations. The ambient energy of vibrations is usually on very low level but the harvester can be used as alternative source of energy for electronic devices with an expected low level of power consumption of several mW. The optimized design of the vibration energy harvester was based on previous development and the sensitivity of harvester design was improved for effective harvesting from mechanical vibrations in aeronautic applications. The vibration energy harvester is a mechatronic system which generates electrical energy from ambient vibrations due to precision tuning up generator parameters. The optimization study for maximization of harvested power or minimization of volume and weight are the main goals of our development. The optimization study of such complex device is complicated therefore artificial intelligence methods can be used for tuning up optimal harvester parameters.

  15. Applications of artificial intelligence to mission planning

    Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.


    The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.

  16. Optimizing Water Treatment Systems Using Artificial Intelligence Based Tools

    Pinto, Ana Mafalda; Fernandes, Ana; Vicente, Henrique; Neves, José


    Predictive modelling is a process used in predictive analytics to create a statistical model of future behaviour. Predictive analytics is the area of data mining concerned with forecasting probabilities and trends. On the other hand, Artificial Intelligence (AI) concerns itself with intelligent behaviour, i.e. the things that make us seem intelligent. Following this process of thinking, in this work the main goal is the assessment of the impact of using AI based tools for th...

  17. Computational Narrative Intelligence: A Human-Centered Goal for Artificial Intelligence

    Riedl, Mark O.


    Narrative intelligence is the ability to craft, tell, understand, and respond affectively to stories. We argue that instilling artificial intelligences with computational narrative intelligence affords a number of applications beneficial to humans. We lay out some of the machine learning challenges necessary to solve to achieve computational narrative intelligence. Finally, we argue that computational narrative is a practical step towards machine enculturation, the teaching of sociocultural v...




    This work applies rough sets and artificial intelligent to analyze and reduce medical data without affecting the information to construct an expert system. The ROSETTA software is applied for analyzing some medical data and deducing rules. This paper discusses fundamentals of Rough Set Theory (RST); uses this theorem to extract decision rules for medical data and drive results by Artificial Neural Network (ANN).

  19. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry

  20. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    Dufrene, Warren R., Jr.


    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  1. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    Dufrene, Warren R., Jr.


    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  2. Where Artificial Intelligence and Neuroscience Meet: The Search for Grounded Architectures of Cognition

    Frank van der Velde


    The collaboration between artificial intelligence and neuroscience can produce an understanding of the mechanisms in the brain that generate human cognition. This article reviews multidisciplinary research lines that could achieve this understanding. Artificial intelligence has an important role to play in research, because artificial intelligence focuses on the mechanisms that generate intelligence and cognition. Artificial intelligence can also benefit from studying the neural mechanisms of...

  3. Artificial intelligence for the CTA Observatory scheduler

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro


    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint


    Ali Akbar Ziaee


    Full Text Available Artificial Intelligence has the potential to empower humans through enhanced learning and performance. But if this potential is to be realized and accepted, the ethical aspects as well as the technical must be addressed. Many engineers claim that AI will be smarter than human brains, including scientific creativity, general wisdom and social skills, so we must consider it an important factor for making decisions in our social life and especially in our Islamic societies. The most important challenges will be the quality of representing the Islamic values like piety, obedience, Halal and Haram, and etc in the form of semantics. In this paper, I want to emphasize on the role of Divine Islamic values in the application of AI and discuss it according to philosophy of AI and Islamic perspective.Keywords- Value, expert, Community Development, Artificial Intelligence, Superintelligence, Friendly Artificial Intelligence

  5. Artificial intelligence tool development and applications to nuclear power

    Two parallel efforts are being performed at the Electric Power Research Institute (EPRI) to help the electric utility industry take advantage of the expert system technology. The first effort is the development of expert system building tools, which are tailored to electric utility industry applications. The second effort is the development of expert system applications. These two efforts complement each other. The application development tests the tools and identifies additional tool capabilities that are required. The tool development helps define the applications that can be successfully developed. Artificial intelligence, as demonstrated by the developments described is being established as a credible technological tool for the electric utility industry. The challenge to transferring artificial intelligence technology and an understanding of its potential to the electric utility industry is to gain an understanding of the problems that reduce power plant performance and identify which can be successfully addressed using artificial intelligence

  6. Artificial intelligence and robot responsibilities: innovating beyond rights.

    Ashrafian, Hutan


    The enduring innovations in artificial intelligence and robotics offer the promised capacity of computer consciousness, sentience and rationality. The development of these advanced technologies have been considered to merit rights, however these can only be ascribed in the context of commensurate responsibilities and duties. This represents the discernable next-step for evolution in this field. Addressing these needs requires attention to the philosophical perspectives of moral responsibility for artificial intelligence and robotics. A contrast to the moral status of animals may be considered. At a practical level, the attainment of responsibilities by artificial intelligence and robots can benefit from the established responsibilities and duties of human society, as their subsistence exists within this domain. These responsibilities can be further interpreted and crystalized through legal principles, many of which have been conserved from ancient Roman law. The ultimate and unified goal of stipulating these responsibilities resides through the advancement of mankind and the enduring preservation of the core tenets of humanity. PMID:24737482

  7. Distributed computing and artificial intelligence : 10th International Conference

    Neves, José; Rodriguez, Juan; Santana, Juan; Gonzalez, Sara


    The International Symposium on Distributed Computing and Artificial Intelligence 2013 (DCAI 2013) is a forum in which applications of innovative techniques for solving complex problems are presented. Artificial intelligence is changing our society. Its application in distributed environments, such as the internet, electronic commerce, environment monitoring, mobile communications, wireless devices, distributed computing, to mention only a few, is continuously increasing, becoming an element of high added value with social and economic potential, in industry, quality of life, and research. This conference is a stimulating and productive forum where the scientific community can work towards future cooperation in Distributed Computing and Artificial Intelligence areas. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both the academic and industry se...

  8. A review of European applications of artificial intelligence to space

    Drummond, Mark (Editor); Stewart, Helen (Editor)


    The purpose is to describe the applications of Artificial Intelligence (AI) to the European Space program that are being developed or have been developed. The results of a study sponsored by the Artificial Intelligence Research and Development program of NASA's Office of Advanced Concepts and Technology (OACT) are described. The report is divided into two sections. The first consists of site reports, which are descriptions of the AI applications seen at each place visited. The second section consists of two summaries which synthesize the information in the site reports by organizing this information in two different ways. The first organizes the material in terms of the type of application, e.g., data analysis, planning and scheduling, and procedure management. The second organizes the material in terms of the component technologies of Artificial Intelligence which the applications used, e.g., knowledge based systems, model based reasoning, procedural reasoning, etc.

  9. 9th International conference on distributed computing and artificial intelligence

    Santana, Juan; González, Sara; Molina, Jose; Bernardos, Ana; Rodríguez, Juan; DCAI 2012; International Symposium on Distributed Computing and Artificial Intelligence 2012


    The International Symposium on Distributed Computing and Artificial Intelligence 2012 (DCAI 2012) is a stimulating and productive forum where the scientific community can work towards future cooperation in Distributed Computing and Artificial Intelligence areas. This conference is a forum in which  applications of innovative techniques for solving complex problems will be presented. Artificial intelligence is changing our society. Its application in distributed environments, such as the internet, electronic commerce, environment monitoring, mobile communications, wireless devices, distributed computing, to mention only a few, is continuously increasing, becoming an element of high added value with social and economic potential, in industry, quality of life, and research. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both the academic and indus...

  10. Bionics: A Step toward Artificial Intelligence Systems

    Dutton, Robert E.


    Recent developments and future prospects in the borrowing of biological principles to build problem solving relationships between human intelligence and the information storage and manipulation capacities of computers. Twenty-one references. (LY)

  11. The Emergence of Artificial Intelligence: Learning to Learn

    de Bock, Peter


    The classical approach to the acquisition of knowledge and reason in artificial intelligence is to program the facts and rules into the machine. Unfortunately, the amount of time required to program the equivalent of human intelligence is prohibitively large. An alternative approach allows an automaton to learn to solve problems through iterative trial-and-error interaction with its environment, much as humans do. To solve a problem posed by the environment, the automaton generates a sequence...

  12. Distinct Neurocognitive Strategies for Comprehensions of Human and Artificial Intelligence

    Ge, Jianqiao; Han, Shihui


    Although humans have inevitably interacted with both human and artificial intelligence in real life situations, it is unknown whether the human brain engages homologous neurocognitive strategies to cope with both forms of intelligence. To investigate this, we scanned subjects, using functional MRI, while they inferred the reasoning processes conducted by human agents or by computers. We found that the inference of reasoning processes conducted by human agents but not by computers induced incr...

  13. Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Lima, Pedro U.; Custodio, Luis M. M.


    This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior T?cnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are test...

  14. Fifth Conference on Artificial Intelligence for Space Applications

    Odell, Steve L. (Compiler)


    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  15. Cryptic Mining in Light of Artificial Intelligence

    Shaligram Prajapat; Aditi Thakur; Kajol Maheshwari; Ramjeevan Singh Thakur


    “The analysis of cryptic text is hard problem”, and there is no fixed algorithm for generating plain-text from cipher text. Human brains do this intelligently. The intelligent cryptic analysis process needs learning algorithms, co-operative effort of cryptanalyst and mechanism of knowledge based inference engine. This information of knowledge base will be useful for mining data(plain-text, key or cipher text plain-text relationships), classification of cipher text based on enciphering algorit...


    Sonnenwald, Diane H.


    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...... and data networks. Three artificial intelligence (AI) techniques used in UIMS are discussed, namely, frame representation, object-oriented programming languages, and rule-based systems. The UIMS architecture is presented, and the structure of the UIMS is explained in terms of the AI techniques....

  17. Distributed Computing and Artificial Intelligence, 12th International Conference

    Malluhi, Qutaibah; Gonzalez, Sara; Bocewicz, Grzegorz; Bucciarelli, Edgardo; Giulioni, Gianfranco; Iqba, Farkhund


    The 12th International Symposium on Distributed Computing and Artificial Intelligence 2015 (DCAI 2015) is a forum to present applications of innovative techniques for studying and solving complex problems. The exchange of ideas between scientists and technicians from both the academic and industrial sector is essential to facilitate the development of systems that can meet the ever-increasing demands of today’s society. The present edition brings together past experience, current work and promising future trends associated with distributed computing, artificial intelligence and their application in order to provide efficient solutions to real problems. This symposium is organized by the Osaka Institute of Technology, Qatar University and the University of Salamanca.

  18. Systems with artificial intelligence in nuclear power plant operation

    The authors first summarize some developments made by GRS teams which can be regarded as the precursors of systems with artificial intelligence, and explain the basic characteristics of artificial intelligence, referring in particular to possible applications in nuclear engineering. The systems described are arranged in four groups according to applicability as follows: plant diagnosis and failure analysis, information systems and operating systems, control systems, assessment and decision aids. The working principle of the systems is explained by some examples giving details of the database and the interference processes. (orig./DG)

  19. The present status of artificial intelligence for nuclear power plants

    JNC researches the development of distributed intelligence systems at autonomous plants and intelligent support system at nuclear power plant. This report describes the present status of artificial intelligence (AI) technologies for this research. The following are represented in this report: present research study for AI, Implementation of AI system and application of AI technologies in the field of industries, requirement for AI by industries, problems of social acceptance for AI. A development of AI systems has to be motivated both by current status of AI and requirement for AI. Furthermore a problem of social acceptance for AI technologies has to be solved for using AI systems in society. (author)


    Jerzy Balicki


    Full Text Available The article discusses some paradigms of artificial intelligence in the context of their applications in computer financial systems. The proposed approach has a significant po-tential to increase the competitiveness of enterprises, including financial institutions. However, it requires the effective use of supercomputers, grids and cloud computing. A reference is made to the computing environment for Bitcoin. In addition, we characterized genetic programming and artificial neural networks to prepare investment strategies on the stock exchange market.

  1. A Multidisciplinary Artificial Intelligence Model of an Affective Robot

    Hooman Aghaebrahimi Samani; Elham Saadatian


    A multidisciplinary approach to a novel artificial intelligence system for an affective robot is presented in this paper. The general objective of the system is to develop a robotic system which strives to achieve a high level of emotional bond between humans and robot by exploring human love. Such a relationship is a contingent process of attraction, affection and attachment from humans towards robots, and the belief of the vice versa from robots to humans. The advanced artificial intelli...

  2. Neuro-Based Artificial Intelligence Model for Loan Decisions

    Shorouq F. Eletter; Saad G. Yaseen; Ghaleb A. Elrefae


    Problem statement: Despite the increase in consumer loans defaults and competition in the banking market, most of the Jordanian commercial banks are reluctant to use artificial intelligence software systems for supporting loan decisions. Approach: This study developed a proposed model that identifies artificial neural network as an enabling tool for evaluating credit applications to support loan decisions in the Jordanian Commercial banks. A multi-layer feed-forward neural network with backpr...

  3. Artificial Life of Soybean Plant Growth Modeling Using Intelligence Approaches

    Atris Suyantohadi; Mochamad Hariadi; Mauridhi Hery Purnomo


    The natural process on plant growth system has a complex system and it has could be developed on characteristic studied using intelligent approaches conducting with artificial life system. The approaches on examining the natural process on soybean (Glycine Max L.Merr) plant growth have been analyzed and synthesized in these research through modeling using Artificial Neural Network (ANN) and Lindenmayer System (L-System) methods. Research aimed to design and to visualize plant growth modeling...

  4. A Multidisciplinary Artificial Intelligence Model of an Affective Robot

    Hooman Aghaebrahimi Samani


    The advanced artificial intelligence of the system includes three modules, namely Probabilistic Love Assembly (PLA, based on the psychology of love, Artificial Endocrine System (AES, based on the physiology of love, and Affective State Transition (AST, based on emotions. The PLA module employs a Bayesian network to incorporate psychological parameters of affection in the robot. The AES module employs artificial emotional and biological hormones via a Dynamic Bayesian Network (DBN. The AST module uses a novel transition method for handling affective states of the robot. These three modules work together to manage emotional behaviours of the robot.

  5. Solving Complex Logistics Problems with Multi-Artificial Intelligent System

    Y.K. Tse


    Full Text Available The economy, which has become more information intensive, more global and more technologically dependent, is undergoing dramatic changes. The role of logistics is also becoming more and more important. In logistics, the objective of service providers is to fulfill all customers? demands while adapting to the dynamic changes of logistics networks so as to achieve a higher degree of customer satisfaction and therefore a higher return on investment. In order to provide high quality service, knowledge and information sharing among departments becomes a must in this fast changing market environment. In particular, artificial intelligence (AI technologies have achieved significant attention for enhancing the agility of supply chain management, as well as logistics operations. In this research, a multi-artificial intelligence system, named Integrated Intelligent Logistics System (IILS is proposed. The objective of IILS is to provide quality logistics solutions to achieve high levels of service performance in the logistics industry. The new feature of this agile intelligence system is characterized by the incorporation of intelligence modules through the capabilities of the case-based reasoning, multi-agent, fuzzy logic and artificial neural networks, achieving the optimization of the performance of organizations.

  6. 50 years of artificial intelligence: a neuronal approach

    Fernández Caballero, Antonio; Deco, Gustavo; Mira Mira, José


    Recently, the 50th anniversary of the birth of Artificial Intelligence (AI) has been celebrated worldwide, and about 65 years ago (1943) its foundational works on Biocybernetics and Bionics were published due to movements led by McCulloch and Pitts and Wiener.

  7. Some Notes About Artificial Intelligence as New Mathematical Tool

    Angel Garrido


    Full Text Available Mathematics is a mere instance of First-Order Predicate Calculus. Therefore it belongs to applied Monotonic Logic. So, we found the limitations of classical logic reasoning and the clear advantages of Fuzzy Logic and many other new interesting tools. We present here some of the more usefulness tools of this new field of Mathematics so-called Artificial Intelligence.

  8. Traditional and Modern Artificial Intelligence Explores Ecological Data

    Holeňa, Martin

    Helsinki : Finnish Artificial Intelligence Society, 2000 - (Hyötyniemi, H.), s. 53-60 ISBN 951-22-5129-9. [STeP 2000. Helsinki (FI), 00.08.2000-00.08.2000] R&D Projects: GA AV ČR IAB2030007 Institutional research plan: AV0Z1030915 Subject RIV: BA - General Mathematics

  9. An Artificial Intelligence Approach to Transient Stability Assessment

    Akella, Vijay Ahaskar; Khincha, HP; Kumar, Sreerama R


    An artificial intelligence approach to online transient stability assessment is briefly discussed, and some crucial requirements for this algorithm are identified. Solutions to these are proposed. Some new attributes are suggested so as to reflect machine dynamics and changes in the network. Also a new representative learning set algorithm has been developed.

  10. Evolution and Revolution in Artificial Intelligence in Education

    Roll, Ido; Wylie, Ruth


    The field of Artificial Intelligence in Education (AIED) has undergone significant developments over the last twenty-five years. As we reflect on our past and shape our future, we ask two main questions: What are our major strengths? And, what new opportunities lay on the horizon? We analyse 47 papers from three years in the history of the…

  11. Artificial Intelligence: Is the Future Now for A.I.?

    Ramaswami, Rama


    In education, artificial intelligence (AI) has not made much headway. In the one area where it would seem poised to lend the most benefit--assessment--the reliance on standardized tests, intensified by the demands of the No Child Left Behind Act of 2001, which holds schools accountable for whether students pass statewide exams, precludes its use.…

  12. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.


    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  13. The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    Rash, James L. (Editor)


    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications.

  14. An Artificial Intelligence-Based Distance Education System: Artimat

    Nabiyev, Vasif; Karal, Hasan; Arslan, Selahattin; Erumit, Ali Kursat; Cebi, Ayca


    The purpose of this study is to evaluate the artificial intelligence-based distance education system called ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed…

  15. Research Priorities for Robust and Beneficial Artificial Intelligence

    Russell, Stuart; University of California, Berkeley; Dewey, Daniel; Oxford University; Tegmark, Max; Massachusetts Institute of Technology


    Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.

  16. Artificial Intelligence: Realizing the Ultimate Promises of Computing

    Waltz, David L.


    Artificial intelligence (AI) is the key technology in many of today's novel applications, ranging from banking systems that detect attempted credit card fraud, to telephone systems that understand speech, to software systems that notice when you're having problems and offer appropriate advice. These technologies would not exist today without the sustained federal support of fundamental AI research over the past three decades.

  17. Artificial Intelligence and the High School Computer Curriculum.

    Dillon, Richard W.


    Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…

  18. Artificial intelligence system for technical diagnostics of photomasks

    Kozin A. A.


    Full Text Available The developed artificial intelligence system has a high level of noise immunity, so its inclusion in the hardware and software for technical diagnostics of photomasks will reduce the hardware requirements for its execution, and thereby reduce the cost of the complex. As a result it will allow to make a small-scale production profitable.

  19. The future of artificial intelligence in nuclear plant maintenance

    Robots with vision and force sensing capability, performing tasks under computer control, will offer new opportunities to reduce human exposure to radiation. Such machines do not yet exist and even simple maintenance tasks challenge current robot technology. Recently increased priority for research on artificial intelligence and fifth generation computer technology is likely to bring useful maintenance robots closer to reality

  20. Social Studies and Emerging Paradigms: Artificial Intelligence and Consciousness Education.

    Braun, Joseph A., Jr.


    Asks three questions: (1) Are machines capable of thinking as people do? (2) How is the thinking of computers similar and different from human thinking? and (3) What exactly is thinking? Examines research in artificial intelligence. Describes the theory and research of consciousness education and discusses an emerging paradigm for human thinking…

  1. Artificial intelligence system for technical diagnostics of photomasks

    Kozin A. A.; Kozina Yu. Yu.


    The developed artificial intelligence system has a high level of noise immunity, so its inclusion in the hardware and software for technical diagnostics of photomasks will reduce the hardware requirements for its execution, and thereby reduce the cost of the complex. As a result it will allow to make a small-scale production profitable.

  2. Interaction between Software Engineering and Artificial Intelligence- A Review

    Prince Jain


    Full Text Available Software engineering and artificial intelligence is the two field of the computer science. During the last decades, the disciplines of Artificial Intelligence and Software Engineering have developedseparately without the much exchange of research outcomes. However, both fields of computer science have different characteristics, benefits and limitations. This statement opens many possibilities and ideas for research. One idea is that the researcher applies the available methods, tools and techniques of Artificial Intelligence to Software Engineering and Software Engineering to Artificial Intelligence in a manner that good things, feature, characteristic and advantages of the both fields is taken up, and the limitations will reduces. During applicability, an intersection area is found between AI and SE, which forms the relation between AI and SE. The work in this paper discusses the factor that come while communicating between AI and SE such as Communication, objective, Problem and reasons for adopting. This work explores the framework of interaction on which both fields are communicate with each other. This framework has four major classes of interaction such as software support environment, AI tools and techniques in conventional software, Use of conventional software technology and Methodological considerations. This paper introduces the relation between AI and SE, and varioustechniques evolved while merging.

  3. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  4. Artificial intelligence - New tools for aerospace project managers

    Moja, D. C.


    Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.

  5. Intelligent process control operator aid -- An artificial intelligence approach

    This paper describes an approach for designing intelligent process and power plant control operator aids. It is argued that one of the key aspects of an intelligent operator aid is the capability for dynamic procedure synthesis with incomplete definition of initial state, unknown goal states, and the dynamic world situation. The dynamic world state is used to determine the goal, select appropriate plan steps from prespecified procedures to achieve the goal, control the execution of the synthesized plan, and provide for dynamic recovery from failure often using a goal hierarchy. The dynamic synthesis of a plan requires integration of various problems solving capabilities such as plan generation, plan synthesis, plan modification, and failure recovery from a plan. The programming language for implementing the DPS framework provides a convenient tool for developing applications. An application of the DPS approach to a Nuclear Power Plant emergency procedure synthesis is also described. Initial test results indicate that the approach is successful in dynamically synthesizing the procedures. The authors realize that the DPS framework is not a solution for all control tasks. However, many existing process and plant control problems satisfy the requirements discussed in the paper and should be able to benefit from the framework described

  6. Autonomous operations through onboard artificial intelligence

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.


    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  7. Artificial intelligence in nuclear reactor operation

    Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined through a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK·CEN) and the Mexican Nuclear Centre (ININ) on AI-based intelligent control for nuclear reactor operation under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (authors)

  8. Artificial organic networks artificial intelligence based on carbon networks

    Ponce-Espinosa, Hiram; Molina, Arturo


    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  9. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    Mishra, D.; Goyal, P.


    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  10. Philosophy and Theory of Artificial Intelligence


    Can we make machines that think and act like humans or other natural intelligent agents? The answer to this question depends on how we see ourselves and how we see the machines in question. Classical AI and cognitive science had claimed that cognition is computation, and can thus be reproduced on other computing machines, possibly surpassing the abilities of human intelligence. This consensus has now come under threat and the agenda for the philosophy and theory of AI must be set anew, re-defining the relation between AI and Cognitive Science. We can re-claim the original vision of general AI from the technical AI disciplines; we can reject classical cognitive science and replace it with a new theory (e.g. embodied); or we can try to find new ways to approach AI, for example from neuroscience or from systems theory. To do this, we must go back to the basic questions on computing, cognition and ethics for AI. The 30 papers in this volume provide cutting-edge work from leading researchers that define where we s...

  11. Learning comunication strategies for distributed artificial intelligence

    Kinney, Michael; Tsatsoulis, Costas


    We present a methodology that allows collections of intelligent system to automatically learn communication strategies, so that they can exchange information and coordinate their problem solving activity. In our methodology communication between agents is determined by the agents themselves, which consider the progress of their individual problem solving activities compared to the communication needs of their surrounding agents. Through learning, communication lines between agents might be established or disconnected, communication frequencies modified, and the system can also react to dynamic changes in the environment that might force agents to cease to exist or to be added. We have established dynamic, quantitative measures of the usefulness of a fact, the cost of a fact, the work load of an agent, and the selfishness of an agent (a measure indicating an agent's preference between transmitting information versus performing individual problem solving), and use these values to adapt the communication between intelligent agents. In this paper we present the theoretical foundations of our work together with experimental results and performance statistics of networks of agents involved in cooperative problem solving activities.

  12. Cryptic Mining in Light of Artificial Intelligence

    Shaligram Prajapat


    Full Text Available “The analysis of cryptic text is hard problem”, and there is no fixed algorithm for generating plain-text from cipher text. Human brains do this intelligently. The intelligent cryptic analysis process needs learning algorithms, co-operative effort of cryptanalyst and mechanism of knowledge based inference engine. This information of knowledge base will be useful for mining data(plain-text, key or cipher text plain-text relationships, classification of cipher text based on enciphering algorithms, key length or any other desirable parameters, clustering of cipher text based on similarity and extracting association rules for identifying weaknesses of cryptic algorithms. This categorization will be useful for placing given cipher text into a specific category or solving difficult level of cipher text-plain text conversion process. This paper elucidates cipher text-plain text process first than utilizes it to create a framework for AI-enabled-Cryptanalysis system. The process demonstrated in this paper attempts to analyze captured cipher from scratch. The system design elements presented in the paper gives all hints and guidelines for development of AI enabled Cryptic analysis tool.

  13. An application of artificial intelligence theory to reconfigurable flight control

    Handelman, David A.


    Artificial intelligence techniques were used along with statistical hpyothesis testing and modern control theory, to help the pilot cope with the issues of information, knowledge, and capability in the event of a failure. An intelligent flight control system is being developed which utilizes knowledge of cause and effect relationships between all aircraft components. It will screen the information available to the pilots, supplement his knowledge, and most importantly, utilize the remaining flight capability of the aircraft following a failure. The list of failure types the control system will accommodate includes sensor failures, actuator failures, and structural failures.

  14. Artificial intelligence: the future in nuclear plant maintenance

    The role of robotics and remote handling equipment in future nuclear power plant maintenance activities is discussed in the context of artificial intelligence applications. Special requirements manipulators, control systems, and man-machine interfaces for nuclear applications are noted. Tasks might include inspection with cameras, eddy current probes, and leak detectors; the collection of material samples; radiation monitoring; and the disassembly, repair and reassembly of a variety of system components. A robot with vision and force sensing and an intelligent control system that can access a knowledge base is schematically described. Recent advances in image interpretation systems are also discussed

  15. Information Processing in Cognition Process and New Artificial Intelligent Systems

    Zheng, Nanning; Xue, Jianru

    In this chapter, we discuss, in depth, visual information processing and a new artificial intelligent (AI) system that is based upon cognitive mechanisms. The relationship between a general model of intelligent systems and cognitive mechanisms is described, and in particular we explore visual information processing with selective attention. We also discuss a methodology for studying the new AI system and propose some important basic research issues that have emerged in the intersecting fields of cognitive science and information science. To this end, a new scheme for associative memory and a new architecture for an AI system with attractors of chaos are addressed.

  16. Providing Language Instructor with Artificial Intelligence Assistant

    K. Pietroszek


    Full Text Available Abstract—This paper presents the preliminary results ofdeveloping HAL for CALL, an artificial intelligenceassistant for language instructor. The assistant consists of achatbot, an avatar (a three-dimensional visualization of thechatbot, a voice (text-to-speech engine interface andinterfaces to external sources of language knowledge. Sometechniques used in adapting freely available chatbot for theneed of a language learning system are presented.Integration of HAL with Second Life virtual world isproposed. We will discuss technical challenges and possiblefuture work directions.

  17. A Survey on Using Artificial Intelligence Techniques in the Software Development Process

    K. Hema Shankari; Dr. R.Thirumalaiselvi


    Software engineering and artificial intelligence are the two important fields of the computer science. Artificial Intelligence is about making machines intelligent, while Software engineering is knowledge –intensive activity, requiring extensive knowledge of the application domain and of the target software itself. This study intends to review the techniques developed in artificial intelligence from the standpoint of their application in software engineering. The goal of this rese...

  18. Application of Artificial Intelligence and Data Mining Techniques to Financial Markets

    Katarína Hilovska; Peter Koncz


    The aim of artificial intelligence is to discover mechanisms of adaptation in a changing environment with utilisation of intelligence, for instance in the ability to exclude unlikely solutions. Artificial intelligence methods have extensive application in different fields such as medicine, games, transportation, or heavy industry. This paper deals with interdisciplinary issues – interconnection of artificial intelligence and finance. The paper briefly describes techniques of data mining, expe...

  19. Artificial Intelligent Controller for a DC Motor

    Delavari, Hadi; Ranjbar Noiey, Abolzafl; Minagar, Sara

    The Speed and position control of DC motors is addressed in this paper. An optimal intelligent control scheme is proposed for the system. Preliminary a PID controller is designed using Genetic Algorithms (GA). The proposed controller is implemented by using optimal integral state feedback control with GA and Kalman filter. In the proposed scheme, performance depends on choosing weighting matrices Q and R in the cost function, and accordingly GA is used to find these proper weighting matrices. In order to reduce the control performance degradation due to system parameters variation, a Kalman filter is gained. The performance of the proposed technique (ISF) is compared with PID controller. Computer simulation validates the effectiveness of the proposed scheme even in presence of uncertainties.

  20. Artificial Intelligence based technique for BTS placement

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out

  1. Dynamic Analysis of Emotions through Artificial Intelligence

    Susana Mejía M.


    Full Text Available Emotions have been demonstrated to be an important aspect of human intelligence and to play a significant role in human decision-making processes. Emotions are not only feelings but also processes of establishing, maintaining or disrupting the relation between the organism and the environment. In the present paper, several features of social and developmental Psychology are introduced, especially concepts that are related to Theories of Emotions and the Mathematical Tools applied in psychology (i.e., Dynamic Systems and Fuzzy Logic. Later, five models that infer emotions from a single event, in AV-Space, are presented and discussed along with the finding that fuzzy logic can measure human emotional states




    Full Text Available El objetivo del presente trabajo, es definir una nueva metodología la cual permita comparar la efectividad de algunas de las principales técnicas de inteligencia artificial (aleatorias, búsqueda tabú, minería de datos, algoritmos evolutivos. Esta metodología es aplicada en los procesos de secuenciación de la producción en ambientes job shop, en un problema con N pedidos y M máquinas, donde cada uno de los pedidos debe pasar por todas las máquinas sin importar el orden. Estas técnicas son medidas en las variables tiempo total de proceso, tiempo total muerto y porcentaje de utilización de las máquinas. Inicialmente, una revisión teórica fue realizada, esta muestra la utilidad y efectividad de la inteligencia artificial en los procesos de secuenciación de la producción. Posteriormente y con base en la experimentación planteada, los resultados obtenidos, muestran que estas técnicas presentan una efectividad superior al 95%, con un intervalo de confiabilidad del 99.5% medido en las variables objeto de estudio.

  3. A psychoanalyst artificial intelligence model in a computer game

    Muñoz Fernández, Enrique


    Projecte realitzat en el marc d'un programa de mobilitat amb la Vienna University of Technology. [ANGLÈS] Implementation of an artificial intelligence model based on the psychoanalytic theory of the ID-Ego-SuperEgo of Sigmund Freud into the computer game Unreal Tournament 2004. [CASTELLÀ] Implementación de un modelo de inteligencia artificial basado en la teoría psicoanalítica del ID-Ego-SuperEgo de Sigmund Freud en el videojuego Unreal Tournament 2004. [CATALÀ] Implementació d'un mo...

  4. Use of Artificial Intelligence in Real Property Valuation

    Dr. N. B. Chaphalkar


    Full Text Available Real properties possess value which is dependent on numerous factors. Investors and owners of the property are interested in the maximum returns, it would fetch. Considering the amount of money involved in real estate, there is a need of accurate prediction of returns and associated risks. This necessitates use of Artificial Intelligence (AI prediction models. This study attempts to analyze and summarize AI techniques, which gives insight to application of various techniques for prediction related to property valuation. Comparison of various techniques shows that Artificial Neural Network (ANNand fuzzy logic are better suited if attributes and model parameters are appropriately selected.

  5. Brown's transport up to third order aberration by artificial intelligence

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effect by artificial intelligence, outputting automatically all the analytical expressions up to the third order aberration coefficients

  6. Research on artificial intelligence systems for nuclear installations

    The development and utilization of atomic energy in Japan has be advanced in conformity with the long term plan of atomic energy development and utilization decided in 1987. As one of the basic targets, the upbringing of creative and innovative science and technology is put up. Artificial intelligence technology has been positioned as one of the important basic technologies for promoting future atomic energy development. The research and development of artificial intelligence technology have been advanced aiming at making nuclear power stations autonomous, by the guidance of Science and Technology Agency and the cooperation of several research institutes. The upbringing of creative science and technology, the preponderant development of basic technology, the concept of developing the basic technology for atomic energy, the concept of autonomous plants, the standard for autonomy, the approach to autonomous plants, the present state of the researches in respective research institutes on autonomous operation and autonomous maintenance are described. (K.I.)

  7. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Aleksandar Sabljic


    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  8. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.


    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  9. Brown's TRANSPORT up to third order aberration by artificial intelligence

    Brown's TRANSPORT is a first and second order matrix multiplication computer program intended for the design of accelerator beam transport systems, neglecting the third order aberration. Recently a new method was developed to derive analytically any order aberration coefficients of general charged particle optic system, applicable to any practical systems, such as accelerators, electron microscopes, lithographs, etc., including those unknown systems yet to be invented. An artificial intelligence program in Turbo Prolog was implemented on IBM-PC 286 or 386 machine to generate automatically the analytical expression of any order aberration coefficients of general charged particle optic system. Based on this new method and technique, Brown's TRANSPORT is extended beyond the second order aberration effects by artificial intelligence, outputing automatically all the analytical expressions up to the third order aberration coefficients

  10. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging