WorldWideScience

Sample records for arsenide junction-field-effect transistors

  1. Field emission current from a junction field-effect transistor

    International Nuclear Information System (INIS)

    Monshipouri, Mahta; Abdi, Yaser

    2015-01-01

    Fabrication of a titanium dioxide/carbon nanotube (TiO 2 /CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO 2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO 2 /CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO 2 /CNT hetero-structure is also investigated, and well modeled

  2. Research of the voltage and current stabilization processes by using the silicon field-effect transistor

    International Nuclear Information System (INIS)

    Karimov, A.V.; Yodgorova, D.M.; Kamanov, B.M.; Giyasova, F.A.; Yakudov, A.A.

    2012-01-01

    The silicon field-effect transistors were investigated to use in circuits for stabilization of current and voltage. As in gallium arsenide field-effect transistors, in silicon field-effect transistors with p-n-junction a new mechanism of saturation of the drain current is experimentally found out due to both transverse and longitudinal compression of channel by additional resistance between the source and the gate of the transistor. The criteria for evaluating the coefficients of stabilization of transient current suppressors and voltage stabilizator based on the field-effect transistor are considered. (authors)

  3. Field emission current from a junction field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2015-04-15

    Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.

  4. Radiation effects on junction field-effect transistors (JFETS), MOSFETs, and bipolar transistors, as related to SSC circuit design

    International Nuclear Information System (INIS)

    Kennedy, E.J.; Alley, G.T.; Britton, C.L. Jr.; Skubic, P.L.; Gray, B.; Wu, A.

    1990-01-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular, at currents ≤1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier

  5. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    Science.gov (United States)

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, H. N.

    2012-06-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin film transistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectric transistors, which is very promising for low-power non-volatile memory applications.

  6. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    KAUST Repository

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Bhansali, Unnat. S.; Alshareef, Husam N.

    2012-01-01

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility

  7. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  8. Effects induced by γ-radiation on the noise in junction field-effect transistors belonging to monolithic processes

    International Nuclear Information System (INIS)

    Manfredi, P.F.; Re, V.; Manfredi, P.F.; Speziali, V.; Re, V.; Manfredi, P.F.; Speziali, V.

    1999-01-01

    The effects of γ-rays on the noise characteristics of junction field-effect transistors belonging to three monolithic technologies have been investigated. A substantially different behavior of the radiation-induced noise in N and P -channel JFETs was observed. This may result in interesting design considerations. (authors)

  9. Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Rehn, L.A.; Manfredi, P.F.; Speziali, V.

    1991-11-01

    The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described

  10. Electrical responses by effects of molecular adsorption on channel and junctions of carbon nanotube field effect transistors

    International Nuclear Information System (INIS)

    Kang, Donghun; Park, Wanjun

    2008-01-01

    We report the adsorption effect on the electrical transport of nanotube field effect transistors. The source-drain current is monitored separately for the nanotube channel and the metal-nanotube junction under different pressures of ambient air with a blocking passivation. The metal-nanotube junction shows a significant change from p-type to ambipolar upon vacuum pumping, while the nanotube channel changes modestly. The metal-nanotube junction is found to be far more sensitive to the environment than the nanotube channel. We suggest that the adsorption states underneath the blocking layer do not desorb, and thus the positive carriers would not be diluted upon the vacuum pumping. This result is interpreted as the formation of an i-p-i and p-i-p junction with charge transfer by oxygen molecules. (fast track communication)

  11. Performance comparison between p–i–n and p–n junction tunneling field-effect transistors

    Science.gov (United States)

    Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man

    2018-06-01

    In this study, we investigated the direct-current (DC) and radio-frequency (RF) performances of p–i–n and p–n junction tunneling field-effect transistors (TFETs). Compared to the p–i–n junction TFET, the p–n junction TFET exhibited higher on-state current (I on) because the channel formation mechanism of the p–n junction TFET resulted in a narrower tunneling barrier and an expanded tunneling area. Further, the reduction of I on of the p–n junction TFET by the interface trap was smaller. Moreover, the p–n junction TFET exhibited lower gate-to-drain capacitance (C gd) because a depletion capacitance (C gd,dep) was formed by the depletion region under gate dielectric. Consequently, the p–n junction TFET achieved an improvement of cut-off frequency (f T) and intrinsic delay time (τ), which are related to the current performance and total gate capacitance (C gg). We confirmed the enhancement of device performances in terms of I on, f T, and τ by the conduction mechanism of the p–n junction TFET.

  12. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    KAUST Repository

    Nayak, Pradipta K.

    2012-06-22

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin filmtransistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectrictransistors, which is very promising for low-power non-volatile memory applications.

  13. Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    Science.gov (United States)

    Kizilyalli, I. C.; Aktas, O.

    2015-12-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p-n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (104 to 106 cm-2) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 1015 cm-3. This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p-n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p-n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p-n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p-n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T -3/2, consistent with a phonon scattering model. Also, normally-on vertical junction

  14. The effect and mechanism of the bipolar junction transistor in different temperature

    International Nuclear Information System (INIS)

    Wang Dong; Lu Wu; Ren Diyuan; Li Aiwu; Kuang Zhibing

    2007-01-01

    The annealing-effect of bipolar junction transistor in different temperature is investigated. It is found that the anneal of the bipolar transistor is related to the annealing-temperature, and the annealing-effect of the different type transistor is dissimilar. The possible mechanism is discussed. (authors)

  15. Characterization of vertical GaN p–n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    International Nuclear Information System (INIS)

    Kizilyalli, I C; Aktas, O

    2015-01-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p–n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (10 4 to 10 6 cm −2 ) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 10 15 cm −3 . This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A  ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p–n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p–n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p–n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p–n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T −3/2 , consistent with a phonon scattering model. Also

  16. Development and characterization of vertical double-gate MOS field-effect transistors

    International Nuclear Information System (INIS)

    Trellenkamp, S.

    2004-07-01

    Planar MOS-field-effect transistors are common devices today used by the computer industry. When their miniaturization reaches its limit, alternate transistor concepts become necessary. In this thesis the development of vertical Double-Gate-MOS-field-effect transistors is presented. These types of transistors have a vertically aligned p-n-p junction (or n-p-n junction, respectively). Consequently, the source-drain current flows perpendicular with respect to the surface of the wafer. A Double-Gate-field-effect transistor is characterized by a very thin channel region framed by two parallel gates. Due to the symmetry of the structure and less bulk volume better gate control and hence better short channel behavior is expected, as well as an improved scaling potential. Nanostructuring of the transistor's active region is very challenging. Approximately 300 nm high and down to 30 nm wide silicon ridges are requisite. They can be realized using hydrogen silsesquioxane (HSQ) as inorganic high resolution resist for electron beam lithography. Structures defined in HSQ are then transferred with high anisotropy and selectivity into silicon using ICP-RIE (reactive ion etching with inductive coupled plasma). 25 nm wide and 330 nm high silicon ridges are achieved. Different transistor layouts are realized. The channel length is defined by epitaxial growth of doped silicon layers before or by ion implantation after nanostructuring, respectively. The transistors show source-drain currents up to 380 μA/μm and transconductances up to 480 μS/μm. Improved short channel behavior for decreasing width of the silicon ridges is demonstrated. (orig.)

  17. Radiation effect of doping and bias conditions on NPN bipolar junction transistors

    International Nuclear Information System (INIS)

    Xi Shanbin; Wang Yiyuan; Xu Fayue; Zhou Dong; Li Ming; Wang Fei; Wang Zhikuan; Yang Yonghui; Lu Wu

    2011-01-01

    In this paper,we investigate 60 Co γ-ray irradiation effects and annealing behaviors of NPN bipolar junction transistors of the same manufacturing technology but different doping concentrations. The transistors of different doping concentrations differ in responses of the radiation effect. More degradation was observed with the transistors of low concentration-doped NPN transistors than the high concentration-doped NPN transistors. The results also demonstrate that reverse-biased transistors are more sensitive to radiation than the forward-biased ones. Mechanisms of the radiation responses are analyzed. (authors)

  18. Nanowire field effect transistors principles and applications

    CERN Document Server

    Jeong, Yoon-Ha

    2014-01-01

    “Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

  19. Black Phosphorus-Zinc Oxide Nanomaterial Heterojunction for p-n Diode and Junction Field-Effect Transistor.

    Science.gov (United States)

    Jeon, Pyo Jin; Lee, Young Tack; Lim, June Yeong; Kim, Jin Sung; Hwang, Do Kyung; Im, Seongil

    2016-02-10

    Black phosphorus (BP) nanosheet is two-dimensional (2D) semiconductor with distinct band gap and attracting recent attention from researches because it has some similarity to gapless 2D semiconductor graphene in the following two aspects: single element (P) for its composition and quite high mobilities depending on its fabrication conditions. Apart from several electronic applications reported with BP nanosheet, here we report for the first time BP nanosheet-ZnO nanowire 2D-1D heterojunction applications for p-n diodes and BP-gated junction field effect transistors (JFETs) with n-ZnO channel on glass. For these nanodevices, we take advantages of the mechanical flexibility of p-type conducting of BP and van der Waals junction interface between BP and ZnO. As a result, our BP-ZnO nanodimension p-n diode displays a high ON/OFF ratio of ∼10(4) in static rectification and shows kilohertz dynamic rectification as well while ZnO nanowire channel JFET operations are nicely demonstrated by BP gate switching in both electrostatics and kilohertz dynamics.

  20. Tunnel field-effect transistors with germanium/strained-silicon hetero-junctions for low power applications

    International Nuclear Information System (INIS)

    Kim, Minsoo; Kim, Younghyun; Yokoyama, Masafumi; Nakane, Ryosho; Kim, SangHyeon; Takenaka, Mitsuru; Takagi, Shinichi

    2014-01-01

    We have studied a simple structure n-channel tunnel field-effect transistor with a pure-Ge/strained-Si hetero-junction. The device operation was demonstrated for the devices fabricated by combining epitaxially-grown Ge on strained-silicon-on-insulator substrates. Atomic-layer-deposition-Al 2 O 3 -based gate stacks were formed with electron cyclotron resonance plasma post oxidation to ensure the high quality metal–oxide–semiconductor interface between the high-k insulator and Ge. While the gate leakage current and drain current saturation are well controlled, relatively higher minimum subthreshold swing of 125 mV/dec and lower I ON /I OFF ratio of 10 3 –10 4 were obtained. It is expected that these device characteristics can be improved by further process optimization. - Highlights: • Layer by layer growth of Ge • Uniform interface between Ge and the insulator • Gate leakage current and drain current saturation seem to be well controlled. • The output characteristics show good saturation

  1. Tunnel field-effect transistors with germanium/strained-silicon hetero-junctions for low power applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minsoo, E-mail: minsoo@mosfet.t.u-tokyo.ac.jp; Kim, Younghyun; Yokoyama, Masafumi; Nakane, Ryosho; Kim, SangHyeon; Takenaka, Mitsuru; Takagi, Shinichi

    2014-04-30

    We have studied a simple structure n-channel tunnel field-effect transistor with a pure-Ge/strained-Si hetero-junction. The device operation was demonstrated for the devices fabricated by combining epitaxially-grown Ge on strained-silicon-on-insulator substrates. Atomic-layer-deposition-Al{sub 2}O{sub 3}-based gate stacks were formed with electron cyclotron resonance plasma post oxidation to ensure the high quality metal–oxide–semiconductor interface between the high-k insulator and Ge. While the gate leakage current and drain current saturation are well controlled, relatively higher minimum subthreshold swing of 125 mV/dec and lower I{sub ON}/I{sub OFF} ratio of 10{sup 3}–10{sup 4} were obtained. It is expected that these device characteristics can be improved by further process optimization. - Highlights: • Layer by layer growth of Ge • Uniform interface between Ge and the insulator • Gate leakage current and drain current saturation seem to be well controlled. • The output characteristics show good saturation.

  2. Applications, Prospects and Challenges of Silicon Carbide Junction Field Effect Transistor (SIC JFET

    Directory of Open Access Journals (Sweden)

    Frederick Ojiemhende Ehiagwina

    2016-09-01

    Full Text Available Properties of Silicon Carbide Junction Field Effect Transistor (SiC JFET such as high switching speed, low forward voltage drop and high temperature operation have attracted the interest of power electronic researchers and technologists, who for many years developed devices based on Silicon (Si.  A number of power system Engineers have made efforts to develop more robust equipment including circuits or modules with higher power density. However, it was realized that several available power semiconductor devices were approaching theoretical limits offered by Si material with respect to capability to block high voltage, provide low on-state voltage drop and switch at high frequencies. This paper presents an overview of the current applications of SiC JFET in circuits such as inverters, rectifiers and amplifiers. Other areas of application reviewed include; usage of the SiC JFET in pulse signal circuits and boost converters. Efforts directed toward mitigating the observed increase in electromagnetic interference were also discussed. It also presented some areas for further research, such as having more applications of SiC JFET in harsh, high temperature environment. More work is needed with regards to SiC JFET drivers so as to ensure stable and reliable operation, and reduction in the prices of SiC JFETs through mass production by industries.

  3. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir

    2016-11-01

    This dissertation presents a unique concept for a device architecture named the nanotube (NT) architecture, which is capable of higher drive current compared to the Gate-All-Around Nanowire architecture when applied to heterostructure Tunnel Field Effect Transistors. Through the use of inner/outer core-shell gates, heterostructure NT TFET leverages physically larger tunneling area thus achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. We discuss the physics of p-type (Silicon/Indium Arsenide) and n-type (Silicon/Germanium hetero-structure) based TFETs. Numerical TCAD simulations have shown that NT TFETs have 5x and 1.6 x higher normalized ION when compared to GAA NW TFET for p and n-type TFETs, respectively. This is due to the availability of larger tunneling junction cross sectional area, and lower Shockley-Reed-Hall recombination, while achieving sub 60 mV/dec performance for more than 5 orders of magnitude of drain current, thus enabling scaling down of Vdd to 0.5 V. This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving rise to up to 50% larger device width, without occupying extra chip area. The novel architecture shows 2x higher output drive current per unit chip area when compared to conventional planar architecture. The current increase is attributed to both the extra device width and 50% enhancement in field effect mobility due to electrostatic gating effects. Digital circuits are fabricated to demonstrate the potential of integrating WC TFT based circuits. WC inverters have shown 2× the peak-to-peak output voltage for the same input, and ~2× the operation frequency of the planar inverters for the same peak-to-peak output voltage. WC NAND circuits have shown 2× higher peak-to-peak output voltage, and 3× lower high-to-low propagation

  4. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol' , A.A.

    1988-02-01

    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  5. Effect of ion-beam gettering on the GaAs transistor structure parameters under neutron irradiation

    International Nuclear Information System (INIS)

    Obolenskij, S.V.; Skupov, V.D.

    2000-01-01

    It is established that the neutron irradiation negative effect on the parameters of the field transistors with the Schottky shut-off on the basis of the epitaxial gallium arsenide is essentially reduced when the argon ions are preliminary implanted into structure on the substrate side. The above effect is explained through remotely controlled gettering by ion irradiation of admixtures and defects in the transistor active areas related with origination of deep levels under the neutron fluence [ru

  6. Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors

    Science.gov (United States)

    Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D.

    2018-04-01

    Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

  7. Radiation effect on silicon transistors in mixed neutrons-gamma environment

    Science.gov (United States)

    Assaf, J.; Shweikani, R.; Ghazi, N.

    2014-10-01

    The effects of gamma and neutron irradiations on two different types of transistors, Junction Field Effect Transistor (JFET) and Bipolar Junction Transistor (BJT), were investigated. Irradiation was performed using a Syrian research reactor (RR) (Miniature Neutron Source Reactor (MNSR)) and a gamma source (Co-60 cell). For RR irradiation, MCNP code was used to calculate the absorbed dose received by the transistors. The experimental results showed an overall decrease in the gain factors of the transistors after irradiation, and the JFETs were more resistant to the effects of radiation than BJTs. The effect of RR irradiation was also greater than that of gamma source for the same dose, which could be because neutrons could cause more damage than gamma irradiation.

  8. Band-to-band tunneling field effect transistor for low power logic and memory applications: Design, fabrication and characterization

    Science.gov (United States)

    Mookerjea, Saurabh A.

    Over the past decade the microprocessor clock frequency has hit a plateau. The main reason for this has been the inability to follow constant electric field scaling, which requires the transistor supply voltage to be scaled down as the transistor dimensions are reduced. Scaling the supply voltage down reduces the dynamic power quadratically but increases the static leakage power exponentially due to non-scalability of threshold voltage of the transistor, which is required to maintain the same ON state performance. This limitation in supply voltage scaling is directly related to MOSFET's (Metal Oxide Semiconductor Field Effect Transistor) sub-threshold slope (SS) limitation of 60 mV/dec at room temperature. Thus novel device design/materials are required that would allow the transistor to switch with sub-threshold slopes steeper than 60 mV/dec at room temperature, thus facilitating supply voltage scaling. Recently, a new class of devices known as super-steep slope (SSswitching behavior of TFET is studied through mixed-mode numerical simulations. The significance of correct benchmarking methodology to estimate the effective drive current and capacitance in TFET is highlighted and compared with MOSFET. This is followed by the fabrication details of homo-junction TFET. Analysis of the electrical characteristics of homo-junction TFET gives key insight into its device operation and identifies the critical factors that impact its performance. In order to boost the ON current, the design and fabrication of hetero-junction TFET is also presented.

  9. Modeling of charge transport in ion bipolar junction transistors.

    Science.gov (United States)

    Volkov, Anton V; Tybrandt, Klas; Berggren, Magnus; Zozoulenko, Igor V

    2014-06-17

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poisson's and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  10. Modeling nanowire and double-gate junctionless field-effect transistors

    CERN Document Server

    Jazaeri, Farzan

    2018-01-01

    The first book on the topic, this is a comprehensive introduction to the modeling and design of junctionless field effect transistors (FETs). Beginning with a discussion of the advantages and limitations of the technology, the authors also provide a thorough overview of published analytical models for double-gate and nanowire configurations, before offering a general introduction to the EPFL charge-based model of junctionless FETs. Important features are introduced gradually, including nanowire versus double-gate equivalence, technological design space, junctionless FET performances, short channel effects, transcapacitances, asymmetric operation, thermal noise, interface traps, and the junction FET. Additional features compatible with biosensor applications are also discussed. This is a valuable resource for students and researchers looking to understand more about this new and fast developing field.

  11. Neutron Radiation Effect On 2N2222 And NTE 123 NPN Silicon Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Oo, Myo Min; Rashid, N K A Md; Hasbullah, N F; Karim, J Abdul; Zin, M R Mohamed

    2013-01-01

    This paper examines neutron radiation with PTS (Pneumatic Transfer System) effect on silicon NPN bipolar junction transistors (2N2222 and NTE 123) and analysis of the transistors in terms of electrical characterization such as current gain after neutron radiation. The key parameters are measured with Keithley 4200SCS. Experiment results show that the current gain degradation of the transistors is very sensitive to neutron radiation. The neutron radiation can cause displacement damage in the bulk layer of the transistor structure. The current degradation is believed to be governed by increasing recombination current between the base and emitter depletion region

  12. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  13. Performance of Solution Processed Carbon Nanotube Field Effect Transistors with Graphene Electrodes

    OpenAIRE

    Gangavarapu, P R Yasasvi; Lokesh, Punith Chikkahalli; Bhat, K N; Naik, A K

    2016-01-01

    This work evaluates the performance of carbon nanotube field effect transistors (CNTFET) using few layer graphene as the contact electrode material. We present the experimental results obtained on the barrier height at CNT graphene junction using temperature dependent IV measurements. The estimated barrier height in our devices for both holes and electrons is close to zero or slightly negative indicating the Ohmic contact of graphene with the valence and conduction bands of CNTs. In addition,...

  14. Radiation effects on JFETS, MOSFETS, and bipolar transistors, as related to SSC circuit design

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, E J; Gray, B; Wu, A [Dept. of Electrical and Computer Engineering, Univ. of Tennessee, Knoxville, TN (United States); Alley, G T; Britton, Jr, C L [Oak Ridge National Lab., TN (United States); Skubic, P L [Univ. of Oklahoma, Dept. of Physics and Astronomy, Norman, OK (United States)

    1991-10-01

    Some results of radiation effects on selected junction field-effect transistors, MOS field-effect transistors, and bipolar junction transistors are presented. The evaluations include dc parameters, as well as capacitive variations and noise evaluations. The tests are made at the low current and voltage levels (in particular at currents {<=} 1 mA) that are essential for the low-power regimes required by SSC circuitry. Detailed noise data are presented both before and after 5-Mrad (gamma) total-dose exposure. SPICE radiation models for three high-frequency bipolar processes are compared for a typical charge-sensitive preamplifier. (orig.).

  15. Radiation induced deep level defects in bipolar junction transistors under various bias conditions

    International Nuclear Information System (INIS)

    Liu, Chaoming; Yang, Jianqun; Li, Xingji; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-01-01

    Bipolar junction transistor (BJT) is sensitive to ionization and displacement radiation effects in space. In this paper, 35 MeV Si ions were used as irradiation source to research the radiation damage on NPN and PNP bipolar transistors. The changing of electrical parameters of transistors was in situ measured with increasing irradiation fluence of 35 MeV Si ions. Using deep level transient spectroscopy (DLTS), defects in the bipolar junction transistors under various bias conditions are measured after irradiation. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions can affect the concentration of deep level defects, and the radiation damage induced by heavy ions.

  16. Electrical characteristics of tunneling field-effect transistors with asymmetric channel thickness

    Science.gov (United States)

    Kim, Jungsik; Oh, Hyeongwan; Kim, Jiwon; Meyyappan, M.; Lee, Jeong-Soo

    2017-02-01

    Effects of using asymmetric channel thickness in tunneling field-effect transistors (TFET) are investigated in sub-50 nm channel regime using two-dimensional (2D) simulations. As the thickness of the source side becomes narrower in narrow-source wide-drain (NSWD) TFETs, the threshold voltage (V th) and the subthreshold swing (SS) decrease due to enhanced gate controllability of the source side. The narrow source thickness can make the band-to-band tunneling (BTBT) distance shorter and induce much higher electric field near the source junction at the on-state condition. In contrast, in a TFET with wide-source narrow-drain (WSND), the SS shows almost constant values and the V th slightly increases with narrowing thickness of the drain side. In addition, the ambipolar current can rapidly become larger with smaller thickness on the drain side because of the shorter BTBT distance and the higher electric-field at the drain junction. The on-current of the asymmetric channel TFET is lower than that of conventional TFETs due to the volume limitation of the NSWD TFET and high series resistance of the WSND TFET. The on-current is almost determined by the channel thickness of the source side.

  17. Synergetic effects of radiation stress and hot-carrier stress on the current gain of npn bipolar junction transistors

    International Nuclear Information System (INIS)

    Witczak, S.C.; Kosier, S.L.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    The combined effects of ionizing radiation and hot-carrier stress on the current gain of npn bipolar junction transistors were investigated. The analysis was carried out experimentally by examining the consequences of interchanging the order in which the two stress types were applied to identical transistors which were stressed to various levels of damage. The results indicate that the hot-carrier response of the transistor is improved by radiation damage, whereas hot-carrier damage has little effect on subsequent radiation stress. Characterization of the temporal progression of hot-carrier effects revealed that hot-carrier stress acts initially to reduce excess base current and improve current gain in irradiated transistors. PISCES simulations show that the magnitude of the peak electric-field within the emitter-base depletion region is reduced significantly by net positive oxide charges induced by radiation. The interaction of the two stress types is explained in a qualitative model based on the probability of hot-carrier injection determined by radiation damage and on the neutralization and compensation of radiation-induced positive oxide charges by injected electrons. The result imply that a bound on damage due to the combined stress types is achieved when hot-carrier stress precedes any irradiation

  18. The Complete Semiconductor Transistor and Its Incomplete Forms

    International Nuclear Information System (INIS)

    Jie Binbin; Sah, C.-T.

    2009-01-01

    This paper describes the definition of the complete transistor. For semiconductor devices, the complete transistor is always bipolar, namely, its electrical characteristics contain both electron and hole currents controlled by their spatial charge distributions. Partially complete or incomplete transistors, via coined names or/and designed physical geometries, included the 1949 Shockley p/n junction transistor (later called Bipolar Junction Transistor, BJT), the 1952 Shockley unipolar 'field-effect' transistor (FET, later called the p/n Junction Gate FET or JGFET), as well as the field-effect transistors introduced by later investigators. Similarities between the surface-channel MOS-gate FET (MOSFET) and the volume-channel BJT are illustrated. The bipolar currents, identified by us in a recent nanometer FET with 2-MOS-gates on thin and nearly pure silicon base, led us to the recognition of the physical makeup and electrical current and charge compositions of a complete transistor and its extension to other three or more terminal signal processing devices, and also the importance of the terminal contacts.

  19. High mobility polymer gated organic field effect transistor using zinc ...

    Indian Academy of Sciences (India)

    Organic thin film transistors were fabricated using evaporated zinc phthalocyanine as the active layer. Parylene film ... At room temperature, these transistors exhibit p-type conductivity with field-effect ... Keywords. Organic semiconductor; field effect transistor; phthalocyanine; high mobility. ... The evaporation rate was kept at ...

  20. Nanometer size field effect transistors for terahertz detectors

    International Nuclear Information System (INIS)

    Knap, W; Rumyantsev, S; Coquillat, D; Dyakonova, N; Teppe, F; Vitiello, M S; Tredicucci, A; Blin, S; Shur, M; Nagatsuma, T

    2013-01-01

    Nanometer size field effect transistors can operate as efficient resonant or broadband terahertz detectors, mixers, phase shifters and frequency multipliers at frequencies far beyond their fundamental cut-off frequency. This work is an overview of some recent results concerning the application of nanometer scale field effect transistors for the detection of terahertz radiation. (paper)

  1. Fabrication, electrical characterization and device simulation of vertical P3HT field-effect transistors

    Directory of Open Access Journals (Sweden)

    Bojian Xu

    2017-12-01

    Full Text Available Vertical organic field-effect transistors (VOFETs provide an advantage over lateral ones with respect to the possibility to conveniently reduce the channel length. This is beneficial for increasing both the cut-off frequency and current density in organic field-effect transistor devices. We prepared P3HT (poly[3-hexylthiophene-2,5-diyl] VOFETs with a surrounding gate electrode and gate dielectric around the vertical P3HT pillar junction. Measured output and transfer characteristics do not show a distinct gate effect, in contrast to device simulations. By introducing in the simulations an edge layer with a strongly reduced charge mobility, the gate effect is significantly reduced. We therefore propose that a damaged layer at the P3HT/dielectric interface could be the reason for the strong suppression of the gate effect. We also simulated how the gate effect depends on the device parameters. A smaller pillar diameter and a larger gate electrode-dielectric overlap both lead to better gate control. Our findings thus provide important design parameters for future VOFETs.

  2. Theoretical investigation of GaAsBi/GaAsN tunneling field-effect transistors with type-II staggered tunneling junction

    Science.gov (United States)

    Wang, Yibo; Liu, Yan; Han, Genquan; Wang, Hongjuan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-06-01

    We investigate GaAsBi/GaAsN system for the design of type-II staggered hetero tunneling field-effect transistor (hetero-TFET). Strain-symmetrized GaAsBi/GaAsN with effective lattice match to GaAs exhibits a type-II band lineup, and the effective bandgap EG,eff at interface is significantly reduced with the incorporation of Bi and N elements. The band-to-band tunneling (BTBT) rate and drive current of GaAsBi/GaAsN hetero-TFETs are boosted due to the utilizing of the type-II staggered tunneling junction with the reduced EG,eff. Numerical simulation shows that the drive current and subthreshold swing (SS) characteristics of GaAsBi/GaAsN hetero-TFETs are remarkably improved by increasing Bi and N compositions. The dilute content GaAs0.85Bi0.15/GaAs0.92N0.08 staggered hetero-nTFET achieves 7.8 and 550 times higher ION compared to InAs and In0.53Ga0.47As homo-TFETs, respectively, at the supply voltage of 0.3 V. GaAsBi/GaAsN heterostructure is a potential candidate for high performance TFET.

  3. Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer

    KAUST Repository

    Adinolfi, Valerio

    2015-01-27

    © 2015 American Chemical Society. The performance of photodetectors is judged via high responsivity, fast speed of response, and low background current. Many previously reported photodetectors based on size-tuned colloidal quantum dots (CQDs) have relied either on photodiodes, which, since they are primary photocarrier devices, lack gain; or photoconductors, which provide gain but at the expense of slow response (due to delayed charge carrier escape from sensitizing centers) and an inherent dark current vs responsivity trade-off. Here we report a photojunction field-effect transistor (photoJFET), which provides gain while breaking prior photoconductors\\' response/speed/dark current trade-off. This is achieved by ensuring that, in the dark, the channel is fully depleted due to a rectifying junction between a deep-work-function transparent conductive top contact (MoO3) and a moderately n-type CQD film (iodine treated PbS CQDs). We characterize the rectifying behavior of the junction and the linearity of the channel characteristics under illumination, and we observe a 10 μs rise time, a record for a gain-providing, low-dark-current CQD photodetector. We prove, using an analytical model validated using experimental measurements, that for a given response time the device provides a two-orders-of-magnitude improvement in photocurrent-to-dark-current ratio compared to photoconductors. The photoJFET, which relies on a junction gate-effect, enriches the growing family of CQD photosensitive transistors.

  4. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz; Lussem, Bjorn; Liu, Shiyi

    2017-01-01

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer

  5. Electrical characterization of commercial NPN bipolar junction transistors under neutron and gamma irradiation

    Directory of Open Access Journals (Sweden)

    OO Myo Min

    2014-01-01

    Full Text Available Electronics components such as bipolar junction transistors, diodes, etc. which are used in deep space mission are required to be tolerant to extensive exposure to energetic neutrons and ionizing radiation. This paper examines neutron radiation with pneumatic transfer system of TRIGA Mark-II reactor at the Malaysian Nuclear Agency. The effects of the gamma radiation from Co-60 on silicon NPN bipolar junction transistors is also be examined. Analyses on irradiated transistors were performed in terms of the electrical characteristics such as current gain, collector current and base current. Experimental results showed that the current gain on the devices degraded significantly after neutron and gamma radiations. Neutron radiation can cause displacement damage in the bulk layer of the transistor structure and gamma radiation can induce ionizing damage in the oxide layer of emitter-base depletion layer. The current gain degradation is believed to be governed by the increasing recombination current in the base-emitter depletion region.

  6. Organic field-effect transistors using single crystals

    International Nuclear Information System (INIS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. (topical review)

  7. Electromechanical field effect transistors based on multilayer phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.T., E-mail: jiangzhaotan@hotmail.com; Lv, Z.T.; Zhang, X.D.

    2017-06-21

    Based on the tight-binding Hamiltonian approach, we demonstrate that the electromechanical field effect transistors (FETs) can be realized by using the multilayer phosphorene nanoribbons (PNRs). The synergistic combination of the electric field and the external strains can establish the on–off switching since the electric field can shift or split the energy band, and the mechanical strains can widen or narrow the band widths. This kind of multilayer PNR FETs, much solider than the monolayer PNR one and more easily biased by different electric fields, has more transport channels consequently leading to the higher on–off current ratio or the higher sensitivity to the electric fields. Meanwhile, the strain-induced band-flattening will be beneficial for improving the flexibility in designing the electromechanical FETs. In addition, such electromechanical FETs can act as strain-controlled FETs or mechanical detectors for detecting the strains, indicating their potential applications in nano- and micro-electromechanical fields. - Highlights: • Electromechanical transistors are designed with multilayer phosphorene nanoribbons. • Electromechanical synergistic effect can establish the on–off switching more flexibly. • Multilayer transistors, solider and more easily biased, has more transport channels. • Electromechanical transistors can act as strain-controlled transistors or mechanical detectors.

  8. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  9. An improved bipolar junction transistor model for electrical and radiation effects

    International Nuclear Information System (INIS)

    Kleiner, C.T.; Messenger, G.C.

    1982-01-01

    The use of bipolar technology in hardened electronic design requires an in-depth understanding of how the Bipolar Junction Transistor (BJT) behaves under normal electrical and radiation environments. Significant improvements in BJT process technology have been reported, and the successful use of sophisticated Computer Aided Design (CAD) tools has aided implementation with respect to specific families of hardened devices. The most advanced BJT model used to date is the Improved Gummel-Poon (IGP) model which is used in CAA programs such as the SPICE II and SLICE programs. The earlier Ebers-Moll model (ref 1 and 2) has also been updated to compare with the older Gummel-Poon model. This paper describes an adaptation of an existing computer model which incorporates the best features of both models into a new, more accurate model called the Improved Bipolar Junction Transistor model. This paper also describes a unique approach to data reduction for the B(I /SUB c/) and V /SUB BE/(ACT) vs I /SUB c/characterizations which has been successfully programmed in Basic using a Commodore PET computer. This model is described in the following sections

  10. Performance Enhancement of Power Transistors and Radiation effect

    International Nuclear Information System (INIS)

    Hassn, Th.A.A.

    2012-01-01

    The main objective of this scientific research is studying the characteristic of bipolar junction transistor device and its performance under radiation fields and temperature effect as a control element in many power circuits. In this work we present the results of experimental measurements and analytical simulation of gamma – radiation effects on the electrical characteristics and operation of power transistor types 2N3773, 2N3055(as complementary silicon power transistor are designed for general-purpose switching and amplifier applications), three samples of each type were irradiated by gamma radiation with doses, 1 K rad, 5 K rad, 10 K rad, 30 K rad, and 10 Mrad, the experimental data are utilized to establish an analytical relation between the total absorbed dose of gamma irradiation and corresponding to effective density of generated charge in the internal structure of transistor, the electrical parameters which can be measured to estimate the generated defects in the power transistor are current gain, collector current and collected emitter leakage current , these changes cause the circuit to case proper functioning. Collector current and transconductance of each device are calibrated as a function of irradiated dose. Also the threshold voltage and transistor gain can be affected and also calibrated as a function of dose. A silicon NPN power transistor type 2N3773 intended for general purpose applications, were used in this work. It was designed for medium current and high power circuits. Performance and characteristic were discusses under temperature and gamma radiation doses. Also the internal junction thermal system of the transistor represented in terms of a junction thermal resistance (Rjth). The thermal resistance changed by ΔRjth, due to the external intended, also due to the gamma doses intended. The final result from the model analysis reveals that the emitter-bias configuration is quite stable by resistance ratio RB/RE. Also the current

  11. Effect of initial material on the electrolytic parameters of field-effect transistors

    International Nuclear Information System (INIS)

    Antonov, A.V.; Sinitsyn, V.N.; Fursov, V.V.

    1978-01-01

    The effect of initial material parameters upon the main electric characteristics of field transistors at room and optimum (170 deg C) temperatures is studied. For that purpose, the values of parasitic resistances rsub(s), specific resistances rho and steepness S of field transistors, depending on temperature and electrical conditions were measured. The output volt-ampere characteristics of the transistors at room and optimum temperatures are given. An analysis of the results obtained permits to conclude that there is an unambiguous relationship between rho and rsub(s). Impact ionization is shown to occur for field transistors with lower rho at lower drain voltage. When manufacturing field transistors designed for operation at low temperatures, one should remember that a minimum rho may restrict maximum possible steepness. When designing field transistors with optimum noise characteristics, one should variate not only such material parameters as mobility and carrier density, but also select optimum geometry

  12. Organic field-effect transistors using single crystals

    Directory of Open Access Journals (Sweden)

    Tatsuo Hasegawa and Jun Takeya

    2009-01-01

    Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  13. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities

    International Nuclear Information System (INIS)

    But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.

    2014-01-01

    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm 2 was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm 2 range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm 2 . The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ∼0.5 mW/cm 2 to ∼5 kW/cm 2 )

  14. Progresses in organic field-effect transistors and molecular electronics

    Institute of Scientific and Technical Information of China (English)

    Wu Weiping; Xu Wei; Hu Wenping; Liu Yunqi; Zhu Daoben

    2006-01-01

    In the past years,organic semiconductors have been extensively investigated as electronic materials for organic field-effect transistors (OFETs).In this review,we briefly summarize the current status of organic field-effect transistors including materials design,device physics,molecular electronics and the applications of carbon nanotubes in molecular electronics.Future prospects and investigations required to improve the OFET performance are also involved.

  15. Molecular materials for organic field-effect transistors

    International Nuclear Information System (INIS)

    Mori, T

    2008-01-01

    Organic field-effect transistors are important applications of thin films of molecular materials. A variety of materials have been explored for improving the performance of organic transistors. The materials are conventionally classified as p-channel and n-channel, but not only the performance but also even the carrier polarity is greatly dependent on the combinations of organic semiconductors and electrode materials. In this review, particular emphasis is laid on multi-sulfur compounds such as tetrathiafulvalenes and metal dithiolates. These compounds are components of highly conducting materials such as organic superconductors, but are also used in organic transistors. The charge-transfer complexes are used in organic transistors as active layers as well as electrodes. (topical review)

  16. Ferroelectric field-effect transistors based on solution-processed electrochemically exfoliated graphene

    Science.gov (United States)

    Heidler, Jonas; Yang, Sheng; Feng, Xinliang; Müllen, Klaus; Asadi, Kamal

    2018-06-01

    Memories based on graphene that could be mass produced using low-cost methods have not yet received much attention. Here we demonstrate graphene ferroelectric (dual-gate) field effect transistors. The graphene has been obtained using electrochemical exfoliation of graphite. Field-effect transistors are realized using a monolayer of graphene flakes deposited by the Langmuir-Blodgett protocol. Ferroelectric field effect transistor memories are realized using a random ferroelectric copolymer poly(vinylidenefluoride-co-trifluoroethylene) in a top gated geometry. The memory transistors reveal ambipolar behaviour with both electron and hole accumulation channels. We show that the non-ferroelectric bottom gate can be advantageously used to tune the on/off ratio.

  17. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  18. Ambipolar charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Smits, E.C.P.; Anthopoulos, T.D.; Setayesh, S.; Veenendaal, van E.; Coehoorn, R.; Blom, P.W.M.; Boer, de B.; Leeuw, de D.M.

    2006-01-01

    A model describing charge transport in disordered ambipolar organic field-effect transistors is presented. The basis of this model is the variable-range hopping in an exponential density of states developed for disordered unipolar organic transistors. We show that the model can be used to calculate

  19. Recent progress in photoactive organic field-effect transistors.

    Science.gov (United States)

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-04-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.

  20. Recent progress in photoactive organic field-effect transistors

    International Nuclear Information System (INIS)

    Wakayama, Yutaka; Hayakawa, Ryoma; Seo, Hoon-Seok

    2014-01-01

    Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts. (review)

  1. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2012-10-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed on the sidewall of the stack to bridge the source and drain. Both the effective gate dielectric and gate electrode were normal to the substrate surface. The channel length is determined by the dielectric thickness between source and drain electrodes, making it easier to fabricate sub-micrometer transistors without using time-consuming electron beam lithography. The transistor area is much smaller than the planar CNTFET due to the vertical arrangement of source and drain and the reduced channel area. © 2012 Elsevier Ltd. All rights reserved.

  2. Investigation of neutron-produced defects in silicon by transconductance measurements of junction field-effect transistors

    International Nuclear Information System (INIS)

    Tokuda, Y.; Usami, A.

    1976-01-01

    Defects introduced in silicon by neutron irradiation were investigated by measuring the phase angle theta of the small-signal transconductance of the junction field-effect transistors (JFET). Measurements of theta as a function of frequency allowed the determination of the time constant for each defect. From the temperature dependence of the time constant, assuming that capture cross sections are independent of temperature, the energy levels of E/sub v/+0.19 and E/sub v/+0.35 eV in p-type silicon and E/sub c/-0.16, E/sub c/-0.19, and E/sub c/-0.44 eV in n-type silicon were obtained. For these defects, calculations gave majority-carrier capture cross-section values of 2.8 x 10 -15 and 1.1 x 10 -14 cm 2 in p-type silicon, and 3.9 x 10 -14 , 1.6 x 10 -16 , and 2.3 x 10 -14 cm 2 in n-type silicon, respectively. Comparing with other published data, it was found that the energy level of E/sub c/-0.44 eV showed the value between the previously reported energy levels of E/sub c/-0.4 and E/sub c/-0.5 eV correlated with the doubly negative charge state and singly negative charge state of the divacancy, respectively. Thus, it is believed that a total of six energy levels are introduced in silicon by neutron irradiation. The energy levels of E/sub c/-0.16 and E/sub v/+0.35 eV were found to be correlated with the A center and the divacancy, respectively

  3. Subthreshold-swing-adjustable tunneling-field-effect-transistor-based random-access memory for nonvolatile operation

    Science.gov (United States)

    Huh, In; Cheon, Woo Young; Choi, Woo Young

    2016-04-01

    A subthreshold-swing-adjustable tunneling-field-effect-transistor-based random-access memory (SAT RAM) has been proposed and fabricated for low-power nonvolatile memory applications. The proposed SAT RAM cell demonstrates adjustable subthreshold swing (SS) depending on stored information: small SS in the erase state ("1" state) and large SS in the program state ("0" state). Thus, SAT RAM cells can achieve low read voltage (Vread) with a large memory window in addition to the effective suppression of ambipolar behavior. These unique features of the SAT RAM are originated from the locally stored charge, which modulates the tunneling barrier width (Wtun) of the source-to-channel tunneling junction.

  4. Improved transfer of graphene for gated Schottky-junction, vertical, organic, field-effect transistors.

    Science.gov (United States)

    Lemaitre, Maxime G; Donoghue, Evan P; McCarthy, Mitchell A; Liu, Bo; Tongay, Sefaattin; Gila, Brent; Kumar, Purushottam; Singh, Rajiv K; Appleton, Bill R; Rinzler, Andrew G

    2012-10-23

    An improved process for graphene transfer was used to demonstrate high performance graphene enabled vertical organic field effect transistors (G-VFETs). The process reduces disorder and eliminates the polymeric residue that typically plagues transferred films. The method also allows for purposely creating pores in the graphene of a controlled areal density. Transconductance observed in G-VFETs fabricated with a continuous (pore-free) graphene source electrode is attributed to modulation of the contact barrier height between the graphene and organic semiconductor due to a gate field induced Fermi level shift in the low density of electronic-states graphene electrode. Pores introduced in the graphene source electrode are shown to boost the G-VFET performance, which scales with the areal pore density taking advantage of both barrier height lowering and tunnel barrier thinning. Devices with areal pore densities of 20% exhibit on/off ratios and output current densities exceeding 10(6) and 200 mA/cm(2), respectively, at drain voltages below 5 V.

  5. Graphene-graphite oxide field-effect transistors.

    Science.gov (United States)

    Standley, Brian; Mendez, Anthony; Schmidgall, Emma; Bockrath, Marc

    2012-03-14

    Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3. © 2012 American Chemical Society

  6. SiC Optically Modulated Field-Effect Transistor

    Science.gov (United States)

    Tabib-Azar, Massood

    2009-01-01

    An optically modulated field-effect transistor (OFET) based on a silicon carbide junction field-effect transistor (JFET) is under study as, potentially, a prototype of devices that could be useful for detecting ultraviolet light. The SiC OFET is an experimental device that is one of several devices, including commercial and experimental photodiodes, that were initially evaluated as detectors of ultraviolet light from combustion and that could be incorporated into SiC integrated circuits to be designed to function as combustion sensors. The ultraviolet-detection sensitivity of the photodiodes was found to be less than desired, such that it would be necessary to process their outputs using high-gain amplification circuitry. On the other hand, in principle, the function of the OFET could be characterized as a combination of detection and amplification. In effect, its sensitivity could be considerably greater than that of a photodiode, such that the need for amplification external to the photodetector could be reduced or eliminated. The experimental SiC OFET was made by processes similar to JFET-fabrication processes developed at Glenn Research Center. The gate of the OFET is very long, wide, and thin, relative to the gates of typical prior SiC JFETs. Unlike in prior SiC FETs, the gate is almost completely transparent to near-ultraviolet and visible light. More specifically: The OFET includes a p+ gate layer less than 1/4 m thick, through which photons can be transported efficiently to the p+/p body interface. The gate is relatively long and wide (about 0.5 by 0.5 mm), such that holes generated at the body interface form a depletion layer that modulates the conductivity of the channel between the drain and the source. The exact physical mechanism of modulation of conductivity is a subject of continuing research. It is known that injection of minority charge carriers (in this case, holes) at the interface exerts a strong effect on the channel, resulting in amplification

  7. Organic semiconductors for organic field-effect transistors

    International Nuclear Information System (INIS)

    Yamashita, Yoshiro

    2009-01-01

    The advantages of organic field-effect transistors (OFETs), such as low cost, flexibility and large-area fabrication, have recently attracted much attention due to their electronic applications. Practical transistors require high mobility, large on/off ratio, low threshold voltage and high stability. Development of new organic semiconductors is key to achieving these parameters. Recently, organic semiconductors have been synthesized showing comparable mobilities to amorphous-silicon-based FETs. These materials make OFETs more attractive and their applications have been attempted. New organic semiconductors resulting in high-performance FET devices are described here and the relationship between transistor characteristics and chemical structure is discussed. (topical review)

  8. Organic semiconductors for organic field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yoshiro Yamashita

    2009-01-01

    Full Text Available The advantages of organic field-effect transistors (OFETs, such as low cost, flexibility and large-area fabrication, have recently attracted much attention due to their electronic applications. Practical transistors require high mobility, large on/off ratio, low threshold voltage and high stability. Development of new organic semiconductors is key to achieving these parameters. Recently, organic semiconductors have been synthesized showing comparable mobilities to amorphous-silicon-based FETs. These materials make OFETs more attractive and their applications have been attempted. New organic semiconductors resulting in high-performance FET devices are described here and the relationship between transistor characteristics and chemical structure is discussed.

  9. Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits

    KAUST Repository

    Fahad, Hossain M.; Smith, Casey; Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2011-01-01

    We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.

  10. Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits

    KAUST Repository

    Fahad, Hossain M.

    2011-10-12

    We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.

  11. Photovoltaic Cells Improvised With Used Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Akintayo, J. A

    2002-01-01

    The understanding of the underlying principle that the solar cell consists of a p-n junction is exploited to adapt the basic NPN or PNP Bipolar Junction Transistors (BJT) to serve as solar cells. In this mode the in improvised solar cell have employed just the emitter and the base sections with an intact emitter/base junction as the active PN area. The improvised devices tested screened and sorted are wired up in strings, blocks and modules. The photovoltaic modules realised tested as close replica of solar cells with output voltage following insolation level. Further work need be done on the modules to make them generate usable levels of output voltage and current

  12. Studies of annealing of neutron-produced defects in silicon by transconductance measurements of junction field-effect transistors

    International Nuclear Information System (INIS)

    Tokuda, Y.; Usami, A.

    1978-01-01

    Annealing behavior of neutron-produced defects in silicon was studied by measuring the phase angle theta of the small-signal transconductance of the junction field-effect transistors (JFET's). Three deep levels (N-1, N-2, and N-3 levels) in n-type silicon and two deep levels (P-1 and P-2 levels) in p-type silicon, introduced by irradiation, annealed gradually. Their energy levels and capture cross sections have been already reported by us. Three deep levels (P-3, P-4, and P-5 levels) were observed in annealed p-type silicon in the temperature range 150--300 0 C. For these defects, theta was measured as a function of frequency to obtain the time constant. From the temperature dependence of the time constant, assuming that capture cross sections are independent of temperature, the energy levels of P-3, P-4, and P-5 were estimated to be E/sub v/+0.21, E/sub v/+0.40, and E/sub v/+0.30 eV, respectively. The calculated hole capture cross sections of these levels were 2.2 x 10 -15 , 8.7 x 10 -14 , and 1.2 x 10 -14 cm 2 , respectively. Comparison with other published data was made. It was found that N-3 and P-2 levels corresponded to the divacancy. Furthermore, it seemed that P-3, P-4, and P-5 levels corresponded to the high-order vacancy defects

  13. Distributed amplifier using Josephson vortex flow transistors

    International Nuclear Information System (INIS)

    McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.

    1986-01-01

    A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz

  14. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Zhao, Chao; Wang, Qingxiao; Zhang, Qiang; Wang, Zhihong; Zhang, Xixiang; Abutaha, Anas I.; Alshareef, Husam N.

    2012-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed

  15. Enhanced transconductance in a double-gate graphene field-effect transistor

    Science.gov (United States)

    Hwang, Byeong-Woon; Yeom, Hye-In; Kim, Daewon; Kim, Choong-Ki; Lee, Dongil; Choi, Yang-Kyu

    2018-03-01

    Multi-gate transistors, such as double-gate, tri-gate and gate-all-around transistors are the most advanced Si transistor structure today. Here, a genuine double-gate transistor with a graphene channel is experimentally demonstrated. The top and bottom gates of the double-gate graphene field-effect transistor (DG GFET) are electrically connected so that the conductivity of the graphene channel can be modulated simultaneously by both the top and bottom gate. A single-gate graphene field-effect transistor (SG GFET) with only the top gate is also fabricated as a control device. For systematical analysis, the transfer characteristics of both GFETs were measured and compared. Whereas the maximum transconductance of the SG GFET was 17.1 μS/μm, that of the DG GFET was 25.7 μS/μm, which is approximately a 50% enhancement. The enhancement of the transconductance was reproduced and comprehensively explained by a physics-based compact model for GFETs. The investigation of the enhanced transfer characteristics of the DG GFET in this work shows the possibility of a multi-gate architecture for high-performance graphene transistor technology.

  16. Deformable Organic Nanowire Field-Effect Transistors.

    Science.gov (United States)

    Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan

    2018-02-01

    Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ultrashort Channel Length Black Phosphorus Field-Effect Transistors.

    Science.gov (United States)

    Miao, Jinshui; Zhang, Suoming; Cai, Le; Scherr, Martin; Wang, Chuan

    2015-09-22

    This paper reports high-performance top-gated black phosphorus (BP) field-effect transistors with channel lengths down to 20 nm fabricated using a facile angle evaporation process. By controlling the evaporation angle, the channel length of the transistors can be reproducibly controlled to be anywhere between 20 and 70 nm. The as-fabricated 20 nm top-gated BP transistors exhibit respectable on-state current (174 μA/μm) and transconductance (70 μS/μm) at a VDS of 0.1 V. Due to the use of two-dimensional BP as the channel material, the transistors exhibit relatively small short channel effects, preserving a decent on-off current ratio of 10(2) even at an extremely small channel length of 20 nm. Additionally, unlike the unencapsulated BP devices, which are known to be chemically unstable in ambient conditions, the top-gated BP transistors passivated by the Al2O3 gate dielectric layer remain stable without noticeable degradation in device performance after being stored in ambient conditions for more than 1 week. This work demonstrates the great promise of atomically thin BP for applications in ultimately scaled transistors.

  18. Uniformity of fully gravure printed organic field-effect transistors

    International Nuclear Information System (INIS)

    Hambsch, M.; Reuter, K.; Stanel, M.; Schmidt, G.; Kempa, H.; Fuegmann, U.; Hahn, U.; Huebler, A.C.

    2010-01-01

    Fully mass-printed organic field-effect transistors were made completely by means of gravure printing. Therefore a special printing layout was developed in order to avoid register problems in print direction. Upon using this layout, contact pads for source-drain electrodes of the transistors are printed together with the gate electrodes in one and the same printing run. More than 50,000 transistors have been produced and by random tests a yield of approximately 75% has been determined. The principle suitability of the gravure printed transistors for integrated circuits has been shown by the realization of ring oscillators.

  19. Simulation for silicon-compatible InGaAs-based junctionless field-effect transistor using InP buffer layer

    Science.gov (United States)

    Seo, Jae Hwa; Cho, Seongjae; Kang, In Man

    2013-10-01

    In this paper, we present the optimized performances of indium gallium arsenide (InGaAs)-based compound junctionless field-effect transistors (JLFETs) using an indium phosphide (InP) buffer layer. The proposed InGaAs-InP material combination with little lattice mismatch provides a significant improvement in current drivability securing various potential applications. Device optimization is performed in terms of primary dc parameters and characterization is investigated by two-dimensional (2D) technology computer-aided design simulations. The optimization variables were the channel doping concentration (Nch), the buffer doping concentration (Nbf), and the channel thickness (Tch). For the optimally designed InGaAs JLFET, on-state current (Ion) of 325 µA µm-1, subthreshold swing (S) of 80 mV dec-1, and current ratio (Ion/Ioff) of 109 were obtained. In the end, the results are compared with the data of silicon (Si)-based JL MOSFETs to confirm the improvements.

  20. Field-effect transistor memories based on ferroelectric polymers

    Science.gov (United States)

    Zhang, Yujia; Wang, Haiyang; Zhang, Lei; Chen, Xiaomeng; Guo, Yu; Sun, Huabin; Li, Yun

    2017-11-01

    Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications. Program supported partially by the NSFC (Nos. 61574074, 61774080), NSFJS (No. BK20170075), and the Open Partnership Joint Projects of NSFC-JSPS Bilateral Joint Research Projects (No. 61511140098).

  1. Irradiation of graphene field effect transistors with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M., E-mail: marika.schleberger@uni-due.de

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm{sup 2}, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  2. Investigations on field-effect transistors based on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Finge, T.; Riederer, F.; Grap, T.; Knoch, J. [Institute of Semiconductor Electronics, RWTH Aachen University (Germany); Mueller, M.R. [Institute of Semiconductor Electronics, RWTH Aachen University (Germany); Infineon Technologies, Villach (Austria); Kallis, K. [Intelligent Microsystems Chair, TU Dortmund University (Germany)

    2017-11-15

    In the present article, experimental and theoretical investigations regarding field-effect transistors based on two-dimensional (2D) materials are presented. First, the properties of contacts between a metal and 2D material are discussed. To this end, metal-to-graphene contacts as well to transition metal dichalcogenides (TMD) are studied. Whereas metal-graphene contacts can be tuned with an appropriate back-gate, metal-TMD contacts exhibit strong Fermi level pinning showing substantially limited maximum possible drive current. Next, tungsten diselenide (WSe{sub 2}) field-effect transistors are presented. Employing buried-triple-gate substrates allows tuning source, channel and drain by applying appropriate gate voltages so that the device can be reconfigured to work as n-type, p-type and as so-called band-to-band tunnel field-effect transistor on the same WSe{sub 2} flake. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Direct observation of single-charge-detection capability of nanowire field-effect transistors.

    Science.gov (United States)

    Salfi, J; Savelyev, I G; Blumin, M; Nair, S V; Ruda, H E

    2010-10-01

    A single localized charge can quench the luminescence of a semiconductor nanowire, but relatively little is known about the effect of single charges on the conductance of the nanowire. In one-dimensional nanostructures embedded in a material with a low dielectric permittivity, the Coulomb interaction and excitonic binding energy are much larger than the corresponding values when embedded in a material with the same dielectric permittivity. The stronger Coulomb interaction is also predicted to limit the carrier mobility in nanowires. Here, we experimentally isolate and study the effect of individual localized electrons on carrier transport in InAs nanowire field-effect transistors, and extract the equivalent charge sensitivity. In the low carrier density regime, the electrostatic potential produced by one electron can create an insulating weak link in an otherwise conducting nanowire field-effect transistor, modulating its conductance by as much as 4,200% at 31 K. The equivalent charge sensitivity, 4 × 10(-5) e Hz(-1/2) at 25 K and 6 × 10(-5) e Hz(-1/2) at 198 K, is orders of magnitude better than conventional field-effect transistors and nanoelectromechanical systems, and is just a factor of 20-30 away from the record sensitivity for state-of-the-art single-electron transistors operating below 4 K (ref. 8). This work demonstrates the feasibility of nanowire-based single-electron memories and illustrates a physical process of potential relevance for high performance chemical sensors. The charge-state-detection capability we demonstrate also makes the nanowire field-effect transistor a promising host system for impurities (which may be introduced intentionally or unintentionally) with potentially long spin lifetimes, because such transistors offer more sensitive spin-to-charge conversion readout than schemes based on conventional field-effect transistors.

  4. Tunnel Field-Effect Transistors in 2-D Transition Metal Dichalcogenide Materials

    Science.gov (United States)

    Ilatikhameneh, Hesameddin; Tan, Yaohua; Novakovic, Bozidar; Klimeck, Gerhard; Rahman, Rajib; Appenzeller, Joerg

    2015-12-01

    In this work, the performance of Tunnel Field-Effect Transistors (TFETs) based on two-dimensional Transition Metal Dichalcogenide (TMD) materials is investigated by atomistic quantum transport simulations. One of the major challenges of TFETs is their low ON-currents. 2D material based TFETs can have tight gate control and high electric fields at the tunnel junction, and can in principle generate high ON-currents along with a sub-threshold swing smaller than 60 mV/dec. Our simulations reveal that high performance TMD TFETs, not only require good gate control, but also rely on the choice of the right channel material with optimum band gap, effective mass and source/drain doping level. Unlike previous works, a full band atomistic tight binding method is used self-consistently with 3D Poisson equation to simulate ballistic quantum transport in these devices. The effect of the choice of TMD material on the performance of the device and its transfer characteristics are discussed. Moreover, the criteria for high ON-currents are explained with a simple analytic model, showing the related fundamental factors. Finally, the subthreshold swing and energy-delay of these TFETs are compared with conventional CMOS devices.

  5. Completely independent electrical control of spin and valley in a silicene field effect transistor

    International Nuclear Information System (INIS)

    Zhai, Xuechao; Jin, Guojun

    2016-01-01

    One-atom-thick silicene is a silicon-based hexagonal-lattice material with buckled structure, where an electron fuses multiple degrees of freedom including spin, sublattice pseudospin and valley. We here demonstrate that a valley-selective spin filter (VSSF) that supports single-valley and single-spin transport can be realized in a silicene field effect transistor constructed of an npn junction, where an antiferromagnetic exchange field and a perpendicular electric field are applied in the p -doped region. The nontrivial VSSF property benefits from an electrically controllable state of spin-polarized single-valley Dirac cone. By reversing the electric field direction, the device can operate as a spin-reversed but valley-unreversed filter due to the dependence of band gap on spin and valley. Further, we find that all the possible spin-valley configurations of VSSF can be achieved just by tuning the electric field. Our findings pave the way to the realization of completely independent electrical control of spin and valley in silicene circuits. (paper)

  6. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    International Nuclear Information System (INIS)

    Li, Wei; Zhang, Qin; Kirillov, Oleg A.; Levin, Igor; Richter, Curt A.; Gundlach, David J.; Nguyen, N. V.; Bijesh, R.; Datta, S.; Liang, Yiran; Peng, Lian-Mao; Liang, Xuelei

    2014-01-01

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al 2 O 3 /InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al 2 O 3 conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al 2 O 3 valence band to the bottom of the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance

  7. Pseudo 2-transistor active pixel sensor using an n-well/gate-tied p-channel metal oxide semiconductor field eeffect transistor-type photodetector with built-in transfer gate

    Science.gov (United States)

    Seo, Sang-Ho; Seo, Min-Woong; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung

    2008-11-01

    In this paper, a pseudo 2-transistor active pixel sensor (APS) has been designed and fabricated by using an n-well/gate-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector with built-in transfer gate. The proposed sensor has been fabricated using a 0.35 μm 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) logic process. The pseudo 2-transistor APS consists of two NMOSFETs and one photodetector which can amplify the generated photocurrent. The area of the pseudo 2-transistor APS is 7.1 × 6.2 μm2. The sensitivity of the proposed pixel is 49 lux/(V·s). By using this pixel, a smaller pixel area and a higher level of sensitivity can be realized when compared with a conventional 3-transistor APS which uses a pn junction photodiode.

  8. Wafer-Scale Gigahertz Graphene Field Effect Transistors on SiC Substrates

    Institute of Scientific and Technical Information of China (English)

    潘洪亮; 金智; 麻芃; 郭建楠; 刘新宇; 叶甜春; 李佳; 敦少博; 冯志红

    2011-01-01

    Wafer-scale graphene field-effect transistors are fabricated using benzocyclobutene and atomic layer deposition Al2O3 as the top-gate dielectric.The epitaxial-graphene layer is formed by graphitization of a 2-inch-diameter Si-face semi-insulating 6H-SiC substrate.The graphene on the silicon carbide substrate is heavily n-doped and current saturation is not found.For the intrinsic characteristic of this particular channel material,the devices cannot be switched off.The cut-off frequencies of these graphene field-effect transistors,which have a gate length of l μm,are larger than 800 MHz.The largest one can reach 1.24 GHz.There are greater than 95% active devices that can be successfully applied.We thus succeed in fabricating wafer-scale gigahertz graphene field-effect transistors,which paves the way for high-performance graphene devices and circuits.%Wafer-scale graphene Beld-effect transistors are fabricated using benzocyclobutene and atomic layer deposition AI2O3 as the top-gate dielectric. The epitaxial-graphene layer is formed by graphitization of a 2-inch-diameter Si-face semi-insulating 6H-SiC substrate. The graphene on the silicon carbide substrate is heavily n-doped and current saturation is not found. For the intrinsic characteristic of this particular channel material, the devices cannot be switched off. The cut-off frequencies of these graphene field-effect transistors, which have a gate length of l μm, are larger than 800MHz. The largest one can reach 1.24 GHz. There are greater than 95% active devices that can be successfully applied. We thus succeed in fabricating wafer-scale gigahertz graphene Geld-effect transistors, which paves the way for high-performance graphene devices and circuits.

  9. Strain on field effect transistors with single–walled–carbon nanotube network on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. G. [Samsung Advanced Institute of Technology, Research center for Time-domain Nano-functional Device, Giheung, Yong-In, Gyeonggi 446-712 (Korea, Republic of); Department of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Kim, U. J.; Lee, E. H. [Samsung Advanced Institute of Technology, Frontier Research Laboratory, Giheung, Yong-In, Gyeonggi 446-712 (Korea, Republic of); Hwang, J. S. [School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon, Gyeonggi 440-746 (Korea, Republic of); Hwang, S. W., E-mail: swnano.hwang@samsung.com, E-mail: sangsig@korea.ac.kr [Samsung Advanced Institute of Technology, Research center for Time-domain Nano-functional Device, Giheung, Yong-In, Gyeonggi 446-712 (Korea, Republic of); Samsung Advanced Institute of Technology, Frontier Research Laboratory, Giheung, Yong-In, Gyeonggi 446-712 (Korea, Republic of); Kim, S., E-mail: swnano.hwang@samsung.com, E-mail: sangsig@korea.ac.kr [Department of Electrical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-12-07

    We have systematically analyzed the effect of strain on the electrical properties of flexible field effect transistors with a single-walled carbon nanotube (SWCNT) network on a polyethersulfone substrate. The strain was applied and estimated at the microscopic scale (<1 μm) by using scanning electron microscope (SEM) equipped with indigenously designed special bending jig. Interestingly, the strain estimated at the microscopic scale was found to be significantly different from the strain calculated at the macroscopic scale (centimeter-scale), by a factor of up to 4. Further in-depth analysis using SEM indicated that the significant difference in strain, obtained from two different measurement scales (microscale and macroscale), could be attributed to the formation of cracks and tears in the SWCNT network, or at the junction of SWCNT network and electrode during the strain process. Due to this irreversible morphological change, the electrical properties, such as on current level and field effect mobility, lowered by 14.3% and 4.6%, respectively.

  10. Theoretical calculation of performance enhancement in lattice-matched SiGeSn/GeSn p-channel tunneling field-effect transistor with type-II staggered tunneling junction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue

    2016-04-01

    In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.

  11. Effect of Disorder on the Conductance of Spin Field Effect Transistors (SPINFET)

    OpenAIRE

    Cahay, M.; Bandyopadhyay, S.

    2003-01-01

    We show that the conductance of Spin Field Effect Transistors (SPINFET) [Datta and Das, Appl. Phys. Lett., Vol. 56, 665 (1990)] is affected by a single (non-magnetic) impurity in the transistor's channel. The extreme sensitivity of the amplitude and phase of the transistor's conductance oscillations to the location of a single impurity in the channel is reminiscent of the phenomenon of universal conductance fluctuations in mesoscopic samples and is extremely problematic as far as device imple...

  12. Silicon on ferroelectic insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    Science.gov (United States)

    Es-Sakhi, Azzedin D.

    concept of negative capacitance. The new field effect transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field Effect Transistor (SOF-FET). This proposal is a promising methodology for future ultra-low-power applications, because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers subthreshold swing significantly lower than 60mV/decade and reduced threshold voltage to form a conducting channel. The SOF-FET can also solve the issue of junction leakage (due to the presence of unipolar junction between the top plate of the negative capacitance and the diffused areas that form the transistor source and drain). In this device the charge hungry ferroelectric film already limits the leakage.

  13. Structured-gate organic field-effect transistors

    International Nuclear Information System (INIS)

    Aljada, Muhsen; Pandey, Ajay K; Velusamy, Marappan; Burn, Paul L; Meredith, Paul; Namdas, Ebinazar B

    2012-01-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO 2 ) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends. (paper)

  14. Structured-gate organic field-effect transistors

    Science.gov (United States)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  15. Semi-classical noise investigation for sub-40nm metal-oxide-semiconductor field-effect transistors

    International Nuclear Information System (INIS)

    Spathis, C.; Birbas, A.; Georgakopoulou, K.

    2015-01-01

    Device white noise levels in short channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) dictate the performance and reliability of high-frequency circuits ranging from high-speed microprocessors to Low-Noise Amplifiers (LNAs) and microwave circuits. Recent experimental noise measurements with very short devices demonstrate the existence of suppressed shot noise, contrary to the predictions of classical channel thermal noise models. In this work we show that, as the dimensions continue to shrink, shot noise has to be considered when the channel resistance becomes comparable to the barrier resistance at the source-channel junction. By adopting a semi-classical approach and taking retrospectively into account transport, short-channel and quantum effects, we investigate the partitioning between shot and thermal noise, and formulate a predictive model that describes the noise characteristics of modern devices

  16. Semi-classical noise investigation for sub-40nm metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Spathis, C., E-mail: cspathis@ece.upatras.gr; Birbas, A.; Georgakopoulou, K. [Department of Electrical and Computer Engineering, University of Patras, Patras 26500 (Greece)

    2015-08-15

    Device white noise levels in short channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) dictate the performance and reliability of high-frequency circuits ranging from high-speed microprocessors to Low-Noise Amplifiers (LNAs) and microwave circuits. Recent experimental noise measurements with very short devices demonstrate the existence of suppressed shot noise, contrary to the predictions of classical channel thermal noise models. In this work we show that, as the dimensions continue to shrink, shot noise has to be considered when the channel resistance becomes comparable to the barrier resistance at the source-channel junction. By adopting a semi-classical approach and taking retrospectively into account transport, short-channel and quantum effects, we investigate the partitioning between shot and thermal noise, and formulate a predictive model that describes the noise characteristics of modern devices.

  17. Gamma Irradiation Performance Tests of the Bipolar Junction Transistor (BJT) for Medical Dosimetry Purposes

    International Nuclear Information System (INIS)

    Nazififard, Mohammad; Suh, Kune Y.; Faghihi, Reyhaneh; Norov, Enkhbat

    2014-01-01

    Two basic radiation damage mechanisms may affect semiconductor devices which are Displacement damage and Ionization damage. In displacement damage mechanism, the incident radiation displaces silicon atoms from their lattice sites. The resulting defects alter the electronic characteristics of the crystal. In ionization damage mechanism, the absorbed energy by electronic ionization in insulating layers liberates charge carriers, which diffuse or drift to other locations where they are trapped, leading to unintended concentrations of charge and, as a consequence, parasitic fields. Both mechanisms are important in detectors, transistors and integrated circuits. Hardly a system is immune to either one phenomenon and most are sensitive to both. This paper investigates the behavior of Bipolar Junction Transistors (BJTs), exposed to radiation in order to establish their applicability in a radiation environment

  18. Gamma Irradiation Performance Tests of the Bipolar Junction Transistor (BJT) for Medical Dosimetry Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nazififard, Mohammad; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of); Faghihi, Reyhaneh [Kashan Univ. of Medical Science, Kashan (Iran, Islamic Republic of); Norov, Enkhbat [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Two basic radiation damage mechanisms may affect semiconductor devices which are Displacement damage and Ionization damage. In displacement damage mechanism, the incident radiation displaces silicon atoms from their lattice sites. The resulting defects alter the electronic characteristics of the crystal. In ionization damage mechanism, the absorbed energy by electronic ionization in insulating layers liberates charge carriers, which diffuse or drift to other locations where they are trapped, leading to unintended concentrations of charge and, as a consequence, parasitic fields. Both mechanisms are important in detectors, transistors and integrated circuits. Hardly a system is immune to either one phenomenon and most are sensitive to both. This paper investigates the behavior of Bipolar Junction Transistors (BJTs), exposed to radiation in order to establish their applicability in a radiation environment.

  19. Carbon nanotubes field-effect transistor for rapid detection of DHA

    International Nuclear Information System (INIS)

    Nguyen Thi Thuy; Nguyen Duc Chien; Mai Anh Tuan

    2012-01-01

    This paper presents the development of DNA sensor based on a network carbon nanotubes field effect transistor (CNTFETs) for Escherichia coli bacteria detection. The DNA sequences were immobilized on single-walled carbon nanotubes of transistor CNTFETs by using absorption. The hybridization of the DNA probe sequences and complementary DNA strands was detected by electrical conductance change from the electron doping by DNA hybridization directly on the carbon nanotubes leading to the change in the metal-CNTs barrier energy through the modulation of the electrode work function of carbon nanotubes field effect transistor. The results showed that the response time of DNA sensor was approximately 1 min and the sensitivity of DNA sensor was at 0.565 μA/nM; the detection limit of the sensor was about 1 pM of E. coli bacteria sample. (author)

  20. Graphene-based field-effect transistor biosensors

    Science.gov (United States)

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  1. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.

    Science.gov (United States)

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch  ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on  > 1 μA at V d  = -1 V) and high I on /I off  ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10 5 on-off current ratio.

  2. Proton migration mechanism for the instability of organic field-effect transistors

    NARCIS (Netherlands)

    Sharma, A.; Mathijssen, S.G.J.; Kemerink, M.; Leeuw, de D.M.; Bobbert, P.A.

    2009-01-01

    During prolonged application of a gate bias, organic field-effect transistors show an instability involving a gradual shift of the threshold voltage toward the applied gate bias voltage. We propose a model for this instability in p-type transistors with a silicon-dioxide gate dielectric, based on

  3. Bimolecular recombination in ambipolar organic field effect transistors

    NARCIS (Netherlands)

    Charrier, D. S. H.; de Vries, T.; Mathijssen, S. G. J.; Geluk, E. -J.; Smits, E. C. P.; Kemerink, M.; Janssen, R. A. J.

    In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron-hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy

  4. Bimolecular recombination in ambipolar organic field effect transistors

    NARCIS (Netherlands)

    Charrier, D.S.H.; Vries, T. de; Mathijssen, S.G.J.; Geluk, E.-J.; Smits, E.C.P.; Kemerink, M.; Janssen, R.A.J.

    2009-01-01

    In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron–hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy

  5. Durable chemical sensors based on field-effect transistors

    NARCIS (Netherlands)

    Reinhoudt, David

    1995-01-01

    The design of durable chemical sensors based on field-effect transistors (FETs) is described. After modification of an ion-sensitive FET (ISFET) with a polysiloxane membrane matrix, it is possible to attach all electroactive components covalently. Preliminary results of measurements with a

  6. Charge transport in disordered organic field-effect transistors

    NARCIS (Netherlands)

    Tanase, Cristina; Blom, Paul W.M.; Meijer, Eduard J.; Leeuw, Dago M. de; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors (FET) have been investigated as a function of temperature under controlled atmosphere. In a disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between localized states, is

  7. Source/drain electrodes contact effect on the stability of bottom-contact pentacene field-effect transistors

    Directory of Open Access Journals (Sweden)

    Xinge Yu

    2012-06-01

    Full Text Available Bottom-contact pentacene field-effect transistors were fabricated with a PMMA dielectric layer, and the air stability of the transistors was investigated. To characterize the device stability, the field-effect transistors were exposed to ambient conditions for 30 days and subsequently characterized. The degradation of electrical performance was traced to study the variation of field-effect mobility, saturation current and off-state current. By investigating the morphology variance of the pentacene film at the channel and source/drain (S/D contact regions by atomic force microscopy, it was clear that the morphology of the pentacene film adhered to the S/D degenerated dramatically. Moreover, by studying the variation of contact resistance in detail, it was found that the S/D contact effect was the main reason for the degradation in performance.

  8. Benzocyclobutene (BCB) Polymer as Amphibious Buffer Layer for Graphene Field-Effect Transistor.

    Science.gov (United States)

    Wu, Yun; Zou, Jianjun; Huo, Shuai; Lu, Haiyan; Kong, Yuecan; Chen, Tangshen; Wu, Wei; Xu, Jingxia

    2015-08-01

    Owing to the scattering and trapping effects, the interfaces of dielectric/graphene or substrate/graphene can tailor the performance of field-effect transistor (FET). In this letter, the polymer of benzocyclobutene (BCB) was used as an amphibious buffer layer and located at between the layers of substrate and graphene and between the layers of dielectric and graphene. Interestingly, with the help of nonpolar and hydrophobic BCB buffer layer, the large-scale top-gated, chemical vapor deposited (CVD) graphene transistors was prepared on Si/SiO2 substrate, its cutoff frequency (fT) and the maximum cutoff frequency (fmax) of the graphene field-effect transistor (GFET) can be reached at 12 GHz and 11 GHz, respectively.

  9. Ferroelectric-gate field effect transistor memories device physics and applications

    CERN Document Server

    Ishiwara, Hiroshi; Okuyama, Masanori; Sakai, Shigeki; Yoon, Sung-Min

    2016-01-01

    This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among the various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has progressed most actively since the late 1980s and has achieved modest mass production levels for specific applications since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handic...

  10. A hydrogel capsule as gate dielectric in flexible organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dumitru, L. M.; Manoli, K.; Magliulo, M.; Torsi, L., E-mail: luisa.torsi@uniba.it [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, Bari I-70126 (Italy); Ligonzo, T. [Department of Physics, University of Bari “Aldo Moro”, Via Orabona 4, Bari I-70126 (Italy); Palazzo, G. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, Bari I-70126 (Italy); Center of Colloid and Surface Science—CSGI—Bari Unit, Via Orabona 4, Bari I-70126 (Italy)

    2015-01-01

    A jellified alginate based capsule serves as biocompatible and biodegradable electrolyte system to gate an organic field-effect transistor fabricated on a flexible substrate. Such a system allows operating thiophene based polymer transistors below 0.5 V through an electrical double layer formed across an ion-permeable polymeric electrolyte. Moreover, biological macro-molecules such as glucose-oxidase and streptavidin can enter into the gating capsules that serve also as delivery system. An enzymatic bio-reaction is shown to take place in the capsule and preliminary results on the measurement of the electronic responses promise for low-cost, low-power, flexible electronic bio-sensing applications using capsule-gated organic field-effect transistors.

  11. Charge-density depinning at metal contacts of graphene field-effect transistors

    OpenAIRE

    Nouchi, Ryo; Tanigaki, Katsumi

    2010-01-01

    An anomalous distortion is often observed in the transfer characteristics of graphene field-effect transistors. We fabricate graphene transistors with ferromagnetic metal electrodes, which reproducibly display distorted transfer characteristics, and show that the distortion is caused by metal-graphene contacts with no charge-density pinning effect. The pinning effect, where the gate voltage cannot tune the charge density of graphene at the metal electrodes, has been experimentally observed; h...

  12. Probing organic field effect transistors in situ during operation using SFG.

    Science.gov (United States)

    Ye, Hongke; Abu-Akeel, Ashraf; Huang, Jia; Katz, Howard E; Gracias, David H

    2006-05-24

    In this communication, we report results obtained using surface-sensitive IR+Visible Sum Frequency Generation (SFG) nonlinear optical spectroscopy on interfaces of organic field effect transistors during operation. We observe remarkable correlations between trends in the surface vibrational spectra and electrical properties of the transistor, with changes in gate voltage (VG). These results suggest that field effects on electronic conduction in thin film organic semiconductor devices are correlated to interfacial nonlinear optical characteristics and point to the possibility of using SFG spectroscopy to monitor electronic properties of OFETs.

  13. Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors

    NARCIS (Netherlands)

    Spijkman, M.; Smits, E.C.P.; Cillessen, J.F.M.; Biscarini, F.; Blom, P.W.M.; Leeuw, D.M. de

    2011-01-01

    The sensitivity of conventional ion-sensitive field-effect transistors (ISFETs) is limited to 59 mV/pH, which is the maximum detectable change in electrochemical potential according to the Nernst equation. Here we demonstrate a transducer based on a ZnO dual-gate field-effect transistor that

  14. Cylindrical Field Effect Transistor: A Full Volume Inversion Device

    KAUST Repository

    Fahad, Hossain M.

    2010-01-01

    inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors

  15. Nature of size effects in compact models of field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Torkhov, N. A., E-mail: trkf@mail.ru [Tomsk State University, Tomsk 634050 (Russian Federation); Scientific-Research Institute of Semiconductor Devices, Tomsk 634050 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Babak, L. I.; Kokolov, A. A.; Salnikov, A. S.; Dobush, I. M. [Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Novikov, V. A., E-mail: novikovvadim@mail.ru; Ivonin, I. V. [Tomsk State University, Tomsk 634050 (Russian Federation)

    2016-03-07

    Investigations have shown that in the local approximation (for sizes L < 100 μm), AlGaN/GaN high electron mobility transistor (HEMT) structures satisfy to all properties of chaotic systems and can be described in the language of fractal geometry of fractional dimensions. For such objects, values of their electrophysical characteristics depend on the linear sizes of the examined regions, which explain the presence of the so-called size effects—dependences of the electrophysical and instrumental characteristics on the linear sizes of the active elements of semiconductor devices. In the present work, a relationship has been established for the linear model parameters of the equivalent circuit elements of internal transistors with fractal geometry of the heteroepitaxial structure manifested through a dependence of its relative electrophysical characteristics on the linear sizes of the examined surface areas. For the HEMTs, this implies dependences of their relative static (A/mm, mA/V/mm, Ω/mm, etc.) and microwave characteristics (W/mm) on the width d of the sink-source channel and on the number of sections n that leads to a nonlinear dependence of the retrieved parameter values of equivalent circuit elements of linear internal transistor models on n and d. Thus, it has been demonstrated that the size effects in semiconductors determined by the fractal geometry must be taken into account when investigating the properties of semiconductor objects on the levels less than the local approximation limit and designing and manufacturing field effect transistors. In general, the suggested approach allows a complex of problems to be solved on designing, optimizing, and retrieving the parameters of equivalent circuits of linear and nonlinear models of not only field effect transistors but also any arbitrary semiconductor devices with nonlinear instrumental characteristics.

  16. Top contact organic field effect transistors fabricated using a photolithographic process

    International Nuclear Information System (INIS)

    Wang Hong; Peng Ying-Quan; Ji Zhuo-Yu; Shang Li-Wei; Liu Xing-Hua; Liu Ming

    2011-01-01

    This paper proposes an effective method of fabricating top contact organic field effect transistors by using a photolithographic process. The semiconductor layer is protected by a passivation layer. Through photolithographic and etching processes, parts of the passivation layer are etched off to form source/drain electrode patterns. Combined with conventional evaporation and lift-off techniques, organic field effect transistors with a top contact are fabricated successfully, whose properties are comparable to those prepared with the shadow mask method and one order of magnitude higher than the bottom contact devices fabricated by using a photolithographic process. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Graphene Field Effect Transistor-Based Detectors for Detection of Ionizing Radiation

    International Nuclear Information System (INIS)

    Jovanovic, Igor; Cazalas, Edward; Childres, I.; Patil, A.; Koybasi, O.; Chen, Y-P.

    2013-06-01

    We present the results of our recent efforts to develop novel ionizing radiation sensors based on the nano-material graphene. Graphene used in the field effect transistor architecture could be employed to detect the radiation-induced charge carriers produced in undoped semiconductor absorber substrates, even without the need for charge collection. The detection principle is based on the high sensitivity of graphene to ionization-induced local electric field perturbations in the electrically biased substrate. We experimentally demonstrated promising performance of graphene field effect transistors for detection of visible light, X-rays, gamma-rays, and alpha particles. We propose improved detector architectures which could result in a significant improvement of speed necessary for pulsed mode operation. (authors)

  18. Direct coupled amplifiers using field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-03-15

    The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with

  19. Dielectric effect on electric fields in the vicinity of the metal–vacuum–dielectric junction

    International Nuclear Information System (INIS)

    Chung, M.S.; Mayer, A.; Miskovsky, N.M.; Weiss, B.L.; Cutler, P.H.

    2013-01-01

    The dielectric effect was theoretically investigated in order to describe the electric field in the vicinity of a junction of a metal, dielectric, and vacuum. The assumption of two-dimensional symmetry of the junction leads to a simple analytic form and to a systematic numerical calculation for the field. The electric field obtained for the triple junction was found to be enhanced or reduced according to a certain criterion determined by the contact angles and dielectric constant. Further numerical calculations of the dielectric effect show that an electric field can experience a larger enhancement or reduction for a quadruple junction than that achieved for the triple junction. It was also found that even though it changes slowly in comparison with the shape effect, the dielectric effect was noticeably large over the entire range of the shape change. - Highlights: ► This work explains how a very strong electric field can be produced due to the dielectric in the vicinity of metal–dielectric contact. ► This work deals with configurations which enhance electric fields using the dielectric effect. The configuration is a type of junction at which metal, vacuum and dielectric meet. ► This work suggests the criterion to determine whether field enhancement occurs or not in the triple junction of metal, vacuum and dielectric. ► This work suggests that a quadruple junction is more effective in enhancing the electric field than a triple junction. The quadruple junction is formed by an additional vacuum portion to the triple junction. ► This work suggests that a triple junction can be a breakthrough candidate for a cold electron source

  20. Low-frequency noise behavior of polysilicon emitter bipolar junction transistors: a review

    Science.gov (United States)

    Deen, M. Jamal; Pascal, Fabien

    2003-05-01

    For many analog integrated circuit applications, the polysilicon emitter bipolar junction transistor (PE-BJT) is still the preferred choice because of its higher operational frequency and lower noise performance characteristics compared to MOS transistors of similar active areas and at similar biasing currents. In this paper, we begin by motivating the reader with reasons why bipolar transistors are still of great interest for analog integrated circuits. This motivation includes a comparison between BJT and the MOSFET using a simple small-signal equivalent circuit to derive important parameters that can be used to compare these two technologies. An extensive review of the popular theories used to explain low frequency noise results is presented. However, in almost all instances, these theories have not been fully tested. The effects of different processing technologies and conditions on the noise performance of PE-BJTs is reviewed and a summary of some of the key technological steps and device parameters and their effects on noise is discussed. The effects of temperature and emitter geometries scaling is reviewed. It is shown that dispersion of the low frequency noise in ultra-small geometries is a serious issue since the rate of increase of the noise dispersion is faster than the noise itself as the emitter geometry is scaled to smaller values. Finally, some ideas for future research on PE-BJTs, some of which are also applicable to SiGe heteorjunction bipolar transistors and MOSFETs, are presented after the conclusions.

  1. High-performance solution-processed polymer ferroelectric field-effect transistors

    NARCIS (Netherlands)

    Naber, RCG; Tanase, C; Blom, PWM; Gelinck, GH; Marsman, AW; Touwslager, FJ; Setayesh, S; De Leeuw, DM; Naber, Ronald C.G.; Gelinck, Gerwin H.; Marsman, Albert W.; Touwslager, Fred J.

    We demonstrate a rewritable, non-volatile memory device with flexible plastic active layers deposited from solution. The memory device is a ferroelectric field-effect transistor (FeFET) made with a ferroelectric fluoropolymer and a bisalkoxy-substituted poly(p-phenylene vinylene) semiconductor

  2. Single-event burnout of power bipolar junction transistors

    International Nuclear Information System (INIS)

    Titus, J.L.; Johnson, G.H.; Schrimpf, R.D.; Galloway, K.F.

    1991-01-01

    Experimental evidence of single-event burnout of power bipolar junctions transistors (BJTs) is reported for the first time. Several commercial power BJTs were characterized in a simulated cosmic ray environment using mono-energetic ions at the tandem Van de Graaff accelerator facility at Brookhaven National Laboratory. Most of the device types exposed to this simulated environment exhibited burnout behavior. In this paper the experimental technique, data, and results are presented, while a qualitative model is used to help explain those results and trends observed in this experiment

  3. Germanium field-effect transistor made from a high-purity substrate

    International Nuclear Information System (INIS)

    Hansen, W.L.; Goulding, F.S.; Haller, E.E.

    1978-11-01

    Field effect transistors have been fabricated on high-purity germanium substrates using low-temperature technology. The aim of this work is to preserve the low density of trapping centers in high-quality starting material by low-temperature ( 0 C) processing. The use of germanium promises to eliminate some of the traps which cause generation-recombination noise in silicon field-effect transistors (FET's) at low temperatures. Typically, the transconductance (g/sub m/) in the germanium FET's is 10 mA/V and the gate leakage can be less than 10 -12 A. Present devices exhibit a large 1/f noise component and most of this noise must be eliminated if they are to be competitive with silicon FET's commonly used in high-resolution nuclear spectrometers

  4. Photo-excited charge collection spectroscopy probing the traps in field-effect transistors

    CERN Document Server

    Im, Seongil; Kim, Jae Hoon

    2013-01-01

    Solid state field-effect devices such as organic and inorganic-channel thin-film transistors (TFTs) have been expected to promote advances in display and sensor electronics. The operational stabilities of such TFTs are thus important, strongly depending on the nature and density of charge traps present at the channel/dielectric interface or in the thin-film channel itself. This book contains how to characterize these traps, starting from the device physics of field-effect transistor (FET). Unlike conventional analysis techniques which are away from well-resolving spectral results, newly-introduced photo-excited charge-collection spectroscopy (PECCS) utilizes the photo-induced threshold voltage response from any type of working transistor devices with organic-, inorganic-, and even nano-channels, directly probing on the traps. So, our technique PECCS has been discussed through more than ten refereed-journal papers in the fields of device electronics, applied physics, applied chemistry, nano-devices and materia...

  5. Tunnel field-effect transistor with two gated intrinsic regions

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2014-07-01

    Full Text Available In this paper, we propose and validate (using simulations a novel design of silicon tunnel field-effect transistor (TFET, based on a reverse-biased p+-p-n-n+ structure. 2D device simulation results show that our devices have significant improvements of switching performance compared with more conventional devices based on p-i-n structure. With independent gate voltages applied to two gated intrinsic regions, band-to-band tunneling (BTBT could take place at the p-n junction, and no abrupt degenerate doping profile is required. We developed single-side-gate (SSG structure and double-side-gate (DSG structure. SSG devices with HfO2 gate dielectric have a point subthreshold swing of 9.58 mV/decade, while DSG devices with polysilicon gate electrode material and HfO2 gate dielectric have a point subthreshold swing of 16.39 mV/decade. These DSG devices have ON-current of 0.255 μA/μm, while that is lower for SSG devices. Having two nano-scale independent gates will be quite challenging to realize with good uniformity across the wafer and the improved behavior of our TFET makes it a promising steep-slope switch candidate for further investigations.

  6. Ambipolar phosphorene field effect transistor.

    Science.gov (United States)

    Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas

    2014-11-25

    In this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance. We also propose and implement a novel technique for extracting the transport gap as well as the Schottky barrier height at the metal-phosphorene contact interface from the ambipolar transfer characteristics of the phosphorene FETs. This robust technique is applicable to any ultrathin body semiconductor which demonstrates symmetric ambipolar conduction. Finally, we demonstrate a high gain, high noise margin, chemical doping free, and fully complementary logic inverter based on ambipolar phosphorene FETs.

  7. Nanoscaled biological gated field effect transistors for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Andersen, Karsten Brandt

    2014-01-01

    Cytogenetic analysis is the study of chromosome structure and function, and is often used in cancer diagnosis, as many chromosome abnormalities are linked to the onset of cancer. A novel label free detection method for chromosomal translocation analysis using nanoscaled field effect transistors...

  8. Biomolecular detection using a metal semiconductor field effect transistor

    Science.gov (United States)

    Estephan, Elias; Saab, Marie-Belle; Buzatu, Petre; Aulombard, Roger; Cuisinier, Frédéric J. G.; Gergely, Csilla; Cloitre, Thierry

    2010-04-01

    In this work, our attention was drawn towards developing affinity-based electrical biosensors, using a MESFET (Metal Semiconductor Field Effect Transistor). Semiconductor (SC) surfaces must be prepared before the incubations with biomolecules. The peptides route was adapted to exceed and bypass the limits revealed by other types of surface modification due to the unwanted unspecific interactions. As these peptides reveal specific recognition of materials, then controlled functionalization can be achieved. Peptides were produced by phage display technology using a library of M13 bacteriophage. After several rounds of bio-panning, the phages presenting affinities for GaAs SC were isolated; the DNA of these specific phages were sequenced, and the peptide with the highest affinity was synthesized and biotinylated. To explore the possibility of electrical detection, the MESFET fabricated with the GaAs SC were used to detect the streptavidin via the biotinylated peptide in the presence of the bovine Serum Albumin. After each surface modification step, the IDS (current between the drain and the source) of the transistor was measured and a decrease in the intensity was detected. Furthermore, fluorescent microscopy was used in order to prove the specificity of this peptide and the specific localisation of biomolecules. In conclusion, the feasibility of producing an electrical biosensor using a MESFET has been demonstrated. Controlled placement, specific localization and detection of biomolecules on a MESFET transistor were achieved without covering the drain and the source. This method of functionalization and detection can be of great utility for biosensing application opening a new way for developing bioFETs (Biomolecular Field-Effect Transistor).

  9. Relating hysteresis and electrochemistry in graphene field effect transistors

    NARCIS (Netherlands)

    Veligura, Alina; Zomer, Paul J.; Vera-Marun, Ivan J.; Jozsa, Csaba; Gordiichuk, Pavlo I.; van Wees, Bart J.

    2011-01-01

    Hysteresis and commonly observed p-doping of graphene based field effect transistors (FETs) have been discussed in reports over the last few years. However, the interpretation of experimental works differs; and the mechanism behind the appearance of the hysteresis and the role of charge transfer

  10. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  11. Mobility overestimation due to gated contacts in organic field-effect transistors

    Science.gov (United States)

    Bittle, Emily G.; Basham, James I.; Jackson, Thomas N.; Jurchescu, Oana D.; Gundlach, David J.

    2016-01-01

    Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (>40 cm2 V−1 s−1), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current–voltage characterization are overestimated by one order of magnitude or more. PMID:26961271

  12. Experimental realization of a silicon spin field-effect transistor

    OpenAIRE

    Huang, Biqin; Monsma, Douwe J.; Appelbaum, Ian

    2007-01-01

    A longitudinal electric field is used to control the transit time (through an undoped silicon vertical channel) of spin-polarized electrons precessing in a perpendicular magnetic field. Since an applied voltage determines the final spin direction at the spin detector and hence the output collector current, this comprises a spin field-effect transistor. An improved hot-electron spin injector providing ~115% magnetocurrent, corresponding to at least ~38% electron current spin polarization after...

  13. Graphene field effect transistors with niobium contacts and asymmetric transfer characteristics

    International Nuclear Information System (INIS)

    Bartolomeo, Antonio Di; Romeo, Francesco; Sabatino, Paolo; Carapella, Giovanni; Iemmo, Laura; Giubileo, Filippo; Schroeder, Thomas; Lupina, Grzegorz

    2015-01-01

    We fabricate back-gated field effect transistors using niobium electrodes on mechanically exfoliated monolayer graphene and perform electrical characterization in the pressure range from atmospheric down to 10 −4 mbar. We study the effect of room temperature vacuum degassing and report asymmetric transfer characteristics with a resistance plateau in the n-branch. We show that weakly chemisorbed Nb acts as p-dopant on graphene and explain the transistor characteristics by Nb/graphene interaction with unpinned Fermi level at the interface. (paper)

  14. Gas sensing with self-assembled monolayer field-effect transistors

    NARCIS (Netherlands)

    Andringa, Anne-Marije; Spijkman, Mark-Jan; Smits, Edsger C. P.; Mathijssen, Simon G. J.; van Hal, Paul A.; Setayesh, Sepas; Willard, Nico P.; Borshchev, Oleg V.; Ponomarenko, Sergei A.; Blom, Paul W. M.; de Leeuw, Dago M.

    A new sensitive gas sensor based on a self-assembled monolayer field-effect transistor (SAMFET) was used to detect the biomarker nitric oxide. A SAMFET based sensor is highly sensitive because the analyte and the active channel are separated by only one monolayer. SAMFETs were functionalised for

  15. Single event burnout sensitivity of embedded field effect transistors

    International Nuclear Information System (INIS)

    Koga, R.; Crain, S.H.; Crawford, K.B.; Yu, P.; Gordon, M.J.

    1999-01-01

    Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described

  16. Single event burnout sensitivity of embedded field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Koga, R.; Crain, S.H.; Crawford, K.B.; Yu, P.; Gordon, M.J.

    1999-12-01

    Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.

  17. Ballistic Spin Field Effect Transistor Based on Silicon Nanowires

    Science.gov (United States)

    Osintsev, Dmitri; Sverdlov, Viktor; Stanojevic, Zlatan; Selberherr, Siegfried

    2011-03-01

    We investigate the properties of ballistic spin field-effect transistors build on silicon nanowires. An accurate description of the conduction band based on the k . p} model is necessary in thin and narrow silicon nanostructures. The subband effective mass and subband splitting dependence on the nanowire dimensions is analyzed and used in the transport calculations. The spin transistor is formed by sandwiching the nanowire between two ferromagnetic metallic contacts. Delta-function barriers at the interfaces between the contacts and the silicon channel are introduced. The major contribution to the electric field-dependent spin-orbit interaction in confined silicon systems is due to the interface-induced inversion asymmetry which is of the Dresselhaus type. We study the current and conductance through the system for the contacts being in parallel and anti-parallel configurations. Differences between the [100] and [110] orientated structures are investigated in details. This work is supported by the European Research Council through the grant #247056 MOSILSPIN.

  18. Sensing Responses Based on Transfer Characteristics of InAs Nanowire Field-Effect Transistors

    Science.gov (United States)

    Savelyev, Igor; Blumin, Marina; Wang, Shiliang; Ruda, Harry E.

    2017-01-01

    Nanowire-based field-effect transistors (FETs) have demonstrated considerable promise for a new generation of chemical and biological sensors. Indium arsenide (InAs), by virtue of its high electron mobility and intrinsic surface accumulation layer of electrons, holds properties beneficial for creating high performance sensors that can be used in applications such as point-of-care testing for patients diagnosed with chronic diseases. Here, we propose devices based on a parallel configuration of InAs nanowires and investigate sensor responses from measurements of conductance over time and FET characteristics. The devices were tested in controlled concentrations of vapour containing acetic acid, 2-butanone and methanol. After adsorption of analyte molecules, trends in the transient current and transfer curves are correlated with the nature of the surface interaction. Specifically, we observed proportionality between acetic acid concentration and relative conductance change, off current and surface charge density extracted from subthreshold behaviour. We suggest the origin of the sensing response to acetic acid as a two-part, reversible acid-base and redox reaction between acetic acid, InAs and its native oxide that forms slow, donor-like states at the nanowire surface. We further describe a simple model that is able to distinguish the occurrence of physical versus chemical adsorption by comparing the values of the extracted surface charge density. These studies demonstrate that InAs nanowires can produce a multitude of sensor responses for the purpose of developing next generation, multi-dimensional sensor applications. PMID:28714903

  19. Reconfigurable Complementary Monolayer MoTe2 Field-Effect Transistors for Integrated Circuits.

    Science.gov (United States)

    Larentis, Stefano; Fallahazad, Babak; Movva, Hema C P; Kim, Kyounghwan; Rai, Amritesh; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K; Tutuc, Emanuel

    2017-05-23

    Transition metal dichalcogenides are of interest for next generation switches, but the lack of low resistance electron and hole contacts in the same material has hindered the development of complementary field-effect transistors and circuits. We demonstrate an air-stable, reconfigurable, complementary monolayer MoTe 2 field-effect transistor encapsulated in hexagonal boron nitride, using electrostatically doped contacts. The introduction of a multigate design with prepatterned bottom contacts allows us to independently achieve low contact resistance and threshold voltage tuning, while also decoupling the Schottky contacts and channel gating. We illustrate a complementary inverter and a p-i-n diode as potential applications.

  20. Low-power bacteriorhodopsin-silicon n-channel metal-oxide field-effect transistor photoreceiver.

    Science.gov (United States)

    Shin, Jonghyun; Bhattacharya, Pallab; Yuan, Hao-Chih; Ma, Zhenqiang; Váró, György

    2007-03-01

    A bacteriorhodopsin (bR)-silicon n-channel metal-oxide field-effect transistor (NMOSFET) monolithically integrated photoreceiver is demonstrated. The bR film is selectively formed on an external gate electrode of the transistor by electrophoretic deposition. A modified biasing circuit is incorporated, which helps to match the resistance of the bR film to the input impedance of the NMOSFET and to shift the operating point of the transistor to coincide with the maximum gain. The photoreceiver exhibits a responsivity of 4.7 mA/W.

  1. Unijunction transistors

    International Nuclear Information System (INIS)

    1981-01-01

    The electrical characteristics of unijunction transistors can be modified by irradiation with electron beams in excess of 400 KeV and at a dose rate of 10 13 to 10 16 e/cm 2 . Examples are given of the effect of exposing the emitter-base junctions of transistors to such lattice defect causing radiation for a time sufficient to change the valley current of the transistor. (U.K.)

  2. Modeling of pH Dependent Electrochemical Noise in Ion Sensitive Field Effect Transistors ISFET

    OpenAIRE

    M. P. Das; M. Bhuyan

    2013-01-01

    pH ISFETs are very important sensor for in vivo continuous monitoring application of physiological and environmental system. The accuracy of Ion Sensitive Field Effect Transistor (ISFET) output measurement is greatly affected by the presences of noise, drift and slow response of the device. Although the noise analysis of ISFET so far performed in different literature relates only to sources originated from Field Effect Transistor (FET) structure which are almost constant for a particular devi...

  3. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors

    KAUST Repository

    Mei, Jianguo; Diao, Ying; Appleton, Anthony L.; Fang, Lei; Bao, Zhenan

    2013-01-01

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight

  4. Understanding noise suppression in heterojunction field-effect transistors

    International Nuclear Information System (INIS)

    Green, F.

    1996-01-01

    Full text: The enhanced transport properties displayed by quantum-well-confined, two-dimensional, electron systems underpin the success of heterojunction, field-effect transistors. At cryogenic temperatures, these devices exhibit impressive mobilities and, as a result, high signal gain and low noise. Conventional wisdom has it that the same favourable conditions also hold for normal room-temperature operation. In that case, however, high mobilities are precluded by abundant electron-phonon scattering. Our recent study of nonequilibrium current noise shows that quantum confinement, not high mobility, is the principal source of noise in these devices; this opens up new and exciting opportunities in low-noise transistor design. As trends in millimetre-wave technology push frequencies beyond 100 GHz, it is essential to develop a genuine understanding of noise processes in heterojunction devices

  5. Field-effect P-N junction

    Science.gov (United States)

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  6. High performance tunnel field-effect transistor by gate and source engineering.

    Science.gov (United States)

    Huang, Ru; Huang, Qianqian; Chen, Shaowen; Wu, Chunlei; Wang, Jiaxin; An, Xia; Wang, Yangyuan

    2014-12-19

    As one of the most promising candidates for future nanoelectronic devices, tunnel field-effect transistors (TFET) can overcome the subthreshold slope (SS) limitation of MOSFET, whereas high ON-current, low OFF-current and steep switching can hardly be obtained at the same time for experimental TFETs. In this paper, we developed a new nanodevice technology based on TFET concepts. By designing the gate configuration and introducing the optimized Schottky junction, a multi-finger-gate TFET with a dopant-segregated Schottky source (mFSB-TFET) is proposed and experimentally demonstrated. A steeper SS can be achieved in the fabricated mFSB-TFET on the bulk Si substrate benefiting from the coupled quantum band-to-band tunneling (BTBT) mechanism, as well as a high I(ON)/I(OFF) ratio (∼ 10(7)) at V(DS) = 0.2 V without an area penalty. By compatible SOI CMOS technology, the fabricated Si mFSB-TFET device was further optimized with a high ION/IOFF ratio of ∼ 10(8) and a steeper SS of over 5.5 decades of current. A minimum SS of below 60 mV dec(-1) was experimentally obtained, indicating its dominant quantum BTBT mechanism for switching.

  7. Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors

    KAUST Repository

    Kanimozhi, Catherine K.

    2012-10-10

    In this communication, we report the synthesis of a novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP)-based conjugated copolymer and its application in high-mobility organic field-effect transistors. Copolymerization of DPP with DPP yields a copolymer with exceptional properties such as extended absorption characteristics (up to ∼1100 nm) and field-effect electron mobility values of >1 cm 2 V -1 s -1. The synthesis of this novel DPP-DPP copolymer in combination with the demonstration of transistors with extremely high electron mobility makes this work an important step toward a new family of DPP-DPP copolymers for application in the general area of organic optoelectronics. © 2012 American Chemical Society.

  8. Bias stress effect and recovery in organic field effect transistors : proton migration mechanism

    NARCIS (Netherlands)

    Sharma, A.; Mathijssen, S.G.J.; Kemerink, M.; Leeuw, de D.M.; Bobbert, P.A.; Bao, Z.; McCulloch, I.

    2010-01-01

    Organic field-effect transistors exhibit operational instabilities when a gate bias is applied. For a constant gate bias the threshold voltage shifts towards the applied gate bias voltage, an effect known as the bias-stress effect. We have performed a detailed experimental and theoretical study of

  9. Si/Ge hetero-structure nanotube tunnel field effect transistor

    KAUST Repository

    Hanna, A. N.

    2015-01-07

    We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd-=-1-V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60-mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5-V.

  10. Si/Ge hetero-structure nanotube tunnel field effect transistor

    KAUST Repository

    Hanna, A. N.; Hussain, Muhammad Mustafa

    2015-01-01

    We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at Vdd-=-1-V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60-mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when Vdd is scaled down to 0.5-V.

  11. Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors.

    Science.gov (United States)

    Bu, Laju; Hu, Mengxing; Lu, Wanlong; Wang, Ziyu; Lu, Guanghao

    2018-01-01

    Source-semiconductor-drain coplanar transistors with an organic semiconductor layer located within the same plane of source/drain electrodes are attractive for next-generation electronics, because they could be used to reduce material consumption, minimize parasitic leakage current, avoid cross-talk among different devices, and simplify the fabrication process of circuits. Here, a one-step, drop-casting-like printing method to realize a coplanar transistor using a model semiconductor/insulator [poly(3-hexylthiophene) (P3HT)/polystyrene (PS)] blend is developed. By manipulating the solution dewetting dynamics on the metal electrode and SiO 2 dielectric, the solution within the channel region is selectively confined, and thus make the top surface of source/drain electrodes completely free of polymers. Subsequently, during solvent evaporation, vertical phase separation between P3HT and PS leads to a semiconductor-insulator bilayer structure, contributing to an improved transistor performance. Moreover, this coplanar transistor with semiconductor-insulator bilayer structure is an ideal system for injecting charges into the insulator via gate-stress, and the thus-formed PS electret layer acts as a "nonuniform floating gate" to tune the threshold voltage and effective mobility of the transistors. Effective field-effect mobility higher than 1 cm 2 V -1 s -1 with an on/off ratio > 10 7 is realized, and the performances are comparable to those of commercial amorphous silicon transistors. This coplanar transistor simplifies the fabrication process of corresponding circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MOSFET-BJT hybrid mode of the gated lateral bipolar junction transistor for C-reactive protein detection.

    Science.gov (United States)

    Yuan, Heng; Kwon, Hyurk-Choon; Yeom, Se-Hyuk; Kwon, Dae-Hyuk; Kang, Shin-Won

    2011-10-15

    In this study, we propose a novel biosensor based on a gated lateral bipolar junction transistor (BJT) for biomaterial detection. The gated lateral BJT can function as both a BJT and a metal-oxide-semiconductor field-effect transistor (MOSFET) with both the emitter and source, and the collector and drain, coupled. C-reactive protein (CRP), which is an important disease marker in clinical examinations, can be detected using the proposed device. In the MOSFET-BJT hybrid mode, the sensitivity, selectivity, and reproducibility of the gated lateral BJT for biosensors were evaluated in this study. According to the results, in the MOSFET-BJT hybrid mode, the gated lateral BJT shows good selectivity and reproducibility. Changes in the emitter (source) current of the device for CRP antigen detection were approximately 0.65, 0.72, and 0.80 μA/decade at base currents of -50, -30, and -10 μA, respectively. The proposed device has significant application in the detection of certain biomaterials that require a dilution process using a common biosensor, such as a MOSFET-based biosensor. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Exploring graphene field effect transistor devices to improve spectral resolution of semiconductor radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamilton, Allister B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Graphene, a planar, atomically thin form of carbon, has unique electrical and material properties that could enable new high performance semiconductor devices. Graphene could be of specific interest in the development of room-temperature, high-resolution semiconductor radiation spectrometers. Incorporating graphene into a field-effect transistor architecture could provide an extremely high sensitivity readout mechanism for sensing charge carriers in a semiconductor detector, thus enabling the fabrication of a sensitive radiation sensor. In addition, the field effect transistor architecture allows us to sense only a single charge carrier type, such as electrons. This is an advantage for room-temperature semiconductor radiation detectors, which often suffer from significant hole trapping. Here we report on initial efforts towards device fabrication and proof-of-concept testing. This work investigates the use of graphene transferred onto silicon and silicon carbide, and the response of these fabricated graphene field effect transistor devices to stimuli such as light and alpha radiation.

  14. Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors

    NARCIS (Netherlands)

    De Boer, R.W.I.; Stassen, A.F.; Craciun, M.F.; Mulder, C.L.; Molinari, A.; Rogge, S.; Morpurgo, A.F.

    2005-01-01

    We report the observation of ambipolar transport in field-effect transistors fabricated on single crystals of copper- and iron-phthalocyanine, using gold as a high work-function metal for the fabrication of source and drain electrodes. In these devices, the room-temperature mobility of holes reaches

  15. Intrinsic hydrogen-terminated diamond as ion-sensitive field effect transistor

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Shin, D.; Watanabe, H.; Nebel, C.E.

    2007-01-01

    Roč. 122, - (2007), s. 596-599 ISSN 0925-4005 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond film * surface electronic properties * field effect transistor * pH sensor * semiconductor-electrolyte interface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.934, year: 2007

  16. Doping kinetics of organic semiconductors investigated by field-effect transistors

    NARCIS (Netherlands)

    Maddalena, F.; Meijer, E.J.; Asadi, K.; Leeuw, D.M. de; Blom, P.W.M.

    2010-01-01

    The kinetics of acid doping of the semiconductor regioregular poly-3-hexylthiophene with vaporized chlorosilane have been investigated using field-effect transistors. The dopant density has been derived as a function of temperature and exposure time from the shift in the pinch-off voltage, being the

  17. Potential of carbon nanotube field effect transistors for analogue circuits

    KAUST Repository

    Hayat, Khizar; Cheema, Hammad; Shamim, Atif

    2013-01-01

    This Letter presents a detailed comparison of carbon nanotube field effect transistors (CNFETs) and metal oxide semiconductor field effect transistors (MOSFETs) with special focus on carbon nanotube FET's potential for implementing analogue circuits in the mm-wave and sub-terahertz range. The latest CNFET lithographic dimensions place it at-par with complementary metal oxide semiconductor in terms of current handling capability, whereas the forecasted improvement in the lithography enables the CNFETs to handle more than twice the current of MOSFETs. The comparison of RF parameters shows superior performance of CNFETs with a g m , f T and f max of 2.7, 2.6 and 4.5 times higher, respectively. MOSFET- and CNFET-based inverter, three-stage ring oscillator and LC oscillator have been designed and compared as well. The CNFET-based inverters are found to be ten times faster, the ring oscillator demonstrates three times higher oscillation frequency and CNFET-based LC oscillator also shows improved performance than its MOSFET counterpart.

  18. Potential of carbon nanotube field effect transistors for analogue circuits

    KAUST Repository

    Hayat, Khizar

    2013-05-11

    This Letter presents a detailed comparison of carbon nanotube field effect transistors (CNFETs) and metal oxide semiconductor field effect transistors (MOSFETs) with special focus on carbon nanotube FET\\'s potential for implementing analogue circuits in the mm-wave and sub-terahertz range. The latest CNFET lithographic dimensions place it at-par with complementary metal oxide semiconductor in terms of current handling capability, whereas the forecasted improvement in the lithography enables the CNFETs to handle more than twice the current of MOSFETs. The comparison of RF parameters shows superior performance of CNFETs with a g m , f T and f max of 2.7, 2.6 and 4.5 times higher, respectively. MOSFET- and CNFET-based inverter, three-stage ring oscillator and LC oscillator have been designed and compared as well. The CNFET-based inverters are found to be ten times faster, the ring oscillator demonstrates three times higher oscillation frequency and CNFET-based LC oscillator also shows improved performance than its MOSFET counterpart.

  19. Temperature Dependence of Field-Effect Mobility in Organic Thin-Film Transistors: Similarity to Inorganic Transistors.

    Science.gov (United States)

    Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials.

  20. Modeling of bias-induced changes of organic field-effect transistor characteristics

    NARCIS (Netherlands)

    Sharma, A.

    2011-01-01

    Organic semiconductors offer exciting possibilities in developing new types of solar cells, photodetectors, light emitting diodes and field-effect transistors. Important advantages of organic semiconducting materials over their inorganic counterparts are their chemical tunability, their low weight,

  1. Gate Tunable Transport in Graphene/MoS₂/(Cr/Au) Vertical Field-Effect Transistors.

    Science.gov (United States)

    Nazir, Ghazanfar; Khan, Muhammad Farooq; Aftab, Sikandar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Rehman, Malik Abdul; Seo, Yongho; Eom, Jonghwa

    2017-12-28

    Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS₂/(Cr/Au) vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr), the electrical transport in our Gr/MoS₂/(Cr/Au) vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS₂ can be modified by back-gate voltage and the current bias. Vertical resistance (R vert ) of a Gr/MoS₂/(Cr/Au) transistor is compared with planar resistance (R planar ) of a conventional lateral MoS₂ field-effect transistor. We have also studied electrical properties for various thicknesses of MoS₂ channels in both vertical and lateral transistors. As the thickness of MoS₂ increases, R vert increases, but R planar decreases. The increase of R vert in the thicker MoS₂ film is attributed to the interlayer resistance in the vertical direction. However, R planar shows a lower value for a thicker MoS₂ film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.

  2. Tunable SnSe2 /WSe2 Heterostructure Tunneling Field Effect Transistor.

    Science.gov (United States)

    Yan, Xiao; Liu, Chunsen; Li, Chao; Bao, Wenzhong; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2017-09-01

    The burgeoning 2D semiconductors can maintain excellent device electrostatics with an ultranarrow channel length and can realize tunneling by electrostatic gating to avoid deprivation of band-edge sharpness resulting from chemical doping, which make them perfect candidates for tunneling field effect transistors. Here this study presents SnSe 2 /WSe 2 van der Waals heterostructures with SnSe 2 as the p-layer and WSe 2 as the n-layer. The energy band alignment changes from a staggered gap band offset (type-II) to a broken gap (type-III) when changing the negative back-gate voltage to positive, resulting in the device operating as a rectifier diode (rectification ratio ~10 4 ) or an n-type tunneling field effect transistor, respectively. A steep average subthreshold swing of 80 mV dec -1 for exceeding two decades of drain current with a minimum of 37 mV dec -1 at room temperature is observed, and an evident trend toward negative differential resistance is also accomplished for the tunneling field effect transistor due to the high gate efficiency of 0.36 for single gate devices. The I ON /I OFF ratio of the transfer characteristics is >10 6 , accompanying a high ON current >10 -5 A. This work presents original phenomena of multilayer 2D van der Waals heterostructures which can be applied to low-power consumption devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The ion-sensitive field effect transistor in rapid acid-base titrations

    NARCIS (Netherlands)

    Bos, M.; Bergveld, Piet; van Veen-Blaauw, A.M.W.

    1979-01-01

    Ion-sensitive field effect transistors (ISFETs) are used as the pH sensor in rapid acid—base titrations. Titration speeds at least five times greater than those with glass electrodes are possible for accuracies better than ±1%.

  4. Total dose effects on elementary transistors of a comparator in bipolar technology

    International Nuclear Information System (INIS)

    Sarrabayrouse, G.; Guerre, F.X.

    1995-01-01

    In the present work we investigate elementary transistors behaviour of an Integrated Circuit using junction isolation bipolar technology. Polarization conditions and dose rate effects on the main elementary transistor types are analysed. Furthermore, the IC electronic function degradations are studied. Finally, a comparison between the function degradations and the elementary component ones is attempted. (author)

  5. Balanced Ambipolar Organic Field-Effect Transistors by Polymer Preaggregation.

    Science.gov (United States)

    Janasz, Lukasz; Luczak, Adam; Marszalek, Tomasz; Dupont, Bertrand G R; Jung, Jaroslaw; Ulanski, Jacek; Pisula, Wojciech

    2017-06-21

    Ambipolar organic field-effect transistors (OFETs) based on heterojunction active films still suffer from an imbalance in the transport of electrons and holes. This problem is related to an uncontrolled phase separation between the donor and acceptor organic semiconductors in the thin films. In this work, we have developed a concept to improve the phase separation in heterojunction transistors to enhance their ambipolar performance. This concept is based on preaggregation of the donor polymer, in this case poly(3-hexylthiophene) (P3HT), before solution mixing with the small-molecular-weight acceptor, phenyl-C61-butyric acid methyl ester (PCBM). The resulting heterojunction transistor morphology consists of self-assembled P3HT fibers embedded in a PCBM matrix, ensuring balanced mobilities reaching 0.01 cm 2 /V s for both holes and electrons. These are the highest mobility values reported so far for ambipolar OFETs based on P3HT/PCBM blends. Preaggregation of the conjugated polymer before fabricating binary blends can be regarded as a general concept for a wider range of semiconducting systems applicable in organic electronic devices.

  6. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    Science.gov (United States)

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  7. Multiplication in Silicon p-n Junctions

    DEFF Research Database (Denmark)

    Moll, John L.

    1965-01-01

    Multiplication values were measured in the collector junctions of silicon p-n-p and n-p-n transistors before and after bombardment by 1016 neutrons/cm2. Within experimental error there was no change either in junction fields, as deduced from capacitance measurements, or in multiplication values i...

  8. Modeling of strain effects on the device behaviors of ferroelectric memory field-effect transistors

    International Nuclear Information System (INIS)

    Yang, Feng; Hu, Guangda; Wu, Weibing; Yang, Changhong; Wu, Haitao; Tang, Minghua

    2013-01-01

    The influence of strains on the channel current–gate voltage behaviors and memory windows of ferroelectric memory field-effect transistors (FeMFETs) were studied using an improved model based on the Landau–Devonshire theory. ‘Channel potential–gate voltage’ ferroelectric polarization and silicon surface potential diagrams were constructed for strained single-domain BaTiO 3 FeMFETs. The compressive strains can increase (or decrease) the amplitude of transistor currents and enlarge memory windows. However, tensile strains only decrease the maximum value of transistor currents and compress memory windows. Mismatch strains were found to have a significant influence on the electrical behaviors of the devices, therefore, they must be considered in FeMFET device designing. (fast track communication)

  9. Effects of emitter junction and passive base region on low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Pershenkov, V.S.; Cherepko, S.V.; Maslov, V.B.; Belyakov, V.V.; Sogoyan, A.V.; Ulimov, N.; Emelianov, V.V.

    1999-01-01

    Low dose rate effect in bipolar devices consists in the increase of peripheral surface recombination current with dose rate decrease. This is due to the more rapid positive oxide charge and interface trap density build-up as the dose rate becomes lower. High dose rate elevated temperature irradiation is proposed for simulation if the low dose rate effect. In the present we tried to separate the effect of radiation-induced charge in the thick passivation oxide over the emitter junction and passive base regions of npn bipolar transistor. Its goal is to improve bipolar device design for use in space environments and nuclear installations. Three experiments were made during this work. 1. Experiment on radiation-induced charge neutralization (RICN) effect under elevated temperature was performed to show transistor degradation dependence on emitter-base bias. 2. High dose rate elevated and room temperature irradiation of bipolar transistors were performed to separate effects of emitter-junction and passive base regions. 3. Pre- and post- irradiation hydrogen ambient storage was used to investigate its effect on radiation-induced charge build-up over the passive base region. All experiments were performed with npn and pnp transistors. (authors)

  10. Organic field-effect transistor nonvolatile memories utilizing sputtered C nanoparticles as nano-floating-gate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Liu, Chang-Hai; She, Xiao-Jian; Sun, Qi-Jun; Gao, Xu; Wang, Sui-Dong, E-mail: wangsd@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2014-10-20

    High-performance organic field-effect transistor nonvolatile memories have been achieved using sputtered C nanoparticles as the nano-floating-gate. The sputtered C nano-floating-gate is prepared with low-cost material and simple process, forming uniform and discrete charge trapping sites covered by a smooth and complete polystyrene layer. The devices show large memory window, excellent retention capability, and programming/reading/erasing/reading endurance. The sputtered C nano-floating-gate can effectively trap both holes and electrons, and it is demonstrated to be suitable for not only p-type but also n-type organic field-effect transistor nonvolatile memories.

  11. Organic field-effect transistor nonvolatile memories utilizing sputtered C nanoparticles as nano-floating-gate

    International Nuclear Information System (INIS)

    Liu, Jie; Liu, Chang-Hai; She, Xiao-Jian; Sun, Qi-Jun; Gao, Xu; Wang, Sui-Dong

    2014-01-01

    High-performance organic field-effect transistor nonvolatile memories have been achieved using sputtered C nanoparticles as the nano-floating-gate. The sputtered C nano-floating-gate is prepared with low-cost material and simple process, forming uniform and discrete charge trapping sites covered by a smooth and complete polystyrene layer. The devices show large memory window, excellent retention capability, and programming/reading/erasing/reading endurance. The sputtered C nano-floating-gate can effectively trap both holes and electrons, and it is demonstrated to be suitable for not only p-type but also n-type organic field-effect transistor nonvolatile memories.

  12. Study of current instabilities in high resistivity gallium arsenide

    International Nuclear Information System (INIS)

    Barraud, A.

    1968-01-01

    We have shown the existence and made a study of the current oscillations produced in high-resistivity gallium arsenide by a strong electric field. The oscillations are associated with the slow travelling of a region of high electrical field across the whole sample. An experimental study of the properties of these instabilities has made it possible for us to distinguish this phenomenon from the Gunn effect, from acoustic-electric effects and from contact effects. In order to account for this type of instability, a differential trapping mechanism involving repulsive impurities is proposed; this mechanism can reduce the concentration of charge carriers in the conduction band at strong electrical fields and can lead to the production of a high-field domain. By developing this model qualitatively we have been able to account for all the properties of high-resistance gallium arsenide crystals subjected to a strong electrical field: increase of the Hall constant, existence of a voltage threshold for these oscillations, production of domains of high field, low rate of propagation of these domains, and finally the possibility of inverting the direction of the propagation of the domain without destroying the latter. A quantitative development of the model makes it possible to calculate the various characteristic parameters of these instabilities. Comparison with experiment shows that there is a good agreement, the small deviations coming especially from the lack of knowledge concerning transport properties in gallium arsenide subjected to high fields. From a study of this model, it appears that the instability phenomenon can occur over a wide range of repulsive centre concentrations, and also for a large range of resistivities. This is the reason why it appears systematically in gallium arsenide of medium and high resistivity. (authors) [fr

  13. An innovative large scale integration of silicon nanowire-based field effect transistors

    Science.gov (United States)

    Legallais, M.; Nguyen, T. T. T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C.

    2018-05-01

    Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.

  14. New membrane materials for potassium-selective ion-sensitive field-effect transistors

    NARCIS (Netherlands)

    van der Wal, P.D.; van der Wal, Peter D.; Skowronska-Ptasinska, Maria; van den Berg, Albert; Bergveld, Piet; Sudholter, Ernst; Sudholter, Ernst J.R.; Reinhoudt, David

    1990-01-01

    Several polymeric materials were studied as membrane materials for potassium-selective ion-sensitive field-effect transistors (ISFETs) to overcome the problems related with the use of conventional plasticized poly(vinyl chloride) membranes casted on ISFET gate surfaces. Several acrylate materials,

  15. Evolution of the MOS transistor - From conception to VLSI

    International Nuclear Information System (INIS)

    Sah, C.T.

    1988-01-01

    Historical developments of the metal-oxide-semiconductor field-effect-transistor (MOSFET) during the last sixty years are reviewed, from the 1928 patent disclosures of the field-effect conductivity modulation concept and the semiconductor triodes structures proposed by Lilienfeld to the 1947 Shockley-originated efforts which led to the laboratory demonstration of the modern silicon MOSFET thirty years later in 1960. A survey is then made of the milestones of the past thirty years leading to the latest submicron silicon logic CMOS (Complementary MOS) and BICMOS (Bipolar-Junction-Transistor CMOS combined) arrays and the three-dimensional and ferroelectric extensions of Dennard's one-transistor dynamic random access memory (DRAM) cell. Status of the submicron lithographic technologies (deep ultra-violet light, X-ray, electron-beam) are summarized. Future trends of memory cell density and logic gate speed are projected. Comparisons of the switching speed of the silicon MOSFET with that of silicon bipolar and GaAs field-effect transistors are reviewed. Use of high-temperature superconducting wires and GaAs-on-Si monolithic semiconductor optical clocks to break the interconnect-wiring delay barrier is discussed. Further needs in basic research and mathematical modeling on the failure mechanisms in submicron silicon transistors at high electric fields (hot electron effects) and in interconnection conductors at high current densities and low as well as high electric fields (electromigration) are indicated

  16. Non-classical polycrystalline silicon thin-film transistor with embedded block-oxide for suppressing the short channel effect

    International Nuclear Information System (INIS)

    Lin, Jyi-Tsong; Huang, Kuo-Dong; Hu, Shu-Fen

    2008-01-01

    In this paper, a polycrystalline silicon (polysilicon) thin-film transistor with a block oxide enclosing body, BTFT, is fabricated and investigated. By utilizing the block-oxide structure of thin-film transistors, the BTFT is shown to suppress the short channel effect. This proposed structure is formed by burying self-aligned oxide spacers along the sidewalls of the source and drain junctions, which reduces the P–N junction area, thereby reducing the junction capacitance and leakage current. Measurements demonstrate that the BTFT eliminates the punch-through effect even down to gate lengths of 1.5 µm, whereas the conventional TFT suffers serious short channel effects at this gate length

  17. Detection beyond Debye's length with an electrolyte-gated organic field-effect transistor.

    Science.gov (United States)

    Palazzo, Gerardo; De Tullio, Donato; Magliulo, Maria; Mallardi, Antonia; Intranuovo, Francesca; Mulla, Mohammad Yusuf; Favia, Pietro; Vikholm-Lundin, Inger; Torsi, Luisa

    2015-02-04

    Electrolyte-gated organic field-effect transistors are successfully used as biosensors to detect binding events occurring at distances from the transistor electronic channel that are much larger than the Debye length in highly concentrated solutions. The sensing mechanism is mainly capacitive and is due to the formation of Donnan's equilibria within the protein layer, leading to an extra capacitance (CDON) in series to the gating system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Graphene field effect transistor without an energy gap.

    Science.gov (United States)

    Jang, Min Seok; Kim, Hyungjun; Son, Young-Woo; Atwater, Harry A; Goddard, William A

    2013-05-28

    Graphene is a room temperature ballistic electron conductor and also a very good thermal conductor. Thus, it has been regarded as an ideal material for postsilicon electronic applications. A major complication is that the relativistic massless electrons in pristine graphene exhibit unimpeded Klein tunneling penetration through gate potential barriers. Thus, previous efforts to realize a field effect transistor for logic applications have assumed that introduction of a band gap in graphene is a prerequisite. Unfortunately, extrinsic treatments designed to open a band gap seriously degrade device quality, yielding very low mobility and uncontrolled on/off current ratios. To solve this dilemma, we propose a gating mechanism that leads to a hundredfold enhancement in on/off transmittance ratio for normally incident electrons without any band gap engineering. Thus, our saw-shaped geometry gate potential (in place of the conventional bar-shaped geometry) leads to switching to an off state while retaining the ultrahigh electron mobility in the on state. In particular, we report that an on/off transmittance ratio of 130 is achievable for a sawtooth gate with a gate length of 80 nm. Our switching mechanism demonstrates that intrinsic graphene can be used in designing logic devices without serious alteration of the conventional field effect transistor architecture. This suggests a new variable for the optimization of the graphene-based device--geometry of the gate electrode.

  19. High performance tunnel field-effect transistor by gate and source engineering

    International Nuclear Information System (INIS)

    Huang, Ru; Huang, Qianqian; Chen, Shaowen; Wu, Chunlei; Wang, Jiaxin; An, Xia; Wang, Yangyuan

    2014-01-01

    As one of the most promising candidates for future nanoelectronic devices, tunnel field-effect transistors (TFET) can overcome the subthreshold slope (SS) limitation of MOSFET, whereas high ON-current, low OFF-current and steep switching can hardly be obtained at the same time for experimental TFETs. In this paper, we developed a new nanodevice technology based on TFET concepts. By designing the gate configuration and introducing the optimized Schottky junction, a multi-finger-gate TFET with a dopant-segregated Schottky source (mFSB-TFET) is proposed and experimentally demonstrated. A steeper SS can be achieved in the fabricated mFSB-TFET on the bulk Si substrate benefiting from the coupled quantum band-to-band tunneling (BTBT) mechanism, as well as a high I ON /I OFF ratio (∼10 7 ) at V DS  = 0.2 V without an area penalty. By compatible SOI CMOS technology, the fabricated Si mFSB-TFET device was further optimized with a high I ON /I OFF ratio of ∼10 8 and a steeper SS of over 5.5 decades of current. A minimum SS of below 60 mV dec −1 was experimentally obtained, indicating its dominant quantum BTBT mechanism for switching. (paper)

  20. Field-effect transistors based on self-organized molecular nanostripes

    DEFF Research Database (Denmark)

    Cavallini, M.; Stoliare, P.; Moulin, J.-F.

    2005-01-01

    Charge transport properties in organic semiconductors depend strongly on molecular order. Here we demonstrate field-effect transistors where drain current flows through a precisely defined array of nanostripes made of crystalline and highly ordered molecules. The molecular stripes are fabricated ...... by the menisci once the critical concentration is reached and self-organizes into molecularly ordered stripes 100-200 nm wide and a few monolayers high. The charge mobility measured along the stripes is 2 orders of magnitude larger than the values measured for spin-coated thin films....... across the channel of the transistor by a stamp-assisted deposition of the molecular semiconductors from a solution. As the solvent evaporates, the capillary forces drive the solution to form menisci under the stamp protrusions. The solute precipitates only in the regions where the solution is confined...

  1. The physical analysis on electrical junction of junctionless FET

    Directory of Open Access Journals (Sweden)

    Lun-Chun Chen

    2017-02-01

    Full Text Available We propose the concept of the electrical junction in a junctionless (JL field-effect-transistor (FET to illustrate the transfer characteristics of the JL FET. In this work, nanowire (NW junctionless poly-Si thin-film transistors are used to demonstrate this conception of the electrical junction. Though the dopant and the dosage of the source, of the drain, and of the channel are exactly the same in the JL FET, the transfer characteristics of the JL FET is similar to these of the conventional inversion-mode FET rather than these of a resistor, which is because of the electrical junction at the boundary of the gate and the drain in the JL FET. The electrical junction helps us to understand the JL FET, and also to explain the superior transfer characteristic of the JL FET with the gated raised S/D (Gout structure which reveals low drain-induced-barrier-lowering (DIBL and low breakdown voltage of ion impact ionization.

  2. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide

    International Nuclear Information System (INIS)

    Tanaka, Akiyo

    2004-01-01

    Gallium arsenide (GaAs), indium arsenide (InAs), and aluminium gallium arsenide (AlGaAs) are semiconductor applications. Although the increased use of these materials has raised concerns about occupational exposure to them, there is little information regarding the adverse health effects to workers arising from exposure to these particles. However, available data indicate these semiconductor materials can be toxic in animals. Although acute and chronic toxicity of the lung, reproductive organs, and kidney are associated with exposure to these semiconductor materials, in particular, chronic toxicity should pay much attention owing to low solubility of these materials. Between InAs, GaAs, and AlGaAs, InAs was the most toxic material to the lung followed by GaAs and AlGaAs when given intratracheally. This was probably due to difference in the toxicity of the counter-element of arsenic in semiconductor materials, such as indium, gallium, or aluminium, and not arsenic itself. It appeared that indium, gallium, or aluminium was toxic when released from the particles, though the physical character of the particles also contributes to toxic effect. Although there is no evidence of the carcinogenicity of InAs or AlGaAs, GaAs and InP, which are semiconductor materials, showed the clear evidence of carcinogenic potential. It is necessary to pay much greater attention to the human exposure of semiconductor materials

  3. Problems of noise modeling in the presence of total current branching in high electron mobility transistor and field-effect transistor channels

    International Nuclear Information System (INIS)

    Shiktorov, P; Starikov, E; Gružinskis, V; Varani, L; Sabatini, G; Marinchio, H; Reggiani, L

    2009-01-01

    In the framework of analytical and hydrodynamic models for the description of carrier transport and noise in high electron mobility transistor/field-effect transistor channels the main features of the intrinsic noise of transistors are investigated under continuous branching of the current between channel and gate. It is shown that the current-noise and voltage-noise spectra at the transistor terminals contain an excess noise related to thermal excitation of plasma wave modes in the dielectric layer between the channel and gate. It is found that the set of modes of excited plasma waves can be governed by the external embedding circuits, thus violating a universal description of noise in terms of Norton and Thevenin noise generators

  4. Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors

    KAUST Repository

    Kanimozhi, Catherine K.; Yaacobi-Gross, Nir; Chou, Kang Wei; Amassian, Aram; Anthopoulos, Thomas D.; Patil, Satish P.

    2012-01-01

    In this communication, we report the synthesis of a novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP)-based conjugated copolymer and its application in high-mobility organic field-effect transistors. Copolymerization of DPP with DPP yields a

  5. Microstructure-mobility correlation in self-organised, conjugated polymer field-effect transistors

    DEFF Research Database (Denmark)

    Sirringhaus, H.; Brown, P.J.; Friend, R.H.

    2000-01-01

    We have investigated the correlation between polymer microstructure and charge carrier mobility in high-mobility, self-organised field-effect transistors of poly-3-hexyl-thiophene (P3HT). Two different preferential orientations of the microcrystalline P3HT domains with respect to the substrate have...

  6. The Influence of Morphology on High-Performance Polymer Field-Effect Transistors

    DEFF Research Database (Denmark)

    Tsao, Hoi Nok; Cho, Don; Andreasen, Jens Wenzel

    2009-01-01

    The influence of molecular packing on the performance of polymer organic field-effect transistors is illustrated in this work. Both close -stacking distance and long-range order are important for achieving high mobilities. By aligning the polymers from solution, long-range order is induced...

  7. Intrinsic graphene field effect transistor on amorphous carbon films

    OpenAIRE

    Tinchev, Savcho

    2013-01-01

    Fabrication of graphene field effect transistor is described which uses an intrinsic graphene on the surface of as deposited hydrogenated amorphous carbon films. Ambipolar characteristic has been demonstrated typical for graphene devices, which changes to unipolar characteristic if the surface graphene was etched in oxygen plasma. Because amorphous carbon films can be growth easily, with unlimited dimensions and no transfer of graphene is necessary, this can open new perspective for graphene ...

  8. Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors

    International Nuclear Information System (INIS)

    Sakowicz, M.; Lusakowski, J.; Karpierz, K.; Grynberg, M.; Knap, W.; Gwarek, W.

    2008-01-01

    Detection of 100 GHz electromagnetic radiation by a GaAs/AlGaAs high electron mobility field-effect transistor was investigated at 300 K as a function of the angle α between the direction of linear polarization of the radiation and the symmetry axis of the transistor. The angular dependence of the detected signal was found to be A 0 cos 2 (α-α 0 )+C with A 0 , α 0 , and C dependent on the electrical polarization of the transistor gate. This dependence is interpreted as due to excitation of two crossed phase-shifted oscillators. A response of the transistor chip (including bonding wires and the substrate) to 100 GHz radiation was numerically simulated. Results of calculations confirmed experimentally observed dependencies and showed that the two oscillators result from an interplay of 100 GHz currents defined by the transistor impedance together with bonding wires and substrate related modes

  9. Room Temperature Silicene Field-Effect Transistors

    Science.gov (United States)

    Akinwande, Deji

    Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.

  10. The Bipolar Field-Effect Transistor: XIII. Physical Realizations of the Transistor and Circuits (One-Two-MOS-Gates on Thin-Thick Pure-Impure Base)

    International Nuclear Information System (INIS)

    Sah, C.-T.; Jie Binbin

    2009-01-01

    This paper reports the physical realization of the Bipolar Field-Effect Transistor (BiFET) and its one-transistor basic building block circuits. Examples are given for the one and two MOS gates on thin and thick, pure and impure base, with electron and hole contacts, and the corresponding theoretical current-voltage characteristics previously computed by us, without generation-recombination-trapping-tunneling of electrons and holes. These examples include the one-MOS-gate on semi-infinite thick impure base transistor (the bulk transistor) and the impurethin-base Silicon-on-Insulator (SOI) transistor and the two-MOS-gates on thin base transistors (the FinFET and the Thin Film Transistor TFT). Figures are given with the cross-section views containing the electron and hole concentration and current density distributions and trajectories and the corresponding DC current-voltage characteristics.

  11. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...

  12. Gate Tunable Transport in Graphene/MoS2/(Cr/Au Vertical Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ghazanfar Nazir

    2017-12-01

    Full Text Available Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS2/(Cr/Au vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr, the electrical transport in our Gr/MoS2/(Cr/Au vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS2 can be modified by back-gate voltage and the current bias. Vertical resistance (Rvert of a Gr/MoS2/(Cr/Au transistor is compared with planar resistance (Rplanar of a conventional lateral MoS2 field-effect transistor. We have also studied electrical properties for various thicknesses of MoS2 channels in both vertical and lateral transistors. As the thickness of MoS2 increases, Rvert increases, but Rplanar decreases. The increase of Rvert in the thicker MoS2 film is attributed to the interlayer resistance in the vertical direction. However, Rplanar shows a lower value for a thicker MoS2 film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.

  13. Highly Crumpled All-Carbon Transistors for Brain Activity Recording.

    Science.gov (United States)

    Yang, Long; Zhao, Yan; Xu, Wenjing; Shi, Enzheng; Wei, Wenjing; Li, Xinming; Cao, Anyuan; Cao, Yanping; Fang, Ying

    2017-01-11

    Neural probes based on graphene field-effect transistors have been demonstrated. Yet, the minimum detectable signal of graphene transistor-based probes is inversely proportional to the square root of the active graphene area. This fundamentally limits the scaling of graphene transistor-based neural probes for improved spatial resolution in brain activity recording. Here, we address this challenge using highly crumpled all-carbon transistors formed by compressing down to 16% of its initial area. All-carbon transistors, chemically synthesized by seamless integration of graphene channels and hybrid graphene/carbon nanotube electrodes, maintained structural integrity and stable electronic properties under large mechanical deformation, whereas stress-induced cracking and junction failure occurred in conventional graphene/metal transistors. Flexible, highly crumpled all-carbon transistors were further verified for in vivo recording of brain activity in rats. These results highlight the importance of advanced material and device design concepts to make improvements in neuroelectronics.

  14. Investigation on the corner effect of L-shaped tunneling field-effect transistors and their fabrication method.

    Science.gov (United States)

    Kim, Sang Wan; Choi, Woo Young; Sun, Min-Chul; Park, Byung-Gook

    2013-09-01

    In this work, electrical characteristics of L-shaped tunneling field-effect transistors (TFETs) have been studied and optimized by a commercial device simulator: Synopsys Sentaurus. Unlike our previous study performed by using Silvaco Atlas, there exists a kink phenomenon in a transfer curve which degrades the subthreshold swing (SS) and on-current (lon) of TFETs. According to simulation results, the kink results from abrupt source doping. Rounding the source junction edge with gradual doping profile is helpful to alleviate it. Based on those results, a novel fabrication flow has been proposed to suppress the kink effect induced by source corners. It is predicted that the performance of L-shaped TFETs is improved in terms of SS and Ion under the optimized process condition. Furthremore, the effect of high-k gate dielectric and narrow band gap material on device performance has been examined. Using 2-nm-thick HfO2 for gate dielectric and Si0.7Ge0.3 for intrinsic tunneling region, gate controllability to the channel and tunneling probability have been enhanced. As a result, its threshold voltage (Vth), SS and Ion have been improved by 0.13 V, 16 mV/dec, and 3.62 microA/microm, respectively.

  15. The role of magnetic fields for curvature effects in Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Jarmoliński, A.; Dobrowolski, T., E-mail: dobrow@up.krakow.pl

    2017-06-01

    The large area Josephson junction is considered. On the basis of Maxwell equations the influence of the magnetic field on fluxion dynamics is considered. The presented studies show that assumptions presumed in the literature do not restrict experimental settings adopted in the considerations of the fluxion movement in the Josephson junction. It is shown that the particular orientation of the magnetic fields is not needed in order to study physical effects of curvature and therefore they do not restrict the experimental arrangements.

  16. Microwave annealing effect for highly reliable biosensor: dual-gate ion-sensitive field-effect transistor using amorphous InGaZnO thin-film transistor.

    Science.gov (United States)

    Lee, In-Kyu; Lee, Kwan Hyi; Lee, Seok; Cho, Won-Ju

    2014-12-24

    We used a microwave annealing process to fabricate a highly reliable biosensor using amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs), which usually experience threshold voltage instability. Compared with furnace-annealed a-IGZO TFTs, the microwave-annealed devices showed superior threshold voltage stability and performance, including a high field-effect mobility of 9.51 cm(2)/V·s, a low threshold voltage of 0.99 V, a good subthreshold slope of 135 mV/dec, and an outstanding on/off current ratio of 1.18 × 10(8). In conclusion, by using the microwave-annealed a-IGZO TFT as the transducer in an extended-gate ion-sensitive field-effect transistor biosensor, we developed a high-performance biosensor with excellent sensing properties in terms of pH sensitivity, reliability, and chemical stability.

  17. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz

    2017-06-29

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer; source (or drain) contact stacks disposed on portions of the first i-layer; a second i-layer of organic semiconductor material disposed on the first i-layer surrounding the source (or drain) contact stacks; an n-doped organic semiconductor layer disposed on the second i-layer; and a drain (or source) contact layer disposed on the n-doped organic semiconductor layer. The source (or drain) contact stacks can include a p-doped injection layer, a source (or drain) contact layer, and a contact insulating layer. In another example, a method includes disposing a first i-layer over a gate insulating layer; forming source or drain contact stacks; and disposing a second i-layer, an n-doped organic semiconductor layer, and a drain or source contact.

  18. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    Science.gov (United States)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  19. Modeling of pH Dependent Electrochemical Noise in Ion Sensitive Field Effect Transistors ISFET

    Directory of Open Access Journals (Sweden)

    M. P. Das

    2013-02-01

    Full Text Available pH ISFETs are very important sensor for in vivo continuous monitoring application of physiological and environmental system. The accuracy of Ion Sensitive Field Effect Transistor (ISFET output measurement is greatly affected by the presences of noise, drift and slow response of the device. Although the noise analysis of ISFET so far performed in different literature relates only to sources originated from Field Effect Transistor (FET structure which are almost constant for a particular device, the pH dependent electrochemical noise has not been substantially explored and analyzed. In this paper we have investigated the low frequency pH dependent electrochemical noise that originates from the ionic conductance of the electrode-electrolyte-Field Effect Transistor structure of the device and that the noise depends on the concentration of the electrolyte and 1/f in nature. The statistical and frequency analysis of this electrochemical noise of a commercial ISFET sensor, under room temperature has been performed for six different pH values ranging from pH2 to pH9.2. We have also proposed a concentration dependent a/f & b/f2 model of the noise with different values of the coefficients a, b.

  20. Comment on "Performance of a spin based insulated gate field effect transistor" [cond-mat/0603260] [cond-mat/0603260

    OpenAIRE

    Bandyopadhyay, S.; Cahay, M.

    2006-01-01

    In a recent e-print [cond-mat/0603260] Hall and Flatte claim that a particular spin based field effect transistor (SPINFET), which they have analyzed, will have a lower threshold voltage, lower switching energy and lower leakage current than a comparable metal oxide semiconductor field effect transistor (MOSFET). Here, we show that all three claims of HF are invalid.

  1. Fabrication of a vertical channel field effect transistor and a study of its electrical performances

    International Nuclear Information System (INIS)

    Bhuiyan, A.S.

    1983-01-01

    A vertical channel field effect transistor on silicon was fabricated by diffusion technique and its electrical characteristics were studied as a function of voltage and temperature. It was found that this transistor has relatively high breakdown voltage of 65 volts for drain source and of 7.5 volts for gate source terminals. (author)

  2. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    Science.gov (United States)

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  3. Transport properties of hydrogen passivated silicon nanotubes and silicon nanotube field effect transistors

    KAUST Repository

    Montes Muñoz, Enrique

    2017-01-24

    We investigate the electronic transport properties of silicon nanotubes attached to metallic electrodes from first principles, using density functional theory and the non-equilibrium Green\\'s function method. The influence of the surface termination is studied as well as the dependence of the transport characteristics on the chirality, diameter, and length. Strong electronic coupling between nanotubes and electrodes is found to be a general feature that results in low contact resistance. The conductance in the tunneling regime is discussed in terms of the complex band structure. Silicon nanotube field effect transistors are simulated by applying a uniform potential gate. Our results demonstrate very high values of transconductance, outperforming the best commercial silicon field effect transistors, combined with low values of sub-threshold swing.

  4. Fringing field effects in negative capacitance field-effect transistors with a ferroelectric gate insulator

    Science.gov (United States)

    Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira

    2018-04-01

    We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.

  5. Low Temperature Noise and Electrical Characterization of the Company Heterojunction Field-Effect Transistor

    Science.gov (United States)

    Cunningham, Thomas J.; Gee, Russell C.; Fossum, Eric R.; Baier, Steven M.

    1993-01-01

    This paper discusses the electrical properties of the complementary heterojunction field-effect transistor (CHFET) at 4K, including the gate leakage current, the subthreshold transconductance, and the input-referred noise voltage.

  6. Pulse GaAs field transistor amplifier with subnanosecond time transient

    International Nuclear Information System (INIS)

    Sidnev, A.N.

    1987-01-01

    Pulse amplifier on fast field effect GaAs transistors with Schottky barrier is described. The amplifier contains four cascades, the first three of which are made on combined transistors on the common-drain circuit. The last cascade is made on high-power field effect GaAs transistor for coordination with 50 ohm load. The amplifier operates within the range of input signals from 0.5 up to 100 mV with repetition frequency up to 16 Hz, The gain of the amplifier is ≅ 20 dB. The setting time at output pulses amplitude up to 1 V constitutes ∼ 0.2 ns

  7. Novel field-effect schottky barrier transistors based on graphene-MoS 2 heterojunctions

    KAUST Repository

    Tian, He

    2014-08-11

    Recently, two-dimensional materials such as molybdenum disulphide (MoS 2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5-20 cm2/V.s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced in the novel transistors. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the backgate (through 300 nm SiO2) voltage to modulate the graphene-MoS2 Schottky barrier. Moreover, the field effective mobility of the FESBT is up to 58.7 cm2/V.s. Our theoretical analysis shows that if the thickness of oxide is further reduced, a subthreshold swing (SS) of 40 mV/decade can be maintained within three orders of drain current at room temperature. This provides an opportunity to overcome the limitation of 60 mV/decade for conventional CMOS devices. The FESBT implemented with a high on-off ratio, a relatively high mobility and a low subthreshold promises low-voltage and low-power applications for future electronics.

  8. Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions

    Science.gov (United States)

    Tian, He; Tan, Zhen; Wu, Can; Wang, Xiaomu; Mohammad, Mohammad Ali; Xie, Dan; Yang, Yi; Wang, Jing; Li, Lain-Jong; Xu, Jun; Ren, Tian-Ling

    2014-01-01

    Recently, two-dimensional materials such as molybdenum disulphide (MoS2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5–20 cm2/V·s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced in the novel transistors. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the backgate (through 300 nm SiO2) voltage to modulate the graphene-MoS2 Schottky barrier. Moreover, the field effective mobility of the FESBT is up to 58.7 cm2/V·s. Our theoretical analysis shows that if the thickness of oxide is further reduced, a subthreshold swing (SS) of 40 mV/decade can be maintained within three orders of drain current at room temperature. This provides an opportunity to overcome the limitation of 60 mV/decade for conventional CMOS devices. The FESBT implemented with a high on-off ratio, a relatively high mobility and a low subthreshold promises low-voltage and low-power applications for future electronics. PMID:25109609

  9. Silicon-on-insulator field effect transistor with improved body ties for rad-hard applications

    Science.gov (United States)

    Schwank, James R.; Shaneyfelt, Marty R.; Draper, Bruce L.; Dodd, Paul E.

    2001-01-01

    A silicon-on-insulator (SOI) field-effect transistor (FET) and a method for making the same are disclosed. The SOI FET is characterized by a source which extends only partially (e.g. about half-way) through the active layer wherein the transistor is formed. Additionally, a minimal-area body tie contact is provided with a short-circuit electrical connection to the source for reducing floating body effects. The body tie contact improves the electrical characteristics of the transistor and also provides an improved single-event-upset (SEU) radiation hardness of the device for terrestrial and space applications. The SOI FET also provides an improvement in total-dose radiation hardness as compared to conventional SOI transistors fabricated without a specially prepared hardened buried oxide layer. Complementary n-channel and p-channel SOI FETs can be fabricated according to the present invention to form integrated circuits (ICs) for commercial and military applications.

  10. Ultrathin regioregular poly(3-hexyl thiophene) field-effect transistors

    DEFF Research Database (Denmark)

    Sandberg, H.G.O.; Frey, G.L.; Shkunov, M.N.

    2002-01-01

    Ultrathin films of regioregular poly(3-hexyl thiophene) (RR-P3HT) were deposited through a dip-coating technique and utilized as the semiconducting film in field-effect transistors (FETs). Proper selection of the substrate and solution concentration enabled the growth of a monolayer-thick RR-P3HT...... film. Atomic force microscopy (AFM), U-V-vis absorption spectroscopy, X-ray reflectivity, and grazing incidence diffraction were used to study the growth mechanism, thickness and orientation of self-organized monolayer thick RR-P3HT films on SiO2 surfaces. Films were found to adopt a Stranski......-Krastanov-type growth mode with formation of a very stable first monolayer. X-ray measurements show that the direction of pi-stacking in the films (the (010) direction) is parallel to the substrate, which is the preferred orientation for high field-effect carrier mobilities. The field-effect mobilities in all ultrathin...

  11. Fabrication and electrical properties of MoS2 nanodisc-based back-gated field effect transistors.

    Science.gov (United States)

    Gu, Weixia; Shen, Jiaoyan; Ma, Xiying

    2014-02-28

    Two-dimensional (2D) molybdenum disulfide (MoS2) is an attractive alternative semiconductor material for next-generation low-power nanoelectronic applications, due to its special structure and large bandgap. Here, we report the fabrication of large-area MoS2 nanodiscs and their incorporation into back-gated field effect transistors (FETs) whose electrical properties we characterize. The MoS2 nanodiscs, fabricated via chemical vapor deposition (CVD), are homogeneous and continuous, and their thickness of around 5 nm is equal to a few layers of MoS2. In addition, we find that the MoS2 nanodisc-based back-gated field effect transistors with nickel electrodes achieve very high performance. The transistors exhibit an on/off current ratio of up to 1.9 × 105, and a maximum transconductance of up to 27 μS (5.4 μS/μm). Moreover, their mobility is as high as 368 cm2/Vs. Furthermore, the transistors have good output characteristics and can be easily modulated by the back gate. The electrical properties of the MoS2 nanodisc transistors are better than or comparable to those values extracted from single and multilayer MoS2 FETs.

  12. The free electron gas primary thermometer using an ordinary bipolar junction transistor approaches ppm accuracy

    Science.gov (United States)

    Mimila-Arroyo, J.

    2017-06-01

    In this paper, it is demonstrated that the free electron gas primary thermometer based on a bipolar junction transistor is able to provide the temperature with an accuracy of a few parts per million. Its simple functioning principle exploits the behavior of the collector current when properly biased to extract the temperature. Using general purpose silicon transistors at the water triple point (273.16 K) and gallium melting point (302.9146), an accuracy of a few parts per million has been reached, constituting the simplest and the easiest to operate primary thermometer, that might be considered even for the redefinition of Kelvin.

  13. Cylindrical Field Effect Transistor: A Full Volume Inversion Device

    KAUST Repository

    Fahad, Hossain M.

    2010-12-01

    The increasing demand for high performance as well as low standby power devices has been the main reason for the aggressive scaling of conventional CMOS transistors. Current devices are at the 32nm technology node. However, due to physical limitations as well as increase in short-channel effects, leakage, power dissipation, this scaling trend cannot continue and will eventually hit a barrier. In order to overcome this, alternate device topologies have to be considered altogether. Extensive research on ultra thin body double gate FETs and gate all around nanowire FETs has shown a lot of promise. Under strong inversion, these devices have demonstrated increased performance over their bulk counterparts. This is mainly attributed to full carrier inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors) which also like the above, relies on complete inversion of carriers in the body/bulk. Using dual gates; an outer and an inner gate, full-volume inversion is possible with benefits such as enhanced drive currents, high Ion/Ioff ratios and reduced short channel effects.

  14. High Performance Polymer Field-Effect Transistors Based on Thermally Crosslinked Poly(3-hexylthiophene)

    International Nuclear Information System (INIS)

    Jiang Chun-Xia; Yang Xiao-Yan; Zhao Kai; Wu Xiao-Ming; Yang Li-Ying; Cheng Xiao-Man; Yin Shou-Gen; Wei Jun

    2011-01-01

    The performance of polymer field-effect transistors is improved by thermal crosslinking ofpoly(3-hexylthiophene), using ditert butyl peroxide as the crosslinker. The device performance depends on the crosslinker concentration significantly. We obtain an optimal on/off ratio of 10 5 and the saturate field-effect mobility of 0.34cm 2 V −1 s −1 , by using a suitable ratios of ditert butyl peroxide, 0.5 wt% ofpoly(3-hexylthiophene). The microstructure images show that the crosslinked poly(3-hexylthiophene) active layers simultaneously possess appropriate crystallinity and smooth morphology. Moreover, crosslinking of poly(3-hexylthiophene) prevents the transistors from large threshold voltage shifts under ambient bias-stressing, showing an advantage in encouraging device environmental and operating stability. (cross-disciplinary physics and related areas of science and technology)

  15. Improving the performance of X-ray proportional counters by using field transistor preamplifiers

    International Nuclear Information System (INIS)

    Kalinina, N.I.; Mel'ttser, L.V.; Pan'kin, V.V.

    1972-01-01

    The possibility of using low-noise field-effect transistors with the n-channel in preamplifiers for x-ray proportional counters constitutes the object of this article. The operation of the preamplifier assembled according to the scheme of the voltage amplifier and charge-sensitive preamplifier has been studied. The use of the field-effect transistor with the n-channel in preamplifiers for proportional counters allows to improve significantly the energy resolution and operation at reduced voltage and at high loads. Notably good results have been obtained when constructing the circuit of the premplifier with the field-effect transistor on the charge-sensitive principle. The use of home-produced field-effect transistors makes it possible to construct detectors of roentgen radiometric instruments to measure light element content with proportional counters at reduced voltage

  16. Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals

    KAUST Repository

    Kozawa, Daichi

    2016-11-16

    Transition metal dichalcogenide monolayers have attracted much attention due to their strong light absorption and excellent electronic properties. These advantages make this type of two-dimensional crystal a promising one for optoelectronic device applications. In the case of photoelectric conversion devices such as photodetectors and photovoltaic cells, p–n junctions are one of the most important devices. Here, we demonstrate photodetection with WSe2 monolayer films. We prepare the electrolyte-gated ambipolar transistors and electrostatic p–n junctions are formed by the electrolyte-gating technique at 270 K. These p-n junctions are cooled down to fix the ion motion (and p-n junctions) and we observed the reasonable photocurrent spectra without the external bias, indicating the formation of p-n junctions. Very interestingly, two-terminal devices exhibit higher photoresponsivity than that of three-terminal ones, suggesting the formation of highly balanced anion and cation layers. The maximum photoresponsivity reaches 5 mA/W in resonance with the first excitonic peak. Our technique provides important evidence for optoelectronics in atomically thin crystals.

  17. Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals

    KAUST Repository

    Kozawa, Daichi; Pu, Jiang; Shimizu, Ryo; Kimura, Shota; Chiu, Ming-Hui; Matsuki, Keiichiro; Wada, Yoshifumi; Sakanoue, Tomo; Iwasa, Yoshihiro; Li, Lain-Jong; Takenobu, Taishi

    2016-01-01

    Transition metal dichalcogenide monolayers have attracted much attention due to their strong light absorption and excellent electronic properties. These advantages make this type of two-dimensional crystal a promising one for optoelectronic device applications. In the case of photoelectric conversion devices such as photodetectors and photovoltaic cells, p–n junctions are one of the most important devices. Here, we demonstrate photodetection with WSe2 monolayer films. We prepare the electrolyte-gated ambipolar transistors and electrostatic p–n junctions are formed by the electrolyte-gating technique at 270 K. These p-n junctions are cooled down to fix the ion motion (and p-n junctions) and we observed the reasonable photocurrent spectra without the external bias, indicating the formation of p-n junctions. Very interestingly, two-terminal devices exhibit higher photoresponsivity than that of three-terminal ones, suggesting the formation of highly balanced anion and cation layers. The maximum photoresponsivity reaches 5 mA/W in resonance with the first excitonic peak. Our technique provides important evidence for optoelectronics in atomically thin crystals.

  18. Influence of the substrate platform on the opto-electronic properties of multi-layer organic light-emitting field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Generali, Gianluca; Capelli, Raffaella; Toffanin, Stefano; Muccini, Michele [Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), via P. Gobetti 101, I-40129 Bologna (Italy); Dinelli, Franco, E-mail: g.generali@bo.ismn.cnr.it, E-mail: m.muccini@bo.ismn.cnr.it [Consiglio Nazionale delle Ricerche (CNR), INO U.O.S. ' A. Gozzini' Area della Ricerca di Pisa - S. Cataldo, via Moruzzi 1, I-56124 Pisa (Italy)

    2011-06-08

    In this paper, we present a study of the effects of the influence of the substrate platform on the properties of a three-layer vertical hetero-junction made of thin films of {alpha}, {omega}-diperfluorohexyl-4T (DHF4T), a blend of tris(8-hydroxyquinoline)aluminium (Alq3) and 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) and {alpha}, {omega}-dihexyl-quaterthiophene (DH4T). The hetero-junction represents the active component of an organic light-emitting transistor (OLET). The substrate platforms investigated in this study are glass/indium-tin-oxide/poly(methyl-methacrylate) (PMMA) and Si{sup ++}/silicon oxide (SiO{sub 2})/PMMA. The first platform is almost completely transparent to light and therefore is very promising for use in OLET applications. The second one has been chosen for comparison as it employs standard microelectronic materials, i.e. Si{sup ++}/SiO{sub 2}. We show how different gate materials and structure can affect the relevant field-effect electrical characteristics, such as the charge mobility and threshold voltage. By means of an atomic force microscopy analysis, a systematic study has been made in order to correlate the morphology of the active layers with the electrical properties of the devices.

  19. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor

    KAUST Repository

    Gao, Zhiyuan; Zhou, Jun; Gu, Yudong; Fei, Peng; Hao, Yue; Bao, Gang; Wang, Zhong Lin

    2009-01-01

    We have investigated the effects of piezoelectric potential in a ZnO nanowire on the transport characteristics of the nanowire based field effect transistor through numerical calculations and experimental observations. Under different straining

  20. Micro-structure-mobility correlation in self-organised, conjugated polymer field-effect transistors

    NARCIS (Netherlands)

    Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.A.J.; Meijer, E.W.

    2000-01-01

    We have investigated the correlation between polymer microstructure and charge carrier mobility in high-mobility, self-organised field-effect transistors of poly-3-hexyl-thiophene (P3HT). Two different preferential orientations of the microcrystalline P3HT domains with respect to the substrate have

  1. N-Type self-assembled monolayer field-effect transistors for flexible organic electronics

    NARCIS (Netherlands)

    Ringk, A.; Roelofs, Christian; Smits, E.C.P.; van der Marel, C.; Salzmann, I.; Neuhold, A.; Gelinck, G.H.; Resel, R.; de Leeuw, D.M.; Strohriegl, P.

    Within this work we present n-type self-assembled monolayer field-effect transistors (SAMFETs) based on a novel perylene bisimide. The molecule spontaneously forms a covalently fixed monolayer on top of an aluminium oxide dielectric via a phosphonic acid anchor group. Detailed studies revealed an

  2. Effect of 1MeV electron beam on transistors and circuits

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1998-02-01

    It has been known that semiconductor devices operating in a radiation environment exhibited significant alterations of their electrical responses. Since an electron beam bombardment produces lattice damage in Si and charged defects in SiO 2 , several electrical parameters of transistors exhibit significant changes. Those parameters are the current gain of BJT (Bipolar Junction Transistor) and the threshold voltage of MOSFET (Metal Oxide Semiconductor Field Effect Transistor). The degradation of transistors brings about that of circuits. This paper presents the results of experiments and simulations performed to study the effects of 1MeV electron beam irradiation on selected silicon transistors and circuits. For BJTs, the current gains of npn (2N3904) and pnp (2N3906) linearly decreased as the irradiation dose increased, and from this result, the damage constants, Ks were obtained as 13.65 for 2N3904 and 22.52 for 2N3906 in MGy, indicating a more stable operation in the electron radiation environment for pnp than that for npn. The decrease of current gain was due to that of minority-carrier lifetime in the base region. For MOSFETs (CD4007s), the threshold voltages of NMOS and PMOS shifted to the lower values, which was resulted from the accumulation of charge in SiO 2 . The charges could be categorized into fixed oxide charge and interfacial trap charge. From experimental results, the amounts of the induced charges could be quantitatively estimated. These degradations of transistors brought about the decrease in the voltage gain of CE (Common Emitter) amplifier and the shifts in the inverting voltage of inverter. Additionally, PSpice simulations of these circuits were carried out by modeling of irradiated transistors. The comparison of simulation with experiment showed the relatively good agreement of simulation for the degradation of circuits after irradiation

  3. Ambipolar transport of silver nanoparticles decorated graphene oxide field effect transistors

    Science.gov (United States)

    Sarkar, Kalyan Jyoti; Sarkar, K.; Pal, B.; Kumar, Aparabal; Das, Anish; Banerji, P.

    2018-05-01

    In this article, we report ambipolar field effect transistor (FET) by using graphene oxide (GO) as a gate dielectric material for silver nanoparticles (AgNPs) decorated GO channel layer. GO was synthesized by Hummers' method. The AgNPs were prepared via photochemical reduction of silver nitrate solution by using monoethanolamine as a reducing agent. Morphological properties of channel layer were characterized by Field Effect Scanning Electron Microscopy (FESEM). Fourier Transform Infrared Spectroscopy (FTIR) was carried out to characterize GO thin film. For device fabrication gold (Au) was deposited as source-drain contact and aluminum (Al) was taken as bottom contact. Electrical measurements were performed by back gate configuration. Ambipolar transport behavior was explained from transfer characteristics. A maximum electron mobiliy of 6.65 cm2/Vs and a hole mobility of 2.46 cm2/Vs were extracted from the transfer characteristics. These results suggest that GO is a potential candidate as a gate dielectric material for thin film transistor applications and also provides new insights in GO based research.

  4. AlN metal-semiconductor field-effect transistors using Si-ion implantation

    Science.gov (United States)

    Okumura, Hironori; Suihkonen, Sami; Lemettinen, Jori; Uedono, Akira; Zhang, Yuhao; Piedra, Daniel; Palacios, Tomás

    2018-04-01

    We report on the electrical characterization of Si-ion implanted AlN layers and the first demonstration of metal-semiconductor field-effect transistors (MESFETs) with an ion-implanted AlN channel. The ion-implanted AlN layers with Si dose of 5 × 1014 cm-2 exhibit n-type characteristics after thermal annealing at 1230 °C. The ion-implanted AlN MESFETs provide good drain current saturation and stable pinch-off operation even at 250 °C. The off-state breakdown voltage is 2370 V for drain-to-gate spacing of 25 µm. These results show the great potential of AlN-channel transistors for high-temperature and high-power applications.

  5. Investigations of Tunneling for Field Effect Transistors

    OpenAIRE

    Matheu, Peter

    2012-01-01

    Over 40 years of scaling dimensions for new and continuing product cycles has introduced new challenges for transistor design. As the end of the technology roadmap for semiconductors approaches, new device structures are being investigated as possible replacements for traditional metal-oxide-semiconductor field effect transistors (MOSFETs). Band-to-band tunneling (BTBT) in semiconductors, often viewed as an adverse effect of short channel lengths in MOSFETs, has been discussed as a promising ...

  6. Current fluctuation of electron and hole carriers in multilayer WSe{sub 2} field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho-Kyun; Jin, Jun Eon; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); Kim, Yong Jin; Kim, Young Keun [Department of Materials Science and Engineering, Korea University, Seoul 02481 (Korea, Republic of); Shin, Minju [School of Electrical Engineering, Korea University, Seoul 02481 (Korea, Republic of); IMEP-LAHC, Grenoble INP-MINATEC, 3 Parvis Louis Neel, 38016 Grenoble (France)

    2015-12-14

    Two-dimensional materials have outstanding scalability due to their structural and electrical properties for the logic devices. Here, we report the current fluctuation in multilayer WSe{sub 2} field effect transistors (FETs). In order to demonstrate the impact on carrier types, n-type and p-type WSe{sub 2} FETs are fabricated with different work function metals. Each device has similar electrical characteristics except for the threshold voltage. In the low frequency noise analysis, drain current power spectral density (S{sub I}) is inversely proportional to frequency, indicating typical 1/f noise behaviors. The curves of the normalized drain current power spectral density (NS{sub I}) as a function of drain current at the 10 Hz of frequency indicate that our devices follow the carrier number fluctuation with correlated mobility fluctuation model. This means that current fluctuation depends on the trapping-detrapping motion of the charge carriers near the channel interface. No significant difference is observed in the current fluctuation according to the charge carrier type, electrons and holes that occurred in the junction and channel region.

  7. Low dielectric constant-based organic field-effect transistors and metal-insulator-semiconductor capacitors

    Science.gov (United States)

    Ukah, Ndubuisi Benjamin

    This thesis describes a study of PFB and pentacene-based organic field-effect transistors (OFET) and metal-insulator-semiconductor (MIS) capacitors with low dielectric constant (k) poly(methyl methacrylate) (PMMA), poly(4-vinyl phenol) (PVP) and cross-linked PVP (c-PVP) gate dielectrics. A physical method -- matrix assisted pulsed laser evaporation (MAPLE) -- of fabricating all-polymer field-effect transistors and MIS capacitors that circumvents inherent polymer dissolution and solvent-selectivity problems, is demonstrated. Pentacene-based OFETs incorporating PMMA and PVP gate dielectrics usually have high operating voltages related to the thickness of the dielectric layer. Reduced PMMA layer thickness (≤ 70 nm) was obtained by dissolving the PMMA in propylene carbonate (PC). The resulting pentacene-based transistors exhibited very low operating voltage (below -3 V), minimal hysteresis in their transfer characteristics, and decent electrical performance. Also low voltage (within -2 V) operation using thin (≤ 80 nm) low-k and hydrophilic PVP and c-PVP dielectric layers obtained via dissolution in high dipole moment and high-k solvents -- PC and dimethyl sulfoxide (DMSO), is demonstrated to be a robust means of achieving improved electrical characteristics and high operational stability in OFETs incorporating PVP and c-PVP dielectrics.

  8. Graphene-based field effect transistor in two-dimensional paper networks

    Energy Technology Data Exchange (ETDEWEB)

    Cagang, Aldrine Abenoja; Abidi, Irfan Haider; Tyagi, Abhishek [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Hu, Jie; Xu, Feng [Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an 710049 (China); The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Lu, Tian Jian [Bioinspired Engineering and Biomechanics Center (BEBC), Xi' an Jiaotong University, Xi' an 710049 (China); Luo, Zhengtang, E-mail: keztluo@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2016-04-21

    We demonstrate the fabrication of a graphene-based field effect transistor (GFET) incorporated in a two-dimensional paper network format (2DPNs). Paper serves as both a gate dielectric and an easy-to-fabricate vessel for holding the solution with the target molecules in question. The choice of paper enables a simpler alternative approach to the construction of a GFET device. The fabricated device is shown to behave similarly to a solution-gated GFET device with electron and hole mobilities of ∼1256 cm{sup 2} V{sup −1} s{sup −1} and ∼2298 cm{sup 2} V{sup −1} s{sup −1} respectively and a Dirac point around ∼1 V. When using solutions of ssDNA and glucose it was found that the added molecules induce negative electrolytic gating effects shifting the conductance minimum to the right, concurrent with increasing carrier concentrations which results to an observed increase in current response correlated to the concentration of the solution used. - Highlights: • A graphene-based field effect transistor sensor was fabricated for two-dimensional paper network formats. • The constructed GFET on 2DPN was shown to behave similarly to solution-gated GFETs. • Electrolyte gating effects have more prominent effect over adsorption effects on the behavior of the device. • The GFET incorporated on 2DPN was shown to yield linear response to presence of glucose and ssDNA soaked inside the paper.

  9. Graphene-based field effect transistor in two-dimensional paper networks

    International Nuclear Information System (INIS)

    Cagang, Aldrine Abenoja; Abidi, Irfan Haider; Tyagi, Abhishek; Hu, Jie; Xu, Feng; Lu, Tian Jian; Luo, Zhengtang

    2016-01-01

    We demonstrate the fabrication of a graphene-based field effect transistor (GFET) incorporated in a two-dimensional paper network format (2DPNs). Paper serves as both a gate dielectric and an easy-to-fabricate vessel for holding the solution with the target molecules in question. The choice of paper enables a simpler alternative approach to the construction of a GFET device. The fabricated device is shown to behave similarly to a solution-gated GFET device with electron and hole mobilities of ∼1256 cm 2  V −1  s −1 and ∼2298 cm 2  V −1  s −1 respectively and a Dirac point around ∼1 V. When using solutions of ssDNA and glucose it was found that the added molecules induce negative electrolytic gating effects shifting the conductance minimum to the right, concurrent with increasing carrier concentrations which results to an observed increase in current response correlated to the concentration of the solution used. - Highlights: • A graphene-based field effect transistor sensor was fabricated for two-dimensional paper network formats. • The constructed GFET on 2DPN was shown to behave similarly to solution-gated GFETs. • Electrolyte gating effects have more prominent effect over adsorption effects on the behavior of the device. • The GFET incorporated on 2DPN was shown to yield linear response to presence of glucose and ssDNA soaked inside the paper.

  10. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  11. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2016-01-01

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  12. Experimental apparatus for teaching electrostatic topics: the electroscope with field-effect transistor

    Directory of Open Access Journals (Sweden)

    Thiago Alves de Sá Muniz Sampaio

    2017-05-01

    Full Text Available Regular school labs lack experiments that can properly identify many of the phenomena present in the electrostatic study. This paper proposes the implementation of a new kind of simple experimental apparatus for teaching topics in this area of physics, consisting of an electroscope kind that uses the field-effect transistor for detecting electric charges coming from electrified bodies. An explanation is given on the principles that makes this type of transistor an effective device due to its high sensitivity to electrostatic fields, as well as an analysis of the usefulness of this project for viewing many peculiar phenomena, such as polarization and induction. Based on this, we propose some simple activities that can be done in the classroom to involve students in the initial subject of electrostatics. We expect that this form of teaching along with experimental and explanatory approach of the phenomena in the classroom can bring to students a better learning of these concepts, demonstrating the utility of experimentation on teaching electrostatics.

  13. Size-effects in indium gallium arsenide nanowire field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zota, Cezar B., E-mail: cezar.zota@eit.lth.se; Lind, E. [Department of Electrical and Information Technology, Lund University, Lund 22101 (Sweden)

    2016-08-08

    We fabricate and analyze InGaAs nanowire MOSFETs with channel widths down to 18 nm. Low-temperature measurements reveal quantized conductance due to subband splitting, a characteristic of 1D systems. We relate these features to device performance at room-temperature. In particular, the threshold voltage versus nanowire width is explained by direct observation of quantization of the first sub-band, i.e., band gap widening. An analytical effective mass quantum well model is able to describe the observed band structure. The results reveal a compromise between reliability, i.e., V{sub T} variability, and on-current, through the mean free path, in the choice of the channel material.

  14. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    Science.gov (United States)

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  15. Interface-Dependent Effective Mobility in Graphene Field-Effect Transistors

    Science.gov (United States)

    Ahlberg, Patrik; Hinnemo, Malkolm; Zhang, Shi-Li; Olsson, Jörgen

    2018-03-01

    By pretreating the substrate of a graphene field-effect transistor (G-FET), a stable unipolar transfer characteristic, instead of the typical V-shape ambipolar behavior, has been demonstrated. This behavior is achieved through functionalization of the SiO2/Si substrate that changes the SiO2 surface from hydrophilic to hydrophobic, in combination with postdeposition of an Al2O3 film by atomic layer deposition (ALD). Consequently, the back-gated G-FET is found to have increased apparent hole mobility and suppressed apparent electron mobility. Furthermore, with addition of a top-gate electrode, the G-FET is in a double-gate configuration with independent top- or back-gate control. The observed difference in mobility is shown to also be dependent on the top-gate bias, with more pronounced effect at higher electric field. Thus, the combination of top and bottom gates allows control of the G-FET's electron and hole mobilities, i.e., of the transfer behavior. Based on these observations, it is proposed that polar ligands are introduced during the ALD step and, depending on their polarization, result in an apparent increase of the effective hole mobility and an apparent suppressed effective electron mobility.

  16. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto

    2015-01-01

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  17. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  18. Background noise characteristics of field effect transistors for X-ray detection units

    International Nuclear Information System (INIS)

    Gostilo, V.V.

    1990-01-01

    Energy equivalent for noise of experimental samples of field-effect transistors for X-ray detection units is investigated. Resolution of 160 eV for lines of 5.9 keV is obtained in detection unit with drain feedback using the Si(Li)-detector of 25 mm 2 by square

  19. Single-Layer Pentacene Field-Effect Transistors Using Electrodes Modified With Self-assembled Monolayers

    NARCIS (Netherlands)

    Asadi, Kamal; Wu, Yu; Gholamrezaie, Fatemeh; Rudolf, Petra; Blom, Paul W. M.

    2009-01-01

    Pentacene field-effect transistor performance can be improved by modifying metal electrodes with self-assembled monolayers. The dominant role in performance is played by pentacene morphology rather than the work function of the modified electrodes. With optimized processing conditions,

  20. Polymer-free graphene transfer for enhanced reliability of graphene field-effect transistors

    International Nuclear Information System (INIS)

    Park, Hamin; Park, Ick-Joon; Jung, Dae Yool; Lee, Khang June; Yang, Sang Yoon; Choi, Sung-Yool

    2016-01-01

    We propose a polymer-free graphene transfer technique for chemical vapor deposition-grown graphene to ensure the intrinsic electrical properties of graphene for reliable transistor applications. The use of a metal catalyst as a supporting layer avoids contamination from the polymer material and graphene films become free of polymer residue after the transfer process. Atomic force microscopy and Raman spectroscopy indicate that the polymer-free transferred graphene shows closer properties to intrinsic graphene properties. The reliability of graphene field-effect transistors (GFETs) was investigated through the analysis of the negative gate bias-stress-induced instability. This work reveals the effect of polymer residues on the reliability of GFETs, and that the developed new polymer-free transfer method enhances the reliability. (letter)

  1. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be

  2. Gate-induced carrier delocalization in quantum dot field effect transistors.

    Science.gov (United States)

    Turk, Michael E; Choi, Ji-Hyuk; Oh, Soong Ju; Fafarman, Aaron T; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R; Kikkawa, James M

    2014-10-08

    We study gate-controlled, low-temperature resistance and magnetotransport in indium-doped CdSe quantum dot field effect transistors. We show that using the gate to accumulate electrons in the quantum dot channel increases the "localization product" (localization length times dielectric constant) describing transport at the Fermi level, as expected for Fermi level changes near a mobility edge. Our measurements suggest that the localization length increases to significantly greater than the quantum dot diameter.

  3. Ternary logic implemented on a single dopant atom field effect silicon transistor

    NARCIS (Netherlands)

    Klein, M.; Mol, J.A.; Verduijn, J.; Lansbergen, G.P.; Rogge, S.; Levine, R.D.; Remacle, F.

    2010-01-01

    We provide an experimental proof of principle for a ternary multiplier realized in terms of the charge state of a single dopant atom embedded in a fin field effect transistor (Fin-FET). Robust reading of the logic output is made possible by using two channels to measure the current flowing through

  4. Fabrication and characterization on reduced graphene oxide field effect transistor (RGOFET) based biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, A. Diyana [School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh, Perlis (Malaysia); Ruslinda, A. Rahim, E-mail: ruslinda@unimap.edu.my; Fatin, M. F. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis (Malaysia); Hashim, U.; Arshad, M. K. [School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh, Perlis (Malaysia); Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis (Malaysia)

    2016-07-06

    The fabrication and characterization on reduced graphene oxide field effect transistor (RGO-FET) were demonstrated using a spray deposition method for biological sensing device purpose. A spray method is a fast, low-cost and simple technique to deposit graphene and the most promising technology due to ideal coating on variety of substrates and high production speed. The fabrication method was demonstrated for developing a label free aptamer reduced graphene oxide field effect transistor biosensor. Reduced graphene oxide (RGO) was obtained by heating on hot plate fixed at various temperatures of 100, 200 and 300°C, respectively. The surface morphology of RGO were examined via atomic force microscopy to observed the temperature effect of produced RGO. The electrical measurement verify the performance of electrical conducting RGO-FET at temperature 300°C is better as compared to other temperature due to the removal of oxygen groups in GO. Thus, reduced graphene oxide was a promising material for biosensor application.

  5. Intrinsic noise in aggressively scaled field-effect transistors

    International Nuclear Information System (INIS)

    Albareda, G; Jiménez, D; Oriols, X

    2009-01-01

    According to roadmap projections, nanoscale field-effect transistors (FETs) with channel lengths below 30 nm and several gates (for improving their gate control over the source–drain conductance) will come to the market in the next few years. However, few studies deal with the noise performance of these aggressively scaled FETs. In this work, a study of the effect of the intrinsic (thermal and shot) noise of such FETs on the performance of an analog amplifier and a digital inverter is carried out by means of numerical simulations with a powerful Monte Carlo (quantum) simulator. The numerical data indicate important drawbacks in the noise performance of aggressively scaled FETs that could invalidate roadmap projections as regards analog and digital applications

  6. Memristive device based on a depletion-type SONOS field effect transistor

    Science.gov (United States)

    Himmel, N.; Ziegler, M.; Mähne, H.; Thiem, S.; Winterfeld, H.; Kohlstedt, H.

    2017-06-01

    State-of-the-art SONOS (silicon-oxide-nitride-oxide-polysilicon) field effect transistors were operated in a memristive switching mode. The circuit design is a variation of the MemFlash concept and the particular properties of depletion type SONOS-transistors were taken into account. The transistor was externally wired with a resistively shunted pn-diode. Experimental current-voltage curves show analog bipolar switching characteristics within a bias voltage range of ±10 V, exhibiting a pronounced asymmetric hysteresis loop. The experimental data are confirmed by SPICE simulations. The underlying memristive mechanism is purely electronic, which eliminates an initial forming step of the as-fabricated cells. This fact, together with reasonable design flexibility, in particular to adjust the maximum R ON/R OFF ratio, makes these cells attractive for neuromorphic applications. The relative large set and reset voltage around ±10 V might be decreased by using thinner gate-oxides. The all-electric operation principle, in combination with an established silicon manufacturing process of SONOS devices at the Semiconductor Foundry X-FAB, promise reliable operation, low parameter spread and high integration density.

  7. Effect of Coulomb scattering from trapped charges on the mobility in an organic field-effect transistor

    NARCIS (Netherlands)

    Sharma, A.; Janssen, N.M.A.; Matthijssen, S.J.G.; de Leeuw, D.M.; Kemerink, M.; Bobbert, P.A.

    2011-01-01

    We investigate the effect of Coulomb scattering from trapped charges on the mobility in the two-dimensional channel of an organic field-effect transistor. The number of trapped charges can be tuned by applying a prolonged gate bias. Surprisingly, after increasing the number of trapped charges to a

  8. Tin - an unlikely ally for silicon field effect transistors?

    KAUST Repository

    Hussain, Aftab M.

    2014-01-13

    We explore the effectiveness of tin (Sn), by alloying it with silicon, to use SiSn as a channel material to extend the performance of silicon based complementary metal oxide semiconductors. Our density functional theory based simulation shows that incorporation of tin reduces the band gap of Si(Sn). We fabricated our device with SiSn channel material using a low cost and scalable thermal diffusion process of tin into silicon. Our high-κ/metal gate based multi-gate-field-effect-transistors using SiSn as channel material show performance enhancement, which is in accordance with the theoretical analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Diazaisoindigo bithiophene and terthiophene copolymers for application in field-effect transistors and solar cells

    KAUST Repository

    Yue, Wan; Li, Cheng; Tian, Xuelin; Li, Weiwei; Neophytou, Marios; Chen, Hu; Du, Weiyuan; Jellett, Cameron; Chen, Hung-Yang; Onwubiko, Ada; McCulloch, Iain

    2017-01-01

    Two donor–acceptor conjugated polymers with azaisoindigo as acceptor units and bithiophene and terthiophene as donor units have been synthesized by Stille polymerization. These two polymers have been successfully applied in field-effect transistors

  10. Removing the current-limit of vertical organic field effect transistors

    Science.gov (United States)

    Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir

    2017-11-01

    The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.

  11. Numerical analysis of band tails in nanowires and their effects on the performance of tunneling field-effect transistors

    Science.gov (United States)

    Tanaka, Takahisa; Uchida, Ken

    2018-06-01

    Band tails in heavily doped semiconductors are one of the important parameters that determine transfer characteristics of tunneling field-effect transistors. In this study, doping concentration and doing profile dependences of band tails in heavily doped Si nanowires were analyzed by a nonequilibrium Green function method. From the calculated band tails, transfer characteristics of nanowire tunnel field-effect transistors were numerically analyzed by Wentzel–Kramer–Brillouin approximation with exponential barriers. The calculated transfer characteristics demonstrate that the band tails induced by dopants degrade the subthreshold slopes of Si nanowires from 5 to 56 mV/dec in the worst case. On the other hand, surface doping leads to a high drain current while maintaining a small subthreshold slope.

  12. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  13. Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs).

    Science.gov (United States)

    Choi, Woo Young; Lee, Hyun Kook

    2016-01-01

    The steady scaling-down of semiconductor device for improving performance has been the most important issue among researchers. Recently, as low-power consumption becomes one of the most important requirements, there have been many researches about novel devices for low-power consumption. Though scaling supply voltage is the most effective way for low-power consumption, performance degradation is occurred for metal-oxide-semiconductor field-effect transistors (MOSFETs) when supply voltage is reduced because subthreshold swing (SS) of MOSFETs cannot be lower than 60 mV/dec. Thus, in this thesis, hetero-gate-dielectric tunneling field-effect transistors (HG TFETs) are investigated as one of the most promising alternatives to MOSFETs. By replacing source-side gate insulator with a high- k material, HG TFETs show higher on-current, suppressed ambipolar current and lower SS than conventional TFETs. Device design optimization through simulation was performed and fabrication based on simulation demonstrated that performance of HG TFETs were better than that of conventional TFETs. Especially, enlargement of gate insulator thickness while etching gate insulator at the source side was improved by introducing HF vapor etch process. In addition, the proposed HG TFETs showed higher performance than our previous results by changing structure of sidewall spacer by high- k etching process.

  14. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    Science.gov (United States)

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Solution-Processable Balanced Ambipolar Field-Effect Transistors Based on Carbonyl-Regulated Copolymers.

    Science.gov (United States)

    Yang, Chengdong; Fang, Renren; Yang, Xiongfa; Chen, Ru; Gao, Jianhua; Fan, Hanghong; Li, Hongxiang; Hu, Wenping

    2018-04-04

    It is very important to develop ambipolar field effect transistors to construct complementary circuits. To obtain balanced hole- and electron-transport properties, one of the key issues is to regulate the energy levels of the frontier orbitals of the semiconductor materials by structural tailoring, so that they match well with the electrode Fermi levels. Five conjugated copolymers were synthesized and exhibited low LUMO energy levels and narrow bandgaps on account of the strong electron-withdrawing effect of the carbonyl groups. Polymer thin film transistors were prepared by using a solution method and exhibited high and balanced hole and electron mobility of up to 0.46 cm 2  V -1  s -1 , which suggested that these copolymers are promising ambipolar semiconductor materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Low-voltage self-assembled monolayer field-effect transistors on flexible substrates.

    Science.gov (United States)

    Schmaltz, Thomas; Amin, Atefeh Y; Khassanov, Artoem; Meyer-Friedrichsen, Timo; Steinrück, Hans-Georg; Magerl, Andreas; Segura, Juan José; Voitchovsky, Kislon; Stellacci, Francesco; Halik, Marcus

    2013-08-27

    Self-assembled monolayer field-effect transistors (SAMFETs) of BTBT functionalized phosphonic acids are fabricated. The molecular design enables device operation with charge carrier mobilities up to 10(-2) cm(2) V(-1) s(-1) and for the first time SAMFETs which operate on rough, flexible PEN substrates even under mechanical substrate bending. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phase transition and field effect topological quantum transistor made of monolayer MoS2

    Science.gov (United States)

    Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.

    2018-06-01

    We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.

  18. Effects of Energy Relaxation via Quantum Coupling Among Three-Dimensional Motion on the Tunneling Current of Graphene Field-Effect Transistors.

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Li, Xijun

    2015-12-01

    We report theoretical study of the effects of energy relaxation on the tunneling current through the oxide layer of a two-dimensional graphene field-effect transistor. In the channel, when three-dimensional electron thermal motion is considered in the Schrödinger equation, the gate leakage current at a given oxide field largely increases with the channel electric field, electron mobility, and energy relaxation time of electrons. Such an increase can be especially significant when the channel electric field is larger than 1 kV/cm. Numerical calculations show that the relative increment of the tunneling current through the gate oxide will decrease with increasing the thickness of oxide layer when the oxide is a few nanometers thick. This highlights that energy relaxation effect needs to be considered in modeling graphene transistors.

  19. MIS field effect transistor with barium titanate thin film as a gate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Firek, P., E-mail: pfirek@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Werbowy, A.; Szmidt, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland)

    2009-11-25

    The properties of barium titanate (BaTiO{sub 3}, BT) like, e.g. high dielectric constant and resistivity, allow it to find numerous applications in field of microelectronics. In this work silicon metal insulator semiconductor field effect transistor (MISFET) structures with BaTiO{sub 3} (containing La{sub 2}O{sub 3} admixture) thin films in a role of gate insulator were investigated. The films were produced by means of radio frequency plasma sputtering (RF PS) of sintered BaTiO{sub 3} + La{sub 2}O{sub 3} (2 wt.%) target. In the paper transfer and output current-voltage (I-V), transconductance and output conductance characteristics of obtained transistors are presented and discussed. Basic parameters of these devices like, e.g. threshold voltage (V{sub TH}), are determined and discussed.

  20. Field-effect transistors as electrically controllable nonlinear rectifiers for the characterization of terahertz pulses

    Science.gov (United States)

    Lisauskas, Alvydas; Ikamas, Kestutis; Massabeau, Sylvain; Bauer, Maris; ČibiraitÄ--, DovilÄ--; Matukas, Jonas; Mangeney, Juliette; Mittendorff, Martin; Winnerl, Stephan; Krozer, Viktor; Roskos, Hartmut G.

    2018-05-01

    We propose to exploit rectification in field-effect transistors as an electrically controllable higher-order nonlinear phenomenon for the convenient monitoring of the temporal characteristics of THz pulses, for example, by autocorrelation measurements. This option arises because of the existence of a gate-bias-controlled super-linear response at sub-threshold operation conditions when the devices are subjected to THz radiation. We present measurements for different antenna-coupled transistor-based THz detectors (TeraFETs) employing (i) AlGaN/GaN high-electron-mobility and (ii) silicon CMOS field-effect transistors and show that the super-linear behavior in the sub-threshold bias regime is a universal phenomenon to be expected if the amplitude of the high-frequency voltage oscillations exceeds the thermal voltage. The effect is also employed as a tool for the direct determination of the speed of the intrinsic TeraFET response which allows us to avoid limitations set by the read-out circuitry. In particular, we show that the build-up time of the intrinsic rectification signal of a patch-antenna-coupled CMOS detector changes from 20 ps in the deep sub-threshold voltage regime to below 12 ps in the vicinity of the threshold voltage.

  1. Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sanne, A.; Movva, H. C. P.; Kang, S.; McClellan, C.; Corbet, C. M.; Banerjee, S. K. [Microelectronics Research Center, University of Texas, Austin, Texas 78758 (United States)

    2014-02-24

    We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriers as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.

  2. Ultra-low specific on-resistance high-voltage vertical double diffusion metal–oxide–semiconductor field-effect transistor with continuous electron accumulation layer

    International Nuclear Information System (INIS)

    Ma Da; Luo Xiao-Rong; Wei Jie; Tan Qiao; Zhou Kun; Wu Jun-Feng

    2016-01-01

    A new ultra-low specific on-resistance (R on,sp ) vertical double diffusion metal–oxide–semiconductor field-effect transistor (VDMOS) with continuous electron accumulation (CEA) layer, denoted as CEA-VDMOS, is proposed and its new current transport mechanism is investigated. It features a trench gate directly extended to the drain, which includes two PN junctions. In on-state, the electron accumulation layers are formed along the sides of the extended gate and introduce two continuous low-resistance current paths from the source to the drain in a cell pitch. This mechanism not only dramatically reduces the R on,sp but also makes the R on,sp almost independent of the n-pillar doping concentration (N n ). In off-state, the depletion between the n-pillar and p-pillar within the extended trench gate increases the N n , and further reduces the R on,sp . Especially, the two PN junctions within the trench gate support a high gate–drain voltage in the off-state and on-state, respectively. However, the extended gate increases the gate capacitance and thus weakens the dynamic performance to some extent. Therefore, the CEA-VDMOS is more suitable for low and medium frequencies application. Simulation indicates that the CEA-VDMOS reduces the R on,sp by 80% compared with the conventional super-junction VDMOS (CSJ-VDMOS) at the same high breakdown voltage (BV). (paper)

  3. Novel field-effect schottky barrier transistors based on graphene-MoS 2 heterojunctions

    KAUST Repository

    Tian, He; Tan, Zhen; Wu, Can; Wang, Xiaomu; Mohammad, Mohammad Ali; Xie, Dan; Yang, Yi; Wang, Jing; Li, Lain-Jong; Xu, Jun; Ren, Tian-Ling

    2014-01-01

    0.5-20 cm2/V.s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced

  4. Bias temperature instability in tunnel field-effect transistors

    Science.gov (United States)

    Mizubayashi, Wataru; Mori, Takahiro; Fukuda, Koichi; Ishikawa, Yuki; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Liu, Yongxun; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Matsukawa, Takashi; Masahara, Meishoku; Endo, Kazuhiko

    2017-04-01

    We systematically investigated the bias temperature instability (BTI) of tunnel field-effect transistors (TFETs). The positive BTI and negative BTI mechanisms in TFETs are the same as those in metal-oxide-semiconductor FETs (MOSFETs). In TFETs, although traps are generated in high-k gate dielectrics by the bias stress and/or the interface state is degraded at the interfacial layer/channel interface, the threshold voltage (V th) shift due to BTI degradation is caused by the traps and/or the degradation of the interface state locating the band-to-band tunneling (BTBT) region near the source/gate edge. The BTI lifetime in n- and p-type TFETs is improved by applying a drain bias corresponding to the operation conditions.

  5. Importance of the Debye screening length on nanowire field effect transistor sensors.

    Science.gov (United States)

    Stern, Eric; Wagner, Robin; Sigworth, Fred J; Breaker, Ronald; Fahmy, Tarek M; Reed, Mark A

    2007-11-01

    Nanowire field effect transistors (NW-FETs) can serve as ultrasensitive detectors for label-free reagents. The NW-FET sensing mechanism assumes a controlled modification in the local channel electric field created by the binding of charged molecules to the nanowire surface. Careful control of the solution Debye length is critical for unambiguous selective detection of macromolecules. Here we show the appropriate conditions under which the selective binding of macromolecules is accurately sensed with NW-FET sensors.

  6. Current-Induced Transistor Sensorics with Electrogenic Cells

    Directory of Open Access Journals (Sweden)

    Peter Fromherz

    2016-04-01

    Full Text Available The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned.

  7. Synthesis and Field-effect Transistor Behavior of New Oligo-selenophene Derivatives

    Institute of Scientific and Technical Information of China (English)

    Jiwon; Hong; In-Hwan; Jung; Hong-ku; Shim

    2007-01-01

    1 Results In recent years,interests in organic semiconductor have increased due to the applications in optoelectronic devices such as organic light-emitting diodes (OLEDs)[1],field-effect transistors (FETs)[2],and photovoltaic devices[3]. These organic electronics have several advantages over conventional inorganic electronics including facile processability,chemical tunability,compatibility with plastic substrates,and low cost to fabricate. Selenophene-based molecules show good π-conjugating electron o...

  8. Analysis of the two dimensional Datta-Das Spin Field Effect Transistor

    OpenAIRE

    Bandyopadhyay, S.

    2010-01-01

    An analytical expression is derived for the conductance modulation of a ballistic two dimensional Datta-Das Spin Field Effect Transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.

  9. Analysis of the two-dimensional Datta-Das spin field effect transistor

    Science.gov (United States)

    Agnihotri, P.; Bandyopadhyay, S.

    2010-03-01

    An analytical expression is derived for the conductance modulation of a ballistic two-dimensional Datta-das spin field effect transistor (SPINFET) as a function of gate voltage. Using this expression, we show that the recently observed conductance modulation in a two-dimensional SPINFET structure does not match the theoretically expected result very well. This calls into question the claimed demonstration of the SPINFET and underscores the need for further careful investigation.

  10. Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.

    OpenAIRE

    Park, J.; Jeong, Y-S.; Park, K-S.; Do, L-M.; Bae, J-H.; Choi, J.S.; Pearson, C.; Petty, M.C.

    2012-01-01

    Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the infl...

  11. 3D NANOTUBE FIELD EFFECT TRANSISTORS FOR HYBRID HIGH-PERFORMANCE AND LOW-POWER OPERATION WITH HIGH CHIP-AREA EFFICIENCY

    KAUST Repository

    Fahad, Hossain M.

    2014-03-01

    scaling on silicon, the amount of current generated per device has to be increased while keeping short channel effects and off-state leakage at bay. The objective of this doctoral thesis is the investigation of an innovative vertical silicon based architecture called the silicon nanotube field effect transistor (Si NTFET). This topology incorporates a dual inner/outer core/shell gate stack strategy to control the volume inversion properties in a hollow silicon 1D quasi-nanotube under a tight electrostatic configuration. Together with vertically aligned source and drain, the Si NTFET is capable of very high on-state performance (drive current) in an area-efficient configuration as opposed to arrays of gate-all-around nanowires, while maintaining leakage characteristics similar to a single nanowire. Such a device architecture offsets the need of device arraying that is needed with fin and nanowire architectures. Extensive simulations are used to validate the potential benefits of Si NTFETs over GAA NWFETs on a variety of platforms such as conventional MOSFETs, tunnel FETs, junction-less FETs. This thesis demonstrates a novel CMOS compatible process flow to fabricate vertical nanotube transistors that offer a variety of advantages such as lithography-independent gate length definition, integration of epitaxially grown silicon nanotubes with spacer based gate dielectrics and abrupt in-situ doped source/drain junctions. Experimental measurement data will showcase the various materials and processing challenges in fabricating these devices. Finally, an extension of this work to topologically transformed wavy channel FinFETs is also demonstrated keeping in line with the theme of area efficient high-performance electronics.

  12. Optimizing switching frequency of the soliton transistor by numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Izadyar, S., E-mail: S_izadyar@yahoo.co [Department of Electronics, Khaje Nasir Toosi University of Technology, Shariati Ave., Tehran (Iran, Islamic Republic of); Niazzadeh, M.; Raissi, F. [Department of Electronics, Khaje Nasir Toosi University of Technology, Shariati Ave., Tehran (Iran, Islamic Republic of)

    2009-10-15

    In this paper, by numerical simulations we have examined different ways to increase the soliton transistor's switching frequency. Speed of the solitons in a soliton transistor depends on various parameters such as the loss of the junction, the applied bias current, and the transmission line characteristics. Three different ways have been examined; (i) decreasing the size of the transistor without losing transistor effect. (ii) Decreasing the amount of loss of the junction to increase the soliton speed. (iii) Optimizing the bias current to obtain maximum possible speed. We have obtained the shortest possible length to have at least one working soliton inside the transistor. The dimension of the soliton can be decreased by changing the inductance of the transmission line, causing a further decrease in the size of the transistor, however, a trade off between the size and the inductance is needed to obtain the optimum switching speed. Decreasing the amount of loss can be accomplished by increasing the characteristic tunneling resistance of the device, however, a trade off is again needed to make soliton and antisoliton annihilation possible. By increasing the bias current, the forces acting the solitons increases and so does their speed. Due to nonuniform application of bias current a self induced magnetic field is created which can result in creation of unwanted solitons. Optimum bias current application can result in larger bias currents and larger soliton speed. Simulations have provided us with such an arrangement of bias current paths.

  13. Optimizing switching frequency of the soliton transistor by numerical simulation

    International Nuclear Information System (INIS)

    Izadyar, S.; Niazzadeh, M.; Raissi, F.

    2009-01-01

    In this paper, by numerical simulations we have examined different ways to increase the soliton transistor's switching frequency. Speed of the solitons in a soliton transistor depends on various parameters such as the loss of the junction, the applied bias current, and the transmission line characteristics. Three different ways have been examined; (i) decreasing the size of the transistor without losing transistor effect. (ii) Decreasing the amount of loss of the junction to increase the soliton speed. (iii) Optimizing the bias current to obtain maximum possible speed. We have obtained the shortest possible length to have at least one working soliton inside the transistor. The dimension of the soliton can be decreased by changing the inductance of the transmission line, causing a further decrease in the size of the transistor, however, a trade off between the size and the inductance is needed to obtain the optimum switching speed. Decreasing the amount of loss can be accomplished by increasing the characteristic tunneling resistance of the device, however, a trade off is again needed to make soliton and antisoliton annihilation possible. By increasing the bias current, the forces acting the solitons increases and so does their speed. Due to nonuniform application of bias current a self induced magnetic field is created which can result in creation of unwanted solitons. Optimum bias current application can result in larger bias currents and larger soliton speed. Simulations have provided us with such an arrangement of bias current paths.

  14. Performance improvement in novel germanium-tin/germanium heterojunction-enhanced p-channel tunneling field-effect transistor

    Science.gov (United States)

    Wang, Hongjuan; Liu, Yan; Liu, Mingshan; Zhang, Qingfang; Zhang, Chunfu; Ma, Xiaohua; Zhang, Jincheng; Hao, Yue; Han, Genquan

    2015-07-01

    We design a novel GeSn-based heterojunction-enhanced p-channel tunneling field-effect transistor (HE-PTFET) with a Ge0.92Sn0.08/Ge heterojunction located in channel region, at a distance of LT-H from the Ge0.92Sn0.08 source-channel tunneling junction (TJ). HE-PTFETs demonstrate the negative shift of onset voltage VONSET, the steeper subthreshold swing S, and the improved on-state current ION compared to Ge0.92Sn0.08 homo-PTFET. At low VGS, the suppression of BTBT due to the widening of the tunneling barrier caused by the heterojunction leads to a negative shift of VONSET in HE-PTFETs. At high VGS, ION enhancement in HE-PTFETs is achieved over the homo device, which is attributed to the confinement of BTBT in Ge0.92Sn0.08 source-channel TJ region by the heterojunction, where the short tunneling paths lead to a high tunneling probability. Due to the steeper average S, HE-PTFET with a 6 nm LT-H achieves a 4 times higher ION compared to homo device at a VDD of -0.3 V.

  15. Leakage and field emission in side-gate graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Di Bartolomeo, A., E-mail: dibant@sa.infn.it; Iemmo, L.; Romeo, F.; Cucolo, A. M. [Physics Department “E.R. Caianiello,” University of Salerno, via G. Paolo II, 84084 Fisciano (Italy); CNR-SPIN Salerno, via G. Paolo II, 84084 Fisciano (Italy); Giubileo, F. [CNR-SPIN Salerno, via G. Paolo II, 84084 Fisciano (Italy); Russo, S.; Unal, S. [Physics Department, University of Exeter, Stocker Road 6, Exeter, Devon EX4 4QL (United Kingdom); Passacantando, M.; Grossi, V. [Department of Physical and Chemical Sciences, University of L' Aquila, Via Vetoio, 67100 Coppito, L' Aquila (Italy)

    2016-07-11

    We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO{sub 2}/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO{sub 2} up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current density as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices.

  16. Single ZnO nanowire-PZT optothermal field effect transistors.

    Science.gov (United States)

    Hsieh, Chun-Yi; Lu, Meng-Lin; Chen, Ju-Ying; Chen, Yung-Ting; Chen, Yang-Fang; Shih, Wan Y; Shih, Wei-Heng

    2012-09-07

    A new type of pyroelectric field effect transistor based on a composite consisting of single zinc oxide nanowire and lead zirconate titanate (ZnO NW-PZT) has been developed. Under infrared (IR) laser illumination, the transconductance of the ZnO NW can be modulated by optothermal gating. The drain current can be increased or decreased by IR illumination depending on the polarization orientation of the Pb(Zr(0.3)Ti(0.7))O(3) (PZT) substrate. Furthermore, by combining the photocurrent behavior in the UV range and the optothermal gating effect in the IR range, the wide spectrum of response of current by light offers a variety of opportunities for nanoscale optoelectronic devices.

  17. Practical guide to organic field effect transistor circuit design

    CERN Document Server

    Sou, Antony

    2016-01-01

    The field of organic electronics spans a very wide range of disciplines from physics and chemistry to hardware and software engineering. This makes the field of organic circuit design a daunting prospect full of intimidating complexities, yet to be exploited to its true potential. Small focussed research groups also find it difficult to move beyond their usual boundaries and create systems-on-foil that are comparable with the established silicon world.This book has been written to address these issues, intended for two main audiences; firstly, physics or materials researchers who have thus far designed circuits using only basic drawing software; and secondly, experienced silicon CMOS VLSI design engineers who are already knowledgeable in the design of full custom transistor level circuits but are not familiar with organic devices or thin film transistor (TFT) devices.In guiding the reader through the disparate and broad subject matters, a concise text has been written covering the physics and chemistry of the...

  18. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect

    Science.gov (United States)

    Zhou, Hong; Maize, Kerry; Qiu, Gang; Shakouri, Ali; Ye, Peide D.

    2017-08-01

    We have demonstrated that depletion/enhancement-mode β-Ga2O3 on insulator field-effect transistors can achieve a record high drain current density of 1.5/1.0 A/mm by utilizing a highly doped β-Ga2O3 nano-membrane as the channel. β-Ga2O3 on insulator field-effect transistor (GOOI FET) shows a high on/off ratio of 1010 and low subthreshold slope of 150 mV/dec even with 300 nm thick SiO2. The enhancement-mode GOOI FET is achieved through surface depletion. An ultra-fast, high resolution thermo-reflectance imaging technique is applied to study the self-heating effect by directly measuring the local surface temperature. High drain current, low Rc, and wide bandgap make the β-Ga2O3 on insulator field-effect transistor a promising candidate for future power electronics applications.

  19. The effect of metal-buffer bilayer drain/source electrodes on the operational stability of the organic field effect transistors

    International Nuclear Information System (INIS)

    Karimi-Alavijeh, H.R.; Ehsani, A.

    2015-01-01

    In this paper, we have investigated experimentally the effect of different drain/source (D/S) electrodes and charge injection buffer layers on the electrical properties and operational stability of a stilbene organic field effect transistor (OFET). The results show that the organic buffer layer of copper phthalocyanine (CuPc) considerably improves the electrical properties of the transistors, but has a negligible effect on their temporal behavior. On the other hand, inorganic metal-oxide buffer layer of molybdenum oxide (MoO 3 ) drastically changes both the electrical properties and operational stability. The functionalities of this metal-oxide tightly depend on the properties of the D/S metallic electrodes. OFETs with Al/MoO 3 as the bilayer D/S electrodes have the best electrical properties: field effect mobility μ eff = 0.32 cm 2 V −1 s −1 and threshold voltage V TH = − 5 V and the transistors with Ag/MoO 3 have the longest operational stability. It was concluded that the chemical stability of the metal/metal-oxide or metal/organic interfaces of the bilayer D/S electrodes determine the operational stability of the OFETs. - Highlights: • The effect of buffer layers on the performance of the stilbene OFETs has been investigated. • Inorganic buffer layer improved the electrical and temporal behaviors simultaneously. • Organic buffer layer only changes the electrical properties. • Chemical stability of the interfaces determines the operational stability of the transistor

  20. Theoretical study of phosphorene tunneling field effect transistors

    International Nuclear Information System (INIS)

    Chang, Jiwon; Hobbs, Chris

    2015-01-01

    In this work, device performances of tunneling field effect transistors (TFETs) based on phosphorene are explored via self-consistent atomistic quantum transport simulations. Phosphorene is an ultra-thin two-dimensional (2-D) material with a direct band gap suitable for TFETs applications. Our simulation shows that phosphorene TFETs exhibit subthreshold slope below 60 mV/dec and a wide range of on-current depending on the transport direction due to highly anisotropic band structures of phosphorene. By benchmarking with monolayer MoTe 2 TFETs, we predict that phosphorene TFETs oriented in the small effective mass direction can yield much larger on-current at the same on-current/off-current ratio than monolayer MoTe 2 TFETs. It is also observed that a gate underlap structure is required for scaling down phosphorene TFETs in the small effective mass direction to suppress the source-to-drain direct tunneling leakage current

  1. Theoretical study of phosphorene tunneling field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jiwon; Hobbs, Chris [SEMATECH, 257 Fuller Rd #2200, Albany, New York 12203 (United States)

    2015-02-23

    In this work, device performances of tunneling field effect transistors (TFETs) based on phosphorene are explored via self-consistent atomistic quantum transport simulations. Phosphorene is an ultra-thin two-dimensional (2-D) material with a direct band gap suitable for TFETs applications. Our simulation shows that phosphorene TFETs exhibit subthreshold slope below 60 mV/dec and a wide range of on-current depending on the transport direction due to highly anisotropic band structures of phosphorene. By benchmarking with monolayer MoTe{sub 2} TFETs, we predict that phosphorene TFETs oriented in the small effective mass direction can yield much larger on-current at the same on-current/off-current ratio than monolayer MoTe{sub 2} TFETs. It is also observed that a gate underlap structure is required for scaling down phosphorene TFETs in the small effective mass direction to suppress the source-to-drain direct tunneling leakage current.

  2. Noise characteristics of single-walled carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-01-01

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors

  3. Integrated materials design of organic semiconductors for field-effect transistors.

    Science.gov (United States)

    Mei, Jianguo; Diao, Ying; Appleton, Anthony L; Fang, Lei; Bao, Zhenan

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm(2)/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications.

  4. Quantum simulation of an ultrathin body field-effect transistor with channel imperfections

    Science.gov (United States)

    Vyurkov, V.; Semenikhin, I.; Filippov, S.; Orlikovsky, A.

    2012-04-01

    An efficient program for the all-quantum simulation of nanometer field-effect transistors is elaborated. The model is based on the Landauer-Buttiker approach. Our calculation of transmission coefficients employs a transfer-matrix technique involving the arbitrary precision (multiprecision) arithmetic to cope with evanescent modes. Modified in such way, the transfer-matrix technique turns out to be much faster in practical simulations than that of scattering-matrix. Results of the simulation demonstrate the impact of realistic channel imperfections (random charged centers and wall roughness) on transistor characteristics. The Landauer-Buttiker approach is developed to incorporate calculation of the noise at an arbitrary temperature. We also validate the ballistic Landauer-Buttiker approach for the usual situation when heavily doped contacts are indispensably included into the simulation region.

  5. Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor

    KAUST Repository

    Lan, Yann Wen

    2016-09-05

    The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.

  6. Transistor Effect in Improperly Connected Transistors.

    Science.gov (United States)

    Luzader, Stephen; Sanchez-Velasco, Eduardo

    1996-01-01

    Discusses the differences between the standard representation and a realistic representation of a transistor. Presents an experiment that helps clarify the explanation of the transistor effect and shows why transistors should be connected properly. (JRH)

  7. Modeling quantization effects in field effect transistors

    International Nuclear Information System (INIS)

    Troger, C.

    2001-06-01

    Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied

  8. Use of cermet thin film resistors with nitride passivated metal insulator field effect transistor

    Science.gov (United States)

    Brown, G. A.; Harrap, V.

    1971-01-01

    Film deposition of cermet resistors on same chip with metal nitride oxide silicon field effect transistors permits protection of contamination sensitive active devices from contaminants produced in cermet deposition and definition processes. Additional advantages include lower cost, greater reliability, and space savings.

  9. A disorder induced field effect transistor in bilayer and trilayer graphene

    International Nuclear Information System (INIS)

    Xu Dongwei; Liu Haiwen; Sacksteder IV, Vincent; Sun Qingfeng; Song Juntao; Jiang Hua; Xie, X C

    2013-01-01

    We propose using disorder to produce a field effect transistor (FET) in biased bilayer and trilayer graphene. Modulation of the bias voltage can produce large variations in the conductance when the effects of disorder are confined to only one of the graphene layers. This effect is based on the ability of the bias voltage to select which of the graphene layers carries current, and is not tied to the presence of a gap in the density of states. In particular, we demonstrate this effect in models of gapless ABA-stacked trilayer graphene, gapped ABC-stacked trilayer graphene and gapped bilayer graphene. (paper)

  10. Monolayer field effect transistor as a probe of electronic defects in organic semiconducting layers at organic/inorganic hetero-junction interface

    International Nuclear Information System (INIS)

    Park, Byoungnam

    2016-01-01

    The origin of a large negative threshold voltage observed in monolayer (ML) field effect transistors (FETs) is explored using in-situ electrical measurements through confining the thickness of an active layer to the accumulation layer thickness. Using ML pentacene FETs combined with gated multiple-terminal devices and atomic force microscopy, the effect of electronic and structural evolution of a ML pentacene film on the threshold voltage in an FET, proportional to the density of deep traps, was probed, revealing that a large negative threshold voltage found in ML FETs results from the pentacene/SiO_2 and pentacene/metal interfaces. More importantly, the origin of the threshold voltage difference between ML and thick FETs is addressed through a model in which the effective charge transport layer is transitioned from the pentacene layer interfacing with the SiO_2 gate dielectric to the upper layers with pentacene thickness increasing evidenced by pentacene coverage dependent threshold voltage measurements. - Highlights: • The origin of a large negative threshold voltage in accumulation layer is revealed. • Electronic localized states at the nanometer scale are separately probed from the bulk. • The second monolayer becomes the effective charge transport layer governing threshold voltage.

  11. Mobility Engineering in Vertical Field Effect Transistors Based on Van der Waals Heterostructures.

    Science.gov (United States)

    Shin, Yong Seon; Lee, Kiyoung; Kim, Young Rae; Lee, Hyangsook; Lee, I Min; Kang, Won Tae; Lee, Boo Heung; Kim, Kunnyun; Heo, Jinseong; Park, Seongjun; Lee, Young Hee; Yu, Woo Jong

    2018-03-01

    Vertical integration of 2D layered materials to form van der Waals heterostructures (vdWHs) offers new functional electronic and optoelectronic devices. However, the mobility in vertical carrier transport in vdWHs of vertical field-effect transistor (VFET) is not yet investigated in spite of the importance of mobility for the successful application of VFETs in integrated circuits. Here, the mobility in VFET of vdWHs under different drain biases, gate biases, and metal work functions is first investigated and engineered. The traps in WSe 2 are the main source of scattering, which influences the vertical mobility and three distinct transport mechanisms: Ohmic transport, trap-limited transport, and space-charge-limited transport. The vertical mobility in VFET can be improved by suppressing the trap states by raising the Fermi level of WSe 2 . This is achieved by increasing the injected carrier density by applying a high drain voltage, or decreasing the Schottky barrier at the graphene/WSe 2 and metal/WSe 2 junctions by applying a gate bias and reducing the metal work function, respectively. Consequently, the mobility in Mn vdWH at +50 V gate voltage is about 76 times higher than the initial mobility of Au vdWH. This work enables further improvements in the VFET for successful application in integrated circuits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors

    KAUST Repository

    Mei, Jianguo

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications. © 2013 American Chemical Society.

  13. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.

    Science.gov (United States)

    Passi, Vikram; Gahoi, Amit; Senkovskiy, Boris V; Haberer, Danny; Fischer, Felix R; Grüneis, Alexander; Lemme, Max C

    2018-03-28

    We report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons. The channels of the FETs are approximately 30 times longer than the average nanoribbon length of 30 nm to 40 nm. The density of the GNRs is high, so that transport can be assumed well-above the percolation threshold. The long channel transistors exhibit a maximum I ON / I OFF current ratio of 87.5.

  14. Organic phthalocyanine films with high mobilities for efficient field-effect transistor switches

    Czech Academy of Sciences Publication Activity Database

    Schauer, F.; Zhivkov, I.; Nešpůrek, Stanislav

    266-269, 1-3 (2000), s. 999-1003 ISSN 0022-3093. [International Conference on Amorphous and Microcrystalline Semiconductors /18./. Snowbird, 23.08.1999-27.08.1999] R&D Projects: GA MŠk OC 518.10; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : phthalocyanine * charge mobility * field-effect transistor Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.269, year: 2000

  15. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    Science.gov (United States)

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  16. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing

    Science.gov (United States)

    Chang, Yi-Kuei; Hong, Franklin Chau-Nan

    2009-05-01

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min-1), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 105, a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm2 V-1 s-1. The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  17. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing

    International Nuclear Information System (INIS)

    Chang, Y-K; Hong, Franklin Chau-Nan

    2009-01-01

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min -1 ), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 10 5 , a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm 2 V -1 s -1 . The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  18. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y-K; Hong, Franklin Chau-Nan [Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)], E-mail: hong@mail.ncku.edu.tw

    2009-05-13

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min{sup -1}), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 10{sup 5}, a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm{sup 2} V{sup -1} s{sup -1}. The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  19. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  20. Magnetophoretic transistors in a tri-axial magnetic field.

    Science.gov (United States)

    Abedini-Nassab, Roozbeh; Joh, Daniel Y; Albarghouthi, Faris; Chilkoti, Ashutosh; Murdoch, David M; Yellen, Benjamin B

    2016-10-18

    The ability to direct and sort individual biological and non-biological particles into spatially addressable locations is fundamentally important to the emerging field of single cell biology. Towards this goal, we demonstrate a new class of magnetophoretic transistors, which can switch single magnetically labeled cells and magnetic beads between different paths in a microfluidic chamber. Compared with prior work on magnetophoretic transistors driven by a two-dimensional in-plane rotating field, the addition of a vertical magnetic field bias provides significant advantages in preventing the formation of particle clumps and in better replicating the operating principles of circuits in general. However, the three-dimensional driving field requires a complete redesign of the magnetic track geometry and switching electrodes. We have solved this problem by developing several types of transistor geometries which can switch particles between two different tracks by either presenting a local energy barrier or by repelling magnetic objects away from a given track, hereby denoted as "barrier" and "repulsion" transistors, respectively. For both types of transistors, we observe complete switching of magnetic objects with currents of ∼40 mA, which is consistent over a range of particle sizes (8-15 μm). The switching efficiency was also tested at various magnetic field strengths (50-90 Oe) and driving frequencies (0.1-0.6 Hz); however, we again found that the device performance only weakly depended on these parameters. These findings support the use of these novel transistor geometries to form circuit architectures in which cells can be placed in defined locations and retrieved on demand.

  1. Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ping Feng

    2014-09-01

    Full Text Available One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed.

  2. Silicon junctionless field effect transistors as room temperature terahertz detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marczewski, J., E-mail: jmarcz@ite.waw.pl; Tomaszewski, D.; Zaborowski, M. [Institute of Electron Technology, al. Lotnikow 32/46, 02-668 Warsaw (Poland); Knap, W. [Institute of High Pressure Physics of the Polish Academy of Sciences, ul. Sokolowska 29/37, 01-142 Warsaw (Poland); Laboratory Charles Coulomb, Montpellier University & CNRS, Place E. Bataillon, Montpellier 34095 (France); Zagrajek, P. [Institute of Optoelectronics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw (Poland)

    2015-09-14

    Terahertz (THz) radiation detection by junctionless metal-oxide-semiconductor field-effect transistors (JL MOSFETs) was studied and compared with THz detection using conventional MOSFETs. It has been shown that in contrast to the behavior of standard transistors, the junctionless devices have a significant responsivity also in the open channel (low resistance) state. The responsivity for a photolithographically defined JL FET was 70 V/W and the noise equivalent power 460 pW/√Hz. Working in the open channel state may be advantageous for THz wireless and imaging applications because of its low thermal noise and possible high operating speed or large bandwidth. It has been proven that the junctionless MOSFETs can also operate in a zero gate bias mode, which enables simplification of the THz array circuitry. Existing models of THz detection by MOSFETs were considered and it has been demonstrated that the process of detection by these junctionless devices cannot be explained within the framework of the commonly accepted models and therefore requires a new theoretical approach.

  3. IC Compatible Wafer Level Fabrication of Silicon Nanowire Field Effect Transistors for Biosensing Applications

    NARCIS (Netherlands)

    Moh, T.S.Y.

    2013-01-01

    In biosensing, nano-devices such as Silicon Nanowire Field Effect Transistors (SiNW FETs) are promising components/sensors for ultra-high sensitive detection, especially when samples are low in concentration or a limited volume is available. Current processing of SiNW FETs often relies on expensive

  4. Extended Gate Field-Effect Transistor Biosensors for Point-Of-Care Testing of Uric Acid.

    Science.gov (United States)

    Guan, Weihua; Reed, Mark A

    2017-01-01

    An enzyme-free redox potential sensor using off-chip extended-gate field effect transistor (EGFET) with a ferrocenyl-alkanethiol modified gold electrode has been used to quantify uric acid concentration in human serum and urine. Hexacyanoferrate (II) and (III) ions are used as redox reagent. The potentiometric sensor measures the interface potential on the ferrocene immobilized gold electrode, which is modulated by the redox reaction between uric acid and hexacyanoferrate ions. The device shows a near Nernstian response to uric acid and is highly specific to uric acid in human serum and urine. The interference that comes from glucose, bilirubin, ascorbic acid, and hemoglobin is negligible in the normal concentration range of these interferents. The sensor also exhibits excellent long term reliability and is regenerative. This extended gate field effect transistor based sensor is promising for point-of-care detection of uric acid due to the small size, low cost, and low sample volume consumption.

  5. ON current enhancement of nanowire Schottky barrier tunnel field effect transistors

    Science.gov (United States)

    Takei, Kohei; Hashimoto, Shuichiro; Sun, Jing; Zhang, Xu; Asada, Shuhei; Xu, Taiyu; Matsukawa, Takashi; Masahara, Meishoku; Watanabe, Takanobu

    2016-04-01

    Silicon nanowire Schottky barrier tunnel field effect transistors (NW-SBTFETs) are promising structures for high performance devices. In this study, we fabricated NW-SBTFETs to investigate the effect of nanowire structure on the device characteristics. The NW-SBTFETs were operated with a backgate bias, and the experimental results demonstrate that the ON current density is enhanced by narrowing the width of the nanowire. We confirmed using the Fowler-Nordheim plot that the drain current in the ON state mainly comprises the quantum tunneling component through the Schottky barrier. Comparison with a technology computer aided design (TCAD) simulation revealed that the enhancement is attributed to the electric field concentration at the corners of cross-section of the NW. The study findings suggest an effective approach to securing the ON current by Schottky barrier width modulation.

  6. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dib, E., E-mail: elias.dib@for.unipi.it [Dipartimento di Ingegneria dell' Informazione, Università di Pisa, 56122 Pisa (Italy); Carrillo-Nuñez, H. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland); Cavassilas, N.; Bescond, M. [IM2NP, UMR CNRS 6242, Bât. IRPHE, Technopôle de Château-Gombert, 13384 Marseille Cedex 13 (France)

    2016-01-28

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations.

  7. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    International Nuclear Information System (INIS)

    Dib, E.; Carrillo-Nuñez, H.; Cavassilas, N.; Bescond, M.

    2016-01-01

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations

  8. A simple ionizing radiation spectrometer/dosimeter based on radiation sensing field effect transistors (RadFETs)

    International Nuclear Information System (INIS)

    Moreno, D.J.; Hughes, R.C.; Jenkins, M.W.; Drumm, C.R.

    1997-01-01

    This paper reports on the processing steps in a silicon foundry leading to improved performance of the Radiation Sensing Field Effect Transistor (RadFET) and the use of multiple RadFETs in a handheld, battery operated, combination spectrometer/dosimeter

  9. Synthesis, characterization of the pentacene and fabrication of pentacene field-effect transistors

    International Nuclear Information System (INIS)

    Tao Chunlan; Zhang Xuhui; Dong Maojun; Sun Shuo; Ou Guping; Zhang Fujia; Liu Yiyang; Zhang Haoli

    2008-01-01

    A comprehensive understanding of the organic semiconductor material pentacene is meaningful for organic field-effect transistors (OFETs). Thin films of pentacene are the most mobile molecular films known to date. This paper reported that the pentacene sample was successfully synthesized. The purity of pentacene is up to 95%. The results of a joint experimental investigation based on a combination of infrared absorption spectra, mass spectra (MS), element analysis, x-ray diffraction (XRD) and atom force microscopy (AFM). The authors fabricated OFET with the synthesized pentacene. Its field effect mobility is about 1.23 cm 2 /(V·s) and on-off ratio is above 10 6

  10. High performance low voltage organic field effect transistors on plastic substrate for amplifier circuits

    NARCIS (Netherlands)

    Houin, G.J.R.; Duez, F.; Garcia, L.; Cantatore, E.; Torricelli, F.; Hirsch, L.; Belot, D.; Pellet, C.; Abbas, M.

    2016-01-01

    The high performance air stable organic semiconductor small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) was chosen as active layer for field effect transistors built to realize flexible amplifier circuits. Initial device on rigid Si/SiO2 substrate showed appreciable performance

  11. Stable Low-Voltage Operation Top-Gate Organic Field-Effect Transistors on Cellulose Nanocrystal Substrates

    Science.gov (United States)

    Cheng-Yin Wang; Canek Fuentes-Hernandez; Jen-Chieh Liu; Amir Dindar; Sangmoo Choi; Jeffrey P. Youngblood; Robert J. Moon; Bernard Kippelen

    2015-01-01

    We report on the performance and the characterization of top-gate organic field-effect transistors (OFETs), comprising a bilayer gate dielectric of CYTOP/ Al2O3 and a solution-processed semiconductor layer made of a blend of TIPS-pentacene:PTAA, fabricated on recyclable cellulose nanocrystal−glycerol (CNC/glycerol...

  12. Datta-Das-type spin-field-effect transistor in the nonballistic regime

    OpenAIRE

    Ohno, Munekazu; Yoh, Kanji

    2008-01-01

    We analyzed the applicability of original Datta-Das proposal for spin-field-effect transistor (spin-FET) to nonballistic regime based on semiempirical Monte Carlo simulation for spin transport. It is demonstrated that the spin helix state in two-dimensional electron gas system is sufficiently robust against D'yakonov-Perel' spin relaxation to allow an operation of Datta-Das-type spin-FET in the nonballistic transport regime. It is also shown that the spin diffusion length of the spin helix st...

  13. Field-In-Field Technique With Intrafractionally Modulated Junction Shifts for Craniospinal Irradiation

    International Nuclear Information System (INIS)

    Yom, Sue S.; Frija, Erik K. C.; Mahajan, Anita; Chang, Eric; Klein, Kelli C.; Shiu, Almon; Ohrt, Jared; Woo, Shiao

    2007-01-01

    Purpose: To plan craniospinal irradiation with 'field-in-field' (FIF) homogenization in combination with daily, intrafractional modulation of the field junctions, to minimize the possibility of spinal cord overdose. Methods and Materials: Lateral cranial fields and posterior spinal fields were planned using a forward-planned, step-and-shoot FIF technique. Field junctions were automatically modulated and custom-weighted for maximal homogeneity within each treatment fraction. Dose-volume histogram analyses and film dosimetry were used to assess results. Results: Plan inhomogeneity improved with FIF. Planning with daily modulated junction shifts provided consistent dose delivery during each fraction of treatment across the junctions. Modulation minimized the impact of a 5-mm setup error at the junction. Film dosimetry confirmed that no point in the junction exceeded the anticipated dose. Conclusions: Field-in-field planning and modulated junction shifts improve the homogeneity and consistency of daily dose delivery, simplify treatment, and reduce the impact of setup errors

  14. Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon

    KAUST Repository

    Li, Jingqi

    2014-07-01

    A vertical carbon nanotube field-effect transistor (CNTFET) based on silicon (Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube (SWNT) and an n-type Si nanowire in series construct the channel of the transistor. The CNTFET presents ambipolar characteristics at positive drain voltage (Vd) and n-type characteristics at negative Vd. The current is significantly influenced by the doping level of n-Si and the SWNT band gap. The n-branch current of the ambipolar characteristics increases with increasing doping level of the n-Si while the p-branch current decreases. The SWNT band gap has the same influence on the p-branch current at a positive Vd and n-type characteristics at negative Vd. The lower the SWNT band gap, the higher the current. However, it has no impact on the n-branch current in the ambipolar characteristics. Thick oxide is found to significantly degrade the current and the subthreshold slope of the CNTFETs.

  15. High-mobility solution-processed copper phthalocyanine-based organic field-effect transistors

    Directory of Open Access Journals (Sweden)

    Nandu B Chaure, Andrew N Cammidge, Isabelle Chambrier, Michael J Cook, Markys G Cain, Craig E Murphy, Chandana Pal and Asim K Ray

    2011-01-01

    Full Text Available Solution-processed films of 1,4,8,11,15,18,22,25-octakis(hexyl copper phthalocyanine (CuPc6 were utilized as an active semiconducting layer in the fabrication of organic field-effect transistors (OFETs in the bottom-gate configurations using chemical vapour deposited silicon dioxide (SiO2 as gate dielectrics. The surface treatment of the gate dielectric with a self-assembled monolayer of octadecyltrichlorosilane (OTS resulted in values of 4×10−2 cm2 V−1 s−1 and 106 for saturation mobility and on/off current ratio, respectively. This improvement was accompanied by a shift in the threshold voltage from 3 V for untreated devices to -2 V for OTS treated devices. The trap density at the interface between the gate dielectric and semiconductor decreased by about one order of magnitude after the surface treatment. The transistors with the OTS treated gate dielectrics were more stable over a 30-day period in air than untreated ones.

  16. Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon

    KAUST Repository

    Li, Jingqi; Yue, Weisheng; Guo, Zaibing; Yang, Yang; Wang, Xianbin; Syed, Ahad A.; Zhang, Yafei

    2014-01-01

    A vertical carbon nanotube field-effect transistor (CNTFET) based on silicon (Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube (SWNT) and an n-type Si nanowire in series construct the channel of the transistor. The CNTFET presents ambipolar characteristics at positive drain voltage (Vd) and n-type characteristics at negative Vd. The current is significantly influenced by the doping level of n-Si and the SWNT band gap. The n-branch current of the ambipolar characteristics increases with increasing doping level of the n-Si while the p-branch current decreases. The SWNT band gap has the same influence on the p-branch current at a positive Vd and n-type characteristics at negative Vd. The lower the SWNT band gap, the higher the current. However, it has no impact on the n-branch current in the ambipolar characteristics. Thick oxide is found to significantly degrade the current and the subthreshold slope of the CNTFETs.

  17. Electrical pulse burnout of transistors in intense ionizing radiation

    International Nuclear Information System (INIS)

    Hartman, E.F.; Evans, D.C.

    1975-01-01

    Tests examining possible synergistic effects of electrical pulses and ionizing radiation on transistors were performed and energy/power thresholds for transistor burnout determined. The effect of ionizing radiation on burnout thresholds was found to be minimal, indicating that electrical pulse testing in the absence of radiation produces burnout-threshold results which are applicable to IEMP studies. The conditions of ionized transistor junctions and radiation induced current surges at semiconductor device terminals are inherent in IEMP studies of electrical circuits

  18. Variability study of Si nanowire FETs with different junction gradients

    Directory of Open Access Journals (Sweden)

    Jun-Sik Yoon

    2016-01-01

    Full Text Available Random dopant fluctuation effects of gate-all-around Si nanowire field-effect transistors (FETs are investigated in terms of different diameters and junction gradients. The nanowire FETs with smaller diameters or shorter junction gradients increase relative variations of the drain currents and the mismatch of the drain currents between source-drain and drain-source bias change in the saturation regime. Smaller diameters decreased current drivability critically compared to standard deviations of the drain currents, thus inducing greater relative variations of the drain currents. Shorter junction gradients form high potential barriers in the source-side lightly-doped extension regions at on-state, which determines the magnitude of the drain currents and fluctuates the drain currents greatly under thermionic-emission mechanism. On the other hand, longer junction gradients affect lateral field to fluctuate the drain currents greatly. These physical phenomena coincide with correlations of the variations between drain currents and electrical parameters such as threshold voltages and parasitic resistances. The nanowire FETs with relatively-larger diameters and longer junction gradients without degrading short channel characteristics are suggested to minimize the relative variations and the mismatch of the drain currents.

  19. Radiation-stimulated processes in transistor temperature sensors

    International Nuclear Information System (INIS)

    Pavlyk, B. V.; Grypa, A. S.

    2016-01-01

    The features of the radiation-stimulated changes in the I–V and C–V characteristics of the emitter–base junction in KT3117 transistors are considered. It is shown that an increase in the current through the emitter junction is observed at the initial stage of irradiation (at doses of D < 4000 Gy for the “passive” irradiation mode and D < 5200 Gy for the “active” mode), which is caused by the effect of radiation-stimulated ordering of the defect-containing structure of the p–n junction. It is also shown that the X-ray irradiation (D < 14000 Gy), the subsequent relaxation (96 h), and thermal annealing (2 h at 400 K) of the transistor temperature sensors under investigation result in an increase in their radiation resistance.

  20. Monolayer field effect transistor as a probe of electronic defects in organic semiconducting layers at organic/inorganic hetero-junction interface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungnam, E-mail: metalpbn@hongik.ac.kr

    2016-01-01

    The origin of a large negative threshold voltage observed in monolayer (ML) field effect transistors (FETs) is explored using in-situ electrical measurements through confining the thickness of an active layer to the accumulation layer thickness. Using ML pentacene FETs combined with gated multiple-terminal devices and atomic force microscopy, the effect of electronic and structural evolution of a ML pentacene film on the threshold voltage in an FET, proportional to the density of deep traps, was probed, revealing that a large negative threshold voltage found in ML FETs results from the pentacene/SiO{sub 2} and pentacene/metal interfaces. More importantly, the origin of the threshold voltage difference between ML and thick FETs is addressed through a model in which the effective charge transport layer is transitioned from the pentacene layer interfacing with the SiO{sub 2} gate dielectric to the upper layers with pentacene thickness increasing evidenced by pentacene coverage dependent threshold voltage measurements. - Highlights: • The origin of a large negative threshold voltage in accumulation layer is revealed. • Electronic localized states at the nanometer scale are separately probed from the bulk. • The second monolayer becomes the effective charge transport layer governing threshold voltage.

  1. Characterization, Modeling and Design Parameters Identification of Silicon Carbide Junction Field Effect Transistor for Temperature Sensor Applications

    Directory of Open Access Journals (Sweden)

    Sofiane Khachroumi

    2010-01-01

    Full Text Available Sensor technology is moving towards wide-band-gap semiconductors providing high temperature capable devices. Indeed, the higher thermal conductivity of silicon carbide, (three times more than silicon, permits better heat dissipation and allows better cooling and temperature management. Though many temperature sensors have already been published, little endeavours have been invested in the study of silicon carbide junction field effect devices (SiC-JFET as a temperature sensor. SiC-JFETs devices are now mature enough and it is close to be commercialized. The use of its specific properties versus temperatures is the major focus of this paper. The SiC-JFETs output current-voltage characteristics are characterized at different temperatures. The saturation current and its on-resistance versus temperature are successfully extracted. It is demonstrated that these parameters are proportional to the absolute temperature. A physics-based model is also presented. Relationships between on-resistance and saturation current versus temperature are introduced. A comparative study between experimental data and simulation results is conducted. Important to note, the proposed model and the experimental results reflect a successful agreement as far as a temperature sensor is concerned.

  2. A tunable colloidal quantum dot photo field-effect transistor

    KAUST Repository

    Ghosh, Subir; Hoogland, Sjoerd; Sukhovatkin, Vlad; Levina, Larissa; Sargent, Edward H.

    2011-01-01

    We fabricate and investigate field-effect transistors in which a light-absorbing photogate modulates the flow of current along the channel. The photogate consists of colloidal quantum dots that efficiently transfer photoelectrons to the channel across a charge-separating (type-II) heterointerface, producing a primary and sustained secondary flow that is terminated via electron back-recombination across the interface. We explore colloidal quantum dot sizes corresponding to bandgaps ranging from 730 to 1475 nm and also investigate various stoichiometries of aluminum-doped ZnO (AZO) channel materials. We investigate the role of trap state energies in both the colloidal quantum dot energy film and the AZO channel. © 2011 American Institute of Physics.

  3. Frequency Response of Graphene Electrolyte-Gated Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Charles Mackin

    2018-02-01

    Full Text Available This work develops the first frequency-dependent small-signal model for graphene electrolyte-gated field-effect transistors (EGFETs. Graphene EGFETs are microfabricated to measure intrinsic voltage gain, frequency response, and to develop a frequency-dependent small-signal model. The transfer function of the graphene EGFET small-signal model is found to contain a unique pole due to a resistive element, which stems from electrolyte gating. Intrinsic voltage gain, cutoff frequency, and transition frequency for the microfabricated graphene EGFETs are approximately 3.1 V/V, 1.9 kHz, and 6.9 kHz, respectively. This work marks a critical step in the development of high-speed chemical and biological sensors using graphene EGFETs.

  4. Error correcting circuit design with carbon nanotube field effect transistors

    Science.gov (United States)

    Liu, Xiaoqiang; Cai, Li; Yang, Xiaokuo; Liu, Baojun; Liu, Zhongyong

    2018-03-01

    In this work, a parallel error correcting circuit based on (7, 4) Hamming code is designed and implemented with carbon nanotube field effect transistors, and its function is validated by simulation in HSpice with the Stanford model. A grouping method which is able to correct multiple bit errors in 16-bit and 32-bit application is proposed, and its error correction capability is analyzed. Performance of circuits implemented with CNTFETs and traditional MOSFETs respectively is also compared, and the former shows a 34.4% decrement of layout area and a 56.9% decrement of power consumption.

  5. Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Field-Effect Transistors

    KAUST Repository

    Chen, Hu

    2017-07-19

    The charge-carrier mobility of organic semiconducting polymers is known to be enhanced when the energetic disorder of the polymer is minimized. Fused, planar aromatic ring structures contribute to reducing the polymer conformational disorder, as demonstrated by polymers containing the indacenodithiophene (IDT) repeat unit, which have both a low Urbach energy and a high mobility in thin-film-transistor (TFT) devices. Expanding on this design motif, copolymers containing the dithiopheneindenofluorene repeat unit are synthesized, which extends the fused aromatic structure with two additional phenyl rings, further rigidifying the polymer backbone. A range of copolymers are prepared and their electrical properties and thin-film morphology evaluated, with the co-benzothiadiazole polymer having a twofold increase in hole mobility when compared to the IDT analog, reaching values of almost 3 cm2 V−1 s−1 in bottom-gate top-contact organic field-effect transistors.

  6. Soft-type trap-induced degradation of MoS2 field effect transistors

    Science.gov (United States)

    Cho, Young-Hoon; Ryu, Min-Yeul; Lee, Kook Jin; Park, So Jeong; Choi, Jun Hee; Lee, Byung-Chul; Kim, Wungyeon; Kim, Gyu-Tae

    2018-06-01

    The practical applicability of electronic devices is largely determined by the reliability of field effect transistors (FETs), necessitating constant searches for new and better-performing semiconductors. We investigated the stress-induced degradation of MoS2 multilayer FETs, revealing a steady decrease of drain current by 56% from the initial value after 30 min. The drain current recovers to the initial state when the transistor is completely turned off, indicating the roles of soft-traps in the apparent degradation. The noise current power spectrum follows the model of carrier number fluctuation–correlated mobility fluctuation (CNF–CMF) regardless of stress time. However, the reduction of the drain current was well fitted to the increase of the trap density based on the CNF–CMF model, attributing the presence of the soft-type traps of dielectric oxides to the degradation of the MoS2 FETs.

  7. Hole states in diamond p-delta-doped field effect transistors

    International Nuclear Information System (INIS)

    Martinez-Orozco, J C; Rodriguez-Vargas, I; Mora-Ramos, M E

    2009-01-01

    The p-delta-doping in diamond allows to create high density two-dimensional hole gases. This technique has already been applied in the design and fabrication of diamond-based field effect transistors. Consequently, the knowledge of the electronic structure is of significant importance to understand the transport properties of diamond p-delta-doped systems. In this work the hole subbands of diamond p-type delta-doped quantum wells are studied within the framework of a local-density Thomas-Fermi-based approach for the band bending profile. The calculation incorporates an independent three-hole-band scheme and considers the effects of the contact potential, the delta-channel to contact distance, and the ionized impurity density.

  8. Hole states in diamond p-delta-doped field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Orozco, J C; Rodriguez-Vargas, I [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Calzada Solidaridad Esquina con Paseo la Bufa S/N, CP 98060 Zacatecas, ZAC. (Mexico); Mora-Ramos, M E, E-mail: jcmover@correo.unam.m [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP 62209 Cuernavaca, MOR. (Mexico)

    2009-05-01

    The p-delta-doping in diamond allows to create high density two-dimensional hole gases. This technique has already been applied in the design and fabrication of diamond-based field effect transistors. Consequently, the knowledge of the electronic structure is of significant importance to understand the transport properties of diamond p-delta-doped systems. In this work the hole subbands of diamond p-type delta-doped quantum wells are studied within the framework of a local-density Thomas-Fermi-based approach for the band bending profile. The calculation incorporates an independent three-hole-band scheme and considers the effects of the contact potential, the delta-channel to contact distance, and the ionized impurity density.

  9. Effect of dielectric layers on device stability of pentacene-based field-effect transistors.

    Science.gov (United States)

    Di, Chong-an; Yu, Gui; Liu, Yunqi; Guo, Yunlong; Sun, Xiangnan; Zheng, Jian; Wen, Yugeng; Wang, Ying; Wu, Weiping; Zhu, Daoben

    2009-09-07

    We report stable organic field-effect transistors (OFETs) based on pentacene. It was found that device stability strongly depends on the dielectric layer. Pentacene thin-film transistors based on the bare or polystyrene-modified SiO(2) gate dielectrics exhibit excellent electrical stabilities. In contrast, the devices with the octadecyltrichlorosilane (OTS)-treated SiO(2) dielectric layer showed the worst stabilities. The effects of the different dielectrics on the device stabilities were investigated. We found that the surface energy of the gate dielectric plays a crucial role in determining the stability of the pentacene thin film, device performance and degradation of electrical properties. Pentacene aggregation, phase transfer and film morphology are also important factors that influence the device stability of pentacene devices. As a result of the surface energy mismatch between the dielectric layer and organic semiconductor, the electronic performance was degraded. Moreover, when pentacene was deposited on the OTS-treated SiO(2) dielectric layer with very low surface energy, pentacene aggregation occurred and resulted in a dramatic decrease of device performance. These results demonstrated that the stable OFETs could be obtained by using pentacene as a semiconductor layer.

  10. 3D assembly of carbon nanotubes for fabrication of field-effect transistors through nanomanipulation and electron-beam-induced deposition

    International Nuclear Information System (INIS)

    Yu, Ning; Shi, Qing; Wang, Huaping; Huang, Qiang; Fukuda, Toshio; Nakajima, Masahiro; Yang, Zhan; Sun, Lining

    2017-01-01

    Three-dimensional carbon nanotube field-effect transistors (3D CNTFETs) possess predictable characteristics that rival those of planar CNTFETs and Si-based MOSFETs. However, due to the lack of a reliable assembly technology, they are rarely reported on, despite the amount of attention they receive. To address this problem, we propose the novel concept of a 3D CNTFET and develop its assembly strategy based on nanomanipulation and the electron-beam-induced deposition (EBID) technique inside a scanning electron microscope (SEM). In particular, the electrodes in our transistor design are three metallic cuboids of the same size, and their front, top and back surfaces are all wrapped up in CNTs. The assembly strategy is employed to build the structure through a repeated basic process of pick-up, placement, fixing and cutting of CNTs. The pick-up and placement is performed through one nanomanipulator with four degrees of freedom. Fixing is carried out through the EBID technique so as to improve the mechanical and electrical characteristics of the CNT/electrodes connection. CNT cutting is undertaken using the typical method of electrical breakdown. Experimental results showed that two CNTs were successfully assembled on the front sides of the cubic electrodes. This validates our assembly method for the 3D CNTFET. Also, when contact resistance was measured, tens of kilohms of resistance was observed at the CNT-EBID deposition-FET electrodes junction.. This manifests the electrical reliability of our assembly strategy. (paper)

  11. Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures

  12. Sensors based on carbon nanotube field-effect transistors and molecular recognition approaches

    OpenAIRE

    Cid Salavert, Cristina Carlota

    2009-01-01

    The general objective of this thesis is to develop chemical sensors whose sensing capacities are based on the principle of molecular recognition and where the transduction is carried out by single-walled carbon nanotubes (SWCNT).The sensing device used is the carbon nanotube field-effect transistor (CNTFET). The new structure of the CNTFET allows nanotubes to be integrated at the surface of the devices, thus exploiting SWCNTs' sensitivity to changes in their environment. The functionalization...

  13. Analysis of different tunneling mechanisms of InxGa1−xAs/AlGaAs tunnel junction light-emitting transistors

    International Nuclear Information System (INIS)

    Wu, Cheng-Han; Wu, Chao-Hsin

    2014-01-01

    The electrical and optical characteristics of tunnel junction light-emitting transistors (TJLETs) with different indium mole fractions (x = 5% and 2.5%) of the In x Ga 1−x As base-collector tunnel junctions have been investigated. Two electron tunneling mechanisms (photon-assisted or direct tunneling) provide additional currents to electrical output and resupply holes back to the base region, resulting in the upward slope of I-V curves and enhanced optical output under forward-active operation. The larger direct tunneling probability and stronger Franz-Keldysh absorption for 5% TJLET lead to higher collector current slope and less optical intensity enhancement when base-collector junction is under reverse-biased.

  14. Influence of the semiconductor oxidation potential on the operational stability of organic field-effect transistors

    NARCIS (Netherlands)

    Sharma, A.; Mathijssen, S.G.J.; Bobbert, P.A.; Leeuw, de D.M.

    2011-01-01

    During prolonged application of a gate bias, organic field-effect transistors show a gradual shift of the threshold voltage towards the applied gate bias voltage. The shift follows a stretched-exponential time dependence governed by a relaxation time. Here, we show that a thermodynamic analysis

  15. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    KAUST Repository

    Diab, Amer El Hajj

    2014-09-29

    We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.

  16. Scattering effects on the performance of carbon nanotube field effect transistor in a compact model

    Science.gov (United States)

    Hamieh, S. D.; Desgreys, P.; Naviner, J. F.

    2010-01-01

    Carbon nanotube field-effect transistors (CNTFET) are being extensively studied as possible successors to CMOS. Device simulators have been developed to estimate their performance in sub-10-nm and device structures have been fabricated. In this work, a new compact model of single-walled semiconducting CNTFET is proposed implementing the calculation of energy conduction sub-band minima and the treatment of scattering effects through energy shift in CNTFET. The developed model has been used to simulate I-V characteristics using VHDL-AMS simulator.

  17. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions.

    Science.gov (United States)

    Yang, Tiefeng; Zheng, Biyuan; Wang, Zhen; Xu, Tao; Pan, Chen; Zou, Juan; Zhang, Xuehong; Qi, Zhaoyang; Liu, Hongjun; Feng, Yexin; Hu, Weida; Miao, Feng; Sun, Litao; Duan, Xiangfeng; Pan, Anlian

    2017-12-04

    High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe 2 /SnS 2 vertical bilayer p-n junctions on SiO 2 /Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 -14 A and a highest on-off ratio of up to 10 7 . Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.

  18. SnTe field effect transistors and the anomalous electrical response of structural phase transition

    International Nuclear Information System (INIS)

    Li, Haitao; Zhu, Hao; Yuan, Hui; Li, Qiliang; You, Lin; Kopanski, Joseph J.; Richter, Curt A.; Zhao, Erhai

    2014-01-01

    SnTe is a conventional thermoelectric material and has been newly found to be a topological crystalline insulator. In this work, back-gate SnTe field-effect transistors have been fabricated and fully characterized. The devices exhibit n-type transistor behaviors with excellent current-voltage characteristics and large on/off ratio (>10 6 ). The device threshold voltage, conductance, mobility, and subthreshold swing have been studied and compared at different temperatures. It is found that the subthreshold swings as a function of temperature have an apparent response to the SnTe phase transition between cubic and rhombohedral structures at 110 K. The abnormal and rapid increase in subthreshold swing around the phase transition temperature may be due to the soft phonon/structure change which causes the large increase in SnTe dielectric constant. Such an interesting and remarkable electrical response to phase transition at different temperatures makes the small SnTe transistor attractive for various electronic devices.

  19. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    Science.gov (United States)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  20. Universal tunneling behavior in technologically relevant P/N junction diodes

    International Nuclear Information System (INIS)

    Solomon, Paul M.; Jopling, Jason; Frank, David J.; D'Emic, Chris; Dokumaci, O.; Ronsheim, P.; Haensch, W.E.

    2004-01-01

    Band-to-band tunneling was studied in ion-implanted P/N junction diodes with profiles representative of present and future silicon complementary metal-oxide-silicon (CMOS) field effect transistors. Measurements were done over a wide range of temperatures and implant parameters. Profile parameters were derived from analysis of capacitance versus voltage characteristics, and compared to secondary-ion mass spectroscopy analysis. When the tunneling current was plotted against the effective tunneling distance (tunneling distance corrected for band curvature) a quasi-universal exponential reduction of tunneling current versus, tunneling distance was found with an attenuation length of 0.38 nm, corresponding to a tunneling effective mass of 0.29 times the free electron mass (m 0 ), and an extrapolated tunneling current at zero tunnel distance of 5.3x10 7 A/cm 2 at 300 K. These results are directly applicable for predicting drain to substrate currents in CMOS transistors on bulk silicon, and body currents in CMOS transistors in silicon-on-insulator

  1. Space and Missile Systems Center Standard: Technical Requirements for Electronic Parts, Materials, and Processes used in Space Vehicles

    Science.gov (United States)

    2013-04-12

    glass or oxide passivation over junctions . 4.3 Screening (100 percent). Screening (100 percent) shall be in accordance with section 1400 for the JAN...75 VCE = 75 IC = 75 VCE = 75 IC = 75 Hetero - junction Bipolar Transistor Gallium Arsenide 3/ 105 125 N/A N/A 75 75 Current...HDBK-339 Custom Large Scale Integrated Circuit Development and Acquisition for Space Vehicles MIL-STD-403C Preparation for and Installation of

  2. All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature

    Science.gov (United States)

    Dankert, André; Dash, Saroj

    Spintronics aims to exploit the spin degree of freedom in solid state devices for data storage and information processing. Its fundamental concepts (creation, manipulation and detection of spin polarization) have been demonstrated in semiconductors and spin transistor structures using electrical and optical methods. However, an unsolved challenge is the realization of all-electrical methods to control the spin polarization in a transistor manner at ambient temperatures. Here we combine graphene and molybdenum disulfide (MoS2) in a van der Waals heterostructure to realize a spin field-effect transistor (spin-FET) at room temperature. These two-dimensional crystals offer a unique platform due to their contrasting properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in MoS2. The gate-tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel yields spins to interact with high SOC material and allows us to control the spin polarization and lifetime. This all-electrical spin-FET at room temperature is a substantial step in the field of spintronics and opens a new platform for testing a plethora of exotic physical phenomena, which can be key building blocks in future device architectures.

  3. Ge-on-insulator tunneling FET with abrupt source junction formed by utilizing snowplow effect of NiGe

    Science.gov (United States)

    Matsumura, Ryo; Katoh, Takumi; Takaguchi, Ryotaro; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Tunneling field-effect transistors (TFETs) attract much attention for use in realizing next-generation low-power processors. In particular, Ge-on-insulator (GOI) TFETs are expected to realize low power operation with a high on-current/off-current (I on/I off) ratio, owing to their narrow bandgap. Here, to improve the performance of GOI-TFETs, a source junction with a high doping concentration and an abrupt impurity profile is essential. In this study, a snowplow effect of NiGe combined with low-energy BF2 + implantation has been investigated to realize an abrupt p+/n Ge junction for GOI n-channel TFETs. By optimizing the Ni thickness to form NiGe (thickness: 4 nm), an abrupt junction with a B profile abruptness of ˜5 nm/dec has been realized with a high doping concentration of around 1021 cm-3. The operation of GOI n-TFETs with this source junction having the abrupt B profile has been demonstrated, and the improvement of TFET properties such as the I on/I off ratio from 311 to 743 and the subthreshold slope from 368 to 239 mV/dec has been observed. This junction formation technology is attractive for enhancing the TFET performance.

  4. Trap assisted tunneling and its effect on subthreshold swing of tunnel field effect transistors

    OpenAIRE

    Sajjad, Redwan N.; Chern, Winston; Hoyt, Judy L.; Antoniadis, Dimitri A.

    2016-01-01

    We provide a detailed study of the interface Trap Assisted Tunneling (TAT) mechanism in tunnel field effect transistors to show how it contributes a major leakage current path before the Band To Band Tunneling (BTBT) is initiated. With a modified Shockley-Read-Hall formalism, we show that at room temperature, the phonon assisted TAT current always dominates and obscures the steep turn ON of the BTBT current for common densities of traps. Our results are applicable to top gate, double gate and...

  5. Incorporating TCNQ into thiophene-fused heptacene for n-channel field effect transistor

    KAUST Repository

    Ye, Qun

    2012-06-01

    Incorporation of electron-deficient tetracyanoquinodimethane (TCNQ) into electron-rich thiophene-fused heptacene was successfully achieved for the purpose of stabilizing longer acenes and generating new n-type organic semiconductors. The heptacene-TCNQ derivative 1 was found to have good stability and an expected electron transporting property. Electron mobility up to 0.01 cm 2 V -1 s -1 has been obtained for this novel material in solution processed organic field effect transistors. © 2012 American Chemical Society.

  6. Quantum Transport in Tunnel Field-Effect Transistors for Future Nano-CMOS Applications

    OpenAIRE

    Vandenberghe, William

    2012-01-01

    After decades of scientific and technological development to fabricate ever smaller, faster and more energy efficient MOSFETs, reducing MOSFET power consumption is becoming increasingly difficult. As a possible successor to the MOSFET, the tunnel field-effect transistor (TFET) has been proposed. The topic of this thesis is to study the working principle of the TFET and to go beyond the semiclassical models towards a fully quantum mechanical modeling of the TFET which has band-to-band tunnelin...

  7. Germanium-Source Tunnel Field Effect Transistors for Ultra-Low Power Digital Logic

    Science.gov (United States)

    2012-05-10

    CMOS) technology. In this work, Tunnel Field Effect Transistor (TFET) based on Band-to-Band Tunneling ( BTBT ) will be proposed and investigated as an...Band Tunneling ( BTBT ) will be proposed and investigated as an alternative logic switch which can achieve steeper switching characteristics than the...11 2.3.2 Calculation of the Imaginary Dispersion Relation ……………………… 12 2.3.3 Calculation of the BTBT Current and Generation Rate

  8. Symmetry breaking in SNS junctions: edge transport and field asymmetries

    Science.gov (United States)

    Suominen, Henri; Nichele, Fabrizio; Kjaergaard, Morten; Rasmussen, Asbjorn; Danon, Jeroen; Flensberg, Karsten; Levitov, Leonid; Shabani, Javad; Palmstrom, Chris; Marcus, Charles

    We study magnetic diffraction patterns in a tunable superconductor-semiconductor-superconductor junction. By utilizing epitaxial growth of aluminum on InAs/InGaAs we obtain transparent junctions which display a conventional Fraunhofer pattern of the critical current as a function of applied perpendicular magnetic field, B⊥. By studying the angular dependence of the critical current with applied magnetic fields in the plane of the junction we find a striking anisotropy. We attribute this effect to dephasing of Andreev states in the bulk of the junction, leading to SQUID like behavior when the magnetic field is applied parallel to current flow. Furthermore, in the presence of both in-plane and perpendicular fields, asymmetries in +/-B⊥ are observed. We suggest possible origins and discuss the role of spin-orbit and Zeeman physics together with a background disorder potential breaking spatial symmetries of the junction. Research supported by Microsoft Project Q, the Danish National Research Foundation and the NSF through the National Nanotechnology Infrastructure Network.

  9. A study of junction effect transistors and their roles in carbon nanotube field emission cathodes in compact pulsed power applications

    Science.gov (United States)

    Shui, Qiong

    This thesis is focusing on a study of junction effect transistors (JFETs) in compact pulsed power applications. Pulsed power usually requires switches with high hold-off voltage, high current, low forward voltage drop, and fast switching speed. 4H-SiC, with a bandgap of 3.26 eV (The bandgap of Si is 1.12eV) and other physical and electrical superior properties, has gained much attention in high power, high temperature and high frequency applications. One topic of this thesis is to evaluate if 4H-SiC JFETs have a potential to replace gas phase switches to make pulsed power system compact and portable. Some other pulsed power applications require cathodes of providing stable, uniform, high electron-beam current. So the other topic of this research is to evaluate if Si JFET-controlled carbon nanotube field emitter cold cathode will provide the necessary e-beam source. In the topic of "4H-SiC JFETs", it focuses on the design and simulation of a novel 4H-SiC normally-off VJFET with high breakdown voltage using the 2-D simulator ATLAS. To ensure realistic simulations, we utilized reasonable physical models and the established parameters as the input into these models. The influence of key design parameters were investigated which would extend pulsed power limitations. After optimizing the key design parameters, with a 50-mum drift region, the predicted breakdown voltage for the VJFET is above 8kV at a leakage current of 1x10-5A/cm2 . The specific on-state resistance is 35 mO·cm 2 at VGS = 2.7 V, and the switching speed is several ns. The simulation results suggest that the 4H-SiC VJFET is a potential candidate for improving switching performance in repetitive pulsed power applications. To evaluate the 4H-SiC VJFETs in pulsed power circuits, we extracted some circuit model parameters from the simulated I-V curves. Those parameters are necessary for circuit simulation program such as SPICE. This method could be used as a test bench without fabricating the devices to

  10. Calibration method for a carbon nanotube field-effect transistor biosensor

    International Nuclear Information System (INIS)

    Abe, Masuhiro; Murata, Katsuyuki; Ataka, Tatsuaki; Matsumoto, Kazuhiko

    2008-01-01

    An easy calibration method based on the Langmuir adsorption theory is proposed for a carbon nanotube field-effect transistor (NTFET) biosensor. This method was applied to three NTFET biosensors that had approximately the same structure but exhibited different characteristics. After calibration, their experimentally determined characteristics exhibited a good agreement with the calibration curve. The reason why the observed characteristics of these NTFET biosensors differed among the devices was that the carbon nanotube (CNT) that formed the channel was not uniform. Although the controlled growth of a CNT is difficult, it is shown that an NTFET biosensor can be easy calibrated using the proposed calibration method, regardless of the CNT channel structures

  11. Threshold voltage roll-off modelling of bilayer graphene field-effect transistors

    International Nuclear Information System (INIS)

    Saeidmanesh, M; Ismail, Razali; Khaledian, M; Karimi, H; Akbari, E

    2013-01-01

    An analytical model is presented for threshold voltage roll-off of double gate bilayer graphene field-effect transistors. To this end, threshold voltage models of short- and long-channel states have been developed. In the short-channel case, front and back gate potential distributions have been modelled and used. In addition, the tunnelling probability is modelled and its effect is taken into consideration in the potential distribution model. To evaluate the accuracy of the potential model, FlexPDE software is employed with proper boundary conditions and a good agreement is observed. Using the proposed models, the effect of several structural parameters on the threshold voltage and its roll-off are studied at room temperature. (paper)

  12. Manipulation of charge carrier injection into organic field-effect transistors by self-assembled monolayers of alkanethiols

    NARCIS (Netherlands)

    Asadi, Kamal; Gholamrezaie, Fatemeh; Smits, Edsger C. P.; Blom, Paul W. M.; de Boer, Bert

    2007-01-01

    Charge carrier injection into two semiconducting polymers is investigated in field-effect transistors using gold source and drain electrodes that are modified by self-assembled monolayers of alkanethiols and perfluorinated alkanethiols. The presence of an interfacial dipole associated with the

  13. Full-Wave Analysis of Traveling-Wave Field-Effect Transistors Using Finite-Difference Time-Domain Method

    Directory of Open Access Journals (Sweden)

    Koichi Narahara

    2012-01-01

    Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.

  14. Improvement of graphene field-effect transistors by hexamethyldisilazane surface treatment

    International Nuclear Information System (INIS)

    Chowdhury, Sk. Fahad; Sonde, Sushant; Rahimi, Somayyeh; Tao, Li; Banerjee, Sanjay; Akinwande, Deji

    2014-01-01

    We report the improvement of the electrical characteristics of graphene field-effect transistors (FETs) by hexamethyldisilazane (HMDS) treatment. Both electron and hole field-effect mobilities are increased by 1.5 × –2×, accompanied by effective residual carrier concentration reduction. Dirac point also moves closer to zero Volt. Time evolution of mobility data shows that mobility improvement saturates after a few hours of HMDS treatment. Temperature-dependent transport measurements show small mobility variation between 77 K and room temperature (295 K) before HMDS application. But mobility at 77 K is almost 2 times higher than mobility at 295 K after HMDS application, indicating reduced carrier scattering. Performance improvement is also observed for FETs made on hydrophobic substrate–an HMDS-graphene-HMDS sandwich structure. Raman spectroscopic analysis shows that G peak width is increased, G peak position is down shifted, and intensity ratio between 2D and G peaks is increased after HMDS application. We attribute the improvements in electronic transport mainly to enhanced screening and mitigation of adsorbed impurities from graphene surface upon HMDS treatment.

  15. N-Heterocyclic-Carbene-Treated Gold Surfaces in Pentacene Organic Field-Effect Transistors: Improved Stability and Contact at the Interface.

    Science.gov (United States)

    Lv, Aifeng; Freitag, Matthias; Chepiga, Kathryn M; Schäfer, Andreas H; Glorius, Frank; Chi, Lifeng

    2018-04-16

    N-Heterocyclic carbenes (NHCs), which react with the surface of Au electrodes, have been successfully applied in pentacene transistors. With the application of NHCs, the charge-carrier mobility of pentacene transistors increased by five times, while the contact resistance at the pentacene-Au interface was reduced by 85 %. Even after annealing the NHC-Au electrodes at 200 °C for 2 h before pentacene deposition, the charge-carrier mobility of the pentacene transistors did not decrease. The distinguished performance makes NHCs as excellent alternatives to thiols as metal modifiers for the application in organic field-effect transistors (OFETs). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    Energy Technology Data Exchange (ETDEWEB)

    Grezes, C.; Alzate, J. G.; Cai, X.; Wang, K. L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Ebrahimi, F.; Khalili Amiri, P. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Inston, Inc., Los Angeles, California 90024 (United States); Katine, J. A. [HGST, Inc., San Jose, California 95135 (United States); Langer, J.; Ocker, B. [Singulus Technologies AG, Kahl am Main 63796 (Germany)

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits.

  17. Photoionization spectroscopy of deep defects responsible for current collapse in nitride-based field effect transistors

    International Nuclear Information System (INIS)

    Klein, P B; Binari, S C

    2003-01-01

    This review is concerned with the characterization and identification of the deep centres that cause current collapse in nitride-based field effect transistors. Photoionization spectroscopy is an optical technique that has been developed to probe the characteristics of these defects. Measured spectral dependences provide information on trap depth, lattice coupling and on the location of the defects in the device structure. The spectrum of an individual trap may also be regarded as a 'fingerprint' of the defect, allowing the trap to be followed in response to the variation of external parameters. The basis for these measurements is derived through a modelling procedure that accounts quantitatively for the light-induced drain current increase in the collapsed device. Applying the model to fit the measured variation of drain current increase with light illumination provides an estimate of the concentrations and photoionization cross-sections of the deep defects. The results of photoionization studies of GaN metal-semiconductor field effect transistors and AlGaN/GaN high electron mobility transistors (HEMTs) grown by metal-organic chemical vapour deposition (MOCVD) are presented and the conclusions regarding the nature of the deep traps responsible are discussed. Finally, recent photoionization studies of current collapse induced by short-term (several hours) bias stress in AlGaN/GaN HEMTs are described and analysed for devices grown by both MOCVD and molecular beam epitaxy. (topical review)

  18. Substrate-free ultra-flexible organic field-effect transistors and five-stage ring oscillators.

    Science.gov (United States)

    Zhang, Lei; Wang, Hanlin; Zhao, Yan; Guo, Yunlong; Hu, Wenping; Yu, Gui; Liu, Yunqi

    2013-10-11

    Freestanding, substrate-free organic field-effect transistors and organic circuits with a nominal thickness of 320 nm are demonstrated by using a simple water-floatation method. The devices work well in freestanding status, attached on banknotes, or bent over the blade of a knife. The ultralight devices with extreme bending stability indicate a bright future for organic electronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Plasma wave instability and amplification of terahertz radiation in field-effect-transistor arrays

    International Nuclear Information System (INIS)

    Popov, V V; Tsymbalov, G M; Shur, M S

    2008-01-01

    We show that the strong amplification of terahertz radiation takes place in an array of field-effect transistors at small DC drain currents due to hydrodynamic plasmon instability of the collective plasmon mode. Planar designs compatible with standard integrated circuit fabrication processes and strong coupling of terahertz radiation to plasmon modes in FET arrays make such arrays very attractive for potential applications in solid-state terahertz amplifiers and emitters

  20. Numerical study of self-field effects on dynamics of Josephson-junction arrays

    International Nuclear Information System (INIS)

    Phillips, J.R.; Van der Zant, H.S.J.; White, J.; Orlando, T.P.

    1994-01-01

    We consider the influence of self-induced magnetic fields on dynamic properties of arrays of resistively and capacitively shunted Josephson junctions. Self-field effects are modeled by including mutual inductance interactions between every cell in the array. We find that it is important to include all mutual inductance interactions in order to understand the dynamic properties of the array, in particular subharmonic structure arising under AC current bias. (orig.)

  1. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shibo; Zhang, Zhiyong, E-mail: zyzhang@pku.edu.cn; Si, Jia; Zhong, Donglai; Peng, Lian-Mao, E-mail: lmpeng@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China)

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  2. Two-dimensional non-volatile programmable p-n junctions

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  3. Revealing Buried Interfaces to Understand the Origins of Threshold Voltage Shifts in Organic Field-Effect Transistors

    NARCIS (Netherlands)

    Mathijssen, Simon G. J.; Spijkman, Mark-Jan; Andringa, Anne-Marije; van Hal, Paul A.; McCulloch, Iain; Kemerink, Martijn; Janssen, Rene A. J.; de Leeuw, Dago M.

    2010-01-01

    The semiconductor of an organic field-effect transistor is stripped with adhesive tape, yielding an exposed gate dielectric, accessible for various characterization techniques. By using scanning Kelvin probe microscopy we reveal that trapped charges after gate bias stress are located at the gate

  4. Gate-bias controlled charge trapping as a mechanism for NO2 detection with field-effect transistors

    NARCIS (Netherlands)

    Andringa, A.-M.; Meijboom, J.R.; Smits, E.C.P.; Mathijssen, S.G.J.; Blom, P.W.M.; Leeuw, D.M. de

    2011-01-01

    Detection of nitrogen dioxide, NO2, is required to monitor the air-quality for human health and safety. Commercial sensors are typically chemiresistors, however field-effect transistors are being investigated. Although numerous investigations have been reported, the NO2 sensing mechanism is not

  5. Field modulation of the critical current in magnetic Josephson junctions

    International Nuclear Information System (INIS)

    Blamire, M G; Smiet, C B; Banerjee, N; Robinson, J W A

    2013-01-01

    The dependence of the critical current of a simple Josephson junction on the applied magnetic field is well known and, for a rectangular junction, gives rise to the classic ‘Fraunhofer’ modulation with periodic zeros at the fields that introduce a flux quantum into the junction region. Much recent work has been performed on Josephson junctions that contain magnetic layers. The magnetization of such layers introduces additional flux into the junction and, for large junction areas or strong magnetic materials, can significantly distort the modulation of the critical current and strongly suppress the maximum critical current. The growing interest in junctions that induce odd-frequency triplet pairing in a ferromagnet, and the need to make quantitative comparisons with theory, mean that a full understanding of the role of magnetic barriers in controlling the critical current is necessary. This paper analyses the effect of magnetism and various magnetic configurations on Josephson critical currents; the overall treatment applies to junctions of general shape, but the specific cases of square and rectangular junctions are considered. (paper)

  6. Graphene field-effect transistor application for flow sensing

    Directory of Open Access Journals (Sweden)

    Łuszczek Maciej

    2017-01-01

    Full Text Available Microflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall flow sensor performance. In this work we propose graphene field-effect transistor (GFET to be used as microflow sensor. Temperature distribution in graphene channel was simulated and the analysis of heat convection was performed to establish the relation between the fluidic flow velocity and the temperature gradient. It was shown that the negative temperature coefficient (NTC of graphene could enable the self-protection of the device and should minimize sensing error from currentinduced heating. It was also argued that the planar design of the GFET sensor makes it suitable for the real application due to supposed mechanical stability of such a construction.

  7. Internal additive noise effects in stochastic resonance using organic field effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshiharu; Asakawa, Naoki [Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Matsubara, Kiyohiko [KOOROGI LLC, 6-1585-1-B Sakaino-cho, Kiryu, Gunma 376-0002 (Japan)

    2016-08-29

    Stochastic resonance phenomenon was observed in organic field effect transistor using poly(3-hexylthiophene), which enhances performance of signal transmission with application of noise. The enhancement of correlation coefficient between the input and output signals was low, and the variation of correlation coefficient was not remarkable with respect to the intensity of external noise, which was due to the existence of internal additive noise following the nonlinear threshold response. In other words, internal additive noise plays a positive role on the capability of approximately constant signal transmission regardless of noise intensity, which can be said “homeostatic” behavior or “noise robustness” against external noise. Furthermore, internal additive noise causes emergence of the stochastic resonance effect even on the threshold unit without internal additive noise on which the correlation coefficient usually decreases monotonically.

  8. Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors.

    Science.gov (United States)

    Li, Dongwei; Hu, Yongsheng; Zhang, Nan; Lv, Ying; Lin, Jie; Guo, Xiaoyang; Fan, Yi; Luo, Jinsong; Liu, Xingyuan

    2017-10-18

    The near-infrared (NIR) to visible upconversion devices have attracted great attention because of their potential applications in the fields of night vision, medical imaging, and military security. Herein, a novel all-organic upconversion device architecture has been first proposed and developed by incorporating a NIR absorption layer between the carrier transport layer and the emission layer in heterostructured organic light-emitting field effect transistors (OLEFETs). The as-prepared devices show a typical photon-to-photon upconversion efficiency as high as 7% (maximum of 28.7% under low incident NIR power intensity) and millisecond-scale response time, which are the highest upconversion efficiency and one of the fastest response time among organic upconversion devices as referred to the previous reports up to now. The high upconversion performance mainly originates from the gain mechanism of field-effect transistor structures and the unique advantage of OLEFETs to balance between the photodetection and light emission. Meanwhile, the strategy of OLEFETs also offers the advantage of high integration so that no extra OLED is needed in the organic upconversion devices. The results would pave way for low-cost, flexible and portable organic upconversion devices with high efficiency and simplified processing.

  9. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  10. Strategies for Improving the Performance of Sensors Based on Organic Field-Effect Transistors.

    Science.gov (United States)

    Wu, Xiaohan; Mao, Shun; Chen, Junhong; Huang, Jia

    2018-04-01

    Organic semiconductors (OSCs) have been extensively studied as sensing channel materials in field-effect transistors due to their unique charge transport properties. Stimulation caused by its environmental conditions can readily change the charge-carrier density and mobility of OSCs. Organic field-effect transistors (OFETs) can act as both signal transducers and signal amplifiers, which greatly simplifies the device structure. Over the past decades, various sensors based on OFETs have been developed, including physical sensors, chemical sensors, biosensors, and integrated sensor arrays with advanced functionalities. However, the performance of OFET-based sensors still needs to be improved to meet the requirements from various practical applications, such as high sensitivity, high selectivity, and rapid response speed. Tailoring molecular structures and micro/nanofilm structures of OSCs is a vital strategy for achieving better sensing performance. Modification of the dielectric layer and the semiconductor/dielectric interface is another approach for improving the sensor performance. Moreover, advanced sensory functionalities have been achieved by developing integrated device arrays. Here, a brief review of strategies used for improving the performance of OFET sensors is presented, which is expected to inspire and provide guidance for the design of future OFET sensors for various specific and practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sung Hun, E-mail: harin74@gmail.com, E-mail: jhl@snu.ac.kr, E-mail: jrogers@illinois.edu; Shin, Jongmin; Cho, In-Tak; Lee, Jong-Ho, E-mail: harin74@gmail.com, E-mail: jhl@snu.ac.kr, E-mail: jrogers@illinois.edu [Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Sang Youn [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Display R and D Center, Samsung Display Co., Yongin-city, Gyeongki-do 446–711 (Korea, Republic of); Lee, Dong Joon; Lee, Chi Hwan; Rogers, John A., E-mail: harin74@gmail.com, E-mail: jhl@snu.ac.kr, E-mail: jrogers@illinois.edu [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-07-07

    This paper presents materials, device designs, and physical/electrical characteristics of a form of nanotube electronics that is physically transient, in the sense that all constituent elements dissolve and/or disperse upon immersion into water. Studies of contact effects illustrate the ability to use water soluble metals such as magnesium for source/drain contacts in nanotube based field effect transistors. High mobilities and on/off ratios in transistors that use molybdenum, silicon nitride, and silicon oxide enable full swing characteristics for inverters at low voltages (∼5 V) and with high gains (∼30). Dissolution/disintegration tests of such systems on water soluble sheets of polyvinyl alcohol demonstrate physical transience within 30 min.

  12. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics

    International Nuclear Information System (INIS)

    Jin, Sung Hun; Shin, Jongmin; Cho, In-Tak; Lee, Jong-Ho; Han, Sang Youn; Lee, Dong Joon; Lee, Chi Hwan; Rogers, John A.

    2014-01-01

    This paper presents materials, device designs, and physical/electrical characteristics of a form of nanotube electronics that is physically transient, in the sense that all constituent elements dissolve and/or disperse upon immersion into water. Studies of contact effects illustrate the ability to use water soluble metals such as magnesium for source/drain contacts in nanotube based field effect transistors. High mobilities and on/off ratios in transistors that use molybdenum, silicon nitride, and silicon oxide enable full swing characteristics for inverters at low voltages (∼5 V) and with high gains (∼30). Dissolution/disintegration tests of such systems on water soluble sheets of polyvinyl alcohol demonstrate physical transience within 30 min.

  13. Impact of graphene polycrystallinity on the performance of graphene field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, David; Chaves, Ferney [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, 08193-Bellaterra (Spain); Cummings, Aron W.; Van Tuan, Dinh [ICN2, Institut Català de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Kotakoski, Jani [Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien (Austria); Department of Physics, University of Helsinki, P.O. Box 43, 00014 University of Helsinki (Finland); Roche, Stephan [ICN2, Institut Català de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-01-27

    We have used a multi-scale physics-based model to predict how the grain size and different grain boundary morphologies of polycrystalline graphene will impact the performance metrics of graphene field-effect transistors. We show that polycrystallinity has a negative impact on the transconductance, which translates to a severe degradation of the maximum and cutoff frequencies. On the other hand, polycrystallinity has a positive impact on current saturation, and a negligible effect on the intrinsic gain. These results reveal the complex role played by graphene grain boundaries and can be used to guide the further development and optimization of graphene-based electronic devices.

  14. Impact of graphene polycrystallinity on the performance of graphene field-effect transistors

    International Nuclear Information System (INIS)

    Jiménez, David; Chaves, Ferney; Cummings, Aron W.; Van Tuan, Dinh; Kotakoski, Jani; Roche, Stephan

    2014-01-01

    We have used a multi-scale physics-based model to predict how the grain size and different grain boundary morphologies of polycrystalline graphene will impact the performance metrics of graphene field-effect transistors. We show that polycrystallinity has a negative impact on the transconductance, which translates to a severe degradation of the maximum and cutoff frequencies. On the other hand, polycrystallinity has a positive impact on current saturation, and a negligible effect on the intrinsic gain. These results reveal the complex role played by graphene grain boundaries and can be used to guide the further development and optimization of graphene-based electronic devices

  15. Bisacenaphthopyrazinoquinoxaline derivatives: Synthesis, physical properties and applications as semiconductors for n-channel field effect transistors

    KAUST Repository

    Tong, Chenhua

    2013-01-01

    Several bisacenaphthopyrazinoquinoxaline (BAPQ) based derivatives 1-3 were synthesized by condensation between the acenaphthenequinones and 1,2,4,5-tetraaminobenzene tetrahydrochloride. Their optical, electrochemical and self-assembling properties are tuned by different substituents. Among them, compound 3 possesses a homogeneously distributed low-lying LUMO due to the peripheral substitution with four cyano groups. The corresponding n-channel field effect transistors showed a field effect electron mobility of 5 × 10-3 cm2 V-1 s-1. © 2013 The Royal Society of Chemistry.

  16. A novel Tunneling Graphene Nano Ribbon Field Effect Transistor with dual material gate: Numerical studies

    Science.gov (United States)

    Ghoreishi, Seyed Saleh; Saghafi, Kamyar; Yousefi, Reza; Moravvej-farshi, Mohammad Kazem

    2016-09-01

    In this work, we present Dual Material Gate Tunneling Graphene Nano-Ribbon Field Effect Transistors (DMG-T-GNRFET) mainly to suppress the am-bipolar current with assumption that sub-threshold swing which is one of the important characteristics of tunneling transistors must not be degraded. In the proposed structure, dual material gates with different work functions are used. Our investigations are based on numerical simulations which self-consistently solves the 2D Poisson based on an atomistic mode-space approach and Schrodinger equations, within the Non-Equilibrium Green's (NEGF). The proposed device shows lower off-current and on-off ratio becomes 5order of magnitude greater than the conventional device. Also two different short channel effects: Drain Induced Barrier Shortening (DIBS) and hot-electron effect are improved in the proposed device compare to the main structure.

  17. pn-Heterojunction effects of perylene tetracarboxylic diimide derivatives on pentacene field-effect transistor.

    Science.gov (United States)

    Yu, Seong Hun; Kang, Boseok; An, Gukil; Kim, BongSoo; Lee, Moo Hyung; Kang, Moon Sung; Kim, Hyunjung; Lee, Jung Heon; Lee, Shichoon; Cho, Kilwon; Lee, Jun Young; Cho, Jeong Ho

    2015-01-28

    We investigated the heterojunction effects of perylene tetracarboxylic diimide (PTCDI) derivatives on the pentacene-based field-effect transistors (FETs). Three PTCDI derivatives with different substituents were deposited onto pentacene layers and served as charge transfer dopants. The deposited PTCDI layer, which had a nominal thickness of a few layers, formed discontinuous patches on the pentacene layers and dramatically enhanced the hole mobility in the pentacene FET. Among the three PTCDI molecules tested, the octyl-substituted PTCDI, PTCDI-C8, provided the most efficient hole-doping characteristics (p-type) relative to the fluorophenyl-substituted PTCDIs, 4-FPEPTC and 2,4-FPEPTC. The organic heterojunction and doping characteristics were systematically investigated using atomic force microscopy, 2D grazing incidence X-ray diffraction studies, and ultraviolet photoelectron spectroscopy. PTCDI-C8, bearing octyl substituents, grew laterally on the pentacene layer (2D growth), whereas 2,4-FPEPTC, with fluorophenyl substituents, underwent 3D growth. The different growth modes resulted in different contact areas and relative orientations between the pentacene and PTCDI molecules, which significantly affected the doping efficiency of the deposited adlayer. The differences between the growth modes and the thin-film microstructures in the different PTCDI patches were attributed to a mismatch between the surface energies of the patches and the underlying pentacene layer. The film-morphology-dependent doping effects observed here offer practical guidelines for achieving more effective charge transfer doping in thin-film transistors.

  18. Dynamics of charge carrier trapping in NO 2 sensors based on ZnO field-effect transistors

    NARCIS (Netherlands)

    Andringa, A.-M.; Vlietstra, N.; Smits, E.C.P.; Spijkman, M.-J.; Gomes, H.L.; Klootwijk, J.H.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    Nitrogen dioxide (NO 2) detection with ZnO field-effect transistors is based on charge carrier trapping. Here we investigate the dynamics of charge trapping and recovery as a function of temperature by monitoring the threshold voltage shift. The threshold voltage shifts follow a

  19. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET.

    Science.gov (United States)

    Tan, Michael Loong Peng; Lentaris, Georgios; Amaratunga Aj, Gehan

    2012-08-19

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency.

  20. Phosphorus oxide gate dielectric for black phosphorus field effect transistors

    Science.gov (United States)

    Dickerson, W.; Tayari, V.; Fakih, I.; Korinek, A.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S.; Botton, G. A.; Szkopek, T.

    2018-04-01

    The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2 V-1 s-1 in ambient conditions, which we attribute to the low defect density of the bP/POx interface.

  1. Spin-dependent transport in metal/semiconductor tunnel junctions

    NARCIS (Netherlands)

    Prins, M.W.J.; Kempen, van H.; Leuken, Van H.; Groot, de R.A.; Roy, van W.; De Boeck, J.

    1995-01-01

    This paper describes a model as well as experiments on spin-polarized tunnelling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to

  2. In-situ doped junctionless polysilicon nanowires field effect transistors for low-cost biosensors

    Directory of Open Access Journals (Sweden)

    Azeem Zulfiqar

    2017-04-01

    Full Text Available Silicon nanowire (SiNW field effect transistor based biosensors have already been proven to be a promising tool to detect biomolecules. However, the most commonly used fabrication techniques involve expensive Silicon-On-Insulator (SOI wafers, E-beam lithography and ion-implantation steps. In the work presented here, a top down approach to fabricate SiNW junctionless field effect biosensors using novel in-situ doped polysilicon is demonstrated. The p-type polysilicon is grown with an optimum boron concentration that gives a good metal-silicon electrical contact while maintaining the doping level at a low enough level to provide a good sensitivity for the biosensor. The silicon nanowires are patterned using standard photolithography and a wet etch method. The metal contacts are made from magnetron sputtered TiW and e-beam evaporation of gold. The passivation of electrodes has been done by sputtered Si3N4 which is patterned by a lift-off process. The characterization of the critical fabrication steps is done by Secondary Ion Mass Spectroscopy (SIMS and by statistical analysis of the measurements made on the width of the SiNWs. The electrical characterization of the SiNW in air is done by sweeping the back gate voltage while keeping the source drain potential to a constant value and surface characterization is done by applying liquid gate in phosphate buffered saline (PBS solution. The fabricated SiNWs sensors functionalized with (3-aminopropyltriethoxysilane (APTES have demonstrated good sensitivity in detecting different pH buffer solutions. Keywords: In-situ doped, Polysilicon nanowire, Field effect transistor, Biosensor

  3. Monte Carlo simulations of spin transport in a strained nanoscale InGaAs field effect transistor

    Science.gov (United States)

    Thorpe, B.; Kalna, K.; Langbein, F. C.; Schirmer, S.

    2017-12-01

    Spin-based logic devices could operate at a very high speed with a very low energy consumption and hold significant promise for quantum information processing and metrology. We develop a spintronic device simulator by combining an in-house developed, experimentally verified, ensemble self-consistent Monte Carlo device simulator with spin transport based on a Bloch equation model and a spin-orbit interaction Hamiltonian accounting for Dresselhaus and Rashba couplings. It is employed to simulate a spin field effect transistor operating under externally applied voltages on a gate and a drain. In particular, we simulate electron spin transport in a 25 nm gate length In0.7Ga0.3As metal-oxide-semiconductor field-effect transistor with a CMOS compatible architecture. We observe a non-uniform decay of the net magnetization between the source and the gate and a magnetization recovery effect due to spin refocusing induced by a high electric field between the gate and the drain. We demonstrate a coherent control of the polarization vector of the drain current via the source-drain and gate voltages, and show that the magnetization of the drain current can be increased twofold by the strain induced into the channel.

  4. Simulating realistic implementations of spin field effect transistor

    Science.gov (United States)

    Gao, Yunfei; Lundstrom, Mark S.; Nikonov, Dmitri E.

    2011-04-01

    The spin field effect transistor (spinFET), consisting of two ferromagnetic source/drain contacts and a Si channel, is predicted to have outstanding device and circuit performance. We carry out a rigorous numerical simulation of the spinFET based on the nonequilibrium Green's function formalism self-consistently coupled with a Poisson solver to produce the device I-V characteristics. Good agreement with the recent experiments in terms of spin injection, spin transport, and the magnetoresistance ratio (MR) is obtained. We include factors crucial for realistic devices: tunneling through a dielectric barrier, and spin relaxation at the interface and in the channel. Using these simulations, we suggest ways of optimizing the device. We propose that by choosing the right contact material and inserting tunnel oxide barriers between the source/drain and channel to filter different spins, the MR can be restored to ˜2000%, which would be beneficial to the reconfigurable logic circuit application.

  5. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    Czech Academy of Sciences Publication Activity Database

    Procházka, Václav; Cifra, Michal; Kulha, Pavel; Ižák, Tibor; Rezek, Bohuslav; Kromka, Alexander

    2017-01-01

    Roč. 395, Feb (2017), s. 214-219 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : nanocrystalline diamond * yeast cells * field-effect transistor * transfer characteristics pH sensitivity Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.387, year: 2016

  6. Rectification of harmonically oscillating magnetic fields in quarter circular Josephson junctions

    International Nuclear Information System (INIS)

    Shaju, P.D.; Kuriakose, V.C.

    2003-01-01

    A novel method for rectifying harmonically varying magnetic fields is demonstrated using fluxons in quarter circular Josephson junctions (JJs). A JJ with a quarter circular geometry terminated with a load resistor at one end is found to be capable of rectifying alternating fields when biased with a constant dc current. An external magnetic field applied parallel to the dielectric barrier of the junction interacts with the edges of the junction and make asymmetric boundary conditions. These asymmetric boundary conditions facilitate fluxon penetration under a dc bias from one end of the junction in alternate half cycles of the applied field. Thus effective rectification of the field can be achieved using quarter circular JJs. This unique phenomenon is specific to this geometry and can be exploited for making superconducting magnetic field rectifiers. This proposed device is expected to have important applications in millimeter and sub-millimeter radio wave astronomy

  7. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Wang, Jianlong; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2016-10-07

    Most lateral PbSe quantum dot field effect transistors (QD FETs) show a low on current/off current (I on/I off) ratio in charge transport measurements. A new strategy to provide generally better performance is to design PbSe QD FETs with vertical architecture, in which the structure parameters can be tuned flexibly. Here, we fabricated a novel room-temperature operated vertical quantum dot field effect transistor with a channel of 580 nm, where self-assembled Au/Ag nanowires served as source transparent electrodes and PbSe quantum dots as active channels. Through investigating the electrical characterization, the ambipolar device exhibited excellent characteristics with a high I on/I off current ratio of about 1 × 10(5) and a low sub-threshold slope (0.26 V/decade) in the p-type regime. The all-solution processing vertical architecture provides a convenient way for low cost, large-area integration of the device.

  8. Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions

    Science.gov (United States)

    Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2018-04-01

    In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.

  9. Transfer characteristics and contact resistance in Ni- and Ti-contacted graphene-based field-effect transistors

    International Nuclear Information System (INIS)

    Di Bartolomeo, A; Giubileo, F; Iemmo, L; Romeo, F; Santandrea, S; Gambardella, U

    2013-01-01

    We produced graphene-based field-effect transistors by contacting mono- and bi-layer graphene by sputtering Ni or Ti as metal electrodes. We performed electrical characterization of the devices by measuring their transfer and output characteristics. We clearly observed the presence of a double-dip feature in the conductance curve for Ni-contacted transistors, and we explain it in terms of charge transfer and graphene doping under the metal contacts. We also studied the contact resistance between the graphene and the metal electrodes with larger values of ∼30 kΩμm 2 recorded for Ti contacts. Importantly, we prove that the contact resistance is modulated by the back-gate voltage. (paper)

  10. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications.

    Science.gov (United States)

    Piccinini, Esteban; Bliem, Christina; Reiner-Rozman, Ciril; Battaglini, Fernando; Azzaroni, Omar; Knoll, Wolfgang

    2017-06-15

    We present the construction of layer-by-layer (LbL) assemblies of polyethylenimine and urease onto reduced-graphene-oxide based field-effect transistors (rGO FETs) for the detection of urea. This versatile biosensor platform simultaneously exploits the pH dependency of liquid-gated graphene-based transistors and the change in the local pH produced by the catalyzed hydrolysis of urea. The use of an interdigitated microchannel resulted in transistors displaying low noise, high pH sensitivity (20.3µA/pH) and transconductance values up to 800 µS. The modification of rGO FETs with a weak polyelectrolyte improved the pH response because of its transducing properties by electrostatic gating effects. In the presence of urea, the urease-modified rGO FETs showed a shift in the Dirac point due to the change in the local pH close to the graphene surface. Markedly, these devices operated at very low voltages (less than 500mV) and were able to monitor urea in the range of 1-1000µm, with a limit of detection (LOD) down to 1µm, fast response and good long-term stability. The urea-response of the transistors was enhanced by increasing the number of bilayers due to the increment of the enzyme surface coverage onto the channel. Moreover, quantification of the heavy metal Cu 2+ (with a LOD down to 10nM) was performed in aqueous solution by taking advantage of the urease specific inhibition. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Auger generation as an intrinsic limit to tunneling field-effect transistor performance

    International Nuclear Information System (INIS)

    Teherani, James T.; Agarwal, Sapan; Chern, Winston; Antoniadis, Dimitri A.; Solomon, Paul M.; Yablonovitch, Eli

    2016-01-01

    Many in the microelectronics field view tunneling field-effect transistors (TFETs) as society's best hope for achieving a >10× power reduction for electronic devices; however, despite a decade of considerable worldwide research, experimental TFET results have significantly underperformed simulations and conventional MOSFETs. To explain the discrepancy between TFET experiments and simulations, we investigate the parasitic leakage current due to Auger generation, an intrinsic mechanism that cannot be mitigated with improved material quality or better device processing. We expose the intrinsic link between the Auger and band-to-band tunneling rates, highlighting the difficulty of increasing one without the other. From this link, we show that Auger generation imposes a fundamental limit on ultimate TFET performance.

  12. Auger generation as an intrinsic limit to tunneling field-effect transistor performance

    Energy Technology Data Exchange (ETDEWEB)

    Teherani, James T., E-mail: j.teherani@columbia.edu [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States); Agarwal, Sapan [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Chern, Winston; Antoniadis, Dimitri A. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Solomon, Paul M. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Yablonovitch, Eli [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2016-08-28

    Many in the microelectronics field view tunneling field-effect transistors (TFETs) as society's best hope for achieving a >10× power reduction for electronic devices; however, despite a decade of considerable worldwide research, experimental TFET results have significantly underperformed simulations and conventional MOSFETs. To explain the discrepancy between TFET experiments and simulations, we investigate the parasitic leakage current due to Auger generation, an intrinsic mechanism that cannot be mitigated with improved material quality or better device processing. We expose the intrinsic link between the Auger and band-to-band tunneling rates, highlighting the difficulty of increasing one without the other. From this link, we show that Auger generation imposes a fundamental limit on ultimate TFET performance.

  13. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    Science.gov (United States)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-12-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (Ion/Ioff) of up to ˜103, with a current density of 102 A cm-2. We also observed significant dependence of Schottky barrier height Δφb on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier.

  14. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    International Nuclear Information System (INIS)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Dae Kim, Seong; Ahn, Jong-Hyun

    2015-01-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (I on /I off ) of up to ∼10 3 , with a current density of 10 2 A cm −2 . We also observed significant dependence of Schottky barrier height Δφ b on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier. (paper)

  15. Behavior of pentacene initial nucleation on various dielectrics and its effect on carrier transport in organic field-effect transistor.

    Science.gov (United States)

    Qi, Qiong; Yu, Aifang; Wang, Liangmin; Jiang, Chao

    2010-11-01

    The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm2Ns with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm2Ns and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.

  16. Doped Organic Transistors.

    Science.gov (United States)

    Lüssem, Björn; Keum, Chang-Min; Kasemann, Daniel; Naab, Ben; Bao, Zhenan; Leo, Karl

    2016-11-23

    Organic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors. This Review summarizes the latest progress made in the understanding of the doping technology and its application to organic transistors. It presents the most successful doping models and an overview of the wide variety of materials used as dopants. Further, the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed, and a concise overview on the influence of doping on transistor behavior and performance is given. In particular, recent progress in the understanding of contact doping and channel doping is summarized.

  17. Effective dose assessment in the maxillofacial region using thermoluminescent (TLD) and metal oxide semiconductor field-effect transistor (MOSFET) dosemeters: a comparative study

    NARCIS (Netherlands)

    Koivisto, J.; Schulze, D.; Wolff, J.E.H.; Rottke, D.

    2014-01-01

    Objectives: The objective of this study was to compare the performance of metal oxide semiconductor field-effect transistor (MOSFET) technology dosemeters with thermoluminescent dosemeters (TLDs) (TLD 100; Thermo Fisher Scientific, Waltham, MA) in the maxillofacial area. Methods: Organ and effective

  18. Effect of 50 MeV Li3+ ion irradiation on electrical characteristics of high speed NPN power transistor

    International Nuclear Information System (INIS)

    Dinesh, C.M.; Ramani; Radhakrishna, M.C.; Dutt, R.N.; Khan, S.A.; Kanjilal, D.

    2008-01-01

    Silicon NPN overlay RF power high speed commercial bipolar junction transistors (BJTs) find applications in military, space and communication equipments. Here we report the effect of 50 MeV Li 3+ ion irradiation in the fluence range 1 x 10 11 -1.8 x 10 12 ions cm -2 on NPN power transistor. The range (R), electronic energy loss (S e ), nuclear energy loss (S n ), total ionizing dose (TID) and total displacement damage (D d ) in the silicon target are calculated from TRIM Monte Carlo Code. Output resistance is 3.568 x 10 4 Ω for unirradiated device and it increases to 6 x 10 7 Ω as the fluence is increased from 1 x 10 11 to 1.8 x 10 12 ions cm -2 . The capacitance of the emitter-base junction of the transistor decreases and dielectric loss of the emitter-base junction increases with increase in ion fluence. The built in voltage of the unirradiated sample is 0.5 V and it shifts to 0.4 V after irradiation at fluence of 1.8 x 10 12 ions cm -2 and the corresponding doping density reduced to 5.758 x 10 16 cm -3 . The charge carrier removal rate varies linearly with the increase in ion fluence

  19. Effect of quantum well position on the distortion characteristics of transistor laser

    Science.gov (United States)

    Piramasubramanian, S.; Ganesh Madhan, M.; Radha, V.; Shajithaparveen, S. M. S.; Nivetha, G.

    2018-05-01

    The effect of quantum well position on the modulation and distortion characteristics of a 1300 nm transistor laser is analyzed in this paper. Standard three level rate equations are numerically solved to study this characteristics. Modulation depth, second order harmonic and third order intermodulation distortion of the transistor laser are evaluated for different quantum well positions for a 900 MHz RF signal modulation. From the DC analysis, it is observed that optical power is maximum, when the quantum well is positioned near base-emitter interface. The threshold current of the device is found to increase with increasing the distance between the quantum well and the base-emitter junction. A maximum modulation depth of 0.81 is predicted, when the quantum well is placed at 10 nm from the base-emitter junction, under RF modulation. The magnitude of harmonic and intermodulation distortion are found to decrease with increasing current and with an increase in quantum well distance from the emitter base junction. A minimum second harmonic distortion magnitude of -25.96 dBc is predicted for quantum well position (230 nm) near to the base-collector interface for 900 MHz modulation frequency at a bias current of 20 Ibth. Similarly, a minimum third order intermodulation distortion of -38.2 dBc is obtained for the same position and similar biasing conditions.

  20. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors

    Science.gov (United States)

    Hur, Ji-Hyun; Kim, Deok-Kee

    2018-05-01

    In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.

  1. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors.

    Science.gov (United States)

    Dzyadevych, Sergei V; Soldatkin, Alexey P; Korpan, Yaroslav I; Arkhypova, Valentyna N; El'skaya, Anna V; Chovelon, Jean-Marc; Martelet, Claude; Jaffrezic-Renault, Nicole

    2003-10-01

    This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.

  2. Investigation of Corner Effect and Identification of Tunneling Regimes in L-Shaped Tunnel Field-Effect-Transistor.

    Science.gov (United States)

    Najam, Faraz; Yu, Yun Seop

    2018-09-01

    Corner-effect existing in L-shaped tunnel field-effect-transistor (LTFET) was investigated using numerical simulations and band diagram analysis. It was found that the corner-effect is caused by the convergence of electric field in the sharp source corner present in an LTFET, thereby increasing the electric field in the sharp source corner region. It was found that in the corner-effect region tunneling starts early, as a function of applied bias, as compared to the rest of the channel not affected by corner-effect. Further, different tunneling regimes as a function of applied bias were identified in the LTFET including source to channel and channel to channel tunneling regimes. Presence of different tunneling regimes in LTFET was analytically justified with a set of equations developed to model source to channel, and channel to channel tunneling currents. Drain-current-gate-voltage (Ids-Vgs) characteristics obtained from the equations is in reasonable qualitative agreement with numerical simulation.

  3. Prolonged 500 C Operation of 100+ Transistor Silicon Carbide Integrated Circuits

    Science.gov (United States)

    Spry, David J.; Neudeck, Philip G.; Lukco, Dorothy; Chen, Liangyu; Krasowski, Michael J.; Prokop, Norman F.; Chang, Carl W.; Beheim, Glenn M.

    2017-01-01

    This report describes more than 5000 hours of successful 500 C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 C. After 100 hours of 500 C burn-in, the circuits (except for 2 failures) exhibit less than 10 change in output characteristics for the remainder of 500C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460C in comparison to what is observed for Earth-atmosphere oven testing at 500 C.

  4. EDITORIAL: Reigniting innovation in the transistor Reigniting innovation in the transistor

    Science.gov (United States)

    Demming, Anna

    2012-09-01

    Today the transistor is integral to the electronic circuitry that wires our lives. When Bardeen and Brattain first observed an amplified signal by connecting electrodes to a germanium crystal they saw that their 'semiconductor triode' could prove a useful alternative to the more cumbersome vacuum tubes used at the time [1]. But it was perhaps William Schottky who recognized the extent of the transistor's potential. A basic transistor has three or more terminals and current across one pair of terminals can switch or amplify current through another pair. Bardeen, Brattain and Schottky were jointly awarded a Nobel Prize in 1956 'for their researches on semiconductors and their discovery of the transistor effect' [2]. Since then many new forms of the transistor have been developed and understanding of the underlying properties is constantly advancing. In this issue Chen and Shih and colleagues at Taiwan National University and Drexel University report a pyroelectrics transistor. They show how a novel optothermal gating mechanism can modulate the current, allowing a range of developments in nanoscale optoelectronics and wireless devices [3]. The explosion of interest in nanoscale devices in the 1990s inspired electronics researchers to look for new systems that can act as transistors, such as carbon nanotube [4] and silicon nanowire [5] transistors. Generally these transistors function by raising and lowering an energy barrier of kBT -1, but researchers in the US and Canada have demonstrated that the quantum interference between two electronic pathways through aromatic molecules can also modulate the current flow [6]. The device has advantages for further miniaturization where energy dissipation in conventional systems may eventually cause complications. Interest in transistor technology has also led to advances in fabrication techniques for achieving high production quantities, such as printing [7]. Researchers in Florida in the US demonstrated field effect transistor

  5. Controlling Chain Conformations of High-k Fluoropolymer Dielectrics to Enhance Charge Mobilities in Rubrene Single-Crystal Field-Effect Transistors.

    Science.gov (United States)

    Adhikari, Jwala M; Gadinski, Matthew R; Li, Qi; Sun, Kaige G; Reyes-Martinez, Marcos A; Iagodkine, Elissei; Briseno, Alejandro L; Jackson, Thomas N; Wang, Qing; Gomez, Enrique D

    2016-12-01

    A novel photopatternable high-k fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant (k) between 8 and 11 is demonstrated in thin-film transistors. Crosslinking P(VDF-BTFE) reduces energetic disorder at the dielectric-semiconductor interface by controlling the chain conformations of P(VDF-BTFE), thereby leading to approximately a threefold enhancement in the charge mobility of rubrene single-crystal field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Scheme for the fabrication of ultrashort channel metal-oxide-semiconductor field-effect transistors

    International Nuclear Information System (INIS)

    Appenzeller, J.; Martel, R.; Solomon, P.; Chan, K.; Avouris, Ph.; Knoch, J.; Benedict, J.; Tanner, M.; Thomas, S.; Wang, K. L.

    2000-01-01

    We present a scheme for the fabrication of ultrashort channel length metal-oxide-semiconductor field-effect transistors (MOSFETs) involving nanolithography and molecular-beam epitaxy. The active channel is undoped and is defined by a combination of nanometer-scale patterning and anisotropic etching of an n ++ layer grown on a silicon on insulator wafer. The method is self-limiting and can produce MOSFET devices with channel lengths of less than 10 nm. Measurements on the first batch of n-MOSFET devices fabricated with this approach show very good output characteristics and good control of short-channel effects. (c) 2000 American Institute of Physics

  7. Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors

    OpenAIRE

    Kazuo Takimiya et al

    2007-01-01

    Electronic structure of air-stable, high-performance organic field-effect transistor (OFET) material, 2,7-dipheneyl[1]benzothieno[3,2-b]benzothiophene (DPh-BTBT), was discussed based on the molecular orbital calculations. It was suggested that the stability is originated from relatively low-lying HOMO level, despite the fact that the molecule contains highly π-extended aromatic core ([1]benzothieno[3,2-b]benzothiophene, BTBT) with four fused aromatic rings like naphthacene. This is rationaliz...

  8. Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinyu [College of Science, Guilin University of Technology, Guilin 541004 (China); Department of Physics and Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Tang, Tao; Li, Ming, E-mail: liming928@163.com, E-mail: lixinyu5260@163.com [College of Science, Guilin University of Technology, Guilin 541004 (China); He, Xiancong, E-mail: liming928@163.com, E-mail: lixinyu5260@163.com [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167 (China)

    2015-01-05

    Highly nitrogen-doped GO (NGO) and n-type graphene field effect transistor (FET) have been achieved by simple irradiation of graphene oxide (GO) thin films in NH{sub 3} atmosphere. The electrical properties of the NGO film were performed on electric field effect measurements, and it displays an n-type FET behavior with a charge neutral point (Dirac point) located at around −8 V. It is suggested that the amino-like nitrogen (N-A) mainly contributes to the n-type behavior. Furthermore, compared to the GO film irradiated in Ar atmosphere, the NGO film is much more capable to improve the electrical conductivity. It may attribute to nitrogen doping and oxygen reduction, both of which can effectively enhance the electrical conductivity.

  9. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    International Nuclear Information System (INIS)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-01-01

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves

  10. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thilo; Jäger, Christof M. [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Jordan, Meredith J. T. [School of Chemistry, University of Sydney, Sydney, NSW 2006 (Australia); Clark, Timothy, E-mail: tim.clark@fau.de [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Centre for Molecular Design, University of Portsmouth, Portsmouth PO1 2DY (United Kingdom)

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  11. Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors

    International Nuclear Information System (INIS)

    Lan, H.-S.; Liu, C. W.

    2014-01-01

    The dependence of ballistic electron current on Sn content, sidewall orientations, fin width, and uniaxial stress is theoretically studied for the GeSn fin field-effect transistors. Alloying Sn increases the direct Γ valley occupancy and enhances the injection velocity at virtual source node. (112 ¯ ) sidewall gives the highest current enhancement due to the rapidly increasing Γ valley occupancy. The non-parabolicity of the Γ valley affects the occupancy significantly. However, uniaxial tensile stress and the shrinkage of fin width reduce the Γ valley occupancy, and the currents are enhanced by increasing occupancy of specific indirect L valleys with high injection velocity

  12. Investigation of defect-induced abnormal body current in fin field-effect-transistors

    International Nuclear Information System (INIS)

    Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Yang, Ren-Ya; Cheng, Osbert; Huang, Cheng-Tung

    2015-01-01

    This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal

  13. Dynamic response of carbon nanotube field-effect transistors analyzed by S-parameters measurement

    International Nuclear Information System (INIS)

    Bethoux, J.-M.; Happy, H.; Dambrine, G.; Derycke, V.; Goffman, M.; Bourgoin, J.-P.

    2006-01-01

    Carbon nanotube field-effect transistors (CN-FET) with a metallic back gate have been fabricated. By assembling a number of CNs in parallel, driving currents in the mA range have been obtained. The dynamic response of the CN-FETs has been investigated through S-parameters measurements. A current gain (|H 21 | 2 ) cut-off frequency (f t ) of 8 GHz, and a maximum stable gain (MSG) value of 10 dB at 1 GHz have been obtained. The extraction of an equivalent circuit is proposed

  14. Fundamental investigation of high temperature operation of field effect transistor devices

    Science.gov (United States)

    Chern, Jehn-Huar

    In this dissertation copper germanium (CuGe)-based materials were investigated as potential ohmic contacts to n-type gallium arsenide (GaAs). The CuGe-based contacts to GaAs were found to not form any reaction products with GaAs and to have low contact resistance comparable to that of nickel gold germanium (NiAuGe) ohmic contacts to GaAs. The potential for high temperature applications using CuGe ohmic contacts was investigated. A guideline for further reduction of the contact resistance has been achieved after investigating the detailed mechanism of the formation of binary CuGe contacts over a wide range of Ge concentrations. The thermal stability of CuGe contacts was significantly enhanced and improved by introducing a diffusion barrier, titanium tungsten nitride (TiWNx), and a gold (Au) overlayer for high temperature applications. Novel approaches such as epitaxial thulium phosphide (TmP) Schottky contacts and the utilization of low temperature (LT)-aluminum gallium arsenide (AlGaAs) were also investigated in this dissertation and likely will be the standard technologies for a new generation of high-temperature electronics. Inserting a layer of aluminum arsenide (AlAs) underneath the channel of a GaAs-based MESFET was found to reduce substrate leakage currents by a factor of 30 compared with the same MESFET directly fabricated on a semi-insulating GaAs substrate. In addition to AlAs, and AlxGa1-xAs materials, new materials grown at low temperatures such as LT-AlGaAs were used in heterojunction FET structures as a back wall barrier. Low drain leakage currents were achieved using AlAs and LT-AlGaAs as the back wall barriers. Some fundamental properties regarding these materials are of great interest and in need of further characterization. Part of the work in this dissertation was devoted to the characterization of device performance for different structure designs at elevated temperatures. The suitability of GaAs-based and gallium arsenide (GaN)-based MESFET

  15. Transistor Small Signal Analysis under Radiation Effects

    International Nuclear Information System (INIS)

    Sharshar, K.A.A.

    2004-01-01

    A Small signal transistor parameters dedicate the operation of bipolar transistor before and after exposed to gamma radiation (1 Mrad up to 5 Mrads) and electron beam(1 MeV, 25 mA) with the same doses as a radiation sources, the electrical parameters of the device are changed. The circuit Model has been discussed.Parameters, such as internal emitter resistance (re), internal base resistance, internal collector resistance (re), emitter base photocurrent (Ippe) and base collector photocurrent (Ippe). These parameters affect on the operation of the device in its applications, which work as an effective element, such as current gain (hFE≡β)degradation it's and effective parameter in the device operation. Also the leakage currents (IcBO) and (IEBO) are most important parameters, Which increased with radiation doses. Theoretical representation of the change in the equivalent circuit for NPN and PNP bipolar transistor were discussed, the input and output parameters of the two types were discussed due to the change in small signal input resistance of the two types. The emitter resistance(re) were changed by the effect of gamma and electron beam irradiation, which makes a change in the role of matching impedances between transistor stages. Also the transistor stability factors S(Ico), S(VBE) and S(β are detected to indicate the transistor operations after exposed to radiation fields. In low doses the gain stability is modified due to recombination of induced charge generated during device fabrication. Also the load resistance values are connected to compensate the effect

  16. High performance printed oxide field-effect transistors processed using photonic curing

    Science.gov (United States)

    Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho

    2018-06-01

    Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

  17. Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer

    International Nuclear Information System (INIS)

    Liang Xiaoyu; Cheng Xiaoman; Du Boqun; Bai Xiao; Fan Jianfeng

    2013-01-01

    We investigated the properties of C 60 -based organic field-effect transistors (OFETs) with a pentacene passivation layer inserted between the C 60 active layer and the gate dielectric. After modification of the pentacene passivation layer, the performance of the devices was considerably improved compared to C 60 -based OFETs with only a PMMA dielectric. The peak field-effect mobility was up to 1.01 cm 2 /(V·s) and the on/off ratio shifted to 10 4 . This result indicates that using a pentacene passivation layer is an effective way to improve the performance of N-type OFETs. (semiconductor devices)

  18. Selectivity control of photosensitive structures based on gallium arsenide phosphide solid solutions by changing the rate of surface recombination

    International Nuclear Information System (INIS)

    Tarasov, S A; Andreev, M Y; Lamkin, I A; Solomonov, A V

    2016-01-01

    In this paper, we demonstrate the effect of surface recombination on spectral sensitivity of structures based on gallium arsenide phosphide solid solutions. Simulation of the effect for structures based on a p-n junction and a Schottky barrier was carried out. Photodetectors with different rates of surface recombination were fabricated by using different methods of preliminary treatment of the semiconductor surface. We experimentally demonstrated the possibility to control photodetector selectivity by altering the rate of surface recombination. The full width at half maximum was reduced by almost 4 times, while a relatively small decrease in sensitivity at the maximum was observed. (paper)

  19. Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors.

    Science.gov (United States)

    Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo

    2017-10-11

    Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for optoelectronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the density of thermally activated carriers; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs) at room temperature. The effect opens up opportunities for future development of electromechanical transducers based on black phosphorus, and we demonstrate an ultrasensitive strain gauge constructed from black phosphorus thin crystals.

  20. Calculation of the electron wave function in a graded-channel double-heterojunction modulation-doped field-effect transistor

    Science.gov (United States)

    Mui, D. S. L.; Patil, M. B.; Morkoc, H.

    1989-01-01

    Three double-heterojunction modulation-doped field-effect transistor structures with different channel composition are investigated theoretically. All of these transistors have an In(x)Ga(1-x)As channel sandwiched between two doped Al(0.3)Ga(0.7)As barriers with undoped spacer layers. In one of the structures, x varies from 0 from either heterojunction to 0.15 at the center of the channel quadratically; in the other two, constant values of x of 0 and 0.15 are used. The Poisson and Schroedinger equations are solved self-consistently for the electron wave function in all three cases. The results showed that the two-dimensional electron gas (2DEG) concentration in the channel of the quadratically graded structure is higher than the x = 0 one and slightly lower than the x = 0.15 one, and the mean distance of the 2DEG is closer to the center of the channel for this transistor than the other two. These two effects have important implications on the electron mobility in the channel.

  1. Strain characterization of fin-shaped field effect transistors with SiGe stressors using nanobeam electron diffraction

    International Nuclear Information System (INIS)

    Kim, Sun-Wook; Byeon, Dae-Seop; Jang, Hyunchul; Koo, Sang-Mo; Ko, Dae-Hong; Lee, Hoo-Jeong

    2014-01-01

    This study undertook strain analysis on fin-shaped field effect transistor structures with epitaxial Si 1−x Ge x stressors, using nano-beam electron diffraction and finite elements method. Combining the two methods disclosed dynamic strain distribution in the source/drain and channel region of the fin structure, and the effects of dimensional factors such as the stressor thickness and fin width, offering valuable information for device design.

  2. Strain characterization of fin-shaped field effect transistors with SiGe stressors using nanobeam electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Wook; Byeon, Dae-Seop; Jang, Hyunchul; Koo, Sang-Mo; Ko, Dae-Hong, E-mail: dhko@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Hoo-Jeong, E-mail: hlee@skku.edu [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-08-25

    This study undertook strain analysis on fin-shaped field effect transistor structures with epitaxial Si{sub 1−x}Ge{sub x} stressors, using nano-beam electron diffraction and finite elements method. Combining the two methods disclosed dynamic strain distribution in the source/drain and channel region of the fin structure, and the effects of dimensional factors such as the stressor thickness and fin width, offering valuable information for device design.

  3. The importance of spinning speed in fabrication of spin-coated organic thin film transistors: Film morphology and field effect mobility

    International Nuclear Information System (INIS)

    Kotsuki, Kenji; Tanaka, Hiroshige; Obata, Seiji; Stauss, Sven; Terashima, Kazuo; Saiki, Koichiro

    2014-01-01

    We have investigated the film morphology and the field effect mobility of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) thin films which were formed by spin coating on the SiO 2 substrate with solution-processed graphene electrodes. The domain size and the density of aggregates in the C8-BTBT film showed the same dependence on the spinning speed. These competitive two factors (domain size and density of aggregates) give an optimum spinning speed, at which the field effect mobility of C8-BTBT transistor showed a maximum (2.6 cm 2 /V s). This result indicates the importance of spinning speed in the fabrication of solution processed organic thin film transistors by spin coating.

  4. Dynamic response of carbon nanotube field-effect transistors analyzed by S-parameters measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bethoux, J.-M. [Institut d' Electronique, de Microelectronique et de Nanotechnologie, C.N.R.S. U.M.R. 8520, BP 60069, F-59652, Villeneuve d' Ascq Cedex (France); Happy, H. [Institut d' Electronique, de Microelectronique et de Nanotechnologie, C.N.R.S. U.M.R. 8520, BP 60069, F-59652, Villeneuve d' Ascq Cedex (France)]. E-mail: henri.happy@iemn.univ-lille1.fr; Dambrine, G. [Institut d' Electronique, de Microelectronique et de Nanotechnologie, C.N.R.S. U.M.R. 8520, BP 60069, F-59652, Villeneuve d' Ascq Cedex (France); Derycke, V. [Laboratoire d' Electronique Moleculaire, SPEC, Commissariat a l' Energie Atomique, Saclay F-91191, Gif sur Yvette Cedex (France); Goffman, M. [Laboratoire d' Electronique Moleculaire, SPEC, Commissariat a l' Energie Atomique, Saclay F-91191, Gif sur Yvette Cedex (France); Bourgoin, J.-P. [Laboratoire d' Electronique Moleculaire, SPEC, Commissariat a l' Energie Atomique, Saclay F-91191, Gif sur Yvette Cedex (France)

    2006-12-15

    Carbon nanotube field-effect transistors (CN-FET) with a metallic back gate have been fabricated. By assembling a number of CNs in parallel, driving currents in the mA range have been obtained. The dynamic response of the CN-FETs has been investigated through S-parameters measurements. A current gain (|H {sub 21}|{sup 2}) cut-off frequency (f {sub t}) of 8 GHz, and a maximum stable gain (MSG) value of 10 dB at 1 GHz have been obtained. The extraction of an equivalent circuit is proposed.

  5. RNA Detection Based on Graphene Field-Effect Transistor Biosensor

    Directory of Open Access Journals (Sweden)

    Meng Tian

    2018-01-01

    Full Text Available Graphene has attracted much attention in biosensing applications due to its unique properties. In this paper, the monolayer graphene was grown by chemical vapor deposition (CVD method. Using the graphene as the electric channel, we have fabricated a graphene field-effect transistor (G-FET biosensor that can be used for label-free detection of RNA. Compared with conventional method, the G-FET RNA biosensor can be run in low cost, be time-saving, and be miniaturized for RNA measurement. The sensors show high performance and achieve the RNA detection sensitivity as low as 0.1 fM, which is two orders of magnitude lower than the previously reports. Moreover, the G-FET biosensor can readily distinguish target RNA from noncomplementary RNA, showing high selectivity for RNA detection. The developed G-FET RNA biosensor with high sensitivity, fast analysis speed, and simple operation may provide a new feasible direction for RNA research and biosensing.

  6. Quantum mechanical solver for confined heterostructure tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Van de Put, Maarten; Sorée, Bart; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Departement of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Verhulst, Anne S.; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandenberghe, William G. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2014-02-07

    Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement.

  7. Electron emission from individual indium arsenide semiconductor nanowires

    NARCIS (Netherlands)

    Heeres, E.C.; Bakkers, E.P.A.M.; Roest, A.L.; Kaiser, M.A.; Oosterkamp, T.H.; Jonge, de N.

    2007-01-01

    A procedure was developed to mount individual semiconductor indium arsenide nanowires onto tungsten support tips to serve as electron field-emission sources. The electron emission properties of the single nanowires were precisely determined by measuring the emission pattern, current-voltage curve,

  8. Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated metal - oxide - semiconductor field-effect transistors: Effective electron mobility

    International Nuclear Information System (INIS)

    Ragnarsson, L.-A degree.; Guha, S.; Copel, M.; Cartier, E.; Bojarczuk, N. A.; Karasinski, J.

    2001-01-01

    We report on high effective mobilities in yttrium-oxide-based n-channel metal - oxide - semiconductor field-effect transistors (MOSFETs) with aluminum gates. The yttrium oxide was grown in ultrahigh vacuum using a reactive atomic-beam-deposition system. Medium-energy ion-scattering studies indicate an oxide with an approximate composition of Y 2 O 3 on top of a thin layer of interfacial SiO 2 . The thickness of this interfacial oxide as well as the effective mobility are found to be dependent on the postgrowth anneal conditions. Optimum conditions result in mobilities approaching that of SiO 2 -based MOSFETs at higher fields with peak mobilities at approximately 210 cm 2 /Vs. [copyright] 2001 American Institute of Physics

  9. Low-frequency noise in single electron tunneling transistor

    DEFF Research Database (Denmark)

    Tavkhelidze, A.N.; Mygind, Jesper

    1998-01-01

    The noise in current biased aluminium single electron tunneling (SET) transistors has been investigated in the frequency range of 5 mHz ..., we find the same input charge noise, typically QN = 5 × 10–4 e/Hz1/2 at 10 Hz, with and without the HF shielding. At lower frequencies, the noise is due to charge trapping, and the voltage noise pattern superimposed on the V(Vg) curve (voltage across transistor versus gate voltage) strongly depends...... when ramping the junction voltage. Dynamic trapping may limit the high frequency applications of the SET transistor. Also reported on are the effects of rf irradiation and the dependence of the SET transistor noise on bias voltage. ©1998 American Institute of Physics....

  10. Diazaisoindigo bithiophene and terthiophene copolymers for application in field-effect transistors and solar cells

    KAUST Repository

    Yue, Wan

    2017-06-10

    Two donor–acceptor conjugated polymers with azaisoindigo as acceptor units and bithiophene and terthiophene as donor units have been synthesized by Stille polymerization. These two polymers have been successfully applied in field-effect transistors and polymer solar cells. By changing the donor component of the conjugated polymer backbone from bithiophene to terthiophene, the density of thiophene in the backbone is increased, manifesting as a decrease in both ionization potential and in electron affinity. Therefore, the charge transport in field-effect transistors switches from ambipolar to predominantly hole transport behavior. PAIIDTT exhibits hole mobility up to 0.40 cm2/Vs and electron mobility of 0.02 cm2/Vs, whereas PAIIDTTT exhibits hole mobility of 0.62 cm2/Vs. Polymer solar cells were fabricated based on these two polymers as donors with PC61BM and PC71BM as acceptor where PAIIDTT shows a modest efficiency of 2.57% with a very low energy loss of 0.55 eV, while PAIIDTTT shows a higher efficiency of 6.16% with a higher energy loss of 0.74 eV. Our results suggest that azaisoindgo is a useful building block for the development of efficient polymer solar cells with further improvement possibility by tuning the alternative units on the polymer backbone. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017

  11. Charge transport behavior of benodithiophene-diketopyrrololpyrrole-based conjugated polymer in organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Kuen [Dept. of Chemistry, Hankuk University of Foreign Studies, Yongin (Korea, Republic of)

    2015-07-15

    Organic optoelectronic devices, such as light-emitting diodes, organic solar cells (OSCs), and organic field effect transistors (OFETs), have emerged due to the development of π-conjugated polymers. Because the delocalized π-framework can significantly reduce the energy gap between the highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO), their intrinsic optoelectronic properties can be tunable with their conjugation length in terms of average molecular weights and their π-backbone structures. The new type of low bandgap conjugated polymer (P1) has been successively polymerized via a palladium- catalyzed Stille cross-coupling reaction with bis-ethylhexyl BDT and bis-n-decane DPP. With a linear alkyl chain in the DPP units, the intermolecular packing structure was thought to be enhanced by proving the UV–Vis and UPS spectra. In addition, the electronic properties of P1 via field-effect transistors well illustrate the typical p-type semiconducting property without showing the significant improvement by thermal annealing. From a broader perspective, this research indicates that a wider choice of linear alkyl chain length in DPP units and modification of the interface between dielectric and active layers should be sought to further optimize device performance. Hence, progressive works with the strategy presented in this report will be pursued to address the different challenges in attaining target OFET performances.

  12. Instability in an amorphous In–Ga–Zn–O field effect transistor upon water exposure

    International Nuclear Information System (INIS)

    Sharma, Bhupendra K; Ahn, Jong-Hyun

    2016-01-01

    The instability of an amorphous indium–gallium–zinc oxide (IGZO) field effect transistor is investigated upon water treatment. Electrical characteristics are measured before, immediately after and a few days after water treatment in ambient as well as in vacuum conditions. It is observed that after a few days of water exposure an IGZO field effect transistor (FET) shows relatively more stable behaviour as compared to before exposure. Transfer characteristics are found to shift negatively after immediate water exposure and in vacuum. More interestingly, after water exposure the off current is found to decrease by 1–2 orders of magnitude and remains stable even after 15 d of water exposure in ambient as well as in vacuum, whereas the on current more or less remains the same. An x-ray photoelectron spectroscopic study is carried out to investigate the qualitative and quantitative analysis of IGZO upon water exposure. The changes in the FET parameters are evaluated and attributed to the formation of excess oxygen vacancies and changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO 2 interface, which can further lead to the formation of subgap states. An attempt is made to distinguish which parameters of the FET are affected by the changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO 2 interface separately. (paper)

  13. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Held, Martin; Schießl, Stefan P.; Gannott, Florentina [Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058 (Germany); Institute for Physical Chemistry, Universität Heidelberg, Heidelberg D-69120 (Germany); Miehler, Dominik [Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058 (Germany); Zaumseil, Jana, E-mail: zaumseil@uni-heidelberg.de [Institute for Physical Chemistry, Universität Heidelberg, Heidelberg D-69120 (Germany)

    2015-08-24

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.

  14. Direct Effect of Dielectric Surface Energy on Carrier Transport in Organic Field-Effect Transistors.

    Science.gov (United States)

    Zhou, Shujun; Tang, Qingxin; Tian, Hongkun; Zhao, Xiaoli; Tong, Yanhong; Barlow, Stephen; Marder, Seth R; Liu, Yichun

    2018-05-09

    The understanding of the characteristics of gate dielectric that leads to optimized carrier transport remains controversial, and the conventional studies applied organic semiconductor thin films, which introduces the effect of dielectric on the growth of the deposited semiconductor thin films and hence only can explore the indirect effects. Here, we introduce pregrown organic single crystals to eliminate the indirect effect (semiconductor growth) in the conventional studies and to undertake an investigation of the direct effect of dielectric on carrier transport. It is shown that the matching of the polar and dispersive components of surface energy between semiconductor and dielectric is favorable for higher mobility. This new empirical finding may show the direct relationship between dielectric and carrier transport for the optimized mobility of organic field-effect transistors and hence show a promising potential for the development of next-generation high-performance organic electronic devices.

  15. Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Padilla, J. L.; Alper, C.; Ionescu, A. M.; Gámiz, F.

    2014-01-01

    The analysis of quantum mechanical confinement in recent germanium electron–hole bilayer tunnel field-effect transistors has been shown to substantially affect the band-to-band tunneling (BTBT) mechanism between electron and hole inversion layers that constitutes the operating principle of these devices. The vertical electric field that appears across the intrinsic semiconductor to give rise to the bilayer configuration makes the formerly continuous conduction and valence bands become a discrete set of energy subbands, therefore increasing the effective bandgap close to the gates and reducing the BTBT probabilities. In this letter, we present a simulation approach that shows how the inclusion of quantum confinement and the subsequent modification of the band profile results in the appearance of lateral tunneling to the underlap regions that greatly degrades the subthreshold swing of these devices. To overcome this drawback imposed by confinement, we propose an heterogate configuration that proves to suppress this parasitic tunneling and enhances the device performance.

  16. Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2014-08-25

    The analysis of quantum mechanical confinement in recent germanium electron–hole bilayer tunnel field-effect transistors has been shown to substantially affect the band-to-band tunneling (BTBT) mechanism between electron and hole inversion layers that constitutes the operating principle of these devices. The vertical electric field that appears across the intrinsic semiconductor to give rise to the bilayer configuration makes the formerly continuous conduction and valence bands become a discrete set of energy subbands, therefore increasing the effective bandgap close to the gates and reducing the BTBT probabilities. In this letter, we present a simulation approach that shows how the inclusion of quantum confinement and the subsequent modification of the band profile results in the appearance of lateral tunneling to the underlap regions that greatly degrades the subthreshold swing of these devices. To overcome this drawback imposed by confinement, we propose an heterogate configuration that proves to suppress this parasitic tunneling and enhances the device performance.

  17. Dianthraceno[a,e]pentalenes: Synthesis, crystallographic structures and applications in organic field-effect transistors

    KAUST Repository

    Dai, Gaole

    2015-01-01

    Two soluble and stable dianthraceno[a,e]pentalenes with two (DAP1) and six (DAP2) phenyl substituents were synthesized. Both compounds possess a small energy band gap and show amphoteric redox behaviour due to intramolecular donor-accepter interactions. X-ray crystallographic analysis revealed that DAP2 has a closely packed structure with multi-dimensional [C-H⋯π] interactions although there are no π-π interactions between the dianthraceno[a,e]pentalene cores. As a result, solution-processed field effect transistors based on DAP2 exhibited an average hole mobility of 0.65 cm2 V-1 s-1. Under similar conditions, DAP1 showed an average field effect hole mobility of 0.001 cm2 V-1 s-1. This journal is

  18. Improved performance of InSe field-effect transistors by channel encapsulation

    Science.gov (United States)

    Liang, Guangda; Wang, Yiming; Han, Lin; Yang, Zai-Xing; Xin, Qian; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Patanè, Amalia; Song, Aimin

    2018-06-01

    Due to the high electron mobility and photo-responsivity, InSe is considered as an excellent candidate for next generation electronics and optoelectronics. In particular, in contrast to many high-mobility two-dimensional (2D) materials, such as phosphorene, InSe is more resilient to oxidation in air. Nevertheless, its implementation in future applications requires encapsulation techniques to prevent the adsorption of gas molecules on its surface. In this work, we use a common lithography resist, poly(methyl methacrylate) (PMMA) to encapsulate InSe-based field-effect transistors (FETs). The encapsulation of InSe by PMMA improves the electrical stability of the FETs under a gate bias stress, and increases both the drain current and electron mobility. These findings indicate the effectiveness of the PMMA encapsulation method, which could be applied to other 2D materials.

  19. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors

    Science.gov (United States)

    2014-01-01

    This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm2/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm2/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing. PMID:25276107

  20. Poster - Thur Eve - 57: Craniospinal irradiation with jagged-junction IMRT approach without beam edge matching for field junctions.

    Science.gov (United States)

    Cao, F; Ramaseshan, R; Corns, R; Harrop, S; Nuraney, N; Steiner, P; Aldridge, S; Liu, M; Carolan, H; Agranovich, A; Karva, A

    2012-07-01

    Craniospinal irradiation were traditionally treated the central nervous system using two or three adjacent field sets. A intensity-modulated radiotherapy (IMRT) plan (Jagged-Junction IMRT) which overcomes problems associated with field junctions and beam edge matching, improves planning and treatment setup efficiencies with homogenous target dose distribution was developed. Jagged-Junction IMRT was retrospectively planned on three patients with prescription of 36 Gy in 20 fractions and compared to conventional treatment plans. Planning target volume (PTV) included the whole brain and spinal canal to the S3 vertebral level. The plan employed three field sets, each with a unique isocentre. One field set with seven fields treated the cranium. Two field sets treated the spine, each set using three fields. Fields from adjacent sets were overlapped and the optimization process smoothly integrated the dose inside the overlapped junction. For the Jagged-Junction IMRT plans vs conventional technique, average homogeneity index equaled 0.08±0.01 vs 0.12±0.02, and conformity number equaled 0.79±0.01 vs 0.47±0.12. The 95% isodose surface covered (99.5±0.3)% of the PTV vs (98.1±2.0)%. Both Jagged-Junction IMRT plans and the conventional plans had good sparing of the organs at risk. Jagged-Junction IMRT planning provided good dose homogeneity and conformity to the target while maintaining a low dose to the organs at risk. Jagged-Junction IMRT optimization smoothly distributed dose in the junction between field sets. Since there was no beam matching, this treatment technique is less likely to produce hot or cold spots at the junction in contrast to conventional techniques. © 2012 American Association of Physicists in Medicine.

  1. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    Science.gov (United States)

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  2. Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lan, H.-S. [Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Liu, C. W., E-mail: chee@cc.ee.ntu.edu.tw [Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China)

    2014-05-12

    The dependence of ballistic electron current on Sn content, sidewall orientations, fin width, and uniaxial stress is theoretically studied for the GeSn fin field-effect transistors. Alloying Sn increases the direct Γ valley occupancy and enhances the injection velocity at virtual source node. (112{sup ¯}) sidewall gives the highest current enhancement due to the rapidly increasing Γ valley occupancy. The non-parabolicity of the Γ valley affects the occupancy significantly. However, uniaxial tensile stress and the shrinkage of fin width reduce the Γ valley occupancy, and the currents are enhanced by increasing occupancy of specific indirect L valleys with high injection velocity.

  3. Organic field-effect transistors as a test-bed for molecular electronics : a combined study with large-area molecular junctions

    NARCIS (Netherlands)

    Asadi, K.; Katsouras, I.; Harkema, J.; Gholamrezaie, F.; Smits, E.C.P.; Biscarini, F.; Blom b, P.W.M.; Leeuw, D.M. de

    2012-01-01

    The contact resistance of a transistor using self-assembled monolayer (SAM)-modified source and drain electrodes depends on the SAM tunnel resistance, the height of the injection barrier and the morphology at the contact. To disentangle the different contributions, we have combined here the

  4. Organic field-effect transistors as a test-bed for molecular electronics : A combined study with large-area molecular junctions

    NARCIS (Netherlands)

    Asadi, Kamal; Katsouras, Ilias; Harkema, Jan; Gholamrezaie, Fatemeh; Smits, Edsger C. F.; Biscarini, Fabio; Blom, Paul W. M.; de Leeuw, Dago M.

    2012-01-01

    The contact resistance of a transistor using self-assembled monolayer (SAM)-modified source and drain electrodes depends on the SAM tunnel resistance, the height of the injection barrier and the morphology at the contact. To disentangle the different contributions, we have combined here the

  5. Organic field-effect transistors as a test-bed for molecular electronics : A combined study with large-area molecular junctions

    NARCIS (Netherlands)

    Asadi, Kamal; Katsouras, Ilias; Harkema, Jan; Gholamrezaie, Fatemeh; Smits, Edsger C. F.; Biscarini, Fabio; Blom, Paul W. M.; de Leeuw, Dago M.

    The contact resistance of a transistor using self-assembled monolayer (SAM)-modified source and drain electrodes depends on the SAM tunnel resistance, the height of the injection barrier and the morphology at the contact. To disentangle the different contributions, we have combined here the

  6. Asymmetric diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells processed from a non-chlorinated solvent

    NARCIS (Netherlands)

    Ji, Y.; Xiao, C.; Wang, Q.; Zhang, J.; Li, C.; Wu, Y.; Wei, Z.; Zhan, X.; Hu, W.; Wang, Z.; Janssen, R.A.J.; Li, W.W.

    2016-01-01

    Newly designed asymmetric diketopyrrolopyrrole conjugated polymers with two different aromatic substituents possess a hole mobility of 12.5 cm2 V−1 s−1 in field-effect transistors and a power conversion efficiency of 6.5% in polymer solar cells, when solution processed from a nonchlorinated

  7. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Wang, Qingxiao; Yue, Weisheng; Guo, Zaibing; LI, LIANG; Zhao, Chao; Wang, Xianbin; Abutaha, Anas I.; Alshareef, Husam N.; Zhang, Yafei; Zhang, Xixiang

    2014-01-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. This journal is © the Partner Organisations 2014.

  8. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-01

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  9. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations.

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-15

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  10. Analytical modeling of split-gate junction-less transistor for a biosensor application

    Directory of Open Access Journals (Sweden)

    Shradhya Singh

    2018-04-01

    Full Text Available This paper represents the analytical modeling of split-gate Dielectric Modulated Junction Less Transistor (JLT for label free electrical detection of bio molecules. Some part of the channel region is opened for providing the binding sites for the bio molecules unlike conventional MOSFET which is enclosed with the gate electrode. Due to this open area, the surface potential of this region affected by the charged and neutral bio molecules immobilized to the open region of channel. Surface potential of the channel region obtained by solving two-Dimensional Poisson's equation by potential profile having parabolic nature through channel region using technique called conformal mapping. By deriving the surface potential model, derivation of threshold model can also be done. For the detection of bio molecule, variation in to the threshold voltage due to binding of bio molecule in the gate underlap region is the sensing metric.

  11. Multilayer Graphene–WSe2 Heterostructures for WSe2 Transistors

    KAUST Repository

    Tang, Hao-Ling

    2017-11-29

    Two-dimensional (2D) materials are drawing growing attention for next-generation electronics and optoelectronics owing to its atomic thickness and unique physical properties. One of the challenges posed by 2D materials is the large source/drain (S/D) series resistance due to their thinness, which may be resolved by thickening the source and drain regions. Recently explored lateral graphene–MoS21−3 and graphene–WS21,4 heterostructures shed light on resolving the mentioned issues owing to their superior ohmic contact behaviors. However, recently reported field-effect transistors (FETs) based on graphene–TMD heterostructures have only shown n-type characteristics. The lack of p-type transistor limits their applications in complementary metal-oxide semiconductor electronics. In this work, we demonstrate p-type FETs based on graphene–WSe2 lateral heterojunctions grown with the scalable CVD technique. Few-layer WSe2 is overlapped with the multilayer graphene (MLG) at MLG–WSe2 junctions such that the contact resistance is reduced. Importantly, the few-layer WSe2 only forms at the junction region while the channel is still maintained as a WSe2 monolayer for transistor operation. Furthermore, by imposing doping to graphene S/D, 2 orders of magnitude enhancement in Ion/Ioff ratio to ∼108 and the unipolar p-type characteristics are obtained regardless of the work function of the metal in ambient air condition. The MLG is proposed to serve as a 2D version of emerging raised source/drain approach in electronics.

  12. Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors.

    Science.gov (United States)

    Wu, Di; Li, Xiao; Luan, Lan; Wu, Xiaoyu; Li, Wei; Yogeesh, Maruthi N; Ghosh, Rudresh; Chu, Zhaodong; Akinwande, Deji; Niu, Qian; Lai, Keji

    2016-08-02

    The understanding of various types of disorders in atomically thin transition metal dichalcogenides (TMDs), including dangling bonds at the edges, chalcogen deficiencies in the bulk, and charges in the substrate, is of fundamental importance for TMD applications in electronics and photonics. Because of the imperfections, electrons moving on these 2D crystals experience a spatially nonuniform Coulomb environment, whose effect on the charge transport has not been microscopically studied. Here, we report the mesoscopic conductance mapping in monolayer and few-layer MoS2 field-effect transistors by microwave impedance microscopy (MIM). The spatial evolution of the insulator-to-metal transition is clearly resolved. Interestingly, as the transistors are gradually turned on, electrical conduction emerges initially at the edges before appearing in the bulk of MoS2 flakes, which can be explained by our first-principles calculations. The results unambiguously confirm that the contribution of edge states to the channel conductance is significant under the threshold voltage but negligible once the bulk of the TMD device becomes conductive. Strong conductance inhomogeneity, which is associated with the fluctuations of disorder potential in the 2D sheets, is also observed in the MIM images, providing a guideline for future improvement of the device performance.

  13. Ultra-high gain diffusion-driven organic transistor

    Science.gov (United States)

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-01-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal–semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics. PMID:26829567

  14. THE QUANTUM-WELL STRUCTURES OF SELF ELECTROOPTIC-EFFECT DEVICES AND GALLIUM-ARSENIDE

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    1996-02-01

    Full Text Available Multiple quantum-well (MQW electroabsorptive self electro optic-effect devices (SEEDs are being extensively studied for use in optical switching and computing. The self electro-optic-effect devices which has quantum-well structures is a new optoelectronic technology with capability to obtain both optical inputs and outputs for Gallium-Arsenide/Aluminum Gallium-Arsenide (GaAs/AlGaAs electronic circuits. The optical inputs and outputs are based on quantum-well absorptive properties. These quantum-well structures consist of many thin layers of semiconductors materials of GaAs/AlGaAs which have emerged some important directions recently. The most important advance in the physics of these materials since the early days has been invention of the heterojunction structures which is based at present on GaAs technology. GaAs/AlGaAs structures present some important advantages to relevant band gap and index of refraction which allow to form the quantum-well structures and also to make semiconductor lasers, dedectors and waveguide optical switches.

  15. Operational Stability of Organic Field‐Effect Transistors

    NARCIS (Netherlands)

    Bobbert, P.A.; Sharma, A.; Matthijssen, S.J.G.; Kemerink, M.; de Leeuw, D.M.

    2012-01-01

    Organic field-effect transistors (OFETs) are considered in technological applications for which low cost or mechanical flexibility are crucial factors. The environmental stability of the organic semiconductors used in OFETs has improved to a level that is now sufficient for commercialization.

  16. Extended-gate organic field-effect transistor for the detection of histamine in water

    Science.gov (United States)

    Minamiki, Tsukuru; Minami, Tsuyoshi; Yokoyama, Daisuke; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo

    2015-04-01

    As part of our ongoing research program to develop health care sensors based on organic field-effect transistor (OFET) devices, we have attempted to detect histamine using an extended-gate OFET. Histamine is found in spoiled or decayed fish, and causes foodborne illness known as scombroid food poisoning. The new OFET device possesses an extended gate functionalized by carboxyalkanethiol that can interact with histamine. As a result, we have succeeded in detecting histamine in water through a shift in OFET threshold voltage. This result indicates the potential utility of the designed OFET devices in food freshness sensing.

  17. Industrial and scientific technology research and development project in fiscal 1997 commissioned by the New Energy and Industrial Technology Development Organization. Research and development of superconducting materials and transistors (report on overall investigation of superconductive devices); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (chodendo soshika gijutsu kaihatsu seika hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes development of superconducting new function transistors. Fiscal 1997 as the final year of the project advanced improvement in such transistor-using processes as formation and micro-processing of superconducting thin films to show enhancement in characteristics of high-temperature superconducting transistors and possibility of their application utilizing their high speed motions. Furthermore, fundamental technologies were studied with an aim on junction transistors to be applied as circuits. For field effect transistors, evaluation was performed on critical current distribution of step-type particle boundary junction to make it possible to evaluate characteristics of hundreds of transistors. At the same time, a magnetic flux quantum parametron gate with three-layer structure was fabricated to identify its operation. In superconducting-base transistors, strong reflection was recognized on temperature dependence of permittivity of an Nb-doped strontium titanate substrate used for collectors, by which barrier height was reduced. In the junction transistor and circuit technology, isotropic ramp-edge junctions were fabricated, and so was a frequency divider circuit with single magnetic flux quantum mode operation for evaluating high-speed response characteristics. High time resolution current was observed successfully by using a high-temperature superconducting sampler system. 148 refs., 127 figs., 4 tabs.

  18. Multiple-trapping in pentacene field-effect transistors with a nanoparticles self-assembled monolayer

    Directory of Open Access Journals (Sweden)

    Keanchuan Lee

    2012-06-01

    Full Text Available A silver nanoparticles self-assembled monolayer (SAM was incorporated in pentacene field-effect transistor and its effects on the carrier injection and transport were investigated using the current-voltage (I − V and impedance spectroscopy (IS measurements. The I − V results showed that there was a significant negative shift of the threshold voltage, indicating the hole trapping inside the devices with about two orders higher in the contact resistance and an order lower in the effective mobility when a SAM was introduced. The IS measurements with the simulation using a Maxwell-Wagner equivalent circuit model revealed the existence of multiple trapping states for the devices with NPs, while the devices without NPs exhibited only a single trap state.

  19. Thienoacene-fused pentalenes: Syntheses, structures, physical properties and applications for organic field-effect transistors

    KAUST Repository

    Dai, Gaole

    2014-11-27

    Three soluble and stable thienoacene-fused pentalene derivatives (1-3) with different π-conjugation lengths were synthesized. X-ray crystallographic analysis and density functional theory (DFT) calculations revealed their unique geometric and electronic structures due to the interaction between the aromatic thienoacene units and antiaromatic pentalene moiety. As a result, they all possess a small energy gap and show amphoteric redox behaviour. Time dependent (TD) DFT calculations were used to explain their unique electronic absorption spectra. These new compounds exhibited good thermal stability and ordered packing in solid state and thus their applications in organic field-effect transistors (OFETs) were also investigated. The highest field-effect hole mobility of 0.016, 0.036 and 0.001 cm2 V-1 s-1 was achieved for solution-processed thin films of 1-3, respectively.

  20. MOBILITAS PEMBAWA MUATAN PADA OFET (ORGANIC FIELD EFFECT TRANSISTOR BERBASIS FILM TIPIS

    Directory of Open Access Journals (Sweden)

    Sujarwata -

    2014-06-01

    Full Text Available Abstrak __________________________________________________________________________________________ Tujuan penelitian ini adalah pembuatan dan karakterisasi pada OFET (Organic Field Effect Transistor berbasis film tipis dengan struktur bottom-contact. Pembuatan OFET dilakukan dengan cara pencucian substrat dengan etanol dalam ultrasonic cleaner, kemudian dilakukan deposisi elektroda source dan drain di atas substrat SiO2 dengan metode  penguapan hampa udara pada suhu ruang dan teknik lithography. Selanjutnya dilakukan deposisi film tipis CuPc diantara source (S dan drain (D sebagai panjang saluran (channel dan diakhiri dengan deposisi elektrode gate (G. Karakterisai OFET berbasis film tipis dilakukan dengan El-Kahfi 100, untuk menentukan karakteristik keluaran V-I. Hasil karakterisasi OFET dengan panjang channel (L 100 μm dan lebar (W 1 mm, mempunyai daerah aktif, yaitu: 2,80 V sampai dengan 3,42. Mobilitas pembawa muatan OFET untuk daerah saturasi, µ = 0,00182278 cm2 /Vs dan untuk daerah linier, µ = 0,000343818  cm2 /Vs   Abstract __________________________________________________________________________________________ The purpose of this research is to produce and characterize the OFET (Organic Field Effect Transistor based on thin film with bottom-contact structure. The OFET production consists of the substract wash by using ethanol in the ultrasonic cleaner, then electrode deposition of source and drain on the SiO2 substract by using vacuum evaporation in the room temperature and lithography technique.  Then, the deposition of thin film of CuPc between source (S and drain (D was done as the channel length and ended with electrode gate (G deposition. The OFET characterization  with channel length (L  100 μm and wide (W 1 mm  obtained the active area of 2,80 - 3,42 v. While the mobility of OFET charge carrier  obtained µ =  0,00182278 cm2 /Vs for the saturation area and µ = 0,000343818  cm2 /Vs for linier area.

  1. Coulomb blockade based field-effect transistors exploiting stripe-shaped channel geometries of self-assembled metal nanoparticles.

    Science.gov (United States)

    Lehmann, Hauke; Willing, Svenja; Möller, Sandra; Volkmann, Mirjam; Klinke, Christian

    2016-08-14

    Metallic nanoparticles offer possibilities to build basic electric devices with new functionality and improved performance. Due to the small volume and the resulting low self-capacitance, each single nanoparticle exhibits a high charging energy. Thus, a Coulomb-energy gap emerges during transport experiments that can be shifted by electric fields, allowing for charge transport whenever energy levels of neighboring particles match. Hence, the state of the device changes sequentially between conducting and non-conducting instead of just one transition from conducting to pinch-off as in semiconductors. To exploit this behavior for field-effect transistors, it is necessary to use uniform nanoparticles in ordered arrays separated by well-defined tunnel barriers. In this work, CoPt nanoparticles with a narrow size distribution are synthesized by colloidal chemistry. These particles are deposited via the scalable Langmuir-Blodgett technique as ordered, homogeneous monolayers onto Si/SiO2 substrates with pre-patterned gold electrodes. The resulting nanoparticle arrays are limited to stripes of adjustable lengths and widths. In such a defined channel with a limited number of conduction paths the current can be controlled precisely by a gate voltage. Clearly pronounced Coulomb oscillations are observed up to temperatures of 150 K. Using such systems as field-effect transistors yields unprecedented oscillating current modulations with on/off-ratios of around 70%.

  2. Two dimensional analytical model for a reconfigurable field effect transistor

    Science.gov (United States)

    Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.

    2018-02-01

    This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.

  3. Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Keum-Ju Lee

    2011-01-01

    Full Text Available We demonstrate that Au-cluster-decorated single-walled carbon nanotubes (SWNTs may be used to discriminate single nucleotide polymorphism (SNP. Nanoscale Au clusters were formed on the side walls of carbon nanotubes in a transistor geometry using electrochemical deposition. The effect of Au cluster decoration appeared as hole doping when electrical transport characteristics were examined. Thiolated single-stranded probe peptide nucleic acid (PNA was successfully immobilized on Au clusters decorating single-walled carbon nanotube field-effect transistors (SWNT-FETs, resulting in a conductance decrease that could be explained by a decrease in Au work function upon adsorption of thiolated PNA. Although a target single-stranded DNA (ssDNA with a single mismatch did not cause any change in electrical conductance, a clear decrease in conductance was observed with matched ssDNA, thereby showing the possibility of SNP (single nucleotide polymorphism detection using Au-cluster-decorated SWNT-FETs. However, a power to discriminate SNP target is lost in high ionic environment. We can conclude that observed SNP discrimination in low ionic environment is due to the hampered binding of SNP target on nanoscale surfaces in low ionic conditions.

  4. Metal Contacts to Gallium Arsenide.

    Science.gov (United States)

    Ren, Fan

    1991-07-01

    While various high performance devices fabricated from the gallium arsenide (GaAs) and related materials have generated considerable interest, metallization are fundamental components to all semiconductor devices and integrated circuits. The essential roles of metallization systems are providing the desired electrical paths between the active region of the semiconductor and the external circuits through the metal interconnections and contacts. In this work, in-situ clean of native oxide, high temperature n-type, low temperature n-type and low temperature p-type ohmic metal systems have been studied. Argon ion mill was used to remove the native oxide prior to metal deposition. For high temperature process n-type GaAs ohmic contacts, Tungsten (W) and Tungsten Silicide (WSi) were used with an epitaxial grown graded Indium Gallium Arsenide (InGaAs) layer (0.2 eV) on GaAs. In addition, refractory metals, Molybdenum (Mo), was incorporated in the Gold-Germanium (AuGe) based on n-type GaAs ohmic contacts to replace conventional silver as barrier to prevent the reaction between ohmic metal and chlorine based plasma as well as the ohmic metallization intermixing which degrades the device performance. Finally, Indium/Gold-Beryllium (In/Au-Be) alloy has been developed as an ohmic contact for p-type GaAs to reduce the contact resistance. The Fermi-level pinning of GaAs has been dominated by the surface states. The Schottky barrier height of metal contacts are about 0.8 V regardless of the metal systems. By using p-n junction approach, barrier height of pulsed C-doped layers was achieved as high as 1.4 V. Arsenic implantation into GaAs method was also used to enhance the barrier height of 1.6 V.

  5. InN/InGaN complementary heterojunction-enhanced tunneling field-effect transistor with enhanced subthreshold swing and tunneling current

    Science.gov (United States)

    Peng, Yue; Han, Genquan; Wang, Hongjuan; Zhang, Chunfu; Liu, Yan; Wang, Yibo; Zhao, Shenglei; Zhang, Jincheng; Hao, Yue

    2016-05-01

    InN/In0.75Ga0.25N complementary heterojunction-enhanced tunneling field-effect transistors (HE-TFETs) were characterized using the numerical simulation. InN/In0.75Ga0.25N HE-TFET has an InN/In0.75Ga0.25N heterojunction located in the channel region with a distance of LT-H from the source/channel tunneling junction. We demonstrate that, for both n- and p-channel devices, HE-TFETs have a delay of onset voltage VONSET, a steeper subthreshold swing (SS), and an enhanced on-state current ION in comparison with the homo-TFETs. InN/In0.75Ga0.25N n- and p-channel HE-TFETs with a gate length LG of 25 nm and a LT-H of 5 nm achieve a 7 and 9 times ION improvement in comparison with the homo devices, respectively, at a supply voltage of 0.3 V. The performance enhancement in HE-TFETs is attributed to the modulating effect of heterojunction on band-to-band tunneling (BTBT). Because InN/In0.75Ga0.25N heterointerface shows the similar band offsets at conduction and valence bands, the InN/In0.75Ga0.25N heterojunction exhibits the improved effect on BTBT for both n- and p-channel devices. This makes InN/In0.75Ga0.25N heterojunction a promising structure for high performance complementary TFETs.

  6. From Thin Films to Monolayer, A Systematic Approach for BTBT Based Organic Field Effect Transistors

    OpenAIRE

    Yousefi Amin, Atefeh

    2013-01-01

    This work focuses on theoretical and experimental understanding of how low-voltage organic field effect transistors based on BTBT ([1] benzothieno[3,2-b][1]benzothiophene) operate. The focus is in deducing the electrical and interfacial landscape in the device, while using ultra-thin hybrid layers of AlOx/SAM (Self-Assembled Monolayer) as a dielectric. This thesis proposes a systematic study on an optimum solution for facing challenges in molecular and device properties. It first focuses on d...

  7. A computational study of a novel graphene nanoribbon field effect transistor

    Science.gov (United States)

    Ghoreishi, Seyed Saleh; Yousefi, Reza

    2017-04-01

    In this paper, using gate structure engineering and modification of channel dopant profile, we propose a new double gate graphene nanoribbon field effect transistor (DG-GNRFET) mainly to suppress the band-to-band tunneling (BTBT) of carriers. In the new device, the intrinsic part of the channel is replaced by an intrinsic-lightly doped-intrinsic (I -N--I) configuration in a way that only the intrinsic parts are covered by the gate contact. Transport characteristics of the device are investigated theoretically using the nonequilibrium Green’s function (NEGF) formalism. Numerical simulations show that off-current, ambipolar behavior, on/off-current ratio and the switching characteristics such as intrinsic delay and power-delay product are improved. In addition, the new device demonstrates better sub-threshold swing and less drain-induced barrier lowering (DIBL).

  8. Transport properties of field effect transistors with randomly networked single walled carbon nanotubes grown by plasma enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Park, Wanjun

    2009-01-01

    The transport properties of randomly networked single walled carbon nanotube (SWNT) transistors with different channel lengths of L c = 2-10 μm were investigated. Randomly networked SWNTs were directly grown for the two different densities of ρ ∼ 25 μm -2 and ρ ∼ 50 μm -2 by water plasma enhanced chemical vapour deposition. The field effect transport is governed mainly by formation of the current paths that is related to the nanotube density. On the other hand, the off-state conductivity deviates from linear dependence for both nanotube density and channel length. The field effect mobility of holes is estimated as 4-13 cm 2 V -1 s -1 for the nanotube transistors based on the simple MOS theory. The mobility is increased for the higher density without meaningful dependence on the channel lengths.

  9. Inexpensive and fast pathogenic bacteria screening using field-effect transistors.

    Science.gov (United States)

    Formisano, Nello; Bhalla, Nikhil; Heeran, Mel; Reyes Martinez, Juana; Sarkar, Amrita; Laabei, Maisem; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Flitsch, Sabine; Estrela, Pedro

    2016-11-15

    While pathogenic bacteria contribute to a large number of globally important diseases and infections, current clinical diagnosis is based on processes that often involve culturing which can be time-consuming. Therefore, innovative, simple, rapid and low-cost solutions to effectively reduce the burden of bacterial infections are urgently needed. Here we demonstrate a label-free sensor for fast bacterial detection based on metal-oxide-semiconductor field-effect transistors (MOSFETs). The electric charge of bacteria binding to the glycosylated gates of a MOSFET enables quantification in a straightforward manner. We show that the limit of quantitation is 1.9×10(5) CFU/mL with this simple device, which is more than 10,000-times lower than is achieved with electrochemical impedance spectroscopy (EIS) and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-ToF) on the same modified surfaces. Moreover, the measurements are extremely fast and the sensor can be mass produced at trivial cost as a tool for initial screening of pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    Science.gov (United States)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  11. Effect of multi-dimensional ultraviolet light exposure on the growth of pentacene film and application to organic field-effect transistors.

    Science.gov (United States)

    Bae, Jin-Hyuk; Lee, Sin-Doo; Choi, Jong Sun; Park, Jaehoon

    2012-05-01

    We report on the multi-dimensional alignment of pentacene molecules on a poly(methyl methacrylate)-based photosensitive polymer (PMMA-polymer) and its effect on the electrical performance of the pentacene-based field-effect transistor (FET). Pentacene molecules are shown to be preferentially aligned on the linearly polarized ultraviolet (LPUV)-exposed PMMA-polymer layer, which is contrast to an isotropic alignment on the bare PMMA-polymer layer. Multi-dimensional alignment of pentacene molecules in the film could be achieved by adjusting the direction of LPUV exposed to the PMMA-polymer. The control of pentacene molecular alignment is found to be promising for the field-effect mobility enhancement in the pentacene FET.

  12. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  13. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  14. AlGaN Channel Transistors for Power Management and Distribution

    Science.gov (United States)

    VanHove, James M.

    1996-01-01

    Contained within is the Final report of a Phase 1 SBIR program to develop AlGaN channel junction field effect transistors (JFET). The report summarizes our work to design, deposit, and fabricate JFETS using molecular beam epitaxy growth AlGaN. Nitride growth is described using a RF atomic nitrogen plasma source. Processing steps needed to fabricate the device such as ohmic source-drain contacts, reactive ion etching, gate formation, and air bride fabrication are documented. SEM photographs of fabricated power FETS are shown. Recommendations are made to continue the effort in a Phase 2 Program.

  15. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates.

    Science.gov (United States)

    Tetzner, Kornelius; Bose, Indranil R; Bock, Karlheinz

    2014-10-29

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  16. The fabrication of ZnO nanowire field-effect transistors combining dielectrophoresis and hot-pressing

    International Nuclear Information System (INIS)

    Chang, Y-K; Chau-N H, Franklin

    2009-01-01

    Zinc oxide nanowire field-effect transistors (NW-FETs) were fabricated combining the dielectrophoresis (DEP) and the hot-pressing methods. DEP was used to position both ends of the nanowires on top of the source and the drain electrodes, respectively. Hot-pressing of nanowires on the electrodes was then employed to ensure good contacts between the nanowires and the electrodes. The good device performance achieved with our method of fabrication indicates that DEP combined with hot-pressing has the potential to be applied to the fabrication of flexible electronics on a roll-to-roll basis.

  17. Pulsed laser deposition of oxide gate dielectrics for pentacene organic field-effect transistors

    International Nuclear Information System (INIS)

    Yaginuma, S.; Yamaguchi, J.; Itaka, K.; Koinuma, H.

    2005-01-01

    We have fabricated Al 2 O 3 , LaAlO 3 (LAO), CaHfO 3 (CHO) and CaZrO 3 (CZO) thin films for the dielectric layers of field-effect transistors (FETs) by pulsed laser deposition (PLD). The films exhibited very smooth surfaces with root-mean-squares (rms) roughnesses of ∼1.3 A as evaluated by using atomic force microscopy (AFM). The breakdown electric fields of Al 2 O 3 , LAO, CHO and CZO films were 7, 6, 10 and 2 MV/cm, respectively. The magnitude of the leak current in each film was low enough to operate FET. We performed a comparative study of pentacene FET fabricated using these oxide dielectrics as gate insulators. High field-effect mobility of 1.4 cm 2 /V s and on/off current ratio of 10 7 were obtained in the pentacene FET using LAO gate insulating film. Use of the LAO films as gate dielectrics has been found to suppress the hysteresis of pentacene FET operations. The LAO films are relevant to the dielectric layer of organic FETs

  18. A miniature microcontroller curve tracing circuit for space flight testing transistors.

    Science.gov (United States)

    Prokop, N; Greer, L; Krasowski, M; Flatico, J; Spina, D

    2015-02-01

    This paper describes a novel miniature microcontroller based curve tracing circuit, which was designed to monitor the environmental effects on Silicon Carbide Junction Field Effect Transistor (SiC JFET) device performance, while exposed to the low earth orbit environment onboard the International Space Station (ISS) as a resident experiment on the 7th Materials on the International Space Station Experiment (MISSE7). Specifically, the microcontroller circuit was designed to operate autonomously and was flown on the external structure of the ISS for over a year. This curve tracing circuit is capable of measuring current vs. voltage (I-V) characteristics of transistors and diodes. The circuit is current limited for low current devices and is specifically designed to test high temperature, high drain-to-source resistance SiC JFETs. The results of each I-V data set are transmitted serially to an external telemetered communication interface. This paper discusses the circuit architecture, its design, and presents example results.

  19. Correlating charge transport to structure in deconstructed diketopyrrolopyrrole oligomers: A case study of a monomer in field-effect transistors

    DEFF Research Database (Denmark)

    Pickett, Alec; Torkkeli, Mika; Mukhopadhyay, Tushita

    2018-01-01

    Copolymers based on diketopyrrolopyrrole (DPP) cores have attracted a lot of attention due to their high p-type as well as n-type carrier mobilities in organic field-effect transistors (FETs) and high power conversion efficiencies in solar cell structures. We report the structural and charge tran...

  20. Colour tuneable light-emitting transistor

    Energy Technology Data Exchange (ETDEWEB)

    Feldmeier, Eva J.; Melzer, Christian; Seggern, Heinz von [Electronic Materials Department, Institute of Materials Science, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    In recent years the interest in ambipolar organic light-emitting field-effect transistors has increased steadily as the devices combine switching behaviour of transistors with light emission. Usually, small molecules and polymers with a band gap in the visible spectral range serve as semiconducting materials. Mandatory remain balanced injection and transport properties for both charge carrier types to provide full control of the spatial position of the recombination zone of electrons and holes in the transistor channel via the applied voltages. As will be presented here, the spatial control of the recombination zone opens new possibilities towards light-emitting devices with colour tuneable emission. In our contribution an organic light-emitting field-effect transistors is presented whose emission colour can be changed by the applied voltages. The organic top-contact field-effect transistor is based on a parallel layer stack of acenes serving as organic transport and emission layers. The transistor displays ambipolar characteristics with a narrow recombination zone within the transistor channel. During operation the recombination zone can be moved by a proper change in the drain and gate bias from one organic semiconductor layer to another one inducing a change in the emission colour. In the presented example the emission maxima can be switched from 530 nm to 580 nm.

  1. Transport properties and device-design of Z-shaped MoS2 nanoribbon planar junctions

    Science.gov (United States)

    Zhang, Hua; Zhou, Wenzhe; Liu, Qi; Yang, Zhixiong; Pan, Jiangling; Ouyang, Fangping; Xu, Hui

    2017-09-01

    Based on MoS2 nanoribbons, metal-semiconductor-metal planar junction devices were constructed. The electronic and transport properties of the devices were studied by using density function theory (DFT) and nonequilibrium Green's functions (NEGF). It is found that a band gap about 0.4 eV occurs in the planar junction. The electron and hole transmissions of the devices are mainly contributed by the Mo atomic orbitals. The electron transport channel is located at the edge of armchair MoS2 nanoribbon, while the hole transport channel is delocalized in the channel region. The I-V curve of the two-probe device shows typical transport behavior of Schottky barrier, and the threshold voltage is of about 0.2 V. The field effect transistors (FET) based on the planar junction turn out to be good bipolar transistors, the maximum current on/off ratio can reach up to 1 × 104, and the subthreshold swing is 243 mV/dec. It is found that the off-state current is dependent on the length and width of the channel, while the on-state current is almost unaffected. The switching performance of the FET is improved with increasing the length of the channel, and shows oscillation behavior with the change of the channel width.

  2. Chemo-Electrical Signal Transduction by Using Stimuli-Responsive Polymer Gate-Modified Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Akira Matsumoto

    2014-03-01

    Full Text Available A glucose-responsive polymer brush was designed on a gold electrode and exploited as an extended gate for a field effect transistor (FET based biosensor. A permittivity change at the gate interface due to the change in hydration upon specific binding with glucose was detectable. The rate of response was markedly enhanced compared to the previously studied cross-linked or gel-coupled electrode, owing to its kinetics involving no process of the polymer network diffusion. This finding may offer a new strategy of the FET-based biosensors effective not only for large molecules but also for electrically neutral molecules such as glucose with improved kinetics.

  3. Attofarad resolution capacitance-voltage measurement of nanometer scale field effect transistors utilizing ambient noise

    International Nuclear Information System (INIS)

    Gokirmak, Ali; Inaltekin, Hazer; Tiwari, Sandip

    2009-01-01

    A high resolution capacitance-voltage (C-V) characterization technique, enabling direct measurement of electronic properties at the nanoscale in devices such as nanowire field effect transistors (FETs) through the use of random fluctuations, is described. The minimum noise level required for achieving sub-aF (10 -18 F) resolution, the leveraging of stochastic resonance, and the effect of higher levels of noise are illustrated through simulations. The non-linear ΔC gate-source/drain -V gate response of FETs is utilized to determine the inversion layer capacitance (C inv ) and carrier mobility. The technique is demonstrated by extracting the carrier concentration and effective electron mobility in a nanoscale Si FET with C inv = 60 aF.

  4. Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal-assisted etching.

    Science.gov (United States)

    Sainato, Michela; Strambini, Lucanos Marsilio; Rella, Simona; Mazzotta, Elisabetta; Barillaro, Giuseppe

    2015-04-08

    Surface doping of nano/mesostructured materials with metal nanoparticles to promote and optimize chemi-transistor sensing performance represents the most advanced research trend in the field of solid-state chemical sensing. In spite of the promising results emerging from metal-doping of a number of nanostructured semiconductors, its applicability to silicon-based chemi-transistor sensors has been hindered so far by the difficulties in integrating the composite metal-silicon nanostructures using the complementary metal-oxide-semiconductor (CMOS) technology. Here we propose a facile and effective top-down method for the high-yield fabrication of chemi-transistor sensors making use of composite porous silicon/gold nanostructures (cSiAuNs) acting as sensing gate. In particular, we investigate the integration of cSiAuNs synthesized by metal-assisted etching (MAE), using gold nanoparticles (NPs) as catalyst, in solid-state junction-field-effect transistors (JFETs), aimed at the detection of NO2 down to 100 parts per billion (ppb). The chemi-transistor sensors, namely cSiAuJFETs, are CMOS compatible, operate at room temperature, and are reliable, sensitive, and fully recoverable for the detection of NO2 at concentrations between 100 and 500 ppb, up to 48 h of continuous operation.

  5. Optimization of Vertical Double-Diffused Metal-Oxide Semiconductor (VDMOS) Power Transistor Structure for Use in High Frequencies and Medical Devices.

    Science.gov (United States)

    Farhadi, Rozita; Farhadi, Bita

    2014-01-01

    Power transistors, such as the vertical, double-diffused, metal-oxide semiconductor (VDMOS), are used extensively in the amplifier circuits of medical devices. The aim of this research was to construct a VDMOS power transistor with an optimized structure to enhance the operation of medical devices. First, boron was implanted in silicon by implanting unclamped inductive switching (UIS) and a Faraday shield. The Faraday shield was implanted in order to replace the gate-field parasitic capacitor on the entry part of the device. Also, implanting the UIS was used in order to decrease the effect of parasitic bipolar junction transistor (BJT) of the VDMOS power transistor. The research tool used in this study was Silvaco software. By decreasing the transistor entry resistance in the optimized VDMOS structure, power losses and noise at the entry of the transistor were decreased, and, by increasing the breakdown voltage, the lifetime of the VDMOS transistor lifetime was increased, which resulted in increasing drain flow and decreasing Ron. This consequently resulted in enhancing the operation of high-frequency medical devices that use transistors, such as Radio Frequency (RF) and electrocardiograph machines.

  6. High-performance integrated field-effect transistor-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Md Arshad, M.K., E-mail: mohd.khairuddin@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); School of Microelectronic Engineering (SoME), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Gopinath, Subash C.B., E-mail: subash@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); School of Bioprocess Engineering (SBE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis (Malaysia); Ruslinda, A.R., E-mail: ruslinda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Fathil, M.F.M., E-mail: faris.fathil@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Ayub, R.M., E-mail: ramzan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Nor, M. Nuzaihan Mohd, E-mail: m.nuzaihan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Voon, C.H., E-mail: chvoon@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia)

    2016-04-21

    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications. - Highlights: • Performance of FET-based biosensors for the detection of biomolecules is presented. • Silicon nanowire, polyaniline and graphene are the highlighted nanoscaled materials as sensing transducers. • The importance of surface material interaction with the surrounding environment is discussed. • Different device structure architectures for ease in fabrication and high sensitivity of sensing are presented.

  7. High-performance integrated field-effect transistor-based sensors

    International Nuclear Information System (INIS)

    Adzhri, R.; Md Arshad, M.K.; Gopinath, Subash C.B.; Ruslinda, A.R.; Fathil, M.F.M.; Ayub, R.M.; Nor, M. Nuzaihan Mohd; Voon, C.H.

    2016-01-01

    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications. - Highlights: • Performance of FET-based biosensors for the detection of biomolecules is presented. • Silicon nanowire, polyaniline and graphene are the highlighted nanoscaled materials as sensing transducers. • The importance of surface material interaction with the surrounding environment is discussed. • Different device structure architectures for ease in fabrication and high sensitivity of sensing are presented.

  8. Crystalline Organic Pigment-Based Field-Effect Transistors.

    Science.gov (United States)

    Zhang, Haichang; Deng, Ruonan; Wang, Jing; Li, Xiang; Chen, Yu-Ming; Liu, Kewei; Taubert, Clinton J; Cheng, Stephen Z D; Zhu, Yu

    2017-07-05

    Three conjugated pigment molecules with fused hydrogen bonds, 3,7-diphenylpyrrolo[2,3-f]indole-2,6(1H,5H)-dione (BDP), (E)-6,6'-dibromo-[3,3'-biindolinylidene]-2,2'-dione (IIDG), and 3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo-[3,4-c]pyrrole-1,4-dione (TDPP), were studied in this work. The insoluble pigment molecules were functionalized with tert-butoxylcarbonyl (t-Boc) groups to form soluble pigment precursors (BDP-Boc, IIDG-Boc, and TDPP-Boc) with latent hydrogen bonding. The single crystals of soluble pigment precursors were obtained. Upon simple thermal annealing, the t-Boc groups were removed and the soluble pigment precursor molecules with latent hydrogen bonding were converted into the original pigment molecules with fused hydrogen bonding. Structural analysis indicated that the highly crystalline soluble precursors were directly converted into highly crystalline insoluble pigments, which are usually only achievable by gas-phase routes like physical vapor transport. The distinct crystal structure after the thermal annealing treatment suggests that fused hydrogen bonding is pivotal for the rearrangement of molecules to form a new crystal in solid state, which leads to over 2 orders of magnitude enhancement in charge mobility in organic field-effect transistor (OFET) devices. This work demonstrated that crystalline OFET devices with insoluble pigment molecules can be fabricated by their soluble precursors. The results indicated that a variety of commercially available conjugated pigments could be potential active materials for high-performance OFETs.

  9. The influence of in situ argon cleaning of GaAs on Schottky diodes and metal-semiconductor field-effect transistors

    NARCIS (Netherlands)

    Hassel, van J.G.; Heyker, H.C.; Kwaspen, J.J.M.

    1995-01-01

    The influence of in situ argon cleaning of GaAs on the electrical characteristics of Schottky diodes and metal–semiconductor field-effect transistors (MESFETs) is investigated. The beam energy was varied from 50 to 500 eV and the characteristics were compared to wet chemically cleaned devices. The

  10. Influence of thermocleavable functionality on organic field-effect transistor performance of small molecules

    Science.gov (United States)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar; Venugopalan, Vijay

    2017-06-01

    Diketopyrrolopyrrole based donor-acceptor-donor conjugated small molecules using ethylene dioxythiophene as a donor was synthesized. Electron deficient diketopyrrolopyrrole unit was substituted with thermocleavable (tert-butyl acetate) side chains. The thermal treatment of the molecules at 160 °C eliminated the tert-butyl ester group results in the formation of corresponding acid. Optical and theoretical studies revealed that the molecules adopted a change in molecular arrangement after thermolysis. The conjugated small molecules possessed p-channel charge transport characteristics in organic field effect transistors. The charge carrier mobility was increased after thermolysis of tert-butyl ester group to 5.07 × 10-5 cm2/V s.

  11. An analytic model for gate-all-around silicon nanowire tunneling field effect transistors

    International Nuclear Information System (INIS)

    Liu Ying; He Jin; Chan Mansun; Ye Yun; Zhao Wei; Wu Wen; Deng Wan-Ling; Wang Wen-Ping; Du Cai-Xia

    2014-01-01

    An analytical model of gate-all-around (GAA) silicon nanowire tunneling field effect transistors (NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band to band tunneling (BTBT) efficiency. The three-dimensional Poisson equation is solved to obtain the surface potential distributions in the partition regions along the channel direction for the NW-TFET, and a tunneling current model using Kane's expression is developed. The validity of the developed model is shown by the good agreement between the model predictions and the TCAD simulation results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Hysteresis mechanism and control in pentacene organic field-effect transistors with polymer dielectric

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2013-05-01

    Full Text Available Hysteresis mechanism of pentacene organic field-effect transistors (OFETs with polyvinyl alcohol (PVA and/or polymethyl methacrylate (PMMA dielectrics is studied. Through analyzing the electrical characteristics of OFETs with various PVA/PMMA arrangements, it shows that charge, which is trapped in PVA bulk and at the interface of pentacene/PVA, is one of the origins of hysteresis. The results also show that memory window is proportional to both trap amount in PVA and charge density at the gate/PVA or PVA/pentacene interfaces. Hence, the controllable memory window of around 0 ∼ 10 V can be realized by controlling the thickness and combination of triple-layer polymer dielectrics.

  13. Effect of In Situ Annealing Treatment on the Mobility and Morphology of TIPS-Pentacene-Based Organic Field-Effect Transistors

    Science.gov (United States)

    Yang, Fuqiang; Wang, Xiaolin; Fan, Huidong; Tang, Ying; Yang, Jianjun; Yu, Junsheng

    2017-08-01

    In this work, organic field-effect transistors (OFETs) with a bottom gate top contact structure were fabricated by using a spray-coating method, and the influence of in situ annealing treatment on the OFET performance was investigated. Compared to the conventional post-annealing method, the field-effect mobility of OFET with 60 °C in situ annealing treatment was enhanced nearly four times from 0.056 to 0.191 cm2/Vs. The surface morphologies and the crystallization of TIPS-pentacene films were characterized by optical microscope, atomic force microscope, and X-ray diffraction. We found that the increased mobility was mainly attributed to the improved crystallization and highly ordered TIPS-pentacene molecules.

  14. Flexible Graphene Transistor Architecture for Optical Sensor Technology

    Science.gov (United States)

    Ordonez, Richard Christopher

    The unique electrical and optoelectronic properties of graphene allow tunable conductivity and broadband electromagnetic absorption that spans the ultraviolet and infrared regimes. However, in the current state-of-art graphene sensor architectures, junction resistance and doping concentration are predominant factors that affect signal strength and sensitivity. Unfortunately, graphene produces high contact resistances with standard electrode materials ( few kilo-ohms), therefore, signal is weak and large carrier concentrations are required to probe sensitivity. Moreover, the atomic thickness of graphene enables the potential for flexible electronics, but there has not been a successful graphene sensor architecture that demonstrates stable operation on flexible substrates and with minimal fabrication cost. In this study, the author explores a novel 3-terminal transistor architecture that integrates twodimensional graphene, liquid metal, and electrolytic gate dielectrics (LM-GFETs: Liquid Metal and Graphene Field-Effect Transistors ). The goal is to deliver a sensitive, flexible, and lightweight transistor architecture that will improve sensor technology and maneuverability. The reported high thermal conductivity of graphene provides potential for room-temperature thermal management without the need of thermal-electric and gas cooling systems that are standard in sensor platforms. Liquid metals provide a unique opportunity for conformal electrodes that maximize surface area contact, therefore, enable flexibility, lower contact resistance, and reduce damage to the graphene materials involved. Lastly, electrolytic gate dielectrics provide conformability and high capacitances needed for high on/off rations and electrostatic gating. Results demonstrated that with minimal fabrication steps the proposed flexible graphene transistor architecture demonstrated ambipolar current-voltage transfer characteristics that are comparable to the current state-of-the-art. An additional

  15. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates

    Directory of Open Access Journals (Sweden)

    Kornelius Tetzner

    2014-10-01

    Full Text Available In this work, the insulating properties of poly(4-vinylphenol (PVP and SU-8 (MicroChem, Westborough, MA, USA dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  16. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics on Flexible Substrates

    Science.gov (United States)

    Tetzner, Kornelius; Bose, Indranil R.; Bock, Karlheinz

    2014-01-01

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor. PMID:28788243

  17. Influence of gate dielectric on the ambipolar characteristics of solution-processed organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ribierre, J C; Ghosh, S; Takaishi, K; Muto, T; Aoyama, T, E-mail: jcribierre@ewha.ac.kr, E-mail: taoyama@riken.jp [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2011-05-25

    Solution-processed ambipolar organic field-effect transistors based on dicyanomethylene-substituted quinoidal quaterthiophene derivative [QQT(CN)4] are fabricated using various gate dielectric materials including cross-linked polyimide and poly-4-vinylphenol. Devices with spin-coated polymeric gate dielectric layers show a reduced hysteresis in their transfer characteristics. Among the insulating polymers examined in this study, a new fluorinated polymer with a low dielectric constant of 2.8 significantly improves both hole and electron field-effect mobilities of QQT(CN)4 thin films to values as high as 0.04 and 0.002 cm{sup 2} V{sup -1} s{sup -1}. These values are close to the best mobilities obtained in QQT(CN)4 devices fabricated on SiO{sub 2} treated with octadecyltrichlorosilane. The influence of the metal used for source/drain metal electrodes on the device performance is also investigated. Whereas best device performances are achieved with gold electrodes, more balanced electron and hole field-effect mobilities could be obtained using chromium.

  18. Dual metal gate tunneling field effect transistors based on MOSFETs: A 2-D analytical approach

    Science.gov (United States)

    Ramezani, Zeinab; Orouji, Ali A.

    2018-01-01

    A novel 2-D analytical drain current model of novel Dual Metal Gate Tunnel Field Effect Transistors Based on MOSFETs (DMG-TFET) is presented in this paper. The proposed Tunneling FET is extracted from a MOSFET structure by employing an additional electrode in the source region with an appropriate work function to induce holes in the N+ source region and hence makes it as a P+ source region. The electric field is derived which is utilized to extract the expression of the drain current by analytically integrating the band to band tunneling generation rate in the tunneling region based on the potential profile by solving the Poisson's equation. Through this model, the effects of the thin film thickness and gate voltage on the potential, the electric field, and the effects of the thin film thickness on the tunneling current can be studied. To validate our present model we use SILVACO ATLAS device simulator and the analytical results have been compared with it and found a good agreement.

  19. Characteristics of voltage regulators with serial NPN transistor in the fields of medium and high energy photons

    International Nuclear Information System (INIS)

    Vukic, V.; Osmokrovic, P.

    2007-01-01

    Variation of collector - emitter dropout voltage on serial transistors of voltage regulators LM2990T-5 and LT1086CT5 were used as the parameter for detection of examined devices' radiation hardness in X and ? radiation fields. Biased voltage regulators with serial super-β transistor in the medium dose rate X radiation field had significantly different response from devices with conventional serial NPN transistor. Although unbiased components suffered greater damage in most cases, complete device failure happened only among the biased components with serial super-β transistor in Bremsstrahlung field. Mechanisms of transistors degradation in ionizing radiation fields were analysed [sr

  20. Impact of field-induced quantum confinement on the onset of tunneling field-effect transistors: Experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Smets, Quentin, E-mail: quentin.smets@imec.be; Verreck, Devin; Heyns, Marc M. [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); KULeuven, 3000 Leuven (Belgium); Verhulst, Anne S.; Martens, Koen; Lin, Han Chung; Kazzi, Salim El; Simoen, Eddy; Collaert, Nadine; Thean, Aaron [Imec, Kapeldreef 75, 3001 Heverlee (Belgium); Raskin, Jean-Pierre [ICTEAM, Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2014-11-17

    The Tunneling Field-Effect Transistor (TFET) is a promising device for future low-power logic. Its performance is often predicted using semiclassical simulations, but there is usually a large discrepancy with experimental results. An important reason is that Field-Induced Quantum Confinement (FIQC) is neglected. Quantum mechanical simulations show FIQC delays the onset of Band-To-Band Tunneling (BTBT) with hundreds of millivolts in the promising line-TFET configuration. In this letter, we provide experimental verification of this delayed onset. We accomplish this by developing a method where line-TFET are modeled using highly doped MOS capacitors (MOS-CAP). Using capacitance-voltage measurements, we demonstrate AC inversion by BTBT, which was so far unobserved in MOS-CAP. Good agreement is shown between the experimentally obtained BTBT onset and quantum mechanical predictions, proving the need to include FIQC in all TFET simulations. Finally, we show that highly doped MOS-CAP is promising for characterization of traps deep into the conduction band.